
Decidable Fragments of First-Order Logic and of

First-Order Linear Arithmetic with

Uninterpreted Predicates

Marco Voigt

Dissertation

zur Erlangung des Grades
Doktor der Naturwissenschaften (Dr. rer. nat.)
der Fakultät für Mathematik und Informatik

der Universität der Saarlandes

Saarbrücken
Februar 2019

ii

Tag des Kolloquiums: 31. Juli 2019
Dekan: Prof. Dr. Sebastian Hack

Prüfungsausschuss
Vorsitzender: Prof. Dr. Jan Reineke
Berichterstatter: Prof. Dr. Christoph Weidenbach

Prof. Dr. Erich Grädel
Prof. em. Dr. Alexander Leitsch
PD Dr. Thomas Sturm

Akademischer Mitarbeiter: Dr. Benjamin Kiesl

Abstract

First-order logic has a long tradition and is one of the most prominent and most important
formalisms in computer science and mathematics. It is well-known that the satisfiability problem
for full first-order logic is not solvable algorithmically — we say that first-order logic is undecidable.
This fact highlights a fundamental limitation of computing devices in general and of automated
reasoning in particular. The classical decision problem, as it is understood today, is the quest for a
delineation between the decidable and the undecidable parts of first-order logic based on elegant
and computable syntactic criteria. Many researchers have contributed to this endeavor and till
today numerous decidable and undecidable fragments of first-order logic have been identified. The
present thesis sheds more light on the decidability boundary and aims to open new perspectives on
the already known results.

In the first part of the present thesis we focus on the syntactic concept of separateness of
variables and explore its applicability to the classical decision problem and beyond. Two disjoint
sets of first-order variables are separated in a given formula if each atom in that formula contains
variables from at most one of the two sets. This simple notion facilitates the definition of decidable
extensions of many well-known decidable first-order fragments. We shall demonstrate that for
several prefix fragments, several guarded fragments, the two-variable fragment, and for the fluted
fragment. Altogether, we will investigate nine such extensions more closely. Interestingly, each of
them contains the monadic first-order fragment without equality. Although the extensions exhibit
the same expressive power as the respective originals, certain logical properties can be expressed
much more succinctly. In at least two cases the succinctness gap cannot be bounded using any
elementary function. This observation can be conceived as an indication for computationally
hard satisfiability problems associated with the extended fragments. Indeed, we will derive non-
elementary lower bounds for an extension of the Bernays–Schönfinkel–Ramsey fragment, called the
separated fragment. Furthermore, we shall investigate the effect of separateness of variables at
the semantic level, where it may lead to dependences between quantified variables that are weaker
than such dependences are in general. Such weak dependences will be studied in the framework of
model-checking games.

The focus of the second part of the present thesis is on linear arithmetic over the rationals
with uninterpreted predicates. Two novel decidable fragments shall be presented, both based on
the Bernays–Schönfinkel–Ramsey fragment. On the negative side, we will identify several small
fragments of the language for which satisfiability is undecidable.

iii

Zusammenfassung

Untersuchungen der Logik erster Stufe blicken auf eine lange Tradition zurück. Es ist allgemein
bekannt, dass das zugehörige Erfüllbarkeitsproblem im Allgemeinen nicht algorithmisch gelöst
werden kann – man spricht daher von einer unentscheidbaren Logik. Diese Beobachtung wirft
ein Schlaglicht auf die prinzipiellen Grenzen der Fähigkeiten von Computern im Allgemeinen
aber auch des automatischen Schließens im Besonderen. Das Hilbertsche Entscheidungsproblem
wird heute als die Erforschung der Grenze zwischen entscheidbaren und unentscheidbaren Teilen
der Logik erster Stufe verstanden, wobei die untersuchten Fragmente der Logik mithilfe klar zu
erfassender und berechenbarer syntaktischer Eigenschaften beschrieben werden. Viele Forscher
haben bereits zu dieser Untersuchung beigetragen und zahlreiche entscheidbare und unentscheidbare
Fragmente entdeckt und erforscht. Die vorliegende Dissertation setzt diese Tradition mit einer Reihe
vornehmlich positiver Resultate fort und eröffnet neue Blickwinkel auf eine Reihe von Fragmenten,
die im Laufe der letzten einhundert Jahre untersucht wurden.

Im ersten Teil der Arbeit steht das syntaktische Konzept der Separiertheit von Variablen
im Mittelpunkt, und dessen Anwendbarkeit auf das Entscheidungsproblem und darüber hinaus
wird erforscht. Zwei Mengen von Individuenvariablen gelten bezüglich einer gegebenen Formel
als separiert, falls in jedem Atom der Formel die Variablen aus höchstens einer der beiden
Mengen vorkommen. Mithilfe dieses leicht verständlichen Begriffs lassen sich viele wohlbekannte
entscheidbare Fragmente der Logik erster Stufe zu größeren Klassen von Formeln erweitern,
die dennoch entscheidbar sind. Dieser Ansatz wird für neun Fragmente im Detail dargelegt,
darunter mehrere Präfix-Fragmente, das Zwei-Variablen-Fragment und sogenannte “guarded”
und “fluted” Fragmente. Dabei stellt sich heraus, dass alle erweiterten Fragmente ebenfalls das
monadische Fragment erster Stufe ohne Gleichheit enthalten. Obwohl die erweiterte Syntax in
den betrachteten Fällen nicht mit einer erhöhten Ausdrucksstärke einhergeht, können bestimmte
Zusammenhänge mithilfe der erweiterten Syntax deutlich kürzer formuliert werden. Zumindest
in zwei Fällen ist diese Diskrepanz nicht durch eine elementare Funktion zu beschränken. Dies
liefert einen ersten Hinweis darauf, dass die algorithmische Lösung des Erfüllbarkeitsproblems für
die erweiterten Fragmente mit sehr hohem Rechenaufwand verbunden ist. Tatsächlich wird eine
nicht-elementare untere Schranke für den entsprechenden Zeitbedarf beim sogenannten separierten
Fragment, einer Erweiterung des bekannten Bernays–Schönfinkel–Ramsey-Fragments, abgeleitet.
Darüber hinaus wird der Einfluss der Separiertheit von Individuenvariablen auf der semantischen
Ebene untersucht, wo Abhängigkeiten zwischen quantifizierten Variablen durch deren Separiertheit
stark abgeschwächt werden können. Für die genauere formale Betrachtung solcher als schwach
bezeichneten Abhängigkeiten wird auf sogenannte Hintikka-Spiele zurückgegriffen.

Den Schwerpunkt des zweiten Teils der vorliegenden Arbeit bildet das Entscheidungsprob-
lem für die lineare Arithmetik über den rationalen Zahlen in Verbindung mit uninterpretierten
Prädikaten. Es werden zwei bislang unbekannte entscheidbare Fragmente dieser Sprache vorgestellt,
die beide auf dem Bernays–Schönfinkel–Ramsey-Fragment aufbauen. Ferner werden neue negative
Resultate entwickelt und mehrere unentscheidbare Fragmente vorgestellt, die lediglich einen sehr
eingeschränkten Teil der Sprache benötigen.

iv

Contents

Introduction 1

I Separateness of First-Order Variables 7

1 Preliminaries 9

2 Separateness of First-Order Variables 15

3 Novel Decidable First-Order Fragments 23
3.1 The Separated Fragment (SF) . 28
3.2 Translation of SF into BSR: Upper and Lower Bounds 31
3.3 Expressiveness of SF . 39

3.3.1 Fundamental Properties of Relations . 39
3.3.2 Basic Counting Quantifiers . 40
3.3.3 Expressiveness with Respect to Models of Bounded Size 42

3.4 The Generalized Bernays–Schönfinkel–Ramsey Fragment (GBSR) 55
3.5 Translation of GBSR into BSR . 58
3.6 Taking Boolean Structure into Account . 61
3.7 The Generalized Ackermann Fragment (GAF) . 67
3.8 Translation of GAF into the Ackermann Fragment 70
3.9 The Generalized Gödel–Kalmár–Schütte Fragment (GGKS) 77
3.10 Separateness and Guarded Quantification . 82
3.11 Separateness and Guarded Negation . 92
3.12 Separateness and Finite-Variable First-Order Logic 95
3.13 Separateness and Fluted Formulas . 99
3.14 Decidable Fragments with Function Symbols . 102

3.14.1 Unary Functions in Arguments of Monadic Atoms 102
3.14.2 SF and GBSR with Stratified Occurrences of Function Symbols 102
3.14.3 Monadic Horn Sentences in which Positive Literals are Shallow and Linear 104

4 Weak Dependences and Model-Checking Games 111
4.1 The Simple Case of SF . 113
4.2 GBSR Sentences and Uniform Winning Strategies 116
4.3 GAF Sentences and Semi-Uniform Winning Strategies 124

5 Computational Complexity of SF-Sat and GBSR-Sat 139
5.1 Computational Complexity of Existential SF . 142
5.2 Horn and Krom Special Cases of SF and a Conjecture 146
5.3 Proving Lower Bounds for SF-Sat . 149

5.3.1 Enforcing a Large Domain in SF . 152
5.3.2 Formalizing a Tiling of a Torus . 163
5.3.3 Replacing the Equality Predicate . 166

v

vi CONTENTS

6 Interpolation 167
6.1 Interpolation for SF and GBSR . 169
6.2 Interpolation for GAF . 174

7 Beyond the Classical Decision Problem 181
7.1 Separated Formulas and Linear Rational Arithmetic 181
7.2 Skolemization Policies Taking Weak Dependences into Account 191
7.3 Elimination of Second-Order Quantifiers in Second-Order SF 204

II First-Order Linear Arithmetic with Uninterpreted Predicates 215

8 Linear Arithmetic with Uninterpreted Predicates 217

9 Additional Technical Preliminaries 223

10 Decidable Fragments of Arithmetic with Uninterpreted Predicates 227
10.1 Basic Tools from Ramsey Theory . 231
10.2 Decidability of BSR with Simple Linear Rational Constraints 233
10.3 BSR(SLR) from the Viewpoint of Combinations of Theories 242
10.4 Decidability of BSR with Bounded Difference Constraints 245
10.5 Formalizing Reachability for Timed Automata in BSR(BD) 254

11 Undecidable Fragments of Arithmetic with Uninterpreted Predicates 263
11.1 Minsky Machines, Universal Presburger Arithmetic, Simple Encodings 264
11.2 Encoding Two-Counter-Machine Runs in a Unary Predicate 267

11.2.1 Informal Description of the Encoding . 268
11.2.2 Formal Encoding of Two-Counter Machine Computations 269
11.2.3 Reducing the Number of Variables to Two 273
11.2.4 Undecidability with One Variable Only Using Another Encoding 274
11.2.5 Using the Rationals or Reals as Underlying Domain 275
11.2.6 Unary Function Symbols and the Horn Fragment 276

11.3 Degrees of Unsolvability . 276
11.4 An Encoding Based on Difference Constraints . 279

11.4.1 Informal Description of the Encoding . 280
11.4.2 Formal Encoding of Two-Counter Machine Computations 281
11.4.3 Restriction to Difference Constraints . 284

11.5 Relevance to Verification . 285
11.5.1 Separation Logic . 286
11.5.2 Verification of Data Structures . 287
11.5.3 Verification Using Counter Arithmetic . 287
11.5.4 Almost Uninterpreted Formulas with Offsets 288

12 Conclusion 291
12.1 Separateness: Applications to the Classical Decision Problem and Beyond 291

12.1.1 Applications for the Novel Decidable Fragments 294
12.1.2 More about Future Work . 295

12.2 First-Order Linear Arithmetic with Uninterpreted Predicates 296
12.2.1 Applications for the New Decidable Fragments and Future Work 298
12.2.2 Automated Reasoning in Practice: Instantiation Methods 299

List of Figures

1 Overview of known and novel decidable fragments treated in the present thesis . . 3

3.1 Example trees representing integers . 47
3.2 Illustration of the structure F0,1. 49
3.3 Nesting of quantifier blocks in the formula ϕ(2n). 60
3.4 Quantifier structure in ϕ(2n) after a first round of narrowing scopes 60
3.5 Quantifier structure in ϕ(2n) after a second round of narrowing scopes 61
3.6 Illustration of the model A of ϕ from Example 3.14.9. 108

4.1 Illustration of an exemplary structure A. 125
4.2 Illustration of the structure C . 138

5.1 Computational complexity of subfragments of SF and GBSR 141
5.2 Conjectured computational complexity for Horn and Krom subfragments of SF . . 149

7.1 Solution sets of three arithmetic atoms in two variables 183
7.2 Solution set of three arithmetic atoms in three variables with two fixed values . . . 184
7.3 Solution set of three arithmetic atoms in three variables with one fixed value . . . 184
7.4 Solution set of three arithmetic atoms in three variables without any fixed value . 185
7.5 Solution set of two arithmetic atoms in three variables without any fixed value . . 185

8.1 Partition of the two-dimensional rational plane into equivalence classes 221

10.1 Partition of the two-dimensional rational plane induced by ∼JA 235
10.2 Partitions of the sets (−2, 2)2 and Q2 induced by '1 and '̂1, respectively 246
10.3 Partition of the set Q2

≥0 into ∼A-equivalence classes 256
10.4 Synchronous versus asynchronous progress of time for a timed automaton 257

11.1 Structure of a single chunk of length 3x in a two-counter machine encoding 269
11.2 Structure of a single chunk of length 3d in a two-counter machine encoding 281
11.3 Structure of a single chunk of length 3d in a two-counter machine encoding 289

12.1 Overview of the novel decidable fragments presented in the present thesis 292
12.2 Partition of the two-dimensional rational plane into equivalence classes 300

vii

List of Tables

1 Summary of the succinctness gaps that are explored in the present thesis 4

5.1 Basic complexity classes and corresponding complete problems 147

11.1 Encoding of two-counter-machine instructions using difference constraints. 266
11.2 The degree of unsolvability regarding certain fragments of Presburger arithmetic

with uninterpreted predicates . 277
11.3 Encoding of two-counter-machine instructions including a step counter 280

12.1 Summary of the unconditional lower bounds regarding succinctness derived in the
present thesis . 293

12.2 Summary of the most important undecidability results obtained in Chapter 11 . . 297

viii

Acknowledgments

The present thesis reports on a research endeavor that started in November 2013 when I joined the
Automation of Logic group at the Max Planck Institute for Informatics in Saarbrücken, Germany.
Along the way my work was influenced by many people — researchers, friends, and family — all
of whom I owe a great debt of gratitude. In what follows I would like to take the opportunity to
express a small part of that gratitude.

This thesis would not have been possible without the constant support of my thesis supervisor
Christoph Weidenbach. He put me on track to the theme of decidability and undecidability in
first-order logic and, at the right time, granted me the necessary freedom to develop all the results
presented in the thesis. For his generosity and trust in me I am very grateful.

My life at the institute was greatly enriched by my colleagues from the Automation of Logic
group and our guests: Gábor Alagi, Noran Azmy, Jasmin Christian Blanchette, Björn Borowski,
Aymeric Bouzy, Martin Bromberger, Eugen Denerz, Alberto Fiori, Mathias Fleury, Florian Frohn,
Willem Hagemann, Matthias Horbach, Maximilian Jaroschek, Marek Košta, Jennifer Müller, Anna
Rossien, Anders Schlichtkrull, Renate Schmidt, Thomas Sturm, Martin Suda, Ching Hoo Tang,
Andreas Teucke, Sophie Tourret, Hernán Vanzetto, Daniel Wand, Uwe Waldmann, Christoph
Weidenbach, and Patrick Wischnewski. Each and every one of them played their part in turning
research work into an enjoyable activity rather than a daily grind. Special thanks go to

Matthias Horbach for extensive discussions on extensions of first-order rational and Presburger
arithmetic with uninterpreted predicates,

Marek Košta for repeatedly discussing conjunctive associativity and virtual substitution,

Jennifer Müller for handling even the most troublesome requests most competently, gracefully,
and reliably,

Thomas Sturm for discussing general issues in algebra, separateness of first-order variables,
and computational complexity in the context of arithmetic, and for stirring things up every
now and again, thereby creating fresh scientific excitement and curiosity,

Uwe Waldmann for happily discussing all sorts of technical questions in first-order logic and
automated reasoning.

Over the years I had discussions with numerous researchers from other institutions who have
influenced my work in one way or the other. I am particularly indebted to

Pascal Fontaine for all the fruitful discussions we have had over the years and, in particular,
for pointing out that the BSR(SLR) fragment can be restated in the framework of combina-
tions of theories over non-disjoint vocabularies,

Erich Grädel for inviting me to contribute to the Algorithmic Model Theory Meeting 2017
and for pointing me to the result by Dawar et al. (2007) and the possible connections of
weak dependences to the field of dependence logic,

Martin Grohe for an inspiring question at LICS 2016 that made me investigate computational
complexity of the separated fragment on a fine-grained level,

Radu Iosif for motivating me to investigate the undecidability boundary for the extension of
Presburger arithmetic with uninterpreted predicates,

Dietrich Kuske for convincing me of the undecidability of BSR(BD) with uninterpreted
constants,

ix

x ACKNOWLEDGMENTS

Sebastian Rudolph for providing many references to decidability results in knowledge repre-
sentation,

Viorica Sofronie-Stokkermans for pointing out the similarity between the syntax of BSR(SLR)
and the syntax of the array property fragment,

Stanislav Speranski for fruitful discussions about Halpern’s (1991) undecidability result con-
cerning Presburger arithmetic with uninterpreted predicates and generalizations of that re-
sult,

Christoph Wernhard for inviting me to contribute to the Workshop on Second-Order Quantifier
Elimination and Related Topics 2017.

Others who have helped with discussions, comments, advice, or making literature available were
Matthias Baaz, Christel Baier, Michael Benedikt, Armin Biere, Maria Paola Bonacina, Uwe Egly,
Berit Grußien, Andreas Herzig, Ullrich Hustadt, Yevgeny Kazakov, Manuel Kieroński, Laura
Kovacs, Alexander Leitsch, Florian Lonsing, Martin Lück, Stephan Merz, Andreas Nonnengart,
Martin Otto, Reinhard Pöschel, Ian Pratt-Hartmann, Karin Quaas, Abhisekh Sankaran, Renate
Schmidt, Nicole Schweikardt, Thomas Schwentick, Lidia Tendera, Martin Wirsing, Thomas Zeume,
and the anonymous reviewers of papers I contributed to — my apologies go to anyone whom I might
have forgotten. For extraordinary cultural contributions I would like to thank Hans de Nivelle for
singing so beautifully at the FroCoS 2015 conference dinner and Dexter Kozen for rocking the
stage at the LICS 2017 reception. Moreover, I owe thanks to Bernd Finkbeiner who acted as my
academic mentor and supported me morally when critical questions arose. I thank the reviewers of
the present thesis, Erich Grädel, Alexander Leitsch, Thomas Sturm, and Christoph Weidenbach, for
putting all the effort into reviewing more than 300 pages and, moreover, I thank the two additional
members of the examination board, Benjamin Kiesl and Jan Reineke, for investing their time.

The teachers who have influenced me most deserve a very special mention: Christel Baier held
the lecture Advaced Logic at TU Dresden in summer 2011, which has shaped my thinking about
first-order logic considerably. I am also very grateful for her very generous support later on. Monika
Sturm has taught me the joy of theoretical computer science and the necessity of mathematical
rigor. Her excellent lectures on computing formalisms inspired by DNA molecules and unicellular
organisms in summer 2008 and on the typed lambda calculus in winter 2008/09 were fascinating
and have captured my imagination. It is due to Mrs. Sturm’s encouraging and demanding style of
teaching and thesis supervision that got me hooked on the field of theoretical computer science.

Finally, I thank my family and friends. Without their unconditional support none of my research
activity would have ever happened. I thank my parents and my sister for raising me to become
a curios, open-minded, and independent person. To my dear wife, Ina Becher, I owe more than
words could ever say for her ever-growing love and care. She cheered me up whenever I was in need
and always motivated me to bring things to an end whenever I was in danger of losing focus. I
deeply admire her for her patience and courage, and I will always be grateful for her never-ending
trust in me.

Marco Voigt

Introduction

What kind of logical reasoning are computing devices capable of?
This is one of the fundamental questions the present thesis ultimately revolves around. In order

to provide rigorous answers, we need to be more precise. To this end, we need to, first and foremost,
agree on a clear and convincing notion of the involved concepts, namely computing devices and
logical reasoning.

There are two major reasons why human-constructed real-world computers and natural objects,
such as the human brain, do usually not play much of a role in the study of computing. The first
reason is their immense structural and operational complexity, which lies far beyond a reasonable
and rigorous mathematical treatment. The second, even more important reason is the ambition
of theoretical computer science to obtain results that give interesting insights and that are as
broadly applicable as possible. To this end, the used models of computing devices should also
capture as much as possible of the computational capabilities of future technology and of yet
undiscovered natural phenomena. Therefore, the computing devices we shall take into account in
the present thesis are abstract mathematical objects, such as Turing machines [Tur36] or Minsky
machines [Min67]. Although such abstract devices are granted access to potentially unbounded
resources, such as running time and information storage capacity, they nevertheless adhere to
finitary principles: every computation step can only process a fixed finite amount of information,
and their behavior can be described by finite means, e.g. by a finite set of rules or by a program
of finite length. Both models are characterized by neat and crisp mathematical definitions and
they are considered to be universal models of computation in the sense that everything that is
computable in an intuitive sense can in fact be computed using these abstract computing devices.
This is known as the Church–Turing thesis .1 Although it is impossible to prove this claim rigorously,
it is widely accepted in contemporary theoretical computer science — similar to laws of nature
that are widely accepted in contemporary physics. Indeed, there is strong evidence in favor of the
Church–Turing thesis, as all currently known models of computation based on finitary principles
turned out to have exactly the same computational power that Turing machines and Minsky
machines have. The latter has been proved rigorously, see, e.g., [Min67, HU79, Rog87, Coo04].
What in fact makes the Church–Turing thesis even more interesting is that we today also know
that there are inherent limitations on what is computable with Turing machines and all the other
equally powerful abstract computing devices. We shall come back to this fact shortly.

The other concept that we need to put on solid grounds is logical reasoning. It requires
two components: a language in which we can unambiguously formulate the assumptions and
propositions we wish to reason about and a finite (better: small) set of plausible rules of inference
that describe clearly and unambiguously how conclusions may be drawn from finitely many given
assumptions, possibly taking earlier-drawn conclusions into account. Since natural languages
are far from being unambiguous, they do not qualify for such an endeavor. The combination of
language plus inference rules chosen to be investigated in the present thesis is what is known today
as classical first-order logic.2 We will, however, occasionally even consider classical second-order
logic.

1Detailed discussions of the Church–Turing thesis can be found, for instance, in the textbooks [HU79], Sections 7.1
and 7.6, [Rog87], Section 1.7, and in the more recent [Coo04], Chapters 1 and 2, and [Soa16], Chapter 17.

2There are many textbooks treating first-order logic on an introductory level, e.g. [End72, Fit96, vD13, Sch08,
Smu95, EFT94, TS96].

1

2 INTRODUCTION

While Gottfried Wilhelm Leibniz (1646–1716) and David Hilbert (1862–1943) promoted the
idea that logical reasoning was more or less fully accessible to computing devices of one kind or
another (cf. [Coo04], Chapter 1), Church and Turing showed the contrary in 1936 [Chu36c, Chu36b,
Chu36a, Tur36, Tur38]: there are fundamental limits to what computing devices can compute, no
matter whether they are abstract mathematical or real-world objects. In particular, it is beyond
the capabilities of any abstract computing device, whose behavior is fully describable by a finite
set of rules, to always compute the correct answer to the following question for arbitrary finite sets
of assumptions S and an arbitrary proposition ϕ, both formulated in the language of first-order
logic: Can we deduce ϕ from S using only the inference rules admitted in classical first-order
logic? Alternatively, one could say that, assuming the Church–Turing thesis to be valid, there is
no computing device that can solve the posed question in full generality. This is a limitation that
is inherent to each and every model of computing devices that contemporary computer science has
to offer.

Ever since the discovery of this fundamental insight in the 1930s, computer scientists have
constantly put effort into exploring the boundaries between the realm of computable problems and
the part that is inaccessible to computing devices. In the field of classical first-order logic, this
exploration had even begun before the existence of such a boundary was known. In an attempt
to find algorithmic ways for solving the outlined inference problems, several logicians described
partial solutions. Instead of tackling the described problem for full first-order logic, they focused on
certain parts of the underlying language, that is, on fragments of first-order logic, as we shall say,
and devised specialized algorithms that are capable of solving instances of the inference problem
formulated exclusively in such a language fragment. We shall call such a fragment decidable
as a reference to Hilbert’s “Entscheidungsproblem” (German for decision problem), which is an
equivalent formulation of the inference problem outlined above. After the landmark results by
Church and Turing, the exploration started on both sides of the computability boundary and
has since then lead to a very large number of discoveries — see Chapter 3 for more details and
references. In the present thesis we set out to contribute to this enterprise.

The present thesis is divided into two parts. While Part I concentrates on classical first-order
logic without any background theories, the focus of Part II is on classical first-order logic enhanced
with the language of linear arithmetic plus the corresponding rules of reasoning.

In Part I we shall introduce a simple syntactic concept, namely separateness of variables,
that facilitates elegant definitions of nontrivial extensions of well-known decidable fragments of
first-order logic. The extended fragments have the remarkable property of being decidable as well.
This aspect of separateness will be fleshed out in Chapter 3 and the novel decidable fragments
presented therein constitute one of the main contributions of the present thesis. Figure 1 provides
a schematic overview of the most important fragments we shall introduce. Roughly speaking,
variables are separated in a first-order formula, if they never co-occur in the basic building blocks
of the formula, called atoms. From a qualitative point of view, the extended fragments do not come
with an increased expressiveness compared to the original fragments. That is, every property that
can be expressed in such an extended language can also be expressed in the underlying original
language. However, in some cases the respective logical formulas in the original fragment may have
to be much longer. Indeed, we will show for several cases that there are significant gaps regarding
the length of shortest formulas that express one and the same property, formulated in the extended
language on the one hand, compared to the formulation in the original language on the other hand.
For example, the succinctness gap between the well-known Bernays–Schönfinkel–Ramsey fragment
and an extension of it, which we shall call the separated fragment, is as follows. For every positive
natural number n we can find some property that can be expressed in the separated fragment with
a formula of length k · n2 for some positive natural number k, whereas expressing the very same
property in the Bernays–Schönfinkel–Ramsey fragment requires a formula whose length is at least

22
.
.
.

22
}

height n .

Hence, from the perspective of formula length, the extended fragments we shall present enable

3

MFO

LGF

GKS

GF

FL

AF

FO2

BSR

GNFO

LGF

GKS

GF

FL

AF

FO2

BSR

GNFO

MFO

SGF

SLGF

SFL

GAF

GGKS
SFO2

SF

GBSR

SGNFO

MFO – monadic first-order fragment
BSR – Bernays–Schönfinkel–Ramsey fragment
FO2 – two-variable fragment
AF – Ackermann fragment

GKS – Gödel–Kalmár–Schütte fragment
FL – fluted fragment
GF – guarded fragment

LGF – loosely guarded fragment
GNFO – guarded negation fragment

SF – separated fragment
GBSR – generalized BSR
SFO2 – separated FO2

GAF – generalized AF
GGKS – generalized GKS
SFL – separated FL
SGF – separated GF

SLGF – separated LGF
SGNFO – separated GNFO

Figure 1: Left-hand side: Schematic overview of well-known decidable fragments of first-order
logic. Only the partial overlaps between MFO and the other fragments is depicted. We neglect
any other partial overlaps. Moreover, the containment of AF in GKS and of GF in LGF is shown.
Right-hand side: Schematic overview of the extended fragments (in green) that shall be presented
in Chapter 3. Notice that MFO is properly contained in all extended fragments. The focus is again
on the overlaps with MFO and on the proper containment relations. Other depicted overlaps might
be unsubstantiated.

us to describe certain properties much more succinctly and elegantly. Table 1 summarizes the
succinctness gaps that we shall derive.

This boost in succinctness comes with a price tag attached concerning the computational
complexity of logical inference in the extended fragments. That is, a worst-case analysis of the
resources consumed by an abstract computing device that is actually doing logical reasoning in
the separated fragment rather than in the Bernays–Schönfinkel–Ramsey fragment, for instance,
reveals a similar gap regarding the required running time. It turns out that logical reasoning in the
separated fragment is computationally as hard as logical reasoning is in any decidable first-order
fragment that enjoys the so-called finite model property, if the size of smallest models is bounded by
linearly growing towers of exponentials. This in fact means that logical reasoning for the separated
fragment is at least as time consuming as it is for any other decidable first-order fragment enjoying
the finite model property that is known today — at least as far as the author of the present thesis is
aware of. We shall show this in two different ways: once in Chapter 3 (Theorem 3.3.11) — relative
to the reasoning problem associated with other decidable first-order fragments — and once in
Chapter 5 (Theorem 5.3.11) — relative to computationally hard problems from a different domain,
so-called domino problems.

4 INTRODUCTION

More succinct fragment Less succinct fragment Succinctness gap Reference

SF BSR non-elementary Theorem 3.2.7
SF Gaifman-local first- non-elementary Theorem 3.3.18

order fragment
GAF AF super-polynomial Proposition 3.8.9

GGKS GKS exponential Theorem 3.9.9
SGF LGF non-elementary Theorem 3.10.8
SFO2 FO2 exponential Theorem 3.12.5

Table 1: Summary of the succinctness gaps the are explored in the present thesis. The abbreviations
for fragments are spelled out in Figure 1. The first row, for instance, summarizes the succinctness
gap between the separated fragment and the Bernays–Schönfinkel–Ramsey fragment that we have
described above. The gap between GAF and AF is conditional on ExpTime 6= NExpTime. All
other gaps are unconditional.

Beyond the already described aspects, the concept of separateness of variables has further
interesting facets on offer to be explored. A gentle introduction to the technical aspects of
separateness and a detailed overview of the related topics treated in the present thesis can be found
in Chapter 2. The syntactic notion of separateness induces the following semantic counterpart.
Under certain circumstances, two first-order variables, one universally quantified and the other
existentially quantified, that are separated in a given formula ϕ show a dependence pattern that
is weaker than the dependence pattern one encounters in general in first-order logic. Hence, the
term weak dependence suggests itself. In the general case, if a universally quantified variable x
ranges over infinitely many values, an existentially quantified variable y that depends on x may
have to range over infinitely many values as well. However, if y depends only weakly on x and
the values assigned to all other involved variables are fixed, then the range of y can always be
restricted to a finite set of values. This phenomenon and some consequences will be investigated in
detail in Chapter 4. It will also play a role in Chapter 7, Section 7.2, where we shall suggest how
Skolemization, an important technique in automated reasoning, could be enhanced so as to make it
sensitive to weak dependences and yield better outcomes. Another interesting topic that is worth
mentioning is interpolation. A first-order fragment is said to be closed under interpolation, if for
every formula ϕ1 from the fragment that logically entails another formula ϕ2 from the fragment
there is a third formula ψ from the same fragment, called the interpolant of ϕ1 and ϕ2 that “sits
between” ϕ1 and ϕ2 in a syntactic and semantic sense. This means that (a) the vocabulary that is
used in ψ is the common vocabulary of ϕ1 and ϕ2, and (b) ϕ1 logically entails ψ and ψ logically
entails ϕ2. We shall derive interpolation theorems for several of our novel decidable first-order
fragments: the separated fragment and the generalized Bernays–Schönfinkel–Ramsey fragment
(Theorem 6.1.1), the generalized Ackermann fragment (Theorem 6.2.1), and the separated guarded
negation fragment (Proposition 6.0.4).

In Part II of the present thesis, we turn our attention to a more specific part of classical
first-order logic, which is concisely described as first-order arithmetic with uninterpreted predicate
symbols. Logical reasoning in first-order arithmetic is not fully accessible to computing devices
either. This changes, however, if we restrict multiplication. For instance, logical reasoning in the
logic of the integers with addition, equality, and strict order — a fragment known as Presburger
arithmetic — can be done by computing devices without human interaction, at least in principle.
The picture changes again, as soon as we add so-called uninterpreted predicate symbols to the
language. Allowing such predicate symbols, even if they have only one argument place, yields a
logic fragment that is not decidable (cf. Chapter 11). Again, we need to restrict the admitted
language, in order to obtain a decidable fragment.

Indeed, the main purpose of Part II is to explore the boundary between what parts of logical
reasoning is accessible to computing devices in first-order arithmetic with uninterpreted predicate
symbols and the parts that are inaccessible to computing devices. A detailed introduction and

5

overview can be found in Chapter 8. In Chapter 10 we shall present two positive results, and in
Chapter 11 several negative results will be derived. The two decidable fragments introduced in
Chapter 10 are the Bernays–Schönfinkel–Ramsey fragment with simple linear rational constraints
and the Bernays–Schönfinkel–Ramsey fragment with bounded difference constraints . Both fragments
are suitable for applications in hardware and software verification.3 For instance, we shall discuss in
Section 10.5 how the latter fragment can be used to verify safety properties of real-time systems. In
Chapter 11 the positive results shall be contrasted with an investigation of the syntactic threshold
of the computationally inaccessible part of logical reasoning. We will concentrate on restricted
fragments of Presburger arithmetic plus uninterpreted predicate symbols. Most of these results
can be easily transfered to arithmetic over the rational numbers. In particular, we shall show in
Section 11.4 how small relaxations of the syntactic requirements characterizing the Bernays–Schön-
finkel–Ramsey fragment with bounded difference constraints will turn this decidable fragment into
a fragment where logical reasoning is not fully accessible to computing devices anymore. Finally,
in Section 11.5 we will sketch what the negative results found in Chapter 11 mean for certain
formalisms used in the filed of verification, in particular concerning limitations that are revealed
by our discoveries.

The following list summarizes the main contributions of the present thesis:

(1) The as yet unexplored concept of separateness of variables is fleshed out in several directions
(Part I, an overview is given in Chapter 2).

(2) Nine novel decidable fragments of first-order logic are introduced that extend well-known de-
cidable first-order fragments (Chapter 3). The major fragments that are being introduced are
the separated fragment (SF), the generalized Bernays–Schönfinkel–Ramsey fragment (GBSR),
the generalized Ackermann fragment (GAF), the generalized Gödel–Kalmár–Schütte frag-
ment (GGKS), the separated guarded fragment (SGF), the separated loosely guarded frag-
ment (SLGF), the separated guarded-negation fragment (SGNFO), the separated two-variable
fragment (SFO2), and the separated fluted fragment (SFL), cf. Figure 1. Moreover, it is proved
that the qualitative expressiveness of the extended fragments compared to the respective
original fragments stays the same.

(3) Significant gaps regarding succinctness are derived for several of the extended fragments:
SF, GBSR, GAF, GGKS, SGF, SLGF, SFO2, cf. Table 1. This evidently shows that several
of the extended fragments constitute a substantial quantitative improvement regarding
expressiveness compared to the original fragments. Moreover, a succinctness gap is shown
between SF sentences and shortest equivalent Gaifman-local sentences (Theorem 3.3.18).

(4) As a semantic counterpart to the mostly syntactically-minded investigation of separateness,
the notion of weak dependence is introduced and it is investigated in the framework of
model-checking games and satisfying strategies (also: winning strategies) in the spirit of
Hintikka (Chapter 4). It is shown that every first-order sentence in which all dependences
are weak is equivalent to some Bernays–Schönfinkel–Ramsey sentence (Theorem 4.2.1).

(5) Regarding the computational complexity of the satisfiability problem for SF (SF-Sat) and
GBSR (GBSR-Sat), it is shown that both problems are non-elementary by deriving upper
and lower bounds (Chapter 5). More precisely, it is shown that both problems are Tower-
complete (cf. [Sch16], see also Definition 5.0.2) and that for every positive integer k there
are k-NExpTime-complete subproblems in both SF-Sat and GBSR-Sat (Theorem 5.0.3).
Furthermore, a polynomial-time reduction is devised that facilitates reducing the satisfiability
problem of any first-order fragment enjoying the finite model property to SF-Sat, provided that
the former fragment comes with an elementary (or small non-elementary) bound regarding
the size of smallest models (Theorem 3.3.11).

3In fact, BSR(SLR) and BSR(BD) can be conceived as generalizations of formalisms that are already used for
verification, such as the Bernays–Schönfinkel–Ramsey fragment itself, the existential fragment of linear arithmetic,
or difference constraints — references are given in Section 12.1.1, in Chapter 8 (Remarks 8.0.1 and 8.0.2 and the
subsection on related work), and in Sections 11.5 and 12.2.1.

6 INTRODUCTION

(6) Craig–Lyndon-style interpolation theorems are proved for the Bernays–Schönfinkel–Ramsey
fragment, SF, GBSR, the Ackermann fragment, and GAF, all without equality (Theorem 6.1.1,
Lemma 6.1.9, Theorem 6.2.1, and Lemma 6.2.5).

(7) Several applications of separateness beyond the definition of decidable first-order fragments
are proposed and first promising results derived: new Skolemization techniques sensitive to
weak dependences (Section 7.2), a second-order variant of SF admitting the elimination of
certain second-order quantifiers (Section 7.3), and an analysis of separateness in the context
of interpreted logics, e.g. linear rational arithmetic (Section 7.1).

(8) Novel fragments of first-order linear rational arithmetic enhanced with uninterpreted predicate
symbols are defined and proved to be decidable (Chapter 10): the Bernays–Schönfinkel–
Ramsey fragment with simple linear rational constraints (BSR(SLR)) and the Bernays–
Schönfinkel–Ramsey fragment with bounded difference constraints (BSR(BD)). It is shown
that both fragments have a NExpTime-complete satisfiability problem (Corollaries 10.2.15
and 10.4.11). The decidability proof for BSR(SLR) can be restated in the framework of
combinations of theories, which facilitates extensions, e.g. based on SF or GBSR rather than
the Bernays–Schönfinkel–Ramsey fragment, and based on polynomials rather than linear
arithmetic terms only (Section 10.3). A non-trivial application of BSR(BD) is elaborated
upon, namely reachability analysis for formal models of real-time systems, in particular for
timed automata (Section 10.5).

(9) Finally, several undecidable fragments of first-order arithmetic with uninterpreted predicate
symbols are identified and discussed, mostly based on the universal fragment of Presburger
arithmetic or the universal fragment of linear rational arithmetic (or restricted subfragments
thereof) with a single uninterpreted predicate symbol of arity one (Chapter 11).

Parts of the material developed in the present thesis have been published in conference proceed-
ings [SVW16, Voi17b, Voi17a, HVW17a], workshop proceedings [Voi17d], and as preprint [VW15,
Voi17c, HVW17b]. Parts of the texts in the present thesis were taken, adapted, and extended from
these papers without explicitly giving references to the respective source. All of the thus used
parts were originally written by the author of the present thesis.

Part I

Separateness of First-Order
Variables: A New Viewpoint on
the Classical Decision Problem

and Beyond

7

Chapter 1

Preliminaries

Syntax of First-Order Formulas

We mainly consider first-order logic formulas with equality. The following notions and notation are
fairly standard and can be found in different composition in standard texts about first-order logic,
for example, [End72, CK90, EFT94, Smu95, Fit96, vD13].

A vocabulary vocabulary
Σ = 〈Π,Ω〉

Σ = 〈Π,Ω〉 (also: signature) comprises a countable set Π of predicate symbols and
a countable set Ω of function symbols. If not explicitly stated otherwise, the vocabularies treated
in the present thesis are finite. Every symbol in Σ is equipped with a nonnegative integer, its arity.
For the distinguished equality predicate, whose semantics is fixed to be the identity relation, we
use ≈. A function symbol of arity zero is called constant symbol. We call a vocabulary Σ = 〈Π,Ω〉
relational if Ω is empty.

Fix some vocabulary Σ = 〈Π,Ω〉 and fix some countably infinite supply Var Varof first-order
variables. A Σ-term is a finite syntactic object: any constant symbol c ∈ Ω is a Σ-term; any
variable v ∈ Var is a Σ-term; given any m-ary function symbol f ∈ Ω and m Σ-terms t1, . . . , tm the
expression f(t1, . . . , tm) is also a Σ-term. Atomic Σ-formulas (also: Σ-atoms) are either the logical
constants true, false, or are equations s1 ≈ s2, or are of the form P (s1, . . . , sm) where the si are
Σ-terms, P stems from Π, and m is the arity of P . A Σ-formula is either a Σ-atom, a negated
Σ-formula ¬ϕ, a conjunction ϕ ∧ ψ, a disjunction ϕ ∨ ψ, an implication ϕ → ψ, an equivalence
ϕ ↔ ψ, or a quantified Σ-formula of the form ∀x. ϕ or ∃y. ϕ, where ϕ,ψ are Σ-formulas and
x, y ∈ Var are first-order variables. For any Σ-terms s, t we use s 6≈ t to abbreviate ¬ s≈ t. Given a
quantified Σ-formula Qv. ϕ, we call the subformula ϕ the scope of the quantifier Qv. Similarly, in
a negated Σ-formula ¬ϕ the subformula ϕ is the scope of this occurrence of the negation sign. In
order to save parentheses, we follow the convention that negation binds strongest, that conjunction
binds stronger than disjunction, and that all of the aforementioned bind stronger than implication
and equivalence. Equivalence, in turn, binds weaker than implication. The scope of quantifiers
shall stretch as far to the right as admitted by parentheses. Given a set Φ of Σ-formulas, we call a
Σ-formula ϕ a Boolean combination of formulas from Φ Boolean

combination
, if ϕ consist of formulas from Φ, possibly

connected via the Boolean connectives ¬,∧,∨,→,↔. If we restrict the set of Boolean connectives
even further to ∧,∨, we speak of a ∧-∨-combination of formulas from Φ. Given some finite sequence
of pairwise distinct variables v1, . . . , vn, the expression Qv1 . . . vn. ϕ with Q ∈ {∀,∃} abbreviates
the formula Qv1.Qv2. . . .Qvn. ϕ. In addition, we often use the tuple notation Qv̄ for the same
purpose, where v̄ stands for any finite tuple 〈v1, . . . , vn〉 with pairwise distinct first-order variables.
For convenience, we often identify tuples v̄ of variables with the set containing all the variables
that occur in v̄. In most cases this abstraction from the exact order of quantifiers is justified by
Proposition 1.0.1. A quantifier block is a maximal sequence Qv1.Qv2. . . .Qvn of quantifiers of
the same kind occurring in a given formula. We occasionally use regular expressions to describe
sequences of quantifiers. For example, for any positive integer k the expression ∃∗∀k∃∃ stands for
the set of all prefixes of the form ∃y1 . . . ym∀x1 . . . xk∃z1z2, where m ranges over all nonnegative
integers; in particular, the leading existential quantifier block may be empty. Oftentimes the

9

10 CHAPTER 1. PRELIMINARIES

vocabulary underlying our considerations shall not be mentioned explicitly. We just speak of terms,
formulas, and atoms, when Σ is not important or clear from the current context. A formula is
called relationalrelational

formula
, if the underlying vocabulary is relational, i.e. it does not contain any function

symbols.

A variable v occurs freely in a formula ϕ if the formula contains an occurrence of v that is not
in the scope of any quantifier Qv in ϕ. An occurrence of a variable v in a formula ϕ is bound ,
if it lies within the scope of some quantifier Qv in ϕ. In all formulas we tacitly assume, if not
explicitly stated otherwise, that no variable occurs freely and bound at the same time and that
all distinct occurrences of quantifiers bind distinct variables. We use ϕ(v1, . . . , vm)ϕ(v1, . . . , vm) to denote a
formula ϕ whose free first-order variables form a subset of {v1, . . . , vm}. The variables v1, . . . , vm
are assumed to be pairwise distinct. A formula is closed if it does not contain any free occurrences
of variables. A closed formula is also called a (Σ-)sentence. We call a term or a formula ground if
it does not contain any occurrences of variables, neither free nor bound, and no quantifiers.

We denote substitution by ϕ
[
v/s
]
, where every free occurrence of v in ϕ is to be substituted by

the term s. For simultaneous substitution of pairwise distinct variables v1, . . . , vn with s1, . . . , sn,
respectively, we use the notation ϕ

[
v1/s1, . . . , vn/sn

]
ϕ
[
v1/s1, . . . ,

vn/sn
] . For example, P (x, y)

[
x/f(y), y/g(x)

]
results

in P (f(y), g(x)). Notice that this is different from the sequential application of substitution in
P (x, y)

[
x/f(y)

][
y/g(x)

]
= P

(
f(g(x)), g(x)

)
and P (x, y)

[
y/g(x)

][
x/f(y)

]
= P

(
f(y), g(f(y))

)
. We

also write
[
v̄/s̄
]

to abbreviate
[
v1/s1, . . . , vn/sn

]
.

A formula is in prenex normal formnormal
forms

if it has the shape Q1v1 . . .Qnvn. ψ with quantifier-free ψ
and Qi ∈ {∀,∃}, i.e. all quantifiers are lined up in front of the formula. The quantifier-free part is
sometimes referred to as matrix . A formula is in negation normal form if it exclusively contains the
connectives ∧,∨,¬ and every negation sign occurs immediately in front of an atom; quantifiers are
of course admitted. A literal is an atom or a negated atom, and a clause is a disjunction of literals.
A unit clause is a clause containing exactly one literal. We say that a formula is in conjunctive
normal form (CNF) if it is a conjunction of clauses, possibly preceded by a quantifier prefix.1 A
formula in CNF is Horn if every clause contains at most one non-negated literal. It is Krom if
every clause contains at most two literals. A formula is in disjunctive normal form (DNF) if it
is a disjunction of conjunctions of literals, possibly preceded by a quantifier prefix. A sentence
ϕ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ is said to be in standard formstandard

form
if ψ is quantifier free and in negation

normal form, in particular, the connectives → and ↔ are not admitted; all variables bound in the
quantifier prefix are required to actually occur in ψ. The tuples x̄1 and ȳn may be empty, i.e. the
quantifier prefix does not have to start with a universal quantifier, and it does not have to end
with an existential quantifier.

For any formula ϕ we denote by vars(ϕ)vars(ϕ),
consts(ϕ)

the set of all variables occurring freely or bound in ϕ.
Moreover, we write consts(ϕ) to address the set of all constant symbols that occur in ϕ. Similar
notation is used for other syntactic objects.

Next, we define a measure of length of terms and formulas.length of
terms and
formulas

We set len(c) := 1 and len(v) := 1

for every constant symbol c and every variable v. For terms s1, . . . , sm we set len
(
f(s1, . . . , sm)

)
:=

1 +
∑m
i=1 len(si). The logical constants true and false are assigned length 1. The length of the

other atoms is given by len
(
P (s1, . . . , sm)

)
:= 1 +

∑m
i=1 len(si), which includes the case where P is

the equality predicate. For formulas ϕ,ψ we set len(¬ϕ) := 1 + len(ϕ), len(ϕ ∧ ψ) = len(ϕ ∨ ψ) :=
1 + len(ϕ) + len(ψ), len(∀x̄. ψ) := 1 + |x̄|+ len(ψ), and len(∃ȳ. ψ) := 1 + |ȳ|+ len(ψ). Moreover, in
the context of the length of formulas, we conceive implication and equivalence as abbreviations
and set len(ϕ→ ψ) := len(¬ϕ ∨ ψ) and len(ϕ↔ ψ) := len

(
(ϕ→ ψ) ∧ (ψ → ϕ)

)
. Notice that, in

the presence of the connective ↔, len(ϕ) can be exponentially greater than the number of symbols
needed to write ϕ down.

The quantifier rankquantifier
rank

of a formula is the depth of quantifier nestings in the formula. Every
quantifier-free formula has quantifier rank zero. The quantifier rank of any formula Qv. ψ with
Q ∈ {∀,∃} is the quantifier rank of ψ plus one. For every formula ϕ ◦ ψ with ◦ ∈ {∧,∨,→,↔}
the quantifier rank is the maximum of the quantifier ranks of ϕ and ψ. Every ¬ϕ has the same

1In contrast to the tradition in automated reasoning, we do allow quantifier prefixes in formulas in conjunctive or
disjunctive normal form.

11

quantifier rank as ϕ has.
For every Σ-formula ϕ with Σ = 〈Π,Ω〉 we define ‖ϕ‖ to be the length of some fixed encoding of

ϕ ‖ϕ‖in a binary alphabet, e.g. suitable for the tape of some Turing machine. We assume the encoding

to be reasonable, i.e. we assume that ‖ϕ‖ ∈ O
(
len(ϕ) · log

(
|Π|+ |Ω|+ |vars(ϕ)|

))
if the underlying

vocabulary Σ = 〈Π,Ω〉 is finite.

Semantics of First-Order Formulas

We mainly follow the Tarskian approach to semantics and interpret logic formulas with respect
to given structures. Let Σ := 〈Π,Ω〉 be a vocabulary. A Σ-structure structureA consists of a nonempty

set A, its domain (also: universe), and interpretations fA and PA of all function and predicate
symbols in Σ. More precisely, A interprets any m-ary function symbol f ∈ Ω by a total mapping
fA : Am → A that maps each and every m-tuple of elements from A to some element from A.
Moreover, A interprets any m-ary predicate symbol P ∈ Π by a (possibly empty) set PA ⊆ Am of
m-tuples over A’s domain. Like for terms and formulas, we mostly omit the explicit reference to
the underlying vocabulary Σ when speaking about structures.

Given any structure A, a variable assignment variable
assignment

(over A’s domain) is a total mapping β : Var→ A
that assigns domain elements a ∈ A to variables v ∈ Var. When the domain A is clear from
the context we often do not explicitly specify it, e.g. when a particular structure A is discussed,
variable assignments are implicitly understood to assign elements from A, if not explicitly stated
otherwise. We sometimes explicitly define a variable assignment by writing [v1 7→a1, . . . , vm 7→am]

— or [v̄ 7→ā] for short — when it is not important which elements are assigned to the variables in
Var \ {v1, . . . , vm}. In such cases, we consider just some variable assignment β with β(vi) = ai
for i = 1, . . . ,m. Given some variable assignment β, we define its update β[v1 7→a1, . . . , vm 7→am]

β[v̄ 7→ā]to be the variable assignment β′ with β′(vi) = ai for i = 1, . . . ,m and β′(v′) = β(v′) for every
v′ ∈ Var \ {v1, . . . , vm}.

Given a Σ-term s, a Σ-structure A, and a variable assignment β over A’s domain, we denote
the evaluation of s under A and β A(β)(s)by A(β)(s). It is defined such that A(β)(v) := β(v) for variables

v, A(β)(c) := cA for constant symbols c, and A(β)
(
f(s1, . . . , sm)

)
:= fA

(
A(β)(s1), . . . ,A(β)(sm)

)
for complex terms. As for every ground term s the value of s under A is independent of any variable
assignment, we occasionally drop the reference to any specific variable assignment and simply write
A(s) when s is ground. Given a Σ-formula ϕ, a Σ-structure A, and a variable assignment β over
A’s domain, we say that ϕ is satisfied under A and β, written A, β |= ϕ A, β |= ϕ, if the following conditions
are met: We always have A, β |= true but never A, β |= false. For more complicated formulas ϕ
we define the following:

A, β |= s ≈ t if and only if A(β)(s) = A(β)(t),
A, β |= P (s1, . . . , sm) if and only if

〈
A(β)(s1), . . . ,A(β)(sm)

〉
∈ PA,

A, β |= ¬ψ if and only if A, β |= ψ does not hold,
A, β |= ψ ∧ χ if and only if A, β |= ψ and A, β |= χ,
A, β |= ψ ∨ χ if and only if A, β |= ψ or A, β |= χ,
A, β |= ψ → χ if and only if A, β |= ψ implies A, β |= χ,
A, β |= ψ ↔ χ if and only if A, β |= ψ implies A, β |= χ and vice versa,
A, β |= ∀x. ψ if and only if A, β[x 7→a] |= ψ for every a ∈ A,
A, β |= ∃y. ψ if and only if A, β[y 7→b] |= ψ for some b ∈ A.

If ϕ is not satisfied under A and β, we write A, β 6|= ϕ. When there is no danger of confusion, we
sometimes conveniently abbreviate expressions of the form A, [v1 7→a1, . . . , vm 7→am] |= ϕ(v1, . . . , vm)
by A |= ϕ(a1, . . . , am). We write A |= ϕ if A, β |= ϕ holds for every variable assignment β over A’s
domain. In such cases, we say that A is a model of ϕ. For sentences ϕ we often omit the variable
assignment and say that A satisfies ϕ if A, β |= ϕ for any β. A sentence ϕ is called satisfiable if it
has a model, i.e. if there is some structure A with A |= ϕ. Otherwise, we call ϕ unsatisfiable or
inconsistent . Two sentences ϕ and ψ are considered equisatisfiable if ϕ has a model if and only if ψ
has one. Furthermore, a sentence ϕ is called valid , if it is satisfied under any structure; if there is
at least one structure not satisfying ϕ, then the sentence if invalid . A sentence is valid with respect

12 CHAPTER 1. PRELIMINARIES

to a certain class of structures, if it is satisfied under every structure from the class. In particular
in Part II of the present thesis we shall occasionally use this latter notion of validity with respect to
a class of structures without explicitly referring to the class of structures, if it is clear from the
current context.

We also use the symbol |= to denote semantic entailment of two formulas (over the same
vocabulary). A formula ϕ semantically entails a formula ψ, written ϕ |= ψ, whenever for every
structure A and every variable assignment β, A, β |= ϕ implies A, β |= ψ. The symbol |=| denotes
semantic equivalence of formulas, i.e. ϕ |=| ψϕ |=| ψ holds whenever ϕ |= ψ and ψ |= ϕ. For convenience,
we often drop the word “semantic” and just speak of entailment and equivalence.

A logical Σ-theory is a set of Σ-sentences closed under semantic entailment, i.e. for every
sentence ϕ with T |= ϕ we have ϕ ∈ T . Given a logical theory T , two formulas ϕ(x̄), ψ(x̄) are
considered T -equivalentT -equiva-

lence
, if T |= ∀x̄. ϕ(x̄) ↔ ψ(x̄). For any Σ-structure A we write Th(A) to

address the logical theory of all Σ-sentences that are satisfied by A. It is easy to check that Th(A)
is closed under semantic entailment. For convenience, we sometimes use the term A-equivalence
when we actually mean Th(A)-equivalence.

We shall often use the fact that quantifiers can be shifted in certain ways within formulas under
preservation of the formula’s semantics. The following proposition collects the basic equivalences
that facilitate shifting of quantifiers.

Proposition 1.0.1 (Quantifier shifting). Let ϕ,ψ, χ be formulas, and assume that x and y do not
occur freely in χ. We have the following equivalences, where ◦ ∈ {∧,∨}:

(i) ∃y. (ϕ ∨ ψ) |=| (∃y. ϕ) ∨ (∃y. ψ) (ii) ∀x. (ϕ ∧ ψ) |=| (∀x. ϕ) ∧ (∀x. ψ)
(iii) ∃y. (ϕ ◦ χ) |=| (∃y. ϕ) ◦ χ (iv) ∀x. (ϕ ◦ χ) |=| (∀x. ϕ) ◦ χ
(v) ∃y1∃y2. ϕ |=| ∃y2∃y1. ϕ (vi) ∀x1∀x2. ϕ |=| ∀x2∀x1. ϕ

Consequently, if x1 6∈ vars(χ) and x2 6∈ vars(ϕ) holds for two first-order formulas ϕ and χ, we
get (∃x1. ϕ) ∧ (∃x2. χ) |=| ∃x1x2. (ϕ ∧ χ) and dually (∀x1. ϕ) ∨ (∀x2. χ) |=| ∀x1x2. (ϕ ∨ χ).

Consider any first-order sentence ϕ that contains an occurrence of a subformula ψ of the form
∃y. ψ′ and let Q1u1, . . . ,Qnun be the sequence of all quantifiers from ϕ in whose scope ψ lies. Let
x̄ be the tuple containing all the variables from the list v1, . . . , vn that are universally quantified in
ϕ. The process of replacing the occurrence of ψ in ϕ with the formula ψ′

[
y/fy(x̄)

]
for some fresh

function symbol fy of appropriate arity is called (standard) SkolemizationSkolemiza-
tion

2 of y (or of ∃y); the term
fy(x̄) is called Skolem term and the function symbol fy Skolem function. In case of |x̄| = 0, we call
fy Skolem constant . By exhaustive Skolemization of a given sentence ϕ we mean Skolemization of
all the existential first-order quantifiers in ϕ one after the other (in any order).

Proposition 1.0.2. Let ϕ be some first-order Σ-sentence and let ϕ′ be the result of Skolemizing
some of the existential quantifiers in ϕ. Then, we observe ϕ′ |= ϕ and any model A of ϕ can
be turned into a model B of ϕ′ by extending A with appropriate interpretations of the introduced
Skolem functions and Skolem constants. The rest of A remains unchanged, i.e. A and B coincide
with respect to their domains and their interpretations of the symbols in Σ.

A structure A is a substructuresubstructure of a structure B (over the same vocabulary) if (1) A ⊆ B, (2)

cA = cB for every constant symbol c, (3) PA = PB ∩ Am for every m-ary predicate symbol P , and
(4) fA(ā) = fB(ā) for every m-ary function symbol f and every m-tuple ā ∈ Am. Given a structure
A and some subset S of A’s domain, the substructure of A induced by S is the unique substructure
B of A with the domain B := S. The following is a standard lemma from model theory.

Lemma 1.0.3 (Substructure Lemma). Let ϕ be a first-order sentence without existential quantifiers
and in which no universal quantifier lies within the scope of any negation sign — we treat any
subformula ϕ1 → ϕ2 as abbreviation for ¬ϕ1 ∨ ϕ2 and any subformula ϕ1 ↔ ϕ2 as abbreviation
for (¬ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ¬ϕ2) to account for implicit negation signs as well. Moreover, let A be a
substructure of B. If B |= ϕ, then A |= ϕ.

2Notice that the form of standard Skolemization used in the present thesis is regarded as being inefficient in
automated reasoning, as there are improved variants available that produce Skolem terms with fewer arguments.
We shall discuss this topic in more depth in Section 7.2.

13

Proof (inspired by [EFT94], proof of Lemma 5.7 in Chapter III).
It is easy to prove by induction on a term s that

(∗) for every variable assignment β over A’s domain we have A(β)(s) = B(β)(s).

Now let ψ be any first-order formula. By induction on the structure of ψ, we show that for every
variable assignment β over A’s domain we have that B, β |= ψ entails A, β |= ψ. If ψ is atomic, the
claim follows from (∗). If ψ is of the form ¬χ, χ∧η, χ∨η, χ→ η, or χ↔ η, the claim follows easily
from the inductive hypothesis. Suppose ψ is of the form ∀x. χ. Further assume that B, β[x7→a] |= χ
holds for every a ∈ B. Then, by induction, we have A, β[x 7→a] |= χ for every a ∈ A ⊆ B. In other
words, we have A, β |= ∀x. χ.

This finishes the proof of the claim. The Substructure Lemma follows as a corollary.

A special kind of structures are Herbrand structures Herbrand
structure

.3 The domain of a Herbrand Σ-structure
H — called Herbrand domain — is the set of all ground Σ-terms, where we assume that Σ contains
at least one constant symbol. Moreover, every m-ary function symbol f ∈ Ω is interpreted by H
such that for any sequence t1, . . . , tm ∈ H we have fH(t1, . . . , tm) = f(t1, . . . , tm). This means that
H’s domain and the interpretation of function symbols under H are entirely determined by the
underlying vocabulary. Solely the interpretation of predicate symbols can (and must) be chosen.
The following is a standard lemma which justifies that in certain contexts it suffices to exclusively
consider Herbrand structures.

Lemma 1.0.4. Let ϕ be a sentence without equality and without existential quantifiers and in
which no universal quantifier lies within the scope of any negation sign. If ϕ is satisfiable, then it
has a model that is a Herbrand structure.

Proof. Let A be any model of ϕ and let Σ be the vocabulary underlying ϕ. Let A′ be the
substructure of A that is induced by the domain

A′ :=
{
a ∈ A | there is a ground Σ-term t such that a = A(t)

}
.

By the Substructure Lemma, A′ is also a model of ϕ. We define the Herbrand structure H such
that for every m-ary predicate symbol P ∈ Π and for all ground Σ-terms t1, . . . , tm we set

〈t1, . . . , tm〉 ∈ PH if and only if
〈
A′(t1), . . . ,A′(tm)

〉
∈ PA′ .

Let γ be any variable assignment over the Herbrand domain H and let β be the variable assignment
defined such that β(v) := A(γ(v)) for every v. Then, we observe for every non-equational Σ-atom
A that H, γ |= A if and only if A′, β |= A. As ϕ contains only universal quantifiers that do not lie
within the scope of any negation sign, this observation together with A |= ϕ entails H |= ϕ.

Given some Σ-sentence ϕ, a Herbrand Σ-model H |= ϕ is called minimal , if there is no Herbrand
Σ-model H′ |= ϕ such that for every predicate symbol P in Σ we have PH

′ ⊆ PH and one of
these inclusions is strict. The following proposition is a standard result, see, e.g. Theorem 3.8 in
Chapter XI of [EFT94].

Proposition 1.0.5. Every satisfiable first-order Σ-sentence ϕ that is Horn has a unique minimal
Herbrand model (sometimes also called the least Herbrand model). In other words, there is some
Herbrand model H∗ |= ϕ such that for every Herbrand model H of ϕ we have PH∗ ⊆ PH for every
predicate symbol P in Σ.

3In automated reasoning Herbrand structures are often represented by sets of atoms over a given vocabulary. We
deviate from this definition, although the intended semantical object is ultimately the same.

14 CHAPTER 1. PRELIMINARIES

Syntax and Semantics of Second-Order Formulas

Occasionally, we shall also consider second-order formulas with equality. That is, we add second-
order quantification ∀P.ψ and ∃P.ψ to the inductive syntax definition of formulas, where ψ is
a second-order formula and P is some predicate symbol that may occur in ψ but does not have
to. Similarly, we add quantifiers ∀f. ψ and ∃f. ψ for any function symbol f . Like for first-order
variables, we define free and bound occurrences of second-order variables for predicate and function
symbols. Moreover, we also tacitly assume for second-order formulas that no variable occurs free
and bound in the same formula and that distinct occurrences of quantifiers bind distinct variables,
if not explicitly stated otherwise. For semantic satisfaction under a given structure A and a given
variable assignment β we use the following rules in addition to the above first-order conditions:

A, β |= ∀P.ψ if and only if A′, β |= ψ for every structure A′ that differs from A
only in the interpretation of P ,

A, β |= ∃P.ψ if and only if A′, β |= ψ for some structure A′ that differs from A
only in the interpretation of P ,

A, β |= ∀f. ψ if and only if A′, β |= ψ for every structure A′ that differs from A
only in the interpretation of f ,

A, β |= ∃f. ψ if and only if A′, β |= ψ for some structure A′ that differs from A
only in the interpretation of f ,

where ψ is any second-order formula. The notions and notation for semantic entailment and
semantic equivalence are extended to second-order formulas in the obvious way.

Additional Notation

We use the notation [k][k] to abbreviate the set {1, . . . , k} for any positive integer k. The power set
of a set S, i.e. the set of all subsets of S, is denoted by P(S). The iterated application of PPkS is

given by P0(S) := S and Pk+1(S) := Pk(P(S)) for k ≥ 0. For convenience, we mostly drop the
parentheses and simply write PkS. Furthermore, we also define the tetration operation inductively

by 2↑0(m)2↑k(m) := m and 2↑k+1(m) := 2(2↑k(m)).
Let S be any nonempty set. For any equivalence relation ∼ ⊆ S × S we write S/∼S/∼ to address

the set
{
S′ ⊆ S

∣∣ S′ is a maximal nonempty set such that for all a, b ∈ S′ we have a ∼ b
}

, which
we shall call the quotient set (or simply quotient) induced by ∼ over S. The sets in S/∼ are the
equivalence classes induced by ∼ over S. Given any element a ∈ S, we write [a]∼[a]∼ to address the
(unique) equivalence class containing a. Given any two equivalence relations ∼1,∼2 ⊆ S × S, we
call ∼1 a refinement of ∼2refinement if (a) for every set T ∈ S/∼1

there is some set T ′ ∈ S/∼2
such that

T ⊆ T ′, and (b) for every set T ′ ∈ S/∼2
there is a finite collection of sets T1, . . . , Tk ∈ S/∼1

such
that T ′ = T1 ∪ . . . ∪ Tk.

Chapter 2

Separateness of First-Order
Variables

We now introduce a fairly simple concept that shall be the key theme in the entire Part I of the
present thesis: separateness of first-order variables.

Definition 2.0.1 (Separateness of first-order variables). Let ϕ be any first-order formula and let
X,Y be two disjoint sets of first-order variables. We say that X and Y are separated in ϕ if
for every atom A occurring in ϕ we have vars(A) ∩X = ∅ or vars(A) ∩ Y = ∅ or both. We say
that X,Y are strictly separated in ϕ if X and Y are separated in ϕ and, in addition, for every
subformula χ := (Qv. . . .) of ϕ we either have vars(χ) ∩X = ∅ or vars(χ) ∩ Y = ∅.

Intuitively speaking, two sets X,Y of variables are separated in a formula, if there are no
co-occurrences of variables x ∈ X and y ∈ Y in any atom. This simple syntactic notion is the
key to a number of results that we shall develop in the subsequent chapters. Examples are novel
decidable fragments of first-order logic (Chapter 3), computationally hard satisfiability problems
in first-order logic (Chapter 5), and new insights regarding the dependences between universally
and existentially quantified first-order variables belonging to separated sets, with an application
to Skolemization (Chapters 4 and 7). In the rest of the present chapter we give a more detailed
overview of separateness and its applications.

Typically, one would expect that sets of first-order variables in “naturally occurring” formulas
are either not separated or are separated in trivial ways. For example, consider a formula that
stipulates that R is a strict ordering without endpoint:

ϕ :=
(
∀x1y1z1. R(x1, y1) ∧R(y1, z1)→ R(x1, z1)

)
∧
(
∀x2y2. R(x2, y2)→ ¬R(y2, x2)

)
∧
(
∀x3∃y3. R(x3, y3)

)
.

In any of the three conjuncts all occurring variables co-occur in some atom. On the other hand, the
three sets {x1, y1, z1}, {x2, y2}, {x3, y3} are pairwise separated in ϕ. This trivial kind of separation
is due to the fact that ϕ is simply a conjunction of three closed formulas.

Non-trivial cases of separateness appear, for instance, in formulas where universal and existential
quantifiers are nested and the variables they bind are separated. Consider the sentence ψ :=
∀x∃y. P (x)↔ Q(y) in which the singleton sets {x} and {y} are obviously separated. It expresses
a certain symmetry in structures A. For every domain element a there is some element b such
that a belongs to PA if and only if b belongs to QA. It turns out that the same property can be
expressed without any nesting of alternating quantifiers. Indeed, we can use the distributivity laws
of Boolean algebra and quantifier shifting (cf. Proposition 1.0.1) to transform ψ into the equivalent

15

16 CHAPTER 2. SEPARATENESS OF FIRST-ORDER VARIABLES

sentence
(
(∃x. P (x))→ (∃y1. Q(y1))

)
∧
(
(∃x.¬P (x))→ (∃y2.¬Q(y2))

)
:

∀x∃y. P (x)↔ Q(y)

|=| ∀x∃y.
(
¬P (x) ∨Q(y)

)
∧
(
P (x) ∨ ¬Q(y)

)
|=| ∀x.

(
¬P (x) ∧ (∃y2.¬Q(y2))

)
∨
(
(∃y1. Q(y1)) ∧ P (x)

)
|=|
(
(∀x.¬P (x)) ∨ (∃y1. Q(y1))

)
∧
(
(∃y2.¬Q(y2)) ∨ (∀x. P (x))

)
|=|
(
(∃x. P (x))→ (∃y1. Q(y1))

)
∧
(
(∃x.¬P (x))→ (∃y2.¬Q(y2))

)
We could even shift quantifiers outwards again and finally obtain an equivalent sentence with a
∃∃∀ quantifier prefix: ψ′ := ∃y1y2∀x.

(
P (x)→ Q(y1)

)
∧
(
¬P (x)→ ¬Q(y2)

)
. This example shows

that we can not only transform nested quantification of separated variables into quantification that
is not nested. In addition, we can replace ∀∃ alternations in exchange for ∃∀ alternations, or vice
versa.

In the example we start from a ∀∃ sentence and obtain an ∃∃∀ sentence. The increase in the
number of used quantifiers is not a coincidence. Much rather, it illustrates a key difference between
the two representations. The sentence ψ can, using a ∀∃ alternation, represent the symmetry
property of structures more succinctly than the sentence ψ′ can with an ∃∀ quantifier alternation.
The following examples illustrates this phenomenon in a more pronounced way. We shall see later
that such succinctness gaps can become k-fold exponential, if we start from k nested ∀∃ alternations
and seek an equivalent sentence with a single ∃∀ quantifier alternation. The proof of this result (cf.
Theorem 3.2.7) is based on a general variant of ψ.

Example 2.0.2. Consider the sentence ϕ1 := ∀x∃y. (P1(x) ↔ Q1(y)) ∧ . . . ∧ (Pn(x) ↔ Qn(y)).
Given any sequence b̄ := b1 . . . bn of n bits, we denote by χb̄(x) and ηb̄(y) the formulas

χb̄(x) :=
∧

1≤i≤n
bi=1

Pi(x) ∧
∧

1≤j≤n
bj=0

¬Pj(x) and ηb̄(y) :=
∧

1≤i≤n
bi=1

Qi(y) ∧
∧

1≤j≤n
bj=0

¬Qj(y) .

Then, ϕ1 can be transformed into the equivalent sentence

∀x.
∨

b̄∈{0,1}n
χb̄(x) ∧ ∃y. ηb̄(y) ,

where we have managed to shift the existential quantifier ∃y inwards. We can do the same for the
universal quantifier ∀x, if we beforehand transform the sentence into a conjunction of disjunctions.
To keep the sentence short, we do not just blindly apply the Boolean laws of distributivity, but we
also remove redundant formula parts — we have already tacitly done so in the above transformation.
This results in the sentence∧

b̄∈{0,1}n

(
∀x.¬χb̄(x)

)
∨ ∃y. ηb̄(y) |=|

∧
b̄∈{0,1}n

(
∃x. χb̄(x)

)
→ ∃y. ηb̄(y) .

We can now shift quantifiers outwards again, existential ones first. Since existential quantifica-
tion does not distribute over conjunction, we have to rename bound existential variables. We thus
obtain the equivalent sentence

ϕ′1 := ∃ y0...0 . . . y1...1︸ ︷︷ ︸
2n variables

∀x
∧

b̄∈{0,1}n
χb̄(x)→ ηb̄(yb̄) .

The sentence ϕ′1 is much more verbose that the original ϕ1. The original ϕ1 refers to the universal
variable x and stipulates the existence of a counterpart y that behaves with respect to Q like x behaves
with respect to P . In contrast, the sentence ϕ′1 lists 2n elements, including detailed descriptions of
their potential behavior with respect to Q, and stipulates the existence of each and every single one
of them, provided a counterpart exhibiting the respective behavior with respect to P is contained in

17

the domain. Indeed, no equivalent sentence in prenex form with the quantifier prefix ∃∗∀∗ could do
significantly better (cf. Theorem 3.2.7).

Now consider the case with additional quantifier alternations:

ϕ2 := ∀u∃v∀x∃y. (P1(u, x)↔ Q1(v, y)) ∧ . . . ∧ (Pn(u, x)↔ Qn(v, y)) .

We extend the notation χb̄(x) from above to χb̄(u, x) by replacing every Pi(x) with Pi(u, x) and
every ¬Pj(x) with ¬Pj(v, y). In the same spirit the notation ηb̄(y) is extended to ηb̄(v, y). When
we apply the transformations from above to the new formula in one step, we obtain

∀u∃v.
∧

b̄∈{0,1}n

(
∀x.¬χb̄(u, x)

)
∨ ∃y. ηb̄(v, y) .

We next transform the scope of ∃v into a disjunction of conjunctions and, while doing so, treat the
subformulas ∀x.¬χb̄(u, x) and ∃y. ηb̄(v, y) as indivisible units. Shifting the quantifier ∃v inwards
then yields

∀u.
∨

S⊆{0,1}n

((∧
b̄∈{0,1n}\S

∀x.¬χb̄(u, x)
)
∧ ∃v.

∧
b̄∈S
∃y. ηb̄(v, y)

)
.

Next, we use the distributivity laws to transform the scope of ∀u into a conjunction of disjunctions,
in order to be able to shift the quantifier inwards:∧

S⊆{0,1}n

((
∀u.

∨
b̄∈S
∀x.¬χb̄(u, x)

)
∨ ∃v.

∧
b̄∈S
∃y. ηb̄(v, y)

)
|=|

∧
S⊆{0,1}n

((
∃u.

∧
b̄∈S
∃x. χb̄(u, x)

)
→ ∃v.

∧
b̄∈S
∃y. ηb̄(v, y)

)
.

Finally, we can shift all quantifiers to the front again and thus obtain the sentence

ϕ′2 := ∃vS1 . . . vSm∃ȳS1 . . . ȳSm∀u∀x̄.
∧

S⊆{0,1}n

((∧
b̄∈S

χb̄(u, xb̄)
)
→
∧
b̄∈S

ηb̄(vS , yS,b̄)
)
,

where S1, . . . , Sm is an enumeration of all subsets of {0, 1}n, i.e. m = 22n ; each ȳSi is a tuple of
|Si| variables ySi,b̄ with b̄ ∈ Si; and x̄ is a tuple of 2n variables xb̄ with b̄ ∈ {0, 1}n.

Again, the sentence ϕ′2 is much more verbose than the original ϕ2. This time the gap in
succinctness grows even doubly exponential with growing n. And, once more, no equivalent ∃∗∀∗-
sentence could, asymptotically speaking, do much better.

The examples we have seen so far illustrate a general property of nested quantification of
variables that are separated. Namely, nesting of quantifiers is not essential but may facilitate a
more succinct representation of properties. The formula transformations in Example 2.0.2 illustrate
how such succinct representations can be unfolded. We can use the same approach to prove the
following technical lemma.

Lemma 2.0.3. Let x̄, ȳ, x̄′, ȳ′, z̄ be pairwise disjoint tuples of first-order variables and let ψ(x̄, x̄′, ȳ,
ȳ′, z̄) be a formula in which x̄∪x̄′ and ȳ∪ȳ′ are strictly separated. We can transform ∀x̄∃ȳ. ψ(x̄, x̄′, ȳ,
ȳ′, z̄) into an equivalent formula ψ′(x̄′, ȳ′, z̄) that satisfies the following conditions.

(a) The sets x̄ ∪ x̄′ and ȳ ∪ ȳ′ are strictly separated in ψ′.

(b) The quantifier alternation caused by the ∀∗∃∗ prefix in ∀x̄∃ȳ. ψ vanishes in ψ′. More precisely,
for any subformula χ in ψ′ of the form

(
Qu. . . . (Q′v. . . .) . . .

)
with Q 6= Q′

• either χ entirely stems from ψ(x̄, x̄′, ȳ, ȳ′, z̄) (modulo renaming of bound variables),

• or (Q′v. . . .) stems from ψ(x̄, x̄′, ȳ, ȳ′, z̄) and the quantifier Qu stems from the prefix
∀x̄∃ȳ (modulo renaming of bound variables).

18 CHAPTER 2. SEPARATENESS OF FIRST-ORDER VARIABLES

Proof. A basic formulabasic
formulas

is any atom and any subformula (Qv. . . .) in ψ that does not lie within the
scope of any quantifier in ψ.

We first transform ψ into an equivalent disjunction of conjunctions of negated or non-negated
basic formulas. This is always possible. Since the sets x̄ ∪ x̄′ and ȳ ∪ ȳ′ are strictly separated
in ψ, none of the basic formulas contains variables from both sets. Hence, the constituents of
every conjunction can be grouped into three parts: ψi(x̄, x̄

′, z̄), containing none of the variables
from ȳ ∪ ȳ′; χi(ȳ, ȳ′, z̄), containing none of the variables from x̄∪ x̄′; ηi(x̄′, ȳ′, z̄), containing neither
variables from x̄ nor from ȳ. Hence, ∀x̄∃ȳ. ψ(x̄, x̄′, ȳ, ȳ′, z̄) is equivalent to a formula of the form

∀x̄∃ȳ.
∨
i

ψi(x̄, x̄
′, z̄) ∧ χi(ȳ, ȳ′, z̄) ∧ ηi(x̄′, ȳ′, z̄) ,

where the ψi, χi, and ηi are conjunctions of negated or non-negated basic formulas. We now shift
the existential quantifier block ∃ȳ inwards so that it only binds the (sub-)conjunctions χi(ȳ, ȳ

′, z̄).
The emerging subformulas

(
∃ȳ. χi(ȳ, ȳ′, z̄)

)
are treated as basic formulas in the further process

(replacing the ones that now occur as their proper subformulas). Notice that the sets x̄ ∪ x̄′ and
ȳ ∪ ȳ′ are still strictly separated in the scope of the leading ∀x̄ quantifier block.

Next, we transform the formula into a conjunction of disjunctions of negated and non-negated
basic formulas, group the constituents of disjunctions into two groups ψ′j(x̄, x̄

′, z̄) and χ′j(x̄
′, ȳ′, z̄),

and shift the universal quantifier block ∀x̄ inwards so that it only binds the (sub-)disjunctions
ψ′j(x̄, x̄

′, z̄). The resulting formula is the sought ψ′ in which the sets x̄ ∪ x̄′ and ȳ ∪ ȳ′ are still
strictly separated.

We shall apply variants of Lemma 2.0.3 and the general methods used in its proof in several
places, mostly for resolving ∀∃ quantifier alternations. But the underlying idea is much more
general. If certain separateness conditions are satisfied by a formula, succinct representations of
properties can be unfolded into more verbose ones that require a lower quantifier rank or even use
fewer quantifier alternations. To this end, notice that the prefix ∀x̄∃ȳ in Lemma 2.0.3 could be
replaced with a ∃∗∀∗ prefix or any other prefix over the variables in x̄ and ȳ. It is straightforward
to adapt the proof to the new situation. We only need to reorder the steps of the quantifier shifting
scheme and/or more iterations.

The following result can easily be proven using Lemma 2.0.3.

Lemma 2.0.4. Let ϕ(x̄1, . . . , x̄n, ȳ1, . . . , ȳn, z̄) be a quantifier-free formula in which the sets x̄ :=
x̄1 ∪ . . . ∪ x̄n and ȳ := ȳ1 ∪ . . . ∪ ȳn are separated. There exists a quantifier-free formula ϕ′(ū, v̄, z̄)
such that ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ϕ(x̄1, . . . , x̄n, ȳ1, . . . , ȳn, z̄) and ∃ū∀v̄. ϕ′(ū, v̄, z̄) are equivalent.

Proof. For quantifier-free formulas separateness and strict separateness coincide. Hence, we can
apply Lemma 2.0.3 to the formula ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ϕ(x̄1, . . . , x̄n, ȳ1, . . . , ȳn, z̄) in an iterated
fashion to obtain some equivalent formula ψ in which the sets x̄ and ȳ are strictly separated. As
none of the alternations in the quantifier prefix ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn is present in ψ, for any of its
subformulas

(
Qu. . . . (Q′v. . . .) . . .

)
with Q,Q′ ∈ {∀,∃} we observe Q = Q′. In other words, ψ does

not contain any quantifier alternations at all. Therefore, we can shift all quantifiers outwards —
existential quantifiers first, renaming bound variables as necessary —, and thus obtain an equivalent
formula of the form ∃ū∀ȳ. ϕ′(ū, v̄, z̄) with quantifier-free ϕ′.

As already pointed out, unfolding formulas in the spirit of Lemma 2.0.3 inevitably incurs
immense blowups in the worst case. We will derive upper and lower bounds on the increase in
length in subsequent sections (cf. Lemma 3.2.5 and Theorems 3.2.7, 3.5.3, 3.9.9, 3.10.8, and 3.12.5).
In particular, we will see that the transformation described in Lemma 2.0.4 leads to formulas that
are asymptotically n-fold-exponentially longer than the original.

Another interesting point is that Lemma 2.0.4 holds for first-order formulas irrespective of
whether they contain function symbols of arbitrary arity. However, the presence of second-order
quantifiers would require additional separateness conditions, similar to the ones strict separateness
poses towards quantified subformulas.

In spite of the generality of the result, we will mostly concentrate on relational first-order
formulas in the rest of Part I.

19

Novel Decidable Fragments of Relational First-Order Logic

Separateness of variables will be the prime concept that we use in Chapter 3 to extend well-known
fragments of first-order logic that are known to possess a decidable satisfiability problem. The
first extended fragment in this family is the separated fragment1, which consists of relational
first-order sentences ∃z̄∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ϕ(x̄1, . . . , x̄n, ȳ1, . . . , ȳn, z̄) in which the sets x̄1 ∪ . . .∪ x̄n
and ȳ1 ∪ . . . ∪ ȳn are separated. Lemma 2.0.4 in fact shows that every SF sentence is equivalent to
some ∃∗∀∗ prenex sentence. The class of all relational ∃∗∀∗-sentences with equality is called the
Bernays–Schönfinkel–Ramsey fragment (BSR) and is well known to have a decidable satisfiability
problem. A more detailed discussion can be found in Chapter 3. Before we fully embark on the
endeavour of finding new decidable first-order fragments, we outline a few other applications of
separateness.

Skolemization and Weak and Strong Dependences Between Quantified Variables

In general, nested first-order quantification leads to dependences between existentially and univer-
sally quantified variables. Consider the first-order sentence ϕ := ∀xz∃y. P (x)↔

(
Q(x)↔ R(y, z)

)
.

Standard Skolemization removes the quantifier ∃y from ϕ and replaces every occurrence of the
variable y with the term f(x, z) for some fresh Skolem function f . The result is the equivalent
second-order sentence ϕSk := ∃f. ∀xz. P (x) ↔

(
Q(x) ↔ R(f(x, z), z)

)
. The Skolem term f(x, z)

makes the dependence of y on the variables x and z explicit. Using the laws of Boolean algebra
and quantifier shifting, the original ϕ can be transformed into the equivalent sentence

ϕ′ :=
((
∃x1. P (x1) ∧Q(x1)

)
→ ∀z1∃y1. R(y1, z1)

)
∧
((
∃x2. P (x2) ∧ ¬Q(x2)

)
→ ∀z2∃y2.¬R(y2, z2)

)
∧
((
∃x3.¬P (x3) ∧Q(x3)

)
→ ∀z3∃y3.¬R(y3, z3)

)
∧
((
∃x4.¬P (x4) ∧ ¬Q(x4)

)
→ ∀z4∃y4. R(y4, z4)

)
with a lower quantifier rank. Applying Standard Skolemization to the latter formula replaces
every occurrence of yi with the Skolem term gi(zi). This time, we have several Skolem functions
g1, . . . , g4, each of which has arity one instead of arity two. We will investigate this phenomenon
on a semantic level in Chapter 4 and Section 7.2. We shall distinguish two kinds of dependences
that occur between existentially quantified variables and universally quantified variables. The
dependence of y on x in the original formula ϕ is a weak dependence. A formal definition of weak
dependences is given in Definition 4.0.1 on page 111. One characteristic of weak dependences is
that they may vanish if ∀∃ quantifier alternations are unfolded in the spirit of Lemma 2.0.3. This is
what happens when ϕ is transformed into ϕ′. In contrast, the dependence of y on z is considered to
be strong . Since the two variables co-occur in an atom, the quantifier alternation ∀z∃y cannot be
removed by equivalence-preserving transformations. It turns out that an analysis of separateness in
ϕ can predict a-priori that y only weakly depends on x and that four unary Skolem functions could
be used instead of a single binary Skolem function. This leads to a non-standard Skolemization
technique that is sensitive to the difference between weak and strong dependences. When we apply
it to ϕ, we obtain the equivalent second-order sentence

ϕ′Sk := ∃g1 . . . g4.∀xz.
4∨
i=1

P (x)↔
(
Q(x)↔ R(gi(z), z)

)
.

In Section 7.2 we shall elaborate on this form of dependence-sensitive Skolemization.

1The following remark is intended to clarify any possible confusion regarding terminology. Krom [Kro67] defines
the notion of segregated formulas which, despite the name similarity to the separated fragment, constitutes a
classification of formulas completely orthogonal to the approach used in the present thesis. According to Krom,
formulas in conjunctive normal form are segregated if every clause either contains positive literals alone or exclusively
negative ones. Certain classes of segregated formulas in Krom’s sense yield decidable fragments, while others form
reduction classes for full first-order logic.

20 CHAPTER 2. SEPARATENESS OF FIRST-ORDER VARIABLES

In the field of proof complexity it is known that using different forms of Skolemization can have
dramatic effects on the length of shortest refutation proofs [BL94, Egl94]. Hence, the proposed
form of Skolemization might be an interesting object of study in that context. Since Skolemization
also plays an important role in first-order theorem proving, cf. [NW01, BEL01], analyzing weakness
of dependences might lead to significant improvements in this field. Additional inspiration might
be drawn from dependency analysis techniques that have been successfully applied in QBF solving
(see Remark 7.2.1 on page 191 for references).

So far, we have concentrated on the syntactic side of separateness of variables. There is also
a semantic side of this property which we shall study in Chapter 4. We have already mentioned
a central idea above, the distinction between weak and strong dependences. Yet another way of
applying dependence-sensitive Skolemization is given in the sentence

ϕ′′Sk := ∃fg1 . . . g4.
(
∀xz. P (x)↔

(
Q(x)↔ R(f(x, z), z)

)
∧ ∀xz.

4∨
i=1

f(x, z) ≈ gi(z) .

This sentence consists of two components. The first component is the result of Standard Skolem-
ization ϕSk where the binary Skolem function f is introduced. The second component is a formula
that restricts the range of f(x, z) under any model in such a way that for any fixed domain element
b in the second argument position, the range of f(x, b) is limited to at most four different values,
namely g1(b), g2(b), g3(b), g4(b). Again, this indicates the weakness of the dependence between
y and x. The interpretation of Skolem functions under any model A of ϕ is strongly related to
satisfying strategies (more suggestively: winning strategies) in the model-checking game associated
with the pair 〈ϕ,A〉. This link will become obvious in Chapter 4, where we shall elaborate on such
strategies and what weakness of dependences means in the context of model-checking games. If we
consider sentences in which all existentially quantified variables are separated from all universally
quantified variables, all occurring dependences of existential variables on universal variables are
weak. As a consequence, the range of any introduced Skolem functions can be restricted to a finite
set. Similarly, there exist satisfying strategies that have a finite image. As the sentence ϕ contains
at least one strong dependence, not every model of A admits such satisfying strategies with finite
images. However, we shall see in Section 4.3 how to construct models accompanied by such a
satisfying strategy in certain special cases.

Quantifier Elimination

Another area in which separateness of variables might be worth investigating is quantifier eliminationquantifier
elimination

.
For certain logical theories T over a vocabulary Σ, every first-order Σ-formula can be transformed
into a T -equivalent quantifier-free Σ-formula. Two theories for which quantifier elimination-based
decision procedures are well-known are Presburger arithmetic and linear arithmetic over the rational
numbers (LRA). For the former a first decision procedure based on quantifier elimination has
been devised by Presburger [Pre29], see also [End72], Section 3.2. A quantifier elimination-based
decision procedure for the theory of linear rational arithmetic is the so-called Fourier–Motzkin
elimination method . It has been (re-)discovered and published several times, e.g. by Fourier in
1826 [Fou26], by Dines in 1919 [Din19], and by Motzkin in 1936 [Mot36]. For more modern accounts,
see [DE73, Wil86] and [Sch99], Section 12.2. Historical remarks concerning the (re-)discovery of
the method can be found in [Wil86], page 693. For real arithmetic over polynomials Tarski [Tar57]
devised a procedure for quantifier elimination. A more modern method based on virtual substitution
is due to Loos and Weispfenning [LW93, Wei97], see below, who were inspired by methods due
to Cooper [Coo72] and Ferrante and Rackoff [FR75, FR79]. These methods work also in the
LRA setting.2 Comprehensive accounts and recent results regarding quantifier elimination using
the virtual substitution method can be found in the survey articles [Stu17, Stu18] and in the
dissertations by Košta [Koš16] and Dolzmann [Dol00]. Given a quantifier-free formula ψ(x̄, y) over

2Validity in the theory of the rationals with addition and multiplication is undecidable. This was proven
by Robinson [Rob49] via a reduction of the validity problem for the integers with addition and multiplication.
Undecidability of the latter, in turn, was established by Church [Chu36c].

21

the language of LRA, one can extract a so-called elimination set E consisting of pairs 〈γ, t〉 of
quantifier-free guards γ and testpoints t such that

Q |= ∀x̄.
(
∃y. ψ(x̄, y)

)
←→

∨
〈γ,t〉∈E

γ(x̄) ∧ ψ(x̄, y)
[
y//t
]
, (2.1)

where ψ(x̄, y)
[
y//t
]

denotes a quantifier-free formula which results from virtually substituting y
with t and whose free variables belong to x̄. Consult Section 7.1 for further details, in particular
the discussion preceding Proposition 7.1.3. The virtual substitution operation

[
y//t
]

maps atoms
to quantifier-free formulas and behaves like ordinary substitution on compound formulas. It is
worth noting that the extraction of elimination sets for y in ψ is solely based on the atoms in ψ
that contain y and their respective polarity . Let us for the moment regard formulas of the form
ϕ1 → ϕ2 as abbreviation for ¬ϕ1 ∨ ϕ2 and ϕ1 ↔ ϕ2 as abbreviation for (¬ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ¬ϕ2).
Then, an occurrence of an atom has positive polarity, if it lies within the scopes of an even number
of negation signs. If the number is odd, the occurrence has negative polarity. Also notice that
eliminating a universal quantifier ∀x in a formula ∀x. χ amounts to eliminating ∃x in ¬∃x.¬χ.
Typically, elimination of quantifiers proceeds quantifier by quantifier from innermost to outermost.
The reason is simply that often a principle like (2.1) is used to define the elimination procedure in
an iterative fashion, where a single quantifier in front of a quantifier-free matrix is eliminated. Of
course, it might be beneficial to shift quantifiers beforehand.

Example 2.0.5. Suppose we intend to eliminate the quantifier ∃u in the formula

ϕ := ∃u∃y∀x∃z. y < u ∧ u+ 2z = 0 ∧ (z > 0 ∧ x+ y = 0 → x > 0) ,

using the above principle directly means that we have to eliminate ∃z, ∀x, and ∃y first. When
we inspect the co-occurrences of variables in the occurring atoms, we find that the sets {u, z}
and {x} are separated. Hence, after swapping ∃u and ∃y, we deal with a sentence of the form
∃y∃u∀x∃z. χ(y, u, x, z) with the mentioned separateness pattern. We transform ϕ into the equivalent
formula

ϕ′ := ∃y.
(
∃u. y < u ∧ ∃z. u+ 2z = 0 ∧ z ≤ 0

)
∨
((
∃u. y < u ∧ ∃z. u+ 2z = 0

)
∧ (∀x. x+ y 6= 0 ∨ x > 0)

)
.

After swapping quantifiers ∃u and ∃z in the two subformulas (∃u. . . .), we have to deal with the
subformulas

ϕ′1 := ∃u. y < u ∧ u+ 2z = 0 ∧ z ≤ 0 and ϕ′2 := ∃u. y < u ∧ u+ 2z = 0

when we intend to eliminate two occurrences of the quantifier ∃u. For ∃u in ϕ′1, we obtain the
elimination set E1 :=

{
〈true,−∞〉, 〈true, y + ε〉, 〈true,−2z〉

}
. Coincidentally, we get the same

elimination set for ∃u in ϕ′2. Regarding the atoms occurring in ϕ′1, the virtual substitution operator[
u//t

]
is defined such that

(y < u)
[
u//−∞

]
= false , (u+ 2z = 0)

[
u//−∞

]
= false ,

(y < u)
[
u//y + ε

]
= true , (u+ 2z = 0)

[
u//y + ε

]
= false ,

(y < u)
[
u//− 2z

]
= y < −2z , (u+ 2z = 0)

[
u//−2z

]
= −2z + 2z = 0 .

Hence, applying the equivalence principle (2.1) yields that ϕ′1 is Q-equivalent to∨
〈γ,t〉∈E1

(
y < u ∧ u+ 2z = 0 ∧ z ≤ 0)

[
u//t

]
=
(
false ∧ false ∧ z ≤ 0

)
∨
(
true ∧ false ∧ z ≤ 0

)
∨
(
y < −2z ∧ −2z + 2z = 0 ∧ z ≤ 0

)
|=| y < −2z ∧ z ≤ 0 .

22 CHAPTER 2. SEPARATENESS OF FIRST-ORDER VARIABLES

We set ϕ′′1 := y < −2z ∧ z ≤ 0. Analogously, elimination of ∃u in ϕ′2 yields the formula
ϕ′′2 := y < −2z. Put together, we observe that ϕ′ is Q-equivalent to

∃y∃z∀x.
(
y < −2z ∧ z ≤ 0

)
∨
(
y < −2z ∧ (x+ y 6= 0 ∨ x > 0)

)
|=| ∃y∃z∀x. y < −2z ∧

(
z ≤ 0 ∨ x+ y 6= 0 ∨ x > 0

)
|=| ∃y∃z∀x. y < −2z ∧

(
z > 0 ∧ x+ y = 0 → x > 0

)
.

Let us call the sentence in the last line ϕ′′. When we compare this result to the original ϕ and
take into account that the extraction of an elimination set E for u in ϕ is solely based on the
atoms in ϕ that contain u and their respective polarity, we find that ϕ′′ can be considered the result
of directly eliminating ∃u from ϕ, after swapping ∃u and ∃y, by means of the elimination set
E :=

{
〈true,−∞〉, 〈true, y + ε〉, 〈true,−2z〉

}
:

∃y.
∨

〈γ,t〉∈E

(
∀x∃z. y < u ∧ u+ 2z = 0 ∧ (z > 0 ∧ x+ y = 0 → x > 0)

)[
u//t

]
= ∃y.

(
∀x∃z. false ∧ false ∧ (z > 0 ∧ x+ y = 0 → x > 0)

)
∨
(
∀x∃z. true ∧ false ∧ (z > 0 ∧ x+ y = 0 → x > 0)

)
∨
(
∀x∃z. y < −2z ∧ −2z + 2z = 0 ∧ (z > 0 ∧ x+ y = 0 → x > 0)

)
|=| ∃y∀x∃z. y < −2z ∧ (z > 0 ∧ x+ y = 0 → x > 0)

= ϕ′′ .

This example illustrates that separateness of variables can facilitate quantifier elimination
techniques that break with the from-innermost-to-outermost paradigm. The following proposition
is a first step in this direction.3 It can be proved using a dual, slightly refined variant of Lemma 2.0.3.

Proposition 2.0.6. Consider a quantifier-free formula ϕ(x̄, ȳ, z̄) over the language of linear
rational arithmetic, where x̄ and ȳ are separated in ϕ. Let E be an elimination set for y1 in ϕ.
Then

Q |=
(
∃y1 . . . ∃yp∀x̄. ϕ

)
←→

(∨
〈γ,t〉∈E

∃y2 . . . ∃yn∀x̄. γ ∧ ϕ
[
y1//t

])
.

Quantifier elimination techniques are not limited to first-order quantifiers. It is a classical result
that any second-order quantifier in relational monadic sentences — sentences containing only unary
predicate symbols and equality — can be eliminated. This was discovered by Löwenheim [Löw15],
Skolem [Sko19], and Behmann [Beh22]. In relational monadic sentences without equality every
atom contains at most one first-order variable. Hence, in sentences of the latter kind any first-order
variable is trivially separated from all other first-order variables. This high degree of separateness
is one of the properties that enable the elimination of second-order quantifiers in Behmann’s
approach, for instance. We have already mentioned the separated fragment above. It is easy to
see that this class of sentences contains every relational monadic first-order sentence. In other
words, we are dealing with a syntactic generalization of the class of relational monadic first-order
sentences without equality. It is a natural question to ask to what extent a second-order variant
of the separated fragment admits elimination of second-order quantifiers. An example given by
Ackermann in 1935 [Ack35] already shows severe limitations. Nevertheless, we shall identify a
previously unknown class of non-monadic sentences in Section 7.3, from which certain second-order
quantifiers can be eliminated.

3The presented result is due to Thomas Sturm and Christoph Weidenbach, who wrote it up in an unpublished
note in 2014.

Chapter 3

Novel First-Order Fragments with
a Decidable Satisfiability Problem

In the early twentieth century David Hilbert initiated his famous program striving for a formalization
of the foundations of mathematics.1 At its core lay the classical decision problem the classical

decision
problem

of first-order
logic: Find an algorithm that determines the validity of any given first-order sentence. Following
early pioneering work by Löwenheim [Löw15], Skolem [Sko19], and Behmann [Beh22], the late
1920’s and the early 1930’s saw first successes in the form of partial solutions by Bernays and
Schönfinkel [BS28], Ackermann [Ack28], Herbrand [Her30], Ramsey [Ram30], Gödel [Göd32],
Kalmár [Kal33], and Schütte [Sch34a]. All of them have identified classes of first-order sentences for
which a decision procedure can be formulated. A turning point was reached when Church [Chu36c]
and Turing [Tur36] discovered that the validity problem and, equivalently, the satisfiability problem
of first-order logic cannot be solved algorithmically in full generality. It became clear that partial
solutions are the best we can hope for. From that point on, the classical decision problem has
been understood as the problem of classifying first-order logic into fragments with a decidable or
undecidable satisfiability problem. This quest has produced a wealth of positive and also negative
results, see [Ack54, Sur59, DG79, Lew79, FLTZ93, BGG97, Hus99, FLHT01] for references. The
classification in terms of prefix classes has been solved completely and is comprehensively presented
in [BGG97].

In what follows, we review certain classes of first-order sentences that are known to have a
decidable satisfiability problem. For convenience, we shall be less precise every now and then and
speak of decidable fragments decidable

fragments of
first-order
logic

or decidable classes in such cases. The following list is intended to give
an overview over the fragments that are relevant for the present thesis in one way or another. It is

— necessarily — incomplete with respect to all the decidable cases of the classical decision problem
that have been studied in the literature over the years. The majority of the listed fragments enjoys
the finite model property , i.e. every satisfiable sentence in such a fragment has a finite model. This
is a sufficient condition for decidability of the associated satisfiability problem. If we can derive a
computable upper bound regarding the size of smallest models, we speak of a small model property .

The monadic first-order fragment (MFO) comprises all relational first-order sentences
without equality that contain only unary predicate symbols. When we refer to the monadic
first-order fragment with equality, we use the abbreviation MFO≈.

In the landmark paper by Löwenheim [Löw15] not only the well-known Löwenheim–Skolem
theorem was formulated and proved, but also the satisfiability problem for MFO≈ was shown
to be decidable. Hence, MFO≈ is often referred to as the Löwenheim fragment . Skolem [Sko19]
and Behmann [Beh22] proved decidability for the monadic second-order fragment with equality.
Several decades later, Löb [Löb67] and Gurevich [Gur69] extended the positive result for MFO to

1Brief historical accounts with a focus on the dawn of computability theory can be found, for instance, in [HU79],
Section 7.1 (alternatively: Section 8.2.1 in [HMU01]), and in [Coo04], Chapter 1.

23

24 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

monadic first-order sentences with unary function symbols but without equality, the Löb–Gurevich
fragment . Moreover, as pointed out by Gurevich [Gur76], the famous decidability result for the
monadic theory of infinite binary trees S2S by Rabin [Rab69] implies that the satisfiability problem
for the class of monadic first-order sentences with equality and a single unary function symbol

— the Rabin fragment — is decidable. This class is known for containing infinity axioms, i.e.
satisfiable sentences without a finite model. There are also decision procedures for MFO based
on resolution [Joy76, FLTZ93, Lei99, FLHT01] and for MFO≈ based on superposition [BGW93].
Results concerning the computational complexity of monadic first-order fragments have been
obtained by Meyer [Mey74], Rackoff [Rac75], Lewis [Lew78, Lew80], Fürer [Für81], Denenberg and
Lewis [DL84a], Compton and Henson [CH90], and Grädel [BGG97]. Satisfiability for MFO and
MFO≈ is NExpTime-complete.

The Bernays–Schönfinkel–Ramsey fragment (BSR) comprises all relational first-order
sentences in prenex normal form with an ∃∗∀∗ quantifier prefix and with equality.

Bernays and Schönfinkel [BS28] showed that satisfiability for the relational ∃∗∀∗ prefix class
without equality is decidable. Today, this class is known as the Bernays–Schönfinkel fragment
(BS). Following up, Ramsey [Ram30] added equality to this fragment and also obtained a positive
decidability result. This extended class is called Bernays–Schönfinkel–Ramsey fragment (BSR)
and it is known to posses the finite model property, see [BGG97]. It is interesting to note that
Ramsey’s article is not so much famous for its contribution to the classical decision problem, but
rather for laying the foundation for Ramsey theory . Computational complexity results regarding
the satisfiability problem for BSR have been obtained by Lewis [Lew78, Lew80], Plaisted [Pla84],
and Denenberg and Lewis [DL84a]. The problem is complete for NExpTime. Resolution-based
decision procedures are described in [Lei93, FLTZ93]. More recent decision procedures aimed
at practical applications include [PV08, PdMB10, AW15]. The fragments BS and BSR have
been extended (directly or indirectly) with function symbols in various ways, e.g. by Abadi,
Rabinovich, and Sagiv [ARS07, ARS10], Nelson, Dougherty, Fisler, and Krishnamurthi [NDFK12],
Korovin [Kor13b], and Ge and de Moura [GdM09]. All of these extensions are carefully formulated
so that the finite model property is retained.

The Ackermann fragment (AF) comprises all relational first-order sentences in prenex normal
form with an ∃∗∀∃∗ quantifier prefix and without equality.

The satisfiability problem of ∃∗∀∃∗-sentences without equality was shown to be decidable by
Ackermann [Ack28]. In his original proof Ackermann derived the finite model property for AF.
The proof published later in [Ack54] proceeds via a reduction to the satisfiability problem for MFO.
In [DG79] the finite model property of AF with equality is derived. Resolution-based decision
procedures have been devised for AF as well [Joy76, FLTZ93, Lei99]. Moreover, a paramodulation-
based decision procedure for AF with equality is also known [FS93]. Gurevich [Gur73] and Maslov
and Orevkov [MO72] studied Ackermann sentences with arbitrary function symbols (but without
equality). Accordingly, this fragment is called the Gurevich–Maslov–Orevkov fragment . While
Gurevich proved the finite model property for this fragment, Orevkov and Maslov took a proof-
theoretic route based on the inverse method. Another extension of AF is the Shelah fragment :
∃∗∀∃∗-sentences with equality and a single unary function symbol [She77]. This class contains
infinity axioms and, hence, does not possess the finite model property. A more detailed version
of Shelah’s proof can be found in Section 7.3 in [BGG97]. Results regarding the computational
complexity of the satisfiability problem for the Ackermann fragment and its extensions are due
to Lewis [Lew78, Lew80], Fürer [Für81], Grädel [Grä90b], and Kolaitis and Vardi [KV90]. The
satisfiability problem for AF is ExpTime-complete.

The Gödel–Kalmár–Schütte fragment (GKS) comprises all relational first-order sentences
in prenex normal form with an ∃∗∀∀∃∗ quantifier prefix and without equality.

Gödel [Göd32, Göd33], Kalmár [Kal33], and Schütte [Sch34a, Sch34b] independently showed
that the satisfiability problem for GKS is decidable. Gödel and Kalmár established the finite model

25

property. A probabilistic proof was later given by Gurevich and Shelah [GS83], see also Section 6.2.3
in [BGG97]. Although Gödel claimed that his proof methods could also be applied for GKS sentences
with equality, Goldfarb refuted this claim [Gol84]. However, decidable subclasses are known, e.g.
the syntactic subfragments described in [GGS84] and in [Wir76], Section 12. A decidable subclass
described in semantic terms is mentioned in Section 6.2.3 in [BGG97]. Computational complexity
results have been obtained by Lewis [Lew78, Lew80], and Fürer [Für81, Für83]. Satisfiability for
GKS is NExpTime-complete.

The Skolem fragment comprises the class of relational ∃∗∀∗∃∗ prenex sentences without equality
that satisfy the following properties. Let ∃z1 . . . zk∀x1 . . . xm∃y1 . . . yn. ψ be such a sentence with
quantifier-free ψ. Every atom A in ψ is required to contain either (a) at least one of the yj , or (b)
at most one of the xi, or (c) all x1, . . . , xm. It is easy to see that GKS is a proper subfragment.
Decidability of a slightly more restricted variant of the Skolem fragment was shown in [Sko35].
A resolution-based decision procedure of (an extended variant of) the Skolem fragment is given
in [Joy76, FLTZ93, FLHT01].

The two-variable fragment (FO2) comprises all relational first-order sentences with equality
that are build up using at most two variables, which may be reused in distinct occurrences of
quantifiers.

Scott gave a reduction of the satisfiability problem associated with FO2 to the satisfiability
problem for GKS [Sco62]. This reduction works only for sentences without equality. In 1975 Morit-
mer [Mor75] proved that FO2 with equality possess the finite model property. The computational
complexity of the satisfiability problem for FO2 has been determined by Grädel, Kolaitis, and
Vardi [GKV97]: it is NExpTime-complete. A resolution-based decision procedure for FO2 can be
found in [HS99]; a tableau-based method is described in [ST08]. A superposition-based decision
procedures for FO2 with equality is devised in [dNP01]. A very recent survey of FO2 and various
extensions is [KPHT18].

Maslov’s fragment K comprises all relational first-order sentences without equality that satisfy
the following properties (we use the definition from [HS99]). Let ϕ be any relational sentence in
negation normal form and let ψ(u1, . . . , um) be any subformula of ϕ. We assume that u1, . . . , um
are exactly the variables occurring freely in ψ and that they are pairwise distinct. The ϕ-prefix of
ψ is the sequence Q1v1 . . .Qmvm of quantifiers in ϕ (read from left to right) that bind the free
variables of ψ, in particular, we have {v1, . . . , vm} = {u1, . . . , um}. The terminal ϕ-prefix of ψ is
the longest contiguous suffix of Q1v1 . . .Qmvm starting with a universal quantifier. Put differently,
if Q1v1 . . .Qmvm is of the form ∃v1 . . . vk∀vk+1Qk+2vk+2 . . .Qmvm, then the terminal ϕ-prefix of
ψ is ∀vk+1Qk+2vk+2 . . .Qmvm. Notice that the terminal prefix may be empty. The sentence ϕ
belongs to Maslov’s fragment K if there are k ≥ 0 universal quantifiers ∀x1, . . . ,∀xk in ϕ that are
not interspersed with existential quantifiers such that for every atom A in ϕ the terminal ϕ-prefix
of A either (a) is at most of length one, or (b) ends with an existential quantifier, or (c) is of the
form ∀x1 . . . ∀xk.

Maslov introduced K in [Mas68] and devised a decision procedure based on Maslov’s inverse
method2 [Mas64]. Zamov gave a modern account of Maslov’s fragment K and Maslov’s decision
procedure in a self-contained article [Zam87]. Resolution-based decision procedures are presented
in [FLTZ93, HS99, FLHT01], see also Chapter 3 in [Hus99]. To the best knowledge of the author of
the present thesis, the computational complexity of the satisfiability problem for Maslov’s fragment
K is yet unknown. Since K syntactically extends MFO, AF, GKS, and the Skolem fragment (all
without equality), the problem must be at least NExpTime-hard.

Maslov’s fragment K must not be confused with the Maslov fragment , the class of relational Krom
sentences without equality in prenex normal form with the quantifier prefix ∃∗∀∗∃∗. The Maslov
fragment is also known to have a decidable satisfiability problem, see Section 8.3.3 in [BGG97]

2The inverse method has strong connections to resolution, as noted by Kuehner [Kue71], Zamov [Zam87],
Lifschitz [Lif89], and Bachmair and Ganzinger (Section 7.5 in [BG01]).

26 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

for more details and references. In particular, Aanderaa and Goldfarb derived the finite model
property for this class [AG74].

The fluted fragment (FL) comprises all relational first-order sentences without equality that
satisfy the following properties. Let x1, x2, x3, . . . be a fixed ordered sequence of pairwise distinct
variables. For every nonnegative integer k we define the set FL(k) inductively as follows. Any atom
P (x`, . . . , xk) belongs to FL(k) — notice that x`, . . . , xk is asserted to be a gap-free subsequence of
x1, x2, x3, The set FL(k) is closed under Boolean combinations, i.e. if ϕ and ψ belong to FL(k),
then so do ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ, ϕ ↔ ψ. Given any FL(k+1) formula ϕ(x1, . . . , xk+1), then
∀xk+1. ϕ and ∃xk+1. ϕ belong to FL(k). The fluted fragment (FL) is the set FL(0), which contains
exclusively sentences. Notice that every sentence ϕ from FL(k) can be turned into an equivalent
FL(0) sentence ∀x1 . . . xk. ϕ.

The fluted fragment was introduced by Quine in two steps [Qui69, Qui76]. In an attempt
to extrapolate an extension of MFO from Herbrand’s treatment of the fragment in [Her30],
Quine [Qui69] considered so-called homogeneous k-adic sentences, i.e. FL sentences in which all
predicate symbols have arity k. Decidability of the associated satisfiability problem was shown via
an extension of Herbrand’s proof for MFO [Her30]. Later on, namely at the very end of [Qui76],
Quine claimed that the same proof would work for full FL. However, in 1980 Noah pointed
out [Noa80] that Quine’s decision procedure is only applicable to the subfragment of homogeneous
FL sentences. Hence, decidability of the full fragment was considered open again. In a series of
articles [Pur96b, Pur96a, Pur99, Pur02] Purdy investigated the fluted fragment and argued that
it possess the finite model property (also in the presence of equality). However, several flaws
have been detected in Purdy’s work [PST16]. For instance, the satisfiability problem associated
with FL was believed to be in NExpTime [Pur02], until it was proved to be non-elementary in
2016 [PST16]. A decision procedure for FL based on resolution was devised in [SH00].

Herzig [Her90] considered a class of relational first-order sentences that is very similar to the
fluted fragment. Herzig’s ordered fragment consists of all relational first-order sentences without
equality in which every atom P (v1, . . . , vm) satisfies the following property. For every i, 1 ≤ i ≤ m,
the (unique) quantifier Qvi binding vi lies within the scope of any quantifier Q′u if and only if
Q′u binds one of the vj with j < i, i.e. u ∈ {v1, . . . , vi}. Notice that the definition implies that
the v1, . . . , vm are pairwise distinct. While atoms in fluted formulas ϕ ∈ FL(k) need to contain a
contiguous suffix of the variable sequence x1, . . . , xk, any atom A in Herzig’s ordered formulas must
contain a contiguous prefix of the variables bound by the quantifier sequence governing A. Using
the techniques from the proof of Lemma 2.0.3 in an iterated fashion, every sentence from Herzig’s
ordered fragment can be transformed into an equivalent fluted sentence. This observation is also a
corollary of the result we shall develop in Section 3.13 (cf. Lemma 3.13.4 and Proposition 3.13.3).

The guarded fragment (GF) comprises all relational first-order sentences with equality that
satisfy the following properties. An atomic guard γ(ū, v̄) is an atom A such that all u ∈ ū ∪ v̄
occur in A. We define the guarded fragment (GF) inductively: (i) every relational atom is
a GF formula (equality is allowed); (ii) every Boolean combination of GF formulas is a GF
formula; (iii) for all tuples ū, v̄ and any atomic guard γ(ū, v̄) the following formulas belong to
GF: ∀ū.

(
γ(ū, v̄)→ ψ(ū, v̄)

)
— abbreviated by

(
∀ū. γ(ū, v̄)

)
ψ(ū, v̄) — and ∃ū.

(
γ(ū, v̄)∧ψ(ū, v̄)

)
—

abbreviated by
(
∃ū. γ(ū, v̄)

)
ψ(ū, v̄). Notice that we assume in any GF formula

(
Qū. γ(ū, v̄)

)
ψ(ū, v̄)

that all variables that occur freely in ψ also occur in γ.

The guarded fragment was introduced by Andréka, Németi, and van Benthem [ANvB98] as
one characterization of the fragment of first-order logic in which propositional modal logic can be
embedded via the so-called standard translation (cf. Section 2.4 in [BdRV02]). Van Benthem [vB97]
also proposed a more liberal form of guards, loose guards. A loose guard γ(ū, v̄) is a nonempty
conjunction of atoms γ(ū, v̄) := A1(ū, v̄)∧ . . .∧Ak(ū, v̄) such that all u, v with u ∈ ū and v ∈ ū∪ v̄
co-occur in at least one Aj . The loosely guarded fragment (LGF) is then defined by liberalizing
(iii) such that loose guards are used instead of atomic guards. In particular, we assume in
any LGF formula

(
Qū. γ(ū, v̄)

)
ψ(ū, v̄) that (a) all variables that occur freely in ψ also occur

27

in γ and (b) every variable that is bound by Qū co-occurs with every free variable from ψ in
some atom in γ. Grädel [Grä99b] derived the tree-like model property for GF and LGF and
the finite model property for GF. Moreover, the computational complexity of the associated
satisfiability problems is pinpointed in the same article: both are complete for deterministic
doubly exponential time. A superposition-based decision procedure for GF with equality is due to
Ganzinger and de Nivelle [GdN99]. Resolution-based decision procedures for GF and LGF without
equality are described in [dN98, GHS00, FLHT01, dNdR03, GHS03]. More variants of guards
and guarded quantification have been proposed, which lead to the definition of the clique-guarded
fragment [Grä99a] and the packed guarded fragment [Mar01], for instance. Hodkinson [Hod02]
showed that also the loosely guarded fragment, the clique-guarded fragment, and the packed
guarded fragment enjoy the finite model property.

Recently, Bárány, ten Cate, and Segoufin [BtCS11, BtCS15] have discovered that guards can
be shifted from quantification to negation, see also [Seg17]. This leads to the guarded-negation
first-order fragment (GNFO). GNFO comprises all relational first-order formula with equality over
the Boolean connectives ¬,∧,∨ and existential quantification. Every occurrence of the negation sign
is accompanied by a guard, i.e. negation may only occur in the form γ(ū, v̄)∧¬ϕ(v̄), where γ is an
atomic guard and ϕ is a GNFO formula. In terms of expressiveness, GNFO subsumes GF [BtCS15].
Moreover, in the same article it is shown that GNFO enjoys the tree-like model property and the
finite model property. The associated satisfiability problem is complete for deterministic doubly
exponential time. Clique-guarded variants of GNFO have also been studied [BtCS15].

The monadic shallow linear Horn fragment (MSLH) comprises all finite universally
quantified conjunctions ∀x̄.∧i Ci(x̄) of first-order Horn clauses Ci(x̄) without equality satisfying
the following properties. Every Ci is of the form ¬P1(s1) ∨ . . . ∨ ¬Pn(sn) ∨ Q(t) where n ≥ 0
and the sk and t are terms. The term t has to be shallow and linear , i.e. t is either a variable, a
constant symbol, or of the form f(x1, . . . , xm) with m ≥ 1 and pairwise distinct first-order variables
x1, . . . , xm.

The MSLH clause fragment was introduced by Weidenbach [Wei99], motivated by applications
in security, namely, the verification of key-exchange protocols. Driven by applications in program
analysis, Nielson, Nielson, and Seidl independently [NNS02] identified a clause fragment, called H1,
that has essentially the same expressive power. This was observed by Goubault-Larrecq [Gou05].
More precisely, Goubault-Larrecq showed that every H1 sentence ϕ can be transformed, in polyno-
mial time, into an MSLH sentence ψ such that (i) ϕ and ψ are equisatisfiable, (ii) ψ |= ϕ, and (iii)
if both sentences are satisfiable, then their least Herbrand models coincide on the interpretation
of every predicate symbol occurring in ϕ. The analysis of the computational complexity of H1’s
satisfiability problem in [NNS02] was sharpened in [Gou05]: it is ExpTime-complete. The MSLH
fragment was extended by Teucke and Weidenbach [TW17] to a non-Horn variant. The clause
set H1 was extended in various ways by Seidl and Reuß [SR11, SR12]. Other decidable first-order
clause fragments that, like MSLH and H1, have a very strong connection to tree automata, are
described in [Nie96, JMW98, JRV06, SV06, SV08]. Some of them have found applications in the
verification of security protocols, see [SV06, SV08] and the references therein.

Other decidable fragments. There are several works that consider undecidable prefix classes,
where additional restrictions on the co-occurrences of quantified variables in atoms lead to a
decidable fragment [Dre62, DKW62, Gol63, Lew80], see also Section 5.1 in [DG79]. One example
is Lewis’ fragment T ([Lew80], Section 2A), which comprises first-order sentences of the form
∃z1 . . . zk∀x∃y1 . . . ym∀x′. ψ without equality over a relational vocabulary with predicate symbols
of arity two only. Moreover, ψ is quantifier-free and may not contain any atoms of the form P (x′, x)
or P (x′, yj), 1 ≤ j ≤ m; atoms of the form P (x, x′), P (x, yj), or P (yj , x

′) are allowed, though.
This fragment contains infinity axioms, as witnessed by the sentence ∀x∃y∀z. P (y, x) ∧

(
P (x, z)→

P (y, z)
)
∧ ¬P (x, x) provided in [Lew80]. Nevertheless, the class has a decidable satisfiability

problem.

There is a wealth of works focusing on finite clause sets, i.e. ∀∗ prenex sentences in conjunctive

28 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

normal form after exhaustive Skolemization, rather than sentences. Usually, restrictions are
imposed on the syntactic form of clauses, as in the case of the Maslov fragment (relational ∃∗∀∗∃∗
Krom sentences without equality) or the Herbrand fragment (first-order sentences in CNF without
equality in which every clause contains exactly one literal). More on decidable Krom clause classes
can be found in Section 8.3 in [BGG97]. The satisfiability problem for Herbrand sentences is
treated in Section 8.2.2 in [BGG97]; a resolution-based decision procedure was devised by Joyner
in [Joy76]. Decidability of the class of Herbrand sentences with equality but only a single unary
function symbol was proven by Wirsing in [Wir76], Sections 6–11, via a reduction to the Rabin
fragment. Wirsing has also shown that satisfiability for the Herbrand fragment with equality is
undecidable [Wir76, Wir77, Wir78].

In later contributions, often a more flexible use of function symbols in clauses is allowed. For
known results and references consult the books [FLTZ93, Lei97], the PhD thesis of Hustadt [Hus99],
the book chapters [Lei99, FLHT01], and, for instance, the articles [GHS02, LW17]. Exemplary
criteria in this direction of research are bounds on the depth at which variables may occur in terms, as
witnessed by the positive variable dominated clause fragment (PVD), treated in [FLTZ93, FLHT01].
The generalization of PVD presented in [LW13, LW17] illustrates that there is still room for
improvement, and that such improvements may be inspired by real-world applications.

More recently discovered decidable fragments, again based on syntactical restrictions of sentences
rather than clause sets, are the unary negation fragment [StC13], the uniform one-dimensional
fragment [KK14], and a family of fragments defined and proved decidable in [MP15, BM17].
Although the unary negation fragment is not syntactically extended by GNFO, the former is
subsumed by GNFO in terms of expressiveness [BtCS15]. A close relative of the uniform one-
dimensional fragment is the one-free fragment introduced in [Tam91, Tam95], see also [FLTZ93,
FLHT01].

In the field of knowledge representation, Horn clause sets and equivalent formalisms play a key
role. Over the last decade, so-called existential rules have attracted a lot of attention, see, e.g.,
[GHK+13]. Roughly speaking, an existential rule is a first-order implication ϕ→ ψ where ϕ and ψ
are conjunctions of relational atoms and ψ may contain existentially quantified variables. Viewed
as a fragment of first-order logic, existential rules in their general form lead to an undecidable
satisfiability problem. However, a number of expressive decidable fragments has been discovered.
Recent results and further references can be found in [BLM10, CGP10a, CGP10b, BMRT11, KR11,
Mug11, LMTV12, GHK+13, BGMR14, BBMR15, ALM17] for example.

In the subsequent sections, we will define novel fragments of first-order logic that all extend some
of the above fragments, in particular MFO, BSR, AF, GKS, FO2, FL, GF, LGF, and GNFO. In
essence, the definitions of the new fragments are careful combinations of the concepts of the original
definitions with the concept of (strict) separateness of quantified variables. All new fragments still
have a decidable satisfiability problem. We will see two approaches to showing decidability of the
fragments: an indirect, syntactic approach and a direct, model-theoretic approach. The easier
approach shall be presented first for all the fragments. It amounts to devising equivalence-preserving
translations — in the spirit of the unfolding techniques presented in Chapter 2 — into fragments
that are already known to be decidable. The second approach sheds more light on the underlying
semantic properties, in particular on the question which dependences of existentially quantified
variables on universally quantified variables are weak and which are strong in the sense already
mentioned in Chapter 2. We will present this approach for three of the new fragments in Section 4,
namely for the separated fragment, the generalized Bernays–Schönfinkel–Ramsey fragment, and
the generalized Ackermann fragment.

3.1 The Separated Fragment (SF)

We start our exhibition of novel first-order fragments with the simplest, namely the one that we
have already briefly introduced in Chapter 2: the separated fragment, SF for short. Technically,
it is defined as a class of prenex sentences, but this is not an essential property. The defining

3.1. THE SEPARATED FRAGMENT (SF) 29

principle of SF sentences is simply that co-occurrences of universally and existentially quantified
variables in atoms are forbidden. Existential variables quantified by leading existential quantifiers
are exempt from this rule. We consider an existential quantifier leading if it does not lie within the
scope of any universal quantifier.

Definition 3.1.1 (Separated fragment (SF)). The separated fragment (SF) consists of all relational
first-order sentences ϕ with equality that are of the form

∃z̄∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ
in which ψ is quantifier-free, and in which the sets x̄ := x̄1 ∪ . . . ∪ x̄n and ȳ := ȳ1 ∪ . . . ∪ ȳn are
separated. The tuples z̄ and ȳn may be empty, i.e. the quantifier prefix does not have to start with
an existential quantifier and it does not have to end with an existential quantifier either.

Recall that x̄ and ȳ are separated in ϕ if and only if for every atom A occurring in ϕ we either
have vars(A) ∩ x̄ = ∅ or vars(A) ∩ ȳ = ∅. Moreover, notice that the variables in z̄ are not subject
to any restriction regarding their occurrences.

As already mentioned earlier, Lemma 2.0.4 entails that every SF sentence can be transformed
into an equivalent BSR sentence. In order to do so, we just have to replace the subformula
∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ in an SF sentence ϕ with an equivalent formula of the form ∃ū∀v̄. ψ′.
Theorem 3.1.2. Every SF sentence is equivalent to some BSR sentence.

Since BSR enjoys the finite model property, even if constant symbols are allowed in the syntax,
the separated fragment immediately inherits this property. Hence, we conclude that the satisfiability
problem for SF (SF-Sat) SF-Satis decidable, even if constant symbols are allowed to occur in SF sentences.

Corollary 3.1.3. SF enjoys the finite model property and, hence, satisfiability of sentences in SF
is decidable. This also holds in the presence of constant symbols in SF sentences.

It is not hard to see that SF is a proper syntactic extension of BSR. Clearly, the quantified
variables in every BSR sentence ϕ := ∃z̄∀x̄. ψ with quantifier-free ψ trivially satisfy the separateness
conditions imposed by Definition 3.1.1, as no existential quantifier lies within the scope of any
universal quantifier. Similarly, every monadic sentence without equality in prenex normal form
trivially satisfies the conditions of Definition 3.1.1, because any monadic atom contains at most one
first-order variable. Since any MFO sentence can easily be transformed into an equivalent sentence
in prenex normal form, it is fair to say that SF also contains MFO. At the expense of a slightly
more technical definition, we could easily modify the definition of the separated fragment so that it
is not restricted to prenex sentences. Then, it would indeed contain MFO also in a technically
strict sense. On the other hand, it is an easy task to find sentences that belong to SF but neither
to BSR nor to MFO. In fact, an interesting example is the sentence ϕ2 from Example 2.0.2.

Proposition 3.1.4. SF properly contains BSR and MFO.

Another interesting question is whether MFO≈ is subsumed by SF. Obviously, the sentence
∀x∃y. x ≈ y is in MFO≈ but violates the separateness conditions of SF. Therefore, from the
syntactic point of view, there are monadic first-order sentences with equality whose variables are
not sufficiently separated for SF. However, the sentence ∀x∃y. x ≈ y is equivalent to ∀x. x ≈ x,
which certainly belongs to SF and even to BSR. Similarly, we have the MFO≈ sentence ∀x∃y. x 6≈ y,
which is not in SF but equivalent to the BSR sentence ∃y1y2. y1 6≈ y2. The following theorem
witnesses that this is by no means a coincidence. As one consequence, speaking in terms of
expressiveness, MFO≈ is subsumed by BSR and, hence, also by SF.

Theorem 3.1.5. For every MFO≈ sentence there is an equivalent BSR sentence.

The proof of this result is based on techniques described by Behmann [Beh22] in the context
of second-order quantifier elimination for the monadic second-order fragment. A modern account
of these techniques is given in [Wer15a], Section 13.2. For the sake of simplicity, we consider
exclusively relational formulas here. However, all arguments can be reused in cases where, in
addition, constant symbols are allowed.

30 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

Proof sketch. For any positive integer ` and any formula χ(u) we use the abbreviation ∃≥`u. χ(u) to
denote the formula ∃u1 . . . u`.

∧
i<j ui 6≈ uj ∧

∧
i χ(ui), where the variables u1, . . . , u` are pairwise

distinct and do not occur in χ(u). Moreover, we use the abbreviation ∃<`u. χ(u) to denote the
formula ∀u1 . . . u`.

∨
i<j ui ≈ uj ∨

∨
1≤i≤` ¬χ(ui), where the pairwise distinct u1, . . . , u` do not

occur in χ(u).
We start with two auxiliary results that are dual to one another:

Claim I: Let χ(u) be a quantifier-free relational monadic formula in which u is the only variable.
Let V be a nonempty set of variables, all distinct from u.

(a) The formula ∃u. χ(u) ∧∧v∈V u 6≈ v is equivalent to

ψ :=
(
∃≥|V |+1u. χ(u)

)
∨

∨
1≤k≤|V |

((
∃≥ku. χ(u)

)
∧
∧

V ′⊆V
|V ′|=k

(∨
v∈V ′

¬χ(v) ∨
∨

v,v′∈V ′
v 6=v′

v ≈ v′
))

.

(b) The formula ∀u. χ(u) ∨∨v∈V u ≈ v is equivalent to

ψ :=
(
∃<|V |+1u.¬χ(u)

)
∧

∧
1≤k≤|V |

((
∃<ku.¬χ(u)

)
∨
∨

V ′⊆V
|V ′|=k

(∧
v∈V ′

¬χ(v)∧
∧

v,v′∈V ′
v 6=v′

v 6≈ v′
))

.

In both (a) and (b) we observe that every atom A in ψ either exclusively contains free
variables or all the variables in A are bound in ψ. ♦

Consider any formula of the form ψ := ∃y.∧i1 Li1(y) ∧∧i2 y ≈ zi2 ∧
∧
i3
y 6≈ zi3 , where the

Li1 are literals over unary predicate symbols and the zi2 and zi3 are all pairwise distinct and
different from y. If the subformula

∧
i2
y ≈ zi2 is nonempty, and thus contains at least one

equation y ≈ z, then the quantifier ∃y can be eliminated and the whole formula ψ is equivalent to∧
i1
Li1(z) ∧∧i2 z ≈ zi2 ∧

∧
i3
z 6≈ zi3 . Otherwise, Claim I(a) suggests that we can transform ψ

into an equivalent formula in which no atom contains a free variable and a bound variable at the
same time.

A dual observation holds for any formula ψ′ := ∀x. ∨j1 Kj1(x)∨∨j2 x ≈ zj2 ∨∨j3 x 6≈ zj3 . If ψ′

contains at least one disequation x 6≈ z, then ψ′ is equivalent to
∨
j1
Kj1(z)∨∨j2 z ≈ zj2∨∨j3 z 6≈ zj3 .

Otherwise, Claim I(b) entails that we can transform ψ′ into an equivalent formula in which no
atom contains a free variable and a bound variable at the same time.

Let ϕ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ be an MFO≈ sentence in standard form with quantifier-free
ψ. In all the transformations described below, we tacitly assume that formulas are simplified so
that they contain neither trivially tautologous nor trivially unsatisfiable subformulas. First, we
transform the matrix ψ into a disjunction

∨
k ηk(x̄1, . . . , x̄n, ȳ1, . . . , ȳn−1)∧χk(x̄1, . . . , x̄n, ȳ1, . . . , ȳn)

in which all ηk and χk are conjunctions of literals and where each atom in every χk contains
at least one variable from ȳn. Hence, ϕ is equivalent to ∀x̄1∃ȳ1 . . . ∀x̄n.

∨
k ηk ∧ ∃ȳn. χk. As we

have described above, proceeding variable by variable from ȳn, every subformula ∃ȳn. χk can be
successively transformed into an equivalent formula χ′k(x̄1, . . . , x̄n, ȳ1, . . . , ȳn−1) in which no atom
contains a free variable and a bound variable at the same time. Therefore, ϕ is equivalent to
∀x̄1∃ȳ1 . . . ∀x̄n.

∨
k ηk(x̄1, . . . , x̄n, ȳ1, . . . , ȳn−1) ∧ χ′k(x̄1, . . . , x̄n, ȳ1, . . . , ȳn−1). In what follows we

treat every subformula ∃y. (. . .) in the χ′k as indivisible unit.
Next, we transform

∨
k ηk(x̄1, . . . , x̄n, ȳ1, . . . , ȳn−1) ∧ χ′k(x̄1, . . . , x̄n, ȳ1, . . . , ȳn−1) into a con-

junction of disjunctions and treat the quantifier block ∀x̄n analogously to how we have treated
∃ȳn. Notice that afterwards there is no quantifier ∃y with y ∈ ȳn that lies within the scope of
any ∀x with x ∈ x̄n. Proceeding this way with all the quantifier blocks one after another, we
eventually obtain a formula ϕ′ in which, after having been transformed into negation normal
form, for every atom A exactly one of three cases applies: (a) A contains only one variable, (b)
A contains two existentially quantified variables, or (c) A contains two universally quantified
variables. Moreover, there is no nesting of universal and existential quantifiers, i.e. no subformulas

3.2. TRANSLATION OF SF INTO BSR: UPPER AND LOWER BOUNDS 31

of the form (∀x. . . . (∃y. . . .) . . .) or (∃y. . . . (∀x. . . .) . . .) occur. Consequently, by shifting quantifiers
back outwards again — existential ones first —, we can transform the final result ϕ′ into a BSR
sentence.

The unrestricted presence of function symbols in SF would lead to an undecidable satisfiability
problem. Nevertheless, SF could easily be extended so far that it also subsumes the Löb-Gurevich
fragment while retaining decidability. We elaborate on this in Section 3.14.

We emphasized in Chapter 2 that transformations based on Lemma 2.0.3, like the one from SF
sentences to equivalent BSR sentences, possibly lead to large blowups regarding the length of the
formulas. In general, the length of formulas has a significant effect on the size of smallest models.
For the BSR case this relation is linear: every satisfiable BSR sentence ∃y1 . . . ym∀x̄. ψ with m > 0
has a model with at most m domain elements.

Proposition 3.1.6 (cf. Proposition 6.2.17 in [BGG97]). Let ϕ := ∃z̄∀x̄. ψ be a satisfiable BSR
sentence with quantifier-free ψ, possibly containing constant symbols. There is a model A |= ϕ such
that |A| ≤ max

(
|z̄|+ |consts(ϕ)|, 1

)
.

It turns out that for satisfiable SF sentences ϕ the size of smallest models in terms of the

length of ϕ cannot be bounded by any tower of exponents 2
...

2len(ϕ)

of a fixed height — this is a
consequence of Proposition 5.0.1 and Theorem 5.0.3, which we shall prove in Chapter 5. In other
words, the asymptotic growth of the size of smallest models is non-elementary in the length of the
regarded SF sentence.

Using Lemma 2.0.4 to prove Theorem 3.1.2 does not yield very accurate bounds on the increase
in formula length that we incur when translating SF sentences into BSR sentences. We shall
conduct a more detailed analysis in the following section, where we derive matching upper and
lower bounds. In particular, the entailed upper bound on the size of smallest models for satisfiable
SF sentences will have immediate implications with respect to the computational complexity of
SF-Sat. The latter will be the subject of Section 5, where we shall also derive corresponding lower
bounds and prove that SF-Sat is indeed k-NExpTime-hard for every positive k.

3.2 Translation of SF into BSR: Upper and Lower Bounds

One of the key learning points from the previous sections is Theorem 3.1.2, which says that every
SF sentence is equivalent to some BSR sentence. We presented a constructive proof by outlining
a procedure that translates any SF sentence given as input into an equivalent BSR sentence. In
the present section, we analyze the translation process in more detail. Our goal is to derive upper
and lower bounds regarding the length of the resulting BSR sentences. Traditionally, such bounds
are formulated in terms of syntactic parameters such as the length of the original SF sentence,
the number of predicates it contains, or the number of occurring quantifier alternations. In the
case of SF, it turns out that, if we intend to derive accurate bounds that also explain the blowup
for subfragments such as MFO, we better take separateness of variables into account. This time,
however, we are not interested in existentially and universally quantified variables being separated.
In the current context it would not make much sense to define a numerical measure for this kind of
separateness, as any sentence which does not exhibit full separateness between these two kinds
of variables does not belong to SF. What we can measure numerically, though, is the degree of
separateness among existentially quantified variables that stem from distinct quantifier blocks.

For convenience, we define this measure in an inverse-proportional way: zero marks the highest
possible degree of separateness, larger numbers stand for a lower degree of separateness. Our
measure is called the degree of interaction of existential variables ∂∃(ϕ), denoted by ∂∃(ϕ). Intuitively,
an SF sentence ϕ exhibits a degree ∂∃(ϕ) = k, if variables from k distinct existential quantifier
blocks interact. We say that two variables x, y interact , if they co-occur in at least one atom or if
there is a third variable z that interacts with both x and y, that is, the property is transitive. For
instance, in the SF sentence

ϕ := ∀x1∃y1v1∀x2∃y2v2∀x3∃y3v3.
(
P (x1, x2, x3) ∧ ¬Q(y1, y3)

)
∨ P (y2, v2, v3) ∨ ¬Q(y3, v1)

32 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

the sets {y1, y3, v1} and {y2, v2, v3} form the maximal sets of interacting existential variables. Since
each of these sets contains variables from at most two distinct quantifier blocks, the formula exhibits
a degree ∂∃(ϕ) = 2.

Definition 3.2.1 (Degree of interaction of existential variables). Consider any first-order sentence
ϕ := ∃z̄∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ in standard form in which ψ is quantifier free and in which the sets
x̄ := x̄1 ∪ . . . ∪ x̄n and ȳ := ȳ1 ∪ . . . ∪ ȳn are separated. In addition, we assume that x̄1 and ȳ1 are
nonempty. The tuple z̄ may be empty.

For any j, 1 ≤ j ≤ n, and any variable y ∈ ȳj we say that y has index j, denoted idx(y) = jidx(y) .
For any nonempty set Y ⊆ ȳ of existentially quantified variables and any positive integer k we
say that Y has degree k in ϕ, denoted ∂∃(Y, ϕ) = k∂∃(Y, ϕ) , if k is the maximal number of distinct
variables y1, . . . , yk ∈ Y with idx(y1) < . . . < idx(yk). We say that ϕ’s degree of interaction of
existential variables (short: degree) is k, denoted ∂∃(ϕ) = k, if k is the smallest positive integer
such that we can partition ȳ into m > 0 parts Y1, . . . , Ym that are all pairwise separated in ϕ and
for which k = max

{
kj
∣∣ ∂∃(Yj , ϕ) = kj , 1 ≤ j ≤ m

}
. Sentences ϕ := ∃z̄∀x̄. ψ in standard form

with quantifier-free ψ are said to have degree zero, i.e. ∂∃(ϕ) = 0.

Any BSR sentence ∃z̄∀x̄. ψ exhibits a degree of zero. There are simply no existentially-quantified
variables whose quantifiers lie within the scope of some universal quantifier. Hence, no such variables
could interact with any other in atoms. In the context of analyzing the blowup when going from
SF to BSR this makes sense. Any reasonable transformation of a BSR sentence into an equivalent
BSR sentence does not lead to any blowup.

Consider again the sentences

ϕ1 = ∀x∃y. (P1(x)↔ Q1(y)) ∧ . . . ∧ (Pn(x)↔ Qn(y))

and

ϕ2 = ∀u∃v∀x∃y. (P1(u, x)↔ Q1(v, y)) ∧ . . . ∧ (Pn(u, x)↔ Qn(v, y))

from Example 2.0.2 (page 16). We observe that ∂∃(ϕ1) = 1 and ∂∃(ϕ2) = 2. In Example 2.0.2 we
showed a transformation of ϕ1 into a BSR sentence whose length was singly exponential in the
length of ϕ1. Similarly, we showed that ϕ2 has an equivalent BSR sentence with a length that is
doubly exponential in ϕ2’s length. This already indicates the connection between the degrees of ϕ1

and ϕ2 and the length of equivalent BSR sentences: a degree of k leads to a k-fold exponential
blow up in the worst case. Indeed, we shall derive upper bounds (Lemma 3.2.5) and lower bounds
(Theorem 3.2.7) on the blowup that reflect exactly this behavior.

Such fine-grained bounds come in handy when one is also interested in the blowup for subfrag-
ments of SF. Recall that MFO is such a subfragment. Obviously, any MFO sentence has a degree
of at most one. Hence, the translation of any MFO sentence into BSR incurs an at most singly
exponential increase in formula length. In fact, this behavior is not unexpected, as it is well known
that any satisfiable MFO sentence ϕ has a smallest model whose size is at most exponential in the
length of ϕ.

Proposition 3.2.2 (cf. Proposition 6.2.1 in [BGG97]). Let ϕ := ∃z̄∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ be a
satisfiable MFO sentence. Moreover, assume that ϕ contains k distinct predicate symbols. Then,
there is a model A |= ϕ such that |A| ≤ 2k.

Notice that the shape of the quantifier prefix does not contribute to the upper bound. As
we have already pointed out in Proposition 3.1.6, the analogous relationship for satisfiable BSR
sentences is linear. Therefore, any translation procedure that maps MFO sentences ϕ to equivalent
BSR sentences ψ having a length doubly exponential in the length of ϕ, say, must be highly
inefficient.

In fact, BSR and MFO belong to the class of SF sentences that have degree at most one. We
refer to this subfragment as the strongly separated fragment (SSF).

Definition 3.2.3 (Strongly separated fragment (SSF)). Let ϕ := ∃z̄∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ be an
SF sentence with quantifier-free ψ. We say that ϕ belongs to the strongly separated fragment (SSF)
if and only if the sets x̄ := x̄1 ∪ . . . ∪ x̄n and ȳ1, . . . , ȳn are all pairwise separated in ϕ.

3.2. TRANSLATION OF SF INTO BSR: UPPER AND LOWER BOUNDS 33

It is easy to find sentences in SSF that are neither in BSR nor in MFO, i.e. SSF is a proper
extension of both. Moreover, it is worth noticing that all SF sentences with the quantifier prefix
∃∗∀∗∃∗∀∗ belong to the strongly separated fragment. We will see in Chapter 5 that the satisfiability
problem for SSF is computationally as hard as satisfiability for BSR and MFO — all three problems
are complete for NExpTime.

Next, we conduct the promised analysis of the translation from SF into BSR. Here, we deviate
slightly from the presentation in the proof of Lemmas 2.0.4 and 2.0.3. Roughly speaking, in the
first phase of the translation process all quantifiers are shifted inwards as far as possible. In order
to do so, we first transform the sentence in question into a formula in CNF. After that, we employ
the well-known rules of quantifier shifting (cf. Lemma 1.0.1), supplemented with the following
lemma.

Lemma 3.2.4. Let I and Ki, i ∈ I, be sets that are finite, nonempty, and pairwise disjoint. The
elements of these sets serve as indices. Let

ϕ := ∃ȳ.
∧
i∈I

(
χi(z̄) ∨

∨
k∈Ki

ηk(ȳ, z̄)
)

be some first-order formula where the χi and the ηk denote arbitrary subformulas that we treat
as indivisible units in what follows. We say that any mapping f : I →

(⋃
i∈I Ki

)
is a selection

function if for every i ∈ I we have f(i) ∈ Ki. We denote the set of all selection functions of this
form by F F. Then, ϕ is equivalent to

ϕ′ :=
∧
S⊆I
S 6=∅

(∨
i∈S

χi(z̄)
)
∨
∨
f∈F

(
∃ȳ.

∧
i∈S

ηf(i)(ȳ, z̄)
)
.

Proof. For the sake of readability we sometimes reuse variables in different occurrences of quantifiers
in this proof. Using distributivity of ∧ over ∨, we transform ϕ into an equivalent disjunction of
conjunctions:

∃ȳ.
∨

〈T,f〉∈
(PI)×F

(∧
i∈T

χi(z̄)
)
∧
(∧
i∈I\T

ηf(i)(ȳ, z̄)
)
.

Since the existential quantifier block distributes over the topmost disjunction, we can shift this
block inwards and obtain the equivalent formula∨

〈T,f〉∈
(PI)×F

(∧
i∈T

χi(z̄)
)
∧
(
∃ȳ.

∧
i∈I\T

ηf(i)(ȳ, z̄)
)
. (3.1)

At this point, we employ distributivity of ∨ over ∧ to transform this result into an equivalent con-
junction of disjunctions ϕ′′ :=

∧
j

∨
` ψj,` in which for every index j and every pair 〈T, f〉 ∈ (PI)×F

there is exactly one ` such that either ψj,` = χi for some i ∈ T or ψj,` = ∃ȳ.∧i∈I\T ηf(i)(ȳ, z̄).

In order to show that ϕ′′ is semantically equivalent to ϕ′, we prove the following claims.

Claim I: Every disjunction
∨
` ψj,` in ϕ′′ is subsumed by a disjunction of the form

ψ′S :=
(∨
i∈S

χi(z̄)
)
∨
∨
f∈F

(
∃ȳ.

∧
i∈S

ηf(i)(ȳ, z̄)
)

for some nonempty S ⊆ I.

Proof: Fix some index j and consider
∨
` ψj,`. We set S :=

{
i ∈ I

∣∣ ψj,` = χi for some `
}

.

Consider the set S := I \ S. By definition of S, we know that none of the χi with i ∈ S is a
constituent of

∨
` ψj,`. For every selection function f ∈ F there is some disjunct(∧

i∈S
χi(z̄)

)
∧
(
∃ȳ.

∧
i∈I\S

ηf(i)(ȳ, z̄)
)

34 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

in (3.1) of which we know that none of the χi in it has been picked as constituent of
∨
` ψj,`

when constructing ϕ′′. Hence, due to the definition of ϕ′′, there must be some `∗ such that
ψj,`∗ = ∃ȳ.∧i∈I\S ηf(i)(ȳ, z̄), where I \ S = S.

Consequently,
∨
` ψj,` is subsumed by ψ′S . ♦

Claim II: Each of the subsuming disjunctions ψ′S in Claim I is indeed equivalent to some disjunction∨
` ψj,` in ϕ′′.

Proof: Fix any nonempty S∗ ⊆ I and consider ψ′S∗ . We obtain the equivalent disjunction ψ∗ from
the disjuncts in (3.1) as follows. For every T ⊆ I with nonempty T ∩ S∗ we pick one of the
χi with i ∈ T ∩ S∗ as constituent of ψ∗. For every T ⊆ I for which T ∩ S∗ is empty and any
f ∈ F we pick ∃ȳ.∧i∈I\T ηf(i)(ȳ, z̄) as constituent of ψ∗. Since S∗ is nonempty, T must be a

proper subset of I and thus I \ T is also nonempty.

For every constituent of the form ∃ȳ.∧i∈T ′ ηf(i)(ȳ, z̄) that belongs to the disjunction ψ∗ we
know that S∗ ⊆ T ′. Hence, ψ∗ is of the form(∨

i∈S∗
χi(z̄)

)
∨
∨
j

∨
f∈F
∃ȳ.
(∧
i∈S∗

ηf(i)(ȳ, z̄)
)
∧
(∧
i∈S′j

ηf(i)(ȳ, z̄)
)

for certain sets S′j ⊆ I \ S∗. Among the S′j is, in particular, the empty set, originating from

T = I \ S∗. In this case, we have S′j =
(
I \ T

)
\ S∗ =

(
I \ (I \ S∗)

)
\ S∗ = ∅. Hence, we can

equivalently transform ψ∗ into(∨
i∈S∗

χi(z̄)
)
∨
∨
f∈F

∨
j

∃ȳ.
(∧
i∈S∗

ηf(i)(ȳ, z̄)
)
∧
(∧
i∈S′j

ηf(i)(ȳ, z̄)
)

|=|
(∨
i∈S∗

χi(z̄)
)
∨
∨
f∈F
∃ȳ.

∨
j

((∧
i∈S∗

ηf(i)(ȳ, z̄)
)
∧
(∧
i∈S′j

ηf(i)(ȳ, z̄)
))

|=|
(∨
i∈S∗

χi(z̄)
)
∨
∨
f∈F
∃ȳ.
(∧
i∈S∗

ηf(i)(ȳ, z̄)
)
∨
∨
j

(∧
i∈S∗

ηf(i)(ȳ, z̄) ∧
∧
i∈S′j
S′j 6=∅

ηf(i)(ȳ, z̄)
)

|=|
(∨
i∈S∗

χi(z̄)
)
∨
∨
f∈F
∃ȳ.
(∧
i∈S∗

ηf(i)(ȳ, z̄)
)
∨
((∧

i∈S∗
ηf(i)(ȳ, z̄)

)
∧
∨
j

∧
i∈S′j
S′j 6=∅

ηf(i)(ȳ, z̄)

)
.

By the absorption axiom of Boolean algebra, we finally obtain the equivalent disjunction(∨
i∈S∗

χi(z̄)
)
∨
∨
f∈F

(
∃ȳ.

∧
i∈S∗

ηf(i)(ȳ, z̄)
)
.

Thus, the claimed equivalence holds.

We have not yet explicitly argued why the first subformula
∨
i∈S∗ χi(z̄) of ψ∗ covers S∗

completely. But this is easy to see, when one takes the singleton sets T = {i} for every i ∈ S∗
into account, for which we pick the χi as a constituent of ψ∗. ♦

This completes the proof of the lemma.

With Lemma 3.2.4 we now have the right tool at hand to perform the transformations described
in the proofs of Lemmas 2.0.4 and 2.0.3 in a way that does not introduce so much redundancy.
This will facilitate a neat analysis of the incurred blowup.

Lemma 3.2.5. Let ϕ := ∃z̄∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ be an SF sentence of positive degree ∂∃(ϕ) in
standard form. Let Lϕ(ȳ) denote the set of all literals in ϕ that contain at least one variable y ∈ ȳ :=
ȳ1 ∪ . . . ∪ ȳn. There exists a sentence ϕBSR = ∃z̄∃ū ∀v̄. ψBSR in standard form with quantifier-free

ψBSR that is equivalent to ϕ and contains at most |z̄|+ |ȳ|2 · ∂∃(ϕ) ·
(
2↑∂∃(ϕ)(|Lϕ(ȳ)|)

)∂∃(ϕ)
leading

existential quantifiers.

3.2. TRANSLATION OF SF INTO BSR: UPPER AND LOWER BOUNDS 35

Proof. For convenience, we pretend that z̄ is empty. The argument works for nonempty z̄ as well.
Let x̄ := x̄1 ∪ . . . ∪ x̄n. We transform ϕ into an equivalent CNF formula of the form

∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn.
∧
i∈I

(
χi(x̄) ∨

∨
k∈Ki

Lk(ȳ)
)

where I and the Ki are finite, pairwise disjoint sets of indices, the subformulas χi are disjunctions
of literals, and the Lk are literals. By Lemma 3.2.4, we can construct an equivalent formula of the
form

ϕ′ := ∀x̄1∃ȳ1 . . . ∀x̄n.
∧

S∈PI\∅

(∨
i∈S

χi(x̄)
)
∨
∨
f∈F

(
∃ȳn.

∧
i∈S

ηf(i)(ȳ)
)

where F is the set of all selection functions over the index sets Ki, i ∈ I. For the sake of readability
we sometimes reuse variables in different occurrences of quantifiers in this proof. Applying ordinary
quantifier shifting, we shift inward the universal quantifier block ∀x̄n and thus obtain

ϕ′′ := ∀x̄1∃ȳ1 . . . ∃ȳn−1.
∧

S∈PI\∅

(
∀x̄n.

∨
i∈S

χi(x̄)
)
∨
∨
f∈F

(
∃ȳn.

∧
i∈S

ηf(i)(ȳ)
)
.

We now iterate these two steps in an alternating fashion until all quantifier blocks have been shifted

inwards in the described way. The constituents of the result ϕ(3) :=
∧
q

(
χ

(3)
q ∨

∨
p η

(3)
qp

)
of this

process have the form

χ(3)
q = ∀x̄1.

∨
`1

∀x̄2.
∨
`2

(
. . .
(∨
`n−1

∀x̄n.
∧

i∈S`1,...,`n−1

χi(x̄)
)
. . .
)
,

where the S`1,...,`n−1 are certain subsets of I, and

η(3)
qp = ∃ȳ1.

∧
`′1

∃ȳ2.
∧
`′2

(
. . .
(∧
`′n−1

∃ȳn.
∧

k∈K`′1,...,`′n−1

Lk(ȳ)
)
. . .
)
,

where the K`′1,...,`
′
n−1

are certain subsets of
⋃
i∈I Ki.

By definition of ∂∃(ϕ), we may assume that there is some positive integer m and a partition
of the set ȳ into m nonempty subsets Y1, . . . , Ym that are all pairwise separated in ϕ and such
that for every j, 1 ≤ j ≤ m, we have ∂∃(Yj , ϕ) ≤ ∂∃(ϕ). Since the sets Y1, . . . , Ym are pairwise
separated in ϕ, we may partition the set Lϕ(ȳ) into subsets Lϕ(Y1), . . . ,Lϕ(Ym) such that each
Lϕ(Yj) contains exactly the literals in ϕ that contain at least one variable from Yj . This means,

we can rewrite every η
(3)
qp into the form

η(4)
qp = ∃ȳ1.

∧
`′1

∃ȳ2.
∧
`′2

(
. . .
(∧
`′n−1

∃ȳn.
∧
j∈[m]

∧
k∈Kj

`′1,...,`
′
n−1

Lk(Yj)
)
. . .
)

where the sets K1
`′1,...,`

′
n−1

, . . . ,Km
`′1,...,`

′
n−1

constitute a partition of K`′1,...,`
′
n−1

— some of these parts

may be empty. We then observe the following equivalences.

∃ȳ1.
∧
`′1

∃ȳ2.
∧
`′2

(
. . .
(∧
`′n−1

∃ȳn.
∧
j∈[m]

∧
k∈Kj

`′1...`
′
n−1

Lk(Yj)
)
. . .
)

|=| ∃ȳ1.
∧
`′1

∃ȳ2.
∧
`′2

(
. . .
(∧
`′n−1

∧
j∈[m]

∃
(
ȳn ∩ Yj

)
.
∧

k∈Kj

`′1...`
′
n−1

Lk(Yj)
)
. . .
)

36 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

|=| ∃ȳ1.
∧
`′1

∃ȳ2.
∧
`′2

(
. . .
(∧
j∈[m]

∧
`′′n−1

∃
(
ȳn ∩ Yj

)
.

∧
k∈Kj

`′1...`
′
n−2

`′′
n−1

Lk(Yj)
)
. . .
)

...

|=|
∧
j∈[m]

∃
(
ȳ1 ∩ Yj

)
.
∧
`′′1

∃
(
ȳ2 ∩ Yj

)
.
∧
`′′2

(
. . .
(∧
`′′n−1

∃
(
ȳn ∩ Yj

)
.

∧
k∈Kj

`′′1 ...`
′′
n−1

Lk(Yj)
)
. . .
)

For every η
(4)
qp we call the result of the above transformation η

(5)
qp . In cases where the set ȳi ∩ Yj

is empty, the existential quantifier block vanishes. For every j ∈ [m] there are at most ∂∃(Yj , ϕ)

nonempty sets ȳi ∩Yj . Hence, every η
(5)
qp contains at most ∂∃(ϕ) nested existential quantifier blocks

that are separated by in-between conjunctive connectives in the syntax tree.

We obtain ϕ(5) from ϕ(3) by replacing every constituent η
(3)
qp with the corresponding η

(5)
qp after

applying the idempotence axioms of Boolean Algebra exhaustively to remove redundant conjuncts.
Let κ := max

{
|Lϕ(Yj)|

∣∣ 1 ≤ j ≤ m
}

. Due to the idempotence axioms, the following
upper bounds can be shown inductively for any positive integer d, starting from d = 1: Modulo
idempotence, there are at most 2↑d(κ) formulas of the form

∃
(
ȳi1 ∩ Yj

)
.
∧
`1

∃
(
ȳi2 ∩ Yj

)
.
∧
`2

(
. . .
(∧
`d−1

∃
(
ȳid ∩ Yj

)
.

∧
k∈K′j`1,...,`d−1

Lk(Yj)
)
. . .
)
.

For the sentence ϕ(5) =
∧
q

(
χ

(3)
q ∨

∨
p η

(5)
qp

)
this means that it contains at most m · 2↑∂∃(ϕ)(κ)

distinct subformulas (not occurrences thereof!) that are of the form ∃y. ψ′ and do not lie within

the scope of any quantifier. We treat every such subformula ∃y. ψ′ and every subformula χ
(3)
q as

indivisible unit and, employing distributivity of ∧ over ∨, transform ϕ(5) into a disjunction of

conjunctions ϕ(6) :=
∨
s

(∧
r1
χ

(6)
r1 ∧

∧
r2
η

(6)
r2

)
where the χ

(6)
r1 have the same shape as the χ

(3)
q , and

the η
(6)
r2 are of the form

∃
(
ȳi1 ∩ Yj

)
.
∧
`1

∃
(
ȳi2 ∩ Yj

)
.
∧
`2

(
. . .
(∧
`dj−1

∃
(
ȳi∂j ∩ Yj

)
.

∧
k∈K′j`1,...,`dj−1

Lk(Yj)
)
. . .
)

for some j and certain indices i1, . . . , idj with 1 ≤ i1 < . . . < idj ≤ n, all depending on r2; dj
abbreviates the expression ∂∃(Yj , ϕ).

Due to previous observations, we know that, modulo idempotence, r2 ranges over at most

m ·2↑∂∃(ϕ)(κ) indices. Moreover, any `k in any η
(6)
r2 ranges over at most 2↑∂∃(ϕ)−k(κ) indices. Conse-

quently, every constituent
∧
r2
η

(6)
r2 in ϕ(6) contains at most m ·maxi,j |ȳi∩Yj | ·

∑∂∃(ϕ)
k′=1

∏∂∃(ϕ)
d=k′ 2↑d(κ)

occurrences of existential quantifiers.
Since these existential quantifiers distribute over the topmost disjunction when we shift them

outwards to the front of the sentence ϕ(6), and since the universal quantifiers in the χ
(6)
q may also

be shifted back outwards, we have shown that ϕ is equivalent to some BSR sentence with at most

|ȳ|2 · ∂∃(ϕ) ·
(
2↑∂∃(ϕ)(κ)

)∂∃(ϕ)
leading existential quantifiers.

Put together, Proposition 3.1.6 and Lemma 3.2.5 immediately entail the following small model
property for SF.

Theorem 3.2.6 (Small model property for SF). Every satisfiable SF sentence ϕ has a model

whose domain contains most len(ϕ) +
(
len(ϕ)

)2 · ∂∃(ϕ) ·
(
2↑∂∃(ϕ)(len(ϕ))

)∂∃(ϕ)
domain elements.

In cases where ∂∃(ϕ) = 1, the bound in Theorem 3.2.6 simplifies to len(ϕ) +
(
len(ϕ)

)2 · 2len(ϕ).
This leads to a small model property for SSF, and its subfragment MFO, that stipulates for

3.2. TRANSLATION OF SF INTO BSR: UPPER AND LOWER BOUNDS 37

satisfiable sentences the existence of a model of exponential size in the length of the formula.
Concerning the asymptotic growth, this yields a reasonable upper bound on the size of small
models of satisfiable MFO sentences that is not too far away from Proposition 3.2.2. This works in
spite of the fact that MFO sentences may contain arbitrarily nested alternating quantifiers.

Next, we complement the obtained upper bound on the length of the BSR sentences resulting
from the translation of SF sentences with a corresponding non-elementary lower bound.

Theorem 3.2.7. There is a class of satisfiable SF sentences that are Horn and Krom such that
for every positive integer n the class contains a sentence ϕ of degree ∂∃(ϕ) = n and with a length
polynomial in n for which any equivalent BSR sentence contains at least

∑n
k=1 2↑k(n) leading

existential quantifiers.

Proof. Let n ≥ 1 be some positive integer. Consider the following first-order sentence in which the
sets {x1, . . . , xn} and {y1, . . . , yn} are separated:

ϕ ϕ:= ∀xn∃yn . . . ∀x1∃y1.

4n∧
i=1

(
Pi(x1, . . . , xn)↔ Qi(y1, . . . , yn)

)
.

Notice that we change the orientation of the indices in the quantifier prefix in this proof.
In order to construct a particular model of ϕ, we inductively define the following sets: SkS1 :={

S ⊆ [4n]
∣∣ |S| = 2n

}
, Sk+1 :=

{
S ∈ PSk

∣∣ |S| = 1
2 · |Sk|

}
for every k > 1. Then, we observe that

|S1| =
(

4n
2n

)
≥
(

4n
2n

)2n
= 22n,

|S2| =
(|S1|
|S1|/2

)
≥
(|S1|
|S1|/2

)|S1|/2
= 2|S1|/2 ≥ 222n/2 = 222n−1

,

...

|Sn| =
(|Sn−1|
|Sn−1|/2

)
≥ 2|Sn−1|/2 ≥ 222

.

.

.

22n−1−1

−1 ≥ 2↑n(2n− (n− 1)) = 2↑n(n+ 1),

where the inequality
(
n
k

)
≥ (n/k)k can be found in [CSRL01] (page 1097), for example.

Having the sets Sk, we now define the structure A as follows: A

A :=
⋃n
k=1

{
a

(k)
S , b

(k)
S

∣∣ S ∈ Sk},

PAi :=
{
〈a(1)
S1
, . . . , a

(n)
Sn
〉 ∈ An

∣∣ i ∈ S1 ∈ S2 ∈ . . . ∈ Sn
}

for i = 1, . . . , 4n, and

QAi :=
{
〈b(1)
S1
, . . . , b

(n)
Sn
〉 ∈ An

∣∣ i ∈ S1 ∈ S2 ∈ . . . ∈ Sn
}

for i = 1, . . . , 4n.

Clearly, for any choice of S1, . . . , Sn and every i, 1 ≤ i ≤ 4n, we have

A,
[
x1 7→a

(1)
S1
, . . . , xn 7→a

(n)
Sn
, y1 7→b

(1)
S1
, . . . , yn 7→b

(n)
Sn

]
|= Pi(x1, . . . , xn)↔ Qi(y1, . . . , yn) .

For any other choice of tuples 〈c1, . . . , cn〉, i.e. there do not exist sets S1 ∈ S1, . . . , Sn ∈ Sn such

that 〈c1, . . . , cn〉 equals 〈a(1)
S1
, . . . , a

(n)
Sn
〉 or 〈b(1)

S1
, . . . , b

(n)
Sn
〉, we observe A, [x1 7→c1, . . . , xn 7→cn] 6|=

Pi(x1, . . . , xn) and A, [y1 7→c1, . . . , yn 7→cn] 6|= Qi(y1, . . . , yn) for every i. Hence,

A, [x1 7→c1, . . . , xn 7→cn, y1 7→c1, . . . , yn 7→cn] |=
4n∧
i=1

Pi(x1, . . . , xn)↔ Qi(y1, . . . , yn) .

Consequently, A is a model of ϕ.
Consider the following simple two-player game with Players A and B A,Bwhere both players have

complete and instantaneous knowledge about all moves that are made by either player. In the

first round A moves first by picking some domain element a
(n)
SA,n SA,j , a

(j)
SA,j

for some set SA,n ∈ Sn. B knows

38 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

about A’s choice and answers by picking a domain element b
(n)
SB,nSB,j , b

(j)
SB,j

for some set SB,n ∈ Sn. The

game continues for n− 1 more rounds, where in every round Player A picks a domain element a
(j)
SA,j

with SA,j ∈ SA,j+1 and B answers by picking some b
(j)
SB,j

∈ SB,j+1. Hence, in the last round the

chosen domain elements a
(1)
SA,1

and b
(1)
SB,1

are such that SA,1 and SB,1 are both nonempty subsets

of [4n]. Player A wins if and only if

A,
[
x1 7→a

(1)
SA,1

, . . . , xn 7→a
(n)
SA,n

, y1 7→b
(1)
SB,1

, . . . , yn 7→b
(n)
SB,n

]
6|= Pi(x1, . . . , xn)↔ Qi(y1, . . . , yn)

for some i ∈ [4n], and Player B wins if and only if

A,
[
x1 7→a

(1)
SA,1

, . . . , xn 7→a
(n)
SA,n

, y1 7→b
(1)
SB,1

, . . . , yn 7→b
(n)
SB,n

]
|= Pi(x1, . . . , xn)↔ Qi(y1, . . . , yn)

for every i ∈ [4n]. Since A is a model of ϕ, there must exist a winning strategy for B.

Claim I: There is exactly one winning strategy for B, namely, for every j = n, . . . , 1 Player B

picks the element b
(j)
SA,j

in round n− j + 1, i.e. for every j we have SB,j = SA,j .

Proof: It is easy to see that the described strategy is a winning strategy for B.

Assume B deviates from this strategy. This means there exists some j∗, 1 ≤ j∗ ≤ n, such
that B did not adhere to the described strategy in the (n− j∗+ 1)st round, i.e. SB,j∗ 6= SA,j∗ .

We show by induction on j∗ that A has a winning strategy from this deviation point on.

For the base case j∗ = 1 we consider two distinct nonempty sets SA,1, SB,1 ⊆ [4n]. There
must be some index i∗ that belongs to one of the two sets but not to the other, i.e. i∗ ∈
(SA,1 ∪ SB,1) \ (SA,1 ∩ SB,1).

Suppose that i∗ ∈ SA,1 \ SB,1. Hence, we can construct the chain i∗ ∈ SA,1 ∈ . . . ∈ SA,n, by

definition of the allowed moves. This entails A, [x1 7→a
(1)
SA,1

, . . . , xn 7→a
(n)
SA,n

] |= Pi∗(x1, . . . , xn).

On the other hand, we know A, [y1 7→b
(1)
SB,1

, . . . , yn 7→b
(n)
SB,n

] 6|= Qi∗(y1, . . . , yn), because of
i∗ 6∈ SB,1. Hence, A wins and the chosen strategy cannot be a winning strategy for B.

The case where i∗ ∈ SB,1 \ SA,1 is symmetric and A also wins.

For the inductive case we fix some j∗ > 1. Since SA,j∗ and SB,j∗ are distinct but have the

same number of elements, there is some set S′ ∈ SA,j∗ \ SB,j∗ . If A picks a
(j∗−1)
SA,j∗−1

:= a
(j∗−1)
S′

in the following round, we have SB,j∗−1 6= SA,j∗−1 for any choice b
(j∗−1)
SB,j∗−1

that B could
possibly make. By induction, A has a winning strategy starting from the next round of the
game. Hence, there is a winning strategy starting from the current round. ♦

The just proved claim would still hold true if we allowed B to freely pick any element of the domain

A at every round. The reason is that for any choice of elements a
(n)
SA,n

, . . . , a
(1)
SA,1

made by A with
SA,1 ∈ . . . ∈ SA,n ∈ Sn we know that SA,1 is nonempty. Hence, we can always find some i∗ ∈ SA,1

such that 〈a(n)
SA,n

, . . . , a
(1)
SA,1
〉 ∈ PAi∗ . On the other hand, for any sequence cn, . . . , c1 picked by B

that does not comply with the rules of the described game, we have 〈cn, . . . , c1〉 6∈ QAi∗ .
This result proves the following observation.

Claim II: For any of the b
(k)
S the substructure of A induced by the domain A \ {b(k)

S } does not
satisfy ϕ.

Proof: The reason is simply that in this case player A can always prevent B from reaching a state
of the game where B can apply the described winning strategy. ♦

We have already analyzed the size of the sets Sk. Due to the observed lower bounds, we know

that A contains at least
∑n
k=1 2↑k(n) elements of the form b

(k)
S .

3.3. EXPRESSIVENESS OF SF 39

Next, we argue that any ∃∗∀∗-sentence ϕ∗ that is semantically equivalent to ϕ must contain
at least

∑n
k=1 2↑k(n) leading existential quantifiers. Let ϕ∗ := ∃y1 . . . ym∀x1 . . . x`. χ∗ with quanti-

fier-free χ∗ be a sentence with minimal m that is semantically equivalent to ϕ. Since A is also
a model of ϕ∗, we know that there is a sequence of elements c1, . . . , cm taken from the domain
A such that A, [y1 7→c1, . . . , ym 7→cm] |= ∀x1 . . . x`. χ∗. Consequently, we can extend A to a model
A∗ A∗(over the same domain) of the Skolemized sentence ϕSk := ∀x1 . . . x`. χ∗

[
y1/c1, . . . , ym/cm

]
by adding cA∗j := cj for j = 1, . . . ,m. On the other hand, every model of ϕSk is also a model of
ϕ∗. The vocabulary underlying ϕSk comprises exactly the constant symbols c1, . . . , cm and does

not contain any other function symbols. Suppose m <
∑n
k=1 2↑k(n). Hence, there is some b

(k)
S

with S ∈ Sk such that for every j we have cA∗j 6= b
(k)
S . By the Substructure Lemma, the following

substructure B of A∗ constitutes a model of ϕSk: B := A∗ \ {b(k)
S }, PBi := PA∗i ∩ Bn = PA∗i and

QBi := QA∗i ∩ Bn for every i, and cBj := cA∗j for every j. But then B must also be a model of both
ϕ∗ and ϕ, since every model of ϕSk is a model of ϕ∗, and because we assumed ϕ∗ and ϕ to be
equivalent. This contradicts Claim II, and thus we must have m ≥∑n

k=1 2↑k(n).

Since every atom Qi(y1, . . . , yn) contains n variables from existential quantifier blocks that are
interspersed with universal quantifier blocks, the degree ∂∃(ϕ) of ϕ is n. Moreover, ϕ can easily be
transformed into a CNF that is Horn and Krom at the same time. Hence, the theorem holds.

Theorem 3.2.7 entails that there is no elementary upper bound on the length of the BSR
sentences that result from any equivalence-preserving transformation of SF sentences into BSR.
On the other hand, by Lemma 3.2.5, there is an elementary upper bound, if we only consider
SF sentences with a bounded degree of interaction of existential variables. A special case of
Theorem 3.2.7 highlights the difference in succinctness between BSR and MFO. By Thereom 3.2.5,
we already know that every MFO sentence is equivalent to some BSR sentence whose length is at
most exponential in the length of the original MFO sentence. The following proposition entails
that, in the worst case, this exponential blowup cannot be avoided.

Proposition 3.2.8. There is a class of MFO sentences that are Horn and Krom such that for
every positive integer n the class contains a sentence ϕ of a length polynomial in n for which any
equivalent BSR sentence contains at least 2n leading existential quantifiers.

One possible witness for the mentioned class of MFO sentences consists of all the sentences
∀x∃y. ∧2n

i=1

(
Pi(x)↔ Qi(y)

)
for n ≥ 1.

3.3 Expressiveness of SF

We have already seen that SF is a syntactic extension of MFO and BSR (Proposition 3.1.4)
and that every MFO≈ sentence is equivalent to some SF sentence (Theorem 3.1.5). Hence, SF
is (at least) as expressive as these three fragments. Moreover, any sentence that is a Boolean
combination of sentences from BSR and/or MFO≈ is equivalent to some SF sentence. On the other
hand, Theorem 3.2.7 shows that SF sentences can be considerably more succinct than their BSR
equivalents.

3.3.1 Fundamental Properties of Relations

The separated fragment inherits some expressiveness from BSR that other decidable first-order
fragments, such as FO2, FL, and GF, lack. For instance, SF sentences can naturally express
fundamental properties of relations, such as reflexivity, irreflexivity, symmetry, antisymmetry,
transitivity, and congruence with respect to other predicates. Hence, SF sentences can directly
express the axioms of, e.g., equivalence relations, (strict) order relations, and congruence relations.
These are fundamental and interesting properties of relations that have to be assumed at the
meta-level when dealing with first-order fragments that are less expressive in this respect.

40 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

3.3.2 Basic Counting Quantifiers

Basic “there exist at least n” counting quantifiers ∃≥ny can be defined natively in SF and do
not have to be introduced via special operators. For example, given some positive integer n, the
formula ∃≥ny. ψ(y, z̄) stipulates the existence of n pairwise distinct domain elements a1, . . . , an
such that ψ is satisfied if any of the ai is assigned to y. There is a standard first-order expansion
for such formulas, namely

∃y1 . . . yn.

n∧
i=1

ψ(yi, z̄) ∧
∧
i<j

yi 6≈yj .

This kind of basic counting quantifiers fits in nicely with the separateness conditions of SF. That is, if
all variables that are universally quantified in ψ are separated from all variables that are existentially
quantified, including y, then this separateness is preserved in the expansion of ∃≥ny. ψ(y, z̄). The
reason is simply that in the expansion the variable y is converted into multiple yi, each of which is
existentially quantified and separated from the universally quantified variables. This would change
with the slightly different, yet equivalent, alternative expansion

∀y1 . . . yn−1∃y. ψ(y) ∧
n−1∧
i=1

y 6≈ yi ,

where the existentially quantified y co-occurs with every (universally quantified) yi in a disequation.
The picture is different, however, for the case of “there exist at most n” counting quantifiers

∃≤nx with positive n. One possible expansion for any formula ∃≤nx. ψ(x, z̄) is

∀x1 . . . xn+1.
(∧

1≤i<j≤n+1

xi 6≈ xj
)
→

n+1∨
i=1

¬ψ(xi, z̄) .

As ∃≤nx is in a sense dual to ∃≥n, it is not very surprising that its expansion is based on universal
quantification. Now consider the formula ∀u∃≤1y∀v.¬R(u, v) and its equivalent with the expanded
counting quantification:

∀u∀x1x2. x1 6≈ x2 →
2∨
i=1

¬∀v.¬R(u, v)

|=|
(
∃x1x2. x1 6≈ x2

)
→ ∀u∃v.R(u, v) .

Although the original sentence looks rather innocent from the perspective of separateness, its
expansion does not. Indeed, the latter can be used as a building block for an infinity axiom:

ϕinf :=
(
∀x.¬R(x, x)

)
∧
(
∀x1x2x3. R(x1, x2) ∧R(x2, x3)→ R(x1, x2)

)
∧
(
∃y1y2. y1 6≈ y2

)
∧
((
∃x1x2. x1 6≈ x2

)
→ ∀u∃v.R(u, v)

)
.

Obviously, the hidden negation in any formula ∃≤nx. ψ(x, z̄) makes it a bit tricky to formulate
suitable separateness conditions that would allow to integrate such expressions into SF without
losing the finite model property (and decidability of SF-Sat). We shall not investigate the counting
abilities of SF any further in the present thesis and leave it for future work.

One can use a sentence similar to ϕinf and combine it with a formalization of domino problems in
SF to obtain a formalization of unconstrained domino problems , which are, in general, undecidable

— see Section 3.1.1 in [BGG97] for a discussion. In the remainder of this subsection, we shall present
such a formalization in SF. It follows that enhancing SF with the described form of “there are at
least n” quantifiers renders the associated satisfiability problem undecidable.

3.3. EXPRESSIVENESS OF SF 41

Definition 3.3.1 (Unconstrained domino systems, cf. Definition 3.1.2 in [BGG97]). A domino
system D := 〈D,H,V〉 is a triple where D is a finite set of tiles and H,V ⊆ D × D are binary
relations determining the allowed horizontal and vertical neighbors of tiles, respectively. Consider
the space N × N. We say that D tiles the space N × N if and only if there exists a mapping
τ : N× N→ D, called a D-tiling, such that for every 〈x, y〉 ∈ N× N the following conditions hold.

(a) If τ(x, y) = D and τ(x+ 1, y) = D′, then 〈D,D′〉 ∈ H.

(b) If τ(x, y) = D and τ(x, y + 1) = D′, then 〈D,D′〉 ∈ V.

Proposition 3.3.2 (Berger [Ber66]). The set of domino systems that tile the space N× N forms
an undecidable problem.

In order to formalize a given unconstrained domino problem D = 〈D,H,V〉, we introduce the
following constant and predicate symbols:

Succ(x, x′) x′ is the successor of x,
R(x, x′) R constitutes a strict total order: x is strictly smaller than x′,
H(x, y, x′, y′) 〈x′, y′〉 is the horizontal neighbor of 〈x, y〉, i.e. x′ is successor of x and y′ = y,
V (x, y, x′, y′) 〈x′, y′〉 is the vertical neighbor of 〈x, y〉, i.e. x′ = x and y′ is successor of y,
D(x, y) 〈x, y〉 is tiled with D ∈ D.

First, we stipulate the axioms of the successor relation Succ and of the strict total order R, in
which the successor relation is embedded:

χ1 := ∃z∀x.¬Succ(x, z) ,

χ2 := ∀x∃x′.Succ(x, x′) ,

χ3 := ∀xx′x′′.
(
Succ(x, x′) ∧ Succ(x, x′′)→ x′ ≈ x′′

)
∧
(
Succ(x′, x) ∧ Succ(x′′, x)→ x′ ≈ x′′

)
,

χ4 := ∀xx′.Succ(x, x′)→ R(x, x′) ,

χ5 := ∀x.¬R(x, x) ,

χ6 := ∀xx′x′′. R(x, x′) ∧R(x′, x′′)→ R(x, x′′) ,

χ7 := ∀xx′. R(x, x′) ∨R(x′, x) .

The following sentences encode a given domino system D := 〈D,H,V〉:

η1 := ∀xyx′y′. H(x, y, x′, y′) ↔ Succ(x, x′) ∧ y ≈ y′ ,
η2 := ∀xyx′y′. V (x, y, x′, y′) ↔ x ≈ x′ ∧ Succ(y, y′) ,

η3 := ∀xx′y. H(x, y, x′, y) →
∨

〈D,D′〉∈H

(
D(x, y) ∧D′(x′, y)

)
,

η4 := ∀xyy′. V (x, y, x, y′) →
∨

〈D,D′〉∈V

(
D(x, y) ∧D′(x, y′)

)
,

η5 :=
∧

D,D′∈D
D 6=D′

∀xy. D(x, y) → ¬D′(x, y) .

Proposition 3.3.3. Assume that D, H, and V are nonempty and let A be a model of the sentence
χ1 ∧ . . .∧ χ7 ∧ η1 ∧ . . .∧ η5. A induces a tiling τ of N×N. Conversely, any D-tiling τ of the space
N× N induces a model A |= χ1 ∧ . . . ∧ χ7 ∧ η1 ∧ . . . ∧ η5.

All sentences in the above formalization, except for χ2, belong to BSR and thus also to SF. We
have observed that χ2 can be expressed with the sentence

(∃x1x2. x1 6≈ x2) ∧
(
∀u∃≤1y∀v.¬Succ(u, v)

)
|=| (∃x1x2. x1 6≈ x2) ∧

(
(∃x1x2. x1 6≈ x2)→ ∀u∃v.Succ(u, v)

)
.

42 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

Hence, if we were to admit quantifiers of the form ∃≤n in SF as described above, then we could
reduce undecidable problems to the satisfiability problem of this extended language.

The sentence χ2 in fact belongs to several of the known decidable fragments: AF, GKS,
the Skolem fragment, FO2, FL, and Maslov’s fragment K. Hence, Boolean combinations of BSR
sentences with sentences from one of the mentioned other fragments lead to undecidable satisfiability
problems, if no further restrictions are imposed. Consequently, it seems impossible that SF could
be extended into a decidable fragment that contains BSR and any of the mentioned fragments
without seriously restricting the possibility to combine sentences from the extended fragment with
Boolean connectives.

3.3.3 Expressiveness with Respect to Models of Bounded Size

Whenever it is possible to restrict our attention to models with a bounded domain size — for some
known bound —, then SF is as expressive as full (relational) first-order logic. This alone is not a
very interesting result, as already the existential fragment of relational first-order logic, represented
by the class of relational ∃∗ prefix sentences, possesses this property (universal quantification can
be replaced by finite conjunctions). What makes the case of SF special is that the incurred blowup
in formula length is not linear in the bound but significantly lower.

In order to make this idea more precise, we consider the following formula over the unary
predicate symbols Q1, . . . , Qm:

χm χm := ∀xx′.
(m∧
i=1

Qi(x)↔ Qi(x
′)
)
−→ x ≈ x′ .

It is easy to see that any model of χm contains at most 2m domain elements. The length of χm
lies in O(m).

Proposition 3.3.4. For every positive integer m and any relational first-order sentence ϕ in
which the predicate symbols Q1, . . . , Qm do not occur there is some SF sentence ϕSF such that the
sentences χm ∧ ϕ and χm ∧ ϕSF are equivalent. Moreover, the length of ϕSF lies in O

(
m · len(ϕ)

)
.

For the proof of this result, we use the abbreviation s ≈̂m t :=
∧m
i=1Qi(s)↔ Qi(t)s ≈̂m t for any two

terms s, t, and we employ the following simple observations.

Lemma 3.3.5. Let A be any structure, let β be any variable assignment over A’s domain, and let
s, t be two terms. If A |= χm holds, then we get A, β |= s ≈̂m t if and only if A, β |= s ≈ t.

This means, if we restrict our attention to domains with at most 2m domain elements, we can
use a separated form of equality.

Proposition 3.3.6. Let ψ[t] be any formula (first-order or second-order) in which the term t
occurs. Let x be some first-order variable that does not occur in ψ[t]. Then, ψ[t] is semantically
equivalent to ∀x. x ≈ t→ ψ[x], where ψ[x] is derived from ψ[t] by replacing every occurrence of t
with the variable x.

Without loss of generality, we assume that ϕ in Proposition 3.3.4 is in negation normal form.
We construct ϕSF from ϕ by consecutively replacing each subformula of the form ∃y. ψ in ϕ with
∃y∀v. y ≈̂m v → ψ

[
y/v
]
, where we assume v to be fresh (one fresh variable for each replaced

subformula). This can be done in such a way that any occurrence of existentially quantified
variables lies within subformulas s ≈̂m t. The semantic equivalence of χm ∧ϕ and χm ∧ϕSF follows
from Lemma 3.3.5 and Proposition 3.3.6. This proves Proposition 3.3.4.

Notice that ϕSF in fact belongs to the strongly separated fragment (SSF) (cf. Definition 3.2.3).
The abbreviation s ≈̂m t used above is based on unary predicate symbols. It can only account for
exponentially many domain elements in the length of the abbreviated formula, which is linear in
the parameter m. This is typical for SSF.

We can replace this approach by a more sophisticated one that makes better use of the potential
of SF and allows for more succinct representations. The main conceptual idea is that we use unary

3.3. EXPRESSIVENESS OF SF 43

predicates L1, . . . , Ln−1 to define sets LA1 , . . . , L
A
n−1 accompanied with increasing upper bounds

on their cardinality 2m, 22m , . . . , 2↑n−1(m). To this end, for all positive m,n and every ` with
2 ≤ ` ≤ n− 1 we recursively define the abbreviations u ≈̂`m,n v

u ≈̂1
m,1 v :=

m∧
i=1

(
Qi(u)↔ Qi(v)

)
and, for n ≥ 2 we set

u ≈̂1
m,n v := L1(u) ∧ L1(v) ∧

m∧
i=1

(
Qi(u)↔ Qi(v)

)
and

u ≈̂`m,n v := L`(u) ∧ L`(v) ∧
(
∀x. L`−1(x)→ ∃y. (x ≈̂`−1

m,n y) ∧
(
R`(x, u)↔ R`(y, v)

))
and

u ≈̂nm,n v := ∀x. Ln−1(x)→ ∃y. (x ≈̂n−1
m,n y) ∧

(
Rn(x, u)↔ Rn(y, v)

)
.

Notice that for every formula u ≈̂`m,n v, 1 ≤ ` ≤ n, we can partition vars(u ≈̂`m,n v) into two disjoint
sets X,Y that are separated in the formula, and we have u ∈ X and v ∈ Y . Moreover, any variable
that is universally quantified in u ≈̂`m,n v belongs to X, while Y contains all existentially quantified
variables. Also note that no quantifier in the formula occurs within the scope of a negation sign or
in the antecedent of an implication. Regarding formula length, we observe len

(
u ≈̂1

m,n v
)
∈ O(m),

and len
(
u ≈̂`m,n v

)
∈ O(`+m) for every ` with 2 ≤ ` ≤ n.

Based on these abbreviations for a separated variant of equality, we define the following sentences
for all m ≥ 1 and n ≥ 2:

χm,1 χm,k:= ∀xx′. (x ≈̂1
m,1 x

′)→ x ≈ x′
and

χm,n :=
(
∀xx′. (x ≈̂1

m,n x
′)→ x ≈ x′

)
∧
(n−1∧
`=2

∀xx′. L`(x) ∧ L`(x′)

→ ∃y∀y′.
((
L`−1(y)→ (y ≈̂`−1

m,n y
′) ∧

(
R`(y

′, x)↔ R`(y
′, x′)

))
→ x ≈ x′

))
∧
(
∀xx′∃y∀y′.

((
Ln−1(y)→ (y ≈̂n−1

m,n y
′) ∧

(
Rn(y′, x)↔ Rn(y′, x′)

))
→ x ≈ x′

))
.

Due to the syntactic properties of the formulas u ≈̂`m,n v regarding the separateness of variables, the
sentences χm,n belong to SF, if we transform them into prenex normal form by simply shifting all

quantifiers to the front. The only obstacle is the implicit negation sign in front of (y ≈̂`−1
m,n y

′) and
similar formulas in the antecedent of implications. However, this neatly fits with the fact that y is
existentially quantified and y′ universally. Regarding formula length, we observe len

(
χm,1

)
∈ O(m),

and len
(
χm,n

)
∈ O(n2 + n ·m) for every n ≥ 2.

We can extend Lemma 3.3.5 also to the new separated equality ≈̂`m,n in the following way.

Lemma 3.3.7. Let A be any structure, let β be any variable assignment over A’s domain. Suppose
we have A |= χm,n for two integers m,n ≥ 1. For every ` with 1 ≤ ` ≤ n− 1 and all first-order

variables u, v we get A, β |= u ≈̂`m,n v if and only if A, β |= u ≈ v ∧ L`(u) ∧ L`(v). Moreover, we
have A, β |= u ≈̂nm,n v if and only if A, β |= u ≈ v.

We next observe that the sentences χnm,n restrict the size of domains.

Lemma 3.3.8. Let m,n ≥ 1 and let A be any model of χm,n. For every k, 1 ≤ k ≤ n− 1, the set
LAk contains at most 2↑k(m) domain elements. Moreover, A’s domain contains at most 2↑n(m)
elements.

44 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

Proof. In case of A |= χm,k with k = 1, any two elements a, b ∈ A that are not distinguishable
by their membership in the sets QA1 , . . . , Q

A
m are identical. Hence, A cannot contain more than

2m = 2↑1(m) distinct elements.
In order to prove the first half of the lemma for n ≥ 2 under the assumption A |= χm,n, we

proceed by induction on k, starting with k = 1. The base case k = 1 is easy to settle, as any two
elements a, b ∈ LA1 that are not distinguishable by their membership in the sets QA1 , . . . , Q

A
m,n have

to be identical in A. Hence, LA1 cannot contain more than 2m = 2↑1(m) distinct elements.
Consider any k with 1 < k ≤ n − 1. By induction, the set LAk−1 contains at most 2↑k−1(m)

elements. The sentence χm,n contains the following conjunct for every ` with 2 ≤ ` ≤ n− 1:

∀xx′. L`(x) ∧ L`(x′)→ ∃y∀y′.
((
L`−1(y)→ (y ≈̂`−1

m,n y
′) ∧

(
R`(y

′, x)↔ R`(y
′, x′)

))
→ x ≈ x′

)
.

The intended meaning of this sentence coincides with the following non-separated sentence:

ψm,` ψm,` :=

∀xx′. L`(x) ∧ L`(x′)→
((
∀y. L`−1(y)→

(
R`(y, x)↔ R`(y, x

′)
))
→ x ≈ x′

)
|=| ∀xx′. L`(x) ∧ L`(x′)→

((
∀y. L`−1(y)→ ∃y′. y ≈ y′ ∧

(
R`(y

′, x)↔ R`(y
′, x′)

))
→ x ≈ x′

)
|=| ∀xx′. L`(x) ∧ L`(x′)→ ∃y∀y′.

((
L`−1(y)→ y ≈ y′ ∧

(
R`(y

′, x)↔ R`(y
′, x′)

))
→ x ≈ x′

)
,

where we could take the last line and replace the equation y ≈ y′ with its separated variant
y ≈̂`−1

m,n y
′ to obtain the above conjunct. By virtue of (a slightly adapted variant of) Lemma 3.3.7,

this replacement preserves semantics.
It is easy to see that A |= ψm,` entails that any two domain elements a, b ∈ LA` are identical,

if the two sets
{
〈a, c〉 ∈ RA`

∣∣ c ∈ LA`−1

}
and

{
〈b, c〉 ∈ RA`

∣∣ c ∈ LA`−1

}
coincide. Recall that the

inductive hypothesis says that the set LA`−1 contains at most 2↑`−1(m) elements. Hence, A |= ψm,`

entails that the set LA` contains at most 2|L
A
`−1| ≤ 22↑`−1(m) = 2↑`(m) domain elements.

Finally, the conjunct

∀xx′∃y∀y′.
((
Ln−1(y)→ (y ≈̂n−1

m,n y
′) ∧

(
Rn(y′, x)↔ Rn(y′, x′)

))
→ x ≈ x′

)
in the sentence χm,n has the following intended meaning:

∀xx′.
((
∀y. Ln−1(y)→

(
Rn(y, x)↔ Rn(y, x′)

))
→ x ≈ x′

)
.

As we have already shown that A |= χm,n entails |LAn−1| ≤ 2↑n−1(m), we conclude that A |= χm,n
also implies that A’s domain A contains at most 2↑n(m) elements.

As a counterpart to the upper bound result in Lemma 3.3.8, we observe that χm,n does not
restrict the cardinality of models further than this.

Lemma 3.3.9. Let A be any structure whose domain contains at most 2↑n(m) elements. There
is a model A′ |= χm,n over the same domain that differs from A only in its interpretation of the
predicate symbols L1, . . . , Ln−1, R2, . . . , Rn, Q1, . . . , Qm.

We use Lemmas 3.3.8 ans 3.3.9 to derive a much stronger variant of Proposition 3.3.4. Abstractly
speaking, it states that, when restricted to models of the size 2↑n(m), any first-order sentence
can be translated into an equisatisfiable SF sentence whose length is polynomial in n, m, and the
length of the original sentence.

Lemma 3.3.10. Let m,n be two positive integers with m ≥ 1 and n ≥ 2. There exists an effective
translation Tm,nTm,n mapping relational first-order sentences ϕ to SF sentences ϕSF that satisfy the
following properties. For every relational sentence ϕ, which does not contain the predicate symbols

3.3. EXPRESSIVENESS OF SF 45

L1, . . . , Ln−1, R2, . . . , Rn, Q1, . . . , Qm, we have
(a) χm,n ∧ ϕ |=| χm,n ∧ Tm,n(ϕ),
(b) the formula length of Tm,n(ϕ) is at most p(m,n) · len(ϕ) for some polynomial p(m,n), and
(c) Tm,n(ϕ) is computable in time q(m,n, len(ϕ)) for some polynomial q(m,n, k).

Proof. The translation Tm,n is very similar to the one we have already sketched above. First, we
transform ϕ into negation normal form. We construct ϕSF from ϕ by consecutively replacing each
subformula of the form ∃y. ψ in ϕ with ∃y∀v. y ≈̂nm,n v → ψ

[
y/v
]
, where we assume v to be fresh

(one fresh variable for each replaced subformula). Finally, all quantifiers are shifted to the front of
the sentence.

We have observed earlier that any variable set vars(y ≈̂nm,n v) can be partitioned into two sets
X,Y that are separated in the subformula y ≈̂nm,n v, where all universally quantified variables
are collected in X and all existentially quantified variables belong to Y . Since the introduced
subformulas y ≈̂nm,n v always occur in the antecedent of implications and are, hence, subject to one
implicit negation, the constructed sentence ϕSF is indeed an SF sentence. The semantic equivalence
of the formulas χm,n ∧ ϕ and χm,n ∧ ϕSF follows from Proposition 3.3.6 and Lemma 3.3.7.

Lemma 3.3.10 has interesting consequences. For instance, concerning the computational hardness
of SF’s satisfiability problem. The following theorem entails that SF-Sat is computationally at least
as hard as the satisfiability problem for any first-order fragment that enjoys a small model property
with an elementary upper bound on the size of small models. For instance, the fragments AF,
GKS, FO2, and GF fall into this category. Even the satisfiability problem for first-order fragments
enjoying a small model property with bounds 2↑dc·len(ϕ)e(dd · len(ϕ)e) for constants c, d, such as
FL, can be polynomially reduced to SF-Sat. Although this latter observation already yields a
non-elementary lower bound regarding the computational complexity of SF-Sat, we shall derive a
more accurate lower bound in Section 5.3 by encoding bounded domino problems.

Theorem 3.3.11. Consider any nonempty class C of relational first-order sentences for which we
know two constants c, d ≥ 1 such that every satisfiable ϕ in C has a model whose domain contains at
most 2↑dc·len(ϕ)e(dd · len(ϕ)e) elements. The satisfiability problem for C is polynomial-time reducible
to SF-Sat.

Proof. We use the translations Tm,n from Lemma 3.3.10 for the reduction from C’s satisfiability
problem to SF-Sat. Given any sentence ϕ from C, we compute m := dd · len(ϕ)e and n :=
dc · len(ϕ)e. Without loss of generality, we assume that ϕ does not contain any of the predicate
symbols L1, . . . , Ln−1, R2, . . . , Rn, Q1, . . . , Qm. Next, we construct the sentence χm,n ∧ Tm,n(ϕ).
By Lemma 3.3.10, this can be done in time that is polynomial in len(ϕ) and thus also polynomial
in ‖ϕ‖. By Lemma 3.3.9, any model A |= ϕ whose domain contains at most 2↑dc·len(ϕ)e(dd · len(ϕ)e)
elements can be extended to a model A′ |= χm,n∧ϕ over the same domain. Hence, if ϕ is satisfiable,
then there is some model A′ |= χm,n ∧ ϕ with |A′| ≤ 2↑dc·len(ϕ)e(dd · len(ϕ)e). By Lemma 3.3.10,
A′ is also a model of χm,n ∧ Tm,n(ϕ). On the other hand, any model of χm,n ∧ Tm,n(ϕ) yields a
model of ϕ.

Remark 3.3.12. The restriction of Theorem 3.3.11 to classes over relational vocabularies is not
essential. It is folklore knowledge that every first-order sentence containing function symbols can be
converted into an equisatisfiable sentence over some relational vocabulary. The function symbols
are replaced with predicate symbols that represent the respective function graph. This conversion
causes a blowup that is only linear in the length of the original formula.

For example, the sentence ∀x. P (f(x)) ∨ f(x) ≈ c with function symbols f and c is converted
into the equisatisfiable sentence(

∀xyz.Qc(z) ∧Qf (x, y)→ P (y) ∨ y ≈ z
)

∧
(
∃z.Qc(z)

)
∧
(
∀uv.Qc(u) ∧Qc(v)→ u ≈ v

)
∧
(
∀u∃w.Qf (u,w)

)
∧
(
∀uvw.Qf (u, v) ∧Qc(u,w)→ v ≈ w

)
.

46 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

Employing the ideas underlying Lemma 3.3.10, one can also derive other lower bounds regarding
the length of sentences that are equivalent to SF sentences but adhere to certain syntactic restrictions.
We have already seen a result in this direction in Section 3.2, namely, Theorem 3.2.7, which described
a non-elementary gap between the length of SF sentences and shortest equivalent BSR sentences.
A classical result by Gaifman [Gai82] states that every first-order formula is equivalent to some
formula that is local in a certain sense (see below). It has been shown later [DGKS07a] that there
is a non-elementary gap between the length of first-order sentences and their shortest equivalents
in Gaifman normal form. We intend to prove that this gap also applies to the separated fragment.
But first we need some preliminary definitions, mainly taken over from [DGKS07a] (see also the
textbooks [EF99, Lib04]).

Fix any relational vocabulary Σ and let A be any Σ-structure. The Gaifman graph of A is the
undirected, loop-free graph GAGA over the vertex set A and the edge set E that satisfies the following
property. The set E contains an edge 〈a, b〉 if and only if there is some m-ary predicate symbol
P in Σ, some tuple 〈c1, . . . , cm〉 ∈ PA, and two distinct indices i, j with a = ci and b = cj . The
distance between two domain elements a, b ∈ A in A is denoted by distA(a, b)distA(a, b) and is defined to be
the length of the shortest path from a to b in GA — the length of a path is the number of edges on
the path. For every nonnegative integer r and every domain element a ∈ A the r-neighborhood of a
in A is the set {b ∈ A | distA(a, b) ≤ r}. The substructure of A induced by this set is denoted by
N r
A(a)N r

A(a) .
For every nonnegative integer r let dist>r(x, y) be a first-order formula stipulating that the

distance between x and y is at least r+ 1. A first-order formula ψ(x) is r-local if for every structure
A and every a ∈ A we have A |= ψ(a) if and only if N r

A(a) |= ψ(a). Abasic local
sentence

basic local sentence is a
sentence of the form

∃x1 . . . xk.
∧

1≤i<j≤k
dist>2r(xi, xj) ∧

∧
1≤i≤k

ψ(xi) ,

where ψ(x) is r-local. A first-order sentence ϕ is said to be in Gaifman normal formGaifman
normal form

if it is a
Boolean combination of basic local sentences.

Proposition 3.3.13 (Gaifman [Gai82]). Every relational first-order sentence is equivalent to some
first-order sentence in Gaifman normal form.

Dawar et al. [DGKS07a] present a class of first-order sentences ϕ that are non-elementarily
more succinct than the shortest equivalent sentences ϕ′ in Gaifman normal form. The main tool
for the proof is an encoding of nonnegative integers by trees, introduced in Section 10.3 of [FG06],
and succinct first-order formulas for handling these trees.

Definition 3.3.14 (Encoding integers by trees (adapted from [DGKS07a], Definition 1)). For
nonnegative integers i, n we write bit(i, n)bit(i, n) to denote the i-th bit in the binary representation of
n; the least significant bit is bit(0, n). We define the tree representation T (n)T (i) for any integer n
inductively as follows. T (0) is the tree consisting only of the root node. For n > 0 the tree T (n) is
obtained by creating a new root node and attaching to it all trees T (i) for which bit(i, n) = 1.

In Figure 3.1 the tree encoding is illustrated. Notice that the number of sons of the root node
equals the number 1-bits in the binary representation of the encoded integer. Further examples
can be found in [FG06], page 251.

The height of a tree T (n) and the number n represented by it are related as follows.

Proposition 3.3.15 ([FG06], Lemma 10.20). For every tree T let height(T) be the number of
edges along the longest path from the root of T to any leaf in T . Then, for all nonnegative integers
h, n we have height(T (n)) ≤ h if and only if n < 2↑h(1).

In addition, we establish the following upper bound regarding the total number of nodes in any
tree T (n).

Lemma 3.3.16. For every nonnegative n let h(n) := height(T (n))h(n) . The number of nodes in a

tree T (n) is at most 2↑h(n)+1(1).

3.3. EXPRESSIVENESS OF SF 47

t

�
J
JĴt

�
��
A
AU

t
?t t t

?t

t
�
��	 ?

@
@@Rt

�
��
A
AU

t
?

tt
?

t
?

tt t
?t

Figure 3.1: Left-hand side: the tree T (10). Right-hand side: the tree T (67).

Proof. Whenever we refer to trees in this proof, we mean trees that encode integers in the sense of
Definition 3.3.14. Fix any nonnegative integer n. Let h := h(n). We proceed by induction on h.

Base cases h = 0 and h = 1. The only tree with height 0 is T (0), which contains 1 ≤ 2 = 2↑1(1)
nodes. Moreover, there is only one tree of height 1, namely T (1). This tree contains
2 ≤ 4 = 2↑2(1) nodes.

Inductive case h > 1. For every h′ ≥ 0 let trees(h′) denote the number of distinct trees of height
h′ and let nodes(h′) denote the maximal number of nodes in any tree of height h′. We observe
the following:

nodes(h) ≤ 1 +

h−1∑
i=0

trees(i) · nodes(i)

≤ 1 + nodes(h− 1)︸ ︷︷ ︸
IH
≤ 2↑h(1)

·
h−1∑
i=0

trees(i)︸ ︷︷ ︸
= 2↑h−1(1)

≤ 1 + 2↑h(1) · 2↑h−1(1)

≤ 22·2↑h−1(1)

≤ 22↑h(1) = 2↑h+1(1)

One of the main results in [DGKS07a] is the following lower bound regarding the length of
sentences in Gaifman normal form.

Proposition 3.3.17 ([DGKS07a], Theorem 2). Let Σ := 〈{E}, ∅〉 be a vocabulary where E is a
binary predicate symbol. For every h ≥ 1 there is a first-order Σ-sentence ϕh of length O(h4) such
that every first-order Σ-sentence in Gaifman normal form that is equivalent to ϕh on the class F≤h

F≤hof finite forests (of pairwise distinct trees) of height at most h has length at least 2↑h(1).

Although there does not seem to be an obvious way to transfer this result to the realm of SF
by straightforward application of Lemma 3.3.10, the underlying ideas facilitate the derivation of a
similar lower bound for SF.

Theorem 3.3.18. There is some vocabulary Σ and some polynomial p(h) such that for every h ≥ 0
there is an SF Σ-sentence ϕSF,h of length p(h) satisfying the following property. Every first-order
Σ-sentence ψ in Gaifman normal form that is equivalent to ϕSF,h has length at least 2↑h(1).

Proof sketch. Let Σ := 〈Π, ∅〉 be the vocabulary where Π contains the unary predicate symbols
Red,Blue, Qr

1, Q
b
1 , Q

r
2, Q

b
2 , . . . and Lr

1, L
b
1 , L

r
2, L

b
2 , . . . and the binary predicate symbols E and

Rr
1, R

b
1 , R

r
2, R

b
2 , . . . and no further symbols. The superscript r stands for red and b stands for blue.

In what follows, we abbreviate the expression 2↑n(1) with 2↑n 2↑nfor any positive integer n. Given

some Σ-structure A, a domain element a ∈ A is considered to be red if a ∈ RedA; it is considered

48 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

blue if a ∈ BlueA; and it is considered black if it is neither red nor blue. We call any given subset
of A’s domain red, blue, or black, if all of its elements have the respective color. The predicate
symbol E serves as the edge relation for directed graphs, in particular forests of rooted trees.

For every positive integer h let CFhCFh be the set of Σ-structures Fh,k which we define as follows.
For all nonnegative integers h, k with h ≥ 1 and k ≥ 0, we define the structure Fh,kFh,k to contain the

trees T (0), . . . , T (2↑h+2 − 1), each colored entirely red or blue; none of the nodes in any tree in
Fh,k is red and blue at the same time. Every tree in Fh,k, except for T (k), is colored blue; T (k) is
red. Every tree occurs at most once, no matter its color, e.g. if there is a red tree T (`), then there
is neither another red tree T (`) nor a blue T (`) in Fh,k. In addition to the trees, there are two
disjoint sets, each consisting of 2↑h+3 pairwise distinct black domain elements a1, . . . , a2↑h+3 ∈ Fh,k
and b1, . . . , b2↑h+3 ∈ Fh,k, none of which occurs in any edge in Fh,k’s edge relation EFh,k . We do
not consider these ai, bj as trees T (0). Figure 3.2 illustrates the exemplary structure F0,1.

Across all the structures in the class CFh we fix some interpretation of the predicate symbols Lb
i ,

Lr
i, Q

b
i , Qr

i, R
b
i , and Rr

i and make sure that the following restrictions are obeyed. These predicates
will be used in the same manner as we have already used them previously — the Lb

i , Q
b
i , R

b
i will be

used to enforce an upper bound regarding the size of the blue part of Fh,k and for identifying blue
elements in a separated fashion, and the Lr

i, Q
r
i, R

r
i will serve the same purpose in the red part of

Fh,k. For every Fh,k ∈ CFh we assume the following properties.

• For every `, 1 ≤ ` ≤ h+ 3, we have a1, . . . , a2↑` ∈ Lb
`

Fh,k and b1, . . . , b2↑` ∈ Lr
`
Fh,k .

• For all distinct ai, ai′ ∈ Lb
1
Fh,k there is some Qb

j with ai ∈ Qb
j
Fh,k and ai′ 6∈ Qb

j
Fh,k or vice

versa. The analogous property shall hold for distinct bi, bi′ ∈ Lr
1
Fh,k and the sets Qr

j
Fh,k .

• For every `, 2 ≤ ` ≤ h+ 3, and all distinct ai, ai′ ∈ Lb
`

Fh,k there is some element a′ ∈ Lb
`−1

Fh,k

with 〈a′, ai〉 ∈ Rb
`

Fh,k and 〈a′, ai′〉 6∈ Rb
`

Fh,k or vice versa. The analogous property shall hold
for distinct bi, bi′ ∈ Lr

`
Fh,k , some element b′ ∈ Lr

`−1
Fh,k , and the set Rr

`
Fh,k .

• For any two distinct tree nodes c, d ∈ BlueFh,k there is some ai ∈ Lb
h+2

Fh,k with 〈ai, c〉 ∈ Rb
`

Fh,k

and 〈ai, d〉 6∈ Rb
`

Fh,k or vice versa. The analogous property shall hold for all distinct red tree
nodes c, d, some element bi ∈ Lr

h+2
Fh,k , and the set Rr

`
Fh,k .

• In the Gaifman graph GFh,k the blue part of Fh,k is disconnected from the red part of Fh,k.

There are no connections between (1) any ai and any bj , (2) any ai and any d ∈ RedFh,k ,

(3) any bj and any c ∈ BlueFh,k , (4) any c ∈ BlueFh,k and any d ∈ RedFh,k .

Moreover, we assume that for all distinct Fh,k,Fh,k′ ∈ CFh the following properties hold.

(a) Fh,k and Fh,k′ have the same domain, i.e. Fh,k = Fh,k′ .

(b) The two substructures F ′h,k,F ′h,k′ of Fh,k and Fh,k′ induced by the set {a1, . . . , a2↑h+2 ,
b1, . . . , b2↑h+2}, respectively, coincide.

(c) Consider any node t in any tree T (`) and let c ∈ Fh,k and d ∈ Fh,k′ be the domain elements
corresponding to this node t in the respective structure.

• If ` = k, then for every i, 1 ≤ i ≤ 2↑h+3, we have Fh,k |= Rr
h+4(bi, c) if and only if

Fh,k′ |= Rb
h+4(ai, d).

• If ` = k′, then for every i, 1 ≤ i ≤ 2↑h+3, we have Fh,k |= Rb
h+4(ai, c) if and only if

Fh,k′ |= Rr
h+4(bi, d).

• If ` 6= k, k′, then for every i, 1 ≤ i ≤ 2↑h+3, we have Fh,k |= Rb
h+4(ai, c) if and only if

Fh,k′ |= Rb
h+4(ai, d).

3.3. EXPRESSIVENESS OF SF 49

T (0) T (1) T (2) T (3)

a1 a2 a3 a4

Lb
1

Lb
2

b1 b2 b3 b4

Lr
1

Lr
2

Figure 3.2: Illustration of the structure F0,1.

We now start constructing the sentences ϕSF,h for any h ≥ 0. First, we create two variants of

the abbreviations u ≈̂`m,n v, namely a red variant u ≈̂r,`
m,n v and a blue variant u ≈̂b,`

m,n v u ≈̂r,`
m,n v,

u ≈̂b,`
m,n v

, where all

Qi, Li, Ri are replaced by Qr
i, L

r
i, R

r
i and Qb

i , L
b
i , R

b
i , respectively, and the recursive reference to

x ≈̂`
′

m,n is replaced by x ≈̂r,`′

m,n y and x ≈̂b,`′

m,n y, respectively. This replacement does not significantly

change the length of the formulas, i.e. len
(
u ≈̂b,`

m,n v
)

and len
(
u ≈̂r,`

m,n v
)

are polynomial in m and

`. Based on these new formulas, we define variants of the sentences χm,n with n ≥ 2 as follows:

χr
m,n, χb

m,nχr
m,n :=

(
∀xx′. (x ≈̂r,1

m,n x
′)→ x ≈ x′

)
∧
(n−1∧
`=2

∀xx′. Lr
`(x) ∧ Lr

`(x
′)

→ ∃y∀y′.
((
Lr
`−1(y)→ (y ≈̂r,`−1

m,n y′) ∧
(
Rr
`(y
′, x)↔ Rr

`(y
′, x′)

))
→ x ≈ x′

))
∧
(
∀xx′.Red(x) ∧ Red(x′)

→ ∃y∀y′.
((
Lr
n−1(y)→ (y ≈̂r,n−1

m,n y′) ∧
(
Rr
n(y′, x)↔ Rr

n(y′, x′)
))
→ x ≈ x′

))
and

χb
m,n :=

(
∀xx′. (x ≈̂b,1

m,n x
′)→ x ≈ x′

)
∧
(n−1∧
`=2

∀xx′. Lb
` (x) ∧ Lb

` (x′)

→ ∃y∀y′.
((
Lb
`−1(y)→ (y ≈̂b,`−1

m,n y′) ∧
(
Rb
` (y′, x)↔ Rb

` (y′, x′)
))
→ x ≈ x′

))
∧
(
∀xx′.Blue(x) ∧ Blue(x′)

→ ∃y∀y′.
((
Lb
n−1(y)→ (y ≈̂b,n−1

m,n y′) ∧
(
Rb
n(y′, x)↔ Rb

n(y′, x′)
))
→ x ≈ x′

))
.

Compared to the original χm,n, the changes are basically the same as the changes made in the

abbreviations u ≈̂r,`
m,n v and u ≈̂b,`

m,n v. Moreover, in the third conjunct of χr
m,n and χb

m,n the
antecedents Red(x) ∧ Red(x′) and Blue(x) ∧ Blue(x′) are added. The result is that χr

m,n does not
restrict the whole domain of any model A |= χr

m,n to a certain cardinality, but only the number

of domain elements that belong to the set RedA. A similar effect applies to the sentence χb
m,n

with respect to the set BlueA. Regarding formula length, we observe that both len
(
χb
m,n

)
and

len
(
χr
m,n

)
lie in O(n2 + n ·m) for every n ≥ 2.

We borrow the following formulas from [DGKS07b], the full version of [DGKS07a], listed with
their intended meaning:

eqh(x, y) the subtrees with roots x and y, respectively,
represent the same tree T (m) for some m < 2↑h,

50 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

encodingh(x) the element x is indeed the root of a subtree T (m) for some m < 2↑h,
lessh(x, y) the subtree with root x represents a tree T (m) for some m < 2↑h and

the subtree with root y represents a tree T (m′) for some m′ with m < m′ < 2↑h,
min(x) the subtree with root x represents the tree T (0),

maxh(x) the subtree with root x represents the tree T
(
2↑h − 1

)
,

succh(x, y) for the two subtrees Tx, Ty with root x, y, respectively,
we have that if Tx represents the tree T (m) with m < 2↑h − 1,
then Ty represents the tree T (m+ 1).

The following formula definitions are taken over from [FG06], Section 10.3 (eq0(x, y) and
eqh(x, y)), and from [DGKS07b] (encodingh(x), lessh(x, y), min(x), maxh(x), and succh(x, y)).
The definitions containing the parameter h are meant for positive h.

eq0(x, y) := true

eqh(x, y) :=
((
∃u.E(x, u)

)
↔
(
∃v.E(y, v)

))
∧
(
∀w.E(x,w)→

(
∃z. E(y, z) ∧

(
∀z′. E(y, z′)→

(
∃w′. E(x,w′) ∧(

∀uv.
(
u ≈ w ∧ v ≈ z

)
∨
(
u ≈ w′ ∧ v ≈ z′

)
→ eqh−1(u, v)

)))))
encoding0(x) := ∀x′.¬E(x, x′)

encodingh(x) :=
(
∀x′. E(x, x′)→ encodingh−1(x′)

)
∧
(
∀x′x′′. E(x, x′) ∧ E(x, x′′) ∧ x′ 6≈ x′′ → ¬eqh−1(x′, x′′)

)
less0(x, y) := false

lessh(x, y) := ∃y′. E(y, y′)

∧
(
∀x′. E(x, x′)→ ¬eqh−1(x′, y′)

)
∧
(
∀x′′. E(x, x′′) ∧ lessh−1(y′, x′′)→ ∃y′′. E(y, y′′) ∧ eqh−1(x′′, y′′)

)
min(x) := ∀x′.¬E(x, x′)

succ0(x, y) := false

succh(x, y) := ∃y′. E(y, y′)

∧
(
∀y′′. E(y, y′′) ∧ y′′ 6≈ y′ → lessh−1(y′, y′′)

)
∧
(
∀x′. E(x, x′)→ ¬eqh−1(x′, y′)

)
∧
(
∀y′′. E(y, y′′) ∧ lessh−1(y′, y′′)→ ∃x′′. E(x, x′′) ∧ eqh−1(x′′, y′′)

)
∧
(
∀x′′. E(x, x′′) ∧ lessh−1(y′, x′′)→ ∃y′′. E(y, y′′) ∧ eqh−1(y′′, x′′)

)
∧
(
¬min(y′)→

((
∃x′. E(x, x′) ∧min(x′)

)
∧
(
∀x′. E(x, x′) ∧ lessh−1(x′, y′)

→ ∃z. succh−1(x′, z) ∧
(
z ≈ y′ ∨ E(x, z)

))))
max′0(x) := ∀x′.¬E(x, x′)

max′h(x) :=
(
∃y.E(x, y) ∧min(y)

)
∧
(
∀x′. E(x, x′)→ max′h−1(x′) ∨

(
∃y.E(x, y) ∧ succh−1(x′, y)

))
max0(x) := ∀x′.¬E(x, x′)

maxh(x) := encodingh(x) ∧max′h(x)

All of these formulas are based on the vocabulary 〈{E}, ∅〉 and have a length that is polynomial in
h. In addition to the formulas defined so far, we use the abbreviation

root(x) :=
(
Red(x) ∨ Blue(x)

)
∧ ∀x′.¬E(x′, x) .

3.3. EXPRESSIVENESS OF SF 51

This brings us one step closer to the definition of the sentences ϕSF,h. In order to illustrate the
general ideas, we first construct intermediate sentences. For every h ≥ 0 we define the sentence ϕh

ϕhas follows, where we draw some inspiration from the proof of Theorem 2 in [DGKS07a] (Theorem 4.3
in [DGKS07b]):

ϕh := χr
1,h+4 ∧ χb

1,h+4

∧
(
∀xx′.Red(x) ∧ E(x, x′)→ Red(x′)

)
∧
(
∀xx′.Blue(x) ∧ E(x, x′)→ Blue(x′)

)
∧
(
∀x.Red(x)→ ¬Blue(x)

)
∧
(
∀x.
(
¬Red(x) ∧ ¬Blue(x)

)
↔

h+3∨
i=1

(
Lr
i(x) ∨ Lb

i (x)
))

∧
(
∃y. root(y) ∧min(y)

)
∧
(
∀x. root(x)→ maxh+2(x) ∨

(
∃y. root(y) ∧ succh+2(x, y)

))
.

By virtue of Lemma 3.3.16, we conclude that Fh,k |= χr
1,h+4 ∧ χb

1,h+4 holds for every Fh,k ∈ CFh.
Hence, the definition of the class CFh entails that every Fh,k ∈ CFh is a model of ϕh.

Obviously, the sentence ϕh is not in SF. The problematic parts are the two last conjuncts.
In order to fix this, we need to find separated variants of the formulas eqh(x), encodingh(x),
lessh(x, y), min(x), maxh(x), succh(x), and root(x). To this end, we define the following color-

guarded variants of these formulas: eqb
h(x), eqr

h(x), encodingb
h(x), encodingr

h(x), lessb,b
h (x, y),

lessb,r
h (x, y), lessr,b

h (x, y), lessr,r
h (x, y), rootb(x), rootr(x), and so on. For the two-argument formulas

the superscript r,b and similar ones indicate the expected color of the first and second argument,
respectively. We exemplary show only the definition of some of these variants, the others are
constructed in an analogous way. The definitions are tentative in the sense that we still need to
transform the formulas so that they can ultimately be used to construct an SF sentence.

eqb,r
0 (x, y) := Blue(x) ∧ Red(y)

eqb,r
h (x, y) := Blue(x) ∧ Red(y)

∧
((
∃u.Blue(u) ∧ E(x, u)

)
↔
(
∃v.Red(v) ∧ E(y, v)

))
∧
(
∀w.Blue(w) ∧ E(x,w)→

(
∃z.Red(z) ∧ E(y, z) ∧

(
∀z′.Red(z′) ∧ E(y, z′)

→
(
∃w′.Blue(w′) ∧ E(x,w′) ∧

(
∀u.Blue(u)→

(
∀v.Red(v)

→
((
u ≈ w ∧ v ≈ z

)
∨
(
u ≈ w′ ∧ v ≈ z′

)
→ eqb,r

h−1(u, v)
)))))))

encodingb
0(x) := Blue(x) ∧ ∀x′.Blue(x′)→ ¬E(x, x′)

encodingb
h(x) := Blue(x)

∧
(
∀x′.Blue(x′) ∧ E(x, x′)→ encodingb

h−1(x′)
)

∧
(
∀x′x′′.Blue(x′) ∧ Blue(x′′) ∧ E(x, x′) ∧ E(x, x′′) ∧ x′ 6≈ x′′ → ¬eqb,b

h−1(x′, x′′)
)

lessb,r
0 (x, y) := false

lessb,r
h (x, y) := Blue(x) ∧ Red(y)

∧ ∃y′.Red(y′) ∧ E(y, y′)

∧
(
∀x′.Blue(x′) ∧ E(x, x′)→ ¬eqb,r

h−1(x′, y′)
)

∧
(
∀x′′.Blue(x′′) ∧ E(x, x′′) ∧ lessr,b

h−1(y′, x′′)

→ ∃y′′.Red(y′′) ∧ E(y, y′′) ∧ eqb,r
h−1(x′′, y′′)

)
minb(x) := Blue(x) ∧ ∀x′.Blue(x′)→ ¬E(x, x′)

52 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

succb,b
0 (x, y) := false

succb,b
h (x, y) :=

Blue(x) ∧ Blue(y)

∧ ∃y′.Blue(y′) ∧ E(y, y′)

∧
(
∀y′′.Blue(y′′) ∧ E(y, y′′) ∧ y′′ 6≈ y′ → lessb,b

h−1(y′, y′′)
)

∧
(
∀x′.Blue(x′) ∧ E(x, x′)→ ¬eqb,b

h−1(x′, y′)
)

∧
(
∀y′′.Blue(y′′) ∧ E(y, y′′) ∧ lessb,b

h−1(y′, y′′)→ ∃x′′.Blue(x′′) ∧ E(x, x′′) ∧ eqb,b
h−1(x′′, y′′)

)
∧
(
∀x′′.Blue(x′′) ∧ E(x, x′′) ∧ lessb,b

h−1(y′, x′′)→ ∃y′′.Blue(y′′) ∧ E(y, y′′) ∧ eqb,b
h−1(y′′, x′′)

)
∧
(
¬minb(y′)→

((
∃x′.Blue(x′) ∧ E(x, x′) ∧minb(x′)

)
∧
(
∀x′.Blue(x′) ∧ E(x, x′) ∧ lessb,b

h−1(x′, y′)

→
(
∃z.Blue(z) ∧ succb,b

h−1(x′, z) ∧
(
z ≈ y′ ∨ E(x, z)

)))))
succb,r

0 (x, y) := false

succb,r
h (x, y) :=

Blue(x) ∧ Red(y)

∧ ∃y′.Red(y′) ∧ E(y, y′)

∧
(
∀y′′.Red(y′′) ∧ E(y, y′′) ∧ y′′ 6≈ y′ → lessr,r

h−1(y′, y′′)
)

∧
(
∀x′.Blue(x′) ∧ E(x, x′)→ ¬eqb,r

h−1(x′, y′)
)

∧
(
∀y′′.Red(y′′) ∧ E(y, y′′) ∧ lessr,r

h−1(y′, y′′)→ ∃x′′.Blue(x′′) ∧ E(x, x′′) ∧ eqb,r
h−1(x′′, y′′)

)
∧
(
∀x′′.Blue(x′′) ∧ E(x, x′′) ∧ lessr,b

h−1(y′, x′′)→ ∃y′′.Red(y′′) ∧ E(y, y′′) ∧ eqr,b
h−1(y′′, x′′)

)
∧
(
¬minr(y′)→

((
∃x′.Blue(x′) ∧ E(x, x′) ∧minb(x′)

)
∧
(
∀x′.Blue(x′) ∧ E(x, x′) ∧ lessb,r

h−1(x′, y′)

→
((
∃z.Blue(z) ∧ succb,b

h−1(x′, z) ∧ E(x, z)
)

∨
(
∃z.Red(z) ∧ succb,r

h−1(x′, z) ∧ z ≈ y′
)))))

max′0
b
(x) := Blue(x) ∧ ∀x′.Blue(x′)→ ¬E(x, x′)

max′h
b
(x) :=

Blue(x) ∧
(
∃y.Blue(y) ∧ E(x, y) ∧minb(y)

)
∧
(
∀x′.Blue(x′) ∧ E(x, x′)→ max′

b
h−1(x′) ∨

(
∃y.Blue(y) ∧ E(x, y) ∧ succb,b

h−1(x′, y)
))

maxb
0(x) := Blue(x) ∧ ∀x′.Blue(x′)→ ¬E(x, x′)

maxb
h(x) := Blue(x) ∧ encodingb

h(x) ∧max′
b
h(x)

rootb(x) := Blue(x) ∧ ∀x′.Blue(x′)→ ¬E(x′, x)

Notice that all quantifiers in the above formulas are guarded by color guards such that every subfor-
mula of the form ∀x. η for any variable x and any formula η is either equivalent to ∀x.Blue(x)→ η′

or to ∀x.Red(x)→ η′ for some η′. Similarly, every subformula of the form ∃y. η for any variable y
and any η is either equivalent to ∃y.Blue(y) ∧ η′ or to ∃y.Red(y) ∧ η′ for some η′. Regarding the
length of formulas, it is easy to check that the length is polynomial in h for most of the formulas.
For succb,b

h (x, y) this also holds true, as there is only one recursive reference to succb,b
h−1(x′, z).

For succb,r
h (x, y) the matter is slightly more complicated. We have one recursive reference to

succb,b
h−1(x′, z) and one to succb,r

h−1(x′, z). But we have already discussed that succb,b
h−1(x′, z) is a

3.3. EXPRESSIVENESS OF SF 53

formula of polynomial length in h. Hence, the overall length of succb,r
h (x, y) is also polynomial in h.

Notice that the slightly optimized definition of succb,b
h (x, y) — and, by analogy, also of succr,r

h (x, y)

— is necessary to avoid an exponential length of the formulas succb,r
h (x, y) and succr,b

h (x, y).

For the rest of the present proof we use the abbreviations u ≈̂bh+4 v and u ≈̂rh+4 v u ≈̂bh+4 v,
u ≈̂rh+4 v

instead of

u ≈̂b,h+4
1,h+4 v and u ≈̂r,h+4

1,h+4 v, respectively. We finalize the definition of the above formulas in two
steps. In the first step, we push negation signs into the scope of quantifiers so that no quantifier lies
within the scope of any negation sign. In the second step, we successively replace every subformula
of the form ∃y.Blue(y)∧η with ∃y.Blue(y)∧∀v.

(
Blue(v)∧y ≈̂bh+4 v

)
→ η

[
y/v
]
, where we assume

v to be fresh (one fresh variable for every replaced subformula). We proceed analogously for every
subformula of the form ∃y.Red(y)∧ η. The outlined transformations lead to formulas whose length
is still polynomial in h.

With these tools at hand, we can now define the sentence ϕSF,h ϕSF,has follows:

ϕSF,h := χr
1,h+4 ∧ χb

1,h+4

∧
(
∀xx′.Red(x) ∧ E(x, x′)→ Red(x′)

)
∧
(
∀xx′.Blue(x) ∧ E(x, x′)→ Blue(x′)

)
∧
(
∀x.Red(x)→ ¬Blue(x)

)
∧
(
∀x.
(
¬Red(x) ∧ ¬Blue(x)

)
↔

h+3∨
i=1

(
Lr
i(x) ∨ Lb

i (x)
))

∧
((
∃y.Blue(y) ∧ rootb(y) ∧minb(y)

)
∨
(
∃y.Red(y) ∧ rootr(y) ∧minr(y)

))
∧
(
∀x.
(
Blue(x) ∧ rootb(x)

)
→
(

maxb
h+2(x)

∨
(
∃y.Blue(y) ∧

(
∀y′.Blue(y′) ∧ y ≈̂b

h+4 y
′ → rootb(y′) ∧ succb,b

h+2(x, y′)
))

∨
(
∃y.Red(y) ∧

(
∀y′.Red(y′) ∧ y ≈̂r

h+4 y
′ → rootr(y′) ∧ succb,r

h+2(x, y′)
))))

∧
(
∀x.
(
Red(x) ∧ rootr(x)

)
→
(

maxr
h+2(x)

∨
(
∃y.Blue(y) ∧

(
∀y′.Blue(y′) ∧ y ≈̂b

h+4 y
′ → rootb(y′) ∧ succr,b

h+2(x, y′)
))

∨
(
∃y.Red(y) ∧

(
∀y′.Red(y′) ∧ y ≈̂r

h+4 y
′ → rootr(y′) ∧ succr,r

h+2(x, y′)
))))

.

The sentence ϕSF,h is not yet in SF. What still causes trouble are the two subformulas rootb(x)
and rootr(x) that occur in the antecedents of implications (all other abbreviated subformulas —

except for y ≈̂r
h+4 y

′ and y ≈̂b
h+4 y

′ — in implications occur exclusively in the respective succedent).
Recall that rootb(x) abbreviates Blue(x) ∧ ∀x′.Blue(x′) → ¬E(x, x′). We define an alternative
variant

root′
b
(x) := Blue(x) ∧ ∀x′.Blue(x′)→ ∃y′.Blue(y′) ∧ x′ ≈̂bh+4 y

′ ∧ ¬E(y′, x) .

Then, a prenex form of any sentence of the form ∀x.Blue(x) ∧ root′b(x)→ η belongs to SF, if η
satisfies the necessary separateness conditions. Shifting the quantifiers from the antecedent of the
implication to the front yields

∀x∃x′∀y′.Blue(x) ∧
(

Blue(x) ∧
(
Blue(x′)→ Blue(y′) ∧ x′ ≈̂bh+4 y

′ ∧ ¬E(y′, x)
))
→ η ,

where we can easily check that the separateness conditions are satisfied for the antecedent of
the implication. The formula root′r(x) is defined in analogy to root′b(x). We now replace the

54 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

subformulas rootb(x) and rootr(x) in ϕSF,h that occur in the antecedents of implications with the

alternatives root′b(x) and root′r(x). The result is almost an SF sentence, but technically only a
variant of ϕSF,h is in SF in which all quantifiers are shifted to the front. Shifting quantifiers can be
done in a straightforward fashion. This finishes the construction of the sentences ϕSF,h, each of
which has a length polynomial in h. Like for the sentences ϕh before, it is not hard to check that
every Fh,k ∈ CFh is a model of ϕSF,h.

For the rest of this proof we fix some nonnegative integer h ≥ 0. Consider the sentence ϕSF,h

and suppose there is some equivalent sentence ψψ in Gaifman normal that has a length of at most

2↑h − 1. Let η1, . . . , ηLη`, L be a list of all the basic local sentences that occur in ψ. Each η` has the
form

∃y`1 . . . y`j` .
∧

1≤i<j≤j`
dist>2r`(y

`
i , y

`
j) ∧

∧
1≤i≤j`

ψ`(y
`
i) .

Let K :=
∑

1≤`≤L j`K . By virtue of our assumption regarding the length of ψ, we know that

L ≤ K < 2↑h.

The class CFh contains 2↑h+2 forests Fh,k. For every set S ⊆ [L] we define CSCS to be the class
of all forests Fh,k ∈ CFh for which we have Fh,k |= η` if and only if ` ∈ S. Then, there must be
some S∗ ⊆ [L]S∗ for which CS∗ contains at least

2↑h+2

2L
>

2↑h+2

2↑h+1
≥ 2↑h > L

structures. For every Fh,k ∈ CS∗ and every ` ∈ S∗ there are nodes ck,`1 , . . . , ck,`j`ck,`i such that

Fh,k |= ψ`(c
k,`
i) holds for every i. Let Dk :=

⋃
1≤`≤L{c

k,`
1 , . . . , ck,`j` }Dk . We distinguish the following

two cases, where the set Fr
k := RedFh,k ∪⋃1≤j≤h−2 L

r
j
Fh,kFr

k denotes the red part of Fh,k:

If there is any k for which none of the domain elements ck,`i belongs to Fr
k, then none of the

neighborhoods N r`
Fh,k(ck,`i) contains any elements from Fr

k. Hence, the substructure F ′F ′ of

Fh,k induced by the domain Fh,k \ Fr
k still satisfies any sentence η` if and only if ` ∈ S.

Consequently, we have F ′ |= ϕSF,h. But this contradicts the fact that ϕSF,h stipulates the
presence of all trees T (0), . . . , T (2↑h+2 − 1) in F ′, in particular the tree T (k), which does
not occur in F ′.

Otherwise, the red part Fr
k of each of the structures Fh,k ∈ CS∗ contains at least one of the

ck,`i ∈ Dk. Recall that there are at most L < 2↑h distinct r`-local formulas in ψ, but at least
2↑h structures Fh,k in CS∗ . Let F r

h,kF r
h,k be the substructure of Fh,k induced by its red part Fr

k.

Then, because of L < 2↑h ≤ |CS∗ |, there must be some k∗ such that for every ψ` with ` ∈ S∗
and every d ∈ Fr

k∗
with d = ck∗,`i for some i there is some kd 6= k∗kd such that F r

h,kd
|= ψ`(e) for

some e ∈ {ckd,`1 , . . . , ckd,`j`
}.

We create a new structure AA that is the disjoint union of the following structures:

• the substructure Fb
h,k∗

Fb
h,k of Fh,k∗ induced by the blue part of Fh,k∗ , i.e. by the set

BlueFh,k∗ ∪⋃1≤j≤h−2 L
b
j
Fh,k∗ ,

• the substructures F r
h,kd

for every ` ∈ S∗ and every d ∈ Fr
k∗

with d = ck∗,`i for some i.

First of all, we notice that A does not contain a representation of the tree T (k∗). Hence,
A 6|= ϕSF,h.

On the other hand, we have A |= η` for every ` ∈ S∗. More precisely, for every ` ∈ S∗ we
observe

A |=
∧

1≤i<j≤j`
dist>2r`(e

`
i , e

`
j) ∧

∧
1≤i≤j`

ψ`(e
`
i)

3.4. THE GENERALIZED BERNAYS–SCHÖNFINKEL–RAMSEY FRAGMENT (GBSR) 55

where the domain elements e`i are defined as follows. For every i with blue ck∗,`i , i.e.

ck∗,`i ∈ Dk∗ \ Fr
k∗

, we set e`i := ck∗,`i . For every i with red ck∗,`i , i.e. ck∗,`i ∈ Fr
k∗

, we set e`i := e
for the element e that originates from the substructure F r

h,kd
for which F r

h,kd
|= ψ`(e). Since

the formulas ψ` are r`-local and since there are no links in the Gaifman graph of A between
the nodes stemming from the disjoint substructures forming A, we get

A |=
∧

1≤i<j≤j`
dist>2r`(e

`
i , e

`
j) .

Moreover, for every ` ∈ [L] \ S∗ we have Fh,k∗ |= ¬η` and Fh,kd |= ¬η` for all d ∈ Fr
k∗

. That
is, for any structure F among these structures we have

F |= ∀y`1 . . . y`j` .
(∧

1≤i<j≤j`
dist>2r`(y

`
i , y

`
j)
)
→

∨
1≤i≤j`

¬ψ`(y`i) .

Let F ′ be the corresponding substructure among Fb
h,k∗

and F r
h,kd

with d ∈ Fr
k∗

. The Gaifman
graph of F ′ can be obtained from F ’s Gaifman graph by entirely removing one connected
component and leaving the rest untouched. Since all formulas ψ` are r`-local, F ′ also satisfies
the above sentence. In other words, we have F ′ 6|= η`. As A is the disjoint union of all these
substructures, this also yields A 6|= η` for every ` ∈ [L] \ S∗.
In summary, for every ` ∈ L we have A |= η` if and only if ` ∈ S∗. Consequently, A |= ψ.
This contradicts our earlier observation A 6|= ϕSF,h and our assumption that ψ is semantically
equivalent to ϕSF,h.

As both cases lead to a contradiction, the sentence ψ cannot exist.

One of the interesting aspects of the proof of Theorem 3.3.18 is that – in contrast to the proof
of Theorem 3.3.11 — we do not restrict the whole domain to a finite set. Instead, we only restrict
subdomains whose elements are affected by non-separated quantification. In Section 5.3.1 we
will show related techniques with which we can enforce large-sized subdomains in models for SF
sentences.

The results in the present section evidently show that the transformation outlined in Lemma 3.3.10
is a useful tool for proving lower bounds. On the one hand, we have derived lower bounds regarding
the computational hardness of SF-Sat. On the other hand, we have shown that for every positive k
SF sentences can be k-fold exponentially more succinct than equivalent BSR sentences or equivalent
sentences in Gaifman normal form. Unfortunately, the presented translation methodology does not
help in the quest for new decidable first-order fragments. The reason is simply that we already
need arguments leading to a small model property before we can start the translation process, as
we need information about the size of the models that have to be considered.

3.4 The Generalized Bernays–Schönfinkel–Ramsey Fragment
(GBSR)

In this section we extend the separated fragment even further. Recall that SF contains relational
sentences ∃z̄∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ in which the sets x̄1 ∪ . . . ∪ x̄n and ȳ1 ∪ . . . ∪ ȳn are separated.
The exemption of the leading existential quantifier block from the separateness conditions may
lead to certain co-occurrences of existentially and universally quantified variables in atoms. Such
co-occurrences are in some sense benign, as they do not pose an obstacle to the construction of
algorithms that decide the satisfiability problem. For the moment it is not clear whether the leading
existential quantifier block is the only possible source for such nicely behaving co-occurrences with
universal variables. Indeed, we shall see shortly that the benign co-occurrences in SF are only
the first sign of a more general notion. Exploring this emerging pattern leads to the definition
of another decidable fragment of first-order logic, the generalized Bernays–Schönfinkel–Ramsey

56 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

fragment — GBSR for short. Although the formal definition of GBSR subsumes all SF sentences,
it can be considered a natural generalization of the original Bernays–Schönfinkel–Ramsey fragment;
hence the name.

Intuitively speaking, a GBSR sentence ϕ has the form ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ with quantifier-free
ψ that may contain equality and possesses the following properties. Each atom in ϕ only contains
variables from a subsequence of ϕ’s quantifier prefix of the form ∃∗∀∗. If two atoms share a
universally quantified variable, the same quantifier subsequence is used for both atoms.3 Notice
that the idea of restricting subsequences of nested quantifiers (instead of prefixes of sentences in
prenex normal form) has also been used for other fragments, e.g. Maslov’s fragment K (cf. page 25).

Definition 3.4.1 (Generalized Bernays–Schönfinkel–Ramsey fragment (GBSR)).
Let ϕ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ be any relational first-order sentence with equality and quantifier-free
ψ. Let At be the set of all atoms occurring in ϕ and let x̄ := x̄1 ∪ . . . ∪ x̄n and ȳ := ȳ1 ∪ . . . ∪ ȳn.
The sentence ϕ belongs to the generalized Bernays–Schönfinkel–Ramsey fragment (GBSR) if and
only if we can partition At into sets At0,At1, . . . ,Atn such that
(i) for every i, 0 ≤ i ≤ n, we have vars(Ati) ⊆ ȳ1 ∪ . . . ∪ ȳi ∪ x̄i+1 ∪ . . . ∪ x̄n, and
(ii) for all distinct i, j, 0 ≤ i < j ≤ n, we have vars(Ati) ∩ vars(Atj) ∩ x̄ = ∅.

Clearly, the main difference between SF and GBSR lies in the concession policy regarding
benign co-occurrences of existential and universal variables. The following example gives a first
impression of GBSR sentences and how they can be translated into BSR.

Example 3.4.2. Consider the first-order sentence ϕ := ∃u∀x∃y∀z.
(
P (u, z)∧Q(u, x)

)
∨
(
P (y, z)∧

Q(u, y)
)
. It belongs to GBSR, as witnessed by the following partition of its atoms: At0 = ∅,

At1 = {Q(u, x)}, At2 = {P (u, z), P (y, z), Q(u, y)}, At3 = ∅. Obviously, ϕ neither belongs to BSR
nor to SF. As universal quantification does not distribute over disjunction, the quantifier ∀z cannot
be shifted inwards with the standard quantifier shifting rules from Lemma 1.0.1 alone. However,
it turns out that the transformation methods that we have first met in Section 2 and which we
applied to transform SF sentences into equivalent BSR sentences also facilitate a translations of
GBSR sentences into BSR sentences. We shall elaborate on this in Section 3.5. For ϕ we get the
equivalent BSR sentence

ϕ′ := ∃uy∀xzv.
((
P (u, x) ∨ P (y, x)

)
∧ P (u, x) ∧Q(u, x)

)
∨
((
P (u, z) ∨ P (y, z)

)
∧Q(u, y) ∧Q(u, z)

)
∨
((
P (u, v) ∨ P (y, v)

)
∧Q(u, y) ∧ P (y, v)

)
.

In contrast to SF, it is not immediately clear whether membership in GBSR can be tested
efficiently. However, we can easily show that this is indeed the case.

Theorem 3.4.3. Deciding membership of first-order sentences in GBSR can be done deterministi-
cally in time that is polynomial in the length of any reasonable encoding of the input sentence.

Proof sketch. Suppose we are given a first-order sentence ϕ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ with quantifier-
free ψ. Let x̄ := x̄1∪ . . .∪ x̄n and ȳ := ȳ1∪ . . .∪ ȳn. We define the undirected graph Gϕ := 〈V,E〉Gϕ by
setting V := x̄ and E := {〈x, x′〉 | there is an atom in ϕ containing both x and x′}. A connected
component in Gϕ is a maximal subset C ⊆ V such that for all distinct variables x, x′ ∈ C the
transitive closure of E contains the pair 〈x, x′〉. The set of all connected components in Gϕ forms a
partition of V . For every connected component C in Gϕ we denote by at(C)at(C) the set of all atoms
in ϕ which contain at least one variable from C. For every index k, 1 ≤ k ≤ n, we denote by atk

atk the smallest set of atoms such that atk contains all atoms taken from ϕ in which variables from
ȳk occur and for every connected component C in Gϕ containing a variable x ∈ vars(atk) we have
at(C) ⊆ atk.

We partition the set of all atoms in ϕ into parts ãt0, ãt1, . . . , ãtnãtk , where ãtk := atk \
⋃
`>k at`

and ãt0 collects all atoms in ϕ that do not belong to any ãtk with k > 0. For every k, 0 ≤ k ≤ n,
we write XkXk to address the set vars(ãtk) ∩ x̄.

3This intuitive explanation is based on the report of an anonymous referee the author of the present thesis
received for a submission to LICS 2018.

3.4. THE GENERALIZED BERNAYS–SCHÖNFINKEL–RAMSEY FRAGMENT (GBSR) 57

Claim I:

(i) For all distinct indices k, ` we have Xk ∩X` = ∅.
(ii) For every k we have vars(ãtk) ∩ ȳ ⊆ ⋃1≤`≤k ȳ`.

(iii) If we have vars(atk) ∩ x̄` = ∅ for all k, ` with 1 ≤ ` ≤ k ≤ n, then we have for every k′,
1 ≤ k′ ≤ n, that Xk′ ⊆

⋃
k′<`′≤n x̄`′ .

Proof:
Ad (i): Suppose there are distinct indices k, `, k < `, and a variable x ∈ Xk ∩X`. Then, there
must be atoms Ak ∈ ãtk ⊆ atk and A` ∈ ãt` ⊆ at`, both containing x. Let C denote the
(unique) connected component in Gϕ to which x belongs. By definition of at(C), both Ak and
A` belong to at(C). Therefore, we have {Ak, A`} ⊆ at(C) ⊆ at`. But since ãtk ⊆ atk \ at`,
Ak cannot belong to atk. This yields a contradiction.

Ad (ii): Let k ≤ n be some non-negative integer. Since for any ` > k at` contains all atoms
in which a variable y ∈ ȳ` occurs, ãtk ⊆ atk \ at` cannot contain any occurrence of y.

Ad (iii): Let k ≤ n be some non-negative integer. Suppose we have vars(atk) ∩⋃`≤k x̄` = ∅.
Because of Xk = vars(ãtk) ∩ x̄ ⊆ vars(atk) ∩ x̄, we conclude Xk ∩

⋃
`′≤k x̄`′ = ∅. Hence, we

have Xk ⊆
⋃
`>k x̄`. ♦

Claim II: The sentence ϕ belongs to GBSR if and only if for all k, ` with 1 ≤ ` ≤ k ≤ n we have
vars(atk) ∩ x̄` = ∅.

Proof: The if -direction follows immediately from Claim I, if we set Atk := ãtk for every k.

The only if -direction can be argued as follows. For every i, 0 ≤ i ≤ n, let X ′i := vars(Ati)∩ x̄.
Consider the graph Gϕ. Since the X ′1, . . . , X

′
n are pairwise disjoint, they induce subgraphs of

Gϕ that are not connected to one another. Moreover, for every connected component C in Gϕ
there is one X ′i such that C ⊆ X ′i. This entails that for every connected component C in Gϕ
there is some Ati such that at(C) ⊆ Ati. By definition of atk, we have atk ⊆ Atk ∪ . . . ∪Atn
and, moreover, vars(atk) ∩ x̄ ⊆ x̄k+1 ∪ . . . ∪ x̄n. This means, vars(atk) ∩ x̄` = ∅ for every `,
1 ≤ ` ≤ k. ♦

Claim II yields a criterion to decide whether ϕ belongs to GBSR or not. It remains to convince
ourselves that this criterion can be checked deterministically in polynomial time. Given ϕ, the graph
Gϕ = 〈V,E〉 can be constructed in time that is quadratic in ‖ϕ‖. We observe |V | = |x̄| ≤ |len(ϕ)|
and |E| ≤

(|x̄|
2

)
≤
(
len(ϕ)

)2
. Using efficient disjoint-set data structures, the connected components

of Gϕ and the sets atk can be computed in time that is polynomial in ‖ϕ‖. The sum of the lengths

of the atoms in at1, . . . , atn is at most n · len(ϕ) ≤
(
len(ϕ)

)2
. Finally, the test whether we have

vars(atk)∩ x̄` = ∅ for all k, ` with 1 ≤ ` ≤ k ≤ n can be done in time that is polynomial in ‖ϕ‖.

GBSR has been advertised as an extension of SF, which in turn contains BSR and MFO. Indeed,
given an SF sentence χ := ∃z̄∀ū1∃v̄1 . . . ∀ūn∃v̄n. χ′, we can partition the set of χ’s atoms into two
nonempty sets At1,Atn such that vars(At1) ⊆ z̄ ∪ ū1 ∪ . . . ∪ ūn and vars(Atn) ⊆ z̄ ∪ v̄1 ∪ . . . ∪ v̄n.
This partition obviously satisfies the requirements of Definition 3.4.1. On the other hand, the
sentence ϕ from Example 3.4.2 belongs to GBSR but not to SF. Hence, GBSR is a proper extension
of SF.

Proposition 3.4.4. GBSR properly contains SF and, hence, BSR and MFO.

By Theorem 3.1.5, GBSR in addition semantically subsumes MFO≈, like SF does.
We shall discuss two ways of showing that the satisfiability problem for GBSR sentences (GBSR-

Sat) GBSR-Satis decidable. The first approach is of a syntactic nature, based on an effective translation
from GBSR into BSR. We elaborate on this in the next section. The second approach uses
model-theoretic techniques to directly establish a small model property. In Section 4.2 we will
consider model-checking games for GBSR sentences and prove the existence of a special kind of

58 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

winning strategies that induce finite models for satisfiable GBSR sentences. Both approaches in
the end lead to upper bounds on the computational complexity of GBSR-Sat. We shall pick up on
this topic in Chapter 5.

3.5 Translation of GBSR into BSR

Like for SF there is an effective equivalence-preserving translation from GBSR into BSR. It
essentially follows the same lines as the SF-BSR translation and is also mainly based on the
standard laws of Boolean algebra and quantifier shifting. However, the additional benign co-
occurrences of universally and existentially quantified variables in GBSR sentences require a bit
more attention. Roughly speaking, we iteratively (re-)transform a given GBSR sentence into
particular syntactic shapes and apply quantifier shifting so that we eventually obtain a formula in
which no existential quantifier occurs within the scope of any universal quantifier. We then shift all
quantifiers outwards again — existential quantifiers first —, renaming bound variables as necessary.
The final result is a BSR sentence. Since GBSR contains SF, Theorem 3.2.7 entails that there is
no elementary upper bound on the blowup that we incur in any equivalence-preserving translation
from GBSR into BSR. On the other hand, the blowup for GBSR-BSR translations will not be
significantly worse than in the case of SF-BSR translations. It seems that in this sense GBSR does
not offer much more succintness compared to BSR when describing first-order properties than SF
does.

The accuracy of our analysis of the translation from SF into BSR benefited from measuring the
degree of separateness between existentially quantified variables that stem from distinct quantifier
blocks. Any attempt to a similar analysis for the translation from GBSR into BSR requires a similar,
yet more sophisticated measure. The key difference is that we have to deal with the additional
benign co-occurrences of universally and existentially quantified variables. An appropriate measure
for GBSR sentences is the following

Definition 3.5.1 (Degree of interaction for GBSR sentences). Consider any GBSR sentence
ϕ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ in which ψ is quantifier free. In analogy to Definition 3.2.1, we say
that any variable y ∈ ȳj has index j, denoted idx(y) = jidx(y) . For any nonempty set V ⊆ vars(ϕ) and
any positive integer k we say that V has degree k in ϕ, denoted ∂(V, ϕ) = k, if k is the maximal
number of distinct variables v1, . . . , vk ∈ V with idx(v1) < . . . < idx(vk). We say that the GBSR
sentence ϕ has degree k, denoted ∂∃∀(ϕ) = k∂∃∀(ϕ) , if k is the smallest positive integer such that we can
partition vars(ϕ) into m > 0 parts V1, . . . , Vm that are all pairwise separated in ϕ and for which
k = max

{
kj
∣∣ ∂(Vj , ϕ) = kj , 1 ≤ j ≤ m

}
.

The analysis of the incurred blowup when translating GBSR into BSR will be significantly
more accurate when we base it on the degree of interaction of variables from distinct quantifier
blocks rather than on the number of occurring ∀∃-alternations, for instance. Even this difference
in the outcome of the analysis cannot be elementarily bounded in the worst case.

Lemma 3.5.2. Let ϕ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ be any GBSR sentence with quantifier-free ψ. There
exists a quantifier-free first-order formula ψ′(ū, v̄) such that ϕ′ := ∃ū∀v̄. ψ′(ū, v̄) is in standard form
and equivalent to ϕ, and all literals in ϕ′ also occur in ϕ (modulo variable renaming). Moreover, ū

contains at most |ȳ|2 · ∂∃∀(ϕ) ·
(
2↑∂∃∀(ϕ)(2 · len(ϕ))

)∂∃∀(ϕ)
leading existential quantifiers.

Proof sketch. Without losing generality, we assume that ϕ is in standard form. Let At, x̄, and ȳ
be defined as in Definition 3.4.1 and let At0,At1, . . . ,AtnAti, Li, Xi be some partition in accordance with
Definition 3.4.1. Let L0,L1, . . . ,Ln be the corresponding partition of the set of literals occurring
in ϕ, i.e. every Ati is exactly the set of atoms occurring in Li. Furthermore, let Xi := vars(Li) ∩ x̄.
By Definition 3.4.1, we observe the following:

(I) For all distinct indices k, ` we have Xk ∩X` = ∅.

(II) For every k we have vars(Lk) ⊆ ȳ1 ∪ . . . ∪ ȳk ∪ x̄k+1 ∪ . . . ∪ x̄n.

3.5. TRANSLATION OF GBSR INTO BSR 59

We transform ϕ into an equivalent formula in CNF of the form

∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn.
∧
i∈I
χ

(1)
i,0 (x̄1, . . . , x̄n) ∨ χ(1)

i,1 (ȳ1, x̄2, . . . , x̄n) ∨ . . .

∨ χ(1)
i,n−1(ȳ1, . . . , ȳn−1, x̄n) ∨ χ(1)

i,n(ȳ1, . . . , ȳn)

where
(a) the set I is a finite set of indices,

(b) the χ
(1)
i,n(ȳ1, . . . , ȳn) are disjunctions of literals

∨
k∈Ki Lk(ȳ1, . . . , ȳn) where the sets Ki are

finite, pairwise disjoint — also disjoint with I — sets of indices,

(c) the χ
(1)
i,j (ȳ1, . . . , ȳj , x̄j+1, . . . , x̄n) contain exclusively literals from Lj .

By virtue of Lemma 3.2.4, there is an equivalent formula of the form

ϕ′ := ∀x̄1∃ȳ1 . . . ∀x̄n.
∧

S∈PI\∅

(∨
i∈S

n−1∨
j=0

χ
(1)
i,j (ȳ1, . . . , ȳj , x̄j+1, . . . , x̄n)

)
∨
∨
f∈F

(
∃ȳn.

∧
i∈S

Lf(i)(ȳ1, . . . , ȳn)
)

where F is the set of all selection functions over the family of index sets (Ki)i∈I . Applying ordinary
quantifier shifting and exploiting the disjointness of the sets Xj (cf. (I)), we shift the universal
quantifier block ∀x̄n inwards and thus obtain

ϕ′′ := ∀x̄1∃ȳ1 . . . ∃ȳn−1.
∧

S∈PI\∅

((n−1∨
j=0

∀(x̄n ∩Xj).
∨
i∈S

χ
(1)
i,j (ȳ1, . . . , ȳj , x̄j+1, . . . , x̄n)

)
∨ ∀(x̄n ∩Xn).

∨
f∈F
∃ȳn.

∧
i∈S

Lf(i)(ȳ1, . . . , ȳn)
)
.

Notice that any distinct χ
(1)
i,j and χ

(1)
i′,j that remain in the scope of any ∀(x̄n ∩ Xj) exclusively

contain literals from Lj . Although the universal quantification in the last conjunct is vacuous, we
write it here for the sake of clarity. We regroup the disjuncts in ϕ′′ as follows

ϕ′′ = ∀x̄1∃ȳ1 . . . ∃ȳn−1.∧
S∈PI\∅

((n−1∨
j=0

∀(x̄n ∩Xj).
∨
i∈S

χ
(1)
i,j (ȳ1, . . . , ȳj , x̄j+1, . . . , x̄n)

)
︸ ︷︷ ︸

=:χ
(2)
S,j(ȳ1,...,ȳj ,x̄j+1,...,x̄n−1)

∨
(
∀(x̄n ∩Xn−1).

∨
i∈S χ

(1)
i,n−1(ȳ1, . . . , ȳn−1, x̄n)

)
∨
(∨

f∈F ∃ȳn.
∧
i∈S Lf(i)(ȳ1, . . . , ȳn)

))
︸ ︷︷ ︸

=:χ
(2)
S,≥n−1

(ȳ1,...,ȳn−1)

.

We now iterate these two steps in an alternating fashion until all quantifier blocks have been shifted
inwards in the described way. The result ϕ(2n) has a tree-like shape with respect to the nesting of
scopes of universal and existential quantifier blocks interspersed with conjunctions and disjunctions
such that every atom A(ȳ1, . . . , ȳi, x̄i+1, . . . , x̄n) that belongs to the partition Ati lies exactly in
the scope of the quantifier blocks ∃ȳ1, . . . ,∃ȳi,∀(x̄i+1 ∩Xi), . . . ,∀(x̄n ∩Xi). Figure 3.3 illustrates
the situation in a simplified way.

We observe that every subformula ∀x. η of ϕ(2n) that is not in the scope of any other universal
quantifier has the shape

∀(x̄i∩Xj).
∨
`1

∀(x̄i+1∩Xj).
∨
`2

(
. . .
(∨
`n−1

∀(x̄n∩Xj).
∨

k∈K`1,...,`n−1

η′k(ȳ1, . . . , ȳj , x̄j+1, . . . , x̄n)
)
. . .
)
,

60 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

∀(x̄1 ∩X0) ∃ȳ1

∀(x̄2 ∩X0) ∀(x̄2 ∩X1) ∃ȳ2

∀(x̄3 ∩X0) ∀(x̄3 ∩X1) ∀(x̄3 ∩X2) ∃ȳ3

...
...

...
...

...

1

Figure 3.3: Nesting of quantifier blocks in the formula ϕ(2n).

for some j where the sets K`1,...,`n−1
are certain index sets. By a similar transformation as we have

applied in the proof of Lemma 3.2.5 to transform the subformulas η
(3)
qp into η

(5)
qp , we can exploit the

pairwise separateness of the sets V1, . . . , Vm in ϕ(2n) and transform the above subformula into∨
1≤h≤m

∀(x̄i ∩Xj ∩ Vh).
∨
`′1

∀(x̄i+1 ∩Xj ∩ Vh).
∨
`′2

(
. . .

(∨
`n−1

∀(x̄n ∩Xj ∩ Vh).
∨

k∈K(h)

`′1,...,`
′
n−1

η′k(ȳ1, . . . , ȳj , x̄j+1, . . . , x̄n)
)
. . .
)
,

where the K
(1)
`′1,...,`

′
n−1

, . . . ,K
(m)
`′1,...,`

′
n−1

are certain pairwise disjoint index sets. The resulting structure

of quantifier nestings is depicted in Figure 3.4. Afterwards, we do a similar transformation for

∀(x̄1 ∩ U0,1) . . . ∀(x̄1 ∩ U0,m) ∃ȳ1

∀(x̄2 ∩ U0,1) ∀(x̄2 ∩ U0,m) ∀(x̄2 ∩ U1,1) . . . ∀(x̄2 ∩ U1,m) ∃ȳ2

∀(x̄3 ∩ U0,1) ∀(x̄3 ∩ U0,m) ∀(x̄3 ∩ U1,1) ∀(x̄3 ∩ U1,m) ∀(x̄3 ∩ U2,1) . . . ∀(x̄3 ∩ U2,m) ∃ȳ3

...
...

...
...

...
...

... · · · ...
...

1

Figure 3.4: Illustration of the nesting of quantifier blocks in ϕ(2n) after narrowing the scopes of
universal quantifiers with respect to the sets V1, . . . , Vm that are pairwise separated in ϕ(2n). The
sets Uj,h denote the intersection Xj ∩ Vh.

the existential quantifier blocks in ϕ(2n). Figure 3.5 depicts the resulting nesting structure of
quantifiers. We denote the sentence resulting from ϕ(2n) after the described transformations by ϕ∗.

From this point on we argue along the same lines as in the proof of Lemma 3.2.5 to obtain
an upper bound on the subformulas in ϕ∗ that do not occur in the scope of any quantifiers. Let
Lϕ(Vh) denote the number of literals occurring in ϕ that contain at least one variable from Vh.
Moreover, let κ be the least upper bound for all |Lϕ(Vh)|. Since the nesting depth of quantifiers
in ϕ∗ is bounded from above by ∂∃∀(ϕ), adapting the arguments from the proof of Lemma 3.2.5
entails that there are no more than 2↑∂∃∀(ϕ)(κ+ n) different subformulas (not occurrences thereof!)
of the mentioned kind. The term κ+ n (in contrast to only κ in the original proof) accounts for
the fact that the subformulas may contain a certain mixture of existential and universal quantifiers.

3.6. TAKING BOOLEAN STRUCTURE INTO ACCOUNT 61

∀(x̄1 ∩ U0,1) . . . ∀(x̄1 ∩ U0,m) ∃(ȳ1 ∩ V1) . . . ∃(ȳ1 ∩ Vm)

∀(x̄2 ∩ U0,1) ∀(x̄2 ∩ U0,m) ∀(x̄2 ∩ U1,1) ∃(ȳ2 ∩ V1) ∀(x̄2 ∩ U1,m) ∃(ȳ2 ∩ Vm)

∀(x̄3 ∩ U0,1) ∀(x̄3 ∩ U0,m) ∀(x̄3 ∩ U1,1) ∀(x̄3 ∩ U2,1) ∃(ȳ3 ∩ V1) ∀(x̄3 ∩ U1,m) ∀(x̄3 ∩ U2,m) ∃(ȳ3 ∩ Vm)

...
...

...
...

...
...

...
...

...
...

1

Figure 3.5: Illustration of the nesting of quantifier blocks in ϕ(2n) after narrowing the scopes of
universal and existential quantifiers with respect to the pairwise-separated sets V1, . . . , Vm. The
sets Uj,h denote the intersection Xj ∩ Vh.

More precisely, we now have 22·22·2
.
.
.

2·2κ

instead of 222

.

.

.

2κ

different subformulas, and the former
expression is bounded from above by 2↑∂∃∀(ϕ)(κ+ n).

After shifting all quantifiers in ϕ∗ outwards in an existential quantifiers-first manner, we
obtain a BSR sentence that is equivalent to the original GBSR sentence ϕ and contains at most

|ȳ|2 · ∂∃∀(ϕ) ·
(
2↑∂∃(ϕ)(κ+ n)

)∂∃∀(ϕ)
leading existential quantifiers.

The just proven lemma can be reformulated into the following less technical theorem.

Theorem 3.5.3. Every GBSR sentence is equivalent to some BSR sentence whose length is
∂∃∀(ϕ)-fold exponential in the length of the original.

The theorem also holds in the presence of constant symbols: every GBSR sentence ϕ with
constant symbols is equivalent to some BSR sentence ϕ′ with the same constant symbols.

After transforming a satisfiable GBSR sentence into an equivalent BSR sentence, the number
of leading existential quantifiers induces an upper bound on the size of small models — every
satisfiable GBSR sentence has such a small model. By virtue of Theorem 3.5.3, the small model
property of BSR (with or without constant symbols), spelled out in Proposition 3.1.6, can be
transferred to GBSR.

Corollary 3.5.4. Every satisfiable GBSR sentence ϕ has a model whose size is at most ∂∃∀(ϕ)-fold
exponential in the length of ϕ. Moreover, GBSR-Sat is decidable, even if we allow constant symbols
to occur.

In Section 4.2 we present a different, a model-theoretic approach to GBSR-Sat which culminates
in a direct construction of models. That approach facilitates deriving an upper bound on the
size of small models as well. In order to formulate this bound accurately, we introduce a related,
yet somewhat complementary notion of degree based on the interaction of universally quantified
variables in atoms.

Regarding lower bounds, the result formulated in Theorem 3.2.7 immediately entails that there
are GBSR sentences that inevitably lead to a non-elementary blowup when translating them into
equivalent BSR sentences. Moreover, Theorem 3.3.18 is also relevant for GBSR. It means that for
every natural number k there are GBSR sentences whose shortest equivalent in Gaifman normal
form is k-fold exponentially longer than the original.

3.6 Taking Boolean Structure into Account

In this section we briefly look into the quest for gaining additional information from the Boolean
structure of formulas. A trivial first observation in this context follows from Lemma 3.5.2 and the

62 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

fact that every ∧-∨-combination of BSR sentences is equivalent to some BSR sentence of the same
length.

Proposition 3.6.1. Every ∧-∨-combination of GBSR sentences is equivalent to some BSR sen-
tence.

Next, we increase the level of difficulty slowly and consider two special cases of GBSR sentences
in conjunctive normal form (CNF) and in disjunctive normal form (DNF) where the translation
into BSR does not lead to any blowup regarding the length of formulas.

Proposition 3.6.2. Consider any GBSR sentence ϕ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn.
∧m
i=1 ψi where the ψi

are disjunctions of literals. Let ȳ := ȳ1 ∪ . . .∪ ȳn. Suppose that for any two distinct indices j, j′ the
sets vars(ψj)∩ ȳ and vars(ψj′)∩ ȳ are disjoint. Then, ϕ is equivalent to ∃ȳ1 . . . ȳn∀x̄1 . . . x̄n.

∧m
i=1 ψi.

Proof. By assumption, we can use quantifier shifting to transform ϕ into an equivalent sentence of
the form

∧m
i=1 ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψi — for simplicity, some instances of vacuous quantifiers have

been introduced, i.e. quantifiers Qv. χ where v does not occur in χ. The lemma follows immediately
from the following auxiliary result.

Consider any GBSR sentence ϕ′ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ in which ψ is a disjunction of literals.
This means, we can rewrite ψ into a formula of the form

χ0(x̄1, . . . , x̄n) ∨ χ1(ȳ1, x̄2, . . . , x̄n) ∨ . . . ∨ χn−1(ȳ1, . . . , ȳn−1, x̄n) ∨ χn(ȳ1, . . . , ȳn) ,

where none of the disjunctions χi, χj with i 6= j share variables from x̄ := x̄1 ∪ . . . ∪ x̄n. For every
i, 0 ≤ i ≤ n, let Xi := vars(χi) ∩ x̄Xi . Then, ϕ′ is equivalent to(

∀X0. χ0(x̄1, . . . , x̄n)
)
∨
(
∃ȳ1∀X1. χ1(ȳ1, x̄2, . . . , x̄n)

)
...

∨
(
∃ȳ1 . . . ȳn−1∀Xn−1. χn−1(ȳ1, . . . , ȳn−1), x̄n

)
∨
(
∃ȳ1 . . . ȳn. χn(ȳ1, . . . , ȳn)

)
,

which is a disjunction of BSR sentences. Shifting the quantifiers outwards in the right order yields
the equivalent BSR sentence ∃ȳ1 . . . ȳn∀x̄1 . . . x̄n. ψ.

As quantifier shifting is sufficient to transform the special kind of sentences treated in Proposi-
tion 3.6.2 into BSR sentences, the translation does not lead to a blowup in formula length. Hence,
any satisfiable sentence ϕ of this kind has a model whose domain contains at most len(ϕ) elements.

Next, we briefly discuss the dual case of GBSR formulas in DNF where disjuncts do not share
universally quantified variables.

Proposition 3.6.3. Consider any GBSR sentence of the form ϕ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn.
∨m
i=1 ψi

where the ψi are conjunctions of literals. Let x̄ := x̄1 ∪ . . . ∪ x̄n and suppose that for any two
distinct indices j, j′ the sets vars(ψj) ∩ x̄ and vars(ψj′) ∩ x̄ are disjoint. Then, ϕ is equivalent to
∃ȳ1 . . . ȳn∀x̄1 . . . x̄n.

∨m
i=1 ψi.

Proof. Again, quantifier shifting and the introduction of vacuous quantifiers can be used to
transform ϕ into an equivalent sentence of the form

∧m
i=1 ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψi. The lemma follows

immediately from the following auxiliary result.

Consider any GBSR sentence ϕ = ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ in which ψ is a conjunction of literals.
Again, we can regroup the literals in this conjunction so that ψ has the form

χ0(x̄1, . . . , x̄n) ∧ χ1(ȳ1, x̄2, . . . , x̄n) ∧ . . . ∧ χn−1(ȳ1, . . . , ȳn−1, x̄n) ∧ χn(ȳ1, . . . , ȳn) .

3.6. TAKING BOOLEAN STRUCTURE INTO ACCOUNT 63

Then, ϕ is equivalent to(
∀x̄1 . . . x̄n. χ0(x̄1, . . . , x̄n)

)
∧
(
∃ȳ1.

(
∀x̄2 . . . x̄n. χ1(ȳ1, x̄2, . . . , x̄n)

)
∧
(
∃ȳ2. . . .

∧
(
∃ȳn−1.

(
∀x̄n. χn−1(ȳ1, . . . , ȳn−1, x̄n)

)
∧
(
∃ȳn. χn(ȳ1, . . . , ȳn)

))
. . .
))

.

From this we obtain the BSR sentence ∃ȳ1 . . . ȳn∀x̄1 . . . x̄n. ψ by shifting quantifiers outwards in
the right order.

Both propositions refer to special cases of GBSR sentences where the translation into BSR
requires very little effort, as only quantifiers need to be shifted. Moreover, the sentences are
required to possess a very specific Boolean structure. The latter requirement can be weakened to
some extent. As any quantifier-free formula can be converted into conjunctive or disjunctive normal
form, one could simply extend Propositions 3.6.2 and 3.6.3 to formulas that can be transformed
into formulas of the described shape. In other words, the original formula need not satisfy the
requirements, but a certain normal form has to. But then, checking whether a given formula falls
into the syntactic category in question may require exponential time, in the worst case, as the
normal form transformation can cause an exponential blowup regarding formula length.

Alternatively, we can use an approximation of the normal form that yields enough information
to make an informed decision without requiring the expensive construction of conjunctive or
disjunctive normal forms.4 Suppose we are given a quantifier-free formula ψ in negation normal
form. From its Boolean structure we can read off which literals will end up in a common conjunction
when we transform ψ into DNF using exclusively the basic laws of Boolean algebra: associativity,
commutativity, distributivity of ∧ over ∨— the latter is only used in the direction from χ1∧(χ2∨χ3)
to (χ1 ∧ χ2) ∨ (χ1 ∧ χ3). Each application of these rules preserves the following property: we call
two atoms A,B conjunctive companions in ψ conjunctive

and
disjunctive
companions

, if ψ contains a subformula χ1∧χ2 such that A occurs
in χ1 and B occurs in χ2 or vice versa. There is also the dual notion of disjunctive companions in
ψ, which applies to atoms A,B if ψ contains a subformula χ1 ∨ χ2 such that A occurs in χ1 and B
occurs in χ2 or vice versa.

Lemma 3.6.4 (Invariance of conjunctive and disjunctive companions).

(i) Let ψ := (χ1 ◦ χ2) ◦ χ3 and ψ′ := χ1 ◦ (χ2 ◦ χ3) be formulas with ◦ ∈ {∧,∨}. Two atoms
A and B are conjunctive (disjunctive) companions in ψ if and only if they are conjunctive
(disjunctive) companions in ψ′.

(ii) Let ψ := χ1 ◦ χ2 and ψ′ := χ2 ◦ χ1 be formulas with ◦ ∈ {∧,∨}. Two atoms A and B are
conjunctive (disjunctive) companions in ψ if and only if they are conjunctive (disjunctive)
companions in ψ′.

(iii) Let ψ := χ1 ∧ (χ2 ∨χ3) and ψ′ := (χ1 ∧χ2)∨ (χ1 ∧χ3). Two atoms A and B are conjunctive
companions in ψ if and only if they are conjunctive companions in ψ′.

(iv) Let ψ := χ1 ∨ (χ2 ∧ χ3) and ψ′ := (χ1 ∨ χ2)∧ (χ1 ∨ χ3). Two atoms A and B are disjunctive
companions in ψ if and only if they are disjunctive companions in ψ′.

Proof Sketch. The proof is straightforward and proceeds by case distinction with respect to the
subformulas in which A and B occur.

4The approximation scheme we discuss here was already used in [Koš16], Section 3.2, under the label conjunctive
associativity. Košta makes use of the concept in order to substantially reduce the size of elimination sets in the
context of quantifier elimination by virtual substitution. Basic ideas in this direction were already present in [Dol00].

64 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

For every quantifier-free formula ψ in negation normal form Lemma 3.6.4 entails that two
atoms are conjunctive companions in ψ if and only if they are conjunctive companions in an
equivalent formula ψ′ in DNF, provided that ψ′ has been derived from ψ by applying exclusively
the Boolean laws of associativity, commutativity, and distributivity of ∧ over ∨. Dually, two atoms
are disjunctive companions in ψ if and only if they are disjunctive companions in an equivalent
formula ψ′′ in CNF, provided that ψ′′ has been derived from ψ using exclusively the Boolean
laws of associativity, commutativity, and distributivity of ∨ over ∧. This leads to the following
observation.

Definition 3.6.5 (Conjunctively and Disjunctively Connected Sets of Variables and Atoms).
Consider any two sets X,Y of first-order variables and any formula ψ in negation normal form.
We say that X and Y are conjunctively (disjunctively) connected in ψ, if there is some x ∈ X ∩ Y
that occurs in ψ, or if there are two atoms A and B that are conjunctive (disjunctive) companions
in ψ such that A contains some x ∈ X and B contains some y ∈ Y . We say that two sets
X,Y of variables are conjunctively (disjunctively) disconnected in ψ, if they are not conjunctively
(disjunctively) connected in ψ.

We extend these notions to mixed pairs X, S of sets of first-order variables and of atoms,
respectively: X and S are conjunctively (disjunctively) connected in ψ, if there exists some x ∈ X
and some A ∈ S that occurs in ψ and contains x, or if there are two atoms A and B that are
conjunctive (disjunctive) companions in ψ such that A contains some x ∈ X and B belongs to S.
We say that X,S are conjunctively (disjunctively) disconnected in ψ, if they are not conjunctively
(disjunctively) connected in ψ.

Lemma 3.6.6. Consider any first-order sentence of the form ϕ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ in negation
normal form with quantifier-free ψ. If for every i, 1 ≤ i ≤ n, the sets x̄1 ∪ . . . ∪ x̄i and ȳi are
disjunctively disconnected in ψ, then ϕ is equivalent to ∃ȳ1 . . . ȳn∀x̄1 . . . x̄n. ψ.

Proof. By Lemma 3.6.4, we can transform ψ into a formula ψ′ in CNF that is a conjunction of
clauses none of which contains variables from two disjunctively disconnected sets. Hence, ψ′ can
be rewritten into the form(∧

i∈I0
χi(x̄1, . . . , x̄n)

)
∧
(∧
i∈I1

χi(ȳ1, x̄2, . . . , x̄n)
)
∧ . . . ∧

(∧
i∈In

χi(ȳ1, . . . , ȳn)
)
,

where the index sets I0, . . . , In are finite and pairwise disjoint, and every χi is a clause. Using
quantifier shifting, we can transform ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ′ into the sentence(

∀x̄1 . . . x̄n.
∧
i∈I0

χi(x̄1, . . . , x̄n)
)

∧
(
∃ȳ1.

(
∀x̄2 . . . x̄n.

∧
i∈I1

χi(ȳ1, x̄2, . . . , x̄n)
)

∧
(
∃ȳ2. . . .

∧
(
∃ȳn−1.

(
∀x̄n.

∧
i∈In−1

χi(ȳ1, . . . , ȳn−1, x̄n)
)

∧
(
∃ȳn.

∧
i∈In

χi(ȳ1, . . . , ȳn)
))

. . .
))

.

If we now shift quantifiers outwards in the right order, we obtain ∃ȳ1 . . . ȳn∀x̄1 . . . x̄n. ψ
′, which is

equivalent to ∃ȳ1 . . . ȳn∀x̄1 . . . x̄n. ψ.

The idea underlying Lemma 3.6.6 and the definition of GBSR can be blended to obtain a more
liberal definition of GBSR. In particular, this helps liberalizing requirement (ii) of Definition 3.4.1 up
to a certain degree. The following lemma illustrates a first approach to such a blend of separateness
and disjunctive disconnectedness. Several refinements would be conceivable, but we shall confine
ourselves to this rather simple variant.

3.6. TAKING BOOLEAN STRUCTURE INTO ACCOUNT 65

Lemma 3.6.7. Let ϕ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ be any relational first-order sentence with equality.
Let At be the set of all atoms occurring in ϕ and let x̄ := x̄1∪ . . .∪ x̄n and ȳ := ȳ1∪ . . .∪ ȳn. Assume
that there is a sequence of subsets At(0),At(1), . . . ,At(n) ⊆ At At(k)such that for every i, 1 ≤ i ≤ n, the

set ȳi is disjunctively disconnected from the set At(0) ∪ . . . ∪At(i−1) in ψ. Moreover, assume that

for every k, 0 ≤ k ≤ n, the set At(k) can be partitioned into parts At
(k)
0 , . . . ,At

(k)
k such that

(i) for every i, 0 ≤ i ≤ k, we have vars(At
(k)
i) ⊆ ȳ1 ∪ . . . ∪ ȳi ∪ x̄i+1 ∪ . . . ∪ x̄n, and

(ii) for all distinct i, j, 0 ≤ i < j ≤ k, we have vars(At
(k)
i) ∩ vars(At

(k)
j) ∩ x̄ = ∅, and

(iii) for all distinct k, ` and all distinct i, j with 0 ≤ k < ` ≤ n and 0 ≤ i ≤ k and 0 ≤ j ≤ ` we have

vars(At
(k)
i) ∩ vars(At

(`)
j) ∩

(
x̄1 ∪ . . . ∪ x̄k

)
= ∅.

Then, ϕ is equivalent to some GBSR sentence.

Proof. By Lemma 3.6.4, we can transform ψ into a formula ψ′ in CNF that can be rewritten into
the form

ψ′′ := χ0(x̄1, . . . , x̄n) ∧ χ1(x̄1, . . . , x̄n, ȳ1) ∧ . . . ∧ χn(x̄1, . . . , x̄n, ȳ1, . . . , ȳn) ,

where the χk are (possibly empty) conjunctions of clauses, exclusively containing atoms from At(k).
Straightforward quantifier shifting allows us to transform ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ′′ into the sentence(

∀x̄1 . . . x̄n. χ0(x̄1, . . . , x̄n)
)

∧
(
∀x̄1∃ȳ1.

(
∀x̄2 . . . x̄n. χ1(x̄1, . . . , x̄n, ȳ1)

)
∧
(
∀x̄2∃ȳ2. . . .

∧
(
∀x̄n−1∃ȳn−1.

(
∀x̄n. χn−1(x̄1, . . . , x̄n, ȳ1, . . . , ȳn−1)

)
∧
(
∀x̄n∃ȳn. χn(x̄1, . . . , x̄n, ȳ1, . . . , ȳn)

))
. . .
))

.

Renaming some of the bound variables yields

ϕ′′ :=(
∀x̄(0)

1 . . . x̄(0)
n . χ0(x̄

(0)
1 , . . . , x̄(0)

n)
)

∧
(
∀x̄1∃ȳ1.

(
∀x̄(1)

2 . . . x̄(1)
n . χ1(x̄1, x̄

(1)
2 , . . . , x̄(1)

n , ȳ1)
)

∧
(
∀x̄2∃ȳ2.

(
∀x̄(2)

3 . . . x̄(2)
n . χ2(x̄1, x̄2, x̄

(2)
3 , . . . , x̄(2)

n , ȳ1, ȳ2)
)

∧
(
∀x̄3∃ȳ3. . . .

∧
(
∀x̄n−1∃ȳn−1.

(
∀x̄(n−1)

n . χn−1(x̄1, x̄2, x̄3, . . . , x̄n−1, x̄
(n−1)
n , ȳ1, . . . , ȳn−1)

)
∧
(
∀x̄n∃ȳn. χn(x̄1, x̄2, . . . , x̄n, ȳ1, . . . , ȳn)

))
. . .
))

.

For every k, 0 ≤ k ≤ n, we define Ãt
(k)

Ãt
(k)to be the set of atoms occurring in the formula

χk(x̄1, . . . , x̄k, x̄
(k)
k+1, . . . , x̄

(k)
k , ȳ1, . . . , ȳk) .

In other words, Ãt
(k)

is a subset of the atoms from At(k) after renaming variables like in ϕ′′′. Due

to our assumptions, every Ãt
(k)

can be partitioned into sets Ãt
(k)

0 , . . . , Ãt
(k)

k Ãt
(k)

i
such that

(a) for every i, 0 ≤ i ≤ k, we have vars
(
Ãt

(k)

i

)
⊆ ȳ1 ∪ . . .∪ ȳi ∪ x̄i+1 ∪ . . .∪ x̄k ∪ x̄

(k)
k+1 ∪ . . .∪ x̄

(k)
n ,

66 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

(b) for all distinct i, j, 0 ≤ i < j ≤ k, we have vars
(
Ãt

(k)

i

)
∩ vars

(
Ãt

(k)

j

)
∩
(
x̄1 ∪ . . .∪ x̄k ∪ x̄

(k)
k+1 ∪

. . . ∪ x̄
(k)
n

)
= ∅, and

(c) for all distinct k, ` and all distinct i, j with 0 ≤ k < ` ≤ n and 0 ≤ i ≤ k and 0 ≤ j ≤ ` we have

vars(Ãt
(k)

i) ∩ vars(Ãt
(`)

j) ∩
(

x̄1 ∪ . . . ∪ x̄` ∪
⋃
k≤k′≤n

(
x̄

(k′)
k′+1 ∪ . . . ∪ x̄

(k′)
n

))
= ∅.

Consider the sets Ãti :=
⋃
i≤k≤n Ãt

(k)

iÃti for 0 ≤ i ≤ n. Because of (a), we have

vars
(
Ãti
)
⊆ ȳ1 ∪ . . . ∪ ȳi ∪ x̄i+1 ∪ . . . ∪ x̄n ∪

⋃
i≤k≤n

(
x̄

(k)
k+1 ∪ . . . ∪ x̄(k)

n

)
. (3.2)

Together with (b) and (c), this entails

vars(Ãti) ∩ vars(Ãtj) ∩
(

x̄1 ∪ . . . ∪ x̄n ∪
⋃

1≤k≤n

(
x̄

(k)
k+1 ∪ . . . ∪ x̄(k)

n

))
= ∅ (3.3)

for all i, j with 0 ≤ i < j ≤ n.

Let ϕ′′′ be the following formula that results from ϕ′′ by shifting all quantifiers outward:

ϕ′′′ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn∀x̄(0)
1 . . . x̄(0)

n x̄
(1)
2 . . . x̄(1)

n . . . x̄
(n−2)
n−1 x̄(n−2)

n x̄(n−1)
n .

χ0(x̄
(0)
1 , . . . , x̄(0)

n) ∧ χ1(x̄1, x̄
(1)
2 , . . . , x̄(1)

n , ȳ1) ∧ . . .
∧ χn−1(x̄1, . . . , x̄n−1, x̄

(n−1)
n , ȳ1, . . . , ȳn−1) ∧ χn(x̄1, . . . , x̄n, ȳ1, . . . , ȳn) .

By virtue of (3.2) and (3.3), ϕ′′′ is the sought GBSR sentence equivalent to ϕ

Notice that the maximal possible degree of interaction in the sentence ϕ′′′ in the proof of
Lemma 3.6.7 is n + 1. However, we could do the shifting of quantifiers in the last step of ϕ′′′’s
construction in such a way that ∂∃∀(ϕ′′′) ≤ n. Consequently, the blowup that we incur when
transforming sentences that satisfy the conditions of Lemma 3.6.7 is at most (n+1)-fold exponential
in the length of ϕ, since ϕ′′′’s matrix might be exponentially longer than the original matrix of ϕ.

Example 3.6.8. Consider the sentence

ϕ := ∀x1x2∃y∀z1z2.
((
P (x1, z1) ∨ P (z2, x2)

)
∧ P (y, z1)

)
∨
(
P (x2, z2) ∧ P (x1, x2)

)
,

which satisfies the conditions of Lemma 3.6.7. To see this, we inspect the following witnessing
subsets At(0) and At(1) with their respective partitions:

At(0) :=
{
P (x1, z1), P (z2, x2)︸ ︷︷ ︸

=: At
(0)
0

}
and At(1) :=

{
P (y, z1)︸ ︷︷ ︸
=: At

(1)
1

, P (x2, z2), P (x1, x2)︸ ︷︷ ︸
=: At

(1)
0

}
.

Proceeding as described in the proof of Lemma 3.6.7, the sentence ϕ can be transformed into the
equivalent sentence(

∀x1x2z1z2.
(
P (x1, z1) ∨ P (z2, x2) ∨ P (x2, z2)

)
∧
(
P (x1, z1) ∨ P (z2, x2) ∨ P (x1, x2)

))
∧
(
∀x1x2∃y∀z1z2.

(
P (y, z1) ∨ P (x2, z2)

)
∧
(
P (y, z1) ∨ P (x1, x2)

))
.

Evidently, each of the two constituents of the topmost conjunction is a GBSR sentence.

3.7. THE GENERALIZED ACKERMANN FRAGMENT (GAF) 67

3.7 The Generalized Ackermann Fragment (GAF)

Recall that the Ackermann fragment (AF) consists of all relational first-order sentences in prenex
normal form with an ∃∗∀∃∗ quantifier prefix and without equality. In the beginning of Chapter 3,
we have already outlined that the satisfiability problem for AF is decidable and that this decidability
result has been stretched to several syntactic extensions of AF: AF with equality, the Gurevich–
Maslov–Orevkov fragment — AF plus function symbols of arbitrary arity, and the Shelah fragment

— AF with equality plus a single unary function symbol. Of course, constant symbols may also
be allowed without jeopardizing decidability of the respective decidability problem. The Shelah
fragment has the remarkable property of having a decidable satisfiability problem while allowing
the formulation of infinity axioms. Hence, this class of sentences does not enjoy the finite model
property.

In the present section, we generalize AF to the generalized Ackermann fragment (GAF) in the
same spirit as we have generalizeed BSR to GBSR in Section 3.4. This means we shall devise an
effective procedure that translates any given GAF sentence into an equivalent AF sentence. It will
turn out that this procedure will be compatible with function symbols and equality. That is, our
results will show that GAF with equality is equivalent to AF with equality, GAF with arbitrary
function symbols but without equality is equivalent to the Gurevich–Maslov–Orevkov fragment,
and GAF with equality and a single unary function symbol in equivalent to the Shelah fragment.
Hence, all these extensions of GAF will be shown to possess a decidable satisfiability problem.

Intuitively speaking, a GAF sentence is of the form ϕ := ∀x̄1∃ȳ1ū1 . . . ∀x̄n∃ȳnūn. ψ with
quantifier-free ψ and it satisfies the following properties. Each atom in ϕ contains only variables
from some subsequence of ϕ’s quantifier prefix of the form ∃∗∀∃∗. If two atoms share a universally
quantified variable or some variable from the trailing ∃∗-block of their respective quantifier
subsequence, then they have the same ∃∗∀∃∗-subsequence as source of all their variables.

Definition 3.7.1 (Generalized Ackermann fragment (GAF)). Let ϕ := ∀x̄1∃ȳ1ū1 . . . ∀x̄n∃ȳnūn. ψ
be a relational first-order sentence without equality. Let At be the set of all atoms occurring in ϕ
and let x̄ := x̄1 ∪ . . .∪ x̄n, ȳ := ȳ1 ∪ . . .∪ ȳn, and ū := ū1 ∪ . . .∪ ūn. Moreover, we define the index
of a variable v ∈ x̄∪ ȳ ∪ ū by idx(v) := k idx(v)if and only if v ∈ x̄k ∪ ȳk ∪ ūk. The sentence ϕ belongs to
the generalized Ackermann fragment (GAF) if and only if we can partition At into sets At0 and
Atx, x ∈ x̄, such that the following conditions are satisfied:
(a) vars(At0) ⊆ ȳ
(b) for every x ∈ x̄ we have vars(Atx) ⊆ ȳ1 ∪ . . . ∪ ȳidx(x)−1 ∪ {x} ∪ ūidx(x) ∪ . . . ∪ ūn
(c) for all distinct x, x′ ∈ x̄ we have vars(Atx) ∩ vars(Atx′) ∩ ū = ∅.

Notice that the tuples x̄i and ȳi, ūi in any GAF sentence ϕ may be empty. As one consequence,
ϕ’s quantifier prefix does not have to start with a universal quantifier and it does not have to
end with an existential quantifier. Moreover, notice that every variable u ∈ ū that occurs in ϕ is
associated with exactly one reference variable x ∈ x̄, determined by the set Atx in which u occurs.
Intuitively speaking, using suitable equivalence-preserving transformations, any quantifier ∃u with
u ∈ ū can be shifted out of the scope of any universal quantifier but the one binding u’s reference
variable. This is the essence of the first step of the effective translation procedure from GAF into
AF, which we shall assemble in the proof of Lemma 3.8.4. The following example gives a first
impression of GAF sentences and how they can be translated into AF.

Example 3.7.2. Consider the first-order sentence

ϕ := ∃u∀x∃v∀z∃y1y2.
(
¬P (u, x) ∨

(
Q(x, v) ∧R(u, z, y1)

))
∧
(
P (u, x) ∨

(
¬Q(x, v) ∧ ¬R(u, z, y2)

))
.

The partition of the set At := {P (u, x), Q(x, v), R(u, z, y1), R(u, z, y2)} into At0 := ∅, Atx :=
{P (u, x), Q(x, v)}, and Atz := {R(u, z, y1), R(u, z, y2)} is a witness for the belonging of ϕ to
GAF. Due to the Boolean structure of ϕ, the quantifiers ∃y2, ∃y1, and ∀z can be shifted inwards

68 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

immediately but ∃v cannot. This yields the equivalent sentence

∃u∀x∃v.
(
¬P (u, x) ∨

(
Q(x, v) ∧ ∀z∃y1. R(u, z, y1)

))
∧
(
P (u, x) ∨

(
¬Q(x, v) ∧ ∀z∃y2.¬R(u, z, y2)

))
.

Because of the two universal quantifiers ∀x and ∀z, which are even interspersed with an existential
one, ϕ does not belong to AF. Exhaustive Skolemization of ϕ leads to

∀xz.
(
¬P (c, x) ∨

(
Q
(
x, f(x)

)
∧R

(
c, z, g(x, z)

)))
∧
(
P (c, x) ∨

(
¬Q
(
x, f(x)

)
∧ ¬R

(
c, z, h(x, z)

)))
and thus explicitly fixes the dependence of y1 on the universally quantified variables x and z, as y1

is replaced with the term g(x, z). However, the shape of the original ϕ did not immediately indicate
such a strong dependence of y1 on x, since x and y1 do not co-occur in any atom. Moreover, there
are no other variables that depend on x and establish a connection between x and y1 by means of
co-occurrences in atoms. One may say that it is the Boolean structure of ϕ alone which causes
a dependence of y1 on x, and that such a form of dependence has only a finite character. These
ideas will be made more precise in Chapter 4 and, for GAF sentences in particular, in Section 4.3.

The described point of view is supported by the existence of an equivalent sentence ϕ′, in which
the dependence of y1 on x has vanished. The price we have to pay, however, is an increase in the
size of the formula.

ϕ′ := ∃u.
(
∀x.
(
¬P (u, x) ∨ ∃v.Q(x, v)

))
∧
((
∀x.¬P (u, x)

)
∨ ∀z∃y1. R(u, z, y1)

)
∧
(
∀x.
(
∃v.¬Q(x, v)

)
∨ P (u, x)

)
∧
((
∀x∃v.¬Q(x, v)

)
∨ ∀z∃y1. R(u, z, y1)

)
∧
((
∀z∃y2.¬R(u, z, y2)

)
∨ ∀x. P (u, x)

)
∧
((
∀z∃y2.¬R(u, z, y2)

)
∨ ∀x∃v.Q(x, v)

)
∧
((
∀z∃y2.¬R(u, z, y2)

)
∨ ∀z∃y1. R(u, z, y1)

)
Transforming ϕ into ϕ′ requires only basic logical laws and is very similar to approaches we have
seen before: first, we shift the quantifiers ∃y2,∃y1,∀z inwards as far as possible. Then, we construct
a disjunction of conjunctions of certain subformulas using distributivity. This allows us to shift the
quantifier ∃v inwards. Afterwards, we apply the laws of distributivity again to obtain a conjunction
of disjunctions of certain subformulas. This step enables us to shift the universal quantifier ∀x
inwards. In the resulting sentence every occurrence of an existential quantifier lies in the scope of
at most one universal quantifier. Moreover, every atom in the original formula ϕ contains at most
one universally quantified variable. Exhaustive Skolemization of ϕ′ leads to a sentence whose shape
is quite close to the shape of an exhaustively Skolemized sentence from the Ackermann fragment.
More precisely, every atom contains at most one variable, possibly with multiple occurrences. The
only difference is that we get more than only one universally quantified variable in the sentence as
a whole, but at most one in every atom.

Another example of a simple GAF sentence is the sentence ψ := ∃u∀x∃y∀z.
(
P (u, z)∧Q(u, x)

)
∨(

P (y, z) ∧ Q(u, y)
)

which we have already treated in Example 3.4.2 as an example for GBSR
sentences.

The sentence ψ from the above example belongs to GBSR and GAF at the same time, while it
does not belong to the Ackermann fragment, SF, BSR, or the monadic fragment. Hence, even the
intersection of GBSR and GAF contains sentences which do not fall into the syntactic categories
offered by the standard fragments.

As a first result concerning GAF we show that membership in GAF is decidable in polynomial
time.

Theorem 3.7.3. Deciding whether a given first-order sentence belongs to GAF can be done
deterministically in time that is polynomial in the length of any reasonable encoding of the input
sentence.

3.7. THE GENERALIZED ACKERMANN FRAGMENT (GAF) 69

Proof sketch. Let ϕ := ∀x̄1∃v̄1 . . . ∀x̄n∃v̄n. ψ be any relational first-order sentence in prenex normal
form with quantifier-free ψ. Let x̄ := x̄1 ∪ . . . ∪ x̄n and v̄ := v̄1 ∪ . . . ∪ v̄n. For the moment we do
not know a priori how the variables in each and every existential quantifier block ∃v̄k are to be
partitioned into ȳk and ūk. This will be sorted out in due course.

Let Gϕ := 〈V,E〉 Gϕbe a directed graph such that V := v̄ and E :=
{
〈v, v′〉

∣∣ idx(v) ≤ idx(v′)
and there is some atom A in ψ in which v and v′ co-occur

}
. For any variable v ∈ v̄ the upward

closure C↑v C↑v , at(C↑v)is the smallest subset of v̄ such that v ∈ C↑v and for every v′ ∈ C↑v the existence of an

edge 〈v′, v′′〉 in Gϕ entails v′′ ∈ C↑v . Let at(C↑v) denote the set of all atoms in ψ, in which a variable
from C↑v occurs. For every x ∈ x̄ let atx atx, at0be the smallest set of atoms such that (a) every atom in ϕ
in which x occurs belongs to atx, and (b) for every v ∈ vars(atx) ∩ v̄ with idx(v) ≥ idx(x) we have
at(C↑v) ⊆ atx. By at0 we denote the set of all atoms that occur in ϕ but in none of the atx with
x ∈ x̄. Moreover, we use the notation Ux := vars(atx) ∩⋃i≥idx(x) v̄i Ux.

Claim I: If
(A) every atom in ϕ contains at most one variable from x̄, and
(B) for all distinct variables x, x′ ∈ x̄ with idx(x) ≤ idx(x′) and any variable v ∈ ⋃i≥idx(x) v̄i

we have v 6∈ vars(atx) ∩ vars(atx′),
then we observe the following properties:

(i) For all distinct x, x′ ∈ x̄ we have atx ∩ atx′ = ∅.
(ii) For every x ∈ x̄ we have vars(atx) ∩ x̄ = {x}.

(iii) For every x ∈ x̄ we have Ux ∩ vars(at0) = ∅.
(iv) For all distinct x, x′ ∈ x̄ with idx(x) ≤ idx(x′) we have Ux ∩ vars(atx′) = ∅.

Proof:

Ad (i): Suppose there are variables x, x′ ∈ x̄ and there is some atom A ∈ atx ∩ atx′ . A must
belong to at(C↑v) for some variable v ∈ v̄ with idx(v) ≥ idx(x) or idx(v) ≥ idx(x′), since
otherwise we would have {x, x′} ⊆ vars(A) which contradicts Condition (A). This in
turn means that some variable v′ ∈ v̄ occurs in A for which idx(v′) ≥ idx(v). Hence,
v′ ∈ vars(A) ⊆

(
vars(atx) ∩ vars(atx′)

)
with idx(v′) ≥ idx(x) or idx(v′) ≥ idx(x′). This

constitutes a contradiction to Condition (B).

Ad (ii): This is a direct consequence of (i) and the definition of atx.

Ad (iii): Whenever v ∈ Ux ⊆
⋃
i≥idx(x) v̄i we have that at(C↑v) ⊆ atx. Suppose there is

some v ∈ Ux ∩ vars(at0), i.e. there is some atom A ∈ at0 with v ∈ vars(A). Since
A ∈ at(C↑v) ⊆ atx, the definition of at0 entails that A cannot occur in at0.

Ad (iv): Whenever v ∈ Ux ⊆
⋃
i≥idx(x) v̄i, we observe that at(C↑v) ⊆ atx. Suppose there is

some v ∈ Ux ∩ vars(atx′). Hence, there must be some atom A ∈ atx′ in which v occurs.
But since A belongs to at(C↑v), we know that A ∈ atx. This contradicts (i). ♦

Claim II: The sentence ϕ belongs to GAF if and only if it satisfies Conditions (A) and (B) from
Claim I.

Proof: Regarding the if -direction, we set At0 := at0 and Atx := atx for every x ∈ x̄. Moreover,
every existential quantifier block ∃v̄k can be partitioned into ∃ȳk∃ūk by setting ūk :=
ȳk ∩

⋃
x∈x̄ Ux and ȳk := v̄k \ ūk. Condition (a) of Definition 3.7.1 is satisfied due to the

following observations. By definition of at0 and the atx we have vars(At0)∩ x̄ = ∅. By virtue
of Claim I(iii) and the above partition of the v̄k into ȳk and ūk, we have ūk∩vars(At0) = ∅ for
every k. Hence, vars(At0) ⊆ ȳ1 ∪ . . .∪ ȳn. Condition (b) of Definition 3.7.1 follows because of
the way we partition the v̄k into ȳk, ūk. Any variable v ∈ v̄∩vars(Atx) with index idx(v) = k
belongs to Ux if and only if k ≥ idx(x). Hence, we have v ∈ ȳk if and only if k < idx(x), and
we have v ∈ ūk otherwise. Moreover, Claim I(ii) states that x is the only variable from x̄
that occurs in Atx. Condition (c) of Definition 3.7.1 follows immediately from Claim I(iv)
and the fact that ū1 ∪ . . . ∪ ūn =

⋃
x∈x̄ Ux.

70 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

Regarding the only if -direction we argue as follows. Condition (A) of Claim I is certainly
satisfied, if Condition (b) of Definition 3.7.1 is met by ϕ. Consider any two variables
x, x′ ∈ x̄ with idx(x) ≤ idx(x′) and let u be some variable in Ux. Because of idx(u) ≥ idx(x),
Condition (b) of Definition 3.7.1 entails that u ∈ ū. By Condition (c) of Definition 3.7.1, u
cannot occur in both Atx and Atx′ . Since Ux ⊆ vars(atx) = vars(Atx), u cannot occur in
Atx′ and, hence, not in atx′ either. This entails that Condition (B) of Claim I is satisfied. ♦

By Claim II, Conditions (A) and (B) from Claim I together yield a criterion to decide whether
ϕ belongs to GAF or not. It remains to argue that this criterion can be checked deterministically
in polynomial time. It is straightforward to check Condition (A) in polynomial time. Hence, we
concentrate on Condition (B). Given ϕ, the graph Gϕ = 〈V,E〉 can be constructed in time that is

quadratic in ‖ϕ‖. We observe |V | = |v̄| ≤ |len(ϕ)| and |E| ≤ |v̄|2 ≤
(
len(ϕ)

)2
. Using efficient data

structures, the upward closures C↑v in Gϕ and the sets at(C↑v) and atx can be computed in time that
is polynomial in ‖ϕ‖. The sum of the lengths of the atoms in all the atx taken together is at most

|x̄| · len(ϕ) ≤
(
len(ϕ)

)2
. Finally, the test whether we have

vars(atx) ∩ vars(atx′) ∩
⋃

i≥idx(x)

v̄i = ∅

for all distinct x, x′ with idx(x) ≤ idx(x′) can be done in time that is polynomial in ‖ϕ‖.

The next proposition confirms that GAF indeed extends the Ackermann fragment. Moreover,
MFO is a proper subfragment of GAF. Since the sentence ϕ from Example 3.7.2 belongs to GAF
but lies in neither of the other two fragments, it is immediately clear that GAF constitutes a proper
syntactical extension of both.

Proposition 3.7.4. GAF properly contains AF and MFO.

Proof. Let ϕ := ∃z̄∀x∃v̄. ψ be an AF sentence with quantifier-free ψ. Any atom in ϕ contains at
most one universally quantified variable, namely x. Let Atx be the set of all atoms occurring in ϕ.
If we conceive the variables in v̄ as “ū-variables”, then Condition (b) of Definition 3.7.1 is satisfied
by Atx. The other two conditions, (a) and (c), are trivially satisfied. Consequently, ϕ belongs to
GAF.

Let ϕ′ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ′ be an MFO sentence. For every x ∈ x̄1 ∪ . . . ∪ x̄n define Atx to
be the set containing exactly the atoms in ϕ′ that contain x. Let At0 be the set of all atoms in ϕ′

that do not belong to any Atx. Clearly, this partition of ϕ′’s atoms meets all the conditions stated
in Definition 3.7.1, if we conceive all the existentially quantified variables in ϕ′ as “ȳ-variables”.
Hence, ϕ′ belongs to GAF.

As for GBSR, we shall first discuss a syntactic route to decidability of the satisfiability for GAF
(GAF-Sat)GAF-Sat that is based on an effective equivalence-preserving translation from GAF into AF. A
semantically-flavored approach based on model-checking games and the analysis of dependences
between existentially and universally quantified variables shall be developed in Section 4.3. Both
approaches will lead to small model properties for GAF and, as one consequence, yield upper
bounds on the computational complexity of deciding GAF-Sat.

3.8 Translation of GAF into the Ackermann Fragment

The equivalence-preserving translation from GAF into AF proceeds in two stages. The first stage
resembles an exhaustive unfolding process in the spirit of Lemma 2.0.3. Nestings of quantifiers
in a given GAF sentence that bind separated sets of variables vanish in the course of this stage.
This results in a sentence in which every subformula lies within the scope of at most one universal
quantifier. Such sentences can easily be converted into a special syntactic form, which we shall call
GAF special form. Then, in the second stage of the translation process, a sentence in GAF special
form is transformed into an equivalent AF sentence.

The next lemma focuses on the first stage of the translation process.

3.8. TRANSLATION OF GAF INTO THE ACKERMANN FRAGMENT 71

Lemma 3.8.1. Let ϕ := ∀x̄1∃ȳ1ū1 . . . ∀x̄n∃ȳnūn. ψ be any GAF sentence with quantifier-free ψ.
We can effectively transform ϕ into an equivalent sentence ϕ′ in standard form, in which every
subformula lies within the scope of at most one universal quantifier. Moreover, all literals in ϕ′

also occur in ϕ (modulo variable renaming).

Proof. We assume that ϕ is in standard form. Let the sets At, x̄, ȳ, ū be defined as in Definition 3.7.1.
Let At0, (Atx)x∈x̄ At0,Atxbe the partition of the set At described in Definition 3.7.1. Recall that ϕ is
assumed to be in negation normal form. Let L0, (Lx)x∈x̄ L0,Lxbe the corresponding partition of the set
of literals occurring in ϕ. Hence, every Atx is exactly the set of atoms occurring in Lx, and the
same holds for At0 and L0. Moreover, we use the notation Ux := vars(Lx) ∩⋃i≥idx(x) ūi Ux.

Given any set V of variables, we write L(V) L(V)to address the set of all literals from ϕ that
contain at least one variable from V . For every x ∈ x̄ we refine the set Lx into subsets Lx,0,
Lx,idx(x),Lx,idx(x)+1, . . . ,Lx,n: Lx,k
Lx,n := Lx ∩ L(ūn),
Lx,k :=

(
Lx ∩ L(ūk)

)
\⋃`>k Lx,` for every k satisfying idx(x) ≤ k < n, and

Lx,0 := Lx \
⋃
`≥idx(x) Lx,`.

Similarly, we define Ux,k := vars(Lx,k) ∩ Ux Ux,kfor every k, idx(x) ≤ k ≤ n.
Then, we observe the following (cf. Claim I in the proof of Theorem 3.7.3):

(I) For all distinct x, x′ ∈ x̄ we have Lx ∩ Lx′ = ∅.

(II) For all distinct x, x′ ∈ x̄ with idx(x) ≤ idx(x′) we have Ux ∩ vars(Lx′) = ∅.

(III) For every k we have Lx,k ⊆ Lx.

(IV) For all distinct k, ` we have Lx,k ∩ Lx,` = ∅.

(V) For every k ≥ idx(x) we have vars(Lx,k) ⊆ ȳ1 ∪ . . . ∪ ȳidx(x)−1 ∪ {x} ∪ ūidx(x) ∪ . . . ∪ ūk.

(VI) We have vars(Lx,0) ⊆ ȳ1 ∪ . . . ∪ ȳidx(x)−1 ∪ {x}.

After having fixed notation, we proceed along similar lines as in the proof of Lemma 3.5.2,
i.e. we perform syntactic transformations based on the axioms of Boolean algebra and ordinary
quantifier shifting (cf. Lemma 1.0.1). Once more, this will not change the set of literals occurring
in the intermediate steps (modulo variable renaming), since we start from a formula in negation
normal form restricted to the connectives ∧,∨,¬. Analogous to the proof of Lemma 3.5.2, we (re-
)transform parts of ϕ repeatedly into a disjunction of conjunctions (or a conjunction of disjunctions)
of subformulas which we treat as indivisible units. The literals and indivisible units in the
respective conjunctions (disjunctions) will be grouped in accordance with the sets L0,Lx and
Lx,idx(x), . . . ,Lx,n, where needed. For this purpose, it is important to keep in mind that (I) and the
definition of L0 entail that L0 together with the sets Lx partition the set of all literals occurring in
ϕ. Moreover, every Lx is partitioned by the sets Lx,0,Lx,idx(x), . . . ,Lx,n, by virtue of (III), (IV),
and the definition of Lx,0.

Let us elaborate on transformation process: we first describe it and then it is presented formally.
At the beginning, we transform ψ into a disjunction of conjunctions of literals

∨
i ψi. Then,

we rewrite every ψi into χ
(1)
i,0 ∧

∧n
k=1

∧
x∈x̄k

(
χ

(1)
i,x,0 ∧

∧n
j=k χ

(1)
i,x,j

)
, where χ

(1)
i,0 and the χ

(1)
i,x,j are

conjunctions of literals. χ
(1)
i,0 comprises all literals in ψi which belong to L0, while for every j the

literals which belong to Lx,j are grouped into χ
(1)
i,x,j , respectively. By (V) and (VI), we know that

vars(χ
(1)
i,x,0) ⊆ ȳ1∪ . . .∪ ȳidx(x)−1∪{x} and vars(χ

(1)
i,x,j) ⊆ ȳ1∪ . . .∪ ȳidx(x)−1∪{x}∪ ūidx(x)∪ . . .∪ ūj

for j > 0. Moreover, the definition of L0 entails vars(χ
(1)
i,0) ⊆ ȳ.

At this point, we shift the existential quantifier block ∃ȳnūn inwards. By (VI), we have

vars(Lx,0) ∩ (ȳn ∪ ūn) = ∅. Therefore, the subformulas χ
(1)
i,x,0 contain neither variables from ȳn nor

from ūn. Similarly, due to (V), the χ
(1)
i,x,j with 0 < j < n do not contain any variables from ȳn or

from ūn. Consequently, one part of the quantifier block ∃ȳnūn, namely ∃
(
ȳn ∩ vars(χ

(1)
i,0)
)
, binds

72 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

variables in χ
(1)
i,0 (for convenience, we still write the full ∃ȳn, which does not affect semantics), and

another — disjoint — part, namely ∃
(
ūn ∩Ux,n

)
, binds variables in χ

(1)
i,x,n. In addition, (II) ensures

that ū ∩ Ux,n is disjoint from ū ∩ Ux′,n for distinct x, x′. The thus obtained sentence ϕ′′ has the
form

∀x̄1∃ȳ1ū1 . . . ∀x̄n.
∨
i

(
∃ȳn. χ(1)

i,0

)
∧

n∧
k=1

∧
x∈x̄k

(
χ

(1)
i,x,0 ∧

n−1∧
j=k

χ
(1)
i,x,j ∧ ∃(ūn ∩ Ux,n). χ

(1)
i,x,n

)
.

In the rest of the transformation process we treat the subformulas
(
∃ȳn. χ(1)

i,0

)
and

(
∃(ūn ∩

Ux,n). χ
(1)
i,x,n

)
as indivisible units.

Next, we transform the big disjunction in ϕ′′ into a conjunction of disjunctions
∧
i ψ
′
i, rewrite

the disjunctions ψ′i into subformulas η
(1)
i,0 ∨

(∨n−1
k=1

∨
x∈x̄k

η
(1)
i,x

)
∨∨x∈x̄n

η
(1)
i,x , similarly to what we

have done above, but this time grouped in accordance with the more coarse-grained sets L0 and
Lx. Having done the regrouping, we shift the universal quantifier block ∀x̄n inwards. The resulting

formula has the shape ∀x̄1∃ȳ1ū1 . . . ∀x̄n−1∃ȳn−1ūn−1.
∧
i η

(1)
i,0 ∨

(∨n−1
k=1

∨
x∈x̄k

η
(1)
i,x

)
∨∨x∈x̄n

∀x. η(1)
i,x .

From this point on we treat the subformulas
(
∀x. η(1)

i,x

)
as indivisible units as well. Moreover, we

shall group them under the conjunctions χ
(`)
i,0 or η

(`)
i,0 , ` ≥ 2, respectively, since they do not contain

any free occurrences of universally quantified variables x ∈ x̄ anymore. This is not only convenient

but also necessary, because a subformula
(
∀x. η(1)

i,x

)
may share free variables y ∈ ȳ1 ∪ . . .∪ ȳidx(x)−1

with the subformula η
(1)
i,0 . Hence, when some quantifier ∃y is shifted inwards later on, both

(
∀x. η(1)

i,x

)
and some literals in η

(1)
i,0 might have to remain within the scope of ∃y.

We reiterate the described process until all the quantifiers have been shifted inwards in the
outlined way. There is one more peculiarity to mention. At later stages of the transformation

subformulas of the form χ
(`)
i,x,j ∧ . . .∧ χ

(`)
i,x,n may appear in which the constituents χ

(`)
i,x,j′ may share

variables u ∈ ūj , for instance. For the sake of readability, we abbreviate such subformulas by χ
(`)
i,x,≥j

and similar notations. Emerging subformulas
(
∃(ū` ∩ Ux,`). χ(`)

i,x,≥j
)

will be treated as indivisible
units.

∀x̄1∃ȳ1ū1 . . . ∀x̄n∃ȳnūn. ψ

|=| ∀x̄1∃ȳ1ū1 . . . ∀x̄n∃ȳnūn.
∨
i

χ
(1)
i,0 (ȳ1, . . . , ȳn)

∧
n∧
k=1

∧
x∈x̄k

(
χ

(1)
i,x,0(ȳ1, . . . , ȳk−1, x)

∧
n∧
j=k

χ
(1)
i,x,j(ȳ1, . . . , ȳk−1, x, ūk, . . . , ūj)

)
|=| ∀x̄1∃ȳ1ū1 . . . ∀x̄n.

∨
i

(
∃ȳn. χ(1)

i,0 (ȳ1, . . . , ȳn)
)

∧
n∧
k=1

∧
x∈x̄k

(
χ

(1)
i,x,0(ȳ1, . . . , ȳk−1, x)

∧
n−1∧
j=k

χ
(1)
i,x,j(ȳ1, . . . , ȳk−1, x, ūk, . . . , ūj)

∧ ∃(ūn ∩ Ux,n). χ
(1)
i,x,n(ȳ1, . . . , ȳk−1, x, ūk, . . . , ūn)

)

3.8. TRANSLATION OF GAF INTO THE ACKERMANN FRAGMENT 73

|=| ∀x̄1∃ȳ1ū1 . . . ∀x̄n.
∧
i

η
(1)
i,0 (ȳ1, . . . , ȳn−1)

∨
n−1∨
k=1

∨
x∈x̄k

η
(1)
i,x (ȳ1, . . . , ȳk−1, x, ūk, . . . , ūn−1)

∨
∨
x∈x̄n

η
(1)
i,x (ȳ1, . . . , ȳn−1, x)

|=| ∀x̄1∃ȳ1ū1 . . . ∀x̄n−1∃ȳn−1ūn−1.
∧
i

η
(1)
i,0 (ȳ1, . . . , ȳn−1)

∨
n−1∨
k=1

∨
x∈x̄k

η
(1)
i,x (ȳ1, . . . , ȳk−1, x, ūk, . . . , ūn−1)

∨
∨
x∈x̄n

(
∀x. η(1)

i,x (ȳ1, . . . , ȳn−1, x)
)

|=| ∀x̄1∃ȳ1ū1 . . . ∀x̄n−1∃ȳn−1ūn−1.∨
i

χ
(2)
i,0 (ȳ1, . . . , ȳn−1)

∧
n−1∧
k=1

∧
x∈x̄k

(
χ

(2)
i,x,0(ȳ1, . . . , ȳk−1, x) ∧

n−2∧
j=k

χ
(2)
i,x,j(ȳ1, . . . , ȳk−1, x, ūk, . . . , ūj)

∧ χ(2)
i,x,≥n−1(ȳ1, . . . , ȳk−1, x, ūk, . . . , ūn−1)

)
|=| ∀x̄1∃ȳ1ū1 . . . ∀x̄n−1.∨

i

(
∃ȳn−1. χ

(2)
i,0 (ȳ1, . . . , ȳn−1)

)
∧
n−1∧
k=1

∧
x∈x̄k

(
χ

(2)
i,x,0(ȳ1, . . . , ȳk−1, x) ∧

n−2∧
j=k

χ
(2)
i,x,j(ȳ1, . . . , ȳk−1, x, ūk, . . . , ūj)

∧
(
∃(ūn−1 ∩ Ux,n−1). χ

(2)
i,x,≥n−1(ȳ1, . . . , ȳk−1, x, ūk, . . . , ūn−1)

))
...

|=| ∀x̄1∃ȳ1ū1.
∨
i

χ
(n)
i,0 (ȳ1) ∧

∧
x∈x̄1

χ
(n)
i,x,0(x) ∧ χ(n)

i,x,≥1(x, ū1)

|=| ∀x̄1.
∨
i

(
∃ȳ1. χ

(n)
i,0 (ȳ1)

)
∧
∧
x∈x̄1

χ
(n)
i,x,0(x) ∧

(
∃(ū1 ∩ Ux,1). χ

(n)
i,x,≥1(x, ū1)

)
|=| ∀x̄1.

∧
i

η
(n)
i,0 () ∨

∨
x∈x̄1

η
(n)
i,x (x)

|=|
∧
i

η
(n)
i,0 () ∨

∨
x∈x̄1

∀x. η(n)
i,x (x)

The final result of this transformation is the sought ϕ′. Every time a universal quantifier block
∀x̄j is shifted inwards at the `-th stage, all the subformulas which contain universal quantifiers

already are grouped into η
(`)
i,0 . Due to the disjointness properties of the Lx,k and the Ux,k, it is

guaranteed that no η
(`)
i,0 contains a free occurrence of any x ∈ x̄ (details have been elaborated

above). Consequently, in the final result ϕ′ we do not have any nested occurrences of universal
quantifiers.

We restore the property that no two quantifiers in ϕ′ bind the same variables by appropriately
renaming bound variables in ϕ′.

74 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

The sentence ϕ′ whose existence is stipulated in Lemma 3.8.1 can easily be further transformed
into a particular shape to which we shall refer as GAF special formGAF special

form
:

∃z̄.
∧
i

(∨
j

∀xi,j∃ȳi,j . χi,j(z̄, xi,j , ȳi,j)
)
∨ ηi(z̄)

where the χi,j and the ηi are quantifier free.

Lemma 3.8.2 (GAF special form). If ϕ belongs to GAF, then we can effectively construct an
equivalent sentence of the form

∃z̄.∧i(∨j ∀xi,j∃ȳi,j . χi,j(z̄, xi,j , ȳi,j)) ∨ ηi(z̄),
where the χi,j and the ηi are quantifier free.

Proof. By Lemma 3.8.1, we can effectively construct a sentence ϕ′ in standard form that is
equivalent to ϕ and that does not contain any nested occurrences of universal quantifiers. We
construct ϕ′′ from ϕ′ as follows. First, we shift all existential quantifiers in ϕ′ that do not lie
within the scope of any universal quantifier to the front of the formula. In the resulting sentence
∃z̄. ψ′ every existential quantifier in ψ′ lies within the scope of exactly one universal quantifier. We
treat every subformula of the form ∀x. χ in ψ′ as indivisible unit while transforming ψ′ into an
equivalent conjunction of disjunctions of literals and such indivisible units. The resulting formula
can be brought into the desired shape by shifting existential quantifiers that lie in the scope of a
universal quantifier outwards until they form an existential quantifier block directly right of the
corresponding universal quantifier.

It is interesting to note that a sentence in GAF special form is not merely a Boolean combination
of Ackermann sentences. The difference is that distinct subformulas ∀x∃ȳ. χ and ∀x′∃ȳ′. χ′ may
share existentially quantified variables. However, one can show that every such sentence is indeed
equivalent to some Ackermann sentence. Therefore, every GAF sentence is equivalent to an
Ackermann sentence. Before we make this claim precise (cf. Lemma 3.8.4), we develop an auxiliary
result that we will reuse later.

Lemma 3.8.3. Let ψ be a first-order formula of the form ψ :=
∨
j ∀x̄ ∃ȳ. χj(z̄, x̄, ȳ) with quantifier-

free subformulas χj(z̄, x̄, ȳ). Then, ψ is equivalent to some formula ψ′ of the form

ψ′ := ∃v̄1 . . . v̄q∃ȳ1 . . . ȳq.
(∨
j

q∧
k=1

χj(z̄, v̄k, ȳk)
)
∧ ∀x̄∃ȳ.

q∨
k=1

∧
A∈At

(
A(z̄, x̄, ȳ)↔ A(z̄, v̄k, ȳk)

)
,

where At denotes the set of all atoms occurring in ψ and q := 2|At|. In addition, we have |v̄k| = |x̄|
for every k and |ȳ`| = |ȳ| for every `.

Proof. We first prove ψ |= ψ′. Let A be any structure, β any variable assignment, and j any index
such that A, β |= ∀x̄ ∃ȳ. χj(z̄, x̄, ȳ). For every set S ⊆ At we defineDS

DS :=
{
〈ā, c̄ 〉 ∈ D|x̄|+|ȳ|

∣∣ for every atom A ∈ At we have

A, β[x̄ 7→ā, ȳ 7→c̄] |= A(z̄, x̄, ȳ) if and only if A ∈ S
}
.

We write S |= χj(z̄, x̄, ȳ) if DS is nonempty and if we have A, β[x̄ 7→ā, ȳ 7→c̄] |= χj(z̄, x̄, ȳ) for every
tuple 〈ā, c̄ 〉 in DS . Let S1, . . . , Sr be an enumeration of all the sets Sk with Sk |= χj(z̄, x̄, ȳ). Notice
that 1 ≤ r ≤ q. Let 〈b̄1, c̄1 〉, . . . , 〈b̄r, c̄r 〉 be some sequence with 〈b̄k, c̄k 〉 ∈ DSk for every k. Then,
for every k the assumption Sk |= χj(z̄, x̄, ȳ) entails A, β[x̄7→b̄k, ȳ 7→c̄k] |= χj(z̄, x̄, ȳ). Hence,

A, β[v̄1 7→b̄1, . . . , v̄r 7→b̄r, v̄r+1 7→b̄1, . . . , v̄q 7→b̄1] |= ∃ȳ1 . . . ∃ȳq.
q∧

k=1

χj(z̄, v̄k, ȳk) . (3.4)

3.8. TRANSLATION OF GAF INTO THE ACKERMANN FRAGMENT 75

Let ā ∈ D|x̄| be any tuple of length |x̄|. Because of A, β |= ∀x̄ ∃ȳ. χj(z̄, x̄, ȳ), there is some Sk,
1 ≤ k ≤ r, and some tuple c̄ ∈ D|ȳ| such that 〈ā, c̄ 〉 ∈ DSk and Sk |= χj(z̄, x̄, ȳ). Therefore, we get
the following for 〈b̄k, c̄k〉:

A, β[x̄ 7→ā, v̄k 7→bk, ȳk 7→c̄k] |= ∃ȳ.
∧
A∈At

(
A(z̄, x̄, ȳ)↔ A(z̄, v̄k, ȳk)

)
. (3.5)

Put together, (3.4) and (3.5) entail

A, β[v̄1 7→b̄1, . . . , v̄r 7→b̄r, v̄r+1 7→b̄1, . . . , v̄q 7→b̄1] |=

∃ȳ1 . . . ∃ȳq.
(∨
j

q∧
k=1

χj(z̄, v̄k, ȳk)
)
∧ ∀x̄ ∃ȳ.

q∨
k=1

∧
A∈At

(
A(z̄, x̄, ȳ)↔ A(z̄, v̄k, ȳk)

)
.

This proves A, β |= ψ′. Hence, we have shown that A, β |= ψ implies A, β |= ψ′.

Next, we show ψ′ |= ψ. Let A be a structure, let β be a variable assignment, and let
b̄1, . . . , b̄q, c̄1, . . . , c̄q be tuples such that

A, β[v̄1 7→b̄1, . . . , v̄q 7→b̄q, ȳ1 7→c̄1, . . . , ȳq 7→c̄q] |=(∨
j

q∧
k=1

χj(z̄, v̄k, ȳk)
)
∧ ∀x̄ ∃ȳ.

q∨
k=1

∧
A∈At

(
A(z̄, x̄, ȳ)↔ A(z̄, v̄k, ȳk)

)
. (3.6)

Then, there is some index j such that

A, β[v̄1 7→b̄1, . . . , v̄q 7→b̄q, ȳ1 7→c̄1, . . . , ȳq 7→c̄q] |=
q∧

k=1

χj(z̄, v̄k, ȳk) .

Let D1, . . . ,Dq Dkbe sets defined such that

Dk :=
{
ā ∈ D|x̄| | there is some tuple c̄ ∈ D|ȳ| such that for every atom A ∈ At

we have A, β[x̄ 7→ā, ȳ 7→c̄] |= A(z̄, x̄, ȳ) if and only if

A, β[v̄k 7→b̄k, ȳk 7→c̄k] |= A(z̄, v̄k, ȳk)
}
.

Note that the sets Dk are all nonempty but not necessarily pairwise disjoint. Then, because of
Assumption (3.6), for every ā ∈ D|x̄| there is some k, 1 ≤ k ≤ q, such that ā ∈ Dk. Because
of A, β[v̄k 7→b̄k, ȳk 7→c̄k] |= χj(z̄, v̄k, ȳk), we therefore have A, β[x̄ 7→ā, ȳ 7→c̄] |= χj(z̄, x̄, ȳ) for some
tuple c̄ ∈ D|ȳ|. In other words, we have A, β |= ∀x̄ ∃ȳ. χj(z̄, x̄, ȳ) which entails A, β |= ψ. Hence,
we have shown that A, β |= ψ′ implies A, β |= ψ.

Lemma 3.8.3 is essential for the second stage in the transformation process between GAF and
AF. With this tool at hand, the following lemma is now easy to prove.

Lemma 3.8.4. For every GAF sentence ϕ we can effectively construct an equivalent sentence ϕ′

over the same vocabulary that has the shape ∃v̄∀x∃w̄. ψ with quantifier-free ψ.

Proof sketch. By virtue of Lemma 3.8.2, we can transform ϕ into an equivalent sentence ϕ′′ in
GAF special form, i.e. ϕ′′ = ∃z̄.∧i(∨j ∀xi,j∃ȳi,j . χi,j(z̄, xi,j , ȳi,j)) ∨ ηi(z̄), where the χi,j and
the ηi are quantifier free. Consider any subformula of the form ψ′ :=

∨
j ∀x∃ȳ. χj(z̄, x, ȳ), pos-

sibly containing free variables from z̄. By virtue of Lemma 3.8.3, ψ′ is equivalent to some
formula of the form ∃v̄′ȳ′. χ′(z̄, v̄′, ȳ′) ∧ ∀x∃ȳ. χ′′(z̄, x, ȳ, v̄′, ȳ′) with quantifier-free χ′, χ′′. Hence,
ϕ′′ is equivalent to some sentence that, after shifting some quantifiers outwards, is of the form
∃z̄.∧i(∃ūi∀xi∃w̄i. ψ′′i (z̄, ūi, xi, w̄i)

)
∨ ηi(z̄), where the ψ′′i and the ηi are quantifier free. A prenex

version of this sentence yields the sought ϕ′, since the universal quantifiers distribute over the
topmost conjunction.

76 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

Notice that the proofs of Lemmas 3.8.1 to 3.8.4 still work in the presence of the equality
predicate or function symbols. Therefore, we obtain the following result.

Theorem 3.8.5. Every GAF sentence ϕ is equivalent to some AF sentence ψ. Moreover, we get
the following results for relaxed restrictions on the syntax.

(a) Every GAF sentence with equality is equivalent to some AF sentence with equality.

(b) Every GAF sentence with arbitrary function symbols and without equality is equivalent to
some Gurevich–Maslov–Orevkov sentence (∃∗∀∃∗-sentences with arbitrary function symbols,
cf. page 24).

(c) Every GAF sentence with equality and with a single unary function symbol is equivalent to
some Shelah sentence (∃∗∀∃∗-sentences with equality and a single unary function symbol, cf.
page 24).

In addition, constant symbols are admissible in all of the above cases.

Since AF possesses the finite model property, so does GAF, even in the first two syntactically
extended cases mentioned in Theorem 3.8.5. On the other hand, it is known that the Shelah
fragment contains infinity axioms. One example is the sentence ∀x∃y. f(f(y)) ≈ f(x) ∧ f(y) 6≈ x
([BGG97], proof of Proposition 6.5.5). Still, the satisfiability problem for the Shelah fragment is
known to be decidable (cf. [BGG97], Section 7.3). Therefore, we get the following positive results
regarding the decidability of GAF-Sat.

Corollary 3.8.6. GAF-Sat is decidable, even in the syntactically more liberal cases given in
Theorem 3.8.5. The syntactic extensions of GAF described in items (a) and (b) of Theorem 3.8.5
enjoy the finite model property.

Remark 3.8.7. Every sentence from the Löb–Gurevich fragment (monadic first-order sentences
with constant symbols and unary function symbols but without equality, cf. page 23) falls into the
syntactic category of GAF when we in addition allow unary function symbols. By Lemma 3.8.4,
every such sentence is equivalent to some ∃∗∀∃∗-sentence over the same vocabulary. The latter kind
of sentences constitutes a subclass of the Gurevich–Maslov–Orevkov fragment. Hence, Lemmas 3.8.1
to 3.8.4 establish a reduction of the satisfiability problem for sentences from the Löb–Gurevich
fragment to the satisfiability problem for the Gurevich–Maslov–Orevkov fragment.

On the other hand, the presented methods do not establish a reduction from the Rabin fragment
(monadic first-order sentences with equality and a single unary function symbol, cf. page 23) to the
Shelah fragment. The problem is equations that do not adhere to the syntactic restrictions of GAF.
It seems that these cannot be treated by the same methods we have employed to deal with equations
in the monadic fragment in the proof of Theorem 3.1.5, where we devised an equivalence-preserving
translation from MFO≈ into BSR.

At this point we have settled the question concerning decidability of GAF-Sat, also under
certain syntactic extensions. In fact, decidability of GAF-Sat without any syntactic extensions is
already a corollary of the decidability of the satisfiability problem for Maslov’s fragment K. The
reaon is that the latter syntactically subsumes GAF.

Proposition 3.8.8. GAF is contained in Maslov’s fragment K.

Proof. Let ϕ := ∀x̄1∃ȳ1ū1 . . . ∀x̄n∃ȳnūn. ψ be any GAF sentence with quantifier-free ψ. Recall that
ϕ is relational and does not contain equality. Let the sets At, x̄, ȳ, ū be defined as in Definition 3.7.1
and let At0, (Atx)x∈x̄ be the partition of the set At described in Definition 3.7.1. Then, in the
terminology of the definition of Maslov’s fragment K (cf. page 25), the terminal ϕ-prefix of any
atom A ∈ Atx with x ∈ x̄ is a subsequence of ∀x∃ūidx(x) . . . ūn. Therefore, the terminal ϕ-prefix of
A either ends with an existential quantifier or it is of length one. Regarding the ϕ-prefix of any
atom B ∈ At0, we get ∃ȳ1 . . . ȳn. Hence, the terminal ϕ-prefix of B is empty. Consequently, ϕ
satisfies the conditions of the definition of Maslov’s fragment K.

3.9. THE GENERALIZED GÖDEL–KALMÁR–SCHÜTTE FRAGMENT (GGKS) 77

Of course, Proposition 3.8.8 fails for any extensions of GAF with either equality or non-constant
function symbols. We shall see in the next section, how GAF can be extended in such a way
that we obtain a generalization of the Gödel–Kalmár–Schütte fragment. Although the latter is
syntactically contained in Maslov’s fragment K as well, its extension will not (cf. Proposition 3.9.4).

We have not yet given any lower bounds on the blowup that we incur when translating
GAF sentences into equivalent Ackermann sentences. However, known bounds regarding the
computational complexity of AF-Sat and MFO-Sat give some evidence that this blowup is at least
exponential. On the one hand, it is known that the satisfiability problem for AF (without equality)
is decidable in deterministic exponential time, even in the presence of arbitrary function symbols
(see [BGG97], Theorem 6.3.26 for the former case and Theorem 6.3.1 for the latter). In other
words, AF-Sat lies in ExpTime. On the other hand, NExpTime-hardness for MFO-Sat has been
shown (cf. Theorem 6.2.13 in [BGG97]). Since MFO is a subfragment of GAF, this entails the
following conditional lower bound.

Proposition 3.8.9. In the worst case, there is at least a super-polynomial blowup in formula
length when translating GAF sentences into equivalent AF sentences in a uniform algorithmic way,
unless ExpTime = NExpTime

In Section 4.3, we present a model-theoretic approach including a direct construction of finite
models for satisfiable GAF sentences. That approach facilitates deriving an upper bound on the
size of small models, which in the end also leads to upper bounds on the computational complexity
of GAF-Sat.

Remark 3.8.10. There is also a probabilistic proof for the decidability of the Gödel-Kalmár-Schütte
fragment known [GS83], see also Section 6.2.3 in [BGG97]. Since GKS is a syntactic extension of
the Ackermann fragment, the proof shows decidability for the latter as well. Although the arguments
are indirectly applicable to GAF, via the translation to Ackermann sentences, it might be worthwhile
to check whether the probabilistic approach can be applied to GAF sentences directly. We may have
to guess some parameters of the probabilistic construction or use upper bounds derivable from what
we already know about satisfiable GAF sentences.

3.9 The Generalized Gödel–Kalmár–Schütte Fragment (GGKS)

It is only a tiny step from the Ackermann fragment to the Gödel–Kalmár–Schütte fragment: simply
allow two consecutive universal quantifiers in the quantifier prefix instead of only one. We will
see shortly, that, if one views the definition of the generalized Ackermann fragment from the right
angle, it is a similarly small step to go from GAF to a generalization of the Gödel–Kalmár–Schütte
fragment, which we shall call the generalized Gödel–Kalmár–Schütte fragment (GGKS). Intuitively
speaking, a GGKS sentence is of the form ϕ := ∀x̄1∃ȳ1ū1 . . . ∀x̄n∃ȳnūn. ψ with quantifier-free ψ
and that satisfies the following properties. Each atom in ϕ contains only variables from some
subsequence of ϕ’s quantifier prefix of the form ∃∗∀∀∃∗. We allow only fixed pairs of universally
quantified variables to co-occur in atoms. Any two atoms that are associated with the same pair
have the same ∃∗∀∀∃∗-subsequence as source of all their variables. The same applies to any two
atoms that share some variable from the trailing ∃∗-block of their respective quantifier subsequence.

Definition 3.9.1 (Generalized Gödel–Kalmár–Schütte fragment (GGKS)).
Let ϕ := ∀x̄1∃ȳ1ū1 . . . ∀x̄n∃ȳnūn. ψ be a relational first-order sentence without equality. Let At be
the set of all atoms occurring in ϕ and let x̄ := x̄1∪ . . .∪ x̄n, ȳ := ȳ1∪ . . .∪ ȳn, and ū := ū1∪ . . .∪ ūn.
Like in Definition 3.7.1, we define the index of a variable v ∈ x̄ ∪ ȳ ∪ ū by idx(v) := k idx(v)if and only
if v ∈ x̄k ∪ ȳk ∪ ūk. The sentence ϕ belongs to the generalized Gödel–Kalmár–Schütte fragment
(GGKS) if and only if the following conditions are satisfied.

(i) There is some partition of the variables in x̄ into a sequence X := {x1, x
′
1} . . . {xm, x′m} Xof

nonempty, pairwise disjoint sets with at most two variables each (xi = x′i is allowed).

78 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

(ii) There is a partition of At into sets At∅ and Atx,x′ with {x, x′} ∈ X , such that the following
requirements are met:

(ii.a) vars(At∅) ⊆ ȳ;

(ii.b) for every {x, x′} ∈ X with idx(x) ≤ idx(x′) we have vars(Atx,x′) ⊆ ȳ1 ∪ . . .∪ ȳidx(x)−1 ∪
{x, x′} ∪ ūidx(x′) ∪ . . . ∪ ūn;

(ii.c) for all distinct sets {x1, x
′
1}, {x2, x

′
2} ∈ X we have vars(Atx1,x′1

)∩ vars(Atx2,x′2
)∩ ū = ∅.

Since the tuples x̄i and ȳi, ūi in any GGKS sentence ϕ may be empty, ϕ’s quantifier prefix
does not have to start with a universal quantifier and it does not have to end with an existential
quantifier. Moreover, notice that every variable u ∈ ū that occurs in ϕ is associated with exactly
one set {x, x′} ∈ X containing at least one and at most two reference variables x, x′ ∈ x̄, determined
by the set Atx,x′ in which u occurs. Intuitively speaking, like in the case of GAF, any quantifier
∃u with u ∈ ū can be shifted out of the scope of any universal quantifier that does not bind one of
u’s reference variables.

Deciding membership in GGKS for a given sentence can be done deterministically in polynomial
time. The procedure is based on the concepts that we already used for deciding membership in
GAF.

Theorem 3.9.2. Deciding whether a given first-order sentence belongs to GGKS can be done
deterministically in time that is polynomial in the length of any reasonable encoding of the input
sentence.

Proof sketch. We only slightly adapt the proof of Theorem 3.7.3. Let ϕ := ∀x̄1∃v̄1 . . . ∀x̄n∃v̄n. ψ be
any relational first-order sentence in prenex normal form with quantifier-free ψ. Let x̄ := x̄1∪. . .∪x̄n
and v̄ := v̄1 ∪ . . . ∪ v̄n. For the moment we do neither know a priori how the variables in each
existential quantifier block ∃v̄k are to be partitioned into ȳk and ūk, nor do we know the partition
of x̄ into the sequence X = {x1, x

′
1} . . . {xm, x′m}.

Let the graph Gϕ := 〈V,E〉Gϕ, C↑v ,

at(C↑v),
at0, atx, Ux

and the upward closure C↑v be defined like in the proof of Theo-

rem 3.7.3. In addition, we take over the definitions of at(C↑v) for v ∈ v̄ and atx for x ∈ x̄ and at0.
Moreover, we reuse the notation Ux := vars(atx) ∩⋃i≥idx(x) v̄i.

Claim I: Assume that

(A) for every x ∈ x̄ there is at most one x′ ∈ x̄ \ {x} such that atx ∩ atx′ is nonempty, and

(B) for all distinct x, x′ ∈ x̄ with idx(x) ≤ idx(x′) and nonempty atx ∩ atx′ we have

v 6∈ vars(atx ∪ atx′) for every v ∈ ⋃idx(x′)−1
i=idx(x) v̄i.

Let X ′ := {x1, x
′
1}, . . . , {xm′ , x′m′}X ′ be a maximal sequence of nonempty, pairwise disjoint

subsets of x̄, each containing exactly two distinct variables xi, x
′
i for which atxi ∩ atx′i is

nonempty. Let X := X ′{xm′+1} . . . {xm}X be a maximal extension of X ′ that constitutes a
partition of x̄, i.e. every x ∈ x̄ occur is exactly one set in X . We define the sets atx,x′ :=
atx ∪ atx′atx,x′ , Ux,x′ ,

at∅

and Ux,x′ := Ux ∪ Ux′ for every {x, x′} ∈ X . Moreover, we set at∅ := at0. Then,
we observer the following properties:

(i) For all distinct {x1, x
′
1}, {x2, x

′
2} ∈ X we have atx1,x′1

∩ atx2,x′2
= ∅.

(ii) For every {x, x′} ∈ X we have vars(atx,x′) ∩ x̄ = {x, x′}.
(iii) For every {x, x′} ∈ X we have Ux,x′ ∩ vars(at∅) = ∅.
(iv) For all distinct {x1, x

′
1}, {x2, x

′
2} ∈ X with min

(
idx(x1), idx(x′1)

)
≤ min

(
idx(x2), idx(x′2)

)
we have Ux1,x′1

∩ vars(atx2,x′2
) = ∅.

3.9. THE GENERALIZED GÖDEL–KALMÁR–SCHÜTTE FRAGMENT (GGKS) 79

Proof:

Ad (i): Suppose there are variables x1, x2 stemming from distinct sets {x1, x
′
1}, {x2, x

′
2} ∈ X

and there is some atom A ∈ atx1
∩ atx2

. Then, x1 6= x2. Moreover, by maximality of
X ′, we must have {x1, x2} as one element in X . Hence, {x1, x2}, {x1, x

′
1}, and {x2, x

′
2}

are distinct, and Condition (A) entails x1 = x′1 and x2 = x′2. But this contradicts the
requirement that all sets in X are pairwise disjoint.

Ad (ii): This is a direct consequence of (i) and the definition of atx, atx′ , and atx,x′ .

Ad (iii): Whenever v ∈ Ux,x′ ⊆
⋃
i≥min

(
idx(x),idx(x′)

) v̄i we have that at(C↑v) ⊆ atx,x′ .

Suppose there is some v ∈ Ux,x′ ∩ vars(at∅), i.e. there is some A ∈ at∅ = at0 with
v ∈ vars(A). Since A ∈ at(C↑v) ⊆ atx,x′ , by definition of at0, A cannot occur in at0 and,
hence, not in at∅.

Ad (iv): Whenever v ∈ Ux1,x′1
⊆ ⋃

i≥min
(

idx(x1),idx(x′1)
) v̄i, we observe that at(C↑v) ⊆ atx1,x′1

.

Suppose there is some v ∈ Ux1,x′1
∩ vars(atx2,x′2

). Hence, there must be some atom

A ∈ atx2,x′2
in which v occurs. But since A belongs to at(C↑v), we know that A ∈ atx1,x′1

.

This contradicts (i). ♦

Claim II: The sentence ϕ belongs to GGKS if and only if it satisfies Conditions (A) and (B) from
Claim I.

Proof: Regarding the if -direction, we construct the sequence X as described in the proof of Claim I,
we set At∅ := at∅ Atx,x′ , At∅and for every {x, x′} ∈ X we set Atx,x′ := atx,x′ . Moreover, we partition
every existential quantifier block ∃v̄k into ∃ȳk∃ūk by setting ūk := v̄k ∩

⋃
{x,x′}∈X Ux,x′ and

ȳk := v̄k \ ūk. Condition (i) of Definition 3.9.1 is certainly satisfied by X . Condition (ii.a) of
Definition 3.9.1 is satisfied due to the following observations. By definition of at∅ and the
atx,x′ , we have vars(At∅) ∩ x̄ = ∅. By virtue of Claim I(iii) and the above partition of the
v̄k into ȳk and ūk, we have ūk ∩ vars(At∅) = ∅ for every k. Hence, vars(At∅) ⊆ ȳ1 ∪ . . . ∪ ȳn.
Condition (ii.b) of Definition 3.9.1 is a consequence of the way we partition the v̄k into ȳk, ūk.
By Condition (B), any variable v ∈ v̄ ∩ vars(Atx,x′) with index idx(v) = k belongs to Ux,x′ if
and only if k ≥ max

(
idx(x), idx(x′)

)
. Hence, again by Condition (B), we have v ∈ ȳk if and

only if k < min
(
idx(x), idx(x′)

)
, and we have v ∈ ūk otherwise. Moreover, Claim I(ii) states

that x, x′ are the only variables from x̄ that occur in Atx,x′ . Condition (ii.c) of Definition 3.9.1
follows immediately from Claim I(iv) and the the fact that ū1 ∪ . . . ∪ ūn =

⋃
{x,x′}∈X Ux,x′ .

Regarding the only if -direction we argue as follows. Condition (A) of Claim I is certainly
satisfied, if Conditions (ii.b) and (ii.c) of Definition 3.9.1 are met by ϕ. Consider any pair of
distinct variables x, x′ ∈ x̄ with idx(x) ≤ idx(x′) and nonempty atx ∩ atx′ . By construction
of atx and atx′ , a nonempty intersection of the two entails that the set atx ∪ atx′ cannot be
partitioned into two parts at1, at2 such that at1 contains x, at2 contains x′, and at1 and at2

do not share any variables from {x, x′} ∪ ūidx(x) ∪ . . . ∪ ūn. Hence, by Conditions (ii.b) and
Conditions (ii.c) of Definition 3.9.1, we must have {x, x′} ∈ X . But then, Condition (ii.b)
of Definition 3.9.1 entails that vars(atx ∪ atx′) ∩ ūk = vars(Atx,x′) ∩ ūk is empty for every k
with idx(x) ≤ k < idx(x′). This entails that Condition (B) of Claim I is satisfied. ♦

By Claim II, Conditions (A) and (B) from Claim I together yield a criterion to decide whether
ϕ belongs to GGKS or not. It remains to argue that this criterion can be checked deterministically
in polynomial time. We have already argued in the proof of Theorem 3.7.3 that the graph Gϕ and
the sets atx can be computed deterministically in time that is polynomial in ‖ϕ‖. The sum of the

lengths of the atoms in all the atx taken together is at most |x̄| · len(ϕ) ≤
(
len(ϕ)

)2
. Therefore,

checking whether atx ∩ atx′ for any x, x′ is empty and, hence, checking Conditions (A) and (B)
can be done in time polynomial in ‖ϕ‖.

GGKS obviously contains sentences that GAF does not, e.g. ∀x1x2. P (x1, x2). It is also easy to
see that GGKS is an extension of GAF: if we restrict the sequences X so that they contain only

80 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

singleton sets, then we essentially obtain the definition of GAF. Hence, also AF and MFO are a
subset of GGKS. Finally, consider any GKS sentence ∃ȳ∀x1x2∃ū. ψ with quantifier-free ψ. We
define the sequence X := {x1, x2} and let Atx1,x2

be the set of all atoms occurring in ϕ. Then, X
and Atx1,x2 satisfy the conditions of Definition 3.9.1 and thus witness that ϕ belongs to GGKS.

Proposition 3.9.3. GGKS properly contains GKS, GAF, AF, and MFO.

In the previous section we have seen that GAF is contained in Maslov’s fragment K. We shall
see now that we left the realm of the latter class with the step from GAF to GGKS.

Proposition 3.9.4. GGKS and Maslov’s fragment K are syntactically incomparable classes of
sentences.

Proof. The following sentence witnesses that GGKS is not contained in Maslov’s fragment K:

∀x1x
′
1x2x

′
2. P (x1, x

′
1) ∨Q(x2, x

′
2) .

The sentence belongs to GGKS but not to Maslov’s class K. On the other hand, it is easy to find
sentences that belong to K but not to GGKS, e.g.

∀x1x2x3∃y1y2. P (x1, x2, y1) ∧Q(x3, y1, y2) ∧R(x1, x2, x3) .

Next, we sketch an equivalence-preserving translation from GGKS into GKS. The bulk of the
work was already described in Section 3.8. Again, we proceed in two stages, first transforming a
given GGKS sentence into GGKS special form and, afterwards, into an equivalent GKS sentence.

Lemma 3.9.5. If ϕ belongs to GGKS, we can effectively construct an equivalent sentence ϕ′ in
standard form, in which every subformula lies within the scope of at most two universal quantifiers,
and the scope of every universal quantifier contains at most one more universal quantifier. Moreover,
all literals in ϕ′ occur in ϕ (modulo variable renaming).

The transformation mentioned in the lemma is essentially a slight adaptation of the analogous
transformation for the GAF case (cf. Lemma 3.8.1). The sentence ϕ′ can easily be further
transformed into a particular shape to which we shall refer as GGKS special formGGKS

special form
:

∃z̄.
∧
i

(∨
j

∀xi,jx′i,j∃ȳi,j . χi,j(z̄, xi,j , x′i,j , ȳi,j)
)
∨ ηi(z̄)

where the χi,j and the ηi are quantifier free. One can show that every such sentence is equivalent
to some GKS sentence. Therefore, every GGKS sentence is equivalent to a GKS sentence.

Lemma 3.9.6. Every GGKS sentence ϕ in GGKS special form can be effectively transformed into
an equivalent sentence ϕ′ that has the shape ∃z̄∀xx′∃ȳ. ψ with quantifier-free ψ.

Proof. Since ϕ is in GGKS special form, it has the shape
ϕ′′ := ∃z̄.∧i(∨j ∀xi,jx′i,j∃ȳi,j . χi,j(z̄, xi,j , x′i,j , ȳi,j)) ∨ ηi(z̄),

where the χi,j and the ηi are quantifier free. Consider any subformula of the form ψ′ :=∨
j ∀xx′ ∃ȳ. χj(z̄, x, x′, ȳ), possibly containing free variables from z̄. By virtue of Lemma 3.8.3,

ψ′ is equivalent to some formula of the form ∃v̄′ȳ′. χ′(z̄, v̄′, ȳ′) ∧ ∀xx′∃ȳ. χ′′(z̄, x, x′, ȳ, v̄′, ȳ′) with
quantifier-free χ′, χ′′. Hence, ϕ′′ is equivalent to some sentence that, after shifting some quantifiers
outwards, is of the form ∃z̄.∧i(∃ūi∀xix′i∃w̄i. ψ′′i (z̄, ūi, xi, x

′
i, w̄i)

)
∨ ηi(z̄), where the ψ′′i and the ηi

are quantifier free. A prenex version of this sentence yields the sought ϕ′.

Theorem 3.9.7. Every GGKS sentence is equivalent to some GKS sentence.

Since we know that GKS enjoys the finite model property and, hence, the decidability problem
for GKS is decidable, this result immediately entails decidability of the satisfiability problem for
GGKS (GGKS-Sat)GGKS-Sat .

3.9. THE GENERALIZED GÖDEL–KALMÁR–SCHÜTTE FRAGMENT (GGKS) 81

Corollary 3.9.8. The satisfiability problem for GGKS is decidable, and GGKS enjoys the finite
model property.

As we have already pointed out in Remark 3.8.10, Gurevich and Shelah [GS83] gave a proba-
bilistic proof for the decidability of GKS, see also Section 6.2.3 in [BGG97]. It would be interesting
to approach decidability of GGKS-Sat using a probabilistic approach without relying on the
translation from GGKS to GKS.

We finish the present section emphasizing that GGKS sentences can be substantially more
succinct than equivalent GKS sentences. The following theorem formulates a lower bound regarding
the incurred blowup that comes along with any equivalence-preserving translation from GGKS to
GKS.

Theorem 3.9.9. There is a class of GGKS sentences and some positive integer n0 such that
for every integer n ≥ n0 the class contains a sentence ϕ with a length linear in n for which any
equivalent GKS sentence has a length that is at least exponential in n.

Proof sketch. Let n ≥ 1 be some positive integer. Consider the following first-order sentence in
which the sets {x1, x2} and {y1, y2} are separated:

ϕ := ∀x2∃y2∀x1∃y1.
8n∧
i=1

(
Pi(x1, x2)↔ Qi(y1, y2)

)
.

In analogy to the proof of Theorem 3.2.7, we construct the following model A for ϕ. The
construction is based on the sets SkS1 :=

{
S ⊆ [8n]

∣∣ |S| = 2n
}

and S2 :=
{
S ⊆ S1

∣∣ |S| = 1
2 |S1|

}
.

We observe that

|S1| =
(

8n

2n

)
≥
(

8n

2n

)2n

= 24n and |S2| =
(|S1|
|S1|/2

)
≥
(|S1|
|S1|/2

)|S1|/2
≥ 224n−1

.

Having the sets S1,S2, we now define the structure A as follows: A

A :=
{
a

(1)
S , b

(1)
S

∣∣ S ∈ S1

}
∪
{
a

(2)
S , b

(2)
S

∣∣ S ∈ S2

}
,

PAi :=
{
〈a(1)
S1
, a

(2)
S2
〉 ∈ A2

∣∣ i ∈ S1 ∈ S2

}
for i = 1, . . . , 8n, and

QAi :=
{
〈b(1)
S1
, b

(2)
S2
〉 ∈ An

∣∣ i ∈ S1 ∈ S2

}
for i = 1, . . . , 8n.

Clearly, for any choice of S1, S2 and every i, 1 ≤ i ≤ 8n, we have

A,
[
x1 7→a

(1)
S1
, x2 7→a

(2)
S2
, y1 7→b

(1)
S1
, y2 7→b

(2)
S2

]
|= Pi(x1, x2)↔ Qi(y1, y2) .

For any other choice of pairs 〈c1, c2〉, i.e. there do not exist sets S1 ∈ S1 and S2 ∈ S2 such

that 〈c1, c2〉 equals 〈a(1)
S1
, a

(2)
S2
〉 or 〈b(1)

S1
, b

(2)
S2
〉, we observe A, [x1 7→c1, x2 7→c2] 6|= Pi(x1, x2) and

A, [y1 7→c1, y2 7→c2] 6|= Qi(y1, y2) for every i. Hence,

A, [x1 7→c1, x2 7→c2, y1 7→c1, y2 7→c2] |=
8n∧
i=1

Pi(x1, x2)↔ Qi(y1, y2) .

Consequently, A is a model of ϕ.
For every S ∈ S1 ∪ S2 we define the structure A−S A−Sas the substructure of A induced by the

domain A−S := A \ {b(k)
S }, where k = 1 if S ∈ S1 and k = 2 if S ∈ S2. Like in the proof of

Theorem 3.2.7 we can prove the following claim.

Claim I: For every S ∈ S1 ∪ S2 the substructure A−S of A does not satisfy ϕ. ♦

82 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

Let ϕ∗ := ∃z̄∀x1x2∃ȳ. ψ∗ with quantifier-free ψ∗ be a shortest GKS sentence equivalent to
ϕ. Suppose that the length of ϕ∗ is less than 2n. Let ψ′ :=

∨
i∈I χi(z̄, x1, x2, ȳ) be a shortest

disjunction of conjunctions of literals that is equivalent to ψ∗. We observe that the index set
I contains fewer than 22n indices, for otherwise we could find a shorter formula satisfying our
requirements. For the same reason every conjunction χi contains at most 2n literals.

Let d̄ be some tuple for which we have

A, [z̄ 7→d̄] |= ∀x1x2∃ȳ.
∨
i∈I

χi(z̄, x1, x2, ȳ) .

Let D := {b(2)
S | S ∈ S2 and b

(2)
S 6∈ d̄}D . Because of |d̄| ≤ |z̄| ≤ len(ϕ∗) ≤ 2n and |S2| ≥ 224n−1 ≥ 223n

,

we have |D| ≥ 222n

for sufficiently large n. By Claim I, we observe

A−S , [z̄ 7→d̄] 6|= ∀x1x2∃ȳ.
∨
i∈I

χi(z̄, x1, x2, ȳ)

for every S with b
(2)
S ∈ D. Hence, for every b

(2)
S ∈ D there is some pair c1, c2 ∈ A \ {b(2)

S }, some

tuple b̄ containing b
(2)
S and some index iS ∈ I such that

A, [z̄ 7→d̄, x1 7→c1, x2 7→c2, ȳ 7→b̄] |= χi(z̄, x1, x2, ȳ)

and

A−S , [z̄ 7→d̄, x1 7→c1, x2 7→c2] 6|= ∃ȳ. χi(z̄, x1, x2, ȳ) .

Because of |I| ≤ 22n and |D| ≥ 222n

, there must be some index i∗ that appears as iS for at least

|D|
|I| ≥

222n

22n
= 222n−2n ≥ 2(2n)2/2n = 22n

elements b
(2)
S ∈ D, in case n is sufficiently large. Let D∗ ⊆ DD∗ be the set that comprises exactly

those elements. In other words, we have |D∗| ≥ 22n and for every b
(2)
S ∈ D∗ there is some pair

c1, c2 and some tuple b̄ containing b
(2)
S such that

A, [z̄ 7→d̄, x1 7→c1, x2 7→c2, ȳ 7→b̄] |= χi∗(z̄, x1, x2, ȳ) (3.7)

and

A−S , [z̄ 7→d̄, x1 7→c1, x2 7→c2] 6|= ∃ȳ. χi∗(z̄, x1, x2, ȳ) . (3.8)

Consider some b
(2)
S ∈ D∗ with S ∈ S2 and fix it. The only atoms in χi∗ that could possibly

contribute to the effect described in (3.7) and (3.8) for b
(2)
S have the form Qj(z, y

′), Qj(y, y′),
Qj(x1, y

′), or Qj(x2, y
′) for z ∈ z̄, y, y′ ∈ ȳ, and 1 ≤ j ≤ 8n, and, moreover, the variables z, y, x1, x2

need to be assigned values b
(1)
T with T ∈ S1. Let S ′1 be the set collecting all the T from S1 that

are assigned to such variables occurring in atoms of the mentioned kind. As χi∗ contains at most
2n such variables, |S ′1| ≤ 2n. Recall that S contains 1

2 |S1| ≥ 24n−1 sets of indices. By construction
of S2, there must be some some S′ ∈ S2 such that for every T ∈ S ′1 we have T ∈ S′ if and only if

T ∈ S. Let b̄′ be the tuple that results from b̄ by replacing every occurrence of b
(2)
S in the tuple

by b
(2)
S′ . Then, we get A−S , [z̄7→d̄, x1 7→c1, x2 7→c2, ȳ 7→b̄′] |= χi∗(z̄, x1, x2, ȳ), which contradicts (3.8).

Consequently, the length of the sentence ϕ∗ cannot be less than 2n.

3.10 Separateness and Guarded Quantification

In the beginning of Chapter 3 — more precisely, on page 26 —, we have briefly introduced the
concept of guarded quantification. The idea is that a quantifier Qū is not only accompanied by its

3.10. SEPARATENESS AND GUARDED QUANTIFICATION 83

scope ψ(ū, v̄) but also by a guard γ(ū, v̄). A guard is a formula that contains all variables that
occur freely in the scope ψ(ū, v̄) and satisfies additional syntactic restrictions. For instance, guards
may be restricted to atomic formulas — which is characteristic for the guarded fragment —, and
we then speak of atomic guards. Or guards γ(ū, v̄) may be restricted to nonempty conjunctions of
atoms A1(ū, v̄) ∧ . . . ∧Ak(ū, v̄) such that every variable u ∈ v̄ co-occurs with every v ∈ ū ∪ v̄ in at
least one Aj . This kind of guards of called loose guards.

Given any such guard γ(ū, v̄), guarded quantification has two possible shapes: ∀ū. γ(ū, v̄) →
ψ(ū, v̄) and ∃ū. γ(ū, v̄) ∧ ψ(ū, v̄), which are dual to one another. If we restrict our attention to
first-order sentences in which all quantifiers are guarded in the described way by atomic guards or
loose guards, then we are in the realm of the guarded fragment or the loosely guarded fragment.

Definition 3.10.1 (Guarded fragment (GF) and loosely guarded fragment (LGF)). An atomic
guard γ(ū, v̄) is an atom A(ū, v̄) such that all u ∈ ū ∪ v̄ occur in A(ū, v̄). A loose guard γ(ū, v̄) is
a nonempty conjunction of atoms γ(ū, v̄) := A1(ū, v̄) ∧ . . . ∧Ak(ū, v̄) such that ū is nonempty, ū
and v̄ are disjoint, and all u, v with u ∈ ū and v ∈ ū ∪ v̄ co-occur in at least one Aj.

We define the set of loosely guarded formulas inductively:

(i) every relational atom is a loosely guarded formula, equality is admitted;

(ii) every Boolean combination of loosely guarded formulas is a loosely guarded formula;

(iii) for all tuples ū, v̄ and any loose guard γ(ū, v̄) the following formulas are loosely guarded
formulas:
∀ū.
(
γ(ū, v̄)→ ψ(ū, v̄)

)
— abbreviated by

(
∀ū. γ(ū, v̄)

)
ψ(ū, v̄) — and

∃ū.
(
γ(ū, v̄) ∧ ψ(ū, v̄)

)
— abbreviated by

(
∃ū. γ(ū, v̄)

)
ψ(ū, v̄).

Notice that we assume in any loosely guarded formula
(
Qū. γ(ū, v̄)

)
ψ(ū, v̄) that (a) all variables

that occur freely in ψ also occur in γ and (b) every variable that is bound by Qū co-occurs with
every free variable from ψ in some atom in γ.

The loosely guarded fragment (LGF) is the class of all loosely guarded sentences. The guarded
fragment (GF) is defined in the same way, except that we require all guards to be atomic.

We shall occasionally use sloppy language and speak of LGF formulas when we mean loosely
guarded formulas that are not necessarily closed. Formally, LGF exclusively contains sentences.
The same applies to GF formulas.

At first glance it seems that guarded quantification and separateness of quantified variables are
two opposite properties. In particular, any guard γ(ū, v̄) in a formula

(
∀ū. γ(ū, v̄)

)
ϕ(ū, v̄) has to

ensure that every u ∈ ū co-occurs with each v ∈ v̄ in at least one atom in γ. Clearly, this destroys
any separateness of variables from ū and v̄ which might be separated in ϕ. However, it turns out
that guardedness and separateness can be conceived as complementing concepts. Combining the
two in a certain way can help extending the (loosely) guarded fragment of first-order logic in a way
that preserves decidability of the satisfiability problem.

Definition 3.10.2 (Separated loosely guarded fragment (SLGF)). Two tuples x̄, ȳ are guard-
separated in a loosely guarded formula ψ if for every atom A in ψ we either have vars(A)∩ x̄ = ∅ or
vars(A)∩ȳ = ∅; the same must hold for every guard γ in ψ: either vars(γ)∩x̄ = ∅ or vars(γ)∩ȳ = ∅.

We define the set of separated loosely guarded formulas inductively as follows. (i) and (ii) are
the same as for loosely guarded formulas (cf. Definition 3.10.1). Let ū, v̄, z̄ be tuples of variables
and let γ(ū, v̄) be any loose guard.

(iii) The following are separated loosely guarded formulas: ∀ū.
(
γ(ū, v̄) → ψ(ū, v̄, z̄)

)
and

∃ū.
(
γ(ū, v̄) ∧ ψ(ū, v̄, z̄)

)
, where the sets ū and z̄ are guard-separated in ψ.

The separated loosely guarded fragment (SLGF) is the class of all separated loosely guarded
sentences. When we start from the set of guarded formulas instead of loosely guarded formulas, we
obtain the separated guarded fragment (SGF).

84 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

As for GF and LGF, we shall occasionally use sloppy language and speak of SLGF formulas
and SGF formulas when we mean separated (loosely) guarded formulas that are not necessarily
closed.

Remark 3.10.3. Notice that any formula of the form ∀ūx̄. γ(ū, v̄) ∧ δ(x̄, ȳ) → ψ(ū, v̄, x̄, ȳ, z̄)
where ū, x̄, and z̄ are pairwise distinct and guard-separated in ψ is equivalent to the SLGF
formula

(
∀ū. γ(ū, v̄)

)((
∀x̄. δ(x̄, ȳ)

)
ψ(ū, v̄, x̄, ȳ, z̄)

)
. A dual observation can be made for existential

quantification. This means that, under certain restrictions, we can mix variables that are subject
to distinct guards in a single quantifier block. One could incorporate this idea into the definition
of SLGF and, hence, obtain a syntactically slightly extended version. However, for the sake of
simplicity, we adhere to the simpler definition given above.

It is easy to see that SLGF is indeed a proper syntactic extension of LGF, and that the same
applies to SGF and GF. A simple sentence witnessing the strictness of these containment relations
is the sentence

(
∀x. x ≈ x

)(
∃y. y ≈ y

)(
P (y)↔ ¬P (x)

)
. It belongs neither to GF nor to LGF, but

to both SGF and SLGF. Moreover, the sentence is a witness of the following observation: Every
MFO sentence can be easily turned into an equivalent SGF sentence with a length linear in the
original. We just need to add trivial equations v ≈ v as guards to subformulas Qv. χ. The result of
this transformation lies in the intersection of SGF and MFO≈.

Proposition 3.10.4. SGF properly contains GF and SLGF properly contains SGF, LGF, and
GF. Moreover, every MFO sentence can be turned into an equivalent SGF sentence with a length
linear in the original.

For MFO≈ sentences the matter seems to be more complicated. The sentence ∀xy. x ≈ y, for
instance, is not an SLGF sentence and cannot be directly transformed into an equivalent SLGF
sentence in the described way.

Analogously to all the other novel first-order fragments we have defined, there exists an effective
translation procedure that transforms SLGF sentences into equivalent LGF sentences.

Lemma 3.10.5. Every SLGF formula is equivalent to some LGF formula.

Proof. We prove an auxiliary result from which the lemma follows easily: Consider any SLGF
formula ϕ :=

(
Qū. γ(ū, v̄)

)
ψ(ū, v̄, z̄) where ψ is any LGF formula, ū, v̄, z̄ are pairwise disjoint, and

ϕ’s free variables are exactly the ones in v̄, z̄. Then, ϕ is equivalent to some LGF formula ϕ′(v̄, z̄).
Moreover, any two sets of variables that are guard-separated in ϕ are also guard-separated in ϕ′.

Suppose Q is a universal quantifier (the case for existential quantification is dual). Recall that,
by definition of SLGF, the tuples ū and z̄ need to be guard-separated in ψ. Since ψ is an LGF
formula and since we assume that no variable occurs freely and bound in ϕ at the same time,
we know that in every subformula χ :=

(
Qx̄. δ(x̄, ȳ)

)
η(x̄, ȳ) of ψ we either have vars(χ) ∩ ū = ∅

or vars(χ) ∩ z̄ = ∅ (or both). Moreover, since ϕ is an SLGF formula, we have vars(A) ∩ ū = ∅
or vars(A) ∩ z̄ = ∅ for every atom in ψ. Hence, ϕ is equivalent to some formula of the form
ϕ′′ := ∀ū. γ(ū, v̄)→ ∧

i

(
χi(ū, v̄) ∨ ηi(v̄, z̄)

)
, where the χi and ηi are disjunctions of atoms, negated

atoms, or LGF formulas of the form
(
Qx̄. δ(x̄, ȳ)

)
η(x̄, ȳ). Applying distributivity and shifting the

quantifier ∀ū in ϕ′′, it is easy to show equivalence to ϕ′ :=
∧
i

((
∀ū. γ(ū, v̄)→ χi(ū, v̄)

)
∨ ηi(v̄, z̄)

)
.

This is the sought LGF formula.

Notice that the proof works irrespectively of the structure of guards. Hence, we also observe
that every SGF formula is equivalent to some GF formula.

In connection with the well-known fact that GF and LGF possess the finite model prop-
erty [Grä99b, Hod02], the obvious consequence of Lemma 3.10.5 is that the satisfiability problems
associated with SGF and SLGF (SGF-Sat and SLGF-Sat)SGF-Sat

and
SLGF-Sat

are decidable.

Theorem 3.10.6. Both SGF and SLGF possess the finite model property. Moreover, the satisfia-
bility problem for SGF sentences and SLGF sentences is decidable.

The following example illustrates the translation of SLGF sentences into LGF sentences, using
the more liberal SLGF syntax outlined in Remark 3.10.3.

3.10. SEPARATENESS AND GUARDED QUANTIFICATION 85

Example 3.10.7. Let ū, v̄, x̄, ȳ, z̄ be five pairwise disjoint tuples of variables and let γ(ū, z̄), γ′(v̄, z̄),
δ(xu, z̄), δ′(yv, z̄) be loose guards, where xu and yv denote the results of appending ū to x̄ and v̄ to
ȳ, respectively. Consider the formula

∃ūv̄. γ(ū, z̄) ∧ γ′(v̄, z̄) ∧
(
∀x̄ȳ. δ(xu, z̄) ∧ δ′(yv, z̄)→ ϕ(ū, v̄, x̄, ȳ, z̄)

)
where ϕ is quantifier free and the sets ū ∪ x̄ and v̄ ∪ ȳ are separated in ϕ. Clearly, this formula is
not loosely guarded, as there are no guarding atoms in which the variables from ū and v̄ co-occur,
and the same holds for the variables from x̄ and ȳ. Nevertheless, the formula is equivalent to
some LGF formula, as witnessed by the following transformations, where the ψi and χi are certain
disjunctions of literals and the ψ′j and χ′j are certain conjunctions of literals and basic formulas:

∃ūv̄. γ(ū, z̄) ∧ γ′(v̄, z̄) ∧
(
∀x̄ȳ. δ(xu, z̄) ∧ δ′(yv, z̄)→ ϕ(ū, v̄, x̄, ȳ, z̄)

)
|=| ∃ūv̄. γ(ū, z̄) ∧ γ′(v̄, z̄) ∧

(
∀x̄ȳ. δ(xu, z̄) ∧ δ′(yv, z̄)→

∧
i

(
ψi(x̄, ū, z̄) ∨ χi(ȳ, v̄, z̄)

))
|=| ∃ūv̄. γ(ū, z̄) ∧ γ′(v̄, z̄) ∧

∧
i

(
∀x̄ȳ. δ(xu, z̄) ∧ δ′(yv, z̄)→ ψi(x̄, ū, z̄) ∨ χi(ȳ, v̄, z̄)

)
|=| ∃ūv̄. γ(ū, z̄) ∧ γ′(v̄, z̄) ∧

∧
i

(
∀x̄ȳ.

(
δ(xu, z̄)→ ψi(x̄, ū, z̄)

)
∨
(
δ′(yv, z̄)→ χi(ȳ, v̄, z̄)

))
|=| ∃ūv̄. γ(ū, z̄) ∧ γ′(v̄, z̄) ∧

∧
i

((
∀x̄. δ(xu, z̄)→ ψi(x̄, ū, z̄)

)︸ ︷︷ ︸
basic formula with free

variables from ū, z̄

∨
(
∀ȳ. δ′(yv, z̄)→ χi(ȳ, v̄, z̄)

)︸ ︷︷ ︸
basic formula with free

variables from v̄, z̄

)

|=| ∃ūv̄. γ(ū, z̄) ∧ γ′(v̄, z̄) ∧
∨
j

(
ψ′j(ū, z̄) ∧ χ′j(v̄, z̄)

)
|=|
∨
j

(
∃ūv̄. γ(ū, z̄) ∧ γ′(v̄, z̄) ∧ ψ′j(ū, z̄) ∧ χ′j(v̄, z̄)

)
|=|
∨
j

((
∃ū. γ(ū, z̄) ∧ ψ′j(ū, z̄)

)
∧
(
∃v̄. γ′(v̄, z̄) ∧ χ′j(v̄, z̄)

))
.

The final result belongs to LGF.

We conclude this section with an investigation of the succinctness gap between SLGF and LGF.
The following theorem entails that there is no elementary upper bound on the length of the LGF
sentences that result from any equivalence-preserving transformation of SLGF sentences into LGF.

Theorem 3.10.8. There is a class of SLGF sentences such that for every integer n ≥ 3 the class
contains a sentence ϕ with n ∀∃ alternations and with a length polynomial in n for which any
equivalent LGF sentence has at least (n− 1)-fold exponential length in n.

Proof sketch. Let n ≥ 3. Consider the following SLGF sentence in which the sets {x1, . . . , xn} and
{y1, . . . , yn} are separated:

ϕ :=
(
∀xn. Rn(xn)

)(
∃yn. Tn(yn)

)
. . .(

∀x1. R1(x1, . . . , xn)
)(
∃y1. T1(y1, . . . , yn)

)
.

4n∧
i=1

(
Pi(x1, . . . , xn)↔ Qi(y1, . . . , yn)

)
.

In order to construct a particular model of ϕ, we inductively define the following sets: SkS1 :={
S ⊆ [4n]

∣∣ |S| = 2n
}

, Sk+1 :=
{
S ∈ PSk

∣∣ |S| = 1
2 · |Sk|

}
for every k ≥ 1. Hence, we observe that

|S1| =
(

4n
2n

)
≥
(

4n
2n

)2n
= 22n,

|S2| =
(|S1|
|S1|/2

)
≥
(|S1|
|S1|/2

)|S1|/2
= 2|S1|/2 ≥ 222n/2 = 222n−1

,

86 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

...

|Sn| =
(|Sn−1|
|Sn−1|/2

)
≥ 2|Sn−1|/2 ≥ 222

.

.

.

22n−1−1

−1 ≥ 2↑n(2n− (n− 1)) = 2↑n(n+ 1),

where the inequality
(
n
k

)
≥ (n/k)k can be found in [CSRL01] (page 1097), for example.

Having the sets Sk, we now define the structure A as follows:A

A :=
⋃n
k=1

{
a

(k)
S , b

(k)
S

∣∣ S ∈ Sk},

PAi :=
{
〈a(1)
S1
, . . . , a

(n)
Sn
〉 ∈ An

∣∣ i ∈ S1 ∈ S2 ∈ . . . ∈ Sn
}

for i = 1, . . . , 4n,

QAi :=
{
〈b(1)
S1
, . . . , b

(n)
Sn
〉 ∈ An

∣∣ i ∈ S1 ∈ S2 ∈ . . . ∈ Sn
}

for i = 1, . . . , 4n,

RAj :=
{
〈a(j)
Sj
, . . . , a

(n)
Sn
〉 ∈ An

∣∣ Sj ∈ S2 ∈ . . . ∈ Sn
}

for j = 1, . . . , n, and

TAj :=
{
〈b(j)
Sj
, . . . , b

(n)
Sn
〉 ∈ An

∣∣ Sj ∈ S2 ∈ . . . ∈ Sn
}

for j = 1, . . . , n.

For any choice of S1, . . . , Sn with S1 ∈ . . . ∈ Sn we observe

A,
[
x1 7→a

(1)
S1
, . . . , xn 7→a

(n)
Sn

]
|=

n∧
j=1

Rj(xj , . . . , xn) ,

A,
[
y1 7→b

(1)
S1
, . . . , yn 7→b

(n)
Sn

]
|=

n∧
j=1

Tj(yj , . . . , yn) , and

A,
[
x1 7→a

(1)
S1
, . . . , xn 7→a

(n)
Sn
, y1 7→b

(1)
S1
, . . . , yn 7→b

(n)
Sn

]
|=

4n∧
i=1

Pi(x1, . . . , xn)↔ Qi(y1, . . . , yn) .

For any tuple 〈cj , . . . , cn〉 for which there do not exist sets Sj ∈ Sj , . . . , Sn ∈ Sn such that Sj ∈ . . . ∈
Sn and 〈c1, . . . , cn〉 equals 〈a(j)

Sj
, . . . , a

(n)
Sn
〉, we observe A, [xj 7→cj , . . . , xn 7→cn] 6|= Rj(xj , . . . , xn).

Hence, for any variable assignment β we have

A, β[xj 7→cj , . . . , xn 7→cn] |= Rj(xj , . . . , xn)→

Consequently, A is a model of ϕ.
Consider the following simple two-player game with Players A and BA,B where both players have

complete and instantaneous knowledge about all moves that are made by either player. In the

first round A moves first by picking some domain element a
(n)
SA,nSA,j , a

(j)
SA,j

for some set SA,n ∈ Sn. B knows

about A’s choice and answers by picking a domain element b
(n)
SB,nSB,j , b

(j)
SB,j

for some set SB,n ∈ Sn. The
game continues for n − 1 more rounds, where in every round Player A picks a domain element

a
(j)
SA,j

with SA,j ∈ SA,j+1 and B answers by picking some b
(j)
SB,j

with SB,j ∈ SB,j+1. Hence, in

the last round the chosen domain elements a
(1)
SA,1

and b
(1)
SB,1

are such that SA,1 and SB,1 are both

nonempty subsets of [4n]. Player A wins if and only if

A,
[
x1 7→a

(1)
SA,1

, . . . , xn 7→a
(n)
SA,n

, y1 7→b
(1)
SB,1

, . . . , yn 7→b
(n)
SB,n

]
6|= Pi(x1, . . . , xn)↔ Qi(y1, . . . , yn)

for some i ∈ [4n], and Player B wins if and only if

A,
[
x1 7→a

(1)
SA,1

, . . . , xn 7→a
(n)
SA,n

, y1 7→b
(1)
SB,1

, . . . , yn 7→b
(n)
SB,n

]
|= Pi(x1, . . . , xn)↔ Qi(y1, . . . , yn)

for every i ∈ [4n]. Since A is a model of ϕ, there must exist a winning strategy for B.

3.10. SEPARATENESS AND GUARDED QUANTIFICATION 87

Claim I: There is exactly one winning strategy for B, namely, for every j = n, . . . , 1 Player B

picks the element b
(j)
SA,j

in round n− j + 1, i.e. for every j we have SB,j = SA,j .

Proof: It is easy to see that the described strategy is a winning strategy for B.

Assume B deviates from this strategy. This means there exists some j∗, 1 ≤ j∗ ≤ n, such that
B did not adhere to the described strategy in the (n− j∗ + 1)-st round, i.e. SB,j∗ 6= SA,j∗ .

We show by induction on j∗ that A has a winning strategy from this deviation point on.

For the base case j∗ = 1 we consider two distinct nonempty sets SA,1, SB,1 ⊆ [4n]. There
must be some index i∗ that belongs to one of the two sets but not to the other, i.e. i∗ ∈
(SA,1 ∪ SB,1) \ (SA,1 ∩ SB,1).

Suppose that i∗ ∈ SA,1 \ SB,1. Hence, we can construct the chain i∗ ∈ SA,1 ∈ . . . ∈ SA,n, by

definition of the allowed moves. This entails A, [x1 7→a
(1)
SA,1

, . . . , xn 7→a
(n)
SA,n

] |= Pi∗(x1, . . . , xn).

On the other hand, we get A, [y1 7→b
(1)
SB,1

, . . . , yn 7→b
(n)
SB,n

] 6|= Qi∗(y1, . . . , yn), because of
i∗ 6∈ SB,1. Hence, A wins and the chosen strategy cannot be a winning strategy for B.

The case where i∗ ∈ SB,1 \ SA,1 is symmetric and A wins as well.

For the inductive case we fix some j∗ > 1. Since SA,j∗ and SB,j∗ are distinct but have the

same number of elements, there is some set S′ ∈ SA,j∗ \ SB,j∗ . If A picks a
(j∗−1)
SA,j∗−1

:= a
(j∗−1)
S′

in the following round, we have SB,j∗−1 6= SA,j∗−1 for any choice b
(j∗−1)
SB,j∗−1

that B could
possibly make in accordance with the rules. By induction, A has a winning strategy starting
from the next round of the game. Hence, there is a winning strategy for A starting from the
current round. ♦

The described game corresponds to the model-checking game associated with the pair 〈A, ϕ〉.
Obviously, the given rules limit the moves of the involved players in such a way that all guards in
ϕ are satisfied by the variable assignment both players construct move by move. Viewed in this
light, the above claim proves the following observation. For every S ∈ Sk, 1 ≤ k ≤ n, we define the

structure A−S A−Sas the substructure of A induced by the domain A−S := A \ {b(k)
S }.

Claim II: For every S ∈ Sk, 1 ≤ k ≤ n, the substructure A−S of A does not satisfy ϕ.

Proof: The reason is simply that in this case player A can always prevent B from reaching a state
of the game where B can apply the described winning strategy. ♦

We have already analyzed the size of the sets Sk. Due to the observed lower bounds, we know

that A contains at least
∑n
k=1 2↑k(n) elements of the form b

(k)
S .

Let ϕLGF be a shortest LGF sentence that is semantically equivalent to ϕ. Next, we argue
that len(ϕLGF) is at least (n− 1)-fold exponential in n. We start by introducing some additional

notation. We divide the domain A into two disjoint parts Aa :=
{
a

(k)
S | 1 ≤ k ≤ n and S ∈ Sk

}
and

Ab :=
{
b

(k)
S | 1 ≤ k ≤ n and S ∈ Sk

}
Aa, Ab,
Ab,k

. Moreover, we subdivide Ab into parts Ab,k :=
{
b

(k)
S | S ∈ Sk

}
with 1 ≤ k ≤ n. We define the following vocabularies

Σ,ΣPR,ΣQTΣ :=
〈
{Pi, Qi | 1 ≤ i ≤ 4n} ∪ {Rj , Tj | 1 ≤ j ≤ n}, ∅

〉
,

ΣPR :=
〈
{Pi | 1 ≤ i ≤ 4n} ∪ {Rj | 1 ≤ j ≤ n}, ∅

〉
, and

ΣQT :=
〈
{Qi | 1 ≤ i ≤ 4n} ∪ {Tj | 1 ≤ j ≤ n}, ∅

〉
.

Moreover, let Σ′PR and Σ′QT Σ′PR, Σ′QTbe disjoint extensions of the vocabularies ΣPR and ΣQT , respectively,
each extended by a countably infinite number of nullary predicate symbols.

Claim III-a: Consider any loose guard γ(ū, v̄) over the vocabulary Σ. Suppose we have A, β |= γ
for some variable assignment β over A’s domain, or A−S , β |= γ for some S and some variable
assignment β over the domain of A−S . Then, either all atoms in γ are ΣPR-atoms or all
atoms in γ are ΣQT -atoms.

88 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

Proof: We argue for the case where A, β |= γ. The argument for the cases A−S , β |= γ are the
same.

Let γ(ū, v̄) = A1(ū, v̄) ∧ . . . ∧Am(ū, v̄). Suppose there are k, k′ such that Ak is a ΣPR-atom
and Ak′ is a ΣQT -atom. Let V := vars(Ak) and V ′ := vars(Ak′). Because of A, β |= Ak ∧Ak′ ,
we must have β(V) ⊆ Aa and β(V ′) ⊆ Ab. Since γ is a loose guard, there are variables
u ∈ ū and v ∈ V and v′ ∈ V ′ and atoms A`, A

′
` such that u co-occurs with v in A` and u

co-occurs with v′ in A`′ . Because of A, β |= A` ∧ A`′ , we must have β
(
vars(A`)

)
⊆ Aa and(

vars(A`)
)
⊆ Ab. Hence, β(u) ∈ Aa ∩ Ab. But this contradicts the fact that Aa and Ab are

disjoint.

Consequently, γ must either be a conjunction of ΣPR-atoms or a conjunction of ΣQT -atoms,
but cannot mix the two kinds. ♦

Claim III-b: Consider any loosely guarded Σ-formula χ(v̄) :=
(
Qū. γ(ū, v̄)

)
η(ū, v̄) and let A(z̄) be

some atom occurring in η(ū, v̄). Recall that we assume that none of the variables occurring
freely in any subformula of χ occurs bound in the same subformula and that, moreover,
no variable is bound by two distinct occurrences of quantifiers. Suppose that γ(ū, v̄) is a
ΣPR-formula and that A(z̄) is a ΣQT -atom or vice versa. Further suppose that we have
A, β |= γ(ū, v̄) for some variable assignment β over A’s domain. Let Z be the set of variables
occurring in A(z̄) that are free in η(ū, v̄). Either Z is empty, i.e. none of the variables in
A(z̄) occurs freely in η(ū, v̄), or we have A, β′ 6|= A(z̄) for every variable assignment over A’s
domain that coincides with β on the variables in Z.

The same holds if we replace A by any A−S .

Proof: We treat the case where γ is a ΣPR-formula and A is a ΣQT -atom. The other case can be
treated in a similar way. Consider some β with A, β |= γ(ū, v̄) and any β′ that coincides with
β on Z and which satisfies A, β′ |= A(z̄). Then, we observe β(ū ∪ v̄) ⊆ Aa and β′(Z) ⊆ Ab.
This entails Z ∩ (ū ∪ v̄) = ∅, as Aa and Ab are disjoint. ♦

Claim III-c: Consider any loosely guarded Σ-formula χ(v̄) :=
(
Qū. γ(ū, v̄)

)
χ′(ū, v̄) where χ′(ū, v̄)

contains a subformula η(z̄) of the form
(
Q′ȳ. δ(ȳ, z̄)

)
η′(ȳ, z̄). Moreover, we assume that the

guard γ(ū, v̄) is a ΣPR-formula and the guard δ(ȳ, z̄) is a ΣQT -formula or vice versa.

Suppose we have A, β |= γ(ū, v̄) for some variable assignment β over A’s domain. Let Z be
the set variables occurring in η′(ȳ, z̄) that occur freely in χ′(ū, v̄), i.e. Z ⊆ z̄. Let β′ be any
variable assignment that coincides with β on Z. Then, either Z is empty or A, β′ 6|= δ(ȳ, z̄).

The same holds if we replace A by any A−S .

Proof: By definition of LGF formulas, for every z ∈ z̄ that occurs in η′ and is free in χ′ the guard
δ(ȳ, z̄) must contain at least one atom with z as argument. Consequently, the claim follows
from Claim III-b. ♦

Starting from ϕLGF we construct the sentence ψLGF which possesses the following properties.

(a) The sentence ψLGF is a Boolean combination of loosely-guarded Σ′PR-sentences and loosely-
guarded Σ′QT -sentences. Moreover, ψLGF is in negation normal form.

(b) The vocabulary underlying ψLGF is that of ϕLGF extended by fresh nullary predicate symbols.

(c) The structure A can be uniquely expanded to a model BB, B−S of ψLGF over the same domain and
conserving the interpretations of all predicate symbols occurring in ϕLGF; for every B−S —

which is defined to be the substructure of B induced by the domain B−S := B \ {b(k)
S } for

any S ∈ Sk — we have B−S 6|= ψLGF.

(d) len(ψLGF) ∈ O
(
len(ϕLGF)

)
.

3.10. SEPARATENESS AND GUARDED QUANTIFICATION 89

The construction of ψLGF starts from ϕLGF. As a first step, we shift any negation signs in ϕLGF

inwards so that they occur directly in front of atoms. We do this in a way that preserves guarded
quantification. The length of the resulting formula is linear in the length of ϕLGF. Next, we
perform the following steps.

(1) Remove any subformulas that have the form
(
Qū. γ(ū, v̄)

)
χ where γ is neither a ΣPR-formula

nor a ΣQT -formula but mixes ΣPR- and ΣQT -atoms. Since, by Claim III-a, A, β 6|= γ(ū, v̄)
and A−S , β 6|= γ(ū, v̄) for every β and every S, these subformulas can be replaced by true in
case of Q = ∀ and by false if Q = ∃.
All guards in the resulting formula are either ΣPR-formulas or ΣQT -formulas.

(2) Remove any subformulas η of the form
(
Q′ȳ. δ(ȳ, z̄)

)
η′(ȳ, z̄) that occur in subformulas

χ :=
(
Qū. γ(ū, v̄)

)
χ′ where γ is a ΣPR-guard and δ is a ΣQT -guard or vice versa, and

where η′(ȳ, z̄) contains variables that are free in χ′. By Claim III-c, A, β |= γ(ū, v̄) entails
A, β′ 6|= δ(ȳ, z̄) for every β and every β′ which coincides with β on all variables that occur
freely in χ′. Hence, in case of Q′ = ∀ we can replace η with true, and in case of Q′ = ∃ we
can replace η with false.

(3) Remove any ΣQT -atom (ΣPR-atom) A(z̄) that lies in the scope χ of a ΣPR-guarded (ΣQT -
guarded) quantified subformula

(
Qū. γ(ū, v̄)

)
χ and in which a variable z ∈ z̄ ∩ (ū ∪ v̄) occurs.

By Claim III-b, A, β |= γ(ū, v̄) entails A, β′ 6|= A(z̄) for every β and every β′ which coincides
with β on all variables that occur freely in χ. Hence, we can replace A(z̄) with false.

(4) Do the following steps iteratively and exhaustively. Replace every occurrence of a non-atomic
Σ′PR-sentence (Σ′QT -sentence) χ in ϕLGF which does not contain another non-atomic sentence
as proper subformula with the atom M , where M is a fresh nullary predicate symbol, and
conjoin the formula M ↔ χ. We take M from Σ′PR if the smallest quantifier scope the
replaced occurrence of χ belongs to is ΣPR-guarded. Otherwise, we take some nullary M
from Σ′QT . The resulting formula is ϕLGF[χ/M] ∧ (M ↔ χ).

The final result of this process has a length that is linear in the length of the original. Due
to the previous transformations, we obtain a sentence that is a Boolean combination of
Σ′PR-sentences and Σ′QT -sentences and satisfies Properties (a) to (a). We shall call it ψLGF

from now on. Moreover, none of the constituent sentences of ψLGF properly contains a
non-atomic sentence.

We need some more notions and notation. An atom is called linear linear atomsif every variable in it occurs
at most once. Any occurrence of a variable v in a non-equational Σ-atom A is called a column-k-
occurrence column-k-

occurrences
, if v is the (n− k + 1)-st argument from the right in A. For example, if we fix n to be

6, then v has a column-5-occurrence in each of the atoms Qi(x1, x2, x3, x4, v, x6), T3(x3, x4, v, x6),
T5(v, x6), but v has no column-5-occurrence in the atoms T6(x6) or Qi(v, v, v, v, x5, v).

Claim IV-a: Let A(v̄) be some non-equational ΣQT -atom. Consider any variable v that has
a column-k-occurrence in A(v̄). Then, for every variable assignment β we observe that
B, β |= A(v̄) entails β(v) ∈ Ab,k. Similarly, for every S we have that B−S , β |= A(v̄) entails
β(v) ∈ Ab,k.

The same holds if we replace B with B−S for any S.

Proof: This follows immediately from the definition of B. ♦

Claim IV-b: Consider any loose guard γ(ū, v̄) over the vocabulary Σ′QT . If B, β |= γ(ū, v̄) or
B−S , β |= γ(ū, v̄) holds for some variable assignment β and any S, then for every variable v
occurring in a non-equational atom in γ(ū, v̄) there is a unique k, 1 ≤ k ≤ n, such that every
occurrence of v in a non-equational atom in γ(ū, v̄) is a column-k-occurrence.

The same holds if we replace B with B−S for any S.

90 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

Proof: Suppose v has a column-k-occurrence in γ(ū, v̄) and, at the same time, a column-k′-
occurrence in γ(ū, v̄) with k 6= k′. By Claim IV-a, we then have β(v) ∈ Ab,k ∩ Ab,k′ . But
since this intersection is empty, we obtain a contradiction. ♦

Claim IV-c: Consider any loosely guarded ΣQT -formula χ(v̄) :=
(
Qū. γ(ū, v̄)

)
η(ū, v̄) in which

γ(ū, v̄) contains at least one non-equational atom. Suppose there is a maximal subset Z ⊆ ū∪v̄
containing at least two distinct variables such that B, β |= γ(ū, v̄) → ∧

z,z′∈Z z ≈ z′ holds
for every variable assignment β. Then, there is some variable z∗ ∈ Z that occurs in some
non-equational atom A(z̄) in γ(ū, v̄). Moreover, χ(v̄) is equivalent to some loosely-guarded
ΣQT -formula

(
Qū′. γ′(ū′, v̄′)

)
η′(ū′, v̄′), where z1, . . . , zm is an enumeration of all the variables

in Z, γ′(ū′, v̄′) is the result of removing any trivial equations from γ
[
z1/z∗, . . . , zm/z∗

]
, and

η′ := η
[
z1/z∗, . . . , zm/z∗

]
.

The same holds if we replace B with B−S for any S.

Proof: Suppose that none of the z ∈ Z occurs in any non-equational atom in γ(ū, v̄).

Consider some u ∈ ū that does not occur in any non-equational atom in γ(ū, v̄). Then, u
must co-occur with every z ∈ Z in some equation in γ(ū, v̄). But then, we have B, β |=
γ(ū, v̄)→ u ≈ z for every z ∈ Z. Since Z is maximal, we get u ∈ Z. Moreover, every v that
occurs in some non-equational atom in γ(ū, v̄) must co-occur with u in some equation in
γ(ū, v̄). Again, this entails v ∈ Z and, hence, yields a contradiction.

Consider some u ∈ ū that occurs in some non-equational atom in γ(ū, v̄). Then, u must
co-occur with every z ∈ Z in some equation in γ(ū, v̄). But then, we once more get u ∈ Z.

Consequently, there is some z∗ ∈ Z that occurs in some non-equational atom A(z̄) in γ(ū, v̄).
The rest of the claim follows immediately. ♦

Claim IV-d: Consider any loosely guarded ΣQT -sentence χ :=
(
Qū. γ(ū, ∅)

)
η(ū) in which γ(ū, ∅)

contains exclusively equational atoms. Let u be some variable from ū and let u1, . . . , um be
an enumeration of all the variables occurring from ū. Then, χ is equivalent to the sentence(
Qu. u ≈ u

)
η′(u) where η′ := η

[
u1/u, . . . , um/u

]
. Moreover, for any atom A(u) in η′(u) that

does not lie within the scope of any quantifier in η′(u) we have that either A(u) is a trivial
equation u ≈ u, or A(u) is of the form Tn(u), or B, β 6|= A(u) for every variable assignment β.

The same holds if we replace B with B−S for any S.

Proof: Since every variable occurring in γ(ū) must co-occur with u in some equation in γ(ū), we
have B, β |= γ(ū)→ ∧

v∈ū u ≈ v for every variable assignment β. Hence, χ is equivalent to(
Qu. u ≈ u

)
η′(u). Since we assume n ≥ 3, every predicate symbol Qi has arity 3. Hence,

any non-equational atom A(u) with any predicate symbol from ΣQT different from Tn must
contain more than one occurrence of u. But in such cases we get B, β 6|= A(u) for every
variable assignment β. ♦

Claim IV-e: Consider any loosely guarded ΣQT -formula χ(v̄) :=
(
Qū. γ(ū, v̄)

)
η(ū, v̄) in which

γ(ū, v̄) contains exclusively equational atoms and v̄ is not empty. Let v∗ be some variable
from v̄ and let z1, . . . , zm be an enumeration of all the variables occurring in ū∪ v̄. Then, χ(v̄)
is equivalent to the formula

(∧
v∈v̄∩vars(γ) v ≈ v∗

)
→ η′(v∗), if Q = ∀, and χ(v̄) is equivalent

to the formula
(∧

v∈v̄∩vars(γ) v ≈ v∗
)
∧ η′(v∗), if Q = ∃, where η′ := η

[
z1/v∗, . . . , zm/v∗

]
.

Moreover, for any atom A(v∗) in η′(v∗) that does not lie within the scope of any quantifier in
η′(v∗) we have that either A(v∗) is a trivial equation v∗ ≈ v∗, or A(v∗) is of the form Tn(v∗),
or B, β 6|= A(v∗) for every variable assignment β.

The same holds if we replace B with B−S for any S.

Proof: Pick some variable u∗ ∈ ū. Since every variable occurring in γ(ū, v̄) must co-occur with
u∗ in some equation in γ(ū, v̄), we have B, β |= γ(ū, v̄)→ ∧

z∈ū∪v̄ u∗ ≈ z for every variable

3.10. SEPARATENESS AND GUARDED QUANTIFICATION 91

assignment β. Hence, χ(v̄) is equivalent to the formula
(∧

v∈v̄∩vars(γ) v ≈ v∗
)
→ η′(v∗), if

Q = ∀, and χ(v̄) is equivalent to the formula
(∧

v∈v̄∩vars(γ) v ≈ v∗
)
∧ η′(v∗), if Q = ∃.

Since we assume n ≥ 3, every predicate symbol Qi has arity 3. Hence, any atom A(u) with
any predicate symbol from ΣQT different from Tn must contain more than one occurrence of
u. But in such cases we get B, β 6|= A(u) for every variable assignment β. ♦

Claim IV-f: Consider any loosely guarded Σ′QT -formula χ(v̄) :=
(
Qū. γ(ū, v̄)

)
η(ū, v̄) and let A(z̄)

be some non-equational ΣQT -atom occurring in η(ū, v̄). Suppose that there is some variable
v with a column-k-occurrence in some non-equational atom in γ(ū, v̄) and with a column-
k′-occurrence in A(z̄) for distinct k, k′. For every β we observe that B, β |= γ(ū, v̄) entails
B, β′ 6|= A(z̄) for every variable assignment β′ over B’s domain that coincides with β on the
variables that occur freely in η(ū, v̄).

The same holds if we replace B with B−S for any S.

Proof: As above, A, β |= γ(ū, v̄) together with A, β′ |= A(z̄) entails β(v) = β′(v) ∈ Ab,k ∩ Ab,k′ for
any v ∈ z̄ that occurs freely in η(ū, v̄). However, this intersection yields an empty set. ♦

Claim IV-g: Consider any loose guard γ(ū, v̄) over the vocabulary Σ′QT . Let u ∈ ū be a variable
that has a column-k-occurrence in γ(ū, v̄). If B, β |= γ(ū, v̄) or B−S , β |= γ(ū, v̄) holds for some
variable assignment β and any S, then there is no variable v 6= u with column-k-occurrences
in γ, unless γ(ū, v̄) contains an equation u ≈ v.

The same holds if we replace B with B−S for any S.

Proof: For every variable v occurring in γ(ū, v̄) the guard γ(ū, v̄) must contain some atom A(ū, v̄)
in which u and v co-occur. If A(ū, v̄) is not an equation, then, by Claim IV-b, the occurrence
of u in A(ū, v̄) is a column-k-occurrence. Hence, the (unique) occurrence of v in A(ū, v̄)
is a column-k′-occurrence for some k′ 6= k. By Claim IV-b, all occurrences of v in any
non-equational atom in γ(ū, v̄) are column-k′-occurrences. ♦

Claim IV-h: Consider any loosely guarded Σ′QT -formula χ(v̄) :=
(
Qū. γ(ū, v̄)

)
η(ū, v̄). Let u ∈ ū

be a variable that has a column-k-occurrence in γ(ū, v̄). Suppose that we have B, β |= γ(ū, v̄)
for some variable assignment β over B’s domain. Further suppose that η(ū, v̄) contains a
non-equational ΣQT -atom A(z̄) in which some variable v has a column-k-occurrence. If v
occurs freely in η(ū, v̄), then we either have v = u or γ(ū, v̄) contains the equation u ≈ v or
B, β′ 6|= A(z̄) for every variable assignment β′ over B’s domain that coincides with β on the
variables that occur freely in η(ū, v̄).

The same holds if we replace B with B−S for any S.

Proof: Suppose v 6= u and that γ(ū, v̄) does not contain the equation u ≈ v. Since v occurs
freely in η(ū, v̄), it must also occur in some non-equational atom in γ(ū, v̄). By Claims IV-g
and IV-b, v has only column-k′-occurrences in γ(ū, v̄) with k′ 6= k. Hence, Claim IV-f entails
B, β′ 6|= A(z̄) for every variable assignment β′ over B’s domain that coincides with β on the
variables that occur freely in η(ū, v̄). ♦

Due to Claims IV-c to IV-e, we can reduce the equations occurring in guards in Σ′QT -subfor-
mulas of ψLGF to a minimum without losing properties (a) – (d). The only equations in guards
that cannot be removed in this way are part of purely equational guards that belong to top-most
quantifiers in Σ′QT -sentences. These guards consist of exactly one trivial equation.

Due to Claims IV-f and IV-h, we can modify ψLGF as follows while retaining properties (a)–(d).
Let

(
Qū. γ(ū, v̄)

)
η(ū, v̄) be any Σ′QT -guarded subformula of ψLGF. For any variable v that has a

column-k-occurrence in γ(ū, v̄) we can replace any atom A(z̄) in η(ū, v̄) in which v has a column-k′-
occurrence with k′ 6= k by false. If this occurrence of A(z̄) is part of a guard δ(x̄, ȳ) of a subformula(
Qx̄. δ(x̄, ȳ)

)
η′(x̄, ȳ), then we replace the whole subformula with true if Q = ∀, and we replace

the whole subformula with false if Q = ∃. We proceed analogously for atoms A(z̄) containing

92 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

column-k-occurrences of variables v′ with v′ 6= v. In the resulting formula, every non-equational
ΣQT -atom is linear and for every variable v occurring in any non-equational ΣQT -atom there is
some k such that all occurrences of v in non-equational ΣQ,T -atoms are column-k-occurrences.
Moreover, for every Σ′Q,T -subformula χ all distinct variables v, v′ that occur freely in χ and have
column-k-occurrences and column-k′-occurrences in χ, respectively, we know that k 6= k′. This
observation also entails that any non-trivial equation can be replaced by false in Σ′QT -subformulas
of ψLGF and any trivial equation (except for the ones that constitute the guard of a top-most
quantification in a ΣQT -sentence) can be replaced by true.

Notice that, after the previous modifications, every Σ′QT -subsentence that is part of ψLGF is
actually a variable-renamed version of a loosely guarded FOn sentence, see Section 3.12.

Suppose that ψLGF has fewer than 2↑n−1(n) subformulas. We observed earlier that B |= ψLGF

and B−S 6|= ψLGF for every S ∈ Sn. Hence, for every S ∈ Sn there is some Σ′QT -subformula ψSψS , βS in

ψLGF of the form
(
∃ȳ. γS(ȳ, z̄)

)
χS(ȳ, z̄) and some variable assignment βS such that the following

properties hold. We have βS(y∗) = b
(n)
S for exactly one y∗ ∈ ȳ and for every v ∈ ȳ ∪ z̄ different

from y∗ we have βS(v) ∈ Ab \ Ab,n. Moreover, we have

(∗) B, βS |= γS(ȳ, z̄) ∧ χS(ȳ, z̄) and B, β′ 6|= γS(ȳ, z̄) ∧ χS(ȳ, z̄) for every β′ that differs from βS
only in the value assigned to y∗.

The tuple βS(z̄) represents a sequence c̄Sc̄S of domain elements from Ab that can be completed to a

chain b
(1)
T1
, . . . , b

(n−1)
Tn−1

, b
(n)
S with T1 ∈ . . . ∈ Tn−1 ∈ S.

Fix any S∗ ∈ Sn and consider the formula ψS∗(z̄). There is a nonempty set Ŝ∗Ŝ∗ such that ψS∗(z̄)

coincides with every ψS(z̄) with S ∈ Ŝ∗. For any distinct S, S′ ∈ Ŝ∗ the sequences c̄S := βS(z̄) and

c̄S′ := βS′(z̄) must differ, for otherwise (∗) would be violated. As there are at most
∏n−1
k=1 2↑k(n)

distinct sequences c̄S , Ŝ∗ can contain at most
∏n−1
k=1 2↑k(n) <

(
2↑n−1(n)

)n
sets. Recall that there

are fewer than 2↑n−1(n) subformulas in ψLGF. We have just inferred that each of these can only
serve as ψS for at most

(
2↑n−1(n)

)n
sets S ∈ Sn. Hence, only(

2↑n−1(n)
)n · 2↑n−1(n) = 2(n+1)·2↑n−2(n) < 22↑n−1(n) = 2↑n(n)

sets S have a corresponding subformula ψS . But this means that there are S ∈ Sn such that
B−S |= ψLGF, which contradicts our assumptions. Consequently, ψLGF must have more than
2↑n−1(n) subformulas.

3.11 Separateness and Guarded Negation

We have already briefly visited the concept of guarded negation in the beginning Chapter 3 (page 26).
The used guards γ(ū) are atoms in which every variable from ū occurs at least once. An occurrence
of negation ¬ψ(ū) is guarded , if it is part of a formula γ(ū)∧¬ψ(ū) with an atomic guard γ(ū). The
guarded-negation fragment comprises first-order sentences in which all quantifiers are existential
and every occurrence of negation is guarded by an atomic guard. Under these restrictions, universal
quantification can only be expressed in a guarded fashion, simulated by existential quantification.
For example, the sentence ∀x̄. P (x̄)→ ψ(x̄) is equivalent to ∃y. y ≈ y ∧ ¬

(
∃x̄. P (x̄) ∧ ¬ψ(x̄)

)
.5

Definition 3.11.1 (Guarded-negation fragment (GNFO)). We define the set of guarded-negation
formulas inductively:

(i) every relational atom is a guarded-negation formula, equality is admitted;

(ii) every ∧-∨-combination of guarded-negation formulas is a guarded-negation formula;

(iii) for every tuple ū and every guarded-negation formula ψ(ū) the formula ∃ū. ψ(ū) is a guarded-
negation formula;

5This example is an adaptation of an example from [BtCS15], page 3.

3.11. SEPARATENESS AND GUARDED NEGATION 93

(iv) for every tuple ū, every atomic guard γ(ū) (i.e. γ(ū) is an atom in which every u ∈ ū
occurs at least once), and every guarded-negation formula ψ(ū) the formula γ(ū)∧¬ψ(ū) is a
guarded-negation formula.

The guarded-negation fragment (GNFO) is the class of all first-order guarded-negation sentences.

Barany, ten Cate, and Segoufin have shown that GNFO sentences have the same expressive
power as GF sentences have (see [BtCS15], Proposition 2.2). Moreover, there are GNFO sentences
for which there is no GF equivalent, i.e. GNFO is strictly more expressive than GF. One such
example is the sentence ∃xy.E(x, y) ∧ ¬

(
∃uvw.E(x, u) ∧ E(u, v) ∧ E(v, w) ∧ E(w, y)

)
([BtCS15],

Example 2.3).
Similar to guarded quantification, guarded negation can be made compatible with separateness

of variables in a way that allows us to syntactically extend GNFO while retaining its expressive
power and the decidability of the associated satisfiability problem (GNFO-Sat GNFO-Sat).

Definition 3.11.2 (Separated guarded-negation fragment (SGNFO)). Given any sequence ū1, . . . ,
ūn, v̄ of pairwise-disjoint tuples of first-order variables, a separated negation guard γ(ū1, . . . , ūn, v̄)
is a conjunction of n atoms A1(ū1, v̄) ∧ . . . ∧An(ūn, v̄) (possibly equations) such that for every i,
1 ≤ i ≤ n, all variables from ūi occur at least once in Ai(ūi, v̄).

We define the set of separated guarded-negation formulas inductively:

(i) every relational atom is a separated guarded-negation formula, equality is admitted;

(ii) every ∧-∨-combination of separated guarded-negation formulas is a separated guarded-negation
formula;

(iii) for every tuple ȳ and every separated guarded-negation formula ψ(ȳ) the formula ∃ȳ. ψ(ȳ) is
a separated guarded-negation formula;

(iv) for every separated negation guard γ(ū1, . . . , ūn, v̄), and every separated guarded-negation
formula ψ(ū1, . . . , ūn) the formula γ(ū1, . . . , ūn, v̄) ∧ ¬ψ(ū1, . . . , ūn) is a separated guarded-
negation formula if the following conditions are met. Let Z be the set of variables that are
quantified in ψ(ū1, . . . , ūn). We require that Z can be divided into pairwise disjoint, possibly
empty subsets Z1, . . . , Zn such that the sets Z1 ∪ ū1, . . . , Zn ∪ ūn are all pairwise separated in
ψ(ū1, . . . , ūn).

The separated guarded-negation fragment (SGNFO) is the set of all first-order separated guarded-
negation sentences.

We shall occasionally use sloppy language and speak of GNFO and SGNFO formulas when we
mean (separated) negation-guarded formulas that are not necessarily closed.

It is obvious that GNFO is contained in SGNFO and that there are SGNFO sentences that do
not belong to GNFO. Moreover, every MFO sentence ϕ can be easily turned into an equivalent
SGNFO sentence with a length linear in the original. We first transform ϕ into negation normal
form and add trivial equations v ≈ v as guards to negated atomic subformulas ¬P (v). The result
lies in the intersection of SGNFO and MFO≈. For MFO≈ sentences the matter seems to be more
complicated. The sentence ∃xy. x 6≈ y, for instance, is not an SGNFO sentence and does not seem
to have an SGNFO equivalent.

Proposition 3.11.3. SGNFO properly contains GNFO. Moreover, every MFO sentence can be
turned into an equivalent SGNFO sentence with a formula length that is linear in the length of the
original.

After we have seen the results obtained for the other novel first-order fragments, it should not
come as a surprise that there is an effective translation from SGNFO to GNFO.

Lemma 3.11.4. Every SGNFO formula is equivalent to some GNFO formula.

94 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

Proof. First, we recall the notion of strict separateness from Lemma 2.0.3. Let ψ be any first-order
formula. Two disjoint sets of first-order variables X,Y are strictly separated in ψ if X and Y
are separated in ψ and, in addition, for every subformula ψ′ := (Qv. . . .) of ψ we either have
vars(ψ′) ∩X = ∅ or vars(ψ′) ∩ Y = ∅.

We infer with two auxiliary results from which the lemma follows:

Claim I: Consider any SGNFO formula ϕ(ū1, . . . , ūn, v̄) := γ(ū1, . . . , ūn, v̄)∧¬ψ(ū1, . . . , ūn) where
ψ(ū1, . . . , ūn) is any GNFO formula, and the ū1, . . . , ūn are pairwise strictly separated in
ψ(ū1, . . . , ūn). Then, ϕ(ū1, . . . , ūn, v̄) is equivalent to some GNFO formula ϕ′(ū1, . . . , ūn, v̄)
in which ū1, . . . , ūn are pairwise strictly separated.

Proof: Let basic formulasbasic
formulas

in ψ(ū1, . . . , ūn) be subformulas that do not lie in the scope of any
quantifier or negation sign in ψ(ū1, . . . , ūn) and that are either guarded negation formu-
las δ(x̄1, . . . , x̄k, ȳ) ∧ ¬χ(x̄1, . . . , x̄k), quantified formulas ∃ȳ. χ(ȳ, x̄), or atoms. Transform
ψ(ū1, . . . , ūn) into a conjunction ψ′ :=

∧
i∈I ηi(ū1, . . . , ūn) of disjunctions ηi(ū1, . . . , ūn) of ba-

sic formulas. Since we assumed ψ(ū1, . . . , ūn) to be a GNFO formula and that the ū1, . . . , ūn
are pairwise strictly separated in ψ(ū1, . . . , ūn), we conclude that every basic formula χ(x̄)
in ψ(ū1, . . . , ūn) satisfies x̄ ∩ ū` 6= ∅ for at most one `, 1 ≤ ` ≤ n. Hence, the disjuncts
ηi(ū1, . . . , ūn) in ψ′(ū1, . . . , ūn) can be regrouped such that

ψ′ =
∧
i∈I

ηi,1(ū1) ∨ . . . ∨ ηi,n(ūn) .

Therefore, γ(ū1, . . . , ūn, v̄) ∧ ¬ψ(ū1, . . . , ūn) is equivalent to the following sentence, where
A1(ū1, v̄), . . . , An(ūn, v̄) is the list of atoms that γ(ū1, . . . , ūn, v̄) comprises:

A1(ū1, v̄) ∧ . . . ∧An(ūn, v̄) ∧ ¬ψ′(ū1, . . . , ūn)

|=| A1(ū1, v̄) ∧ . . . ∧An(ūn, v̄) ∧ ¬
∧
i∈I

ηi,1(ū1) ∨ . . . ∨ ηi,n(ūn)

|=| A1(ū1, v̄) ∧ . . . ∧An(ūn, v̄) ∧
∨
i∈I
¬ηi,1(ū1) ∧ . . . ∧ ¬ηi,n(ūn)

|=|
∨
i∈I

(
A1(ū1, v̄) ∧ ¬ηi,1(ū1)

)
∧ . . . ∧

(
An(ūn, v̄) ∧ ¬ηi,n(ūn)

)
This is the sought GNFO formula. ♦

Claim II: Consider any SGNFO formula ϕ(x̄, v̄) := ∃ȳ. ψ(ȳ, x̄, v̄) where ψ(ȳ, x̄, v̄) is any GNFO
formula in which the sets ȳ ∪ x̄ and v̄ are strictly separated. Then, ϕ(x̄, v̄) is equivalent to
some GNFO formula ϕ(x̄, v̄) in which ȳ ∪ x̄ and v̄ are strictly separated.

Proof: Let basic formulasbasic
formulas

in ψ(ȳ, x̄, v̄) be defined like in the proof of Claim I. Transform ψ(ȳ, x̄, v̄)
into a disjunction ψ′ :=

∨
i∈I ηi(ȳ, x̄, v̄) of conjunctions ηi(ȳ, x̄, v̄) of basic formulas. Since we

assumed ψ(ȳ, x̄, v̄) to be a GNFO formula and that the sets ȳ∪ x̄ and v̄ are strictly separated
in ψ(ȳ, x̄, v̄), every basic formula χ(ū) in ψ(ȳ, x̄, v̄) satisfies ū ∩ (ȳ ∪ x̄) = ∅ or ū ∩ v̄ = ∅.
Hence, the conjuncts ηi(ȳ, x̄, v̄) in ψ′(ȳ, x̄, v̄) can be regrouped such that

ψ′ =
∨
i∈I

ηi,1(ȳ, x̄) ∧ ηi,2(v̄) .

Therefore, ∃ȳ. ψ(ȳ, x̄, v̄) is equivalent to the sentence

∃ȳ.
∨
i∈I

ηi,1(ȳ, x̄) ∨ ηi,2(v̄)

|=|
∨
i∈I

(
∃ȳ. ηi,1(ȳ, x̄)

)
∧ ηi,2(v̄) .

This is the sought GNFO formula. ♦

3.12. SEPARATENESS AND FINITE-VARIABLE FIRST-ORDER LOGIC 95

Now consider any SGNFO formula ϕ that is not a GNFO formula. Let χ(ū1, . . . , ūn, v̄) :=
γ(ū1, . . . , ūn, v̄) ∧ ¬χ′(ū1, . . . , ūn) be a smallest subformula of ϕ that violates the conditions of
guarded negation in GNFO. Hence, the set Z of variables quantified in χ′(ū1, . . . , ūn) can be divided
into pairwise disjoint sets Z1, . . . , Zn such that Z1 ∪ ū1, . . . , Zn ∪ ūn are pairwise separated in
χ′(ū1, . . . , ūn). Further suppose that in χ′(ū1, . . . , ūn) the sets Z1 ∪ ū1, . . . , Zn ∪ ūn are not strictly
separated. Let η(x̄) := ∃ȳ. η′(ȳ, x̄) be a smallest subformula of χ′(ū1, . . . , ūn) that violates this
strict-separateness condition. Hence, we can subdivide ȳ into pairwise disjoint parts ȳ1, . . . , ȳn such
that ȳi ⊆ Zi for every i. Moreover, we can subdivide x̄ into pairwise disjoint parts x̄1, . . . , x̄n such
that x̄i ⊆ Zi ∪ ūi for every i. Then, η(x̄) can be rewritten into ∃ȳ1∃ȳ2 . . . ∃ȳn. η′(ȳ1, x̄1, . . . , ȳn, x̄n).
Since we assume η(x̄) to be minimal, the sets ȳ1 ∪ x̄1, . . . , ȳn ∪ x̄n are pairwise strictly separated in
η′(ȳ1, x̄1, . . . , ȳn, x̄n). By Claim II, η(x̄) is equivalent to some η′′(x̄) in which the Z1∪ū1, . . . , Zn∪ūn
are pairwise strictly separated. Therefore, the formula χ′(ū1, . . . , ūn) can be transformed into an
equivalent formula χ′′(ū1, . . . , ūn) in which Z1 ∪ ū1, . . . , Zn ∪ ūn are pairwise strictly separated.
By Claim I, γ(ū1, . . . , ūn, v̄) ∧ ¬χ′′(ū1, . . . , ūn) can be transformed into an equivalent formula that
belongs to GNFO and in which the sets ū1, . . . , ūn are pairwise strictly separated.

By iterative and exhaustive application of the outlined transformation, we can derive a GNFO
formula that is equivalent to the SGNFO formula ϕ.

Since GNFO is known to possess the finite model property [BtCS15], Lemma 3.11.4 entails
the same for SGNFO. Of course, this also means that the satisfiability problem associated with
SGNFO (SGNFO-Sat SGNFO-Sat) is decidable.

Theorem 3.11.5. SGNFO possess the finite model property and, hence, the satisfiability problem
for SGNFO sentences is decidable.

3.12 Separateness and Finite-Variable First-Order Logic

The class of first-order formulas over a fixed finite set of variables yields an interesting object of
study (see, e.g., [Ott97, Gro98, Daw99, GO99, KPHT18] and also the textbooks [Lib04], Section 11,
and [GKL+07], Sections 1.1.3, 2.7, and 2.8). The special case where only two variables are admitted
gives rise to the two-variable fragment of first-order logic, FO2, that we have already briefly
discussed on page 25. It is important to understand that this restriction allows reusing variable
names in nested quantifiers. Therefore, in the formulas in the present section we explicitly allow
variables to occur free and bound in a formula, and to reappear in distinct occurrences of quantifiers
in the same formula. For example, the sentence ∀x∃y.

(
E(x, y)∧∃x.

(
E(y, x)∧∃y.E(x, y)

))
belongs

to FO2. It stipulates the existence of a path of length at least three, starting from any node in a
directed graph.

We shall see in this section that also in the context of finite-variable logics separateness can
give us more syntactic freedom and the ability to express certain properties in a substantially more
succinct way, on the one hand. On the other hand, the overall expressive power is retained, if
restrictions are formulated in the right way.

Definition 3.12.1 (Separated finite-variable formulas). For any positive integer k we define FOk

FOkto be the set of all relational first-order formulas in which all variables are taken from a finite
sequence x1, . . . , xk.

For every k ≥ 1 we define the class SFOk of relational first-order formulas as follows. Let
V1, V2, V3, . . . be a sequence of pairwise disjoint sets Vi ⊆ Var of first-order variables, each containing
exactly k pairwise distinct variables. For every m ≥ 1 we define the set SFOk,m to be the set of all
relational first-order formulas ϕ in which all variables are taken from V1 ∪ . . . ∪ Vm and in which
all sets V1, . . . , Vm are pairwise separated. The class SFOk is the union

⋃
m≥1 SFOk,m.

It is easy to see that FOk is a special case of SFOk. Moreover, MFO is a proper subset of SFOk

for k = 1. In contrast, for every positive integer k the MFO≈ sentence ∀x1 . . . xk∃y.
∧
k y 6≈ xk

does not belong to SFOk.

96 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

Proposition 3.12.2. For every positive k, SFOk contains FOk and MFO.

In the following lemma we establish the equivalence between SFOk and FOkfor every positive
k by devising an equivalence-preserving translation procedure between the two sets.

Lemma 3.12.3. Every SFOk sentence is equivalent to some FOk sentence.

Proof. Let m be any positive integer and consider any sentence ϕ from SFOk,m. Then, vars(ϕ) ⊆
V1 ∪ . . .∪ Vm and all V1, . . . , Vm are pairwise separated in ϕ. Without loss of generality, we assume
that ϕ is in negation normal form.

We prove an auxiliary result from which the lemma follows.

Claim I: Consider any subformula ψ = Qv̄. χ of ϕ with v̄ ⊆ Vi for some i. If the sets V1, . . . , Vm
are pairwise strictly separated in χ, then we can construct a formula ψ′ that is equivalent to
ψ and in which all sets V1, . . . , Vm are pairwise strictly separated.

Proof: The proof proceeds along the same lines as the proof of Lemma 2.0.3.

A basic formulabasic
formulas

is any atom and any subformula (Qv. . . .) in χ that does not lie within the
scope of any quantifier in χ. Suppose Q is an existential quantifier. (The case of Q = ∀ can
be treated in an analogous way.)

Let z̄ be the tuple collecting all variables that occur freely in ψ. We first transform χ into
an equivalent disjunction of conjunctions of negated or non-negated basic formulas. This is
always possible. Since the sets V1, . . . , Vm are pairwise strictly separated in χ, the constituents
of the j-th conjunction can be grouped into m parts: ηj,1

(
V1∩ (v̄∪ z̄)

)
, . . . , ηj,m

(
Vm∩ (v̄∪ z̄)

)
with vars(ηj,`) ⊆ V`. This is possible because of our assumption that the sets V1, . . . , Vm are
all pairwise strictly separated in χ. Hence, since v̄ ⊆ Vi, ψ is equivalent to a formula of the
form

∃v̄.
∨
j

ηj,i
(
Vi ∩ (v̄ ∪ z̄)

)
∧

∧
1≤`≤m
6̀=i

ηj,`(V` ∩ z̄) .

We shift the existential quantifier block ∃v̄ inwards so that it only binds the (sub-)conjunctions
ηj,i
(
Vi ∩ (v̄ ∪ z̄)

)
. The resulting formula∨

j

(
∃v̄. ηj,i

(
Vi ∩ (v̄ ∪ z̄)

))
∧

∧
1≤`≤m
6̀=i

ηj,`(V` ∩ z̄)

is the sought ψ′ in which the sets V1, . . . , Vm are all pairwise strictly separated. ♦

Clearly, the sets V1, . . . , Vm are pairwise strictly separated in any quantifier-free subformula of ϕ.
Hence, applying Claim I iteratively, we can transform ϕ into an equivalent sentence ϕ′ in which
the sets V1, . . . , Vm are pairwise strictly separated. Since ϕ′ is a sentence, the strict separateness
condition leads to the observation that for every subformula Qv̄. χ in ϕ′ there is some j such
that vars(Qv̄. χ) ⊆ Vj . As each of the Vi contains exactly k variables, we can rename the bound
variables in ϕ′ such that ϕ′ is an ∧-∨-combination of FOk sentences. Since FOk is closed under
Boolean combinations, ϕ′ is an FOk sentence.

Since the satisfiability problem for FO2 sentences is known to be decidable — in fact, the class
of FO2 sentences is known to possess the finite model property [Mor75, GKV97] —, Lemma 3.12.3
entails the same for the class of SFO2 sentences and the associated satisfiability problem SFO2-SatSFO2-Sat .

Theorem 3.12.4. The class of SFO2 sentences possess the finite model property and, hence, the
satisfiability problem for SFO2 sentences is decidable.

Having established the equivalence between FOk and SFOk regarding expressiveness, it remains
to investigate the succinctness gap between the two fragments. We shall do this in particular for
the class of SFO2 sentences compared to the class of FO2 sentences.

3.12. SEPARATENESS AND FINITE-VARIABLE FIRST-ORDER LOGIC 97

Theorem 3.12.5. There is a class of SFO2 sentences and some positive integer n0 such that
for every integer n ≥ n0 the class contains a sentence ϕ with a length linear in n for which any
equivalent FO2 sentence has a length that is at least exponential in n.

Proof. Let n ≥ 1 be some positive integer. Consider the following first-order sentence in which the
sets {x1, x2} and {y1, y2} are separated:

ϕ := ∀x2∃y2∀x1∃y1.

2(n+1)∧
i=1

(
Pi(x1, x2)↔ Qi(y1, y2)

)
.

In analogy to the proof of Theorem 3.2.7, we construct the following model A for ϕ. The
construction is based on the sets SkS1 :=

{
S ⊆ [2(n+ 1)]

∣∣ |S| = n+ 1
}

and S2 :=
{
S ⊆ S1

∣∣ |S| =
1
2 |S1|

}
. We observe

|S1| =
(

2(n+ 1)

n+ 1

)
≥
(

2(n+ 1)

n+ 1

)n+1

= 2n+1

and

|S2| =
(|S1|
|S1|/2

)
≥
(|S1|
|S1|/2

)|S1|/2
≥ 22n ,

in analogy to the proof of Theorem 3.2.7.

Claim I: Let Ŝ be any subset of S2 such that for every S ∈ Ŝ there is some T ∈ S ⊆ S1 which does
not belong to any S′ ∈ Ŝ \ {S}. Then, Ŝ contains at most |S1| ≤ 22(n+1) sets as elements.

Proof: Obvious. ♦

Let A Abe the structure with

A :=
{
a

(1)
S , b

(1)
S

∣∣ S ∈ S1

}
∪
{
a

(2)
S , b

(2)
S

∣∣ S ∈ S2

}
,

PAi :=
{
〈a(1)
S1
, a

(2)
S2
〉 ∈ A× A

∣∣ i ∈ S1 ∈ S2

}
for i = 1, . . . , 2(n+ 1), and

QAi :=
{
〈b(1)
S1
, b

(2)
S2
〉 ∈ A× A

∣∣ i ∈ S1 ∈ S2

}
for i = 1, . . . , 2(n+ 1).

Then, for any choice of S1, S2 and every i, 1 ≤ i ≤ 2(n+ 1), we have

A,
[
x1 7→a

(1)
S1
, x2 7→a

(2)
S2
, y1 7→b

(1)
S1
, y2 7→b

(2)
S2

]
|= Pi(x1, x2)↔ Qi(y1, y2) .

For any other choice of pairs 〈c1, c2〉, i.e. there do not exist sets S1 ∈ S1, S2 ∈ S2 such that 〈c1, c2〉
equals 〈a(1)

S1
, a

(2)
S2
〉 or 〈b(1)

S1
, b

(2)
S2
〉, we observeA, [x1 7→c1, x2 7→c2] 6|= Pi(x1, x2) andA, [y1 7→c1, y2 7→c2] 6|=

Qi(y1, y2) for every i. Hence,

A, [x1 7→c1, x2 7→c2, y1 7→c1, y2 7→c2] |=
2(n+1)∧
i=1

Pi(x1, x2)↔ Qi(y1, y2) .

Consequently, A is a model of ϕ.
In analogy to the proof of Theorem 3.2.7, we can prove the following observation.

Claim II: For every S ∈ S2 the substructure A−S A−Sof A induced by A−S := A \
{
b

(2)
S

}
does not

satisfy ϕ. ♦

Let ϕFO2 be a shortest FO2 sentence that is semantically equivalent to ϕ. Next, we argue that
len(ϕFO2) is at least exponential in n. In [Sco62] a normal form for FO2 sentences was introduced,
which is sometimes referred to as Scott normal form Scott

normal form
in the literature, e.g. in [GO99]. Accordingly,

Lemma 8.1.2 in [BGG97] states that there is some relational FO2 sentence ψFO2 that has the
following properties:

98 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

(a) ψFO2 is of the form
(
∀uv. χ(u, v)

)
∧∧mi=1 ∀x∃y. ηi(x, y) with quantifier-free χ and ηi,

(b) the vocabulary underlying ψFO2 is that of ϕFO2 extended by fresh unary predicate symbols
R1, . . . , Rκ with κ ∈ O

(
len(ϕFO2)

)
κ ,

(c) ψFO2 |= ϕFO2 ,

(d) every model of ϕFO2 can be uniquely expanded to a model of ψFO2 over the same domain
and conserving the interpretations of all predicate symbols occurring in ϕFO2 , and

(e) len(ψFO2) ∈ O
(
len(ϕFO2)

)
.

Let BB be the unique expansion of A for which B |= ψFO2 and B := A. Claim II can be extended

to B, because of ψFO2 |= ϕFO2 . The set {b(2)
S | S ∈ S2} can be partitioned into at most 2κ parts,

each containing elements that are indistinguishable by their belonging to the sets RBk . Let D̂D̂ be

the largest of these parts and let Ŝ := {S | b(2)
S ∈ D̂}. Hence, for all b, b′ ∈ D̂ and every k with

1 ≤ k ≤ κ we have b ∈ RBk if and only if b′ ∈ RBk .

Claim III: Let n be sufficiently large. If κ is polynomial in n, then there is some S∗ ∈ Ŝ such that

b
(2)
S∗
∈ D̂ and for every T ∈ S∗ there is some S′ ∈ Ŝ \ {S∗} that also contains T and we have

b
(2)
S′ ∈ D̂.

Proof: Clearly, D̂ contains at least 22n/2κ = 22n−κ domain elements. Hence, |Ŝ| ≥ 22n−κ.
Moreover, we observe 22n−κ > 22(n+1) for sufficiently large n, if κ is polynomial in n. By
Claim I, there is some S∗ ∈ Ŝ such that for every T ∈ S∗ there is some S′ ∈ Ŝ \ {S∗} with

T ∈ S′. Claim III follows by definition of D̂ and Ŝ. ♦

We fix some S∗ ∈ Ŝ as described in Claim III.S∗, B∗,
J

Let B−S∗ be the substructure of B induced by the

domain B∗ := B\
{
b

(2)
S∗

}
. By Claim II (extended to B), there is some maximal nonempty set J ⊆ [m]

such that for every j ∈ J we have B−S∗ 6|= ∀x∃y. ηj(x, y). Consequently, for every j ∈ J there is

some domain element c ∈ B∗ such that B, [x 7→c, y 7→b
(2)
S∗

] |= ηj(x, y) and B, [x 7→c, y 7→d] 6|= ηj(x, y)

for every d ∈ B \ {b(2)
S∗
}. Regarding the domain element c, we distinguish two cases.

Consider any j ∈ J and any c ∈ B∗ \{b(1)
S | S ∈ S1} for which we have B, [x 7→c, y 7→d] 6|= ηj(x, y)

for every d ∈ B∗. Let S′ be some set from Ŝ that is different from S∗ and for which c 6= b
(2)
S′ .

Notice that ηj is quantifier free and, hence, exclusively contains atoms over the variables x, y.
Moreover, for every binary atom A of the form Pi(x, y), Pi(y, x), Qi(x, y), or Qi(y, x) we have

B, [x 7→c, y 7→d] 6|= A for every d ∈ {b(2)
S | S ∈ S2}, including b

(2)
S∗

and b
(2)
S′ . Since all other non-

equational atoms occurring in ηj are monadic and because of b
(2)
S∗
, b

(2)
S′ ∈ D̂, we conclude the

following. For every non-equational atom A occurring in ηj we have B, [x 7→c, y 7→b
(2)
S∗

] |= A(x, y)

if and only if B, [x 7→c, y 7→b
(2)
S′] |= A(x, y). Consider any equation x ≈ y. Because of c ∈ B−S∗ ,

we have B 6|= c ≈ b
(2)
S∗

. On the other hand, we also have B−S∗ 6|= c ≈ b
(2)
S′ . But then, we all in

all get B−S∗ , [x 7→c, y 7→b
(2)
S′] |= ηj(x, y), which entails B−S∗ , [x 7→c] |= ∃y. ηj(x, y). This leads to a

contradiction and there, hence, cannot be a pair j, c as described.

Consider any j ∈ J and any c ∈ {b(1)
S | S ∈ S1} for which B, [x 7→c, y 7→d] 6|= ηj(x, y) for every

d ∈ B∗. Hence, there is some set T ∈ S1c, T such that c = b
(1)
T . Suppose T 6∈ S∗. Then, for every binary

atom A of the form Pi(x, y), Pi(y, x), Qi(x, y), Qi(y, x), or x ≈ y we have B, [x 7→c, y 7→d] 6|= A for

every d ∈ {b(2)
S | S ∈ S2}, including b

(2)
S∗

and any b
(2)
S′ ∈ D̂ \ {b(2)

S∗
}. Like in the above case we

conclude B−S∗ , [x 7→c] |= ∃y. ηj(x, y), which yields a contradiction. Suppose T ∈ S∗. By Claim III,

there is some S′ ∈ Ŝ \ {S∗} such that T ∈ S′ and b
(2)
S′ ∈ D̂ \ {b(2)

S∗
} ⊆ B∗. Then, we have

B, [x 7→b
(1)
T , y 7→b

(2)
S∗

] |= Qi(x, y) if and only if i ∈ T

3.13. SEPARATENESS AND FLUTED FORMULAS 99

and
B, [x 7→b

(1)
T , y 7→b

(2)
S′] |= Qi(x, y) if and only if i ∈ T .

For every other binary atom A of the form Qi(y, x), Pi(x, y), Pi(y, x), or x ≈ y we have

B, [x 7→b
(1)
T , y 7→b

(2)
S∗

] 6|= A(x, y) and B, [x7→b
(1)
T , y 7→b

(2)
S′] 6|= A(x, y). For every monadic atom A

occurring in ηj we have

B, [x 7→b
(1)
T , y 7→b

(2)
S∗

] |= A if and only if B, [x 7→b
(1)
T , y 7→b

(2)
S′] |= A .

All in all, this leads to

B, [x 7→b
(1)
T , y 7→b

(2)
S∗

] |= ηj(x, y) if and only if B, [x 7→b
(1)
T , y 7→b

(2)
S′] |= ηj(x, y) .

Therefore, we get B−S∗ , [x 7→b
(1)
T] |= ∃y. ηj(x, y), which constitutes a contradiction.

This means, the number κ of unary predicate symbols occurring in ψFO2 cannot be polynomial
in n, for otherwise we get B−S∗ |= ψFO2 and A−S∗ |= ψFO2 . Since κ ∈ O

(
len(ϕFO2)

)
, it follows

that len(ϕFO2) cannot be polynomial in n but must be at least exponential, in order to satisfy
22n ≤ 22(n+1)+κ for growing n.

3.13 Separateness and Fluted Formulas

The main characteristic of fluted formulas can be crisply described as follows: “the order of
quantification of variables coincides with the order in which those variables appear as arguments of
predicates” ([PST16], page 1). The sentences in Herzig’s ordered fragment can in fact be described
in the same intuitive way. Herzig has put it like this: “the ordering of the quantifiers must be that
of the variables in the predicates they govern” ([Her90], page 1). Nonetheless, the two fragments
differ syntactically, as the details of their respective definition differ.

Example 3.13.1. The following FL sentence constitutes a definition of the concept married
couples all whose children are married — mwmc(x1, x2):

∀x1x2.mwmc(x1, x2)↔ married(x1, x2) ∧
(
∀x3.haveChild(x1, x2, x3)→ ∃x4.married(x3, x4)

)
.

This exemplary sentence is taken from [HSG04]. It belongs to FL but not to Herzig’s ordered
fragment. The reason is that the atom married(x3, x4) contains the variables x3, x4 whose quantifiers
lie within the scope of ∀x1 and ∀x2, but neither x1 nor x2 occur (left of x3, x4) in the atom
married(x3, x4).

The following sentence lies in the intersection of FL and Herzig’s ordered fragment. It defines
the concept of married couples that do not have any children together — mwoc(x1, x2):

∀x1x2.mwoc(x1, x2)↔ married(x1, x2) ∧ ¬∃x3.haveChild(x1, x2, x3) .

A simple variation of this sentence, however, does not satisfy the syntactic restrictions of FL, while
it still falls into Herzig’s ordered fragment:

∀x1x2.mwoc(x1, x2)↔ ∀x3.married(x1, x2) ∧ ¬haveChild(x1, x2, x3) .

As the two fragments seem to be so similar, one could ask whether they are equivalent in
expressiveness. Indeed, using the concept of separateness of variables, we can reconcile the two
fragments while, at the same time, extending both of them to a common superclass, called the
separated fluted fragment (SFL).

In the first-order formulas in this section we allow bound variables to reappear in distinct
occurrences of quantifiers in the same formula. Before we formulate the definition of SFL, we adapt
the following notation from the definition of Maslov’s fragment K (cf. page 25). Let ψ(u1, . . . , um)
be any subformula of a first-order sentence ϕ. We assume that u1, . . . , um are exactly the variables
occurring freely in ψ and that they are pairwise distinct. The ϕ-prefix of ψ is the sequence
Q1v1 . . .Qmvm of quantifiers in ϕ (read from left to right) that bind the free variables of ψ, in
particular, we have {v1, . . . , vm} = {u1, . . . , um}.

100 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

Definition 3.13.2 (Separated fluted fragment (SFL)). Let V1,V2,V3, . . .Vi be disjoint ordered se-
quences of pairwise distinct variables Vi = xi1, x

i
2, x

i
3, In what follows, we occasionally treat the

sequences Vi as sets.
The separated fluted fragment (SFL) comprises all relational first-order sentences ϕ without

equality in which every atom A satisfies the following properties.

(a) A is of the form P (xi`, . . . , x
i
k) for some predicate symbol P and certain integers i, k, ` with

i ≥ 1, k ≥ 0, and 1 ≤ ` ≤ k.

(b) The ϕ-prefix of A is of the form Q`xi`, . . . ,Qkxik with Qj ∈ {∃,∀}.
Although separateness is not explicitly mentioned in the definition of SFL, it implicitly plays

an important role. For every atom A in any SFL sentence ϕ, we find one sequence Vi from which
all variables in A stem, i.e. vars(A) ⊆ Vi. Since the V1,V2,V3, . . . are pairwise disjoint, they are,
hence, also pairwise separated in ϕ.

It is not hard to see that every FL sentence also belongs to SFL. The simple monadic sentence

∀x1
1∃x2

1. P (x1
1)↔ Q(x2

1)

is neither fluted nor does it belong to Herzig’s fluted fragment. However, it belongs to SFL. Indeed,
every MFO sentence can be turned into an SFL sentence by renaming bound variables. Consider
any MFO sentence ϕ and suppose that all quantifiers in ϕ bind distinct variables. Let u1, . . . , uk
be an enumeration of all the first-order variables occurring in ϕ. Let ϕ′ be the sentence that results
from ϕ by renaming every ui into xi1. This sentence ϕ′ clearly belongs to SFL.

Finally, consider any sentence ψ that belongs to Herzig’s ordered fragment. Let P (u1, . . . , um)
and Q(v1, . . . , vm′) be two atoms in ψ. Let j, j′ be any two indizes with 1 ≤ j ≤ m and 1 ≤ j′ ≤ m′
such that uj and vj′ are bound by the same quantifier Qjuj = Q′j′vj′ in ψ. By definition of Herzig’s
ordered fragment, these quantifiers Qjuj and Q′j′vj′ are exactly in the scopes of Q1u1, . . . ,Qj−1uj−1

and Q′1v1, . . . ,Q′j′−1vj′−1, respectively, and no other quantifier scopes. As the quantifiers Qjuj
and Q′j′vj′ coincide, the sets {u1, . . . , uj} and {v1, . . . , vj′} must be equal. Applying this argument
iteratively, we infer j = j′ and that the sequences u1, . . . , uj and v1, . . . , vj′ coincide. Suppose
j∗ ≥ 1 is the maximal index such that uj∗ and vj∗ are bound by the same quantifier. For any
indices `, `′ > j∗ we have that neither of the quantifiers Qu` and Q′v`′ binding the variables u`
and v`′ , respectively, lies in the scope of the other. For otherwise, assume that Qu` were in the
scope of Q′v`′ . Hence, `′ < ` and there is some u`′′ with `′′ < ` such that u`′′ is also bound
by the quantifier Q′v`′ . By the above argument, we have that `′ = `′′ and that the sequences
u1, . . . , u`′ and v1, . . . , v`′ must coincide. But since j∗ is maximal and j∗ < `′, we get a contradiction.
Consequently, we can rename the bound variables in ψ in such a way that every atom A has the
form P (x1

1, . . . , x
1
k) for some k and the ψ-prefix of A is of the form Q1x

1
1, . . . ,Qkx1

k.

Proposition 3.13.3. SFL properly contains (modulo renaming of bound variables) FL, MFO, and
Herzig’s ordered fragment.

The following lemma stipulates that every SFL sentence has an equivalent in FL. As usual, this
result is established by giving an effective equivalence-preserving translation from SFL into FL.

Lemma 3.13.4. Every SFL sentence is equivalent to some FL sentence.

Proof. As a primer we adapt some notation from the definition of the fluted fragment (cf. page 26).
For every nonnegative integer k and every positive integer i we define the set FL(k)(Vi) inductively
as follows. Any atom P (xi`, . . . , x

i
k) with 1 ≤ ` ≤ k belongs to FL(k)(Vi). The set FL(k)(Vi) is

closed under Boolean combinations, i.e. if ϕ and ψ belong to FL(k)(Vi), then so do ¬ϕ, ϕ ∧ ψ,
ϕ∨ψ, ϕ→ ψ, ϕ↔ ψ. Given any FL(k+1)(Vi) formula ϕ(xi`, . . . , x

i
k+1), then ∀xk+1. ϕ and ∃xk+1. ϕ

belong to FL(k)(Vi).
Consider any SFL sentence ϕ and let m be the smallest integer such that vars(ϕ) ⊆ V1∪ . . .∪Vm.

Then, all V1, . . . ,Vm are pairwise separated in ϕ. Without loss of generality, we assume that ϕ is
in negation normal form.

We prove an auxiliary result that is an adapted version of Claim I from the proof of Lemma 3.12.3.

3.13. SEPARATENESS AND FLUTED FORMULAS 101

Claim I: Consider any subformula ψ = Qxik. χ of ϕ with Q ∈ {∀,∃} that satisfies the following
properties:

(a) χ is a Boolean combination of formulas from
⋃
k′,i′ FL(k′)(Vi′) — which we shall call

basic formulas basic
formulas

in what follows;

(b) each of these basic formulas that contains xik is an FL(k)(Vi) formula;

(c) every subformula of χ that is of the form Q′′xik. χ′′ is an FL(k−1)(Vi) formula.

Then, we can construct a formula ψ′ such that

(1) ψ′ is equivalent to ψ,

(2) ψ′ is a Boolean combination of formulas from
⋃
k′,i′ FL(k′)(Vi′), and

(3) every subformula Qxik. χ′ occurring in ψ′ belongs to FL(k−1)(Vi).
Proof: We treat the case where Q is an existential quantifier; the case of Q = ∀ can be treated

dually.

First, we transform χ into an equivalent disjunction of conjunctions of basic formulas that is
of the form ∨

j

ηj,i,k
(
xi1, . . . , x

i
k

)
∧

∧
1≤i′≤m

∧
k′

η′j,i′,k′(x
i′

1 , . . . , x
i′

k′) ,

where we group the basic formulas in accordance with their belonging to the sets FL(k′)(Vi′).
More precisely, the conjunctions ηj,i,k contain exactly those basic formulas from the j-th
disjunct in which the variable bound by Qxik occurs freely. Moreover, any basic formula

from FL(k′)(Vi′) that occurs in the j-th disjunct and does not contain xik as free variable is
a conjunct of η′j,i′,k′ . By assumption, each ηj,i,k belongs to FL(k)(Vi), as we assumed that

every basic formula in which xik occurs is an FL(k)(Vi) formula.

Hence, ψ is equivalent to a formula of the form

∃xik.
∨
j

ηj,i,k
(
xi1, . . . , x

i
k

)
∧

∧
1≤i′≤m

∧
k′

ηj,i′,k′(x
i′

1 , . . . , x
i′

k′) .

We shift the existential quantifier ∃xik inwards so that it only binds the (sub-)conjunctions
ηj,i,k. The emerging subformula ∃xik. ηj,i,k belongs to FL(k−1)(Vi). The result∨

j

(
∃xik. ηj,i,k

(
xi1, . . . , x

i
k

))
∧

∧
1≤i′≤m

∧
k′

ηj,i′,k′(x
i′

1 , . . . , x
i′

k′)

is the sought ψ′ that is a Boolean combination of formulas from
⋃
k′,i′ FL(k′)(Vi′). ♦

By Definition 3.13.2, every atom in ϕ is an FL(k′)(Vi′) formula for certain k′, i′. Hence, every
subformula Qxik. χ of ϕ with quantifier-free χ satisfies the conditions of Claim I. Consider any
subformula ψ := Qxik. χ of ϕ such that χ is a Boolean combination of atoms and of formulas

ψ′ := Q′xi′k′ . χ′ that satisfy the preconditions of Claim I. By Claim I, we can transform all these
ψ′ into equivalent formulas ψ′′ in such a way that ψ, after all these transformations, satisfies the
preconditions of Claim I. Due to this observation, we can iteratively apply Claim I to transform
the sentence ϕ into an equivalent sentence ϕ′ that is a Boolean combination of sentences from⋃
k′,i′ FL(k′)(Vi′). Since every sentence χ ∈ FL(k′)(Vi′) is equivalent to the sentence ∀xi′1 . . . xi

′

k′ . χ,
we can transform ϕ′ into an equivalent sentence ϕ′′ that is a Boolean combination of sentences from⋃
i′ FL(0)(Vi′). In ϕ′′ the sets V1, . . . ,Vm are pairwise strictly separated. Hence, we can rename

bound variables in ϕ′′ in such a way that the result ϕ′′′ is a Boolean combination of sentences from
FL(0)(V1). This sentence ϕ′′′ belongs to the fluted fragment.

Since FL enjoys the finite model property [PST16], Lemma 3.13.4 implies that the same holds
true for SFL. Hence, the satisfiability problem associated with SFL (SFL-Sat SFL-Sat) is decidable.

Theorem 3.13.5. SFL possess the finite model property and, hence, the satisfiability problem for
SFL sentences is decidable.

102 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

3.14 Decidable Fragments with Function Symbols

In the previous sections our focus was relational first-order formulas, and function symbols have only
played a marginal role. In the present section, we shall briefly consider first-order fragments that
admit function symbols under certain constraints but still have decidable satisfiability problems.

3.14.1 Unary Functions in Arguments of Monadic Atoms

Our first observations are inspired by the step from MFO to the Löb–Gurevich fragment — MFO
with unary function symbols, cf. page 23. Adopting a method already used by Löb in [Löb67] and
also by Grädel (cf. proof of Proposition 6.2.7 in [BGG97]), we can handle unary function symbols
under certain restrictions.

Proposition 3.14.1. Let ϕ be a first-order sentence without non-unary function symbols (constant
symbols are admitted). If the unary function symbols exclusively occur in atoms starting with
a unary predicate symbol, then we can find an equisatisfiable sentence ϕ′ without non-constant
function symbols such that any model B of ϕ′ can be transformed into a model A of ϕ over the
same domain. The length of ϕ′ lies in O

(
len(ϕ)

)
.

Proof. The proof is an adaptation of the proof of Proposition 6.2.7 from [BGG97].
Let f1, . . . , fk be an enumeration of all unary function symbols that occur in ϕ. We apply the

following transformation iteratively. Assume ϕ contains the atom P (fi(t)) for some term t. We
transform ϕ into ϕ

[
P (fi(t))

/
R(t)

]
∧ ∀x. P (fi(x))↔ R(x), where the R is a fresh unary predicate

symbol and ϕ
[
P (fi(t))

/
R(t)

]
is the formula we obtain from ϕ by replacing every occurrence of

P (fi(t)) by R(t). Starting from ϕ, exhaustive application of this transformation yields a sentence ϕ′′

of the form ψ∧∧ki=1

∧
j ∀x.

(
Pj(fi(x))↔ Ri,j(x)

)
, where ψ does not contain any of the fi anymore.

If we conceive the fi in ϕ′ as Skolem functions and revert the Skolemization, the fi vanish completely
and we end up with the equisatisfiable sentence ϕ′ := ψ ∧ ∀x∃y1 . . . yk.

∧k
i=1

∧
j

(
Pj(yi)↔ Ri,j(x)

)
.

Because of len(ψ) ≤ len(ϕ) and since for any occurrence of an fi in ϕ at most one new conjunct
of a fixed length is introduced, we get len(ϕ′) ∈ O(len(ϕ)).

The construction used in the proof of Lemma 3.14.1 only requires that the unary function
symbols exclusively occur in the arguments of unary predicate symbols. It is not required that
all occurring predicate symbols are unary. If we were to consider, for instance, an SF sentence in
which unary function symbols occur in the arguments of unary predicate symbols and nowhere
else, then the sentence ψ ∧ ∀x∃y1 . . . yk.

∧k
i=1

∧
j

(
Pj(yi) ↔ Ri,j(x)

)
belongs to SF as well (after

shifting all quantifiers to the front).
Similarly, the construction can be applied to GBSR sentences with unary function symbols in

monadic atoms. Although the final result is, technically, not in GBSR, it can easily be converted
to GBSR by shifting quantifiers. The same holds true for GAF, GGKS, and SFO2. Even for
the generalized guarded fragments SGF, SLGF, and SGNFO the construction is applicable, if we
add trivial guards in the spirit of Propositions 3.10.4 and 3.11.3. For SFL only renaming bound
variables is necessary to obtain an SFL sentence in the end. Hence, all of the mentioned fragments
do not only (almost) contain MFO, but could be extended so that they (almost) become a proper
superset of the Löb–Gurevich fragment.

3.14.2 SF and GBSR with Stratified Occurrences of Function Symbols

Decidable extensions of BSR with non-constant function symbols have been investigated mostly in
the realm of sorted logic. Two examples are Abadi et al.’s stratified vocabularies [ARS07, ARS10]
and Korovin’s non-cyclic sorts [Kor13b]. A third approach is developed in [GdM09], where sorts
are not the primary source of finiteness of the set of relevant terms. The cause for this limitation
is rather the syntactic structure of the formula at hand. Technically, the same effect could be
realized by extracting implicit sort information from the occurrences of function symbols in certain

3.14. DECIDABLE FRAGMENTS WITH FUNCTION SYMBOLS 103

argument positions. In the end, it is not surprising that all three approaches (almost) lead to the
same fragment: BSR with function symbols that occur only is a stratified fashion.

Definition 3.14.2 (GBSR with stratified occurrences of function symbols). Consider any vocab-
ulary Σ = 〈Π,Ω〉 and let ϕ be a Σ-sentence that adheres to the requirements of GBSR with the
exception that we allow function symbols to occur. The sentence ϕ is considered to be a GBSR
sentence with stratified occurrences of function symbols if there is a mapping lvlϕ : (Π∪Ω)×N→ N

lvlϕthat maps argument positions, i.e. pairs of the form 〈P, k〉 with P ∈ Π and 1 ≤ k ≤ arity(P)
or 〈f, k〉 with f ∈ Ω and 1 ≤ k ≤ arity(f) + 1, to nonnegative integers such that the following
conditions are satisfied.

(a) For every m-ary function symbol f ∈ Ω and every i with 1 ≤ i ≤ m we have lvlϕ〈f, i〉 >
lvlϕ〈f,m+ 1〉.

(b) For every (sub)term g(s1, . . . , sk−1, f(t1, . . . , tm), sk+1, . . . , sm′) occurring in ϕ we have
lvlϕ〈f,m+ 1〉 = lvlϕ〈g, k〉. This includes the case where f is a constant symbol and m = 0.
Moreover, this also includes the case where g is replaced with a predicate symbol P .

(c) For every equation f(s1, . . . , sm) ≈ g(t1, . . . , tm′) occurring in ϕ we have lvlϕ〈f,m + 1〉 =
lvlϕ〈g,m′ + 1〉. This includes the cases where f or g or both are constant symbols (with
m = 0 or m′ = 0 or both, respectively).

(d) Every variable v that occurs in ϕ is associated with a fixed nonnegative integer `v `vsuch that
we have the following

• for every (sub)term f(s1, . . . , sk−1, v, sk+1, . . . , sm) in ϕ we have lvlϕ〈f, k〉 = `v,

• for every atom P (s1, . . . , sk−1, v, sk+1, . . . , sm) in ϕ we have lvlϕ〈P, k〉 = `v,

• for every equation v ≈ g(t1, . . . , tm) in ϕ we have lvlϕ〈g,m+ 1〉 = `v, and

• for every equation v ≈ v′ we have `v = `v′ .

Intuitively, the main characteristic of collections of terms in which function symbols only occur
in a stratified fashion is that any function symbol f does never occur directly or indirectly in the
arguments applied to f . An example for a direct occurrence is f(s̄1, g(t̄1, f(t̄′), t̄2), s̄2), in which
f occurs in an argument in a term f(. . .). Indirect occurrences require, for instance, two terms
f(s̄1, g(t̄), s̄2) and g(s̄′1, f(t̄′), s̄′2) where f does not occur in s̄1, s̄2, t̄, s̄

′
1, s̄
′
2, t̄
′.

Definition 3.14.2 resembles an a-posteriori variant of the definition of stratified vocabulary
defined in [ARS10] for a sorted setting.

Definition 3.14.3 (Stratified vocabulary — Definition 1 from [ARS10]). A vocabulary Σ for
many-sorted logic is stratified if there is a mapping lvlΣ from sorts to nonnegative integers such
that for every function symbol f : ξ1 × . . .× ξm → ξm+1 we have lvlΣ(ξi) > lvlΣ(ξm+1) for every
i ≤ m.

Stratified vocabularies are essentially the same objects as non-cyclic vocabularies, which are
defined and investigated in [Kor13b]. A conceptually different approach, which yet leads to
essentially the same first-order fragment is developed in [GdM09], Section 3. Instead of the
mapping lvl, the authors use set constraints for the analysis of the syntactic structure.

Proposition 3.14.4 ([ARS10, GdM09, Kor13b]). The satisfiability problem for multi-sorted ∃∗∀∗-
sentences over a stratified vocabulary is decidable.

The main argument for proving Proposition 3.14.4 is that any Herbrand domain over many-
sorted stratified vocabularies is finite. Exhaustive Skolemization of an ∃∗∀∗-sentence ϕ over a
stratified vocabulary only introduces constant symbols. As this again leads to a stratified vocabulary,
Lemma 1.0.4 entails that any Skolemized version of ϕ has a finite Herbrand model, if ϕ is satisfiable.
In other words, the class of many-sorted ∃∗∀∗-sentences over a stratified vocabulary enjoys the
finite model property.

104 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

Although Definition 3.14.2 does not rely on sort information, it ensures that a formula is
constructed in accordance with Definition 3.14.3, based on implicit sort information that can be
reconstructed a posteriori by an analysis of the occurrences of function symbols in terms.

Proposition 3.14.5. Consider any Σ-formula ϕ that satisfies Definition 3.14.2. Then, the single-
sorted vocabulary Σ can be turned into a many-sorted vocabulary Σ′ such that (a) Σ′ and Σ contain
the same function and predicate symbols, (b) Σ′ is stratified, and (c) ϕ is a Σ′-formula obeying the
sort restrictions of Σ′.

We have already pointed out earlier that the translations from SF and GBSR into BSR that
underly Lemmas 3.2.5 and 3.5.2 also works in the presence of function symbols. This also entails
that every GBSR sentence with function symbols satisfying Definition 3.14.2 is equivalent to some
BSR sentence that also satisfies this definition. Hence, Proposition 3.14.4 entails that the fragment
described in Definition 3.14.2 has a decidable satisfiability problem

Theorem 3.14.6. The satisfiability problem for GBSR sentences with stratified occurrences of
function symbols is decidable.

3.14.3 Monadic Horn Sentences in which Positive Literals are Shallow
and Linear

The monadic shallow linear Horn fragment (MSLH) (see page 27 for the exact definition) is quite
different from the other fragments we have treated so far. It has strong connections to certain
kinds of tree automata, see, e.g. [JMW98] and [Wei98], Section 4. MSLH can be conceived as an
extension of the class of Horn MFO sentences after exhaustive Skolemization. Given any Horn
MFO sentence ∃z∀x1∃y1 . . . ∀xn∃yn.

∧
i Ci(x̄, ȳ), exhaustive Skolemization yields

∀x1 . . . xn.
∧
i

Ci
[
z/c, y1/f1(x1), . . . , yn/fn(x1, . . . , xn)

]
,

which belongs to MSLH, as every positive literal has one of three shapes: P (c), P (xi), or
P (fi(x1, . . . , xi)) with pairwise distinct x1, . . . , xi. On the other hand, it is easy to see that
MSLH allows a much richer term syntax than Skolemized MFO. For instance, terms in negative
literals may be arbitrarily complicated, including nested occurrences of non-constant function
symbols. Moreover, the order of variables may vary in distinct literals, whereas in Skolemized
MFO the arguments in Skolem terms adhere to a fixed order. Certain forms of symmetry can be
expressed in MSLH, which cannot be expressed in MFO, for example ∀xy. P (f(x, y))→ P (f(y, x)).

The satisfiability problem for MSLH is known to be decidable in deterministic exponential time,
in fact, it is ExpTime-complete [Gou05]. This also entails that the satisfiability problem for Horn
MFO sentences lies in ExpTime. Although it is already known that the satisfiability problem for
Horn MFO sentences is also ExpTime-hard [DL84b], it is instructive to show this by a reduction
to a basic problem over tree automata. This will highlight the close connection between the two
formalisms.

Proposition 3.14.7. The satisfiability problem for Horn-MFO is ExpTime-complete.

Proof sketch. To derive the upper bound, we recall that exhaustively Skolemized MFO sentences
belong to the MSLH fragment for which a decision procedure is known that runs in deterministic
exponential time ([Gou05], Theorem 6).

The lower bound can be derived by a reduction to the intersection non-emptiness problem for
deterministic tree automata: Given a finite sequence of tree automata A1, . . . ,Am, is there at least
one tree that is accepted by all Ai. This problem is known to be complete for ExpTime (see, e.g.,
[CDG+08], Theorem 1.7.5).6

6ExpTime-hardness of the intersection non-emptiness problem was already pointed out in [FSVY91] accompanied
by a very brief proof sketch. A detailed proof for the case of (bottom-up) deterministic tree automata is given
in [Vea97a] and [Vea97b], Lemma 5.4. More references and historical background can be found in [Vea97a] and in
the bibliographic notes in Section 1.9 of [CDG+08].

3.14. DECIDABLE FRAGMENTS WITH FUNCTION SYMBOLS 105

We stick to the basic definition from [Vea97a]. A tree automaton A tree
automaton
A

is a quadruple A =
〈Q,Ω, R, F 〉, where

Q is a finite set of states;

Ω a set of function symbols, each equipped with a fixed arity mf ≥ 0; we require mf = 0 for at
least one f ∈ Ω;

R is the transition relation, containing transition rules of the form f(q1, . . . , qmf)→ q with f ∈ Ω
and q1, . . . , qmf , q ∈ Q; and

F ⊆ Q is the set of final states.

We assume that the sets Q and Ω are disjoint. A tree automaton A = 〈Q,Ω, R, F 〉 is deterministic
if no rules in R have identical left-hand sides. Given A, the underlying tree language is the set
of all syntax trees of ground terms over the function and constant symbols in Ω. The rules in
R can be conceived a rewriting rules that turn (sub)trees into states. The starting point of this
process are the leaves of a tree, which are represented by constant symbols from Ω. Given c ∈ Ω, a
rewrite rule starting from c looks like c()→ q — we usually drop the empty list of arguments ()
for convenience. A term t is accepted tree

language
accepted
by A

by A if repeated application of the rewrite rules from R
eventually turns t into a final state q ∈ F . For example, consider the term t = g(c, f(c, d)) and
suppose the rules c→ q1; d→ q2; f(q1, q2)→ q1; g(q1, q1)→ q2 belong to R. Then t is rewritten
as follows

g(c, f(c, d))
A−→

+

g(q1, f(q1, q2))
A−→ g(q1, q1)

A−→ q2 .

The term t is accepted by A if and only if q2 ∈ F .
Let A1, . . . ,An be a sequence of tree automata Ai := 〈Qi,Ω, Ri, Fi〉 that share the underlying

tree vocabulary. Without loss of generality we assume that the sets Q1, . . . , Qn are pairwise disjoint.
Let ϕ1 be the following sentence

ϕ1 :=
∧
f∈Ω

∀x1 . . . xmf .

n∧
i=1

∧
f(q1,...qmf)→q ∈ Ri

(
Pq1(x1) ∧ . . . ∧ Pqmf (xmf)→ Pq(f(x1, . . . , xmf))

)
,

which encodes all the rules from the transition relations of all tree automata A1, . . . ,An. Clearly,
ϕ1 can easily be converted into a Horn sentence. Since each of the clauses in that Horn sentence
contains some positive literal, the sentence is satisfiable. Hence, by Proposition 1.0.5, ϕ1 has a
unique minimal Herbrand model H1. It is easy to verify that the language accepted by any Ai is
resembled by the set

⋃
q∈Fi P

H1
q . Put differently, for every ground term t that is accepted by Ai we

find some final state q ∈ Fi such that H1 |= Pq(t). In addition, we notice that ϕ1 is a Skolemized
variant of an MFO sentence that is (almost) Horn.

Next, we define the sentence ϕ2 that introduces the predicate symbols S1, . . . , Sn:

ϕ2 :=

n∧
i=1

∧
q∈Fi
∀x.
(
Pq(x)→ Si(x)

)
.

For each of the Si we observe that the unique minimal Herbrand model H2 |= ϕ1 ∧ ϕ2 interprets
the Si so that the set SH2

i captures the language accepted by Ai.
In order to also capture the intersection of the accepted languages in a single predicate, we

define the sentence

ϕ3 := ∀x.
(
S1(x) ∧ . . . ∧ Sn(x)→ T (x)

)
∧

n∧
i=1

(
T (x)→ Si(x)

)
.

Still, the conjunction ϕ1 ∧ ϕ2 ∧ ϕ3 is satisfiable and, hence, has a unique minimal Herbrand model
H3. Then, we observe that the set TH3 comprises exactly the terms that are in the intersection of
the languages accepted by A1, . . . ,An.

106 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

Finally, consider the sentence ϕ := ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ∀x.¬T (x). It is equivalent to the Skolemized
variant of a Horn-MFO sentence and, if ϕ is satisfiable, it has a unique minimal Herbrand model
H∗. Such a model exists if and only if the intersection of the tree languages accepted by A1, . . . ,An
is empty. Consequently, ϕ is unsatisfiable if and only if the intersection of the languages accepted
by A1, . . . ,An is not empty. In addition, the length of ϕ is linear in the sum of the lengths of any
reasonable representation of the tree automata A1, . . . ,An.

It seems that treatments of the semantics of MSLH sentences, and their close relatives from
the fragment H1 (cf. page 27), mainly consider Herbrand structures and the correspondence to
tree automata. This is the case in [Wei99, NNS02, Gou05, TW15, TW17, Teu17]. Obviously,
Herbrand structures for MSLH sentences with non-constant function symbols have an infinite
domain. Nevertheless, these structures might be representable by finite means. In the present
section we shall see how to construct models with finite domains for satisfiable MSLH sentences.
Hence, we show that this fragment enjoys the finite model property. More precisely, every satisfiable
MSLH sentence containing k constant symbols, p predicate symbols, and function symbols of arity
at most m has a model B whose domain contains at most k + (m+ 1) · 2p elements. The finite
model B we shall construct can be conceived as a finite representation of the minimal Herbrand
model H — every element in B’s domain corresponds to an equivalence class over ground terms in
H’s domain. The underlying equivalence relation is determined by the interpretation of the unary
predicate symbols under H.

Fix some vocabulary Σ = 〈Π,Ω〉 and consider a finite set NN , ϕ of pairwise variable-disjoint
Σ-clauses for which the sentence ϕ := ∀x̄. ∧C∈N C(x̄) is satisfiable and belongs to the MSLH
fragment. The following is an immediate consequence of Lemma 4 from [Wei99].

Proposition 3.14.8. There is a finite set N∗ of pairwise variable-disjoint Σ-clauses such that
N ⊆ N∗ and the sentence ϕ∗ := ∀x̄′. ∧C∈N∗ C(x̄′) belongs to MSLH and is logically entailed by ϕ.
Moreover, there is some Herbrand model H |= ϕ∗ such that for every ground Σ-atom A of the form
S
(
f(s1, . . . , sm)

)
we have H |= A only if there is some clause C in N∗ and a variable assignment

β that satisfy the following properties:

(a) C has the form ¬P1(x1)∨. . .∨¬Pn(xn)∨S
(
f(y1, . . . , ym)

)
where {x1, . . . , xn} ⊆ {y1, . . . , ym}

and f(y1, . . . , ym) is linear, i.e. the y1, . . . , ym are pairwise distinct; n = 0 or m = 0 is allowed;

(b) we have β(yi) = si for every i, 1 ≤ i ≤ m; and

(c) we have H, β |= Pj(xj) for every j, 1 ≤ j ≤ n.

Since ϕ∗ is Horn and satisfiable, Proposition 1.0.5 entails that it possesses a unique minimal
Herbrand model H. The property described in Proposition 3.14.8 provides the key to construct a
finite model for ϕ. The following example is intended to illustrate the underlying ideas.

Example 3.14.9. Consider the following set of clauses:

N := {P (a), Q(b),

¬P (u) ∨ ¬P (u′) ∨ P (f(u, u′)),

¬Q(v) ∨ ¬Q(v′) ∨Q(f(v, v′)),

¬P (x) ∨R(f(x, y)),

¬P (y) ∨R(f(x, y)),

¬Q(x) ∨R(f(x, y)),

¬Q(y) ∨R(f(x, y)),

¬P (z) ∨ ¬Q(z) ∨ ¬R(z)}

where a and b are constant symbols. The sentence ϕ := ∀uu′vv′xyz. ∧C∈N C(x, y, z) is satisfied by

3.14. DECIDABLE FRAGMENTS WITH FUNCTION SYMBOLS 107

the Herbrand structure H with

PH =
{
a, f(a, a), f

(
a, f(a, a)

)
, f
(
f(a, a), a

)
, f
(
f(a, a), f(a, a)

)
, f
(
a, f
(
a, f(a, a)

))
, . . .

}
,

QH =
{
b, f(b, b), f

(
b, f(b, b)

)
, f
(
f(b, b), b

)
, f
(
f(b, b), f(b, b)

)
, f
(
b, f
(
b, f(b, b)

))
, . . .

}
,

RH =
{
f(s, t)

∣∣ s, t are any ground Σ-terms
}
.

The model H is not minimal in the sense that the set RH is larger than necessary. When we
fix the interpretations of P and Q under H, the clauses in N enforce only the terms f(s, t) with
s ∈ PH and t ∈ QH to occur in R’s interpretation. In other words, the Herbrand structure H′ with
PH

′
:= PH, QH

′
:= QH, and

RH
′

:=
{
f(s, t)

∣∣ s ∈ PH or t ∈ QH
}

is a model of ϕ whose interpretation of R is a proper subset of RH. In contrast to H, the structure
H′, together with N∗ := N , satisfies the conditions of Proposition 3.14.8: for every term f(s, t)
that belongs to RH

′
we have that one of the clauses ¬P (x) ∨R(f(x, y)) or ¬P (y) ∨R(f(x, y)) or

¬Q(x)∨R(f(x, y)) or ¬Q(y)∨R(f(x, y)) enforces H |= R(f(s, t)) because of H |= P (s) or H |= P (t)
or H |= Q(s) or H |= Q(t), respectively. Similarly, the presence of any term f(. . .) in PH

′
or QH

′

is enforced by one of the clauses ¬P (u) ∨ ¬P (u′) ∨ P (f(u, u′)) and ¬Q(v) ∨ ¬Q(v′) ∨Q(f(v, v′)).
These requirements towards the minimality of H′ provide us with a certain knowledge about

distinct terms f(s, t) and f(s′, t′). Suppose the terms s and s′ are indistinguishable with respect
to their belonging to the predicates PH

′
, QH

′
, RH

′
. Further suppose that the same holds for the

terms t and t′. Then, f(s, t) and f(s′, t′) are also indistinguishable with respect to their belonging
to PH

′
, QH

′
, and RH

′
. A formal statement of this property is given in Lemma 3.14.10.

Based on this observation, we can use H′ as a blueprint for a finite model A, which is depicted
in Figure 3.6. The domain of A shall be A := {a, b, c, d, e}, and we set aA := a and bA := b. The
predicate symbols are interpreted by PA := {a, c}, QA := {b, d}, RA := {c, d, e}. Moreover, we
define

fA(a, a) := c fA(a, c) := c fA(c, a) := c fA(c, c) := c
fA(b, b) := d fA(b, d) := d fA(d, b) := d fA(d, d) := d.

For all other inputs, fA shall yield e as output. Every domain element in A represents one
equivalence class of the terms in H′’s Herbrand domain with respect to membership in the sets
PH

′
, QH

′
, and RH

′
. The domain element a represents the class [a] := {a} of terms that belong

to PH
′

and to no other set. Similarly, b represents [b] := {b} of terms that belong to QH
′

and
to no other set. The element c represents the class of all terms belonging to PH

′ ∩ RH′ , i.e. to
the class containing f(a, a), f(a, f(a, a)) and so on. The class of terms belonging to QH

′ ∩RH′ is
represented by d. Finally, e corresponds to the class of all terms that are member of RH

′
but of

none of the other predicates, e.g. f(a, b), f(a, f(b, a)).

We next describe formally how to construct a finite model for the given MSLH clause set N . Let
N∗, ϕ∗, and H N∗, ϕ∗, Hbe the objects described in Proposition 3.14.8. Then, we have H |= ϕ∗ and H |= ϕ.
Let H be the domain of H, i.e. H is the set of all ground terms over Σ. We aim at constructing a
finite model B |= ϕ = ∀x̄. ∧C∈N C(x̄) starting from H.

Recall that Π is the set of all predicate symbols occurring in N , and that Π contains only unary
predicate symbols. Let P(Π) denote the power set of Π. We define the coloring ν : H→ P(Π) ν, ∼νsuch

that ν(s) := {P ∈ Π | s ∈ PH} for every ground term s ∈ H. Based on ν, we define the equivalence
relation ∼ν on H such that we have s ∼ν t if and only if ν(s) = ν(t). For every color C ⊆ Π for
which H contains at least one element s with ν(s) = C, we pick one representative αC ∈ H αCwith
ν(αC) = C.7 Hence, for every non-empty equivalence class [s]∼ν in the quotient set H/∼ν we have
that [αν(s)]∼ν = [s]∼ν and ν(αν(s)) = ν(s).

7Technically, this definition would generate a further domain element f ∈ A for the color C = ∅ in Example 3.14.9,
which we have not added for simplicity.

108 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

P \R Q \R

P ∩R Q ∩R

R \ (P ∪Q)

a b

c d

e

R

P Qterms yielding a:
a

terms yielding b:
b

terms yielding c:
f(a, a), f(f(a, a), a),
f(a, f(a, a)), . . .

terms yielding d:
f(b, b), f(b, f(b, b)),
f(f(b, b), b), . . .

terms yielding e:
f(a, b), f(b, a),
f(a, f(a, b)), . . .

Figure 3.6: Illustration of the model A of ϕ from Example 3.14.9.

Lemma 3.14.10. For every non-constant function symbol f ∈ Ω of arity m and all tuples 〈s1, . . . ,
sm〉, 〈t1, . . . , tm〉 ∈ Hm for which ν(si) = ν(ti) holds for every i we have ν

(
f(s1, . . . , sm)

)
=

ν
(
f(t1, . . . , tm)

)
.

Proof. By Definition of H and ν, for every S ∈ ν
(
f(s1, . . . , sm)

)
there is a clause C of the

form ¬P1(x1) ∨ . . . ∨ ¬Pn(xn) ∨ S
(
f(y1, . . . , ym)

)
in N∗ and a variable assignment β that satisfy

Properties (a) to (c) from Proposition 3.14.8. Let γ be a variable assignment for which we have
γ(yi) := ti for every i. Notice that such a γ with

〈
γ(y1), . . . , γ(ym)

〉
= 〈t1, . . . , tm〉 always exists

because the y1, . . . , ym are pairwise distinct. Since we assume ν(si) = ν(ti) for every i and because
of {x1, . . . , xn} ⊆ {y1, . . . , ym}, Conditions (b) and (c) of Proposition 3.14.8 require β(xj) ∈ PHj
and, hence, we also have γ(xj) ∈ PHj for every j. Since H is a model of ϕ∗, we have H, γ |= C.
This together with H, γ |= Pj(xj), for every j, entails H, γ |= S(f(y1, . . . , ym)). Put differently, we
have S ∈ ν

(
f(t1, . . . , tm)

)
.

Consequently, we obtain ν
(
f(s1, . . . , sm)

)
⊆ ν

(
f(t1, . . . , tm)

)
. The converse direction can be

shown by a symmetric argument.

We now construct the finite structure B. Let m∗ be the smallest positive integer such that
every function symbol occurring in N has an arity of at most m∗.m∗, Bk We define B’s domain B to be
the disjoint union of m∗ + 2 subdomains B0,B1, . . . ,Bm∗+1. Together with these subdomains we
define a coloring λ : B→ P(Π)λ as follows. B0 contains exactly one element ac for every constant

symbol c occurring in N , and we require λ(ac) := ν(c). Moreover, we set cB := ac. This guarantees
that cB 6= dB for all distinct constant symbols c, d occurring in N . Let im(ν) be the image of ν, i.e.
im(ν) := {C ⊆ Π | there is some s ∈ H for which ν(s) = C}. For every color C ∈ im(ν) each Bi,
1 ≤ i ≤ m∗ + 1, shall contain exactly one element a for which we set λ(a) := C.

We define the interpretation of each predicate symbol P ∈ Π under B such that for every a ∈ B
we have a ∈ PB if and only if P ∈ λ(a). Regarding the non-constant function symbols f occurring
in N , we proceed as follows. Let m be the arity of f . Consider any tuple 〈a1, . . . , am〉 ∈ Bm.
Let C := ν(f(αλ(a1), . . . , αλ(am))). Pick some index j, 1 ≤ j ≤ m∗ + 1, such that none of the
a1, . . . , am belongs to Bj ; then fB(a1, . . . , am) ∈ Bj guarantees that fB(a1, . . . , am) 6= a` for every
`, 1 ≤ ` ≤ m. Let b be the (unique) element in Bj such that λ(b) = C. We set fB(a1, . . . , am) := b.
This ensures λ

(
fB(a1, . . . , am)

)
= ν(f(αλ(a1), . . . , αλ(am))).

Notice that the number of elements in B’s domain could potentially be reduced by taking only
the elements that are generated via the functions fB starting from the elements in B0. Then, B
would more closely correspond to the Herbrand domain H.

Lemma 3.14.11. Let γ be any variable assignment over B’s domain. Let β be the variable
assignment over H’s domain defined such that for every x we have β(x) := αλ(γ(x)). Then, for

every term t in N we have ν
(
H(β)(t)

)
= λ

(
B(γ)(t)

)
.

3.14. DECIDABLE FRAGMENTS WITH FUNCTION SYMBOLS 109

Proof. We proceed by induction on the structure of the term t. For the base case, assume that t is
either a variable x or a constant symbol c. In the former case, we get ν

(
H(β)(x)

)
= ν

(
β(x)

)
=

ν
(
αλ(γ(x))

)
= λ

(
γ(x)

)
= λ

(
B(γ)(x)

)
. In the latter case, we get ν

(
H(β)(c)

)
= ν

(
c
)

= λ(ac) =

λ
(
cB
)

= λ
(
B(γ)(c)

)
.

For the inductive case, assume that t is of the form f(t1, . . . , tm). Let si := H(β)(ti) for every
i. Moreover, let ai := B(γ)(ti) for every i. By induction, we have ν(si) = λ(ai) for every i. By
virtue of Lemma 3.14.10, we thus get

ν
(
f(s1, . . . , sm)

) L3.14.10
= ν

(
f(αν(s1), . . . , αν(sm))

) IH
= ν

(
f(αλ(a1), . . . , αλ(am))

)
.

By definition of fB, we obtain ν
(
f(αλ(a1), . . . , αλ(am))

)
= λ

(
fB(a1, . . . , am)

)
. Put together, this

yields ν
(
f(s1, . . . , sm)

)
= λ

(
fB(a1, . . . , am)

)
.

For the special case of ground terms, we can reformulate Lemma 3.14.11 into a simpler form: for
every ground term t and every predicate symbol P ∈ Π we have H |= P (t) if and only if B |= P (t).

Using Lemma 3.14.11, it is easy to show that ϕ is satisfied by the finite structure B.

Lemma 3.14.12. B is a model of ϕ.

Proof. Let C be any clause in N . Since ϕ is satisfiable, C cannot be the empty clause. Suppose
there is some variable assignment γ over B’s domain such that B, γ 6|= C. Let β be the variable
assignment over H’s domain defined by β(x) := αλ(γ(x)) for every x. Consider any atom P (t) in C.

The structure B is defined such that B, γ |= P (t) holds if and only if P ∈ λ
(
B(γ)(t)

)
. Moreover, by

definition of ν, we have H, β |= P (t) if and only if P ∈ ν
(
H(β)(t)

)
. Hence, Lemma 3.14.11 entails

that B, γ |= P (t) holds if and only if H, β |= P (t) does. But then, B, γ 6|= C entails H, β 6|= C. This
contradicts our assumption that H is a model of ϕ. Hence, we must have B |= C.

Theorem 3.14.13. Every satisfiable MSLH sentence ϕ has a finite model whose domain contains
at most k+ (m+ 1) · 2p elements, where k is the number of constant symbols in ϕ, p the number of
predicate symbols in ϕ, and all function symbols in ϕ have an arity of at most m.

Put differently, the MSLH fragment enjoys the finite model property.

110 CHAPTER 3. NOVEL DECIDABLE FIRST-ORDER FRAGMENTS

Chapter 4

The Semantic Side: Weak
Dependences and Model Checking
Games

In the present chapter we aim to develop a better understanding of the semantic properties of
GBSR and GAF sentences. The semantic counterpart of separateness is weak dependence. We
have already pointed out in Chapter 2, pages 19 to 20, that existentially quantified variables can
in general depend on universally quantified variables. Applying standard Skolemization to the
existentially quantified y in the first-order sentence ϕ := ∀xz∃y. P (x) ↔

(
Q(x) ↔ R(y, z)

)
, for

example, leads to the replacement of every occurrence of y with the Skolem term f(x, z). The
result is the sentence ϕSk := ∀xz. P (x) ↔

(
Q(x) ↔ R

(
f(x, z), z

))
in which the Skolem function

f is implicitly existentially quantified. In some sense, a model B of ϕSk must be a bit more
specific than any model A of ϕ in that B needs to explicitly provide a mapping fB : B× B→ B
that returns some suitable domain element fB(a, b), given any two elements a and b that have
been assigned to x and z, respectively. We do not expect such an explicit semantic object from
A. The semantics definition merely says that every variable assignment β := [x 7→a, z 7→b] can
be extended to some variable assignment γ := β[y 7→c] such that A, γ satisfy the matrix of ϕ,
in symbols A, γ |= P (x) ↔

(
Q(x) ↔ R

(
y, z
))

. This means that we only implicitly ask for the
existence of some strategy σ for finding suitable extensions γ = β[y 7→c] for all β = [x 7→a, z 7→b].
The main difference is that A is not expected to give us a concrete semantic object that embodies
the strategy, while B needs to explicitly provide such an object, namely fB.

Viewing this picture of ϕ through the lens of separateness, we observe that the variables x and
y do not co-occur in any atom in ϕ and neither do x and z. Moreover, we noted on page 19 that
there is the equivalent sentence

ϕ′ :=
((
∃x1. P (x1) ∧Q(x1)

)
→ ∀z1∃y1. R(y1, z1)

)
∧
((
∃x2. P (x2) ∧ ¬Q(x2)

)
→ ∀z2∃y2.¬R(y2, z2)

)
∧
((
∃x3.¬P (x3) ∧Q(x3)

)
→ ∀z3∃y3.¬R(y3, z3)

)
∧
((
∃x4.¬P (x4) ∧ ¬Q(x4)

)
→ ∀z4∃y4. R(y4, z4)

)
in which each existential quantifier occurs in the scope of at most one universal quantifier. This
raises the question of whether y in the original ϕ really depends on two universally quantified
variables and, if so, how strong this dependence is. The short answer is: yes, y in ϕ depends on
x and z. However, while the dependence of y on z could be considered of the “usual” kind, the
dependence of y on x is of a weaker form. To verbalize this distinction, we shall call the former
kind of dependence strong and the latter kind weak, as already proposed in Chapter 2.

111

112 CHAPTER 4. WEAK DEPENDENCES AND MODEL-CHECKING GAMES

Definition 4.0.1 (Weak dependence). Recall that we tacitly assume that distinct quantifiers in
formulas bind distinct variables and that no variable has free and bound occurrences.

Consider any satisfiable relational first-order sentence ψ in negation normal form that contains
some subformula χ := ∃y. χ′(ū, v̄, x̄, y) such that the variables from ū and x̄ are universally quantified
in ψ, and the variables from v̄ are existentially quantified in ψ. Let ψSk be the result of replacing
every occurrence of y in ψ with the Skolem term f(ū, x̄) for some fresh Skolem function f . Then,
y depends weakly on the variables in x̄, if every model A |= ψSk can be turned into a model
B |= ψSk by replacing fA with some mapping fB that satisfies the following property. There exists
a finite family of mappings

(
gi : A|ū| → A

)
i∈I and some mapping h : A|x̄| → I such that we have

fB(ā, b̄) := gh(b̄)(ā) for all ā ∈ A|ū| and b̄ ∈ A|x̄|.

Let us go back to the exemplary sentence ϕ = ∀xz∃y. P (x) ↔
(
Q(x) ↔ R(y, z)

)
and the

insight the every model of A is equipped with some strategy σ : A× A→ A that, given any two
values a and b for x and z, respectively, provides a suitable value for y such that A |= P (a) ↔(
Q(a) ↔ R

(
σ(a, b), b

))
. The syntactic structure of the quantifier-free part of ϕ is such that we

can group all the domain elements a that can be assigned to x into four categories: Category I
satisfies P (a) ∧ Q(a), Category II satisfies P (a) ∧ ¬Q(a), Category III satisfies ¬P (a) ∧ Q(a),
and Category IV satisfies ¬P (a) ∧ ¬Q(a). In order to make the sentence true under A, the
strategy σ does not have to distinguish different elements a, a′ that belong to the same category.
Let S :=

{
{P (x), Q(x)}, {P (x),¬Q(x)}, {¬P (x), Q(x)}, {¬P (x),¬Q(x)}

}
be a collection of sets

representing the Categories I to IV. We shall call such sets fingerprints . From the perspective of σ,
any input individual a in σ’s first argument is sufficiently characterized by its fingerprint. Therefore,
we can find a finite family of component strategies

(
τS
)
S∈S , containing one strategy τS : A→ A

for each of the Categories I to IV, such that the combined strategy τ : A × A → A — given by
τ(a, b) := τS(b) whenever a’s fingerprint is S — also yields A |= P (a)↔

(
Q(a)↔ R

(
τ(a, b), b

))
.

This point of view highlights the fact that a good choice for y’s value does not depend on the
individual a assigned to x but rather on a’s fingerprint Sa. Hence, the strategy witnesses the fact
that y depends only weakly on x.

Although Definition 4.0.1 suggests a more general notion of weak dependence, we shall focus on
the kind of weak dependence that can be phrased in terms of fingerprints. An important property
of the different sorts of fingerprints we consider in the present chapter is that there are only finitely
many fingerprints available at a time. Our concept of fingerprints shall always be based on the
syntax of the formula at hand and the number of fingerprints is always bounded by some function
in the length of the formula or a similar quantity. If we speak of weak dependences in a given
formula ϕ, then it is understood that they are weak with respect to all models of ϕ. We will
encounter strong dependences, however, that behave similar to weak dependences in certain models.
In particular, classes of sentences with strong dependences may still enjoy the finite model property ,
i.e. any satisfiable sentence in the class possesses a finite model. This is, for instance, the case for
GAF. We shall occasionally refer to the dependences in such classes as finitely controllable1.

Let us, once more, go back to the above example. As the case distinction τ(a, b) := τS(b),
where S denotes a’s fingerprint, ranges over a finite number of fingerprints S ∈ S that is bounded
irrespectively of A, we can also express the idea entirely at the syntactic level using second-order
quantifiers: ∃g1 . . . g4.∀xz.

∨4
i=1 P (x)↔

(
Q(x)↔ R(gi(z), z)

)
. This sentence can be read as the

result of applying to ϕ a non-standard form of Skolemization that is sensitive to the difference
between weak and strong dependences. To this end, we introduce more than one Skolem term for
the single quantifier ∃y, each of which has only the variable z as argument. In the field of proof
complexity it is known that using different forms of Skolemization can have dramatic effects on
the length of shortest refutation proofs [BL94, Egl94]. Hence, the proposed form of Skolemization
might be an interesting object of study in that context. In Section 7.2, we will briefly look into the
topic.

In the rest of the chapter, we shall concentrate on the description of syntactic criteria that
entail weakness of dependences in the context of SF, GBSR, and GAF. Indeed we will observe

1This notion is also used in the literature, e.g. in [DG79], to refer to classes of first-order sentences that enjoy the
finite model property.

4.1. THE SIMPLE CASE OF SF 113

that in GBSR sentences all occurring dependences between existentially and universally quantified
variables are weak. In GAF sentences, on the other hand, also strong dependences might occur,
namely between existentially quantified variables and their respective reference variable.

The main tools for studying dependences in SF, GBSR, and GAF sentences will be developed
in the framework of model-checking games in the spirit of Hintikka [Hin73] and Henkin [Hen61].
Roughly speaking, Hintikka ([Hin73], Section III.8) defines such games as follows. We a priori fix a
prenex sentence, e.g. ϕ from above, and some structure A and play against some opponent, “some
recalcitrant malin génie making the most of his chances of frustrating us.”([Hin73], page 63) Our
goal in a play is to create an assignment for the variables in ϕ that makes the quantifier-free part
of ϕ true under A. The values for the variables are successively chosen from left to right in the
order the respective quantifiers appear in ϕ’s quantifier prefix. Our opponent picks the values for
the universally quantified variables, we have control over the existentially quantified ones. It is
easy to see that we have a winning strategy (also: satisfying strategy) for this game if and only if
ϕ is satisfied under A in the standard semantics. In the presence of weak dependences, there are
winning strategies that consider the fingerprints of the elements chosen by our opponent rather
than the particular individuals. Individuals have to be considered only where strong dependences
occur. We shall call such special kinds of winning strategies (semi-)uniform, cf. Definitions 4.2.6
and 4.3.3. They respond uniformly to moves by our opponent that result in identical fingerprints.

4.1 The Simple Case of SF

As a starter, we investigate the dependence patterns that emerge in SF sentences. We will do this
on a rather informal level to get acquainted with the basic ideas. The formal treatment for GBSR
in the subsequent section will of course subsume the case of SF.

As it turns out, all dependences of existential on universal variables in any satisfiable SF
sentence ϕ are weak. By Definition 4.0.1, it follows that the sentence ϕSk, which is the result of
exhaustively Skolemizing all existentially quantified variables in ϕ, has a model A that interprets
all Skolem functions f in ϕSk with some function fA whose image

{
fA(ā)

∣∣ ā ∈ Aarity(f)
}

is finite.
This has an interesting consequence: any model A |= ϕ contains some finite substructure B that is
also a model of ϕ. This certainly already follows from our earlier observation that there is some
BSR sentence equivalent to ϕ. But this time, the argument emphasizes a semantic point of view
and the original sentence need not be transformed syntactically.

Next, we outline the reasoning that leads to the above observation. Consider any satisfiable SF
sentence ϕ = ∀x1∃y1 . . . ∀xn∃yn. ψ where ψ is quantifier free and let A be any model of ϕ. Then,
the two sets {x1, . . . , xn} and {y1, . . . , yn} are separated in ϕ. In order to show that there is a
finite substructure of A that still satisfies ϕ, we consider the model-checking game associated with
the pair ϕ,A. Recall that we play against some opponent: we take turns while constructing a
variable assignment for the variables in ϕ’s quantifier prefix. In the i-th round, our opponent picks
the same value for xi from A and right afterwards we are to choose a value for yi from A. The play
ends, as soon as all variables are assigned a value. If the resulting variable assignment is satisfying
for the matrix ψ under A, we win. Otherwise, our opponent wins. Evidently, since ϕ is satisfied by
A, there must exist a strategy that guarantees our victory, if we adhere to it.

The proof of the existence of the satisfying finite substructure B of A rests on two aspects:

(1) There exists a mapping µ that labels tuples of domain elements of A with suitable fingerprints
taken from a finite supply.

(2) There exists a winning strategy σ for us that is uniform in the following sense. Consider
the i-th move, in which our opponent has already assigned values to x1, . . . , xi. Based on
these values, the strategy σ now proposes a value for yi. σ is uniform if for all sequences
a1, . . . , ai and b1, . . . , bi of domain elements that could have been assigned to x1, . . . , xi, we

114 CHAPTER 4. WEAK DEPENDENCES AND MODEL-CHECKING GAMES

have σ(a1, . . . , ai) = σ(b1, . . . , bi), whenever

µ(a1, . . . , ai−1, ai) = µ(b1, . . . , bi−1, bi) ,

µ(a1, . . . , ai−1) = µ(b1, . . . , bi−1) ,

...

µ(a1, a2) = µ(b1, b2) , and

µ(a1) = µ(b1) .

In other words, the strategy σ is uniform if it proposes the same response for all inputs whose
prefixes are labeled identically by µ. As µ can assign only finitely many labels to sequences of
domain elements, this means that a uniform winning strategy σ gets along with only finitely
many different moves, even if the universal player has infinitely many moving options.

From this point on the argument for the existence of a finite substructure of A that is still
satisfying for ϕ roughly proceeds as follows. If we Skolemize ϕ exhaustively, and thus replace every
occurrence of an existentially quantified variable by an appropriate Skolem term, the strategy σ
induces an interpretation for the introduced Skolem functions. As σ is uniform, the image of each
of these functions is finite. The Skolem functions then generate only a finite subset of A’s domain,
and thus, by the Substructure Lemma, induce a finite substructure of A that is still satisfying for
ϕ.

It remains to discuss the mapping µ and the available fingerprints. Let Atx be the set of atoms
in ϕ which contain at least one variable from the list x1, . . . , xn. Then, Atx comprises exactly
the atoms in ϕ that are affected by the values assigned to x1, . . . , xn. We define µ recursively as
follows:

Base case: for every sequence a1, . . . , an of domain elements we set
µ(a1, . . . , an) :=

{
A(x1, . . . , xn) ∈ Atx

∣∣ A |= A(a1, . . . , an)
}

.

Inductive case: for any sequence a1, . . . , ai of domain elements we set
µ(a1, . . . , ai) :=

{
S
∣∣ S = µ(a1, . . . , ai, b) for some domain element b

}
.

Hence, µ ranges over iterated power sets of the set Atx; the nesting becomes deeper the fewer
arguments µ gets as input, i.e. µ(a1, . . . , ai) ∈ Pn−i+1Atx.

From the perspective of the argument sketched above, the i-th move a uniform strategy σ
proposes based on µ is determined by the set of atoms that are factually or potentially satisfied by
the domain elements our opponent has chosen for x1, ..., xi and is potentially going to choose for
xi+1, . . . , xn. It is one peculiarity of SF that this set of atoms is not affected by the choices made
for y1, . . . , yn. This leads to the existence of uniform winning strategies whenever the SF formula
at hand is satisfiable.

Example 4.1.1. Consider the SF sentence

ϕ := ∀x1∃y1∀x2∃y2.
(
P1(x1, x2)↔ Q1(y1, y2)

)
∧
(
P2(x1, x2)↔ Q2(y1, y2)

)
.

Let A be the structure with domain A := {1, 2, 3, 4} that interprets P1, P2, Q1, Q2 by symmetric
relations depicted below, which we, in addition, assume to be reflexive without depicting it.

PA1 : 1
2

3
4

PA2 : 1
2

3
4

QA1 : 1
2

3
4

QA2 : 1
2

3
4

Based on A, we get the following fingerprint function µ. The pairs 〈1, 2〉 and 〈2, 3〉 are assigned
the fingerprint

{
P1(x1, x2), P2(x1, x2)

}
by µ. The same fingerprint is assigned to their symmetric

4.1. THE SIMPLE CASE OF SF 115

counterparts 〈2, 1〉, 〈3.2, 〉 and to the reflexive pairs 〈1, 1〉, 〈2, 2〉, 〈3, 3〉, and 〈4, 4〉. The pairs
〈1, 3〉, 〈2, 4〉, 〈3, 4〉 and their symmetric counterparts are assigned the fingerprint

{
P2(x1, x2)

}
by µ.

Finally, the pairs 〈1, 4〉 and 〈4, 1〉 have the fingerprint ∅. Concerning the single elements, we get
the fingerprints

µ(1) = µ(4) =
{{
P1(x1, x2), P2(x1, x2)

}
,
{
P2(x1, x2)

}
, ∅
}
, and

µ(2) = µ(3) =
{{
P1(x1, x2), P2(x1, x2)

}
,
{
P2(x1, x2)

}}
.

Having all this, a satisfying strategy that is uniform with respect to µ is given, for instance, by
setting σ(a) := 4 and

σ(a, b) :=

4 if µ(a, b) =

{
P1(x1, x2), P2(x1, x2)

}
,

3 if µ(a, b) =
{
P1(x1, x2)

}
,

1 if µ(a, b) =
{
P2(x1, x2)

}
, and

2 if µ(a, b) = ∅

for all a, b ∈ A. Then, we get

A |=
(
P1

(
a, b
)
↔ Q1

(
σ(a), σ(a, b)

))
∧
(
P2

(
a, b
)
↔ Q2

(
σ(a), σ(a, b)

))
for any choice of a, b ∈ A, which entails that σ is indeed a winning strategy.

Remark 4.1.2. In his thesis [Her30], Section 9 of Chapter 2, Herbrand gave a proof of the decidabil-
ity of MFO using an approach which differs from the ones published by then by Löwenheim [Löw15],
Skolem [Sko19], Behmann [Beh22], and Hilbert and Ackermann [HA28] (page 77). Herbrand’s
proof uses an equivalence-preserving transformation of MFO sentences into a normal form in which
no quantifier occurs in the scope of another quantifier. This part is similar to the approaches we
took in Chapter 3 to devise translations from our novel extended fragments into the respective
original fragment.

Starting from this normal form and the following arguments, Quine [Qui69] extrapolated his
proof of the decidability of the class of homogeneous k-adic sentences, i.e. the class of FL sentences
in which all occurring predicate symbols have arity k. In retrospect, it seems fair to say that
Quine was on a track that eventually could have lead to the discovery of SF and to a proof of
its decidability. Quine’s arguments for the decidability of homogeneous k-adic sentences are very
closely linked to the concept of fingerprints. For example, given a homogeneous dyadic sentence ϕϕ
containing the atoms P (x, y), Q(x, y), R(x, y), Quine defines super-constituents to be sentences of
the form ∃x. ∧i[¬]∃y. [¬]P (x, y) ∧ [¬]Q(x, y) ∧ [¬]R(x, y), where [¬] means that the negation sign
may be present or not and where every conjunct differs from every other conjunct in the presence
or absence of at least one negation sign within the scope of ∃y. It is easy to see that such a sentence
corresponds to a fingerprint. For instance, the super-constituent

∃x. ¬∃y.
(
P (x, y)∧ Q(x, y)∧ R(x, y)

)
∧ ∃y.

(
P (x, y)∧ Q(x, y)∧¬R(x, y)

)
∧ ∃y.

(
P (x, y)∧¬Q(x, y)∧ R(x, y)

)
∧¬∃y.

(
P (x, y)∧¬Q(x, y)∧¬R(x, y)

)
∧¬∃y.

(
¬P (x, y)∧ Q(x, y)∧ R(x, y)

)
∧ ∃y.

(
¬P (x, y)∧ Q(x, y)∧¬R(x, y)

)
∧¬∃y.

(
¬P (x, y)∧¬Q(x, y)∧ R(x, y)

)
∧¬∃y.

(
¬P (x, y)∧¬Q(x, y)∧¬R(x, y)

)
corresponds to the fingerprint

{
{P (x, y), Q(x, y)}, {P (x, y), R(x, y)}, {Q(x, y)}

}
. One can now

argue that every sentence
∧
j [¬]Ci, where Ci ranges over all super-constituents with respect to ϕ’s

vocabulary, induces a finite structure and that it is sufficient to consider only such structures in
order to find a model for ϕ.

116 CHAPTER 4. WEAK DEPENDENCES AND MODEL-CHECKING GAMES

We shall use fingerprints in a different way, though, when constructing finite models from
uniform winning strategies. Nevertheless, in the light of the above said, it might have been pure
coincidence that Quine has extrapolated Herbrand’s ideas in the direction of the fluted fragment
rather than the direction of the separated fragment. In Section 7.1 we will establish a formal link
between fingerprints and sentences that are similar to the generalization of super-constituents for
k-adic sentences.2

4.2 GBSR Sentences and the Existence of Uniform Win-
ning Strategies

It is obvious that all dependences in any satisfiable BSR sentences ϕ := ∃ȳ∀x̄. ψ are trivially weak:
existential quantifiers never occur within the scope of universal quantifiers. Hence, each y ∈ ȳ is
independent of any x ∈ x̄, and for any model A we need at most a supply of |ȳ| domain elements
from which suitable values for the y ∈ ȳ can be picked. Concerning expressiveness, BSR sentences
are in the following sense prototypical for the class of sentences with only weak dependences.

Theorem 4.2.1. Consider any satisfiable relational sentence ϕ in which all dependences of
existentially quantified variables on universally quantified variables are weak. Let ϕSk be the
sentence that results from ϕ by exhaustive Skolemization of all existentially quantified variables.
Suppose Ω is the set containing exactly all the Skolem functions introduced in ϕSk. Then, we
observe the following.

(i) There is some positive integer m such that for every model A |= ϕSk there is some model
B |= ϕSk that differs from A only in the interpretation of the Skolem functions in Ω and for
which the set

⋃
f∈Ω

{
fB(ā)

∣∣ ā ∈ Barity(f)
}

contains at most m domain elements.

(ii) There is some BSR sentence ϕ′ that is equivalent to ϕ.

Proof sketch.

Ad (i). Suppose that there is no such integer m. For every positive n let z1, . . . , zn be fresh variables
that do not occur in ϕ and let ϕ′n be the sentence that results from ϕ by iteratively replacing
every subformula ∃y. ψ with

∨
1≤i≤n ψ[y/zi]. Due to our assumptions — ϕ is satisfiable and

m does not exist —, for every positive integer n the sentence ϕSk∧¬∃z1 . . . zn. ϕ
′
n is satisfiable.

But then, by compactness of first-order logic, the set of sentences {ϕSk} ∪ {¬∃z1 . . . zn. ϕ
′
n |

n ≥ 1} is satisfied by some model A. Moreover, there is no model B |= ϕSk that differs
from A only in the interpretation of the Skolem functions f ∈ Ω and for which the set⋃
f∈Ω

{
fB(ā)

∣∣ ā ∈ Barity(f)
}

is finite. This contradicts our assumption that all dependences
in ϕ are weak, as the latter entails that every model A |= ϕSk can be turned into some model
B |= ϕSk by replacing every fA with some mapping fB with a finite image. ♦

Ad (ii). Let m be the integer whose existence is stipulated in (i). Then, under any of ϕ’s
models each existential quantifier ∃y in ϕ needs to range over at most m domain elements.
Hence, we can replace any subformula χ of the form ∃y. ψ(y, v̄) in ϕ with a finite disjunction∨m
i=1 ψ(zi, v̄), where the zi are fresh variables, and add the quantifier block ∃z1 . . . zm to the

front. The resulting sentence ∃z1 . . . zm. ϕ
[
χ
/ ∨m

i=1 ψ(zi, v̄)
]

is equivalent to ϕ. Applying
this transformation exhaustively eventually leads to an equivalent BSR sentence.

As we already know from Theorem 3.2.7, the sentence ϕ Theorem 4.2.1 may be non-elementarily
more succinct than any equivalent BSR sentence, as the numbers m in part (i) of the theorem may
be very large.

In contrast to BSR sentences, GBSR sentences may contain non-trivial weak dependences. We
aim to show in the present section that GBSR sentences may, on the other hand, not contain

2See also Remark 7.1.4 on page 187 for a brief discussion of the connection between fingerprints and the
model-theoretic concept of types.

4.2. GBSR SENTENCES AND UNIFORM WINNING STRATEGIES 117

any strong dependences. We have already obtained indirect evidence that all dependences in a
GBSR sentence are weak in Section 3.5, when we devised the equivalence-preserving translation
from GBSR into BSR. However, this does not reveal much about the underlying semantic reasons.
A direct approach in the framework of model-checking games sheds more light on the involved
semantic properties and concepts, i.e. uniform satisfying strategies based on fingerprints.

The following are key concepts: fingerprints are, again, sets of sets of . . . sets of atoms that
characterize certain classes of indistinguishable tuples of domain elements by finite means; fingerprint
functions µ`,k assign fingerprints to such tuples; µ-uniform strategies select domain elements for
existentially quantified variables exclusively depending on the fingerprints of the values assigned
to preceding universally quantified variables. We base our considerations on some fixed GBSR
sentence ϕ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ ϕin standard form. Let the sets At, x̄, and ȳ be defined like in
Definition 3.4.1. Then, At can be partitioned into (possibly empty) sets At0, . . . ,Atn such that
Conditions (i) and (ii) of Definition 3.4.1 are met. Let A Abe any structure over the vocabulary of
ϕ and consider the model-checking game associated with ϕ over A. We next define the notion of
strategy in the context of GBSR.

Definition 4.2.2 (Strategy, satisfying strategy, outcome). A strategy σ comprises a tuple of n
mappings 〈σ1, . . . , σn〉 with signatures σi : A|x̄1| × . . .× A|x̄i| → A|ȳi|. A strategy σ is satisfying for
ϕ (under A) if

A, [x̄1 7→ā1, . . . , x̄n 7→ān, ȳ1 7→σ1(ā1), . . . , ȳn 7→σn(ā1, . . . , ān)] |= ψ

holds for every choice of tuples ā1 ∈ A|x̄1|, . . . , ān ∈ A|x̄n|.
For all ā1, . . . , ān with āi ∈ A|x̄i| we denote by outσ(ā1, . . . , ān) the set outσ(ā1, . . . , ān){

A(x̄1, . . . , x̄n, ȳ1, . . . , ȳn) ∈ At
∣∣ A |= A

(
ā1, . . . , ān, σ1(ā1), . . . , σn(ā1, . . . , ān)

)}
,

called the outcome of ā1, . . . , ān under σ. By Outσ Outσwe denote the set of all possible outcomes under

σ, i.e. Outσ :=
{

outσ(ā1, . . . , ān)
∣∣ āi ∈ A|x̄i|

}
.

Satisfying strategies can be considered winning strategies against our opponent in the model-
checking game associated with ϕ over A. If we adhere to a satisfying strategy σ during a play, then
every possible outcome in Outσ represents a satisfying assignment of truth values to the atoms in
ψ — an atom A is true if and only if is belongs to the outcome. Hence, the structure A satisfies ϕ
if and only if there is a satisfying strategy for ϕ.

Every strategy σ induces a structure A|σ A|σthat is given by the substructure of A with the domain

A|σ :=
{
a ∈ A

∣∣ σk(b̄1, . . . , b̄k) = 〈. . . , a, . . .〉 for some b̄1, . . . , b̄k
}
.

As we assume ϕ to be relational, such a substructure A|σ exists.

Lemma 4.2.3. If a strategy σ is satisfying for ϕ under A, then σ is satisfying for ϕ under A|σ.

Proof. It is easy to show by induction on the structure of ϕ that for every variable assignment β
over A|σ’s domain A, β |= ϕ implies A|σ, β |= ϕ. Since σ is satisfying for ϕ under A, we have

A, [x̄1 7→ā1, . . . , x̄n 7→ān, ȳ1 7→σ1(ā1), . . . , ȳn 7→σn(ā1, . . . , ān)] |= ϕ

for any choice of tuples ā1, . . . , ān with āi ∈ (A|σ)|x̄i| ⊆ A|x̄i|. Hence, we get

A|σ, [x̄1 7→ā1, . . . , x̄n 7→ān, ȳ1 7→σ1(ā1), . . . , ȳn 7→σn(ā1, . . . , ān)] |= ϕ

for any choice of ā1, . . . , ān with āi ∈ (A|σ)|x̄i|. In other words, σ is satisfying for ϕ under A|σ.

If ϕ is satisfied by A, and if all dependences in ϕ are weak, then there must be a special form
of satisfying strategies whose image only covers a finite portion of A’s domain. Such a strategy σ
induces a finite substructure A|σ of A that also satisfies ϕ. In order to find σ, we need to identify
the key features of domain elements that make them distinguishable by the formula ϕ. We express
these features by suitable fingerprints.

118 CHAPTER 4. WEAK DEPENDENCES AND MODEL-CHECKING GAMES

Definition 4.2.4 (Fingerprint functions µ`,k). We define the family of fingerprint functions µ`,k
µ`,k with 0 ≤ ` < k ≤ n as follows:

µ`,n : A|ȳ1|× . . .×A|ȳ`|×A|x̄`+1|× . . .×A|x̄n| → PAt` such that for all tuples ā1, . . . , ā`, b̄`+1, . . . , b̄n
and every atom A(ȳ1, . . . , ȳ`, x̄`+1, . . . , x̄n) ∈ At` we have A ∈ µ`,n(ā1, . . . , ā`, b̄`+1, . . . , b̄n) if
and only if A |= A(ā1, . . . , ā`, b̄`+1, . . . , b̄n);

µ`,n−1 : A|ȳ1|×. . .×A|ȳ`|×A|x̄`+1|×. . .×A|x̄n−1| → P2At` such that for all ā1, . . . , ā`, b̄`+1, . . . , b̄n−1

and every S ∈ PAt` we have S ∈ µ`,n−1(ā1, . . . , ā`, b̄`+1, . . . , b̄n−1) if and only if there is
some b̄n for which µ`,n(ā1, . . . , ā`, b̄`+1, . . . , b̄n−1, b̄n) = S;

...

µ`,`+1 : A|ȳ1| × . . .× A|ȳ`| × A|x̄`+1| → Pn−`At` such that for all tuples ā1, . . . , ā`, b̄`+1 and every
S ∈ Pn−`−1At` we have S ∈ µ`,`+1(ā1, . . . , ā`, b̄`+1) if and only if there exists b̄`+2 for which
µ`,`+2(ā1, . . . , ā`, b̄`+1, b̄`+2) = S.

We denote the image of a fingerprint function µ`,k under a strategy σ = 〈σ1, . . . , σn〉 byimσ(µ`,k)

imσ(µ`,k) :=
{
µ`,k

(
σ1(b̄1), . . . , σ`(b̄1, . . . , b̄`), b̄`+1, . . . , b̄k

) ∣∣ b̄1 ∈ A|x̄1|, . . . , b̄k ∈ A|x̄k|
}
.

Example 4.2.5. Consider the sentence ϕ := ∀x1x2∃y1∀u∃y2∀v.R(x1, u) ∨
(
P (x2, v) ∧ T (y1, y2)

)
.

We partition the set At = {R(x1, u), P (x2, v), T (y1, y2)} as follows: At0 := {R(x1, u), P (x2, v)},
At1 := ∅, At2 := {T (y1, y2)}, At3 := ∅. Regarding the images of the fingerprint functions
µk,`, we observe the following. Let σ be any strategy, based on any structure. Then, we have
imσ(µ2,3) ⊆

{
{}, {T (y1, y2)}

}
,

imσ(µ0,3) ⊆
{
{}, {R(x1, u)}, {P (x2, v)}, {R(x1, u), P (x2, v}

}
,

imσ(µ0,2) ⊆
{{
{}
}
,
{
{R(x1, u)}

}
,
{
{P (x2, v)}

}
,
{
{R(x1, u), P (x2, v)}

}
,{

{}, {P (x2, v)}
}
,
{
{R(x1, u)}, {R(x1, u), P (x2, v)}

}}
.

One aspect that restricts the image of µ0,2 compared to the full set P2At2 is the fact that u and v
do not co-occur in any atom. For every fingerprint S ∈ imσ(µ0,2) either R(x1, u) occurs in each
and every set S′ ∈ S or in none, since the truth value of R(x1, u) does not depend on the value of
v. Therefore, fingerprints such as{

{}, {R(x1, u), P (x2, v)}
}

or
{
{R(x1, u)}, {P (x2, v)}, {R(x1, u), P (x2, v)}

}
cannot be the result of µ0,2.

Having a suitable notion of fingerprints at hand, we next define a special kind of strategies that
highlight the weak nature of dependences in GBSR sentences and, hence, have a finite image.

Definition 4.2.6 (µ-uniformity). A strategy σ = 〈σ1, . . . , σn〉 is µ-uniform if for every k ≤ n
the following holds. For all tuples b̄1, b̄

′
1 ∈ A|x̄1|, . . . , b̄k, b̄′k ∈ A|x̄k| we have σk(b̄1, . . . , b̄k) =

σk(b̄′1, . . . , b̄
′
k) whenever for every k′ ≤ k all of the following conditions are met:

µ0,k′
(
b̄1, . . . , b̄k′) = µ0,k′(b̄

′
1, . . . , b̄

′
k′
)
,

µ1,k′
(
σ1(b̄1), b̄2, . . . , b̄k′

)
= µ1,k′

(
σ1(b̄′1), b̄′2, . . . , b̄

′
k′
)
,

...

µk′−1,k′
(
σ1(b̄1), . . . , σk′−1(b̄1, . . . , b̄k′−1), b̄k′

)
= µk′−1,k′

(
σ1(b̄′1), . . . , σk′−1(b̄′1, . . . , b̄

′
k′−1), b̄′k′

)
.

Intuitively, µ-uniformity of a strategy σ means that σ responds in the same way to inputs that
have identical fingerprints. The next lemma provides the key argument to infer the existence of
some satisfying µ-uniform strategy from the existence of any satisfying strategy.

Lemma 4.2.7. For every strategy σ = 〈σ1, . . . , σn〉 there is a µ-uniform strategy τ = 〈τ1, . . . , τn〉
such that Outτ ⊆ Outσ.

4.2. GBSR SENTENCES AND UNIFORM WINNING STRATEGIES 119

Proof. We start with two preliminary results.

Claim I: Let `, k be two integers such that 0 ≤ ` < k ≤ n. Let ā1, . . . , ā`, b̄`+1, . . . , b̄k be tuples of
domain elements, where āi ∈ A|ȳi|, b̄i ∈ A|x̄i| for every i. Let c̄k+1, . . . , c̄n and d̄k+1, . . . , d̄n
be sequences of tuples with c̄i, d̄i ∈ A|x̄i|. Assume that c̄k+1, . . . , c̄n and d̄k+1, . . . , d̄n coincide
in all positions that correspond to variables x ∈ x̄ occurring in At`. We have
µ`,k′(ā1, . . . , ā`, b̄`+1, . . . , b̄k, c̄k+1, . . . , c̄k′) = µ`,k′(ā1, . . . , ā`, b̄`+1, . . . , b̄k, d̄k+1, . . . , d̄k′)

for every k′ with k ≤ k′ ≤ n.

Proof: We proceed inductively from k′ = n downwards.

Let k′ = n. By definition of the sequences c̄k+1, . . . , c̄n and d̄k+1, . . . , d̄n we have
A |= A(ā1, . . . , ā`, b̄`+1, . . . , b̄k, c̄k+1, . . . , c̄n)

if and only if
A |= A(ā1, . . . , ā`, b̄`+1, . . . , b̄k, d̄k+1, . . . , d̄n)

for every atom A(ȳ1, . . . , ȳ`, x̄`+1, . . . , x̄n) ∈ At`. Hence, we have
µ`,n(ā1, . . . , ā`, b̄`+1, . . . , b̄k, c̄k+1, . . . , c̄n) = µ`,n(ā1, . . . , ā`, b̄`+1, . . . , b̄k, d̄k+1, . . . , d̄n).

Let k′ < n. Consider any set S ∈ µ`,k′(ā1, . . . , ā`, b̄`+1, . . . , b̄k, c̄k+1, . . . , c̄k′). By definition
of µ`,k′ , there must be some tuple c̄k′+1 such that

S = µ`,k′+1(ā1, . . . , ā`, b̄`+1, . . . , b̄k, c̄k+1, . . . , c̄k′ , c̄k′+1).
By induction, S = µ`,k′+1(ā1, . . . , ā`, b̄`+1, . . . , b̄k, d̄k+1, . . . , d̄k′ , c̄k′+1) and thus we have
S ∈ µ`,k′(ā1, . . . , ā`, b̄`+1, . . . , b̄k, d̄k+1, . . . , d̄k′).

Since this argument is symmetric, we obtain µ`,k′(ā1, . . . , ā`, b̄`+1, . . . , b̄k, c̄k+1, . . . , c̄k′) =
µ`,k′(ā1, . . . , ā`, b̄`+1, . . . , b̄k, d̄k+1, . . . , d̄k′). ♦

Claim II: Let `, k, k′ be three integers such that 0 ≤ ` < k < k′ ≤ n. Let ā1, . . . , ā`, b̄`+1, . . . , b̄k
be tuples of domain elements, where āi ∈ A|ȳi|, b̄i ∈ A|x̄i| for every i. Consider two sequences
of tuples c̄k+1, . . . , c̄k′ and d̄k+1, . . . , d̄k′ that coincide in all positions that correspond to
variables x occurring in At`, where c̄i, d̄i ∈ A|x̄i| for every i. We have
µ`,k′(ā1, . . . , ā`, b̄`+1, . . . , b̄k, c̄k+1, . . . , c̄k′) = µ`,k′(ā1, . . . , ā`, b̄`+1, . . . , b̄k, d̄k+1, . . . , d̄k′).

Proof: For k′ = n Claim II follows immediately from Claim I. For k′ < n we simply pad the
sequences c̄k+1, . . . , c̄k′ and d̄k+1, . . . , d̄k′ with tuples ēk′+1, . . . , ēn. Then, Claim II follows
from Claim I applied to the sequences ā1, . . . , ā`, b̄`+1, . . . , b̄k, c̄k+1, . . . , c̄k′ , ēk′+1, . . . , ēn and
ā1, . . . , ā`, b̄`+1, . . . , b̄k, d̄k+1, . . . , d̄k′ , ēk′+1, . . . , ēn. ♦

For i = 1, . . . , n we define Ai as abbreviation of A|x̄1| × . . .× A|x̄i|. Ai

αi,〈...〉, S
(k)

i

We construct certain repre-

sentatives α
k,〈S(k)

0 ,...,S
(k)
k−1〉
∈ Ak inductively as follows. The S

(k)

i stand for sequences S
(k)
i,i+1 . . . S

(k)
i,k

of fingerprints satisfying S
(k)
i,k ∈ S

(k)
i,k−1 ∈ . . . ∈ S

(k)
i,i+1.

Let k = 1. Ai,〈...〉We partition A1 into sets A
1,〈S(1)

0 〉
with S

(1)
0 ∈ imσ(µ0,1) by setting A

1,〈S(1)
0 〉

:=
{
b̄1 ∈

A|x̄1| | µ0,1(b̄1) = S
(1)
0

}
. We pick one representative α

1,〈S(1)
0 〉
∈ A

1,〈S(1)
0 〉

from every part.

Let k > 1. We construct subsets A
k,〈S(k)

0 ,...,S
(k)
k−1〉

⊆ Ak with S
(k)
0,j ∈ imσ(µ0,j), . . . , S

(k)
k−1,j ∈

imσ(µk−1,j) for every j ≤ k by setting A
k,〈S(k)

0 ,...,S
(k)
k−1〉

:={〈
c̄1, . . . , c̄k−1, b̄k

〉 ∣∣ b̄k ∈ A|x̄k| and there is some α
k−1,〈S(k−1)

0 ,...,S
(k−1)
k−2 〉

=〈
c̄1, . . . , c̄k−1

〉
with c̄i ∈ A|x̄i| for every i such that

µ0,k

(
c̄1, . . . , c̄k−1, b̄k

)
= S0,

µ1,k

(
σ1(c̄1), c̄2, . . . , c̄k−1, b̄k

)
= S1,

...

µk−2,k

(
σ1(c̄1), . . . , σk−2(c̄1, . . . , c̄k−2), c̄k−1, b̄k

)
= Sk−2,

120 CHAPTER 4. WEAK DEPENDENCES AND MODEL-CHECKING GAMES

µk−1,k

(
σ1(c̄1), . . . , σk−1(c̄1, . . . , c̄k−1), b̄k

)
= Sk−1,

S
(k)

0 = S
(k−1)

0 S0,

...

S
(k)

k−2 = S
(k−1)

k−2 Sk−2, and

S
(k)

k−1 = Sk−1

}
.

We pick one representative α
k,〈S(k)

0 ,...,S
(k)
k−1〉

from each nonempty A
k,〈S(k)

0 ,...,S
(k)
k−1〉

.

Having all the representatives α
k,〈S(k)

0 ,...,S
(k)
k−1〉

at hand, we inductively construct τ , starting

from τ1 and going to τn.

Let k = 1. For every b̄1 ∈ A|x̄1| we set τ1(b̄1) := σ1(α1,〈S0〉), where S0 := µ0,1

(
b̄1

)
.

Let k > 1. For all tuples b̄1 ∈ A|x̄1|, . . . , b̄k ∈ A|x̄k| we set τk(b̄1, . . . , b̄k) := σk(c̄1, . . . , c̄k), where
〈c̄1, . . . , c̄k〉 := α

k,〈S(k)
0 ,...,S

(k)
k−1〉

and we have

S
(k)
0,j = µ0,j

(
b̄1, . . . , b̄j

)
for every j, 0 < j ≤ k,

S
(k)
1,j = µ1,j

(
τ1(b̄1), b̄2, . . . , b̄j

)
for every j, 1 < j ≤ k,

...

S
(k)
k−2,j = µk−2,j

(
τ1(b̄1), . . . , τk−2(b̄1, . . . , b̄k−2), b̄k−1, . . . , b̄j

)
for every j, k − 2 < j ≤ k,

S
(k)
k−1,k = µk−1,k

(
τ1(b̄1), . . . , τk−1(b̄1, . . . , b̄k−1), b̄k

)
,

if such an α
k,〈S(k)

0 ,...,S
(k)
k−1〉

exists — we shall show in Claim IV that this is always the case.

Claim III: For all `, k, 0 ≤ ` < k ≤ n, we have imτ

(
µ`,k

)
⊆ imσ

(
µ`,k

)
.

Proof: Fix some µ`,k and let S ∈ imτ (µ`,k). Hence, there are tuples b̄1, . . . , b̄k such that
τ1(b̄1), . . . , τk(b̄1, . . . , b̄k) are defined and we have

S = µ`,k
(
τ1(b̄1), . . . , τ`(b̄1, . . . , b̄`), b̄`+1, . . . , b̄k

)
.

By definition of τ , there are representatives α
j,〈S(j)

0 ,...,S
(j)
j−1〉

= 〈c̄(j)
1 , . . . , c̄

(j)
j 〉, 1 ≤ j ≤ `, for

which we observe the following properties.

(a) For every i, 0 ≤ i < `, all the S
(j)

i are prefixes of S
(`)

i . This means, if we write S
(`)

i for
the sequence Si,i+1, . . . , Si,`, we have

Si,i+1 . . . Si,` = S
(1)

i Si,i+2 . . . Si,` = S
(2)

i Si,i+3 . . . Si,` = . . . = S
(`−1)

i Si,` = S
(`)

i .

(b) For every j, 1 ≤ j ≤ `, we have τj(b̄1, . . . , b̄j) = σj(c̄
(j)
1 , . . . , c̄

(j)
j).

Because of (a) and due to the construction of the α
j,〈S(j)

0 ,...,S
(j)
j−1〉

= 〈c̄(j)
1 , . . . , c̄

(j)
j 〉, we have

c̄
(j)
i = c̄

(j′)
i for every i, 1 ≤ i ≤ `, and all j, j′, 1 ≤ j, j′ ≤ `. Hence, we can write c̄1, . . . , c̄`

instead of c̄
(j)
1 , . . . , c̄

(j)
1 (for any j). Therefore, (b) entails

S = µ`,k
(
τ1(b̄1), . . . , τ`(b̄1, . . . , b̄`), b̄`+1, . . . , b̄k

)
= µ`,k

(
σ1(c̄1), . . . , σ`(c̄1, . . . , c̄`), b̄`+1, . . . , b̄k

)
.

Consequently, S ∈ imσ(µ`,k). ♦

4.2. GBSR SENTENCES AND UNIFORM WINNING STRATEGIES 121

Claim IV: For every k, 1 ≤ k ≤ n, and all tuples b̄1, . . . , b̄k there is a representative αk,〈S0,...,Sk−1〉
such that

S0,j = µ0,j

(
b̄1, . . . , b̄j

)
for every j, 0 < j ≤ k,

S1,j = µ1,j

(
τ1(b̄1), b̄2, . . . , b̄j

)
for every j, 1 < j ≤ k,

...

Sk−2,j = µk−2,j

(
τ1(b̄1), . . . , τk−2(b̄1, . . . , b̄k−2), b̄k−1, . . . , b̄j

)
for every j, k − 2 < j ≤ k,

Sk−1,k = µk−1,k

(
τ1(b̄1), . . . , τk−1(b̄1, . . . , b̄k−1), b̄k

)
.

Proof: We proceed by induction on k.

Let k = 1. Consider any tuple b̄1 ∈ A|x̄1| and set S0 := µ0,1

(
b̄1

)
. Hence, S0 ∈ imσ(µ0,1) and

we thus have defined the partition A1,〈S0〉. Since b̄1 ∈ A1,〈S0〉, the set is nonempty and
there is a representative α1,〈S0〉 ∈ A1,〈S0〉.

Let k > 1. Consider any sequence of tuples b̄1 ∈ A|x̄1|, . . . , b̄k ∈ A|x̄k| and defing Si, j
as in the claim. By Claim III, we have Si,j ∈ imτ (µi,j) ⊆ imσ(µi,j) for all i, j with
0 ≤ i < j ≤ k and, therefore, we have constructed the subset Ak,〈S0,...,Sk−1〉 ⊆ Ak when
we have been defining representatives. It remains to show that this set is not empty.

For every `, 0 ≤ ` < k − 1, we set S
(k−1)

` := S`,`+1 . . . S`,k−1. By induction, there is a
representative α

k−1,〈S(k−1)
0 ,...,S

(k−1)
k−2 〉

=: 〈c̄1, . . . , c̄k−1〉.
As one consequence, the definition of τ entails

τ1(b̄1) = σ1(c̄1) = τ1(c̄1) ,

...

τk−1(b̄1, . . . , b̄k−1) = σk−1(c̄1, . . . , c̄k−1) = τk−1(c̄1, . . . , c̄k−1) ,

which entails

(∗) µk−1,k

(
τ1(c̄1), . . . , τk−1(c̄1, . . . , c̄k−1), b̄k

)
= µk−1,k

(
τ1(b̄1), . . . , τk−1(b̄1, . . . , b̄k−1), b̄k

)
= Sk−1,k.

By definition of the µ`,k−1 and since we have S0,k ∈ S0,k−1, . . . , Sk−2,k ∈ Sk−2,k−1,
the properties of α

k−1,〈S(k−1)
0 ,...,S

(k−1)
k−2 〉

= 〈c̄1, . . . , c̄k−1〉 entail the existence of tuples

d̄
(0)
k , . . . , d̄

(k−2)
k ∈ A|x̄k| such that

µ0,k

(
c̄1, . . . , c̄k−1, d̄

(0)
k

)
= S0,k ,

µ1,k

(
τ1(c̄1), c̄2, . . . , c̄k−1, d̄

(1)
k

)
= S1,k ,

...

µk−2,k

(
τ1(c̄1), . . . , τk−2(c̄1, . . . , c̄k−2), c̄k−1, d̄

(k−2)
k

)
= Sk−2,k , and

µk−1,k

(
τ1(c̄1), . . . , τk−2(c̄1, . . . , c̄k−2), τk−1(c̄1, . . . , c̄k−1), b̄k

)
= Sk−1,k

(the last equation follows from (∗)).
Due to S0,k ∈ Pn−k+1At0, . . . , Sk−2,k ∈ Pn−k+1Atk−2, and Sk−1,k ∈ Pn−k+1Atk−1,
Condition (ii) of Definition 3.4.1 entails pairwise disjointness of the sets vars(S0,k) ∩
x̄, . . . , vars(Sk−2,k) ∩ x̄, and vars(Sk−1,k) ∩ x̄. Consequently, we can define a new tuple
d̄′k by setting

d′k,i :=

d

(j)
k,i if xk,i ∈ vars(Sj,k) ∩ x̄ with j < k − 1,

bk,i if xk,i ∈ vars(Sk−1,k) ∩ x̄,

bk,i otherwise (we could use any value here).

122 CHAPTER 4. WEAK DEPENDENCES AND MODEL-CHECKING GAMES

Due to the pairwise disjointness of the sets vars(S0,k)∩ x̄, . . . , vars(Sk−1,k)∩ x̄, Claim II
implies that for every `, 0 ≤ ` < k − 1,
µ`,k

(
τ1(c̄1), . . . , τ`(c̄1, . . . , c̄`), c̄`+1, . . . , c̄k−1, d̄

′
k

)
= µ`,k

(
τ1(c̄1), . . . , τ`(c̄1, . . . , c̄`), c̄`+1, . . . , c̄k−1, d̄

(`)
k

)
= S`,k

and
µk−1,k

(
τ1(c̄1), . . . , τk−1(c̄1, . . . , c̄k−1), d̄′k

)
= µk−1,k

(
τ1(c̄1), . . . , τk−1(c̄1, . . . , c̄k−1), b̄k

)
= Sk−1,k.

Consequently, the set Ak,〈S0,...,Sk−1〉 contains at least the tuple 〈c̄1, . . . , c̄k−1, d̄
′
k〉. There-

fore, there exists some representative αk,〈S0,...,Sk−1〉 ∈ Ak,〈S0,...,Sk−1〉. ♦

Claim V: τ is µ-uniform.

Proof: By construction of τ . ♦

Now let S ∈ Outτ . Then, there exist tuples b̄1, . . . , b̄n such that S = outτ (b̄1, . . . , b̄n).
We partition S into sets S0 := S ∩ At0, . . . , Sn := S ∩ Atn and thus obtain the fingerprints
S` = µ`,n

(
τ1(b̄1), . . . , τ`(b̄1, . . . , b̄`), b̄`+1, . . . , b̄n

)
⊆ At` for every `, 0 ≤ ` < n. Claim IV

guarantees the existence of some representative αn,〈S′0,...,S
′
n−1〉 = 〈c̄1, . . . , c̄n〉 such that S` =

µ`,n
(
σ1(c̄1), . . . , σ`(c̄1, . . . , c̄`), c̄`+1, . . . , c̄n

)
for every `, 0 ≤ ` < n.

Consider any A(ȳ1, . . . , ȳ`, x̄`+1, . . . , x̄n) ∈ At, and fix the ` for which A ∈ At`. We distinguish
two cases. Suppose that ` < n. The definition of αn,〈S′0,...,S

′
n−1〉 and the fingerprint functions µ`,n

entail that A ∈ S` if and only if
A |= A

(
τ1(b̄1), . . . , τ`(b̄1, . . . , b̄`), b̄`+1, . . . , b̄n

)
if and only if

A |= A
(
σ1(c̄1), . . . , σ`(c̄1, . . . , c̄`), c̄`+1, . . . , c̄n

)
.

In case of ` = n, we have A(ȳ1, . . . , ȳn) ∈ Sn if and only if
A |= A

(
τ1(b̄1), . . . , τn(b̄1, . . . , b̄n)

)
if and only if

A |= A
(
σ1(c̄1), . . . , σn(c̄1, . . . , c̄n)

)
.

In both cases, we get A ∈ outτ (b̄1, . . . , b̄n) if and only if A ∈ outσ(c̄1, . . . , c̄n). Consequently, we
have S = outτ (b̄1, . . . , b̄n) = outσ(c̄1, . . . , c̄n) ∈ Outσ. Altogether, it follows that Outτ ⊆ Outσ.

Corollary 4.2.8. If there is a satisfying strategy σ for ϕ, then there is also a µ-uniform strategy
τ that is satisfying for ϕ (under A).

Proof. Let σ be a satisfying strategy for ϕ. By Lemma 4.2.7, there is a µ-uniform strategy τ such
that for every S ∈ Outτ we have S ∈ Outσ. Since σ is satisfying for ϕ, every S ∈ Outσ can be
conceived as an assignment of truth values to the atoms in ϕ’s quantifier-free part ψ such that ψ
is satisfied. If this applies to every S ∈ Outσ, then it certainly applies to any S ∈ Outτ ⊆ Outσ.
Therefore, τ is also satisfying for ϕ.

The guaranteed existence of µ-uniform satisfying strategies for all models of GBSR sentences
confirms that all dependences in GBSR sentences are weak. On the other hand, it entails that
GBSR enjoys the finite model property. In order to formulate the induced bound regarding the
cardinality of small models accurately, we introduce another notion of degree for GBSR sentences
that is suitable for this purpose. This time the degree is based on co-occurrences of universally
quantified variables in atoms. This notion complements the notion introduced in Section 3.5
(Definition 3.5.1).

Definition 4.2.9 (Degree of interaction of universal variables). We denote by ∂∀(ϕ)∂∀(ϕ) the degree of
interaction of universal variables in ϕ, defined to be the smallest nonnegative integer meeting the
following condition. For every Ati, 0 ≤ i < n, there are at most ∂∀(ϕ) pairwise distinct indices
i+ 1 < j1 < . . . < j∂∀(ϕ) ≤ n such that x̄j` ∩ vars(Ati) 6= ∅.

4.2. GBSR SENTENCES AND UNIFORM WINNING STRATEGIES 123

Notice that we have 0 ≤ ∂∀(ϕ) < n. Moreover, in this definition the degree ∂∀(ϕ) implicitly
depends on the currently chosen partition of At into the sets At0, . . . ,Atn. Consider, for instance,
an MFO sentence ϕMFO. We could partition its atoms into two parts At0,Atn, where At0 contains
all atoms with a universally quantified variable and Atn comprises all other atoms. Clearly, At0 will
cause the highest possible degree for ϕMFO, since all universal variables occur in At0. We get a lower
degree, if we partition At as follows. For every i, 0 ≤ i < n, we set Ati :=

{
P (x) ∈ At

∣∣ x ∈ x̄i+1

}
,

and the set Atn again contains the rest of the atoms. This partition induces the potentially much
lower degree ∂∀(ϕMFO) = 0. Although this dependence on the current partition of At could be
eliminated by minimizing the degree over all possible partitions, compare also Definition 3.5.1, the
weaker notion given in Definition 4.2.9 suffices for the moment.

Lemma 4.2.10. If there is a satisfying µ-uniform strategy σ for ϕ, then the substructure A|σ of

A is a model of ϕ. Moreover, A|σ comprises at most n · |ȳ| ·
(
2↑∂∀(ϕ)+1(|At|)

)n2

elements.

Proof. We start with two preliminary results.

Claim I: Let `, k be two integers with 0 ≤ ` < k < n. For all tuples ā1, . . . , ā`, b̄`+1, . . . , b̄k
with āi ∈ A|ȳi| and b̄i ∈ A|x̄i| for every i we observe that, if vars(At`) ∩ x̄k+1 = ∅, then∣∣µ`,k(ā1, . . . , ā`, b̄`+1, . . . , b̄k)

∣∣ = 1 and, consequently, |imσ(µ`,k)| ≤ |imσ(µ`,k+1)|.

Proof: Suppose there are sets S1, S2 ∈ µ`,k(ā1, . . . , ā`, b̄`+1, . . . , b̄k) that are distinct. Hence,
there are tuples c̄k+1, d̄k+1 ∈ A|x̄k+1| such that S1 = µ`,k+1(ā1, . . . , ā`, b̄`+1, . . . , b̄k, c̄k+1) and
S2 = µ`,k+1(ā1, . . . , ā`, b̄`+1, . . . , b̄k, d̄k+1). But since x̄k+1 ∩ vars(At`) = ∅, Claim II from the
proof of Lemma 4.2.7 entails S1 = S2. This contradicts our assumption that S1 and S2 are
distinct. Consequently, µ`,k(ā1, . . . , ā`, b̄`+1, . . . , b̄k) contains at most one set.

It remains to show that µ`,k(ā1, . . . , ā`, b̄`+1, . . . , b̄k) is nonempty. This is easily done by
induction on k < n, starting from k = n− 1. ♦

Claim II: Let `, k be two integers with 0 ≤ ` < k < n. We have |imσ(µ`,k)| ≤ 2|imσ(µ`,k+1)|.

Proof: For all tuples b̄1, . . . , . . . , b̄k with b̄i ∈ A|x̄i| and for every

S ∈ µ`,k(σ1(b̄1), . . . , σ`(b̄1, . . . , b̄`), b̄`+1, . . . , b̄k)

we know that S = µ`,k+1(σ1(b̄1), . . . , σ`(b̄1, . . . , b̄`), b̄`+1, . . . , b̄k, c̄k+1) for some tuple c̄k+1.
Hence, µ`,k(σ1(b̄1), . . . , σ`(b̄1, . . . , b̄`), b̄`+1, . . . , b̄k) ⊆ imσ(µ`,k+1). ♦

Due to Claim I and Claim II, we observe that

(∗) for all integers `, k with 0 ≤ ` < k ≤ n we obtain |imσ(µ`,k)| ≤ 2↑∂∀(ϕ)+1(|At`|).

Let Tσ be the target set of σ, defined by Tσ :=
⋃n
k=1 Tk Tσ, Tk, where

Tk :=
{
a ∈ A

∣∣ there are tuples b̄1, . . . , b̄k such that σk(b̄1, . . . , b̄k) = 〈. . . , a, . . .〉
}
.

Notice that Tσ coincides with the domain of A|σ. Since σ is µ-uniform, we know that Tσ is a finite
set. By definition of the fingerprint functions µ`,k, we get the following upper bounds, where we
write imσ(µi,j) imσ(µi,j)to abbreviate imσ(µi,i+1)× imσ(µi,i+2)× . . .× imσ(µi,j) for all i, j, 0 ≤ i < j ≤ n.∣∣T1

∣∣ ≤ |ȳ1| ·
∣∣imσ(µ0,1)

∣∣ ≤ |ȳ1| · 2↑n(|At0|) ≤ |ȳ1| · 2↑n(|At|),∣∣T2

∣∣ ≤ |ȳ2| ·
∣∣imσ(µ0,2)× imσ(µ1,2)

∣∣ ≤ |ȳ2| · 2↑n(|At0|) · 2↑n−1(|At0|) · 2↑n−1(|At1|)
≤ |ȳ2| ·

(
2↑n(|At|)

)3
,

...∣∣Tn∣∣ ≤ |ȳn| ·
∣∣imσ(µ0,n)× . . .× imσ(µn−1,n)

∣∣ ≤ |ȳn| ·
∏n−1
i=0

∏n−1
j=i 2↑n−j(|Atj |)

≤ |ȳn| ·
(
2↑n(|At|)

)n2

.
When we combine these bounds with the bound formulated in (∗), it follows that Tσ contains

124 CHAPTER 4. WEAK DEPENDENCES AND MODEL-CHECKING GAMES

at most
∑n
`=1 |ȳ`| ·

∏n−1
i=0

∏n−1
j=i 2↑min(∂∀(ϕ)+1,n−j)(|Atj |) ≤ n · |ȳ| ·

(
2↑∂∀(ϕ)+1(|At|)

)n2

domain
elements.

Now consider the structure A|σ. We have already noted that A|σ = Tσ. Hence, the above
bound also applies to the number of elements in A|σ’s domain. By Lemma 4.2.3, A|σ is a finite
model of ϕ.

Theorem 4.2.11. Every satisfiable GBSR sentence ϕ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ with quantifier-free

ψ has a model with at most len(ϕ)2 ·
(
2↑∂∀(ϕ)+1(len(ϕ))

)n2

domain elements. More precisely, every
model A |= ϕ contains a substructure that satisfies ϕ and whose domain size is bounded as stated.

It is worth noticing that Theorem 4.2.11 states a small model property for GBSR that is, in
contrast to Corollary 3.5.4, not based on the equivalence with BSR but is solely inferred via the
analysis of weak dependences and the existence of µ-uniform satisfying strategies for satisfiable
sentences. Moreover, when applied to SF sentences, the bounds in Theorem 4.2.11 might be smaller
than the bounds given in Theorem 3.2.6, or vice versa, as for any SF sentence ψ the two degrees
∂∃(ψ) and ∂∀(ψ) are largely independent from each other.

Remark 4.2.12. The second part of Theorem 4.2.11 emphasizes the fact that all models of a
GBSR sentence ϕ contain a finite substructure that satisfies ϕ as well. This observation is trivial
for BSR sentences, and, via the equivalence of GBSR and BSR, the property follows already from
syntactic arguments.

What is also easy to verify for any BSR Σ-sentence ψ is the following. Let A1, . . . ,An be
any chain of Σ-structures where every Ai+1 is a proper substructure of Ai. If A1 and An are
models of ψ, then each and every Ai in the chain satisfies ψ. In general, there is no guarantee that
non-trivial chains of such satisfying (sub)structures can be extended to the right until An comprises
only a single domain element. The Loś–Tarski Theorem [Tar54, Loś55] (see also Theorem 6.5.4
in [Hod93]) stipulates that this is possible if and only if ψ is equivalent to some ∀∗-sentence.

In [SC10], Section 3, the above property of BSR sentences is described as “preservation under
substructures modulo a bounded ‘core’” and the close relation to the Loś–Tarski is pointed out.
Moreover, the authors propose a generalization of this property as a semantic characterization of
BSR.

By Theorems 3.5.3 and 4.2.1, all of the above said also applies to GBSR and the class of
first-order sentences in which all dependences of existentially quantified variables on universally
quantified variables are weak.

4.3 GAF Sentences and the Existence of Semi-Uniform Win-
ning Strategies

In the present section we investigate the dependences occurring in GAF sentences. Evidently,
strong dependences may occur, like the simple Ackermann sentence ∀x∃y.E(x, y) illustrates. Its
Skolemized variant ∀x.E(x, f(x)) has a model A with A := {0, 1, 2, . . .}, EA := {〈k, k+ 1〉 | k ≥ 0},
and fA(k) = k+1 for every k, where altering fA to any function with a finite image does not result
in a model of the sentence. Nevertheless, we will see that strong dependences in GAF sentences
are finitely controllable, i.e. infinite models cannot be enforced. This coincides with our earlier
observation that GAF enjoys the finite model property. In contrast to sentences with only weak
dependences, not every model of a given GAF sentence admits satisfying strategies with finite
images.

Consider any GAF sentence ϕ := ∀x̄1∃ȳ1ū1 . . . ∀x̄n∃ȳnūn. ψ. As usual, we set x̄ := x̄1 ∪ . . .∪ x̄n,
ȳ := ȳ1 ∪ . . . ∪ ȳn, and ū := ū1 ∪ . . . ∪ ūn. Recall that, according to Definition 3.7.1, every variable
u ∈ ū that occurs in ϕ is associated with exactly one reference variable x ∈ x̄, determined by the
set Atx in which u occurs. When we investigate the occurring dependences in the framework of
model-checking games, we observe that the only strong dependences in ϕ occur between variables
u and their respective reference variable x. All other dependences in ϕ are weak, in particular the

4.3. GAF SENTENCES AND SEMI-UNIFORM WINNING STRATEGIES 125

ones between any y ∈ ȳ and any variables from x̄. Satisfying strategies may need infinitely many
options for variables from ū to appropriately respond to all possible values of variables from x̄,
just like in the case of the above described model A for ∀x∃y.E(x, y). Example 4.3.1 illustrates
this observation in a slightly more involved setting. This means, we cannot always find uniform
satisfying strategies in the sense of Definition 4.2.6 with respect to appropriate fingerprints for
GAF. In order to compensate for this, we introduce the weaker notion of semi-uniform strategies,
which exist for every model of ϕ. Although semi-uniform satisfying strategies do not directly induce
finite models, they do facilitate the construction of finite models.

We base our considerations on a fixed GAF sentence ϕ := ∀x̄1∃ȳ1ū1 . . . ∀x̄n∃ȳnūn. ψ ϕin standard
form with quantifier-free ψ. The set At and the tuples x̄, ȳ, ū are defined as in Definition 3.7.1.
Then, At can be partitioned into sets At0 and Atx, x ∈ x̄, in accordance with Definition 3.7.1. In
addition, we define the set Ux := vars(Atx) ∩ ū Uxfor every x ∈ x̄. Recall that we have vars(Atx) ⊆
ȳ1 ∪ . . . ∪ ȳidx(x)−1 ∪ {x} ∪ ūidx(x) ∪ . . . ∪ ūn for every x, and that for any two distinct x, x′ ∈ x̄ we
have Ux ∩ Ux′ = ∅.

Let A Abe any structure over the vocabulary of ϕ. We adapt the definition of strategy and
related notions from Section 4.2 as follows. In the GAF setting, a strategy σ is a tuple of
mappings 〈σ1, . . . , σn〉 with the signatures σi : A|x̄1| × . . .× A|x̄i| → A|ȳi| × A|ūi|. For convenience,
we sometimes split σi into two parts: a ȳi-part σ1

i : A|x̄1| × . . . × A|x̄i| → A|ȳi| and a ūi-part
σ2
i : A|x̄1| × . . .× A|x̄i| → A|ūi|. A strategy σ is satisfying for ϕ if

A,[x̄1 7→ā1, . . . , x̄n 7→ān, ȳ1ū1 7→σ1(ā1), . . . , ȳnūn 7→σn(ā1, . . . , ān)] |= ψ

holds for every choice of tuples ā1, . . . , ān of appropriate length. The other related notions, such as
outcomes, are adapted accordingly.

Example 4.3.1. Consider the GAF sentence

ϕ := ∃z∀x∃y1y2. Q(z) ∧ ¬R(x, x) ∧R(x, y1) ∧Q(y1) ∧R(x, y2) ∧ ¬Q(y2) .

We partition the set of atoms of ϕ into At0 := {Q(z)} and Atx := {R(x, x), R(x, y1), Q(y1),
R(x, y2), Q(y2)}. One possible model A is given by A := {0, 1, 2, 3, . . .}, QA := {0, 1, 3, 5, . . .},
RA :=

{
〈i, i + 1〉, 〈i, i + 2〉

∣∣ i even
}
∪
{
〈i, i + 2〉, 〈i, i + 3〉

∣∣ i odd
}

. A satisfying strategy is the
canonical σ with σ1

1() := 0, where () denotes the empty list of arguments, and σ2
2(i) := 〈i+ 1, i+ 2〉

for even i, σ2
2(i) := 〈i+2, i+3〉 for odd i. The model A is depicted in Figure 4.1, and the strategy σ

is indicated by the arrows together with their annotation. Notice that none of the finite substructures
of A is a model of ϕ. Hence, there is no satisfying strategy with a finite image.

Q
QQs
∃z s����*HHHHj

∃y1

∃y2

s -
@
@
@
@R

∃y1

∃y2

s -
@
@
@
@R

∃y1

∃y2

s -
@
@
@
@R

∃y1

∃y2

s -�
�
�
��

∃y1

∃y2
s -�
�
�
��

∃y1

∃y2
s -�
�
�
��

∃y1

∃y2

1 3 5
. . .

0

2 4 6
. . .

Qp pp p p p p p ¬Q

Figure 4.1: Illustration of the structure A. An arrow from a to b indicates 〈a, b〉 ∈ RA. The
annotated existential quantifiers indicate which elements could be selected by a satisfying strategy.
All domain elements above the dotted line belong to QA, the elements below do not.

A fingerprint characterizes a class of tuples of domain elements that cannot be distinguished by
a given GAF sentence. Again, there will be only finitely many such fingerprints.

Definition 4.3.2 (Fingerprint functions λx,`). We define the family of fingerprint functions λx,`
λx,`as follows. For every k, 1 ≤ k ≤ n, and every x ∈ x̄k we define the mappings

λx,n : A|ȳ1|× . . .×A|ȳk−1|×A×A|ūk|× . . .×A|ūn| → PAtx such that for every atom A(ȳ1, . . . , ȳk−1,
x, ūk, . . . , ūn)∈Atx we have A∈λx,n(b̄1, . . . , b̄k−1, a, c̄k, . . . , c̄n) if and only if A |= A(b̄1, . . . ,
b̄k−1, a, c̄k, . . . , c̄n) ;

126 CHAPTER 4. WEAK DEPENDENCES AND MODEL-CHECKING GAMES

λx,n−1 : A|ȳ1| × . . .× A|ȳk−1| × A× A|ūk| × . . .× A|ūn−1| → P2Atx such that for every S ∈ PAtx
we have S ∈ λx,n−1(b̄1, . . . , b̄k−1, a, c̄k, . . . , c̄n−1) if and only if there exists some c̄n for which
λx,n(b̄1, . . . , b̄k−1, a, c̄k, . . . , c̄n−1, c̄n) = S;

...

λx,k : A|ȳ1|× . . .×A|ȳk−1|×A×A|ūk| → Pn−k+1Atx such that for every S ∈ Pn−kAtx we have S ∈
λx,k(b̄1, . . . , b̄k−1, a, c̄k) if and only if there is some c̄k+1 for which λx,k+1(b̄1, . . . , b̄k−1, a, c̄k,
c̄k+1) = S;

λx,0 : A|ȳ1| × . . . × A|ȳk−1| × A → Pn−k+2Atx such that for every S ∈ Pn−k+1Atx we have S ∈
λx,0(b̄1, . . . , b̄k−1, a) if and only if there exists some c̄k for which λx,k(b̄1, . . . , b̄k−1, a, c̄k) = S.

For every x ∈ x̄k we define the image of λx,0 under strategy σ byimσ(λx,0)

imσ(λx,0) :=
{
λx,0

(
σ1

1(ā1), . . . , σ1
k−1(ā1, . . . , āk−1), a

) ∣∣ ā1 ∈ A|x̄1|, . . . , āk−1 ∈ A|x̄k−1|, a ∈ A
}

.

The notation λk,`(b̄1, . . . , b̄k−1, ā, c̄k, . . . , c̄`)λk,` abbreviates the tuple〈
λx1,`(b̄1, . . . , b̄k−1, a1, c̄k, . . . , c̄`), . . . , λxm,`(b̄1, . . . , b̄k−1, am, c̄k, . . . , c̄`)

〉
,

where 〈x1, . . . , xm〉 := x̄k and 〈a1, . . . , am〉 := ā. For k > 0 we denote the image of λk,0 under σ by

imσ(λk,0) :=
{
λk,0

(
σ1

1(ā1), . . . , σ1
k−1(ā1, . . . , āk−1), āk

) ∣∣ ā1 ∈ A|x̄1|, . . . , āk ∈ A|x̄k|
}

.

Definition 4.3.3. (λ-semi-uniformity) A strategy σ = 〈σ1, . . . , σn〉 is λ-semi-uniform if for every
`, 1 ≤ ` ≤ n, the following property holds. For all tuples ā1, ā

′
1 ∈ A|x̄1|, . . . , ā`, ā′` ∈ A|x̄`| we have

(a) σ1
` (ā1, . . . , ā`) = σ1

` (ā′1, . . . , ā
′
`) and

(b) for every k with 1 ≤ k ≤ ` we have

λk,`
(
σ1

1(ā1), . . . , σ1
k−1(ā1, . . . , āk−1), āk, σ

2
k(ā1, . . . , āk), . . . , σ2

` (ā1, . . . , ā`)
)

= λk,`
(
σ1

1(ā′1), . . . , σ1
k−1(ā′1, . . . , ā

′
k−1), ā′k, σ

2
k(ā′1, . . . , ā

′
k), . . . , σ2

` (ā′1, . . . , ā
′
`)
)
,

whenever all of the following conditions are satisfied:

λ1,0

(
ā1

)
= λ1,0

(
ā′1
)
,

λ2,0

(
σ1

1(ā1), ā2

)
= λ2,0

(
σ1

1(ā′1), ā′2
)
,

...

λ`,0
(
σ1

1(ā1), . . . , σ1
`−1(ā1, . . . , ā`−1), ā`

)
= λ`,0

(
σ1

1(ā′1), . . . , σ1
`−1(ā′1, . . . , ā

′
`−1), ā′`

)
.

Consider a λ-semi-uniform strategy σ. The images of the mappings σ1
k are finite. This indicates

that every y ∈ ȳ is only subject to weak dependences. For the mappings σ2
k the situation is different.

This can be observed in Example 4.3.1, for instance, where σ is indeed λ-semi-uniform. Hence,
λ-semi-uniform strategies do not necessarily induce finite substructures — in contrast to µ-uniform
strategies. We shall see later, however, that a model A of ϕ and a λ-semi-uniform strategy σ can be
used as blueprint for constructing a finite model B for ϕ equipped with a satisfying λ-semi-uniform
strategy τ that has a finite image.

Lemma 4.3.4. For every strategy σ = 〈σ1, . . . , σn〉 there is a λ-semi-uniform strategy τ =
〈τ1, . . . , τn〉 with Outτ ⊆ Outσ.

Proof. We start with two preliminary results.

Claim I: Let k be any positive integer with k ≤ n and let b̄1, . . . , b̄k−1, āk be tuples with b̄i ∈ A|ȳi|

for every i and āk ∈ A|x̄k|. Let 〈S1, . . . , S|x̄k|〉 := λk,0(b̄1, . . . , b̄k−1, āk). Consider any
fingerprint T = 〈S′1, . . . , S′|x̄k|〉 for which we have S′i ∈ Si for every i. There exists some tuple

c̄k ∈ A|ūk| such that λk,k(b̄1, . . . , b̄k−1, āk, c̄k) = T .

4.3. GAF SENTENCES AND SEMI-UNIFORM WINNING STRATEGIES 127

Proof: Recall that for every xi in x̄k = 〈x1, . . . , x|x̄k|〉 we have defined the notation Uxi :=
vars(Atxi) ∩ ū. By definition of the fingerprint functions λx,0, for every xi the fact that
S′i ∈ λxi,0(b̄1, . . . , b̄k−1, āk) entails the existence of some tuple c̄xi ∈ A|ūk| such that
λxi,k(b̄1, . . . , b̄k−1, āk, c̄xi) = S′i. Since we have Uxi ∩ Uxj = ∅ for all i 6= j, we can merge the
tuples c̄x1 , . . . , c̄xx̄k

into one tuple c̄k of length |ūk| in such a way that λxi,k(b̄1, . . . , b̄k−1, āk,

c̄k) = S′i holds for every xi. Then, c̄k is the sought tuple. ♦

Claim II: Let k and ` be positive integers with 1 ≤ k ≤ ` ≤ n−1. Let b̄1, . . . , b̄k−1, āk, c̄k, . . . , c̄` be
tuples with b̄i ∈ A|ȳi| for every i, āk ∈ A|x̄k|, and c̄j ∈ A|ūj | for every j. Let 〈S1, . . . , S|x̄k|〉 :=
λk,`(b̄1, . . . , b̄k−1, āk, c̄k, . . . , c̄`). Consider any fingerprint T = 〈S′1, . . . , S′|x̄k|〉 for which we

have S′i ∈ Si for every i. There exists some tuple c̄`+1 such that λk,`+1(b̄1, . . . , b̄k−1, āk,
c̄k, . . . , c̄`, c̄`+1) = T .

Proof: Analogous to the proof of Claim I. ♦

For k = 1, . . . , n we define Ak as abbreviation of A|x̄1| × . . .× A|x̄k|. Ak
α〈...〉

We inductively construct
certain representatives α〈T1,...,Tk〉 ∈ Ak as follows.

Let k = 1. Ai,〈...〉We partition A1 into sets A1,〈T1〉 with T1 ∈ imσ(λ1,0) by setting A1,〈T1〉 :=
{
ā1 ∈ A|x̄1|

∣∣
λ1,0

(
ā1

)
= T1

}
. We pick one representative α〈T1〉 ∈ A1,〈T1〉 from each nonempty part A1,〈T1〉.

Let k > 1. We construct subsets Ak,〈T1,...,Tk〉 ⊆ Ak with T1 ∈ imσ(λ1,0), . . . , Tk ∈ imσ(λk,0) by
setting Ak,〈T1,...,Tk〉 :={〈

c̄1, . . . , c̄k−1, āk
〉 ∣∣ āk ∈ A|x̄k| and there is some α〈T1,...,Tk−1〉 =

〈
c̄1, . . . , c̄k−1

〉
with c̄i ∈ A|x̄i| for every i such that

λ1,0

(
c̄1

)
= T1,

λ2,0

(
σ1

1(c̄1), c̄2

)
= T2,

...

λk−1,0

(
σ1

1(c̄1), . . . , σ1
k−2(c̄1, . . . , c̄k−2), c̄k−1

)
= Tk−1,

λk,0
(
σ1

1(c̄1), . . . , σ1
k−1(c̄1, . . . , c̄k−1), āk

)
= Tk

}
.

We pick one representative α〈T1,...,Tk〉 from each nonempty Ak,〈T1,...,Tk〉.

Having all the representatives α〈T1,...,Tk〉 at hand, we inductively construct τ , starting from
τ1
1 , τ

2
1 and going to τ1

n, τ
2
n, and show that τ is λ-semi-uniform.

Let k = 1. For every ā1 ∈ A|x̄1| we set τ1
1 (ā1) := σ1

1(α〈T 〉), where T := λ1,0

(
ā1

)
. Let T ′ :=

λ1,1

(
α〈T 〉, σ2

1(α〈T 〉)
)
. Hence, there are fingerprints S1, . . . , S|x̄1|, S

′
1, . . . , S

′
|x̄1| such that T =

〈S1, . . . , S|x̄1|〉, T ′ = 〈S′1, . . . , S′|x̄1|〉, and S′i ∈ Si for every i. Since λ1,0

(
ā1

)
= T , Claim I

entails that there must be some b̄1 ∈ A|ū1| such that λ1,1

(
ā1, b̄1

)
= T ′. We set τ2

1 (ā1) := b̄1.

In case of ā1 = α〈T 〉, we make sure that b̄1 = σ2
1(α〈T 〉), i.e. we then set τ2

1 (α〈T 〉) := σ2
1(α〈T 〉).

By construction, τ is λ-semi-uniform up to this point.

Let k > 1. Given tuples ā1 ∈ A|x̄1|, . . . , āk ∈ A|x̄k|, let

T1 := λ1,0

(
ā1

)
,

T2 := λ2,0

(
τ1
1 (ā1), ā2

)
,

...

Tk := λk,0
(
τ1
1 (ā1), . . . , τ1

k−1(ā1, . . . , āk−1), āk
)
.

128 CHAPTER 4. WEAK DEPENDENCES AND MODEL-CHECKING GAMES

Based on these fingerprints, let 〈c̄1, . . . , c̄k〉 := α〈T1,...,Tk〉 with c̄i ∈ A|x̄i| for every i. (We argue
in Claim IV that such a representative α〈T1,...,Tk〉 always exists.) We set τ1

k (ā1, . . . , āk) :=
σ1
k(c̄1, . . . , c̄k). Hence, Condition (a) of the definition of λ-semi-uniformity is satisfied for τ .

Moreover, we set τ2
k (c̄1, . . . , c̄k) := σ2

k(c̄1, . . . , c̄k). In order to define τ2
k (ā1, . . . , āk) in cases

where 〈ā1, . . . , ān〉 6= 〈c̄1, . . . , c̄n〉, we proceed as follows.

Let

T ′1 := λ1,k

(
c̄1, σ

2
1(c̄1), . . . , σ2

k(c̄1, . . . , c̄k)
)
,

T ′2 := λ2,k

(
τ1
1 (c̄1), c̄2, σ

2
2(c̄1, c̄2), . . . , σ2

k(c̄1, . . . , c̄k)
)
,

...

T ′k := λk,k
(
τ1
1 (c̄1), . . . , τ1

k−1(c̄1, . . . , c̄k−1), c̄k
)
.

By induction, i.e. by λ-semi-uniformity of τ for τ2
1 , . . . , τ

2
k−1 and by definition of τ2

1 , . . . , τ
2
k−1,

we observe that

T ′′j := λj,k−1

(
τ1
1 (ā1), . . . , τ1

j−1(ā1, . . . , āj−1), āj , τ
2
j (ā1, . . . , āj), . . . , τ

2
k−1(ā1, . . . , āk−1)

)
= λj,k−1

(
τ1
1 (c̄1), . . . , τ1

j−1(c̄1, . . . , c̄j−1), c̄j , τ
2
j (c̄1, . . . , c̄j), . . . , τ

2
k−1(c̄1, . . . , c̄k−1)

)
= λj,k−1

(
τ1
1 (c̄1), . . . , τ1

j−1(c̄1, . . . , c̄j−1), c̄j , σ
2
j (c̄1, . . . , c̄j), . . . , σ

2
k−1(c̄1, . . . , c̄k−1)

)
for every j = 1, . . . , k − 1, and we have T ′′j = 〈S′′1 , . . . , S′′|x̄j |〉 and T ′j = 〈S′1, . . . , S′|x̄j |〉 with

S′i ∈ S′′i for every i. By virtue of Claims I and II, there exist b̄1
k, . . . , b̄

k
k ∈ A|ūk| such that

λ1,k

(
ā1, τ

2
1 (ā1), . . . , τ2

k−1(ā1, . . . , āk−1), b̄1
k

)
= T ′1 ,

λ2,k

(
τ1
1 (ā1), ā2, τ

2
2 (ā1, ā2), . . . , τ2

k−1(ā1, . . . , āk−1), b̄2
k

)
= T ′2 ,

...

λk,k
(
τ1
1 (ā1), . . . , τ1

k−1(ā1, . . . , āk−1), āk, b̄
k
k

)
= T ′k .

Since the sets Atx do not share any variables from ūk, we can merge the tuples b̄1
k, . . . , b̄

k
k

into one b̄k such that

λ1,k

(
ā1, τ

2
1 (ā1), . . . , τ2

k−1(ā1, . . . , āk−1), b̄k
)

= T ′1 ,

λ2,k

(
τ1
1 (ā1), ā2, τ

2
2 (ā1, ā2), . . . , τ2

k−1(ā1, . . . , āk−1), b̄k
)

= T ′2 ,

...

λk,k
(
τ1
1 (ā1), . . . , τ1

k−1(ā1, . . . , āk−1), āk, b̄k
)

= T ′k .

We set τ2
k (ā1, . . . , āk) := b̄k. Then, τ satisfies Condition (b) of the definition of λ-semi-

uniformity.

Notice that, by construction of τ , every representative α〈T1,...,Ti〉 =: 〈c̄1, . . . , c̄i〉 satisfies

λk,`
(
τ1
1 (c̄1), . . . , τ1

1 (c̄1, . . . , c̄k−1), c̄k, τ
2
k (c̄1, . . . , c̄k), . . . , τ2

` (c̄1, . . . , c̄`)
)

= λk,`
(
σ1

1(c̄1), . . . , σ1
1(c̄1, . . . , c̄k−1), c̄k, σ

2
k(c̄1, . . . , c̄k), . . . , σ2

` (c̄1, . . . , c̄`)
)

(4.1)

for all k, ` with 1 ≤ k ≤ ` ≤ i.

Claim III: For every k, 1 ≤ k ≤ n, we have imτ

(
λk,0

)
⊆ imσ

(
λk,0

)
.

Proof: Fix some k and let T ∈ imτ (λk,0). Then, there are tuples ā1 ∈ A|x̄1|, . . . , āk ∈ A|x̄k| such

that τ1
1 (ā1), . . . , τ1

k−1(ā1, . . . , āk−1) are defined and we have

4.3. GAF SENTENCES AND SEMI-UNIFORM WINNING STRATEGIES 129

T = λk,0
(
τ1
1 (ā1), . . . , τ1

k−1(ā1, . . . , āk−1), āk
)
.

By definition of τ , there is some α〈T1,...,Tk−1〉 = 〈c̄1, . . . , c̄k−1〉 for which we observe

τ1
1 (ā1) = σ1

1(c̄1)

...

τ1
k−1(ā1, . . . , āk−1) = σ1

k−1(c̄1, . . . , c̄k−1) .

Consequently, T = λk,0
(
σ1

1(c̄1), . . . , σ1
k−1(c̄1, . . . , c̄k−1), āk

)
∈ imσ

(
λk,0

)
. ♦

Claim IV: For every k, 1 ≤ k ≤ n, and all tuples ā1 ∈ A|x̄1|, . . . , āk ∈ A|x̄k| there is a representative
α〈T1,...,Tk〉 such that

T1 = λ1,0

(
ā1

)
,

T2 = λ2,0

(
τ1
1 (ā1), ā2

)
,

...

Tk−1 = λk−1,0

(
τ1
1 (ā1), . . . , τ1

k−2(ā1, . . . , āk−2), āk−1

)
,

Tk = λk,0
(
τ1
1 (ā1), . . . , τ1

k−1(ā1, . . . , āk−1), āk
)
.

Proof: We proceed by induction on k.

Let k = 1. Consider any tuple ā1 ∈ A|x̄1| and set T1 := λ1,0

(
ā1

)
. Then, T1 ∈ imσ(λ1,0) and

we thus have defined the partition A1,〈T1〉. Since ā1 ∈ A1,〈T1〉, the set is nonempty and
there is some representative α〈T1〉 ∈ A1,〈T1〉.

Let k > 1. Consider any sequence of tuples ā1 ∈ A|x̄1|, . . . , āk ∈ A|x̄k|. By Claim III, we have

T1 ∈ imτ (λ1,0) ⊆ imσ(λ1,0) ,

...

Tk ∈ imτ (λk,0) ⊆ imσ(λk,0) ,

and, therefore, we have constructed the subset Ak,〈T1,...,Tk〉 ⊆ Ak when defining repre-
sentatives. It remains to show that this set is not empty.

By induction, there is a unique representative α〈T1,...,Tk−1〉 =: 〈c̄1, . . . , c̄k−1〉 with

T1 = λ1,0

(
c̄1

)
,

T2 = λ2,0

(
τ1
1 (c̄1), c̄2

)
= λ2,0

(
σ1

1(c̄1), c̄2

)
,

...

Tk−1 = λk−1,0

(
τ1
1 (c̄1), . . . , τ1

k−2(c̄1, . . . , c̄k−2), c̄k−1

)
= λk−1,0

(
σ1

1(c̄1), . . . , σ1
k−2(c̄1, . . . , c̄k−2), c̄k−1

)
.

This entails τ1
i (c̄1, . . . , c̄i) = τ1

i (ā1, . . . , āi) for every i with 1 ≤ i ≤ k − 1. Therefore,

Tk = λk,0
(
τ1
1 (ā1), . . . , τ1

k−1(ā1, . . . , āk−1), āk
)

= λk,0
(
τ1
1 (c̄1), . . . , τ1

k−1(c̄1, . . . , c̄k−1), āk
)

= λk,0
(
σ1

1(c̄1), . . . , σ1
k−1(c̄1, . . . , c̄k−1), āk

)
.

Hence, we have 〈c̄1, . . . , c̄k−1, āk〉 ∈ Ak,〈T1,...,Tk〉. Since Ak,〈T1,...,Tk〉 contains at least one
element, there exists a representative α〈T1,...,Tk〉. ♦

130 CHAPTER 4. WEAK DEPENDENCES AND MODEL-CHECKING GAMES

At this point we have finished showing that the constructed strategy τ is well defined and
λ-semi-uniform. It remains to prove Outτ ⊆ Outσ. Let S ∈ OutτS, S0, Sx , i.e. there exist tuples ā1 ∈
A|x̄1|, . . . , ān ∈ A|x̄n| such that S = outτ (ā1, . . . , ān). We partition S into sets S0 := S ∩ At0 and
Sx := S ∩Atx for every x ∈ x̄. Doing so, for every k, 1 ≤ k ≤ n, and every x ∈ x̄k we obtain the
fingerprint

Sx = λx,n
(
τ1
1 (ā1), . . . , τ1

k−1(ā1, . . . , āk−1), a, τ2
k (ā1, . . . , āk), . . . , τ2

n(ā1, . . . , ān)
)
,

where a from āk corresponds to x in x̄k. Combining the sets Sx for one x̄k into one tuple, we
construct setsTk Tk := 〈Sx1

, . . . , Sx|x̄k|〉 for every x̄k = 〈x1, . . . , x|x̄k|〉. Hence,

Tk = λk,n
(
τ1
1 (ā1), . . . , τ1

k−1(ā1, . . . , āk−1), āk, τ
2
k (ā1, . . . , āk), . . . , τ2

n(ā1, . . . , ān)
)

for every k = 1, . . . , n.
Let T ′k = λk,0

(
τ1
1 (ā1), . . . , τ1

k−1(ā1, . . . , āk−1), āk
)

T ′k for k = 1, . . . , n. By virtue of Claim IV, there
is some representative α〈T ′1,...,T ′n〉 = 〈c̄1, . . . , c̄n〉. Because of λ-semi-uniformity of τ and due to
Equation (4.1), we have

λk,`
(
τ1
1 (ā1), . . . , τ1

k−1(ā1, . . . , āk−1), āk, τ
2
k (ā1, . . . , āk), . . . , τ2

` (ā1, . . . , ā`)
)

= λk,`
(
τ1
1 (c̄1), . . . , τ1

k−1(c̄1, . . . , c̄k−1), c̄k, τ
2
k (c̄1, . . . , c̄k), . . . , τ2

` (c̄1, . . . , c̄`)
)

= λk,`
(
σ1

1(c̄1), . . . , σ1
k−1(c̄1, . . . , c̄k−1), c̄k, σ

2
k(c̄1, . . . , c̄k), . . . , σ2

` (c̄1, . . . , c̄`)
)

for all k, ` with 1 ≤ k ≤ ` ≤ n. Consequently, for every k we get
λk,n

(
σ1

1(c̄1), . . . , σ1
k−1(c̄1, . . . , c̄k−1), c̄k, σ

2
k(c̄1, . . . , c̄k), . . . , σ2

n(c̄1, . . . , c̄n)
)

= Tk.
When we decompose Tk into its constituents Sx1 , . . . , Sx|x̄k| , we get for every x ∈ x̄k that

Sx = λx,n
(
σ1

1(c̄1), . . . , σ1
k−1(c̄1, . . . , c̄k−1), c, σ2

k(c̄1, . . . , c̄k), . . . , σ2
n(c̄1, . . . , c̄n)

)
,

where c from c̄k corresponds to x in x̄k. Since the union over the Sx yields S, this entails
S = outσ(c̄1, . . . , c̄n) ∈ Outσ. Altogether, we thus have shown Outτ ⊆ Outσ.

Consider a λ-semi-uniform strategy σ under A. Since σ does not necessarily have a finite
image, we cannot expect that the substructure A|σ of A is finite. However, starting from A we
can construct another, possibly infinite structure B accompanied with a satisfying λ-semi-uniform
strategy τ with a finite image. Then, B|τ is a finite model for ϕ.

Theorem 4.3.5. Every satisfiable relational GAF sentence ϕ := ∀x̄1∃ȳ1ū1 . . . ∀x̄n∃ȳnūn. ψ in

standard form with quantifier-free ψ has a model with at most
(
p(len(ϕ))

)2|x̄| · (2↑n+1(|At|)
)2|x̄|+2

elements, where p is some polynomial, x̄ := x̄1 ∪ . . . ∪ x̄n, ȳ := ȳ1 ∪ . . . ∪ ȳn and where we assume
|x̄| ≥ 1 and |ȳ| ≥ 1.

The theorem is a consequence of the following lemma.

Lemma 4.3.6. Suppose that A is a model of ϕ. Let σ be a λ-semi-uniform strategy that is

satisfying for ϕ. Then, ϕ has a finite model C with at most
(
p(len(ϕ))

)2|x̄| · (2↑n+1(|At|)
)2|x̄|+2

domain elements, where p is some polynomial and where we assume |x̄| ≥ 1 and |ȳ| ≥ 1.

Proof. We take over the definition of the sets AkAk from the proof of Lemma 4.3.4, based on A’s
domain. Let Tσ1Tσ1 be the target set of the mappings σ1

k, which we define by

Tσ1 :=
{
b ∈ A | σ1

k(ā1, . . . , āk) = 〈. . . b . . .〉 for some k and some ā1 ∈ A|x̄1|, . . . , āk ∈ A|x̄k|
}

.
Notice that, since σ is λ-semi-uniform, Tσ1 is finite.

We start by defining an equivalence relation ∼∼ on tuples taken from the sets Ak. Let 〈ā1, . . . , āk〉
and 〈ā′1, . . . , ā′k〉 be tuples in Ak for some k, 1 ≤ k ≤ n. We say 〈ā1, . . . , āk〉 ∼ 〈ā′1, . . . , ā′k〉 if and
only if the following conditions are satisfied:

(1) For all indices i, j we have ai,j ∈ Tσ1 if and only if a′i,j ∈ Tσ1 . Moreover, if ai,j , a
′
i,j ∈ Tσ1

then ai,j = a′i,j .

4.3. GAF SENTENCES AND SEMI-UNIFORM WINNING STRATEGIES 131

(2) For every i, 1 ≤ i ≤ k, we have
λi,0
(
σ1

1(ā1), . . . , σ1
i−1(ā1, . . . , āi−1), āi

)
= λi,0

(
σ1

1(ā′1), . . . , σ1
i−1(ā′1, . . . , ā

′
i−1), ā′i

)
.

Since Tσ1 is finite and because there are only finitely many fingerprints, the relation ∼ induces
finitely many equivalence classes that partition the set A1∪ . . .∪An. For each nonempty equivalence
class [〈ā1, . . . , āk〉]∼ we fix some representative α[〈ā1,...,āk〉]∼ such that there are tuples c̄1, . . . , c̄k
with c̄i ∈ A|x̄i| and 〈c̄1〉 = α[〈ā1〉]∼ , 〈c̄1, c̄2〉 = α[〈ā1,ā2〉]∼ , . . . , 〈c̄1, . . . , c̄k〉 = α[〈ā1,...,āk〉]∼ . The
existence of such representatives is a consequence of the following claim, Claim I, and the fact that
〈c̄1, . . . , c̄k〉 ∼ 〈ā1, . . . , āk〉 entails 〈c̄1, . . . , c̄i〉 ∼ 〈ā1, . . . , āi〉 for every i with 1 ≤ i ≤ k.

Claim I: Consider any positive integer ` and two tuples 〈b̄1, . . . , b̄`〉 ∼ 〈d̄1, . . . , d̄`〉 with b̄i, d̄i ∈ A|x̄i|.
For every k with ` ≤ k ≤ n and all d̄`+1, . . . , d̄k with d̄i ∈ A|x̄i| we have 〈b̄1, . . . , b̄`, d̄`+1,
. . . , d̄k〉 ∼ 〈d̄1, . . . , d̄k〉.

Proof: As Condition (1) of the definition of ∼ is obviously satisfied, we concentrate on Condition (2).
Our assumption 〈b̄1, . . . , b̄`〉 ∼ 〈d̄1, . . . , d̄`〉 entails

λ1,0

(
b̄1

)
= λ1,0

(
d̄1

)
,

λ2,0

(
σ1

1(b̄1), b̄2

)
= λ1,0

(
σ1

1(d̄1), d̄2

)
,

...

λ`,0
(
σ1

1(b̄1), . . . , σ1
`−1(b̄1, . . . , b̄`−1), b̄`

)
= λ1,0

(
σ1

1(d̄1), . . . , σ1
`−1(d̄1, . . . , d̄`−1), d̄`

)
.

Hence, λ-semi-uniformity of σ leads to σ1
1(b̄1) = σ1

1(d̄1), . . . , σ1
` (b̄1, . . . , b̄`) = σ1

` (d̄1, . . . , d̄`).
We next show for every i, ` ≤ i ≤ k, that
(a) λi,0

(
σ1

1(b̄1), . . . , σ1
` (b̄1, . . . , b̄`), σ

1
`+1(b̄1, . . . , b̄`, d̄`+1), . . . ,

σ1
i−1(b̄1, . . . , b̄`, d̄`+1, . . . , d̄i−1), d̄i

)
= λi,0

(
σ1

1(d̄1), . . . , σ1
i−1(d̄1, . . . , d̄i−1), d̄i

)
and
(b) σ1

i (b̄1, . . . , b̄`, d̄`+1, . . . , d̄i) = σ1
i (d̄1, . . . , d̄i).

We proceed by induction on i. For the base case i = ` there is nothing to do, as the above
observations already state what we have to show. Consider the case i ≥ `+ 1. By induction,
Equation (b) for `, . . . , i− 1 entails

λi,0
(
σ1

1(d̄1), . . . , σ1
i−1(d̄1, . . . , d̄i−1), d̄i

)
= λi,0

(
σ1

1(b̄1), . . . , σ1
i−1(b̄1, . . . , b̄`, d̄`+1, . . . , d̄i−1), d̄i

)
.

By λ-semi-uniformity, this together with the previous observations and (a) for `, . . . , i− 1
implies σ1

i (b̄1, . . . , b̄`, d̄`+1, . . . , d̄i) = σ1
i (d̄1, . . . , d̄i).

This finishes the inductive proof of (a) and (b). Now, part (a) for i = k immediately entails
that Condition (2) for 〈b̄1, . . . , b̄`, d̄`+1, . . . , d̄k〉 ∼ 〈d̄1, . . . , d̄k〉 is satisfied. ♦

Next, we construct a certain structure B from A. Let] denote the disjoint-union operator. We
compose the domain of B by setting B := D−1] D0] D1] D2 for four subdomains D−1,D0,D1,D2

D−1,D0,D1,D2

Di,C,u, D−1,C,y

. Every Di with i ≥ 0 is a disjoint union of layers: one layer Di,C,u for every equivalence class
C induced by ∼ on the set A1 ∪ . . . ∪ An and every u ∈ ū. Each of these layers Di,C,u is a copy
of A’s domain A. We impose a similar layered structure on D−1, however with references to
y ∈ ȳ instead of u ∈ ū. Given any domain element a ∈ D−1] D0] D1] D2, we denote by a↓ a↓, ā↓, β↓the
element a′ ∈ A from which the copy a originated. We extend this notation to tuples ā by setting by
ā↓ := 〈a↓1, . . . , a↓|ā|〉. We further extend the notation to variable assignments, i.e. for every variable

assignment β over B’s domain we write β↓ to address the variable assignment over A’s domain

that is defined by setting β↓(v) :=
(
β(v)

)↓
for every variable v.

Based on the strategy σ = 〈σ1, . . . , σn〉, we construct a new strategy τ := 〈τ1, . . . , τn〉
τ=〈τ1, . . . , τn〉

with

τi : B|x̄1| × . . .× B|x̄i| → B|ȳi| × B|ūi| as follows.

Consider any tuple ā ∈ B|x̄1|. Let C := [ā↓]∼ ⊆ A1 be the equivalence class to which ā↓ belongs
and let 〈c̄ 〉 := αC be the distinguished representative in C. We define τ1 in such a way that

132 CHAPTER 4. WEAK DEPENDENCES AND MODEL-CHECKING GAMES

(a)
(
τ1
1 (ā)

)↓
= σ1

1(c̄) and
(
τ2
1 (ā)

)↓
= σ2

1(c̄),

(b) every domain element b in the tuple τ1
1 (ā) belongs to D−1,C,y where y is the variable in

ȳ1 to which b corresponds, and

(c) for every x ∈ x̄1 we have that if the corresponding a ∈ ā stems from Di then every
element b in the tuple τ2

1 (ā) that corresponds to some variable u ∈ Ux ∩ ū1 is taken
from D(i+1 mod 3),C,u.

Let k > 1. Consider any sequence of tuples ā1, . . . , āk with āi ∈ B|x̄i|. Let C := [〈ā↓1, . . . , ā↓k〉]∼ ⊆ Ak
be the equivalence class to which 〈ā↓1, . . . , ā↓k〉 belongs and let 〈c̄1, . . . , c̄k〉 := αC be the
distinguished representative in C. We define τk in such a way that the following conditions
are met:

(a)
(
τ1
k (ā1, . . . , āk)

)↓
= σ1

k(c̄1, . . . , c̄k) and
(
τ2
k (ā1, . . . , āk)

)↓
= σ2

k(c̄1, . . . , c̄k).

(b) Every domain element b in τ1
k (ā1, . . . , āk) belongs to D−1,C,y, where y is the variable in

ȳk to which b corresponds.

(c) For every x ∈ x̄` with 1 ≤ ` ≤ k we have that if the corresponding a ∈ ā` stems from
Di then every element b in the tuple τ2

k (ā1, . . . , āk) that corresponds to some variable
u ∈ Ux ∩ ūk is taken from D(i+1 mod 3),C,u.

Claim II: For every k we have σ1
k(ā↓1, . . . , ā

↓
k) =

(
τ1
k (ā1, . . . , āk)

)↓
.

Proof: We prove this claim by induction on k.

For the base case k = 1 the claim holds due to our assumption that σ is λ-semi-uniform.

More precisely, we have
(
τ1
1 (ā1)

)↓
= σ1

1(c̄1) = σ1
1(ā↓1) where c̄1 = α[ā↓1]∼

.

In the case k > 1 let Ti := λi,0
(
(τ1

1 (ā1))↓, . . . , (τ1
i−1(ā1, . . . , āi−1))↓, ā↓i

)
for every i, 1 ≤ i ≤ k.

Since we have σ1
i (ā↓1, . . . , ā

↓
i) =

(
τ1
i (ā1, . . . , āi)

)↓
for every i = 1, . . . , k−1 by induction, we get

Ti = λi,0
(
σ1

1(ā↓1), . . . , σ1
i−1(ā↓1, . . . , ā

↓
i−1), ā↓i

)
for every i, 1 ≤ i ≤ k. Let 〈c̄1, . . . , c̄k〉 := α[〈ā↓1 ,...,ā

↓
k〉]∼

. By λ-semi-uniformity of σ and due

to the construction of τ , we then have σ1
k(ā↓1, . . . , ā

↓
k) = σ1

k(c̄1, . . . , c̄k) =
(
τ1
k (ā1, . . . , āk)

)↓
.

Hence, the claim follows. ♦

We next define how B interprets predicate symbols. For every predicate symbol P occurring in
ϕ we define PB to be the smallest set satisfying the following properties for all tuples ā1, . . . , ān
with āi ∈ B|x̄i|. Let 〈c̄1, . . . , c̄n〉 := α[〈ā↓1 ,...,ā

↓
n〉]∼ .

(i) For every atom A(ȳ1, . . . , ȳn) ∈ At0 we require B |= A
(
τ1
1 (ā1), . . . , τ1

n(ā1, . . . , ān)
)

if and only

if A |= A
(
σ1

1(c̄1), . . . , σ1
n(c̄1, . . . , c̄n)

)
.

(ii) For every k, 1 ≤ k ≤ n, every x ∈ x̄k, and every atom A(ȳ1, . . . , ȳk−1, x, ūk, . . . , ūn) ∈ Atx
we require

B |= A
(
τ1
1 (ā1), . . . , τ1

k−1(ā1, . . . , āk−1), a, τ2
k (ā1, . . . , āk), . . . , τ2

n(ā1, . . . , ān)
)

if and only if
A |= A

(
σ1

1(c̄1), . . . , σ1
k−1(c̄1, . . . , c̄k−1), c, σ2

k(c̄1, . . . , c̄k), . . . , σ2
n(c̄1, . . . , c̄n)

)
,

where a from āk and c from c̄k correspond to x ∈ x̄k.

Notice that the last line implies
A ∈ λx,n

(
σ1

1(c̄1), . . . , σ1
k−1, c, σ

2
k(c̄1, . . . , c̄k), . . . , σ2

n(c̄1, . . . , c̄n)
)

where c corresponds to x in x̄k.

Claim III: The structure B is well defined.

4.3. GAF SENTENCES AND SEMI-UNIFORM WINNING STRATEGIES 133

Proof: We assume to the contrary that the definition of B is contradictory while A is well defined.
Consider any two sequences of tuples ā1, . . . , ān and ā′1, . . . , ā

′
n āk, ā

′
kwith āk, ā

′
k ∈ B|x̄k| for every

k. Let β β, β′be the variable assignment that maps every x̄k to āk, every ȳk to τ1
k (ā1, . . . , āk),

and every ūk to τ2
k (ā1, . . . , āk). Let β′ be defined analogously based on ā′1, . . . , ā

′
n. Suppose

there are atoms A,B A,B, si, tioccurring in ϕ such that B, β |= A and B, β′ 6|= B. Moreover, suppose
that A has the shape P (s1, . . . , sm) and B has the shape P (t1, . . . , tm) and that we have
β(s`) = β′(t`) for every `. Recall that, since ϕ is relational, all the terms s` and t` are in fact
variables.

Let T1, . . . , Tn Tkbe the unique sequence of fingerprints defined by

Tk := λk,0
(
(τ1

1 (ā1))↓, . . . , (τ1
k−1(ā1, . . . , āk−1))↓, ā↓k

)
= λk,0

(
σ1

1(ā↓1), . . . , σ1
k−1(ā↓1, . . . , ā

↓
k−1), ā↓k

)
for every k. Let 〈c̄1, . . . , c̄n〉 := α[〈ā↓1 ,...,ā

↓
n〉]∼ 〈c̄1, . . . , c̄n〉,

〈c̄′1, . . . , c̄′n〉,
T ′k, γ, γ′

and let γ be the variable assignment that maps

every x̄k to c̄k, every ȳk to σ1
k(c̄1, . . . , c̄k), and every ūk to σ2

k(c̄1, . . . , c̄k). We define T ′1, . . . , T
′
n

and c̄′1, . . . , c̄
′
n and γ′ analogously, based on ā′1, . . . , ā

′
n.

By Requirements (i) and (ii), our assumptions entail

A, γ |= A and A, γ′ 6|= B. (4.2)

Consider the variable assignments β↓ and β′↓. Clearly, for all variables v, v′ we have that
β(v) = β′(v′) implies β↓(v) = β′↓(v′). Hence, we have

A(β↓)(A) = P
(
β↓(s1), . . . , β↓(sm)

)
= P

(
β′
↓
(t1), . . . , β′

↓
(tm)

)
= A(β′

↓
)(B). (4.3)

Regarding the atoms A and B, we distinguish several cases.

Case (A1). If A(ȳ1, . . . , ȳn) ∈ At0, we observe the following. By definition of γ, A, γ |= A
translates to A |= A

(
σ1

1(c̄1), . . . , σ1
n(c̄1, . . . , c̄n)

)
. Since τ is defined such that σ1

i (c̄1, . . . ,

c̄i) =
(
τ1
i (ā1, . . . , āi)

)↓
for every i, we thus obtain

A |= A
(
(τ1

1 (ā1))↓, . . . , (τ1
n(ā1, . . . , ān))↓

)
.

By definition of β, this translates to A, β↓ |= A.

Case (A2). If A(ȳ1, . . . , ȳk−1, x̄k, ūk, . . . , ūn) ∈ Atx for some x ∈ x̄k x, k, we observe the follow-
ing. By definition of γ, A, γ |= A translates to

A |= A
(
σ1

1(c̄1), . . . , σ1
k−1(c̄1, . . . , c̄k−1), c̄k, σ

2
k(c̄1, . . . , c̄k), . . . , σ2

n(c̄1, . . . , c̄n)
)
.

Because of 〈c̄1, . . . , c̄n〉 ∼ 〈ā↓1, . . . , ā↓n〉, λ-semi-uniformity of σ entails

A ∈ λk,n
(
σ1

1(c̄1), . . . , σ1
k−1(c̄1, . . . , c̄k−1), c̄k, σ

2
k(c̄1, . . . , c̄k), . . . , σ2

n(c̄1, . . . , c̄n)
)

= λk,n
(
σ1

1(ā↓1), . . . , σ1
k−1(ā↓1, . . . , ā

↓
k−1), ā↓k, σ

2
k(ā↓1, . . . , ā

↓
k), . . . , σ2

n(ā↓1, . . . , ā
↓
n)
)
.

Therefore, we get

A |= A
(
σ1

1(ā↓1), . . . , σ1
k−1(ā↓1, . . . , ā

↓
k−1), ā↓k, σ

2
k(ā↓1, . . . , ā

↓
k), . . . , σ2

n(ā↓1, . . . , ā
↓
n)
)
.

By virtue of Claim II, this can be rewritten to

A |= A
(
(τ1

1 (ā1))↓, . . . , (τ1
k−1(ā1, . . . , āk−1))↓, ā↓k, σ

2
k(ā↓1, . . . , ā

↓
k), . . . , σ2

n(ā↓1, . . . , ā
↓
n)
)
.

Case (B1). If B ∈ At0, we conclude A, β′↓ 6|= B in analogy to Case (A1).

134 CHAPTER 4. WEAK DEPENDENCES AND MODEL-CHECKING GAMES

Case (B2). If B(ȳ1, . . . , ȳk′−1, x̄k′ , ūk′ , . . . , ūn) ∈ Atx′ for some x′ ∈ x̄k′x′, k′ , we can derive

A 6|= B
(
(τ1

1 (ā′1))↓, . . . , (τ1
k′−1(ā′1, . . . , ā

′
k′−1))↓, ā′k′

↓
, σ2
k′(ā

′
1
↓
, . . . , ā′k′

↓
), . . . , σ2

n(ā′1
↓
, . . . , ā′n

↓
)
)

in analogy to Case (A2).

We next consider the four possible combinations of the above cases.

Suppose Cases (A1) and (B1) apply. We then have A, β↓ |= A and A, β′↓ 6|= B. But by
Equation (4.3) we also have

β↓(A) = P
(
β↓(s1), . . . , β↓(sm)

)
= P

(
β′↓(t1), . . . , β′↓(tm)

)
= β′↓(B).

In other words, the structure A is inconsistent, which contradicts our assumptions.

Next, suppose that Cases (A2) and (B1) apply. SinceB belongs to At0, we have t1, . . . , tm ∈ ȳ
and, hence, β′(t`) ∈ D−1 for every `. This means that A cannot contain any variables
u ∈ ū, for otherwise there would be some ` with s` = u leading to β(s`) ∈ Di with i ≥ 0
and β′(t`) ∈ D−1, which would contradict our assumption β(s`) = β′(t`). This means,
we have

A |= A
(
(τ1

1 (ā1))↓, . . . , (τ1
k−1(ā1, . . . , āk−1))↓, ā↓k

)
,

which translates to A, β↓ |= A(ȳ1, . . . , ȳk−1, x̄k). As in the previous case, A, β↓ |= A

together with A, β′↓ 6|= B leads to a contradiction.

The combination of Case (A1) and Case (B2) also leads to a contradiction.

Finally, suppose that Case (A2) applies together with Case (B2).

First, we make two more observations:

(I) Consider any two variables y1 ∈ ȳk1 , y2 ∈ ȳk2 . By definition of τ , β(y1) = β′(y2)
entails

(a)
(
β(y1)

)↓
=
(
β′(y2)

)↓
,

(b) k1 = k2 and y1 = y2,

(c) 〈ā↓1, . . . , ā↓k1
〉 ∼ 〈ā′1

↓
, . . . , ā′k1

↓〉, and

(d) Ti = T ′i and c̄i = c̄′i for every i with 1 ≤ i ≤ k1.

Moreover, the definition of the τ1
k also entails that

(
β(y1)

)↓
= γ(y1) and

(
β′(y2)

)↓
=

γ′(y2).

(II) Consider any two variables u1 ∈ ūk1
, u2 ∈ ūk2

. By definition of τ , β(u1) = β′(u2)
entails

(a)
(
β(u1)

)↓
=
(
β′(u2)

)↓
,

(b) k1 = k2 and u1 = u2 and x = x′ and u1, u2 ∈ Ux,

(c) k = k′ ≤ k1,

(d) 〈ā↓1, . . . , ā↓k1
〉 ∼ 〈ā′1

↓
, . . . , ā′k1

↓〉,
(e) Ti = T ′i and c̄i = c̄′i for every i with 1 ≤ i ≤ k1,

(f) β(x) ∈ Tσ1 if and only if β′(x) ∈ Tσ1 , and

(g) if β(x), β′(x) ∈ Tσ1 then β(x) = β′(x) and β(x) = γ(x) and β′(x) = γ′(x).

Moreover, the definition of τ also entails that
(
β(u1)

)↓
= γ(u1) and

(
β′(u2)

)↓
=

γ′(u2).

We now derive contradictions the following cases (the remaining cases can be treated
analogously).

Suppose there is some ` such that s` = u ∈ ūk1
and t` = u′ ∈ ūk2

. According to
Observation (II), this entails, among other things, that x = x′.
Now, let k∗ be the largest index for which there is such an ` with s` = u ∈ ūk∗
and t` = u′ ∈ ūk∗ . Then, we know that k∗ ≥ k. Moreover, Ti = T ′i and c̄i = c̄′i for
every i with 1 ≤ i ≤ k∗. Hence, γ and γ′ coincide on all variables in ȳi, x̄i, ūi with
1 ≤ i ≤ k∗.

4.3. GAF SENTENCES AND SEMI-UNIFORM WINNING STRATEGIES 135

By definition of τ , there is some Di with i ≥ 0 to which all elements β(u′′) with
u′′ ∈ vars(A) ∩ Ux and all β′(u′′) with u′′ ∈ vars(B) ∩ Ux belong. Moreover, β(x)
and β′(x) cannot belong to this Di. Therefore, there is no ` such that s` is a variable
from ū and t` is not from ū or vice versa. Hence, every u ∈ ū that occurs in A or in
B stems from ū1 ∪ . . . ∪ ūk∗ .
Consequently, γ and γ′ indeed coincide on all variables that occur in A or in B. This
leads to A, γ 6|= B (as A, γ′ 6|= B and γ(B) = γ′(B)) and A, γ′ |= A (as A, γ |= A
and γ′(A) = γ(A)). Moreover, by definition of τ , β and β′ coincide on all variables
in ȳi, ūi with 1 ≤ i ≤ k∗.
Due to the above observations and because of definition of τ , there are two variables
y1, y2 ∈ ȳ such that for all arguments s` and t` one of the following cases applies:

s` = y = t` for a certain variable y ∈ ȳ,

s` = x and t` = y2,

s` = y1 and t` = x,

s` = x = t`, or

s` = u = t` for a certain variable u ∈ ū.

Let L be the set of all indices ` such that s` = x and t` = y2 ∈ ȳ. Similarly, let
L′ be the set of all indices ` such that s` = y1 ∈ ȳ and t` = x. Suppose L is
nonempty, i.e. there is some ` with s` = x and t` = y2. Then, our assumption
β(x) = β(s`) = β′(t`) = β′(y2) entails β(x) ∈ Tσ1 . This leads to the following chain

of equations: γ(x) = β↓(x) = β′↓(y2) = γ′(y2). Hence, for every ` ∈ L we have

γ(s`) = γ(x) = γ′(y2) = γ(y2) = γ(t`). Symmetrically, we have γ′(x) = β′↓(x) =
β↓(y1) = γ(y1) and γ(s`) = γ(y1) = γ′(x) = γ(x) = γ(t`) for every ` ∈ L′, if L′ in
nonempty.
Put together, the above observations entail

γ(A) = P
(
γ(s1), . . . , γ(sm)

)
= P

(
γ(t1), . . . , γ(tm)

)
= γ(B).

Recall that we have already inferred A, γ |= A and also A, γ 6|= B. Together with
the equality of A and B under γ, this yields a contradiction with our assumption
that A is a well defined structure.

Suppose we have t` 6∈ ū for every ` for which s` ∈ ū. Further suppose, there is indeed
some u ∈ ū such that s` = u. Since β(s`) = β′(t`), the definition of τ entails that
t` = x′. Let Di be the subdomain that contains β′(x′) and thus also β(u). Then,
β(x) ∈ D(i−1 mod 3) and for any u′ ∈ vars(B)∩ ū we have β′(u′) ∈ D(i+1 mod 3), which
entails β′(u′) 6= β(x). Hence, B cannot contain any variable from ū. Moreover, u is
the only variable from ū that occurs in A, since for any u′′ ∈ ū \ {u} with u′′ = s`′

we would have β(u′′) 6= β(u), on the one hand, but β(u′′) = β(s`′) = β′(t`′) =
β′(x′) = β(u) on the other hand.
Therefore and by definition of τ , there is some y2 ∈ ȳ such that for all arguments
s`, t` one of the following cases applies:

s` = y = t` for a certain variable y ∈ ȳ,

s` = x and t` = y2, or

s` = u and t` = x′.

Let k∗ be the largest index for which there is some ` with s` = t` = y ∈ ȳk∗ (let
k∗ := 0 if no such index exists). By virtue of Observation (I), we then get Ti = T ′i
and c̄i = c̄′i for every i with 1 ≤ i ≤ k∗. Hence, γ and γ′ coincide on all variables in

ȳi with 1 ≤ i ≤ k∗. By definition of β′, this also applies to γ and β′↓.
If there is some ` such that s` = x and t` = y2, then we have β↓(x) = β↓(s`) =

β′↓(t`) = β′↓(y2) ∈ Tσ1 . This leads to β↓(x) = γ(x). Therefore, we have γ(x) =

β′↓(y2).

Finally, consider the ` for which s` = u and t` = x′. Since γ(u) = β↓(u) = β′↓(x′),
we have γ(u) = β′↓(x′).

136 CHAPTER 4. WEAK DEPENDENCES AND MODEL-CHECKING GAMES

Consequently, we have all pieces together to conclude
P
(
γ(s1), . . . , γ(sm)

)
= P

(
β′↓(s1), . . . , β′↓(sm)

)
.

In other words, A under γ equals B under β′↓. Since we have A, γ |= A and

A, β′↓ 6|= B (cf. Case (B2) together with the observation that B does not contain
any variable from ū), this leads to a contradiction with the assumption that the
structure A is well defined.

Suppose neither A nor B contain any variable from ū. According to the statements
derived for Case (A2) and Case (B2), we have

A |= A
(
(τ1

1 (ā1))↓, . . . , (τ1
k−1(ā1, . . . , āk−1))↓, ā↓k

)
.

and
A 6|= B

(
(τ1

1 (ā′1))↓, . . . , (τ1
k′−1(ā′1, . . . , ā

′
k′−1))↓, ā′k′

↓)
.

Put differently, A, β↓ |= A and A, β′↓ 6|= B. As we, by Equation (4.3), already know

that A under β↓ equals B under β′↓, this contradicts our assumption that A is a
well-defined structure. ♦

Claim IV: Under B the strategy τ is satisfying for ϕ.

Proof: Let ā1, . . . , ān be any sequence of tuples with āi ∈ B|x̄i| for every i. Let β be the variable
assignment that maps every x̄i to āi, every ȳi to τ1

i (ā1, . . . , āi), and every ūi to τ2
i (ā1, . . . , āi).

We intend to show B, β |= ψ.

Let c̄1, . . . , c̄n be the distinguished representative of the equivalence class [〈ā↓1, . . . , ā↓n〉]∼. Let
γ be the variable assignment that maps every x̄i to c̄i, every ȳi to σ1

i (c̄1, . . . , c̄i), and every
ūi to σ2

i (c̄1, . . . , c̄i). Since we assume σ to be a satisfying strategy for ϕ under A, we have
A, γ |= ψ. Consider any atom A that occurs in ϕ. By definition of B, we have B, β |= A if
and only if A, γ |= A. This together with A, γ |= ψ entails B, β |= ψ.

Consequently, under B τ is satisfying for ϕ. ♦

Let Tτ ⊆ BTτ , Tk be the target set of τ , given by Tτ :=
⋃n
k=1 Tk where

Tk :=
{
b ∈ B

∣∣ there are tuples ā1, . . . , āk such that
τ1
k (ā1, . . . , āk) = 〈. . . , b, . . .〉 or τ2

k (ā1, . . . , āk) = 〈. . . , b, . . .〉
}

.

Finiteness of the set Tτ follows from the following observations: Let Sσ be the set Sσ :=
⋃n
k=1 Sk

where
Sk :=

{
b ∈ A

∣∣ there is some equivalence class C ∈ (A1 ∪ . . . ∪ An)/∼ and its
distinguished representative 〈c̄1, . . . , c̄k〉 := αC such that
σ1
k(c̄1, . . . , c̄k) = 〈. . . , b, . . .〉 or σ2

k(c̄1, . . . , c̄k) = 〈. . . , b, . . .〉
}

.
Since the equivalence relation ∼ induces only finitely many equivalence classes C on the set
A1 ∪ . . . ∪ An, the set Sσ is finite. By definition of the mappings τ1

k and τ2
k , we have b↓ ∈ Sσ for

every b ∈ Tτ . The domain of B consists of finitely many subdomains Di, each of which comprises
finitely many copies of the original domain A. Hence, there are only finitely many domain elements
b ∈ B with b↓ ∈ Sσ. Altogether, this entails that the target set Tτ is finite.

Notice that Tτ coincides with the domain of B|τ . Hence, by Lemma 4.2.3, B|τ is a finite
model of ϕ and it can thus serve as the sought model C. Finally, we give an upper bound
on the size of C’s domain. First, we bound the number of distinct sequences of fingerprints
〈T1, . . . , Tk〉 ∈ imσ

(
λ1,0

)
× . . .× imσ

(
λk,0

)
. Let Atx̄i denote the set

⋃
x∈x̄i

Atx. For every i with
1 ≤ i ≤ k we have

∣∣imσ(λi,0)
∣∣ =

∏
x∈x̄i

∣∣imσ(λx,0)
∣∣ ≤ ∏

x∈x̄i

2↑n−i+2(|Atx|) ≤ 2↑n−i+2
(∑
x∈x̄i

|Atx|
)
≤ 2↑n−i+2(|Atx̄i |) .

4.3. GAF SENTENCES AND SEMI-UNIFORM WINNING STRATEGIES 137

This leads to the following bound on the number of sequences of fingerprints:

n∑
k=1

∣∣imσ

(
λ1,0

)
× . . .× imσ

(
λk,0

)∣∣ ≤ n∑
k=1

k∏
i=1

2↑n−i+2(|Atx̄i |)

≤
n∑
k=1

2↑n+1
(k∑
i=1

|Atx̄i |
)

≤ n · 2↑n+1(|At|) .

Since σ is λ-semi-uniform, this entails an upper bound regarding the cardinality of the set Tσ1 :
|Tσ1 | ≤ |ȳ| · n · 2↑n+1(|At|). The number of equivalence classes induced by the relation ∼ depends
on the cardinality of Tσ1 and the number of sequences of fingerprints:

∣∣(A1 ∪ . . . ∪ An)/∼
∣∣ ≤ (n∑

k=1

(|Tσ1 |+ 1)|x̄1|+...+|x̄k|
)
· n · 2↑n+1(|At|)

≤ n2 · (|Tσ1 |+ 1)|x̄| · 2↑n+1(|At|) .

Given this, we can bound the number of elements in the set Sσ:
|Sσ| ≤ |Tσ1 |+

∣∣(A1 ∪ . . . ∪ An)/∼
∣∣ · |ū|.

The last component that we need to establish an upper bound on the cardinality of the set Tτ , is
the number of copies of A that are used as building blocks for the sets D−1,D0,D1,D2. An upper
bound for this number is |ȳ| ·

∣∣(A1 ∪ . . . ∪ An)/∼
∣∣+ 3 · |ū| ·

∣∣(A1 ∪ . . . ∪ An)/∼
∣∣. All in all we obtain

the following upper bound:

|Tτ | ≤ |Sσ| · (|ȳ|+ 3 · |ū|) ·
∣∣(A1 ∪ . . . ∪ An)/∼

∣∣ ≤ (p(len(ϕ))
)2|x̄| · (2↑n+1(|At|)

)2|x̄|+2
,

where p is some polynomial and where we assume |x̄| ≥ 1 and |Tσ1 | ≥ 1.

In analogy to Theorem 4.2.11, the bound given in Lemma 4.3.6 and Theorem 4.3.5 could be
refined using a notion of degree for GAF sentences, cf. Definition 4.2.9. For ϕ the degree ∂GAF(ϕ)

∂GAF(ϕ)is the smallest nonnegative integer m such that for every Atx, x ∈ x̄i, there are at most m distinct
indices j1, . . . , jm with i ≤ j1 < . . . < jm ≤ n such that ūj` ∩ vars(Atx) 6= ∅.

We conclude this section with an example that illustrates the construction of a finite model
from the proof of Theorem 4.3.5.

Example 4.3.7. Consider again the sentence ϕ and its model A from Example 4.3.1:

ϕ := ∃z∀x∃y1y2. Q(z) ∧ ¬R(x, x) ∧R(x, y1) ∧Q(y1) ∧R(x, y2) ∧ ¬Q(y2) .

We observe that all elements in A have the same fingerprint. More precisely, for every a ∈ A we have
λx,0

(
σ1

1(), a) = P
(
Atx \ {R(x, x)}

)
and λx,1

(
σ1

1(), a, σ2
2(a)

)
= {R(x, y1), Q(y1), R(x, y2)}. As we

have already pointed out, none of the finite substructures of A is a model of ϕ. Nevertheless, we can
use parts of A as a blueprint for constructing the following structure C that is finite and satisfies ϕ.
The domain of C consists of the disjoint union D′−1]D′0]D′1]D′2 = {0}]{1, 2, 3, 4}]{3, 4}]{3, 4},
which results in C := {0, 1, 2, 3, 4, 3′, 4′, 3′′, 4′′}. The interpretation of the predicate symbols Q and
R under C is depicted in Figure 4.2. The canonical satisfying strategy τ for ϕ under C is indicated
by the arrows and their annotation.

138 CHAPTER 4. WEAK DEPENDENCES AND MODEL-CHECKING GAMES

s����*∃y1

HHHHj
∃y2

s s s s
s s s s

-∃y1
@
@
@
@R

-∃y1
@
@
@
@R

-∃y1
@
@
@
@R-

∃y2
�
�
�
��

-
∃y2

�
�
�
��

-
∃y2

�
�
�
��∃y2 ∃y2 ∃y2

∃y1 ∃y1 ∃y1

+
∃y1

Y
∃y2

�
∃y1

k
∃y2

QQs
∃z

1 3 3′ 3′′

0

2 4 4′ 4′′

Qp pp p p p p p p p ¬Q

Figure 4.2: Illustration of the structure C. The arrows indicate RC , as in Figure 4.1. The annotated
existential quantifiers indicate the elements selected by the strategy τ . All elements above the
dotted line belong to QC , the others do not.

Chapter 5

Computational Complexity of
SF-Sat and GBSR-Sat

The investigation of the classical decision problem has not stopped at the point where fragments had
been found to be decidable. The computational complexity of the satisfiability problem associated
with a decidable class is of interest as well. Systematic investigations in this direction were started
in the late 1970s [Lew78, Lew80, Für81, Pla84, DL84a, DL84b].1 There is an easy route to upper
bounds whenever we know that the fragment under consideration enjoys a small model property.
The following lemma links bounds regarding the size of models with the computing time that is
required to decide satisfiability.

Proposition 5.0.1 ([Lew80], Proposition 3.2, see also [BGG97], Proposition 6.0.4). Let ϕ be a
first-order sentence in prenex normal form containing n universally quantified variables. The
question whether ϕ has a model of cardinality m can be decided nondeterministically in time
p
(
mn · len(ϕ)

)
for some polynomial p.

With this lemma at hand, it is enough to prove a small model property for a given class
of first-order sentences, in order to bound the worst-case time complexity of the corresponding
satisfiability problem from above. This approach yields good upper bounds in cases where the
Boolean structure of the considered sentences is not restricted. As we shall see later, namely in
Sections 5.1 and 5.2, certain prefix classes of Horn or Krom sentences are complete for deterministic
time complexity classes or for space complexity classes. Then, a small model property alone does
not immediately lead to good upper bounds and one needs more sophisticated arguments.

In the present chapter, we aim to investigate the computational complexity of SF-Sat and
GBSR-Sat. Considerations regarding the other decidable fragments that we have introduced in
Chapter 3 remain future work.2 Recall that we have shown several small model properties for SF
and GBSR, cf. Theorem 3.2.6 for SF and Corollary 3.5.4 and Theorem 4.2.11 for GBSR. More
concretely, any satisfiable SF or GBSR sentence ϕ with degree k has a model whose domain is of a
size that is at most k-fold exponential in the length of ϕ. Therefore, Proposition 5.0.1 immediately
supplies us with upper bounds regarding the computational complexity of SF-Sat and GBSR-Sat.
If we use the (various) degrees of interaction of variables as parameters, we obtain upper bounds
for infinitely many subclasses SF≤k SF≤k,

GBSR≤k
and GBSR≤k with k ≥ 0, as depicted in Figure 5.1. The

set SF≤k collects all SF formulas ϕ with ∂∃(ϕ) ≤ k or ∂∀(ϕ) ≤ k or both. The satisfiability
problem associated with any fragment SF≤k is denoted by SF≤k-Sat. The set GBSR≤k is the

1The foundations of computational complexity theory can be found in many standard textbooks, e.g. [HU79,
Pap94, Gol08, AB09]

2It seems safe to assume that the satisfiability problem for each of the decidable relational first-order fragments
introduced in Chapter 3 lies in Tower (cf. Definition 5.0.2). Intuitively, the translations of the separated versions
into their respective base fragment lead to a blowup that is at most p(n)-fold exponential in the length n of the
formula for some polynomial p. Moreover, the satisfiability problems of the base fragments usually do not go beyond
2-ExpTime, except for FL, whose satisfiability problem lies in Tower. But even SFL-Sat should lie in Tower.

139

140 CHAPTER 5. COMPUTATIONAL COMPLEXITY OF SF-SAT AND GBSR-SAT

collection of all GBSR sentences ϕ with ∂∃∀(ϕ) ≤ k or ∂∀(ϕ) ≤ k−1 or both. GBSR≤k-Sat denotes
the satisfiability problem associated with GBSR≤k. Our results then entail for every positive
k that SF≤k-Sat and GBSR≤k-Sat are in k-NExpTime. The decision problems SF≤0-Sat and
GBSR≤0-Sat belong to NExpTime. If we consider SF or GBSR without universal quantifiers,
we obtains the fragments ∃∗-SF and ∃∗-GBSR∃∗-SF,

∃∗-GBSR
, which coincide with the existential fragment of

relational first-order logic, see also Section 5.1. The corresponding decision problems ∃∗-SF-Sat
and ∃∗-GBSR-Sat coincide as well and belong to NP.

We shall complement these upper bounds with matching lower bounds, which in the end will
lead to a hierarchy of computationally hard satisfiability problems that are even complete for
k-NExpTime. Recall that Elementary :=

⋃
k≥1 k-ExpTimeElemen-

tary
is the complexity class containing k-

ExpTime, k-NExpTime, and k-ExpSpace for every positive k. The unrestricted problems SF-Sat
and GBSR-Sat lie even beyond Elementary. Indeed, both are complete for the complexity class
Tower, which contains Elementary but is slightly larger [Sch16]. In contrast to Elementary,
Tower contains problems that are complete for the class.

Definition 5.0.2 (Tower, [Sch16]). First, we define the following functions Fi : N→ N for i =
0, 1, 2, 3, where F kj (n) := Fj

(
Fj
(
. . . Fj(n) . . .

))︸ ︷︷ ︸
k times

denotes k-fold application of Fj to the argument n:

F0(n) := n+ 1 ,

F1(n) := Fn+1
0 (n) = 2n+ 1 ,

F2(n) := Fn+1
1 (n) = 2n+1 · (n+ 1)− 1 ,

F3(n) := Fn+1
2 (n) > 2↑n(2) .

Let FElem denote the set of elementary functions f : N → N, i.e. of all functions that can be
bounded from above by 2↑k(n) for some constant k. The complexity class Tower is defined by

Tower :=
⋃

f(n)∈FElem
DTime

(
F3(f(n))

)
.

Since F3 is a non-elementary function that grows faster than 2↑n(2) ([Sch16], page 4), the
complexity class Tower properly contains Elementary.

We now state the main result of the present chapter.

Theorem 5.0.3. The decision problems ∃∗-SF-Sat and ∃∗-GBSR-Sat are NP-complete and the
problems SF≤0-Sat and GBSR≤0-Sat are NExpTime-complete. For any positive integer k the
problems SF≤k and GBSR≤k are complete for k-fold nondeterministic exponential time. The
problems SF-Sat and GBSR-Sat are Tower-complete (with respect to elementary reductions).

Proof. The upper bounds and hardness results for ∃∗-SF-Sat and ∃∗-GBSR-Sat will be derived in
Section 5.1, in particular in Proposition 5.1.4. The upper bounds for SF≤k-Sat and GBSR≤k-Sat
with nonnegative k follow from Proposition 5.0.1 together with the small model properties given in
Theorem 3.2.6, Corollary 3.5.4, and Theorem 4.2.11. These bounds also lead to the observation
that the unrestricted problems SF-Sat and GBSR-Sat belong to Tower.

In Section 5.3 we derive corresponding lower bounds. More precisely, Theorem 5.3.11 establishes
k-NExpTime-hardness for SF≤k-Sat for every positive k and thus also for SF-Sat. According
to [Sch16], Section 3.1, k-NExpTime-hardness of SF-Sat for every positive k entails hardness for
the class Tower. NExpTime-hardness for SF≤0 follows from NExpTime-hardness of BSR-Sat.
As for every nonnegative k the set SF≤k-Sat is a subproblem of GBSR≤k-Sat, we get the same
lower bounds for every GBSR≤k-Sat and for GBSR-Sat, respectively.

Recall that we have already derived a general reducibility result in Theorem 3.3.11, which entails
that SF-Sat inherits computational hardness from the satisfiability problems of other first-order
fragments that exhibit a small model property with a bound 2↑c·len(ϕ)(d · len(ϕ)). Although this
already entails that SF-Sat is, e.g., as hard as the satisfiability problem associated with the fluted

141

NP

NExpTime

2-NExpTime

k-NExpTime
...

Elementary
...

Tower

Primitive
Recursive

∃∗-SF-Sat

SF≤1-Sat,
SF≤0-Sat

SF≤2-Sat

SF≤k-Sat

SF-Sat

∃∗-GBSR-Sat

GBSR≤1-Sat,
GBSR≤0-Sat

GBSR≤2-Sat

GBSR≤k-Sat

GBSR-Sat

Figure 5.1: The computational complexity of the subfragments of SF and GBSR scale over the
major nondeterministic complexity classes in Elementary, while the unrestricted problems SF-Sat
and GBSR-Sat even go beyond.

fragment, which is known to be non-elementary [PST16], Theorem 5.0.3 is much more accurate
and yields better lower bounds than what we could derive from Theorem 3.3.11. Moreover, the
lower-bound proof for SF-Sat that will be presented in Section 5.3 is more instructive in that it
provides a better understanding of how large models can be enforced with SF sentences.

It is worth mentioning that Theorem 5.0.3 adequately accounts for the known complexity
of MFO-Sat. This works in spite of the fact that monadic sentences may contain arbitrarily
nested alternating quantifiers. For every MFO sentence ϕ we trivially have ∂∃(ϕ) = 1, since all
occurring predicate symbols have an arity of at most one. Theorem 5.0.3 entails that MFO-Sat is in
NExpTime, which is well known. Moreover, we have introduced the strongly separated fragment
(SSF) as the set of SF sentences that have degree one, see Definition 3.2.3 and the short paragraph
preceding it. SSF contains BSR and MFO as subfragments and, by Theorem 5.0.3, shares their
computational complexity.

Corollary 5.0.4. The satisfiability problem for SSF is NExpTime-complete.

Theorem 5.0.3 establishes two hierarchies of computationally hard problems that are complete
for infinitely many subclasses of Elementary and as a whole form a problem that is complete for
Tower. The overall structure is depicted in Figure 5.1.

Apparently, non-elementary satisfiability problems are not very widespread among the decidable
fragments of classical relational fist-order logic known today. We have argued that SF and GBSR
fall into this category. To the present author’s knowledge, the only known companion in this
respect is the fluted fragment. Indeed, Pratt-Hartmann, Szwast, and Tendera showed in [PST16]
that satisfiability of fluted sentences with at most 2k variables is k-NExpTime-hard. Moreover,
they argue that satisfiability of fluted sentences with at most k variables lies in k-NExpTime.
Although a significant gap between these lower and upper bounds remains to be closed, the fluted
fragment seems to comprise a similar hierarchy of hard problems as SF does, and the unrestricted
problem FL-Sat is Tower-complete as well. Another candidate for a first-order fragment with

142 CHAPTER 5. COMPUTATIONAL COMPLEXITY OF SF-SAT AND GBSR-SAT

such a high computational complexity might be Maslov’s fragment K.3

Remark 5.0.5. In computational complexity theory, several hierarchies have been defined where
the hardness of problems is suspected to grow with the number of quantifier alternations that are
admitted in the formal problem description. One example is the polynomial-time hierarchy (PH)

PH (cf. Definition 3.8 in [Gol08], or Definition 5.3 in [AB09]). Another example is the exponential-
time hierarchy (see, e.g. [Har87]).4 It is well known that the problem of determining validity of
quantified Boolean formulas (QBF) has a complete subproblem for every level of PH. Consider a
quantified Boolean formula ϕ := ∃r̄ ∀p̄1∃q̄1 . . . ∀p̄n∃q̄n. ψ, n ≥ 0, with quantifier-free ψ, which is a
Boolean combination of propositional variables from the set r̄ ∪ p̄1 ∪ . . . ∪ p̄n ∪ q̄1 ∪ . . . ∪ q̄n. All
valid formulas of this shape together form a complete problem for the (2n+ 1)-st level of PH. When
we remove the trailing existential quantifier block, we obtain a problem that is complete for the
(2n)-th level.

A weaker form of Theorem 5.0.3, based on the number of quantifier alternations allowed in SF or
GBSR sentences rather than the admitted degrees of variable interaction, leads to a similar pattern
of increasing computational difficulty, yet based on a different hierarchy of complexity classes. More
concretely, for every positive k the set of satisfiable SF-sentences restricted to the quantifier prefix
∃∗(∀∗∃∗)k gives rise to a k-NExpTime-complete problem, cf. Figure 5.2 on page 149. The same
applies to GBSR. This is easy to see, as every SF or GBSR sentence with at most n ∀∃ quantifier
alternations has a degree of at most n. On the other hand, the SF sentences used in Section 5.3 to
encode k-NExpTime-hard decision problems need exactly n ∀∃ quantifier alternations.

We have already demonstrated that an analysis of the computational complexity of satisfiability
problems can greatly benefit from an analysis of how variables co-occur in atoms instead of exclusively
considering the number of occurring quantifier alternations. One instance was the derivation of
NExpTime-completeness of MFO-Sat by virtue of Theorem 5.0.3. The reason is simply that the
degree of variable interaction might be considerably lower than the number of quantifier alternations.

What we have not yet taken into account is the Boolean structure of sentences. This may
widen the scope of our methods considerably and may moreover help understand where the hardness
of satisfiability problems stems from. For example, consider a quantified Boolean formula ϕ :=
∀p̄1∃q̄1 . . . ∀p̄n∃q̄n. ψ with quantifier-free ψ. As already indicated above, the validity problem for
such formulas is complete for the (2n + 1)-st level of PH. But what if, say, ψ has the form(∧

iKi

)
∧
(∨

j Lj
)
, where the Ki and the Lj are literals and none of the existential variables in∧

iKi occurs in
∨
j Lj? Since two distinct Boolean variables can never co-occur in any atom, ϕ can

be transformed into the equivalent formula ∃q̄1 . . . q̄n∀p̄1 . . . p̄n. ψ by quantifier shifting. Apparently,
ϕ belongs to a class of sentences that resides on the second level of the polynomial hierarchy
rather than on the (2n+ 1)-st. Indeed, propositional variables in quantified Boolean formulas are
as separated as first-order variables are in MFO sentences. It is, hence, easy to see that every
quantified Boolean formula can be converted into an equivalent ∃∗∀∗ formula. However, this might
come at the cost of a super-polynomial blowup in the length of the formula, like we have seen for
the MFO case in Theorem 3.2.7. If no such blowup were to occur necessarily, this would indicate a
collapse of some levels of PH. Still, it might be worth to reconsider some of the definitions that are
based on the shape of quantifier prefixes alone. The ideas sketched in Section 3.6 might also give a
good starting point for this endeavor.

5.1 Computational Complexity of the Existential Fragments
of SF and GBSR

A special case that is worth considering are the ∃∗ subfragments of SF and GBSR. It is easy to
see that these two classes are the same and coincide with the existential fragment of relational

3This was suggested to the author by Ian Pratt-Hartmann during a discussion at the Seventeenth International
Workshop on Logic and Computational Complexity (LCC’16) in Marseille, France, in September 2016.

4The exponential-time hierarchy should not be confused with the hierarchy of k-fold (nondeterministic) exponential
time for increasing k. The exponential-time hierarchy lies completely within ExpSpace, just like the polynomial-time
hierarchy lies entirely within PSpace.

5.1. COMPUTATIONAL COMPLEXITY OF EXISTENTIAL SF 143

first-order logic. The latter, in turn, is a close relative of propositional logic. We shall refer to
this fragment as ∃FO ∃FOand we shall write Horn-∃FO and Korm-∃FO to address its Horn and Krom
subfragments, respectively. As ∃FO without equality is essentially as expressive as propositional
logic, it is an easy step to reduce the satisfiability problems associated with equality-free ∃FO and
its Horn and Krom subfragments to the corresponding fragments of propositional logic. This even
applies to ∃FO and Horn-∃FO with equality.

Let SAT , Horn-SAT , and Krom-SAT denote the satisfiability problems associated with the
sets of all propositional formulas, propositional Horn formulas, and propositional Krom formulas,
respectively. In the literature, Krom-SAT is often called 2SAT. Recall the following well-known
results.

Proposition 5.1.1. SAT is NP-complete [Coo71, Lev73], Horn-SAT is P-complete [JL77, Kas86,
Pla84], and Krom-SAT is NL-complete [JLL76].

In the remainder of the present section we intend to show that (i) satisfiability for ∃FO is
NP-complete, (ii) satisfiability for Horn-∃FO is P-complete, (iii) satisfiability for Krom-∃FO without
equality is NL-complete. Moreover, we shall see that (iv) satisfiability for Krom-∃FO with equality
is complete for NP. The proof of (i) – (iii) proceeds by reductions to the corresponding satisfiability
problems for propositional logic and back. This is straightforwardly done by Skolemization as long
as we consider only ∃FO sentences without equality, see Lemma 5.1.2. If equality is present in
the given ∃FO sentence ϕ, we first Skolemize exhaustively, thus producing ϕgnd, which is ground
and contains only Skolem constants and no non-constant function symbols. Then we use the
standard trick to eliminate the equality predicate ≈. We introduce a fresh binary predicate symbol
E and replace every equation c ≈ d with the atom E(c, d). Moreover, we add the axioms of a
congruence relation for E, i.e. reflexivity, symmetry, transitivity, and compatibility with predicates.
Of course, we do not use the universally quantified axioms but rather add their ground instances
with respect to all the constant symbols that occur in ϕgnd. To avoid an exponential blow-up in
the case of the axioms regarding compatibility with predicates, we only add the instances that
affect non-equational atoms which really occur in ϕgnd. The result is called ϕ′gnd. Let ϕprop be
the propositional formula that results from ϕ′gnd by replacing every ground atom A with the

propositional variable pA. We observe that len(ϕprop) ∈ O
(
len(ϕ)3

)
. Moreover, if ϕ is a Horn

formula, then ϕprop is Horn. Notice that the outlined elimination of equality does not preserve the
Krom property.

Lemma 5.1.2.

(i) Satisfiability for ∃FO sentences without equality can be decided nondeterministically in
poly

(
len(ϕ)

)
time.

(ii) Satisfiability for Horn-∃FO sentences without equality can be decided deterministically in
poly

(
len(ϕ)

)
time.

(iii) Satisfiability for Krom-∃FO sentences without equality can be decided nondeterministically
using space that is logarithmic in len(ϕ).

Proof. We reduce the above satisfiability problems for ∃FO (sub)fragments to the respective
satisfiability problems for propositional logic and vice versa.

Let ϕ be an ∃FO sentence without equality. Skolemization of all its existential quantifiers leads
to the equisatisfiable ground sentence ϕgnd in which every atom has the shape P (c1, . . . , cm). Let
A1, . . . , Ak be a complete enumeration of all the atoms — without duplicates — that occur in ϕgnd.
Let q1, . . . , qk be a list of pairwise distinct propositional variables. We construct the propositional
formula ϕprop from ϕgnd by replacing every atom Ai with qi. Clearly, any model A of ϕgnd induces
a model B of ϕprop: B |= qi if and only if A |= Ai. Conversely, any model B′ of ϕprop induces a
Herbrand model A′ of ϕ: A′ |= Ai if and only if B′ |= qi. Consequently, deciding satisfiability of ϕ
can be reduced to deciding satisfiability of ϕprop. Moreover, we observe the following properties:

(a) len(ϕprop) ≤ len(ϕ) and ‖ϕprop‖ ≤ ‖ϕ‖.

144 CHAPTER 5. COMPUTATIONAL COMPLEXITY OF SF-SAT AND GBSR-SAT

(b) If ϕ is a Horn formula, then ϕprop is Horn.

(c) If ϕ is a Krom formula, then ϕprop is Krom.

Conversely, any propositional formula over the propositional variables q1, . . . , qk can be straight-
forwardly transformed into an equisatisfiable ∃FO sentence ∃y. ψ with quantifier-free ψ over the
monadic atoms Q1(y), . . . , Qk(y).

Lemma 5.1.3. There is an effective translation T from ∃FO with equality to ∃FO without equality
such that for every ∃FO sentence ϕ we have that

(a) every model A of ϕ contains a substructure that can be extended to a model B of ϕ ∧ T (ϕ)
over the same domain,

(b) from any model B of T (ϕ) we can construct a model A of ϕ whose domain contains at most
as many elements as B’s domain does,

(c) len(T (ϕ)) ∈ O
(
len(ϕ)3

)
and T (ϕ) can be computed deterministically in polynomial time,

(d) if ϕ is Horn, then T (ϕ) is Horn as well.

Proof. We describe the translation T informally. Let ϕ be some ∃FO sentence with equality. Let
ϕSk be the result of Skolemizing all existential quantifiers in ϕ. Notice that ϕSk does not contain
any non-constant function symbols. Let E be a binary predicate symbol that does not occur in ϕSk

and let Ω be the set of all constant symbols occurring in ϕSk. We construct the following ground
formulas:

ψrefl :=
∧
c∈Ω

E(c, c) ,

ψsymm :=
∧

c,d∈Ω

(
E(c, d)→ E(d, c)

)
,

ψtrans :=
∧

c,d,e∈Ω

(
E(c, d) ∧ E(d, e)→ E(c, e)

)
.

Let ψcong be the conjunction of all ground formulas of the form E(c1, d1) ∧ . . . ∧ E(cm, dm) ∧
P (c1, . . . , cm) → P (d1, . . . , dm) where c1, d1, . . . , cm, dm ∈ Ω and P is an m-ary predicate symbol
in ϕSk. We write ψ′cong to denote the restriction of ψcong to formulas E(c1, d1) ∧ . . . ∧E(cm, dm) ∧
P (c1, . . . , cm) → P (d1, . . . , dm) whose constituents P (c1, . . . , cm) and P (d1, . . . , dm) actually
occur in ϕSk (and are distinct).

Let ϕ′ be the result of replacing every equation c ≈ d in ϕSk with the atom E(c, d).

Claim I: ϕSk is satisfiable if and only if ϕ′ ∧ ψrefl ∧ ψsymm ∧ ψtrans ∧ ψcong is satisfiable.

Proof: Let A be any model of ϕSk. By the Substructure Lemma, we may assume that A’s domain
is
{
cA
∣∣ c ∈ Ω

}
. We now construct a model B |= ϕ′ ∧ ψrefl ∧ ψsymm ∧ ψtrans ∧ ψcong from

A. We take over A’s domain and its interpretation of the predicate symbols and constant
symbols. We define E’s interpretation under B such that EB :=

{
〈a, a〉

∣∣ a ∈ A
}

. Hence, for
all c, d ∈ Ω we observe B |= E(c, d) if and only if B |= c ≈ d. Consequently, B must be a
model of ϕSk and also of ϕ′ ∧ ψrefl ∧ ψsymm ∧ ψtrans ∧ ψcong.

Let B be a model of ϕ′ ∧ ψrefl ∧ ψsymm ∧ ψtrans ∧ ψcong. By the Substructure Lemma, we
may assume that B’s domain is B =

{
cB
∣∣ c ∈ Ω

}
. We now construct a model A |= ϕSk

from B. Because of B |= ψrefl ∧ ψsymm ∧ ψtrans ∧ ψcong, we know that EB is a congruence
relation over B. We define the domain of A to be the quotient set A := B/EB . Moreover,
we define cA := [cB]EB for every c ∈ Ω. For every congruence class [a]EB we know that two
domain elements dB, eB ∈ [a]EB are indistinguishable by the relations PB for which P occurs
in ϕ′. Therefore, we can use the following definition for every m-ary predicate symbol P
in ϕ′ (including E): PA :=

{〈
[a1]EB , . . . , [am]EB

〉 ∣∣ 〈a1, . . . , am〉 ∈ PB
}

. This yields A |= ϕ′

and for all c, d ∈ Ω we observe A |= E(c, d) if and only if A |= c ≈ d. Hence, A |= ϕSk. ♦

5.1. COMPUTATIONAL COMPLEXITY OF EXISTENTIAL SF 145

It now remains to show equisatisfiability of ϕ′ ∧ ψrefl ∧ ψsymm ∧ ψtrans ∧ ψcong and ϕ′ ∧ ψrefl ∧
ψsymm ∧ ψtrans ∧ ψ′cong. The direction from left to right is obvious.

Claim II: Any model B |= ϕ′ ∧ψrefl ∧ψsymm ∧ψtrans ∧ψ′cong gives rise to a model A |= ϕ′ ∧ψrefl ∧
ψsymm ∧ ψtrans ∧ ψcong.

Proof: Again, by the Substructure Lemma, we may assume that B’s domain is
{
cB
∣∣ c ∈ Ω

}
. Let

P (c1, . . . , cm) and P (d1, . . . , dm) be two atoms that occur in ϕ′. We observe the following
property:

(∗) If EB contains the pairs 〈cB1 , dB1 〉, . . . , 〈cBm, dBm〉, then B |= ψ′cong entails that B |=
P (c1, . . . , cm) holds if and only if B |= P (d1, . . . , dm) does.

We define A such that A := B, EA := EB, and cA := cB for every c ∈ Ω. Moreover, for
every m-ary predicate symbol P occurring in ϕ′ and every tuple 〈a1, . . . , am〉 ∈ A we set
〈a1, . . . , am〉 ∈ PA if and only if there is some atom P (c1, . . . , cm) in ϕ′ for which we have
〈cA1 , a1〉, . . . , 〈cAm, am〉 ∈ EA and B |= P (c1, . . . , cm). Due to (∗), we know that A |= ϕ′ still
holds. By construction of A, we moreover observe A |= ψrefl ∧ ψsymm ∧ ψtrans ∧ ψcong. ♦

We set T (ϕ) := ϕ′ ∧ ψrefl ∧ ψsymm ∧ ψtrans ∧ ψ′cong for every ∃FO sentence ϕ. It is easy to see
that if ϕ is Horn then T (ϕ) is Horn as well. Moreover, the length of T (ϕ) is bounded from above
by k ·

(
len(ϕ) + |Ω|3 + len(ϕ) · |At(ϕSk)|2

)
for some positive integer k, where At(ϕSk) denotes the

set of all non-equational atoms that occur in ϕSk.

Proposition 5.1.4.

(i) Satisfiability for ∃FO is NP-complete.

(ii) Satisfiability for Horn-∃FO is P-complete.

(iii) Satisfiability for Krom-∃FO without equality is NL-complete.

(iv) Satisfiability for Krom-∃FO with equality is NP-complete.

Proof sketch. The membership in the respective complexity classes is settled in Lemmas 5.1.2
and 5.1.3 for (i) – (iii). The membership part of (iv) follows from (i). In order to show hardness for
these cases, it remains to reduce the respective SAT problems to the corresponding satisfiability
problems for SF.

Let ϕprop be some propositional sentence and let q1, . . . , qk be a complete list of all propositional
variables occurring in ϕprop (without duplicates). Let y1, . . . , yk be pairwise distinct first-order
variables. We construct the first-order sentence ∃ȳ. ϕ from ϕprop by replacing every qi by the atom
P (yi) and adding the quantifier block ∃y1 . . . yk to the front. By similar arguments as we have used
in the proof of Lemma 5.1.2, we can show that ϕprop is satisfiable if and only if ϕ is satisfiable.
Moreover, we observe the following properties:

(a) len(ϕ) ∈ O
(
len(ϕprop)

)
and ϕ is computable deterministically in polynomial time.

(b) If ϕprop is a Horn formula, then ϕ is Horn.

(c) If ϕprop is a Krom formula, then ϕ is Krom.

The outlined construction polynomially reduces SAT, Horn-SAT, and Krom-SAT to the respective
satisfiability problems for ∃FO, Horn-∃FO, and Krom-∃FO, all without equality.

It remains to show the NP-hardness part of (iv). We reduce 3SAT — the satisfiability problem
for propositional formulas in CNF in which each clause contains at most three literals —, which
was shown to be NP-hard by Cook [Coo71].5 Let ϕ := ϕ3 ∧ ϕ≤2 be any propositional formula in
conjunctive normal form where ϕ3 is a conjunction of clauses that contain exactly three literals each

5The idea underlying the reduction was suggested to the author of the present thesis by Christoph Weidenbach
during a discussion in October 2018.

146 CHAPTER 5. COMPUTATIONAL COMPLEXITY OF SF-SAT AND GBSR-SAT

and ϕ≤2 is a conjunction of clauses with at most two literals each. Our first step will be to transform
ϕ into an equisatisfiable formula such that all clauses with three literals are Horn and do not share
any propositional variables. To achieve this goal, we introduce fresh propositional variables together
with definitions of the form p↔ q or p↔ ¬q, each of which can readily be transformed into two
two-literal clauses, respectively. Put more precisely, we construct two propositional formulas ϕ′3
and ϕdef such that

(d) ϕdef is a conjunction of formulas of the form p↔ q or p↔ ¬q with p 6= q;

(e) ϕ′3 is a conjunction of pairwise variable-disjoint Horn clauses;

(f) every clause in ϕ′3 contains exactly three literals, exactly one positive literal, and exactly
three pairwise distinct propositional variables;

(g) none of the propositional variables in ϕ′3 occurs in ϕ≤2 and each of the variables in ϕ′3 occurs
in exactly one clause in ϕdef ,

(h) we have ϕ′3 ∧ ϕdef ∧ ϕ≤2 |= ϕ3 ∧ ϕ≤2 and every satisfying assignment for ϕ3 ∧ ϕ≤2 can be
extended to some satisfying assignment for ϕ′3 ∧ ϕdef ∧ ϕ≤2.

Then, we have ϕ′3 =
∧

1≤i≤m(¬pi ∨¬qi ∨ ri) for some integer m and pairwise-distinct propositional
variables p1, . . . , pm, q1, . . . , qm, r1, . . . , rm. Let ϕ′′3 be the first-order formula

ϕ′′3 :=
∧

1≤i≤m
(ai ≈ bi ∧ bi ≈ ci → ai ≈ ci)

such that all a1, . . . , am, b1, . . . , bm, c1, . . . , cm are pairwise-distinct constant symbols. Moreover,
let ϕ′def result from ϕdef after the following transformations. We replace every atom pi with
ai ≈ bi, every atom qi with bi ≈ ci, and every atom ri with ai ≈ ci. In addition, we replace
every propositional variable q that occurs in ϕdef but not in ϕ′3 with the first-order atom Pq(d)
for some fresh predicate symbol Pq and some constant symbol d that is different from all the
ai, bi, ci. Let ϕ′≤2 be the result of repeating the latter replacement for ϕ≤2. Then, the ∃FO
sentence ∃a1 . . . amb1 . . . bmc1 . . . cmd. ϕ

′′
3 ∧ ϕ′def ∧ ϕ′≤2 is satisfiable if and only if ϕ′3 ∧ ϕdef ∧ ϕ≤2

is satisfiable. Finally, notice that every clause in ϕ′′3 is an instance of the transitivity axiom of
equality and, hence, it is a tautology. Consequently, ϕ3 ∧ ϕdef ∧ ϕ≤2 is satisfiable if and only if
ϕ′ := ∃a1 . . . amb1 . . . bmc1 . . . cmd. ϕ

′
def ∧ ϕ′≤2 is satisfiable, and the latter sentence is equivalent to

some Krom-∃FO sentence whose length is linear in len(ϕ′). Moreover, len(ϕ′) is linear in len(ϕ).
Therefore, 3SAT is polynomially reducible to the satisfiability problem for Krom-∃FO sentences
with equality.

5.2 Horn and Krom Special Cases of SF and a Conjecture

It is well known that the restriction to Horn or Krom sentences can tremendously reduce the
computational effort required to decide satisfiability of first-order formulas, unless widely believed
conjectures in computational complexity theory fail to be true. We have already recalled in
Proposition 5.1.1 that this holds true when going from SAT to Horn-SAT or Krom-SAT. But the
effect is also known for Horn and Krom variants of BS-Sat and MFO-Sat. Table 5.1 provides an
overview of satisfiability problems that are complete for the complexity classes NL, P, NP, PSpace,
ExpTime, and k-NExpTime for k ≥ 1. When we understand ∃∗-sentences without equality —
after exhaustive Skolemization — as being essentially equivalent to propositional sentences — cf.
Lemma 5.1.2 and its proof —, then we can conceive SAT as a restricted case of SF-Sat, namely
∃∗-SF-Sat (= ∃FO-Sat). Following this train of thought further leads to the correspondence between
Horn-SAT and Horn-∃∗-SF-Sat (= Horn-∃FO-Sat) and the correspondence between Krom-SAT
and Krom-∃∗-SF-Sat (=Krom-∃FO-Sat).

Given the complexity hierarchies that result from Theorem 5.0.3 together with the fact that the
number of ∀∃-alternations in an SF sentence ϕ bounds the degree ∂∃(ϕ) from above, we conclude that

5.2. HORN AND KROM SPECIAL CASES OF SF AND A CONJECTURE 147

Classes Complete problems References

NL Krom-SAT [JLL76]
P Horn-SAT [JL77, Kas86, Pla84]

Krom-MFO-Sat [DL84a]
NP SAT [Coo71, Lev73]

PSpace Krom-BS-Sat [DL84a, Pla84]
Krom-BSR-Sat Proposition 5.2.1

ExpTime Horn-BS-Sat [CLM81, DL84a, Pla84]
Horn-BSR-Sat Proposition 5.2.1
Horn-MFO-Sat [DL84b], see also Proposition 3.14.7
Maslov-Sat [DL84a]

NExpTime BSR-Sat [Lew80]
k-NExpTime SF≤k-Sat and GBSR≤k-Sat Theorem 5.0.3

Table 5.1: Some basic complexity classes and corresponding complete problems. Recall that BS
stands for the Bernays–Schönfinkel fragment, i.e. BSR without equality. Maslov-Sat denotes the
satisfiability problem associated with the Maslov fragment, i.e. the set of satisfiable relational
∃∗∀∗∃∗ sentences without equality that are Krom, cf. page 26. Except for Maslov-Sat, all mentioned
problems can be conceived as special cases of SF-Sat and GBSR-Sat. The lower-bound proof for
the Maslov fragment in [DL84a] is based on a ∀∗∃-sentence that is neither in SF nor in GBSR.

SF-Sat restricted to sentences with a ∃∗(∀∗∃∗)k quantifier prefix yields a k-NExpTime-complete
problem, where 0-NExpTime is understood to be NP. With the results from Table 1, we already
know the computational complexity of certain special cases for SF-Sat when restricted to ∃∗ and
∃∗∀∗ quantifier prefixes and Krom or Horn form without equality. The following proposition shows
that also in the case with equality the restriction to Horn or Krom sentences yields computationally
less hard satisfiability problem, unless NExpTime equals ExpTime and/or PSpace.

Proposition 5.2.1. Horn-BSR-Sat is in ExpTime and Krom-BSR-Sat is in PSpace.

Proof sketch. The reduction of Horn-BSR-Sat to Horn-BS-Sat is even simpler than the reduction
of Horn-∃FO-Sat with equality to Horn-∃FO-Sat without equality. We again replace ≈ with a
fresh binary predicate E and conjoin the equality axioms for E to the original formula: reflexivity,
symmetry, transitivity, and compatibility with predicates. As universal quantification is available
now, this can be done using BS formulas whose length is polynomial in the underlying vocabulary.

We now turn our attention to the case of Krom BSR sentences. Usually, upper bounds for
Krom fragments are shown via a chain argument (cf. [DL84a], and Section 8.3.1 in [BGG97]). We
recap the idea for Krom-BS-Sat before we use it for the case with equality. Let ψ be a Krom
BS sentence without equality after exhaustive Skolemization. We assume that ψ has the shape
∀x̄. ∧i∈I(Li ∨Ki) where the Li and Ki are literals. This is not a restriction, as every unit clause
L is equivalent to L ∨ L. We denote by G(ψ) G(ψ) =

〈V,E〉
the directed graph with the following components:

The vertex set V is the set of all ground literals that can be built from the predicate and constant
symbols in ψ. The edge relation E contains an edge from L to K if and only if ψ contains a
clause that has an instance equivalent to L→ K. It can be shown that ψ is unsatisfiable if and
only if the graph G(ψ) contains a cycle along which some ground atom A and its negation occur
(Lemmas 8.3.1, 8.3.4, and 8.3.5 in [BGG97]).

A PSpace decision procedure for Krom-BS-Sat then detects such a cycle by nondeterminis-
tically choosing the ground atom A as its starting point and then, again nondeterministically,
exploring a shortest path to ¬A in G(ψ) by constructing the appropriate instances of clauses
L ∨K nondeterministically one after the other. Notice that such a shortest path is not longer
than |V | ≤ len(ϕ) · 2log(len(ϕ))·len(ϕ), which yields a termination criterion for the nondeterministic
procedure. During that process, the procedure at every step only needs to store the instance A,
(an instance of) the current clause L∨K, including the direction of the considered edge from G(ψ),

148 CHAPTER 5. COMPUTATIONAL COMPLEXITY OF SF-SAT AND GBSR-SAT

and the length of the currently explored path. If a path from A to ¬A has been detected, the
procedure starts to seek for a path from ¬A to A. If it succeeds in both directions, the sentence ψ
is unsatisfiable. Conversely, the procedure succeeds whenever ψ is unsatisfiable. This entails that
checking unsatisfiability for Krom BS sentences is in NPSpace and, hence, that Krom-BS-Sat is in
co-NPSpace. But since the two complexity classes coincide with PSpace, which is a consequence
of the famous theorems by Savitch [Sav70] and Immerman and Szelepcsényi [Imm88, Sze88], it
follows that both problems are in PSpace.

We now extend this idea so that equality can be handled. Consider any Krom BSR sentence
ϕ := ∃z̄∀x̄. χ with quantifier-free χ. As a first step, we construct the Krom BSR sentence ϕ′ϕ′ from ϕ as
follows. Consider each and every clause C in ϕ and let {x1, x2, x3, x4} ⊆ x̄ be the set of all universally
quantified variables that occur in equations in C. Since C is a Krom clause, this set contains at
most four variables. We replace C with the conjunction

∧
z1,z2,z3,z4∈z̄ C

[
x1/z1, . . . , x4/z4

]
. The

resulting sentence ϕ′ is a Krom BSR sentence with len(ϕ′) ≤
(
len(ϕ)

)5
in which all variables

occurring in equations are existentially quantified. Moreover, it is easy to see that ϕ |= ϕ′ and that
any model A |= ϕ′ contains some substructure that is also a model of ϕ. Such a substructure of A
is induced by any set {ai ∈ A | A, [z̄ |= ā] |= ∀x̄. χ and ā = 〈a1, . . . , a|z̄|〉} — there exists at least
one such set if A is a model of ϕ′.

For the rest of this proof we fix some strict linear order ≺≺, S on the variables in z̄ and define
S to be the set {z ≈ z′ | z, z′ ∈ z̄}. Every subset T ⊆ S induces an equivalence relation ∼T

∼T over the variables in z̄. Although there are 2|z̄|
2

such subsets T , there are only B|z̄| equivalence
classes over |z̄|, where Bn denotes the n-th Bell number , which is known to be bounded by
Bn <

(
0.792n

ln(n+1)

)n
(Theorem 2.1 in [BT10]). Operationally, such an equivalence relation can be

represented by a rewrite function ρT : z̄→ z̄ρT that maps any z ∈ z̄ to the least z′ ∼T z (with respect
to ≺). Storing ρT requires polynomial space only.

The nondeterministic decision procedure for Krom BSR sentences employs the one described
above for Krom BS sentences as subroutine. Given any Krom BSR sentence ϕ, the procedure
transforms it into some equisatisfiable sentence ϕ′ in which all variables in equations are existentially
quantified, just as described above. Then, the procedure iterates over all rewrite functions ρT
one after another, and considers the sentence ϕ′Tϕ′T that is a copy of ϕ′ = ∃z̄∀x̄. χ′ in which every
z ∈ z̄ in χ′ is replaced with the variable ρ(z). In case of ρ(z) 6= z, the quantifier ∃z is removed
from the quantifier prefix. After these replacements, every trivial equation z ≈ z is replaced with
the logical constant true, and every equation z ≈ z′ with z 6= z′ is replaced with false. For
technical reasons the procedure afterwards removes all logical constants true and false in a way
that preserves semantics and so that in the resulting (equivalent) sentence every clause consists of
two non-equational literals. Hence, ϕ′T is a Krom BS sentence. Now the procedure employs the
subroutine described above to check whether ϕ′T is unsatisfiable or not, using polynomial space
only. If it is, the procedure deletes ϕ′T from memory — recall that the original ϕ′ was kept — and
goes on iterating over the rewrite functions ρT . If ϕ′T happens to be satisfiable, then the original
ϕ is satisfiable as well. If all the ϕ′T with T ⊆ S are found to be unsatisfiable, then the original
ϕ is unsatisfiable. To keep track of the iteration over all T ⊆ S, a counter suffices that can be
represented with |z̄|2 bits. This shows that Krom-BSR-Sat is in PSpace.

It is tempting to try to extrapolate a pattern from the observations in Table 5.1, Proposition 5.2.1,
and Theorem 5.0.3, and speculate that ∃∗(∀∗∃∗)k-Horn-SF-Sat is complete for k-ExpTime for every
k ≥ 1, and that ∃∗(∀∗∃∗)k-Krom-SF-Sat is complete for (k − 1)-ExpSpace for every k ≥ 2. The
overall picture of this conjecture is sketched in Figure 5.2. The conjecture can also be formulated
in a more precise way in terms of the degree ∂∃(ϕ) of SF sentences ϕ, i.e. for Horn-SF≤k-Sat and
Krom-SF≤k-Sat. Then, the ExpTime-completeness of Horn-MFO-Sat fits nicely into the picture,
as MFO sentences have degree at most one. The membership of Krom-MFO-Sat in P indicates
that this problem is very likely to be easier to solve than what one would have gotten from the
extrapolation.

Conjecture 5.2.2. For every positive k we conjecture that Horn-SF≤k-Sat is complete for k-
ExpTime. Moreover, we conjecture that Krom-SF≤k-Sat is complete for (k− 1)-ExpSpace, where

5.3. PROVING LOWER BOUNDS FOR SF-SAT 149

NL

P

NP

PSpace

ExpTime

NExpTime

...... ...
(k−1)-ExpSpace

k-ExpTime

k-NExpTime

∃∗-Krom-SF-Sat
without equality

∃∗-Horn-SF-Sat

∃∗-SF-Sat
∃∗-Krom-SF-Sat

∃∗∀∗-Krom-SF-Sat

∃∗∀∗-Horn-SF-Sat

∃∗∀∗∃∗-SF-Sat

∃∗∀∗∃∗-Krom-SF-Sat ?

∃∗∀∗∃∗-Horn-SF-Sat ?

∃∗(∀∗∃∗)k-Krom-SF-Sat ?

∃∗(∀∗∃∗)k-Horn-SF-Sat ?

∃∗(∀∗∃∗)k-SF-Sat

∃∗∀∗∃∗-Krom-Sat

Figure 5.2: On the left-hand side the conjectured pattern of complexity is shown for the sets of
∃∗(∀∗∃∗)k-SF-sentences that are Horn and Krom, respectively. On the right-hand side the known
complexity results are depicted. Note that the blue part stems from the complexity of the Maslov
fragment.

0-ExpSpace is meant as a synonym for PSpace.

Another hint that may speak in favor of the conjecture that also the satisfiability problems for
Krom and Horn SF sentences become harder with an increasing number of quantifier alternations
is given by Theorem 3.2.7. In that theorem we have shown the existence of an SF sentence ϕn, for
arbitrary n ≥ 1, that is Krom and Horn and whose shortest BSR equivalent has a length that is
n-fold exponential in len(ϕn). Of course, all of the above said also applies when we replace SF with
GBSR. Hence, the same conjecture can be made for Horn-GBSR≤k-Sat and Krom-GBSR≤k-Sat.

5.3 Proving Lower Bounds for SF-Sat

In the present section we establish lower bounds regarding the worst-case time complexity of
SF-Sat. Our arguments will be based on a particular form of bounded domino (or tiling) problems
developed by Grädel (see [Grä90a] and [BGG97], Section 6.1.1). By Zt we denote the set of integers
{0, . . . , t− 1} for any positive t ≥ 1.

Definition 5.3.1 (Bounded domino systems, cf. Definition 6.1.1 in [BGG97]). A domino system
D := 〈D,H,V〉

D=〈D,H,V〉
is a triple where D is a finite set of tiles and H,V ⊆ D ×D are binary relations

determining the allowed horizontal and vertical neighbors of tiles, respectively. Consider the torus
Z2
t := Zt × Zt and let D := D0 . . . Dn−1 be a word over D of length n ≤ t. The letters of D

represent tiles. We say that D tiles the torus Z2
t with initial condition D if and only if there exists

a mapping τ : Z2
t → D such that for every 〈x, y〉 ∈ Z2

t the following conditions hold, where “+1”
denotes increment modulo t.

(a) If τ(x, y) = D and τ(x+ 1, y) = D′, then 〈D,D′〉 ∈ H.

(b) If τ(x, y) = D and τ(x, y + 1) = D′, then 〈D,D′〉 ∈ V.

(c) τ(i, 0) = Di for i = 0, . . . , n− 1.

150 CHAPTER 5. COMPUTATIONAL COMPLEXITY OF SF-SAT AND GBSR-SAT

Notice that Definition 5.3.1 is similar to Definition 3.3.1 on page 41, where we introduced
unconstrained domino problems. The main difference lies in the fact that the bounded variant of
domino systems speaks about tiling a torus, i.e. a finite space, in contrast to an infinite plane.

Definition 5.3.2 (Bounded domino problems, cf. Definition 6.1.5 in [BGG97]). Let T : N→ N be
a function representing some time bound and let D := 〈D,H,V〉 be a domino system. The problem
DOMINO(D, T (n))DOMINO is the set of those words D over the alphabet D for which D tiles Z2

T (|D|) with

initial condition D.

Bounded domino problems provide a convenient way of deriving lower bounds via reductions.
Suppose we are given some well-behaved time bound T (n) that grows sufficiently fast. Further
assume there is a reasonable translation from DOMINO(D, T (n)) into some problem L where the
length of the results is bounded from above by some function g(n). It then follows that the time
required to solve the hardest instances of L lies in Ω

(
T (h(n))

)
, where h(n) may be conceived

as an inverse of g(n) from an asymptotic point of view. Proposition 5.3.6 shall formalize this
observation. But before we write it down, we need some more results to establish the link between
resource-bounded Turing machines and bounded domino problems. Moreover, in order to derive
hardness results for (subproblems of) SF-Sat via the reductions from bounded domino problems,
we need more knowledge about the computational hardness of these problems.

Proposition 5.3.3 ([BGG97], Theorem 6.1.2). Let M be a simple nondeterministic one-tape
Turing machine with input alphabet Γ. Then there is a domino system D = 〈D,H,V〉 and a
linear-time reduction which takes any input w ∈ Γ∗ to some word D ∈ D∗ with |w| = |D| such that

(a) if M accepts w in time t0 with space s0, then D tiles Zs × Zt with initial condition D for all
s ≥ s0 + 2 and t ≥ t0 + 2;

(b) if M does not accept w, then D does not tile Zs×Zt with initial condition D for any s, t ≥ 2.

By a simple Turing machinesimple
Turing
machines

the authors of [BGG97] mean a nondeterministic one-tape Turing
machine M over the input alphabet Γ that meets the following conditions:

“The alphabet of M contains Γ and at least one other symbol � (blank). M works
on a semi-infinite tape and never tries to move left from the left-most tape cell. At
every stage of the computation there is some s such the tape cells 0, . . . , s contain only
non-blank symbols, all other tape cells contain �; in particular, to the right of a blank
only other blanks may appear. Furthermore, we assume that M has a unique accepting
configuration: the machine is in the unique accepting state qa, the tape contains only
blanks and the head is in position 0.

These conditions do not restrict computational power. Every language accepted
in time T (n) and space S(n) by some one-tape nondeterministic Turing machine is
accepted within the same time and space bounds by a simple Turing machine, as long
as S(n), T (n) ≥ 2n.” [BGG97], page 243

Proposition 5.3.4 ([BGG97], Theorem 6.1.6). We call a function T : N→ N time constructible
if there exists a deterministic Turing machine making precisely T (n) steps on inputs of length n.

Let T : N → N be a time-constructible function with
(
T (dn)

)2 ∈ o(T (n)) for some constant
d > 0. There exists a domino system D and a constant c > 0 such that DOMINO(D, T (n)) 6∈
NTIME(T (cn)).

Definition 5.3.5 (Polynomially reducible, cf. Definition 6.1.7 in [BGG97]). Let Γ,∆ be two
alphabets and let L ⊆ Γ∗ and K ⊆ ∆∗ be two problems (formal languages). Moreover, let g : N→ N
be some function. We say that L is polynomially reducible to K via length order g(n), denoted
L ≤g(n) K, if there exists a total mapping f : Γ∗ → ∆∗ which is computable in polynomial time

such that for every w ∈ Γ∗ we have |f(w)| ≤ O
(
g(|w|)

)
and f(w) ∈ K if and only if w ∈ L.

5.3. PROVING LOWER BOUNDS FOR SF-SAT 151

Proposition 5.3.6 ([BGG97], Theorem 6.1.8). Let T : N→N be a time-constructible function with(
T (dn)

)2 ∈ o(T (n)) for some constant d > 0 and let L be a problem such that for every domino
system D we have DOMINO(D, T (n)) ≤g(n) L, i.e. DOMINO(D, T (n)) is polynomially reducible
to L via length order g(n). Moreover, let h : N→ N be a function such that h(e · g(n)) ∈ O(n) for
any positive constant e. There exists a positive constant c > 0 such that L 6∈ NTIME(T (c · h(n))).

We are now almost done with the preliminaries. It only remains to show that the functions
we intend to use as time bounds T (n) satisfy the requirements of Proposition 5.3.6. Recall our
notation for the tetration operation 2↑k(m), which we defined inductively: 2↑0(m) := m and

2↑k+1(m) := 2(2↑k(m)). In addition, we use the short-hand 2↑k 2↑kto abbreviate 2↑k(2). We need

to find positive constants c1, c2 and verify the conditions
(
2↑k(c1n)

)2 ∈ o(2↑k(n)) for every fixed

k ≥ 1, and
(
2↑c2n

)2 ∈ o(2↑n), respectively. Setting c1 := 1
4 and c2 := 1

2 entails the following.

Lemma 5.3.7. Let k ≥ 1 be some fixed positive integer. For every positive constant c > 0 there
exists some positive integer n0 ≥ 1 such that for every n ≥ n0 we have(

2↑k(dn/4e)
)2

≤ c · 2↑k(n) .

Proof. Let k = 1. We observe (
2↑1(n/4)

)2

= 22·n/4 = 2n/2 .

If c ≥ 1, then 2n/2 ≤ c · 2n is obvious.

Assume 0 < c < 1 and set d := 1
c . Hence, d > 1. If remains to show d · 2n/2 ≤ 2n for every

sufficiently large n. Due to 2n = 2n/2+n/2 = 2n/2 · 2n/2, we observe d · 2n/2 ≤ 2n/2 · 2n/2 if
and only if d ≤ 2n/2. But the latter certainly holds for sufficiently large n.

Let k = 2. If c ≥ 1, then 2↑2(n) ≤ c · 2↑2(n). It thus suffices to show 22·2n/4 ≤ 22n = 2↑2(n) or,
equivalently, 1

4n+ 1 ≤ n for sufficiently large n. But this is obviously true.

Assume 0 < c < 1 and define d := 1
c . It follows that d > 1. It remains to show d·22n/4+1 ≤ 22n

for sufficiently large n. Due to 22n = 22n/2·2n/2 ≥ 22n/2+2n/2

= 22n/2 · 22n/2

with d ≤ 22n/2

and 22n/4+1 ≤ 22n/2

for sufficiently large n, we also observe d · 22n/4+1 ≤ 22n/2 · 22n/2 ≤ 22n

for sufficiently large n.
Analogous arguments hold for every k ≥ 2.

Lemma 5.3.8. For every positive constant c > 0 there exists some positive integer n0 > 0 such
that for every n ≥ n0 we have (

2↑dn/2e
)2

≤ c · 2↑n .

Proof. We distinguish two cases:

Suppose c ≥ 1. We observe

(1)
(

2↑dn/2e
)2

= 22·22↑dn/2e−2

= 221+2↑dn/2e−2

, and

(2) c · 2↑n ≥ 2↑n = 222↑n−2

.

Hence, it suffices to show there is some n0 ≥ 2 such that 1 + 2↑dn/2e−2 ≤ 2↑n−2 holds for
every n ≥ n0. One possible choice is n0 = 4

Suppose 0 < c < 1. We set d := 1
c . Due to d > 1, log2 d is defined. Moreover, we observe

d ·
(

2↑dn/2e
)2

= 2log2 d ·
(

2↑dn/2e
)2

= 2log2 d+2·2↑dn/2e−1

≤ 2log2 d·2↑dn/2e−1+2·2↑dn/2e−1

= 2(log2 d+2)·2↑dn/2e−1

= 22log2(log2 d+2)·22↑dn/2e−2

= 22log2(log2 d+2)+2↑dn/2e−2

.

152 CHAPTER 5. COMPUTATIONAL COMPLEXITY OF SF-SAT AND GBSR-SAT

Hence, in order to prove that there is some n0 such that d ·
(

2↑dn/2e
)2

≤ 2↑n holds for every

n ≥ n0, it suffices to show that there is some n0 such that

d′ + 2↑dn/2e−2 ≤ 2↑n−2

where d′ := log2(log2 d + 2). The proof thus boils down to asking whether the difference
2↑n−2 − 2↑dn/2e−2 exceeds any constant value d′ for sufficiently large n. This is certainly the
case.

The following lemma contains the key technical result of the present section: reductions of
bounded domino problems to SF≤k-Sat, for any positive k, and SF-Sat, respectively.

Lemma 5.3.9.

(i) Fix some positive integer k > 0 and let D be any domino system. Let Sat(SF∂∃≤k) be the
set containing all satisfiable SF sentences ϕ whose degree ∂∃(ϕ) is at most k. We have
DOMINO

(
D, 2↑k(n)

)
≤n·logn Sat(SF∂∃≤k).

(ii) Fix some positive integer m > 1 and let D be any domino system. Let Sat(SF) be the set
containing all satisfiable SF sentences. We have DOMINO(D, 2↑n(m)) ≤n2·logn Sat(SF).

Having these reduction results at hand (we shall prove them shortly), Proposition 5.3.6 implies
the following lower bounds regarding the time required to decide instances of SF≤k-Sat and SF-Sat.

Theorem 5.3.10. There are positive constants c, d > 0 for which

Sat(SF∂∃≤k) 6∈ NTIME
(
2↑k(cn/ log n)

)
and

Sat(SF) 6∈ NTIME
(
2↑d·
√
n/ logn(2)

)
.

Theorem 5.3.10 provides lower bounds regarding the time needed to decide SF-Sat and its sub-
problems in the worst-case. However, hardness for k-NExpTime, say, does not follow immediately.
As Proposition 5.3.3 provides a reduction from the acceptance problem for nondeterministic T (n)-
time-bounded Turing machines to bounded domino problems DOMINO(D, T (n)) and Lemma 5.3.9
provides a reduction from such domino problems to subproblems of SF-Sat, we obtain the following
hardness result.

Theorem 5.3.11. For every positive integer k, the problem SF≤k-Sat is k-NExpTime-hard.

It is worth mentioning that Theorems 5.3.10 and 5.3.11 even hold for SF without equality, see
Section 5.3.3. In the rest of the present section we outline the reductions described in Lemma 5.3.9.

5.3.1 Enforcing a Large Domain in SF

Recall that we intend to encode a given domino system D = 〈D,H,V〉 — for nonempty D,H,V
— plus an initial condition D into an SF sentence ϕ such that ϕ is satisfiable if and only if
D ∈ DOMINO(D, Ti(|D|)) with T1(n) = 2↑κ(n) for any fixed κ > 0 and T2(n) = 2↑n(µ) for any
fixed µ > 1. The key issue in the encoding is the formalization of sufficiently large tori in SF.
The following description gives a somewhat simplified view. Technical details will follow. For
convenience, we allow the use of constant symbols in the encoding. This does certainly not change
the computational complexity of SF-Sat.

We shall devise a satisfiable SF sentence whose models contain a grid of size t × t, where t
defines the required computing time and we assume t := 2↑κ(µ) for positive integers κ and µ > 1
that we consider as parameters of the construction.κ, µ Every point p on the grid is represented by a

pair p = 〈x, y〉, where each of the coordinates x and y may assume a value from 0 to 2↑κ(µ)− 1.
Each of the integers in that range is encoded by a bit string b̄ of length log

(
2↑κ(µ)

)
= 2↑κ−1(µ).

5.3. PROVING LOWER BOUNDS FOR SF-SAT 153

The crux of our approach is that we have to enforce the existence of sufficiently many indices j,
namely 2↑κ−1(µ) many, to address the single bits of b̄. Again, we address each of these indices
using a bit string, this time of length 2↑κ−2(µ). Thus, we proceed in an inductive fashion, building
up a hierarchy of indices with κ+ 1 levels. The lowest level, level zero, is inhabited by µ indices,
which we represent by constant symbols with pairwise distinct values. For every ` ≥ 1 any index j
on the `-th level is represented by a bit string consisting of 2↑`−1(µ) bits, i.e. the `-th level of the
index hierarchy contains 2↑`(µ) indices. The i-th bit of an `-th-level index j corresponds to the
truth value of the atom J(`, j, i), where ` is a constant symbol used to address the `-th level of the
index hierarchy.

Example 5.3.12. Assume µ = 2 and κ = 3.
index set of number
level indices of indices

0 {c1, c2} 2
1 {00, 01, 10, 11} 4
2 {0000, 0001, . . . , 1111} 16
3 {0, 1}16 65536

On every index level, the bits of one index are indexed by the indices from the previous level. We
illustrate this for the word 1010 on all levels from 2 down to 0. The bits of 1010 on level two are
indexed by bit strings from level one, each of them having a length of two. The bits of the indices
of level one are themselves indexed by objects of level zero which are some values c1, c2 assigned to
the constant symbols c1, c2. To improve readability, we connect the bits of words by dashes.

level 2: 1————0————1————0
↑ ↑ ↑ ↑

level 1: 1—1 1—0 0—1 0—0
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

level 0: c2 c1 c2 c1 c2 c1 c2 c1

For technical reasons the number of indices per level shall grow slightly slower in our formalization
than described above (cf. Lemma 5.3.14). The described index hierarchies can be encoded by SF
formulas with the quantifier prefix ∃∗(∀∃)κ that have a length that is polynomial in κ and µ. We
use the following constant and predicate symbols with the indicated meaning:

0, 1, . . . , κ constant symbols addressing the levels from 0 to κ,
c1, . . . , cµ addresses the indices at level 0,
d1, . . . , dκ d` is the min. index at level `,
e1, . . . , eκ e` is the max. index at level `,
L(`, j) index j belongs to level `,
MinIdx(`, j) j is a min. index at level `,
MaxIdx(`, j) j is a max. index at level `,
J(`, j, i, b) the i-th bit of the index j at level ` is b,
J∗(`, j, i, b) b = 1 indicates that all the bits of the index j that

are less significant than j’s i-th bit are 1,
Succ(`, j, j′) j′ is the successor index of j at level `.

On every level we implicitly establish an ordering over the indices of that level, from which we
derive the concepts of minimal and maximal indices for each level. For this purpose, we use the
usual ordering on natural numbers encoded in binary. Moreover, we formalize the usual successor
relation by the predicate Succ. The idea underlying the formalization of binary successor is inspired
by [BGG97] (proof of Theorem 6.2.13) and is sketched in the following example. It is based on the
observation that a bit sting b′n . . . b

′
0 is the successor of bn . . . b0, if we have for every i, 0 ≤ i ≤ n,

that
b′i = bi ⊕ (bi−1 ∧ . . . ∧ b0) ,

where ⊕ denotes the exclusive OR operation.

Example 5.3.13. Consider the index j := 1011, which resides on the second level of the index
hierarchy. The indices of the first level are 00, 01, 10, 11. In terms of the predicates J and J∗, we

154 CHAPTER 5. COMPUTATIONAL COMPLEXITY OF SF-SAT AND GBSR-SAT

get the following for the index j and its successors:
Representation of index j:

binary representation: 1 0 1 1
J-J∗-representation: J(2, j, 11, 1) J(2, j, 10, 0) J(2, j, 01, 1) J(2, j, 00, 1)

J∗(2, j, 11, 0) J∗(2, j, 10, 1) J∗(2, j, 01, 1) J∗(2, j, 00, 1)

Representation of the successor index j′:
binary representation: 1 1 0 0
J-J∗-representation: J(2, j′, 11, 1) J(2, j′, 10, 1) J(2, j′, 01, 0) J(2, j′, 00, 0)

J∗(2, j′, 11, 0) J∗(2, j′, 10, 0) J∗(2, j′, 01, 0) J∗(2, j′, 00, 1)

Representation of the second successor index j′′:
binary representation: 1 1 0 1
J-J∗-representation: J(2, j′′, 11, 1) J(2, j′′, 10, 1) J(2, j′′, 01, 0) J(2, j′′, 00, 1)

J∗(2, j′′, 11, 0) J∗(2, j′′, 10, 0) J∗(2, j′′, 01, 1) J∗(2, j′′, 00, 1)
What we observe is that the J-representation of j’s successor j′ is the result of combining j’s
J-representation with its J∗-representation using bitwise exclusive OR. More technically, for
every i ∈ {00, 01, 10, 11} and all b, b∗ ∈ {0, 1} we have that J(2, j, i, b) and J∗(2, j, i, b∗) entails
J(2, j′, i, b⊕ b∗).

A major difficulty that we encounter is that we cannot assert the existence of successors simply
by adding ∀j∃j′.Succ(`, j, j′), as j and j′ would not be separated. Therefore, we fall back on a trick
that we have already used in Section 3.3.3 (cf. pages 42–45) when we investigated the expressiveness
of SF when only models of a bounded size are considered. We start from the equivalent formula
∀j∃j̃j′. j≈ j̃ ∧ Succ(`, j̃, j′), and replace the atom j≈ j̃ by a subformula eq`

j,̃j
in which j and j̃ are

separated and which expresses a certain similarity between j and j̃ instead of identity. However,
we specify the hierarchy of indices in a sufficiently strong way such that the similarity expressed
by eq`

j,̃j
actually coincides with identity. The subformula eq`

j,̃j
will also reoccur in other places,

namely, whenever we need to enforce the existence of successors of one kind or another. It will be
the main source of nested quantifier alternations. The depth of the nesting depends linearly on the
parameter `, which will become at most κ in the construction.

Next, we formalize the described index hierarchies in SF≤κ. Technically speaking, we will be
more liberal than the formal SF syntax allows in that the given sentences will contain constant
symbols and will not be in prenex normal form. However, equivalent SF sentences of (almost)
the same length can be derived easily. Every formula is accompanied by a brief description of its
purpose. We shall try to use as few essentially non-Horn sentences as possible.

ψ1 :=

κ∧
`=0

κ∧
`′ = 0
`′ 6= `

∀j. L(`, j)→ ¬L(`′, j)

Every index belongs to at most one level.

ψ2 :=

κ∧
`=0

(
∀j. MinIdx(`, j)→ L(`, j)

)
∧
(
∀jj′. MinIdx(`, j)→ ¬Succ(`, j′, j)

)
A min. index of level ` belongs to level `. A min. index does not have a predecessor.

ψ3 :=

κ∧
`=0

MinIdx(`, d`) ∧
(
∀j. MinIdx(`, j)→ j ≈ d`

)
There is a unique min. index on every level.

ψ4 :=

κ∧
`=0

(
∀j. MaxIdx(`, j)→ L(`, j)

)
∧
(
∀jj′. MaxIdx(`, j)→ ¬Succ(`, j, j′)

)
A max. index of level ` belongs to level `. A max. index does not have a successor.

5.3. PROVING LOWER BOUNDS FOR SF-SAT 155

ψ5 :=

κ∧
`=0

MaxIdx(`, e`) ∧
(
∀j. MaxIdx(`, j)→ j ≈ e`

)
There is a unique max. index on every level.

ψ6 :=

κ∧
`=0

∀jj′. Succ(`, j, j′) → L(`, j) ∧ L(`, j′)

If j′ is the successor of j at level `, then both j and j′ belong to level `.

ψ7 :=

κ∧
`=0

∀jj′j′′. ¬Succ(`, j, j) ∧
(
Succ(`, j, j′) ∧ Succ(`, j, j′′)→ j′ ≈ j′′

)
∧
(
Succ(`, j′, j) ∧ Succ(`, j′′, j)→ j′ ≈ j′′

)
The successor relation is irreflexive. Every index j has at most one successor and at most
one predecessor.

ψ8 := MinIdx(0, c1) ∧MaxIdx(0, cµ) ∧
µ−1∧
i=1

Succ(0, ci, ci+1)

At level zero we have the sequence c1, . . . , cµ of successors, where c1 is min. and cµ max.

ψ9 :=

κ∧
`=1

∀jj′i. Succ(`, j, j′) ∧ L(`−1, i) →
((
J∗(`, j, i, 1) ∧ J(`, j, i, 1)→ J(`, j′, i, 0)

)
∧
(
J∗(`, j, i, 1) ∧ J(`, j, i, 0)→ J(`, j′, i, 1)

)
∧
(
J∗(`, j, i, 0) ∧ J(`, j, i, 1)→ J(`, j′, i, 1)

)
∧
(
J∗(`, j, i, 0) ∧ J(`, j, i, 0)→ J(`, j′, i, 0)

))
Define what it means to be a successor at level `, ` > 0, in terms of the binary increment
operation modulo 2↑`(µ). This formula resembles the bitwise exclusive OR operation as
illustrated in Example 5.3.13.

ψ10 :=

κ∧
`=1

∀ji. MinIdx(`, j) ∧ L(`−1, i) → J(`, j, i, 0)

All bits of a minimal index j are 0.

ψ11 :=

κ∧
`=1

∀ji. MaxIdx(`, j) ∧MaxIdx(`−1, i) → J(`, j, i, 1)

Define what it means to be max. (part 1): the most significant bit is 1.

ψ12 :=

κ∧
`=1

∀ji. L(`, j) ∧MaxIdx(`−1, i) ∧ J(`, j, i, 1) → MaxIdx(`, j)

Define what it means to be max. (part 2): any index with 1 as its most significant bit is max.

ψ13 :=

κ∧
`=1

∀ji. L(`, j) ∧ L(`−1, i) →
(
J(`, j, i, 0)→ ¬J(`, j, i, 1)

)
∧
(
J∗(`, j, i, 0)→ ¬J∗(`, j, i, 1)

)
No bit of an index is 0 and 1 at the same time. An analogous requirement is stipulated for J∗.

ψ14 :=

κ∧
`=1

∀ji. L(`, j) ∧MinIdx(`−1, i) → J∗(`, j, i, 1)

We stipulate J∗(`, j, d`−1, 1) for every index j.

156 CHAPTER 5. COMPUTATIONAL COMPLEXITY OF SF-SAT AND GBSR-SAT

ψ15 :=

κ∧
`=1

∀jii′. L(`, j) ∧ Succ(`−1, i, i′) →
(
J∗(`, j, i′, 1)↔

(
J∗(`, j, i, 1) ∧ J(`, j, i, 1)

))
∧
(
J(`, j, i, 0)→ J∗(`, j, i′, 0)

)
∧
(
J∗(`, j, i, 0)→ J∗(`, j, i′, 0)

)
Define the semantics of J∗ as indicating that all bits strictly less significant than the i-th
bit are 1.

eq1
j,̃j

:= L(1, j) ∧ L(1, j̃) ∧
µ∧
i=1

(
J(1, j, ci, 0)↔ J(1, j̃, ci, 0)

)
∧
(
J(1, j, ci, 1)↔ J(1, j̃, ci, 1)

)
Base case of equality of indices.

eq`
j,̃j

:= L(`, j) ∧ L(`, j̃) ∧ ∀i. L(`−1, i) → ∃̃i. L(`−1, ĩ) ∧ eq −̀1

i,̃i
∧
(
J(`, j, i, 0)↔ J(`, j̃, ĩ, 0)

)
∧
(
J(`, j, i, 1)↔ J(`, j̃, ĩ, 1)

)
Inductive case of equality of indices for ` > 1.

ψ16 :=

κ∧
`=1

∀ji. L(`, j) ∧MaxIdx(`− 1, i) ∧ J(`, j, i, 0) → ∃j̃. eq`
j,̃j
∧ ∃j̃′.Succ(`, j̃, j̃′)

For every index at level ` that is not maximal, i.e. whose most significant bit is 0, there
exists a successor index.

Until now, we have only introduced sentences that can easily be transformed into SF sentences
in Horn form. This follows from the fact that all consequents of implications are either literals
or conjunctions of literals. Moreover, all existentially quantified variables are separated from
universally quantified variables. To verify this, simple inspection of the formulas suffices, since
all quantifiers occur with positive polarity, i.e. within the scope of an even number of (implicit)
negation signs.

Regarding the length of the above sentences, we observe the following:

len(ψ1) ∈ O(κ2 log κ),

len(ψ2), . . . , len(ψ7), len(ψ9), . . . , len(ψ15) ∈ O(κ log κ),

len(ψ8) ∈ O
(
µ(log κ+ logµ)

)
,

len
(
eq1
j,j′

)
∈ O

(
µ(log κ+ log µ)

)
,

len
(
eq`j,j′

)
∈ O(log κ) + len

(
eq`−1
j,j′

)
,

len(ψ16) ∈ O
(
κ2 log κ+ κµ(log κ+ log µ)

)
.

In total, this yields len(ψ1 ∧ . . . ∧ ψ16) ∈ O
(
κ2 log κ+ κµ(log κ+ logµ)

)
.

The following three sentences do not produce Horn formulas when transformed into CNF. They
serve the purpose of removing spurious elements from the model. In particular, χ3 is essential to
enforce large models for κ ≥ 2.

χ1 := ∀j. L(0, j)→
µ∨
i=1

j ≈ ci

On level 0 there are no indices but c1, . . . , cµ.

χ2 :=

κ∧
`=1

∀ji. L(`, j) ∧ L(`− 1, i) → J(`, j, i, 0) ∨ J(`, j, i, 1)

We stipulate totality for the predicate J .

5.3. PROVING LOWER BOUNDS FOR SF-SAT 157

χ3 :=

κ∧
`=1

∀jj′. L(`, j) ∧ L(`, j′)→ ∃j̃. eq`
j,̃j
∧ ∃j̃′. eq`

j′ ,̃j′

∧
((
∀̃i. L(`− 1, ĩ)→

(
J(`, j̃, ĩ, 0)↔ J(`, j̃′, ĩ, 0)

))
→ j ≈ j′

)
Two indices at the same level that agree on all of their bits are required to be identical.

Notice that χ3 is (almost) an SF sentence, since the ∀̃i turns into a ∃̃i as soon as we bring the sentence
into prenex normal form. Regarding the length of χ1, χ2, χ3, we observe len(χ1) ∈ O(log κ+µ logµ),
len(χ2) ∈ O(κ log κ), and len(χ3) ∈ O

(
κ2 log κ + κµ(log κ + logµ)

)
. Hence, we overall have

len(χ1 ∧ χ2 ∧ χ3) ∈ O
(
κ2 log κ+ κµ(log κ+ logµ)

)
.

This finishes the formalization of the index hierarchy. Before we go on with the formalization
of tiling problems — starting from page 163 —, we shall make sure that the formalization of
the hierarchy is correct. More concretely, we aim to show that in any model A of the sentence
ψ1 ∧ . . .∧ψ16 ∧χ1 ∧χ2 ∧χ3 every level ` contains exactly 2↑`(µ− 1) + 1 indices and that for every
level ` the successor relation Succ induces a unique chain in which all the indices of level ` are
lined up in a linear fashion. To this end, for the rest of this subsection, we fix any model A of the
sentence ψ1 ∧ . . . ∧ ψ16 ∧ χ1 ∧ χ2 ∧ χ3.

Lemma 5.3.14 (Short version of Lemma 5.3.23). For every ` = 0, . . . , κ let I`

I` :=
{
a ∈ A | A |= L(`, a)

}
and let the relation ≺` ⊆ I` × I` a ≺` a′be defined such that

a ≺` a′ holds if and only if A |= Succ(`, a, a′).
Then, for every ` = 1, . . . , κ we have |I`| = p where p := 2|I`−1|−1 + 1 = 2↑`(µ− 1) + 1. Moreover,
there is a unique chain a1 ≺` . . . ≺` ap comprising all elements in I`, and we have a1 = dA` and
ap = eA` .

Leaving out the non-Horn parts χ1, χ2, χ3 renders the lemma invalid for ` > 1. On the other
hand, for κ = 1 the sentence ψ1 ∧ . . . ∧ ψ16 — which can be transformed into an equivalent Horn
sentence — has only models A for which I1 contains at least 2µ−1 + 1 elements. This observation
could be used to derive ExpTime-hardness of Horn-SF≤1-Sat. But since the subproblems Horn-
MFO-Sat and Horn-BSR-Sat are already known to be ExpTime-hard (cf. Table 5.1), we would
not gain new insights.

We now embark on proving Lemma 5.3.14 (via proving its extended version, Lemma 5.3.23).

Definition 5.3.15. In addition to the sets and relations defined in Lemma 5.3.14, we fix the
following notation:

For every ` = 0, . . . , κ− 1 we define
F`F` := {f : I` → {0, 1} | f is total and for every a with A |= MaxIdx(`, a) we have that

f(a) = 1 entails f(b) = 0 for every b 6= a}.
(Intended meaning: Suppose, there is a unique chain a1 ≺` . . . ≺` an comprising all elements
from I`. Then, every function f in F` corresponds to a bit string f(a1) . . . f(an) (with the
least significant bit on the left). Unless we can prove the uniqueness of the above chain, f
merely remains an unordered collection of bits, each addressed by some elements from I`.
The special requirements towards the functions in F` regarding maximal indices is due to
the technical detail that we define maximal indices to be the ones that are represented by bit
strings of the form 10 . . . 0.)

For every ` = 0, . . . , κ− 1 and any two total functions f, g : I` → {0, 1} we write f @` g f @` gif and
only if (a) there is some integer p and a unique chain a1 ≺` . . . ≺` ap comprising all elements
in I`, and (b) incrementing the bit string f(a1)f(a2) . . . f(ap) (interpreted as number encoded
in binary where the leftmost bit is the least significant one) by one yields g(a1)g(a2) . . . g(ap).

158 CHAPTER 5. COMPUTATIONAL COMPLEXITY OF SF-SAT AND GBSR-SAT

For every ` = 1, . . . , κ and every f ∈ F`−1 we define
S`,f S`,f :=

{
a ∈ I` | A |= J(`, a, b, f(b)) for every b ∈ I`−1

}
.

(Intended meaning: Suppose, there is a unique chain b1 ≺`−1 . . . ≺`−1 bn comprising all
elements from I`−1. Then, the set S`,f ⊆ I` comprises all elements from I` that are repre-
sented by the bit string f(b1) . . . f(bn). We aim to prove that every S`,f contains exactly one
element or, in other words, that every f ∈ F`−1 represents exactly one element from I`.)

For every ` = 1, . . . , κ and any two elements a, a′ ∈ I` we write a ∼` a′a ∼` a′ if and only if for every
b ∈ I`−1 we observe

A |= J(`, a, b, 0) if and only if A |= J(`, a′, b, 0) and

A |= J(`, a, b, 1) if and only if A |= J(`, a′, b, 1).

Proposition 5.3.16. For every `, 1 ≤ ` ≤ κ, ∼` is an equivalence relation.

Proposition 5.3.17. For all distinct `, `′, 0 ≤ `, `′ ≤ κ, I` and I`′ are disjoint.

Proof. This is a direct consequence of A |= ψ1.

Lemmas 5.3.18 to 5.3.22 are auxiliary technical lemmas that will be used in the proof of
Lemma 5.3.23. Recall that the relation ≺` over I` represents the successor relation on index level
` induced by the predicate SuccA. Further recall that the relation @`−1 over F`−1 is intended to
represent the successor relation over bit strings of length |I`−1|. Roughly speaking, Lemma 5.3.18
shows that, if we link the functions in F`−1 with the elements in I` via the predicate JA, then
the relation @`−1 reflects the relation ≺`. Lemmas 5.3.19 and 5.3.20 together entail that the
sets S`,f ⊆ I` resemble the equivalence classes induced by ∼`. Lemma 5.3.21 states that the
functions in any F` can be uniquely arranged into a chain f1 @` . . . @` fp′ , provided that there is
a corresponding unique chain a1 ≺` . . . ≺` ap of all elements from I`. Lemma 5.3.22 establishes
the existence of such a unique chain a1 ≺0 . . . ≺0 aµ for the elements in I0. Finally, Lemma 5.3.23
brings it all together and, roughly speaking, states that (a) the relations ∼` coincide with the
semantics of eq`

j,̃j
under A, (b) each of the sets S`,f , which resemble the equivalence classes of ∼`,

contains exactly one element, and (c) the elements of any set I` can be uniquely arranged in a
chain a1 ≺` . . . ≺` ap with p = |F`−1| = 2↑`(µ− 1) + 1.

Lemma 5.3.18. Let a, a′ ∈ I` for some `, 1 ≤ ` ≤ κ. Let f, g : I`−1 → {0, 1} be two total functions
such that for every b ∈ I`−1 we have A |= J(`, a, b, f(b)) and A |= J(`, a′, b, g(b)). Moreover, we
assume that there is a unique chain c1 ≺`−1 . . . ≺`−1 cp comprising all elements in I`−1. Then
a ≺` a′ implies f @`−1 g.

Proof. Since c1 is the only element in I`−1 for which there is no element c′ ∈ I`−1 with c′ ≺`−1 c1,
A |= ψ2 ∧ ψ3 implies A |= MinIdx(`− 1, c1).

Let f∗ : I`−1 → {0, 1} be defined such that

f∗(b) = 0 if and only if A |= J∗(`, a, b, 0) and

f∗(b) = 1 if and only if A |= J∗(`, a, b, 1).

This function is well-defined because of A |= ψ13. Due to A |= χ2 ∧ ψ14 ∧ ψ15 it is also total.
A |= ψ14 enforces A |= J∗(`, a, c1, 1), i.e. f∗(c1) = 1. Moreover, for any k with 1 < k ≤ p we have
f∗(ck) = 1 if and only if f(c1) = . . . = f(ck−1) = 1, because of A |= ψ15. A |= ψ9 together with
our assumption a ≺` a′ translates to the following property, which we phrase in terms of operations
on bits: for every k, 1 ≤ k ≤ p, we observe g(ck) = f(ck)⊕ f∗(ck) where ⊕ denotes exclusive OR.
But this corresponds to an increment of the bit string f(c1) . . . f(cp) by one (where f(c1) is the
least significant bit). Hence, f @`−1 g.

Lemma 5.3.19. Let a, a′ ∈ I` for some `, 1 ≤ ` ≤ κ. If a and a′ belong to the same S`,f for some
function f ∈ F`−1, then a ∼` a′.

5.3. PROVING LOWER BOUNDS FOR SF-SAT 159

Proof. By totality of f , it follows that for every b ∈ I`−1 we have A |= J(`, a, b, f(b)) and
A |= J(`, a′, b, f(b)). Moreover, A |= ψ13 entails A 6|= J(`, a, b, 1−f(b)) and A 6|= J(`, a′, b, 1−f(b)).
This results in a ∼` a′.

Lemma 5.3.20. Let a, a′ ∈ I` for some `, 1 ≤ ` ≤ κ. Moreover, let f be some function in F`−1.
If a belongs to S`,f and we have a ∼` a′, then a′ ∈ S`,f .

Proof. By totality of f , it follows that for every b ∈ I`−1 we have A |= J(`, a, b, f(b)). Moreover,
A |= ψ13 entails A 6|= J(`, a, b, 1− f(b)). Since we assume a ∼` a′, we know that these properties
transfer to a′. Hence, for every b ∈ I`−1 we observe A |= J(`, a′, b, f(b)) and A 6|= J(`, a′, b, 1−f(b)).
Consequently, a′ ∈ S`,f .

Lemma 5.3.21. Consider any `, 0 ≤ ` ≤ κ − 1. If there is a unique chain a1 ≺` . . . ≺` ap
comprising all elements in I`, then we can uniquely arrange all functions in F` into a chain
f1 @` . . . @` fp′ where p′ = |F`| = 2p−1 + 1.

Proof. Let {0, 1}p be the set of all bit strings of length p. If we interpret each of them as a number
encoded in binary (where we assume the rightmost bit to be the least significant one), we can
uniquely arrange the 2p−1 + 1 smallest bit strings in {0, 1}p into a chain

b̄0 < b̄1 < . . . < b̄2p−1−1 < b̄2p−1

where the indices reflect the encoded numerical value and < is intended to be the usual ordering
based on this value. Since we assume the leftmost bit to be the most significant one, it is 0 in
b̄0, . . . , b̄2p−1−1. Accordingly, b̄2p−1 is the bit string with all zeros except for the most significant
bit, i.e. b̄2p−1 = 10 . . . 0.

Obviously, the following mapping ρ ρinduces a one-to-one correspondence between bit strings
and all the mappings in F`: ρ(f) := f(ap)f(ap−1) . . . f(a2)f(a1). By definition of @`, we have
f @` g if and only if ρ(f) + 1 = ρ(g). Consequently, we obtain the chain ρ−1(b̄0) @` ρ−1(b̄1) @`
. . . @` ρ−1(b̄2p−1−1) @` ρ−1(b̄2p−1).

Lemma 5.3.22. I0 contains exactly the elements cA1 , . . . , c
A
µ , and these are pairwise distinct.

Moreover, there is a unique chain cA1 ≺0 . . . ≺0 c
A
µ .

Proof. A |= χ1 entails that I0 ⊆ {cA1 , . . . , cAµ }. Due to A |= ψ8 we have cA1 ≺0 . . . ≺0 c
A
µ . By

A |= ψ6, a ≺0 b entails a, b ∈ I0. Hence, {cA1 , . . . , cAµ } ⊆ I0.

We next show that all cA1 , . . . , c
A
µ are pairwise distinct.

Claim: For every index j ≥ 2 the first j elements cA1 , . . . , c
A
j are distinct.

Proof: We proceed by induction on j.

For j = 2, cA1 6= cA2 must hold, for otherwise cA1 ≺0 c
A
2 contradicts A |= ψ7 which entails

A |= ∀j. ¬Succ(0, j, j).

Let j ≥ 3 and assume, by induction, that the elements cA1 , . . . , c
A
j−1 are all pairwise distinct.

Suppose there is some index i∗, 1 ≤ i∗ < j, such that cAi∗ = cAj . We distinguish two cases: In

case i∗ = 1, we have cAj−1 ≺0 c
A
1 . But this contradicts A |= ψ2. In case of i∗ > 1, A |= ψ7

entails cAi∗−1 = cAj−1, since we have cAi∗−1 ≺0 c
A
i∗

and cAj−1 ≺0 c
A
j , and since we assumed

cAi∗ = cAj . But this contradicts our inductive hypothesis, because i∗ − 1 and j − 1 are distinct

indices and thus the inductive hypothesis implies that cAi∗−1 and cAj−1 are distinct. ♦

The above claim entails |I0| = µ.
A |= ψ8 entails cA1 ≺0 . . . ≺0 c

A
µ . By the above arguments, we know that this chain comprises

all elements in I0. Moreover, due to A |= ψ7, this chain is the only chain satisfying the desired
properties.

Lemma 5.3.23. For every ` = 1, . . . , κ the following properties are satisfied:

160 CHAPTER 5. COMPUTATIONAL COMPLEXITY OF SF-SAT AND GBSR-SAT

(i) For all a, ã ∈ I` with A, [j 7→a, j̃ 7→ã] |= eq`
j,̃j

we have a ∼` ã.

(ii) All a, ã ∈ I` with a ∼` ã satisfy A, [j 7→a, j̃ 7→ã] |= eq`
j,̃j

.

(iii) For every f ∈ F`−1 the set S`,f is nonempty.

(iv) I` =
⋃
f∈F`−1

S`,f .

(v) For every f ∈ F`−1 the set S`,f contains exactly one element.

(vi) There is a unique chain a1 ≺` . . . ≺` ap comprising all elements in I`, and we have
A |= MinIdx(`, a1) and A |= MaxIdx(`, ap).

Proof. We proceed by induction on `.

Base case: ` = 1.

Ad (i). Due to the assumption A, [j 7→a, j̃ 7→ã] |= eq1
j,̃j

, the construction of eq1
j,̃j

entails

A |=
µ∧
i=1

((
J(1, a, ci, 0)↔ J(1, ã, ci, 0)

)
∧
(
J(1, a, ci, 1)↔ J(1, ã, ci, 1)

))
.

By Lemma 5.3.22, we know that b ∈ I0 entails b = cAi for some i. Consequently, for
every b ∈ I0, A |= J(1, a, b, 0) holds if and only if A |= J(1, ã, b, 0) does. This entails
a ∼` ã, because of A |= ψ13 ∧ χ2.

Ad (ii). By definition of ∼1, a ∼1 ã entails that for every b ∈ I0 we have

A |= J(1, a, b, 0) if and only if A |= J(1, ã, b, 0) and

A |= J(1, a, b, 1) if and only if A |= J(1, ã, b, 1).

Moreover, Lemma 5.3.22 states that I0 = {cA1 , . . . , cAµ }. Since a, ã belong to I1, we

conclude A, [j 7→a, j̃ 7→ã] |= eq1
j,̃j

.

Ad (iii). A |= ψ8 entails cA1 ≺0 . . . ≺0 c
A
µ . By Lemma 5.3.22, we know that this chain

comprises all elements in I0. Moreover, due to A |= ψ7, this chain is the only chain
satisfying this property. Hence, by Lemma 5.3.21, we can arrange all functions in F0 into
a sequence f1 @0 . . . @0 fp for p = 2µ−1 + 1. Clearly, f1 maps every element b ∈ I0 to
f1(b) = 0, and fp maps every element b ∈ I0 \ {cAµ } to fp(b) = 0 and cAµ to fp(c

A
µ) = 1.

By A |= ψ3 ∧ ψ10, we know that A |= J(1, d1, b, 0) for every b ∈ I0. Hence, dA1 ∈ S1,f1
.

We next show that for every k, 1 ≤ k < p, if S1,fk is nonempty, then S1,fk+1
is nonempty.

Let a be an element of S1,fk . Because of k < p, we know that A |= J(1, a, cµ, 0). By
virtue of (i) and due to A |= ψ16 we conclude that there are elements ã, ã′ ∈ I1 such
that a ∼1 ã and ã ≺1 ã′. By Lemma 5.3.18, this results in ã′ ∈ S`,fk+1

.

Ad (iv). By definition of the sets S`,f , we have S1,f ⊆ I1. It remains to show I1 ⊆
⋃
f∈F0

S1,f .
As a consequence of A |= ψ13 there is a unique partial function ga : I0 → {0, 1} for
every a ∈ I1 such that for every b ∈ I0 we have A |= J(1, a, b, ga(b)) if and only if ga is
defined for b. Because of A |= χ2, we know that ga must be total.

For every a ∈ I1 where ga(c
A
µ) = 0 we have ga ∈ F0 and thus also a ∈ S1,ga .

Because of A |= ψ5 ∧ ψ11 ∧ ψ12 we know that A |= MaxIdx(1, e1) and that eA1 is the
only element e ∈ I1 for which we have A |= J(1, e, cµ, 1). It remains to show that for
every b ∈ I0 with b 6= cAµ we have A |= J(1, e1, b, 0). But this is a consequence of (iii)

and the fact that the total function f∗ mapping all elements b in I0 but cAµ to f∗(b) = 0

belongs to F0, and thus S1,f∗ is nonempty. In particular, S1,f∗ = {eA1 }.
Consequently, I1 cannot contain any elements that do not lie in

⋃
f∈F0

S1,f .

5.3. PROVING LOWER BOUNDS FOR SF-SAT 161

Ad (v). Consider any set S1,f . By virtue of (iii), S1,f contains at least one element. Suppose
we are given two elements a, a′ in S1,f . By virtue of Lemma 5.3.19, this means a ∼1 a′.

Because of A |= χ3, there are two elements ã, ã′ ∈ I1 for which (i) entails a ∼1 ã and
a′ ∼1 ã′. By symmetry and transitivity of ∼1, we have ã ∼1 ã′. Hence, we observe

A |= ∀̃i. L(`− 1, ĩ)→
(
J(`, ã, ĩ, 0)↔ J(`, ã′, ĩ, 0)

)
.

Consequently, A |= χ3 leads to a = a′.

Ad (vi). As we have seen in the proof of Lemma 5.3.21, we can define a bijective mapping ρ
that maps the functions in F0 to bit strings of length µ that either have a 0 as most
significant bit or correspond to 10 . . . 0.

Let p := 2µ−1 + 1. By virtue of Lemma 5.3.21, we can uniquely construct a chain

f1 @0 f2 @0 . . . @0 fp

comprising all functions in F0.

Properties (iv) and (v) together yield that I1 = {a1, . . . , ap} where ak ∈ S1,fk for every
k = 1, . . . , p. Lemma 5.3.18 says that for any ak, ak′ with ak ≺1 ak′ we also observe
fk @0 fk′ . By definition of @0 and the fact that all the fk, fk′ are distinct, we infer that
fk @0 fk′ implies k′ = k + 1 and 1 ≤ k < k′ ≤ p. Hence, ak ≺1 ak′ can only hold if
k′ = k + 1 and 1 ≤ k < k′ ≤ p.
Consider any element a ∈ I1 for which A |= J(1, a, cµ, 0). By A |= ψ16, we know that

there are elements ã, ã′ ∈ I1 such that ã ≺1 ã′ and A, [j 7→a, j̃ 7→ã] |= eq1
j,̃j

. By (i), the

latter translates to a ∼1 ã.

Let g, g̃ be functions such that a ∈ S1,g and ã ∈ S1,g̃. Such functions exist by virtue
of (iv). However, a ∼1 ã entails g = g̃, by Lemma 5.3.20. But then (v) leads to a = ã.
Consequently, we have a ≺1 ã′. By (v), this means that all but one element in I1 must
have a ≺1-successor in I1 and all but one elements in I1 are ≺1-successors in I1. Hence,
we obtain the chain a1 ≺1 a2 ≺1 . . . ≺1 ap−1 ≺1 ap where a1 = dA1 and ap = eA1 .

Inductive case ` > 1.

Ad (i). Due to the assumption A, [j 7→a, j̃ 7→ã] |= eq`
j,̃j

with ` > 1, the construction of eq`
j,̃j

entails

A |= ∀i. L(`−1, i) → ∃̃i. L(`−1, ĩ) ∧ eq −̀1

i,̃i

∧
((
J(`, a, i, 0)↔ J(`, ã, ĩ, 0)

)
∧
(
J(`, a, i, 1)↔ J(`, ã, ĩ, 1)

))
.

By inductive application of (i), A, [i7→b, ĩ7→b̃] |= eq`−1

i,̃i
entails b ∼`−1 b̃. Inductive

application of (iv) implies that b ∈ S`−1,f for some f ∈ F`−1. By Lemma 5.3.20 together

with b ∼`−1 b̃, we conclude b̃ ∈ S`−1,f . Now, inductive application of (v) leads to b = b̃.
This means we in fact have

A |= ∀i. L(`−1, i)→
((
J(`, a, i, 0)↔ J(`, ã, i, 0)

)
∧
(
J(`, a, i, 1)↔ J(`, ã, i, 1)

))
.

In other words, a ∼` ã.

Ad (ii). By definition of ∼`, a ∼` ã entails that for every b ∈ I`−1 we have

A |= J(1, a, b, 0) if and only if A |= J(1, ã, b, 0) and

162 CHAPTER 5. COMPUTATIONAL COMPLEXITY OF SF-SAT AND GBSR-SAT

A |= J(1, a, b, 1) if and only if A |= J(1, ã, b, 1).

By (i) and the fact that ∼`−1 is an equivalence relation and thus b ∼`−1 b, we conclude

A, [i 7→b, ĩ7→b] |= eq`−1

i,̃i
for every b ∈ I`−1. Consequently, A, [j 7→a, j̃ 7→ã] |= eq`

j,̃j
.

Ad (iii). By inductive application of (vi), we know that there is a unique chain b1 ≺`−1 . . .
≺`−1 bp comprising all elements in I`−1. Moreover, we observe A |= MinIdx(`− 1, b1)
and A |= MaxIdx(`− 1, bp). Hence, by Lemma 5.3.21, we can arrange all mappings in
F`−1 into a sequence f1 @`−1 . . . @`−1 fp′ where p′ = 2p−1 + 1.

Clearly, f1 maps every element b ∈ I`−1 to f1(b) = 0, and fp′ maps every element bk
with k < p to fp′(bk) = 0 and bp to fp′(bp) = 1. By A |= ψ3 ∧ ψ10, we know that
A |= J(`, d`, b, 0) for every b ∈ I`−1. Hence, dA` ∈ S`,f1

.

We next show that for every k, 1 ≤ k < p′, if S`,fk is nonempty, then S`,fk+1
is nonempty.

Let a be an element of S`,fk . Because of k < p′, we know that A |= J(`, a, bp, 0). By
virtue of (i) and due to A |= ψ16 we conclude that there are elements ã, ã′ ∈ I` such
that a ∼` ã and ã ≺` ã′. Moreover, Lemma 5.3.20 leads to ã ∈ S`,fk . By Lemma 5.3.18,
this results in ã′ ∈ S`,fk+1

.

Ad (iv). We have
⋃
f∈F`−1

S`,f ⊆ I` by definition of the sets S`,f . It thus remains to

show I` ⊆
⋃
f∈F`−1

S`,f . As a consequence of A |= ψ13 there is a unique partial

mapping ga : I`−1 → {0, 1} for every a ∈ I` such that for every b ∈ I`−1 we have
A |= J(`, a, b, ga(b)) if and only if ga is defined for b. Because of A |= χ2, we know that
ga must be total.

For every a ∈ I` where ga(e
A
`−1) = 0 we have ga ∈ F`−1 and thus also a ∈ S`,ga .

Because of A |= ψ5 ∧ψ11 ∧ψ12 we know that A |= MaxIdx(`, e`) and that eA` is the only
element e ∈ I` for which we have A |= J(`, e, e`−1, 1). It remains to show that for every
b ∈ I`−1 with b 6= eA`−1 we have A |= J(`, e`, b, 0). But this is a consequence of (iii) and

the fact that the total function f∗ mapping all elements b in I`−1 but eA`−1 to f∗(b) = 0

belongs to F`−1, and thus S`,f∗ is nonempty. In particular, S`,f∗ = {eA` }.
Consequently, I` cannot contain any elements that do not lie in

⋃
f∈F`−1

S`,f .

Ad (v). Consider any set S`,f . By virtue of (iii), S`,f contains at least one element. Suppose
we are given two elements a, a′ in S`,f . By virtue of Lemma 5.3.19, this means a ∼` a′.
Because of A |= χ3, there are two elements ã, ã′ ∈ I` for which (i) entails a ∼` ã and
a′ ∼` ã′. By symmetry and transitivity of ∼`, we have ã ∼` ã′. Hence, we observe

A |= ∀̃i. L(`− 1, ĩ)→
(
J(`, ã, ĩ, 0)↔ J(`, ã′, ĩ, 0)

)
.

Consequently, A |= χ3 leads to a = a′.

Ad (vi). As we have seen in the proof of Lemma 5.3.21, we can define a bijective mapping ρ
that maps the functions in F`−1 to bit strings of length µ that either have a 0 as most
significant bit or correspond to 10 . . . 0.

Let p′ := 2|I`−1|−1 + 1. By virtue of Lemma 5.3.21, we can uniquely construct a chain

f1 @`−1 f2 @`−1 . . . @`−1 fp′

comprising all functions in F`−1.

Properties (iv) and (v) together yield that I` = {a1, . . . , ap′} where ak ∈ S`,fk for
every k = 1, . . . , p′. Lemma 5.3.18 says that for any ak, ak′ with ak ≺` ak′ we observe
fk @`−1 fk′ . By definition of @`−1 and the fact that all the fk, fk′ are distinct,
fk @`−1 fk′ implies k′ = k + 1 and 1 ≤ k < k′ ≤ p′. Hence, ak ≺` ak′ can only hold if
k′ = k + 1 and 1 ≤ k < k′ ≤ p′.
Consider any element a ∈ I` for which A |= J(`, a, e`−1, 0). By A |= ψ16, we know that

there are elements ã, ã′ ∈ I` such that ã ≺` ã′ and A, [j 7→a, j̃ 7→ã] |= eq`
j,̃j

. By (i), the

latter translates to a ∼` ã.

5.3. PROVING LOWER BOUNDS FOR SF-SAT 163

Let g, g̃ be functions such that a ∈ S`,g and ã ∈ S`,g̃. Such functions exist by virtue of
(iv). However, a ∼` ã entails g = g̃, by Lemma 5.3.20. Moreover, (v) leads to a = ã.
Consequently, we have a ≺` ã′. By (v), this means that all but one element in I` must
have a successor in I` and all but one element in I` are successor in I`. Hence, we
obtain the chain a1 ≺` a2 ≺` . . . ≺` ap′−1 ≺` ap′ where a1 = dA` and ap′ = eA` .

5.3.2 Formalizing a Tiling of a Torus

In order to formalize a given domino system D = 〈D,H,V〉 and an initial condition D, we introduce
the following constant symbols and predicate symbols:

H(x, y, x′, y′) 〈x′, y′〉 is the horizontal neighbor of 〈x, y〉,
i.e. x′ = x+ 1 (mod 2↑κ(µ− 1) + 1) and y′ = y,

V (x, y, x′, y′) 〈x′, y′〉 is the vertical neighbor of 〈x, y〉,
D(x, y) 〈x, y〉 is tiled with D ∈ D,
f1, . . . , f|D| constant symbols addressing the points 〈0, 0〉, . . . , 〈|D| − 1, 0〉.

With the ideas we have used to formalize the index hierarchy in the previous section, it is now fairly
simple to formalize the torus. The following sentences encode a given domino system D := 〈D,H,V〉
plus an initial condition D, which is a finite word over D. We try to make as many sentences as
possible equivalent to Horn sentences. Brief descriptions of the intended meaning are added for
selected parts.

η1 := ∀xyx′y′. H(x, y, x′, y′) → L(κ, x) ∧ L(κ, y) ∧ L(κ, x′) ∧ L(κ, y′) ∧ y ≈ y′
η2 := ∀xyx′y′i. H(x, y, x′, y′) ∧MaxIdx(κ− 1, i) ∧ J(κ, x, i, 0) → Succ(κ, x, x′)

η3 := ∀xyi. L(κ, x) ∧ L(κ, y) ∧MaxIdx(κ− 1, i) ∧ J(κ, x, i, 0)

→ ∃x̃. eqκx,x̃ ∧ ∃ỹ. eqκy,ỹ ∧
(∧
D∈D

D(x, y)↔ D(x̃, ỹ)
)
∧ ∃x̃′. H(x̃, ỹ, x̃′, ỹ)

η3 ensures that every point not on the horizontal “edge” of the torus has a horizontal neighbor.

η4 := ∀xyx′. MaxIdx(κ, x) ∧MinIdx(κ, x′) → H(x, y, x′, y)

η5 := ∀xyx′y′. H(x, y, x′, y′) ∧MaxIdx(κ, x) → MinIdx(κ, x′)

η6 := ∀xyx′y′. H(x, y, x′, y′) ∧MinIdx(κ, x′) → MaxIdx(κ, x)

η4 to η6 establish the points
〈
2↑κ(µ− 1) + 1, y

〉
and 〈0, y〉 as horizontal neighbors for every y.

η7 := ∀xyx′y′. V (x, y, x′, y′) → L(κ, x) ∧ L(κ, y) ∧ L(κ, x′) ∧ L(κ, y′) ∧ x ≈ x′
η8 := ∀xyx′y′. V (x, y, x′, y′) ∧MaxIdx(κ− 1, i) ∧ J(κ, y, i, 0) → Succ(κ, y, y′)

η9 := ∀xyi. L(κ, x) ∧ L(κ, y) ∧MaxIdx(κ− 1, i) ∧ J(κ, y, i, 0)

→ ∃x̃. eqκx,x̃ ∧ ∃ỹ. eqκy,ỹ ∧
(∧
D∈D

(
D(x, y)↔ D(x̃, ỹ)

))
∧ ∃ỹ′. V (x̃, ỹ, x̃, ỹ′)

η9 ensures that every point not on the vertical “edge” of the torus has a vertical neighbor.

η10 := ∀xyy′. MaxIdx(κ, y) ∧MinIdx(κ, y′) → V (x, y, x, y′)

η11 := ∀xx′yy′. V (x, y, x′, y′) ∧MaxIdx(κ, y) → MinIdx(κ, y′)

η12 := ∀xx′yy′. V (x, y, x′, y′) ∧MinIdx(κ, y′) → MaxIdx(κ, y)

η10 to η12 establish the points
〈
x, 2↑κ(µ− 1) + 1

〉
and 〈x, 0〉 as vertical neighbors for every x.

η13 :=
∧
D∈D

∀xy. D(x, y) → L(κ, x) ∧ L(κ, y)

η14 :=
∧
D∈D

∧
D′∈D\{D}

∀xy. D(x, y) → ¬D′(x, y)

η15 := ∀xx′y. H(x, y, x′, y) →
∨

〈D,D′〉∈H
D(x, y) ∧D′(x′, y)

164 CHAPTER 5. COMPUTATIONAL COMPLEXITY OF SF-SAT AND GBSR-SAT

η16 := ∀xyy′. V (x, y, x, y′) →
∨

〈D,D′〉∈V
D(x, y) ∧D′(x, y′)

η15 and η16 ensure that the rules of the domino system D are obeyed. These are the only essen-

tially non-Horn sentences among η1 to η28.

η17 := ∀z. MinIdx(κ, z) → f1 ≈ z ∧
n−1∧
i=1

H(fi, z, fi+1, z)

η18 := ∀z. MinIdx(κ, z) →
n∧
i=1

Di(fi, z)

η17 and η18 express the initial condition D, i.e. the lower left domino tiles are predefined to be

the sequence D = D1 . . . Dn.

Regarding the length of the sentences η1, . . . , η18, we observe the following:

len(η1), len(η2), len(η4), . . . , len(η8), len(η10), . . . , len(η12) ∈ O(log κ),

len(η3), len(η9) ∈ O
(
κ log κ+ µ(log κ+ logµ) + |D| log |D|

)
,

len(η13) ∈ O
(
|D|(log |D|+ log κ)

)
,

len(η14) ∈ O
(
|D|2 log |D|

)
,

len(η15) ∈ O
(
|H| log |D|

)
= O

(
|D|2 log |D|

)
,

len(η16) ∈ O
(
|V| log |D|

)
= O

(
|D|2 log |D|

)
,

len(η17) ∈ O
(
log κ+ n log n

)
,

len(η18) ∈ O
(
log κ+ n(log n+ log |D|)

)
.

In total, the length of η1 ∧ . . . ∧ η18 lies in O
(
n̂ log n̂

)
, where n̂ := max{κ, µ, n, |D|2}.

Next, we show correctness of the formalization. More concretely, we aim to prove that any
model of ψ1 ∧ . . .∧ψ16 ∧χ1 ∧χ2 ∧χ3 ∧ η1 ∧ . . .∧ η18 induces a tiling τ of Z2

r for r := 2↑κ(µ− 1) + 1
and with initial condition D := D1, . . . , Dn. This will be the statement of Lemma 5.3.27.

For the remainder of this subsection we assume that AA indeed satisfies the sentence ψ1 ∧ . . . ∧
ψ16 ∧ χ1 ∧ χ2 ∧ χ3 ∧ η1 ∧ . . . ∧ η18. Moreover, we take over the notation from Lemma 5.3.14 and
Definition 5.3.15, e.g. I`, ≺`, and ∼`.I`, ≺`, ∼` In addition, we define the following relations:

≺H≺H ⊆ I2
κ × I2

κ such that 〈a, b〉 ≺H 〈a′, b′〉 if and only if A |= H(a, b, a′, b′);

≺V≺V ⊆ I2
κ × I2

κ such that 〈a, b〉 ≺V 〈a′, b′〉 if and only if A |= V (a, b, a′, b′).

Roughly speaking, we will show in Lemmas 5.3.24 and 5.3.25 that Iκ × Iκ together with the
horizontal and vertical neighborhood relations is isomorphic to the torus Z2

r for r = 2↑κ(µ− 1) + 1.
Lemma 5.3.26 states that under A for each pair in 〈a, b〉 ∈ Iκ × Iκ there is exactly one tile D ∈ D
assigned to 〈a, b〉. Finally, Lemma 5.3.27 states that A induces a tiling which starts from the initial
condition D.

Lemma 5.3.24. For all pairs 〈a, b〉, 〈a′, b′〉 ∈ I2
κ we observe the following properties.

(i) 〈a, b〉 ≺H 〈a′, b′〉 entails that b = b′ and that either a ≺κ a′, or a = eAκ and a′ = dAκ .

(ii) a = eAκ and a′ = dAκ entails 〈a, b〉 ≺H 〈a′, b〉 for every b ∈ Iκ.

(iii) a ≺κ a′ implies 〈a, b〉 ≺H 〈a′, b〉 for every b ∈ Iκ.

(iv) 〈a, b〉 ≺V 〈a′, b′〉 entails that a = a′ and that either b ≺κ b′ or b = eAκ and b′ = dAκ .

5.3. PROVING LOWER BOUNDS FOR SF-SAT 165

(v) b = eAκ and b′ = dAκ entails 〈a, b〉 ≺V 〈a, b′〉 for every a ∈ Iκ.

(vi) b ≺κ b′ implies 〈a, b〉 ≺V 〈a, b′〉 for every a ∈ Iκ.

Proof. Property (i) follows by A |= η1 ∧ η2 ∧ η5 ∧ η6. Property (ii) follows by A |= η4.
In order to show Property (iii), we have to argue a bit more. First of all, we conclude a 6= eAκ ,

by A |= ψ2 ∧ ψ4. Because of A |= η3 and Lemma 5.3.23(i), for all a, b with a 6= eAκ there must exist

ã, b̃, ã′ ∈ Iκ such that a ∼κ ã, b ∼κ b̃, and 〈ã, b̃〉 ≺H 〈ã′, b̃〉. Due to Lemma 5.3.20 in combination

with Lemma 5.3.23(v), we get a = ã and b = b̃. Thus, we have 〈a, b〉 ≺H 〈ã′, b〉. Moreover, a 6= eAκ
together with (i) leads to a ≺κ ã′. Since we assumed a ≺κ a′, Lemma 5.3.23(vi) says that a′ is the
only element satisfying a ≺κ a′, i.e. ã′ = a′. Consequently, we have 〈a, b〉 ≺H 〈a′, b〉.

Properties (iv) to (vi) can be proved analogously to the first three properties using A |=
η7 ∧ . . . ∧ η12.

Lemma 5.3.25. Let r := 2↑κ(µ− 1) + 1. There is a bijective mapping ρ : Z2
r → I2

κ ρsuch that

ρ(0, 0) = 〈dAκ , dAκ 〉 and for every pair 〈s, t〉 ∈ Z2
r we have ρ(s, t) ≺H ρ(s + 1, t) and ρ(s, t) ≺V

ρ(s, t+ 1) where + stands for addition modulo r.

Proof. By Lemma 5.3.23 we know that there is a unique chain a1 ≺κ . . . ≺κ ar comprising all
elements in Iκ. Notice that ak, ak′ with k 6= k′ are distinct. We define ρ so that ρ(s, t) := 〈as+1, at+1〉
for all s, t ∈ Zr = {0, . . . r − 1}.

Obviously, ρ is bijective. Since a1 is the only element in Iκ for which there is no b in the above
chain with b ≺κ a1, A |= ψ2 ∧ ψ3 enforces a1 = dAκ . Hence, ρ(0, 0) = 〈dAκ , dAκ 〉.

Since ar is the only element in Iκ for which there is no b′ in the above chain with ar ≺κ b′,
A |= ψ4 ∧ ψ5 enforces ar = eAκ . Hence, Lemma 5.3.24(ii) entails ρ(r − 1, t) ≺H ρ(0, t) for every
t ∈ Zr. Moreover, the existence of the above chain together with Lemma 5.3.24(iii) leads to
ρ(s, t) ≺H ρ(s + 1, t) for every s ∈ Zr \ {r − 1} and every t ∈ Zr. Consequently, we observe
ρ(s, t) ≺H ρ(s+ 1, t) — modulo r — for every pair 〈s, t〉 ∈ Z2

r.
By similar arguments, we infer ρ(s, t) ≺V ρ(s, t+ 1) for every pair 〈s, t〉 ∈ Z2

r.

Lemma 5.3.26. Suppose that D, H, and V are nonempty. For all pairs 〈a, b〉 ∈ I2
κ we have

A |= D(a, b) for exactly one D ∈ D.

Proof. Due to A |= η15 ∧ η16, we observe the following properties for all pairs 〈a, b〉, 〈a′, b′〉 ∈ I2
κ:

〈a, b〉≺H〈a′, b′〉 implies that there are D,D′ ∈ D such that 〈D,D′〉 ∈ H and A |= D(a, b) and
A |= D′(a′, b′);

〈a, b〉 ≺V 〈a′, b′〉 implies that there are D,D′ ∈ D such that 〈D,D′〉 ∈ V and A |= D(a, b) and
A |= D′(a′, b′).

By virtue of Lemma 5.3.25, we know that there is a bijection ρ such that for every pair 〈a, b〉 in
the image of ρ there is another pair 〈a′, b′〉 such that 〈a, b〉 ≺H 〈a′, b′〉 or 〈a, b〉 ≺V 〈a′, b′〉. Since
the image of ρ covers the entire set I2

κ, this means that there is at least one D ∈ D for every pair
〈a, b〉 ∈ I2

κ such that A |= D(a, b). Finally, because of A |= η14 we know that there is at most one
D ∈ D for every pair 〈a, b〉 ∈ I2

κ such that A |= D(a, b).

Lemma 5.3.27. Let r := 2↑κ(µ− 1) + 1 and assume that D, H, and V are nonempty. A induces
a tiling τ of Z2

r with initial condition D := D1, . . . , Dn.

Proof. Let ρ be a bijection according to Lemma 5.3.25. We define the mapping τ τsuch that
τ(s, t) := D if and only if ρ(s, t) = 〈a, b〉 and A |= D(a, b). By Lemma 5.3.26, we know that τ is
well defined. By A |= η17 ∧ η18, we know that A |= Di(a, b) for 〈a, b〉 = ρ(i, 0) and i = 0, . . . , n− 1.
Hence, τ satisfies the initial condition. By definition of ρ and because of A |= η15 ∧ η16, we observe
the following:

(a) For every pair 〈s, t〉 ∈ Z2
r there are pairs 〈D,D′〉 ∈ H, 〈a, b〉 = ρ(s, t), and 〈a′, b′〉 = ρ(s+ 1, t)

such that A |= D(a, b) and A |= D′(a′, b′).

166 CHAPTER 5. COMPUTATIONAL COMPLEXITY OF SF-SAT AND GBSR-SAT

(b) For every pair 〈s, t〉 ∈ Z2
r there are pairs 〈D,D′〉 ∈ V , 〈a, b〉 = ρ(s, t), and 〈a′, b′〉 = ρ(s, t+ 1)

such that A |= D(a, b) and A |= D′(a′, b′).

Consequently, the mapping τ constitutes a proper tiling of Z2
r.

5.3.3 Replacing the Equality Predicate

Since SF can express reflexivity, symmetry, transitivity, and compatibility with predicates, it is
easy to formulate an SF sentence without equality that is equisatisfiable to ψ1 ∧ . . . ∧ ψ16 ∧ χ1 ∧
χ2 ∧ χ3 ∧ η1 ∧ . . . ∧ η18 and uses atoms E(s, t) instead of s ≈ t for any terms s, t. In addition to
replacing equational atoms as indicated, we conjoin the necessary axioms concerning the fresh
predicate symbol E. More precisely, we add the equivalence axioms

ψ′1 := ∀j. E(j, j) ,

ψ′2 := ∀jj′. E(j, j′) → E(j′, j) ,

ψ′3 := ∀jj′j′′. E(j, j′) ∧ E(j′, j′′) → E(j, j′′) ,

and congruence axioms, such as

ψ′4 := ∀jj′ii′.
κ∧
`=0

((
E(j, j′) ∧ E(i, i′) ∧ J(`, j, i, 0) → J(`, j′, i′, 0)

)
∧
(
E(j, j) ∧ E(i, i′) ∧ J(`, j, i, 1) → J(`, j′, i′, 1)

))
and

ψ′5 := ∀xyx′y′.
∧
D∈D

(
E(x, x′) ∧ E(y, y′) ∧D(x, y) → D(x′, y′)

)
.

Overall, the additional formulas have a length that lies in O
(
κ log κ+ |D| log |D|

)
.

All in all, the encoding of domino problems on large tori that we have devised for SF with equality
can also be done in SF without equality. Moreover, notice that all the additional subformulas can
be transformed into equivalent Horn sentences.

Chapter 6

Interpolation

In the present chapter we show that several of the decidable first-order fragments introduced in
Chapter 3 are closed under interpolation. Craig’s interpolation theorem [Cra57a, Cra57b] is an
important result that has found numerous applications. It is treated in several standard textbooks
both from a proof-theoretic perspective, e.g. [TS96], and a model-theoretic point of view, e.g. [CK90].
Moreover, Craig’s interpolation theorem is often treated together with Beth’s definability theorem
and Robinson’s joint consistency theorem, as the latter two can be elegantly proven using the former,
see, e.g. [CK90, Fit96, BBJ02]. Historical notes about the early development of interpolation for
first-order logic can be found in [TS96], Section 4.6.3. The PhD thesis of Hoogland provides a
comprehensive model-theoretically minded introduction to interpolation, see Section 2.3 in [Hoo01].
A recent survey regarding systems for interpolant extraction in the context of verification can be
found in [BJ15a].

Proposition 6.0.1 (Craig’s interpolation theorem [Cra57a, Cra57b]). Let ϕ and ψ be two first-
order sentences. If ϕ |= ψ, then there exists a first-order sentence χ such that

(i) ϕ |= χ and χ |= ψ, and

(ii) any predicate symbol, function symbol, or constant symbol that occurs in χ also occurs in ϕ
and in ψ.

The sentence χ is called a Craig interpolant of ϕ and ψ.

Constructive proofs of Craig’s interpolation theorem have been given based on several kinds
of proof systems, most prominently sequent calculi, see, e.g. [BL11], Section 8.2, or [Smu95],
Chapter XV. A constructive proof based on semantic tableaux is given in [Fit96], Section 8.12. An
early approach towards a practically useful method to extract interpolants from resolution and
paramodulation refutations is due to Huang [Hua95]. More recent methods intended for practical
use can be found in [BJ15b, KV17].

Craig’s interpolation theorem has been extended and refined in various ways. For instance, there
are variants that say more about the syntactic structure of interpolants than just proclaiming the
presence or absence of predicate or function symbols. Two such results are due to Lyndon [Lyn59]
and Schulte-Mönting [SM75]. We shall treat the former in more detail below. The result by
Schulte-Mönting stipulates that terms t only occur in an interpolant if t corresponds to sufficiently
similar terms s1 and s2 that occur in the interpolated formulas. The following example is given
in [SM75] where C denotes an interpolant of two sentences A and B, i.e. we have A |= B and
A |= C and C |= B:

“Let f be a unary function symbol and let g(λ), h(λ′) be terms starting with different
function symbols g, h. If f occurs in A only in the term f(g(λ)) and in B only in the
term f(h(λ′)) then f can occur in C only in terms f(y) where y is a bound variable.”

[SM75], page 159.

167

168 CHAPTER 6. INTERPOLATION

In contrast to Craig’s theorem, Lyndon’s interpolation theorem holds only for relational
sentences. Consider any formula ϕ. We treat subformulas ϕ1 → ϕ2 of ϕ as abbreviations for
¬ϕ1 ∨ ϕ2 and subformulas ϕ1 ↔ ϕ2 are treated as abbreviations for (¬ϕ1 ∨ ϕ2) ∧ (¬ϕ2 ∨ ϕ1). We
say that a predicate symbol P occurs positively in ϕ if there is an occurrence of some atom P (. . .)
in ϕ that lies within the scope of an even number of negation signs. Analogously, we say that a
predicate symbol P occurs negatively in ϕ if there is an occurrence of some atom P (. . .) in ϕ that
lies within the scope of an odd number of negation signs.

Proposition 6.0.2 (Lyndon’s interpolation theorem [Lyn59]). Let ϕ and ψ be two relational
first-order sentences. If ϕ |= ψ, then there exists a relational first-order sentence χ, called a
Craig–Lyndon interpolant of ϕ and ψ, such that

(i) ϕ |= χ and χ |= ψ, and

(ii) any predicate symbol P occurs positively (negatively) in χ only if it occurs positively (negatively)
in ϕ and in ψ.

Otto [Ott00] strengthened Lyndon’s theorem for the case that the interpolated formulas are
restricted to quantification that is relativized with unary predicates. More precisely, given some
set U of unary predicate symbols, a quantified (sub)formula is U -relativized if it is of the form
∀x. P (x)→ ϕ′ or ∃y. P (y) ∧ ϕ′ for some P ∈ U . Then, any two formulas in which all quantified
subformulas are U -relativized have a Craig–Lyndon interpolant in which every quantified subformula
is U -relativized as well. Otto emphasizes the multi-sorted reading of this interpolation result, when
we regard the unary predicates in U as sort predicates.

Viewed from a different angle, the theorem also entails that the class of U -relativized first-order
formulas is closed under Craig–Lyndon interpolation. In this context, the theorem could be
considered as a first step towards showing closedness of GF under Craig–Lyndon interpolation.
However, this direction has been proven to (almost) be a dead end. It is known that there are pairs
of GF sentences that satisfy the requirements of Craig’s theorem but do not have an interpolant
from GF [HMO99, HM02]. The same has been shown for LGF [HM99, HM02].

However, if the requirements towards interpolants are slightly weakened, closedness of the class
of GF sentences with respect to the weaker interpolation property can be recovered. To neatly
formulate the result, one needs to distinguish between occurrences of predicate symbols in guards
and in positions that are not part of guards (non-guard predicate symbols).

“[T]he guards in the interpolant need not be in the common language but they do occur
as a guard in either ϕ or ψ. [...] [T]he non-guards in the interpolant are only required
to occur in ϕ and ψ: not necessarily as non-guards.” [HM02], page 389.

By Lemma 3.10.5 and its variant for SGF, this has immediate consequences for SGF and SLGF.

Proposition 6.0.3. SGF and SLGF are not closed under Craig interpolation.

On the other, both fragments are closed under the weaker form of interpolation mentioned
above.

Regarding closedness under interpolation, there is good news for GNFO: the class of GNFO
sentences is closed under Craig interpolation [BBtC13]. In [BtCV16] effective methods for de-
riving interpolants for GNFO are given: Craig–Lyndon-style interpolation and also relativized
interpolation [Ott00]. By Lemma 3.11.4, this entails closedness under interpolation for SGNFO.

Proposition 6.0.4. The class of SGNFO sentences is closed under Craig–Lyndon interpolation.

In the following two sections, we intend to show that the Bernays–Schönfinkel fragment and the
Ackermann fragment are both closed under Craig–Lyndon interpolation. As in the case of SGNFO,
it follows that SF and GBSR without equality, and GAF have the same interpolation property.
Our methods will be of a proof-theoretical nature.

6.1. INTERPOLATION FOR SF AND GBSR 169

6.1 Interpolation for SF and GBSR

In the present, we argue that, given two SF or GBSR sentences ϕ and ψ without equality such
that ϕ |= ψ, there is a Craig–Lyndon interpolant χ with ϕ |= χ and χ |= ψ that belongs to the
Bernays–Schönfinkel fragment (BS). As both SF and GBSR contain BS, the interpolant χ belongs
to SF and GBSR as well.

Theorem 6.1.1 (Craig–Lyndon interpolation for GBSR and SF). Let ϕ and ψ be GBSR or SF
sentences without equality. If ϕ |= ψ, then there exists a BS sentence χ (without equality) such that

(i) ϕ |= χ and χ |= ψ, and

(ii) any predicate symbol P occurs positively (negatively) in χ only if it occurs positively (negatively)
in ϕ and in ψ.

In order to proof this result, we use the fact that SF and GBSR sentences without equality
can be translated into equivalent BS sentences (cf. Lemmas 3.2.5 and 3.5.2) and thus reduce the
problem to interpolation in BS. Lemma 6.1.9 states that BS is indeed closed under Craig–Lyndon
interpolation. The proof describes how interpolants can be constructed using Bachmair and
Ganzinger’s ordered resolution with selection [BG01] as a proof system. But before we start proving
the lemma, we briefly present the used calculus and the required technical notions.

Definition 6.1.2 (Lexicographic path ordering, taken over from [BN98]). Let Σ be a finite
vocabulary and let � be a total strict order on the symbols in Σ, called Σ-precedence. The
lexicographic path ordering (LPO) �lpo on the set of terms over the vocabulary Σ and Var induced
by � is defined as follows. For any terms s, t we have s �lpo t if and only if

(1) t ∈ vars(s) and s 6= t, or

(2) s = f(s1, . . . , sm), t = g(t1, . . . , tn) with m,n ≥ 0, and

(2.1) there exists i, 1 ≤ i ≤ m, with si �lpo t, or

(2.2) f � g and s �lpo tj for all j, 1 ≤ j ≤ n, or

(2.3) f = g, s � tj for all j, 1 ≤ j ≤ n, and there exists some i, 1 ≤ i ≤ m, such that
s1 = t1, . . . , si−1 = ti−1 and si �lpo ti.

Proposition 6.1.3. For any Σ-precedence �, the induced LPO �lpo satisfies the following proper-
ties.

(i) �lpo is well-founded, i.e. all chains t1 �lpo t2 �lpo . . . are finite.

(ii) For all terms t, t′, every m-ary function symbol f , all terms s1, . . . , sm, and every i, 1 ≤ i ≤ m,
we have that t �lpo t

′ entails

f(s1, . . . , si−1, t, si+1, . . . , sm) �lpo f(s1, . . . , si−1, t
′, si+1, . . . , sm) .

(iii) For all terms t1, t2 and every substitution σ we have that t1 �lpo t2 entails t1σ �lpo t2σ.

(iv) For every term t and every term t′ that is proper a subterm of t we have t �lpo t
′.

Proof. See Theorems 5.4.8 and 5.4.14 in [BN98].

On the set of ground terms, i.e. terms without variables, any �lpo constitutes a total ordering.
We lift this total ordering on ground terms to a partial ordering on non-ground terms by stipulating
s �lpo t if and only if for every substitution σ for which sσ and tσ are ground we have sσ �lpo tσ.
Moreover, we extend �lpo to atoms over the vocabulary Σ and Var by treating predicate symbols
like function symbols and atoms like terms. Finally, literals are ordered such that P (. . .) �lpo

¬R(. . .) �lpo R(. . .) whenever the precedence � says P � R.

170 CHAPTER 6. INTERPOLATION

Definition 6.1.4 (unifier, mgu). A substitution σ is at least as general as a substitution σ′ if
there exists some substitution τ such that for all variables x we have (xσ)τ = xσ′. Given two
terms s, t, a unifier of s and t is a substitution σ for which sσ = tσ. A unifier θ is a most general
unifier (mgu) of s and t, if θ is a unifier of s and t and if θ is at least as general as any other
unifier for s and t. Two terms s and t are called unifiable, if there exists a unifier for s and t.

Proposition 6.1.5. If two terms are unifiable, then there exists an mgu θ for s and t.

Proof. By Theorem 4.5.8 in [BN98].

Definition 6.1.6 (Ordered resolution with selection, based on O�S [BG01]). Let �lpo be an LPO
and let sel be a selection function for literals, i.e. given any clause C, sel(C) is a subset of negative
literals from C. The following two inference rules constitute a variant of the ordered resolution
calculus with selection O�S , due to Bachmair and Ganzinger ([BG01], Section 4.3). We use A,B
to denote first-order atoms and C,D to denote first-order clauses. The clauses above the vertical
lines are the premises and the clauses below the line are the conclusion of the respective rule.

C ∨A ¬B ∨D
binary resolution

Cθ ∨Dθ
where (a) θ is an mgu of A and B, (b) Aθ is strictly maximal in Cθ ∨ Aθ, i.e. for every literal
L in C we have Aθ �lpo Lθ, (c) nothing is selected in C ∨A, i.e. sel(C ∨A) = ∅, and (d) either
¬B is selected in ¬B ∨D, i.e. ¬B ∈ sel(¬B ∨D), or nothing is selected in ¬B ∨D and ¬Bθ is
maximal in ¬Bθ ∨Dθ, i.e. for every literal L in D we have ¬Bθ �lpo Lθ.

C ∨A ∨B
positive factorization

Cθ ∨Aθ

where (a) θ is an mgu of A and B, (b) Aθ is maximal in Cθ ∨Aθ ∨Bθ, and (c) nothing is selected
in C ∨A ∨B.

In the context of ordered resolution, we treat clauses as multisets. In particular, the order in
which literals occur in clauses does not play a role. Hence, the notation C ∨ L does not mean that
the literal L occurs as the right disjunct in a disjunction. It merely denotes a clause in which L
may occur in any position, but must occur at least once.

The calculus O�S from [BG01] has recently been formalized with the help of the Isabelle proof
assistant [SBTW18].

Proposition 6.1.7 (Soundness of O�S , [BG01, SBTW18]). Let C,D,E be variable-disjoint clauses
and let x̄ := vars(C), ȳ := vars(D), and z̄ := vars(E).

(i) Suppose that E is the result of applying the binary resolution rule from Definition 6.1.6 using
the clauses C,D as premises. Then, we have (∀x̄. C) ∧ (∀ȳ. D) |= (∀z̄. E).

(ii) Suppose that D is the result of applying the positive factorization rule from Definition 6.1.6
using the clause C as premise. Then, we have (∀x̄. C) |= (∀z̄. D).

We call a clause set N saturatedsaturated
clause set

with respect to a given term ordering �lpo and a given selection
function sel if any application of the rules from Definition 6.1.6 to any clauses from N results in a
clause C that is an instance of some clause D in N .

Proposition 6.1.8 (Refutational completeness of O�S , [BG01, SBTW18]). Let �lpo be an LPO
and let sel be a selection function. Let � denote the empty clause, which can, in addition, be
understood as logical falsity. Consider a clause set N that is saturated with respect to �lpo and sel.
We have � ∈ N if and only if N is unsatisfiable, i.e. N |= false.

6.1. INTERPOLATION FOR SF AND GBSR 171

We now have the necessary notions and results at hand to show that BS is closed under Craig–
Lyndon interpolation. The general idea of using ordered resolution to prove Craig’s interpolation
theorem goes back to Harald Ganzinger. In his lecture notes “Logic in Computer Science” (summer
term 2002), he outlined the idea for the case of propositional logic. The proof of the following
theorem was inspired by Ganzinger’s proof sketch. In addition to the ordering constraints, we will
make use of selection to achieve a Lyndon-style interpolation property. Additional care has to be
taken in order to control the quantifier prefix of interpolants. This applies even more to the closely
related proof of Lemma 6.2.5 in the subsequent section.

Lemma 6.1.9. Let ϕ and ψ be relational BS sentences (without equality). If ϕ |= ψ, then there
exists a relational BS sentence χ such that

(i) ϕ |= χ and χ |= ψ, and

(ii) any predicate symbol P occurs positively (negatively) in χ only if it occurs positively (negatively)
in ϕ and in ψ.

Proof sketch. In the degenerate cases where ϕ is unsatisfiable, i.e. ϕ |= false, or where ψ is a
tautology, i.e. true |= ψ, we set χ := false and χ := true, respectively. In all other cases we
proceed as follows.

Let ϕ′ and ψ′ be quantifier-free formulas and let ū, v̄, x̄, ȳ be tuples of first-order variables such
that ϕ = ∃ȳ∀x̄. ϕ′ and ψ = ∃v̄∀ū. ψ′. Without loss of generality, we assume that ū, v̄, x̄, ȳ are
pairwise disjoint and that ϕ′ :=

∧
i ϕi ϕ′, ψ′and ψ′ :=

∧
j ψj are in conjunctive normal form.

Let Π1 Πibe the set of all predicate symbols that occur in ϕ′ but not in ψ′, let Π2 be the set of
all predicate symbols that occur positively in ϕ′ but not positively in ψ′ and that do not belong to
Π1, let Π3 be the set of all predicate symbols that occur negatively in ϕ′ but not negatively in ψ′

and that do not belong to Π1 ∪ Π2, let Π4 be the set of all predicate symbols that occur in ϕ′ and
in ψ′ but do not belong to Π1 ∪ Π2 ∪ Π3. We construct the formulas ϕ̂′ and ψ̂′ from ϕ′ and ψ′,
respectively, by simultaneously replacing every literal ¬P (s̄) with P (s̄) and every literal P (s̄) with

¬P (s̄) for every P ∈ Π2. Hence, every P ∈ Π2 occurs negatively in ϕ̂′ ϕ̂′, ψ̂′but not negatively in ψ̂′,

and there are no predicate symbols that occur positively in ϕ̂′ but only negatively in ψ̂′. Moreover,
we observe that the above transformation preserves (un)satisfiability of ϕ, ¬ψ, and ϕ ∧ ¬ψ. More
precisely, we have

∃ȳ∀x̄. ϕ′ |= false if and only if ∃ȳ∀x̄. ϕ̂′ |= false,

¬∃v̄∀ū. ψ′ |= false if and only if ¬∃v̄∀ū. ψ̂′ |= false, and(
∃ȳ∀x̄. ϕ′

)
∧ ¬
(
∃v̄∀ū. ψ′

)
|= false if and only if

(
∃ȳ∀x̄. ϕ̂′

)
∧ ¬
(
∃v̄∀ū. ψ̂′

)
|= false.

Let ϕ̂Sk := ∀x̄. ϕ̂′
[
y1/c1, . . . , y|ȳ|/c|ȳ|

]
ϕ̂Sk, ψ̂Skwhere the ci are fresh Skolem constants. Moreover,

let ψ̂Sk := ∀v̄.¬ψ̂′
[
u1/f1(v̄), . . . , u|ū|/f|ū|(v̄)

]
where the fi are fresh Skolem functions of arity

|v̄|. Hence, ϕ̂Sk ∧ ψ̂Sk is a Skolemized variant of
(
∃ȳ ∀x̄. ϕ̂′

)
∧
(
∀v̄ ∃ū.¬ψ̂′

)
, which is semantically

equivalent to
(
∃ȳ ∀x̄. ϕ̂′

)
∧ ¬
(
∃v̄ ∀ū. ψ̂′

)
. Therefore, we observe

ϕ ∧ ¬ψ |= false if and only if
(
∃ȳ ∀x̄. ϕ̂′

)
∧ ¬
(
∃v̄ ∀ū. ψ̂′

)
|= false

if and only if ϕ̂Sk ∧ ψ̂Sk |= false .

Let N Nbe a clause set corresponding to ϕ̂Sk such that every P occurring positively (negatively)
in N also occurs positively (negatively) in ϕ̂Sk — we define N to be the set containing all the
implicitly universally quantified clauses ϕ̂i from ϕ̂Sk whose variables are renamed so that the
clauses in N are pairwise variable disjoint. Analogously, let M Mbe the clause set corresponding to

ψ̂Sk such that every P occurring positively (negatively) in M occurs positively (negatively) in ψ̂Sk

and, hence, negatively (positively) in ψ̂′.

172 CHAPTER 6. INTERPOLATION

We exhaustively apply ordered resolution with selection to N until the clause set is saturated and
call the result N∗N∗ . As underlying term ordering we apply an LPO satisfying the following conditions.
For all ground literals P (. . .), R(. . .), and ¬R(. . .) we require P (. . .) � ¬R(. . .) � R(. . .) whenever
P ∈ Π1 and R 6∈ Π1. In order to achieve this, we use a precedence � for which P � R � f � c
for every P ∈ Π1, R 6∈ Π1, every Skolem function f occurring in ψ̂Sk, and every Skolem constant
c occurring in ϕ̂Sk. We lift the resulting total ordering on ground terms to a (partial) ordering
on non-ground terms, atoms, and literals as described below Proposition 6.1.3 on page 169. The
selection function sel that we use shall select exactly the literals ¬P (s̄) with P ∈ Π2∪Π3 in clauses
that contain such literals. In all other clauses nothing shall be selected. Let M∗M∗ be the result of
saturating M in the same way as we have saturated N to obtain N∗.

Note that N∗ may be infinite, but may only contain clauses whose literals are instances of the
literals in N where variables are either instantiated with variables or with constant symbols ci.
Since ϕ (and thus also ϕ̂Sk) is satisfiable and since ordered resolution with selection is sound, N∗
does not contain the empty clause. The set M∗ may also be infinite. Due to our assumption that
ψ is not valid, ¬ψ (and thus also ψ̂Sk) must be satisfiable. Hence, M∗ does not contain the empty
clause either.

As our assumption ϕ |= ψ is equivalent to ϕ∧¬ψ |= false and to ϕ̂Sk∧ψ̂Sk |= false, refutational
completeness of ordered resolution with selection entails that there is a (finite) derivation DD of the
empty clause � (which at the same stands for logical falsity) from the unsatisfiable set of clauses
N∗ ∪M∗. We assume that D is based on the same calculus and the same term ordering that we
have used to saturate N∗ and M∗. Let N ′∗N ′∗ be the set of clauses from N∗ whose instances are used
as premises in this derivation. Since N∗ and M∗ are both saturated and neither of them contains
the empty clause, D must indeed make use of clauses from N∗, and, hence, N ′∗ is not empty. Since
N ′∗ is finite, we can define the sentence χ̂Sk := ∀z̄. ∧C∈N ′∗ Cχ̂Sk , where we set z̄ := vars(N ′∗). We

observe the following properties for χ̂Sk and the underlying clause set N ′∗:

(1) ϕ̂Sk |= χ̂Sk,

(2) χ̂Sk ∧ ψ̂Sk |= false,

(3) for every C ∈ N ′∗ we have

(3.1) for every literal P (s1, . . . , sm) in C there is a clause D ∈M that contains some literal
¬P (t1, . . . , tm), and

(3.2) for every literal ¬P (s1, . . . , sm) in C there is a clause D ∈M that contains some literal
P (t1, . . . , tm).

Ad (1) and (2). Both observations follow by soundness of ordered resolution with selection. ♦

Ad (3). Since N∗ and M∗ are both saturated and do not contain the empty clause, any inference
step in D that starts from two leaves of the derivation tree involves one clause taken from N ′∗
and one clause taken from M∗. Consider any such resolution step between clauses C ∈ N ′∗
and D ∈ M∗. By case distinction on the possible resolution steps we show that C cannot
contain any literal [¬]P (s̄) with P ∈ Π1 ∪Π2 ∪Π3.

Suppose there is a binary resolution step between two clauses C = C ′ ∨ R(t̄) ∈ N ′∗ and
D = D′ ∨ ¬R(t̄′) ∈ M∗ over the literals R(t̄) and ¬R(t̄′) such that C contains some
literal [¬]P (s̄) with P ∈ Π1. Since R occurs in N∗ and in M∗, we have R 6∈ Π1. Hence,
we get P (s̄) � R(t̄). Due to the order restrictions in ordered resolution, R(t̄)τ must be
maximal in Cτ , where τ is the unifier that is used in the resolution step to unify R(t̄)
and R(t̄′). But this contradicts P (s̄) � R(t̄), as the latter entails P (s̄)τ � R(t̄)τ .

Suppose there is a binary resolution step between two clauses C = C ′ ∨ ¬R(t̄) ∈ N ′∗ and
D = D′∨R(t̄′) ∈M∗ over the literals ¬R(t̄) and R(t̄′) such that C contains some literal
[¬]P (s̄) with P ∈ Π1. Since R occurs negatively in N∗ and positively in M∗, we conclude
R 6∈ Π1 ∪Π2 ∪Π3. Hence, we have that P (s̄) � R(t̄), which entails P (s̄) � ¬R(t̄), and

6.1. INTERPOLATION FOR SF AND GBSR 173

¬R(t̄) is not selected in C. But then, due to the order restrictions in ordered resolution,
¬R(t̄)τ must be maximal in Cτ , where τ is the unifier that is used to unify R(t̄) and
R(t̄′). But this contradicts P (s̄) � ¬R(t̄), as the latter entails P (s̄)τ � ¬R(t̄)τ .

Suppose there is a binary resolution step between two clauses C = C ′ ∨ R(t̄) ∈ N ′∗ and
D = D′ ∨ ¬R(t̄′) ∈ M∗ over the literals R(t̄) and ¬R(t̄′) such that C contains some
literal ¬P (s̄) with P ∈ Π2 ∪ Π3. Since ¬P (s̄) is selected in C by sel, this resolution
step is not admitted.

Suppose there is an binary resolution step between two clauses C = C ′ ∨ ¬R(t̄) ∈ N ′∗ and
D = D′∨R(t̄′) ∈M∗ over the literals ¬R(t̄) and R(t̄′) such that C contains some literal
¬P (s̄) with P ∈ Π2 ∪ Π3. Since R occurs negatively in N∗ and positively in M∗, it

must occur negatively in ψ̂′, and thus R 6∈ Π1 ∪Π2 ∪Π3. Hence, the literal ¬R(t̄) is not
selected in C. Since, on the other hand, there is a selected literal in C by sel, namely
¬P (s̄), this resolution step is not admitted.

Consequently, the result of any inference step starting from two leaf nodes of the derivation
tree of D cannot contain any predicate symbol P ∈ Π1 and it cannot contain any literal
¬R(. . .) with R ∈ Π2 ∪Π3.

By an inductive argument (over the height of derivation trees), this leads to the observation
that none of the clauses from N∗ that are involved in the derivation D can contain any
predicate symbols from Π1 or any negative literals ¬R(. . .) with R ∈ Π2 ∪ Π3. Since N ′∗
contains only clauses that are involved in D, Condition (3.2) is satisfied. By construction of
N∗ from ϕ = ∃ȳ ∀x̄. ϕ′ via ∃ȳ ∀x̄. ϕ̂′ and ϕ̂Sk, Condition (3.1) is satisfied as well. ♦

Since χ̂Sk contains exclusively constant symbols ci, we can easily construct χ̂′ χ̂′, χ′, χfrom χ̂Sk’s matrix by

de-Skolemization, i.e. χ̂Sk = ∀z̄. χ̂′
[
y1/c1, . . . , y|ȳ|/c|ȳ|

]
. Furthermore, we construct the formula χ′

from χ̂′ by simultaneously replacing every literal ¬P (s̄) by P (s̄) and every literal P (s̄) by ¬P (s̄)
for every P ∈ Π2. Finally, we set χ := ∃ȳ ∀z̄. χ′.

It remains to prove the following properties:

(4) ϕ |= χ and

(5) χ ∧ ¬ψ |= false.

Ad (4). For every model A |= ∃ȳ ∀x̄. ϕ̂′ there is some model B |= ϕ̂Sk such that A and B differ
only in their interpretation of the Skolem constants c1, . . . , c|ȳ|. By (1) and because of χ̂Sk |=
∃ȳ ∀x̄. χ̂′, we get B |= ∃ȳ ∀x̄. χ̂′. Since B differs from A only in the interpretation of symbols
that do not occur in ∃ȳ ∀x̄. χ̂′, A is also a model of ∃ȳ ∀x̄. χ̂′. Hence, ∃ȳ ∀x̄. ϕ̂′ |= ∃ȳ ∀x̄. χ̂′,
which can equivalently be written as

(
∃ȳ ∀x̄. ϕ̂′

)
∧ ¬
(
∃ȳ ∀x̄. χ̂′

)
|= false.

Since
(
∃ȳ ∀x̄. ϕ̂′

)
∧ ¬

(
∃ȳ ∀x̄. χ̂′

)
|= false holds if and only if

(
∃ȳ ∀x̄. ϕ′

)
∧ ¬

(
∃ȳ ∀x̄. χ′

)
|=

false, and since the latter is equivalent to
(
∃ȳ ∀x̄. ϕ′

)
|=
(
∃ȳ ∀x̄. χ′

)
we in the end get ϕ |= χ.

♦

Ad (5). The formula χ̂Sk∧ψ̂Sk can be conceived as a Skolemized variant of
(
∃ȳ ∀x̄. χ̂′

)
∧
(
∀v̄ ∃ū.¬ψ̂′

)
,

which is semantically equivalent to
(
∃ȳ ∀x̄. χ̂′

)
∧ ¬
(
∃v̄ ∀ū. ψ̂′

)
. Hence, we have χ̂Sk ∧ ψ̂Sk |=

false if and only if
(
∃ȳ ∀x̄. χ̂′

)
∧ ¬

(
∃v̄ ∀ū. ψ̂′

)
|= false. As we, in addition, observe that(

∃ȳ ∀x̄. χ̂′
)
∧ ¬
(
∃v̄ ∀ū. ψ̂′

)
|= false holds if and only if

(
∃ȳ ∀x̄. χ′

)
∧ ¬
(
∃v̄ ∀ū. ψ′

)
|= false,

we in the end get

χ̂Sk ∧ ψ̂Sk |= false if and only if
(
∃ȳ ∀x̄. χ̂′

)
∧ ¬
(
∃v̄ ∀ū. ψ̂′

)
|= false

if and only if χ ∧ ¬ψ |= false .

By (2), this yields χ ∧ ¬ψ |= false. ♦

174 CHAPTER 6. INTERPOLATION

Because of the equivalence of χ ∧ ¬ψ |= false and χ |= ψ, we have shown that χ satisfies
Requirement (i) of the lemma.

Due to (3) and due to the way χ is constructed from N ′∗, every positive occurrence of a predicate
symbol P in χ entails the existence of a negative occurrence of P in ¬ψ, and every negative
occurrence of a predicate symbol P in χ entails the existence of a positive occurrence of P in ¬ψ.
Consequently, χ satisfies Requirement (ii) as well.

6.2 Interpolation for GAF

After having shown that SF and GBSR without equality are closed under Craig–Lyndon interpola-
tion, we now develop the analogous result for GAF. More precisely, we argue that any two GAF
sentences ϕ and ψ with ϕ |= ψ have a Craig–Lyndon interpolant χ with ϕ |= χ and χ |= ψ that
belongs to the Ackermann fragment (AF). As GAF contains AF, the interpolant χ is also a GAF
sentence.

Theorem 6.2.1 (Craig–Lyndon interpolation for GAF). Let ϕ and ψ be GAF sentences. If ϕ |= ψ,
then there exists an AF sentence χ such that

(i) ϕ |= χ and χ |= ψ, and

(ii) any predicate symbol P occurs positively (negatively) in χ only if it occurs positively (negatively)
in ϕ and in ψ.

As for the SF and GBSR case, we use the fact that GAF sentences can be translated into
equivalent AF sentences (cf. Lemma 3.8.4). This reduces the problem to interpolation in AF. Again,
we use the fact that interpolants can be constructed using Bachmair and Ganzinger’s ordered
resolution with selection (Definition 6.1.6). This time, however, this yields only an intermediate
form of interpolants that we cannot immediately de-Skolemize into AF sentences. At this point,
we employ known techniques to replace terms with quantified variables (cf. [BL11], Section 8.2),
if the terms start with function symbols that do not belong to the common vocabulary of the
interpolated formulas. This replacement preserves the logical entailments between the interpolant
and the interpolated formulas. As we shall argue about the soundness of the replacement method
using a certain sequent calculus, we introduce its derivation rules before we get started proving the
interpolation result.

Definition 6.2.2 (Modified sequent calculus LK, adapted from [BL11]). The following set of
derivation rules defines a slightly modified variant of the calculus LK, that we shall refer to as
LK>⊥.1

Axioms:

A ` A ` true false `

where A may be any
non-equational first-
order atom.

Introduction of ∧:

ϕ,Γ ` ∆
∧ : l1

(ϕ ∧ ψ),Γ ` ∆

ψ,Γ ` ∆
∧ : l2

(ϕ ∧ ψ),Γ ` ∆

Γ ` ∆, ϕ Γ ` ∆, ψ
∧ : r

Γ ` ∆, (ϕ ∧ ψ)

1The calculus LK>⊥ from [BL11] is, according to the authors, almost identical to the original LK by
Gentzen [Gen35a, Gen35b]. The adaptations to LK>⊥ [BL11] made in the present thesis are inessential. The rules
dedicated to implication are left out — they are derivable using the rules for ¬ and ∨. We do not syntactically
distinguish free from bound first-order variables. Our permutation rule is more compact. And, finally, we have not
integrated implicit contraction into the cut rule — this can be simulated by using the contraction rule appropriately
prior to cuts.

6.2. INTERPOLATION FOR GAF 175

Introduction of ∨:

ϕ,Γ ` ∆ ψ,Γ ` ∆
∨ : l

(ϕ ∨ ψ),Γ ` ∆

Γ ` ∆, ϕ
∨ : r1

Γ ` ∆, (ϕ ∨ ψ)

Γ ` ∆, ψ
∨ : r2

Γ ` ∆, (ϕ ∨ ψ)

Introduction of ¬:

Γ ` ∆, ϕ
¬ : l¬ϕ,Γ ` ∆

ϕ,Γ ` ∆
¬ : r

Γ ` ∆,¬ϕ

Introduction of ∀:

ϕ
[
x/t
]
,Γ ` ∆

∀ : l∀x. ϕ,Γ ` ∆

Γ ` ∆, ϕ
∀ : r

Γ ` ∆,∀x. ϕ
where t may be any term whose
variables are free in ϕ

[
x/t
]
.

where the variable x may not
occur in Γ,∆.

Introduction of ∃:

ϕ,Γ ` ∆
∃ : l∃y. ϕ,Γ ` ∆

Γ ` ∆, ϕ
[
y/t
]
∃ : r

Γ ` ∆,∃y. ϕ
where the variable y may not
occur in Γ,∆.

where t may be any term whose
variables are free in ϕ

[
y/t
]
.

Permutation:

Γ ` ∆ p
Γ′ ` ∆′

where the sequence Γ′ is a permutation of Γ
and the sequence ∆′ is a permutation of ∆.

Weakening:

Γ ` ∆
w : l

ϕ,Γ ` ∆
Γ ` ∆ w : r

Γ ` ∆, ϕ

Contraction:

ϕ,ϕ,Γ ` ∆
c : l

ϕ,Γ ` ∆

Γ ` ∆, ϕ, ϕ
c : r

Γ ` ∆, ϕ

Cut:

Γ ` ∆, ϕ ϕ,Γ′ ` ∆′
cut(ϕ)

Γ,Γ′ ` ∆,∆′

Proposition 6.2.3 (Soundness and completeness of LK>⊥ for first-order sentences without
equality). Let ϕ,ψ be two first-order sentences without equality. We have ϕ |= ψ if and only if
ϕ ` ψ is derivable in LK>⊥.

Proposition 6.2.4 (Cut-elimination for LK>⊥, cf. Theorem 5.2.3 in [BL11]). Let ϕ,ψ be two
first-order sentences without equality. If ϕ ` ψ is derivable in LK>⊥, then it is also derivable using
the rule cut(χ) only for atomic χ.

This gives us the necessary tools at hand to show that AF is closed under Craig–Lyndon
interpolation. Compared to the BS case, we have to take extra steps to ensure that the quantifier

176 CHAPTER 6. INTERPOLATION

prefix of interpolants fits the requirements of AF. This is the point where the proof system LK>⊥
enters the stage.

Lemma 6.2.5. Let ϕ and ψ be AF sentences (without equality) in which the only Boolean
connectives are ∧,∨,¬. If ϕ |= ψ, then there exists a relational AF sentence χ without equality
such that

(i) ϕ |= χ and χ |= ψ, and

(ii) any predicate symbol P occurs positively (negatively) in χ only if it occurs positively (negatively)
in ϕ and in ψ.

Proof sketch. In the degenerate cases where ϕ is unsatisfiable, i.e. ϕ |= false, or where ψ is a
tautology, i.e. true |= ψ, we set χ := false and χ := true, respectively. In all other cases we
proceed as follows.

Let ϕ′ and ψ′ϕ′, ψ′ be quantifier-free formulas and let ū, w̄, ȳ, z̄ be tuples of variables such that
ϕ = ∃ū∀v∃w̄. ϕ′(ū, v, w̄) and ψ = ∃ȳ∀x∃z̄. ψ′(ȳ, x, z̄). Without loss of generality, we assume that
ū, {v}, w̄, ȳ, {x}, z̄ are pairwise disjoint and that ϕ′ :=

∧
i ϕi and ψ′ :=

∧
j ψj are in conjunctive

normal form.
We define the sets Π1,Π2,Π3,Π4Πi like in the proof of Lemma 6.1.9. We construct the formulas

ϕ̂′ and ψ̂′ϕ̂′, ψ̂′ from ϕ′ and ψ′, respectively, by simultaneously replacing every literal ¬P (s̄) by P (s̄)
and every literal P (s̄) by ¬P (s̄) for every P ∈ Π2. Hence, every P ∈ Π2 occurs negatively in ϕ̂′

but not negatively in ψ̂′, and there are no predicate symbols that occur positively in ϕ̂′ but only
negatively in ψ̂′. Moreover, we observe that the above transformation preserves (un)satisfiability
of ϕ, ¬ψ, and ϕ ∧ ¬ψ. More precisely, we have

∃ū ∀v∃w̄. ϕ′ |= false if and only if ∃ū ∀v∃w̄. ϕ̂′ |= false,

¬∃ȳ ∀x∃z̄. ψ′ |= false if and only if ¬∃ȳ ∀x∃z̄. ψ̂′ |= false, and(
∃ū ∀v∃w̄. ϕ′

)
∧ ¬
(
∃ȳ ∀x∃z̄. ψ′

)
|= false if and only if

(
∃ū ∀v∃w̄. ϕ̂′

)
∧ ¬
(
∃ȳ ∀x∃z̄. ψ̂′

)
|= false.

Let ϕ̂Sk := ∀v. ϕ̂′
[
u1/c1, . . . , u|ū|/c|ū|, w1/f1(v), . . . , w|w̄|/f|w̄|(v)

]
ϕ̂Sk, ψ̂Sk where the ci are fresh Skolem

constants and the fi are fresh unary Skolem functions. Moreover, let ψ̂Sk := ∀ȳz̄.¬ψ̂′
[
x/g(ȳ)

]
where the g is a fresh Skolem function of arity |ȳ|. Hence, ϕ̂Sk ∧ ψ̂Sk is a Skolemized variant of(
∃ū ∀v∃w̄. ϕ̂′

)
∧
(
∀ȳ ∃x∀z̄.¬ψ̂′

)
, which is equivalent to

(
∃ū ∀v∃w̄. ϕ̂′

)
∧ ¬
(
∃ȳ ∀x∃z̄. ψ̂′

)
. Therefore,

we observe

ϕ ∧ ¬ψ |= false if and only if
(
∃ū ∀v∃w̄. ϕ̂′

)
∧
(
∀ȳ ∃x ∀z̄.¬ψ̂′

)
|= false

if and only if ϕ̂Sk ∧ ψ̂Sk |= false .

Let NN be a clause set corresponding to ϕ̂Sk such that every P occurring positively (negatively)
in N also occurs positively (negatively) in ϕ̂Sk — we define N to be the set containing all the
implicitly universally quantified clauses ϕ̂i from ϕ̂Sk whose variables are renamed so that the
clauses in N are pairwise variable disjoint. Analogously, let MM be the clause set corresponding to

ψ̂Sk such that every P occurring positively (negatively) in M occurs positively (negatively) in ψ̂Sk

and negatively (positively) in ψ̂′.
We exhaustively apply ordered resolution with selection to N until the clause set is saturated

and call the result N∗N∗ . As underlying term ordering we apply an ordering defined like in the proof
of Lemma 6.1.9 based on an LPO induced by a precedence � for which P � R � f � c for any
P ∈ Π1, R 6∈ Π1, any Skolem function f occurring in ϕ̂Sk or ψ̂Sk, and any Skolem constant c
occurring in ϕ̂Sk or ψ̂Sk. The used selection function sel selects exactly the literals ¬P (s̄) with
P ∈ Π2 ∪Π3 in all clauses that contain such literals. Let M∗M∗ be the result of saturating M in the
same way as we have saturated N to obtain N∗.

6.2. INTERPOLATION FOR GAF 177

Claim I: An Ackermann-like clause Ackermann-
like
clauses

is a clause that contains at most one variable and only function
symbols of arity at most 1.

Consider any two Ackermann-like clauses C := [¬]A ∨ C ′ and D := [¬]B ∨D′ with unifiable
atoms A and B. Let σ be a most general unifier of A and B. Then, (C ′ ∨ D′)σ is an
Ackermann-like clause.

Proof: Since σ is a most general unifier, for every variable x with σ(x) 6= x we observe that σ(x) is
some term that (a) contains at most one variable and (b) that does not contain any function
symbols of arity larger than one. But then, applying σ to the Ackermann-like clause C ′ ∨D′
clearly results in an Ackermann-like clause (C ′ ∨D′)σ. ♦

Notice that N∗ may be infinite. Moreover, by Claim I, N∗ contains exclusively Ackermnann-like
clauses over the vocabulary underlying N . Since ϕ (and thus also ϕ̂Sk) is satisfiable and since
ordered resolution with selection is sound, N∗ does not contain the empty clause. The set M∗
may also be infinite. Due to our assumption that ψ is not valid, ¬ψ (and thus also ψ̂Sk) must be
satisfiable. Hence, M∗ does not contain the empty clause either.

As our assumption ϕ |= ψ is equivalent to ϕ∧¬ψ |= false and to ϕ̂Sk∧ψ̂Sk |= false, refutational
completeness of ordered resolution with selection entails that there is a (finite) derivation D Dof the
empty clause � from the unsatisfiable set of clauses N∗ ∪M∗. We assume that D is based on the
same calculus and the same term ordering that we have used to saturate N∗ and M∗. Let N ′∗ N ′∗be
the set of clauses from N∗ whose instances are used as premises in this derivation. Since N∗ and
M∗ are both saturated and neither of them contains the empty clause, D must indeed make use
of clauses from N∗, and, hence, N ′∗ is not empty. Since N ′∗ is finite, we may define the sentence
χ̂Sk := ∀v. χ̂′Sk χ̂Sk, χ̂′Skwith

χ̂′Sk :=
∧

C(x)∈N ′∗

C(v) ,

where v is a fresh variable not occurring in N∗. Like in the proof of Lemma 6.1.9, we observe the
following properties for χ̂Sk and the underlying clause set N ′∗:

(1) ϕ̂Sk |= χ̂Sk,

(2) χ̂Sk ∧ ψ̂Sk |= false,

(3) for every C ∈ N ′∗ we have

(3.1) for every literal P (s1, . . . , sm) in C there is a clause D ∈M that contains some literal
¬P (t1, . . . , tm), and

(3.2) for every literal ¬P (s1, . . . , sm) in C there is a clause D ∈M that contains some literal
P (t1, . . . , tm).

Claim II: From the sentence χ̂Sk we can construct a relational sentence χ̂ := ∃ȳ′∀v∃z̄′. χ̂′ with
quantifier-free χ̂′ χ̂, χ̂′such that ϕ̂Sk |= χ̂ and χ̂ ∧ ψ̂Sk |= false.

Proof sketch: If χ̂Sk is relational, we are done. Suppose it is not. Then, χ̂Sk and ¬ψ̂Sk do not
share any function symbols. We argue by using a construction due to Baaz and Leitsch (proof
of Lemma 8.2.2 in [BL11]). The construction relies on the sequent calculus LK>⊥ given in
Definition 6.2.2. We use a part of the construction here with several adjustments that are
required to properly deal with the leading universal quantifier in χ̂Sk.

By completeness of LK>⊥ (Proposition 6.2.3), there is some derivation π0 π0, π1, π2of the form

π1

ϕ̂Sk ` ∀v. χ̂′Sk

π2

∀v. χ̂′Sk ` ¬ψ̂Sk
cut
(
∀v. χ̂′

Sk

)
ϕ̂Sk ` ψ̂Sk

178 CHAPTER 6. INTERPOLATION

where π1 and π2 are certain subderivations. By Proposition 6.2.4, we may assume π1, π2 to
be free of non-atomic cuts.

In these subderivations the following subderivations π′1 and π′2π′1, π′2 must occur, respectively:

π1:
π′′1

Γ1 ` ∆1, χ̂
′
Sk ∀ :r

Γ1 ` ∆1,∀v. χ̂′Sk

π2:
π′′2

Γ2, χ̂
′
Sk

[
v/t
]
` ∆2

∀ : l
Γ2,∀v. χ̂′Sk ` ∆2

We may assume without loss of generality that π2 contains exactly one subderivation of the
form that π′2 exhibits. We can do this, because ¬ψ̂Sk and χ̂′Sk do not share any function
symbols. If there are more than one such subderivations, then π2 must merge all the resulting
subformulas ∀v. χ̂′Sk into one by contraction steps. But then, π2 can be rewritten so that all
of these contraction steps are done before the introduction of ∀v in front of χ̂′Sk. Moreover,
any cut over atoms containing function symbols from χ̂′Sk can be done before introduction of
∀v. Hence, we can in fact assume the following.

Claim III: Γ2 and ∆2 in π′2 do not contain any function symbol occurring in χ̂′Sk.

We modify π1 and π2 in such a way that every occurrence of subderivations of the form π′1
or π′2 are replaced by the derivations ρ′1 and ρ′2ρ′1, ρ′2 shown below:

ρ′1 : π′′1
Γ1 ` ∆1, χ̂

′
Sk ∃ :r

Γ1 ` ∆1,∃z′1. χ̂′Sk

[
s1/z

′
1

]
...

Γ1 ` ∆1,∃z′k−1 . . . z
′
1. χ̂
′
Sk

[
s1/z

′
1

]
. . .
[
sk−1/z

′
k−1

]
∃ :r

Γ1 ` ∆1,∃z′kz′k−1 . . . z
′
1. χ̂
′
Sk

[
s1/z

′
1

]
. . .
[
sk−1/z

′
k−1

][
sk/z

′
k

]
∀ :r

Γ1 ` ∆1,∀v∃z′kz′k−1 . . . z
′
1. χ̂
′
Sk

[
s1/z

′
1

]
. . .
[
sk−1/z

′
k−1

][
sk/z

′
k

]
∃ :r

Γ1 ` ∆1,∃y′1∀v∃z′kz′k−1 . . . z
′
1. χ̂
′
Sk

[
s1/z

′
1

]
. . .
[
sk−1/z

′
k−1

][
sk/z

′
k

][
t1/y

′
1

]
...

Γ1 ` ∆1,∃y′`−1 . . . y
′
1∀v∃z′k . . . z′1. χ̂′Sk

[
s1/z

′
1

]
. . .
[
sk/z

′
k

][
t1/y

′
1

]
. . .
[
t`−1/y

′
`−1

]
∃ :r

Γ1 ` ∆1,∃y′` . . . y′1∀v∃z′k . . . z′1. χ̂′Sk

[
s1/z

′
1

]
. . .
[
sk/z

′
k

][
t1/y

′
1

]
. . .
[
t`/y

′
`

]
ρ′2 : π′′′2

Γ2, χ̂
′′
Sk

[
v/t
]
` ∆2

∃ : l
Γ2,∃z′1. χ̂′′Sk

[
v/t
]
` ∆2

...

Γ2,∃z′k−1 . . . z
′
1. χ̂
′′
Sk

[
v/t
]
` ∆2

∃ : l
Γ2,∃z′k . . . z′1. χ̂′′Sk

[
v/t
]
` ∆2

∀ : l
Γ2,∀v∃z′k . . . z′1. χ̂′′Sk ` ∆2

∃ : l
Γ2,∃y′1∀v∃z′k . . . z′1. χ̂′′Sk ` ∆2

...

Γ2,∃y′`−1 . . . y
′
1∀v∃z′k . . . z′1. χ̂′′Sk ` ∆2

∃ : l
Γ2,∃y′` . . . y′1∀v∃z′k . . . z′1. χ̂′′Sk ` ∆2

where π′′′2 and χ̂′′Sk and the terms s1, . . . , sk, t1, . . . , t` are defined as follows. The terms
s1, . . . , sksi constitute an enumeration of all distinct non-ground terms that occur as arguments

6.2. INTERPOLATION FOR GAF 179

in atoms P (. . . , si, . . .) in χ̂′Sk and that contain at least one function symbol (a unary Skolem
function from ϕ̂Sk). We assume that s1, . . . , sk are listed in descending order regarding their
length, i.e. len(si) ≥ len(si+1). Notice that, by Claim I, every si contains the variable v, only
unary function symbols, and no constant symbols. Similarly, t1, . . . , t` ticonstitutes an enumer-
ation of all distinct ground terms (in descending order regarding term length) that occur as
arguments in atoms in χ̂′Sk. Furthermore, we assume the variables y′1, . . . , y

′
`, z
′
1, . . . , z

′
k to be

pairwise distinct, to be distinct from u, v, and to not occur in ϕ̂Sk, χ̂
′
Sk, ψ̂Sk,Γ1,Γ2,∆1,∆2.

The notation η
[
s/t
]

is used to denote replacement of every occurrence of the term s by the
term t in the formula η. We also use it to denote consistent replacement in derivations. Based
on this notation, we define the formula χ̂′′Sk χ̂′′Skto be

χ̂′′Sk := χ̂′Sk

[
s1/z

′
1

]
. . .
[
sk/z

′
k

][
t1/y

′
1

]
. . .
[
t`/y

′
`

]
.

Notice that all occurrences of v in χ̂′Sk that are an argument of a predicate symbol remain
untouched. The derivation π′′′2 π′′′2results from π′′2 by replacing all occurrences of terms si[v/t]
in π′′2 with z′i and by replacing all occurrences of terms tj with y′j . The replacements are
performed in the order s1[v/t], . . . , sk[v/t], t1, . . . , t` (from left to right), i.e. we have

π′′′2 := π′′2
[
s1[v/t]/z′1

]
. . .
[
sk[v/t]/z′k

][
t1/y

′
1

]
. . .
[
t`/y

′
`

]
.

Notice that all occurrences of t in π′′′2 that are an argument of a predicate symbol remain
untouched.

As, by Claim III, the terms si, si[v/t], and ti do not share any function or constant symbols

with terms occurring in Γ2,∆2 that are important for the derivation of ¬ψ̂Sk, replacing
these terms with (free) variables in π′′2 does not influence the parts of π′′2 that are important

for deriving ¬ψ̂Sk in the end. The new derivation steps in ρ′2 using the rules introducing
existential quantification on the left are sound, as Γ2 and ∆2 do not contain the variables y′i
and z′i (which replace si and ti, which in turn do not occur in Γ2,∆2). Moreover, the new
derivation steps in ρ′1 using the rules introducing existential quantification on the right are
sound, as the terms si only contain variables that do not occur bound in the antecedents.

We denote by ρ1 ρ1, ρ2the result of replacing occurrences of π′1 in π1 with appropriate occurrences
of ρ′1 and adapting the remaining proof parts accordingly (by replacing terms si by z′i and ti
by y′i wherever necessary). Similarly, the new version of π2 is denoted by ρ2. Let χ̂′ := χ̂′′Sk.

χ̂′Then, we can put the new derivations together to obtain

ρ1

ϕ̂Sk ` ∃ȳ′∀v∃z̄′. χ̂′
ρ2

∃ȳ′∀v∃z̄′. χ̂′ ` ¬ψ̂Sk
cut(∃ȳ′∀v∃z̄′. χ̂′)

ϕ̂Sk ` ψ̂Sk

which constitutes a valid derivation representing the interpolation property we intended to
prove. ♦

We observe that ϕ̂Sk |= χ̂ is equivalent to ϕ̂Sk ∧ ¬χ̂ |= false. De-Skolemization of the latter

yields ϕ̂ ∧ ¬χ̂ |= false or, equivalently, ϕ̂ |= χ̂. Also by de-Skolemization, from χ̂ ∧ ψ̂Sk |= false

we conclude χ̂ ∧ ¬ψ̂ |= false.
Recall that χ̂ = ∃ȳ′∀v∃z̄′. χ̂′. We construct the formula χ′ χ′from χ̂′ by simultaneously replacing

every literal ¬P (s̄) by P (s̄) and every literal P (s̄) by ¬P (s̄) for every P ∈ Π2. Finally, we set
χ := ∃ȳ′∀v∃z̄′. χ′. χ

It remains to prove the following properties:

(4) ϕ |= χ, and

(5) χ ∧ ¬ψ |= false.

180 CHAPTER 6. INTERPOLATION

Ad (4). Since
(
∃ū∀v∃w̄. ϕ̂′

)
∧ ¬

(
∃ȳ′∀v∃z̄′. χ̂′

)
|= false holds if and only if

(
∀ȳ∃x∀z̄. ϕ′

)
∧

¬
(
∃ȳ′∀v∃z̄′. χ′

)
|= false, and since the latter is equivalent to

(
∀ȳ∃x∀z̄. ϕ′

)
|=
(
∃ȳ′∀v∃z̄′. χ′

)
,

we in the end get ϕ |= χ. ♦

Ad (5). As we observe that
(
∃ȳ′∀v∃z̄′. χ̂′

)
∧ ¬

(
∀ȳ∃x∀z̄. ψ̂′

)
|= false holds if and only if(

∃ȳ′∀v∃z̄′. χ′
)
∧ ¬
(
∀ȳ∃x∀z̄. ψ′

)
|= false, we in the end get(

∃ȳ′∀v∃z̄′. χ̂′
)
∧ ¬
(
∀ȳ∃x∀z̄. ψ̂′

)
|= false if and only if χ ∧ ¬ψ |= false .

By (2), this yields χ ∧ ¬ψ |= false. ♦

Because of the equivalence of χ∧¬ψ |= false and χ |= ψ, we have shown that χ is an AF sentence
that satisfies Requirement (i) of the lemma.

Due to (3) and due to the way χ is constructed from N ′∗, every positive occurrence of a predicate
symbol P in χ entails the existence of a negative occurrence of P in ¬ψ, and every negative
occurrence of a predicate symbol P in χ entails the existence of a positive occurrence of P in ¬ψ.
Consequently, χ satisfies Requirement (ii) as well.

Chapter 7

Beyond the Classical Decision
Problem: Further Applications of
Separateness

Evidently, the analysis of separateness of quantified variables and of weak dependences has
applications in the quest for decidable first-order fragments. In the present chapter we briefly
outline the applicability of these concepts to three other areas: the analysis of computational
complexity of reasoning with respect to a fixed theory, e.g., rational arithmetic; proof complexity
and automated reasoning in first-order logic; and the elimination of second-order quantifiers.

7.1 Separated Formulas and Linear Rational Arithmetic: A
Little Case Study

In Chapter 4 we discussed fingerprints as a means to semantically characterize tuples of domain
elements with respect to a given sentence and its atoms under a given structure. We recapitulate
the underlying idea in Example 7.1.1. The purpose of the present section is to show that the
number of fingerprints that possibly occur can be severely limited when we restrict the syntax
of first-order formulas and focus on a certain kind of structures. As an exemplary case we study
linear rational arithmetic (LRA).

Example 7.1.1. Consider the sentence ϕ := ∀x1∃x2. P (x1, x2) ∨ Q(x1, x2) ∨ R(x1, x2) and the
structure A with A := {a1, a2, bP , bQ, bR, cPQ, cQR, cPR} and

PA := {〈a1, bP 〉, 〈a2, cPQ〉, 〈a2, cPR〉} ,
QA := {〈a1, bQ〉, 〈a2, cPQ〉, 〈a2, cQR〉} ,
RA := {〈a1, bR〉, 〈a2, cPR〉, 〈a2, cQR〉} .

Let µ2 be the fingerprint function mapping pairs of elements from A’s domain to fingerprints:

µ2(a1, bP) := {P (x1, x2)} ,
µ2(a1, bQ) := {Q(x1, x2)} ,
µ2(a1, bR) := {R(x1, x2)} ,
µ2(a2, cPQ) := {P (x1, x2), Q(x1, x2)} ,
µ2(a2, cPR) := {P (x1, x2), R(x1, x2)} ,
µ2(a2, cRQ) := {R(x1, x2), Q(x1, x2)} ,

µ2(d, e) := ∅ for all other pairs 〈d, e〉 ∈ A2 .

181

182 CHAPTER 7. BEYOND THE CLASSICAL DECISION PROBLEM

Expressed in technical terms, we have

µ2(d, e) :=
{
A(x1, x2) | A(x1, x2) is an atom in ϕ with A |= A(d, e)

}
.

Fingerprints for unary tuples are a bit more interesting. Let µ1 be the fingerprint function mapping
elements from A’s domain to fingerprints:

µ1(a1) :=
{
{P (x1, x2)}, {Q(x1, x2)}, {R(x1, x2)}

}
,

µ1(a2) :=
{
{P (x1, x2), Q(x1, x2)}, {P (x1, x2), R(x1, x2)}, {R(x1, x2), Q(x1, x2)}

}
,

µ2(d) := {∅} for all other d ∈ A .

Technically, we have µ1(d) :=
{
S
∣∣ S = µ2(d, d′) for some element d′ ∈ A

}
. Hence, µ1(d) charac-

terizes for cases where the value d is assigned to x1 which atoms will potentially become true under
A when choosing a values for x2 from A’s domain.

It is easy to see that if we were to consider a different structure B the image of µ2 could
potentially contain a number of fingerprints that is exponential in the number of atoms occurring
in ϕ, i.e. up to 23 = 8 sets of atoms. For the image of µ1, we even get a doubly exponential
upper bound, i.e. 223

= 256. Indeed, we have (almost) constructed such structures in the proofs of
Theorems 3.2.7, 3.9.9, 3.10.8, and 3.12.5.

The fingerprints described in the above example are very general. This generality is certainly
necessary in settings where we do not restrict the class of structures we consider. However, there
are (classes of) structures that do not require as much freedom for the fingerprints of domain
elements. In such settings fingerprints could be structured in a simpler way. The example we shall
consider is linear arithmetic over the rationals . More precisely, we consider first-order formulas over
the vocabulary ΣLRA := 〈{<,≤, 6=,≥, >},Q ∪ {+, ·}〉 containing the rational numbers as constant
symbols under the following syntactic restriction: multiplication is only allowed in terms a · x
where a is some rational coefficient and x is some first-order variable. We shall call the set of all
first-order formulas in which all terms are LRA terms LRA formulasLRA

formulas
. Semantically, we fix the

structure under which LRA formulas are interpreted to Q, the rational numbers with the standard
interpretation for the symbols in ΣLRA. For convenience, we use abbreviations such as 3

2x− 5y− z
for the formal expression 3

2 · x+ (−5) · y + (−1) · z.

Example 7.1.2. Consider the linear-arithmetic atoms A(x, y) := x−y ≤ 1, B(x, y) := 1
2x+y ≥ 2,

C(x, y) := 1
3x − y ≥ 1

3 , cf. Figure 7.1. In analogy to Example 7.1.1 we define two fingerprint
functions µ1, µ2 with respect to the structure Q as follows:

µ2(d, e) :=
{
D(x, y) | D(x, y) is one of the above atoms and Q |= D(d, e)

}
and

µ1(d) :=
{
S
∣∣ S = µ2(d, e) for some element e ∈ Q

}
.

The image of µ2 contains seven elements, namely, ∅, {A}, {B}, {C}, {A,B}, {A,C}, {B,C}. The
image of µ1, on the other hand, contains only four elements, namely,

{
{A,B}, {A}, {A,C}, {C}

}
,{

{A,B}, {A}, ∅, {C}
}

,
{
{A,B}, {B}, ∅, {C}

}
,
{
{A,B}, {B}, {B,C}, {C}

}
.

The above example illustrates nicely that fingerprints over linear-arithmetic atoms are very
restricted. For instance, there cannot be any rational number r with a fingerprint µ1(r) that is a
superset of

{
{A(x, y)}, {A(x, y), B(x, y)}, {B(x, y)}, {C(x, y)}

}
. The reason is that for any fixed r

the solution spaces for A(r, y), B(r, y), and C(r, y) are either empty or singleton sets or the union
of (at most two) unbounded intervals, respectively. Hence, if there are three rationals s1, s2, s3

such that we have
Q |= A(r, s1) ∧ ¬B(r, s1) ∧ ¬C(r, s1) ,
Q |= A(r, s2) ∧ B(r, s2) ∧ ¬C(r, s2) ,
Q |= ¬A(r, s3) ∧ B(r, s3) ∧ ¬C(r, s3) ,

7.1. SEPARATED FORMULAS AND LINEAR RATIONAL ARITHMETIC 183

x

y

1

2

1 2 3 4

A

B

C

Figure 7.1: Illustration of the solution sets of the three linear-arithmetic atoms A(x, y) = x− y ≤ 1
(green), B(x, y) = 1

2x+ y ≥ 2 (blue), C(x, y) := 1
3x− y ≥ 1

3 (red).

then the solution spaces for A(r, y) and B(r, y) with respect to the variable y are (supersets of)
unbounded intervals, respectively, such that their union covers the complete rational axis. This
entails that there cannot be any s′ such that Q |= ¬A(r, s′) ∧ ¬B(r, s′) ∧ C(r, s′).

This peculiarity of linear-arithmetic atoms severely restricts the fingerprints that can possibly
occur. We shall derive an upper bound on the number of distinct fingerprints that is doubly
exponential in the number of occurring variables in Lemma 7.1.5. In order to do so, we will leverage
methods and results from the field of quantifier elimination. But before we develop the formal
argument, Figures 7.2–7.5 informally describe some more intuitions about fingerprints for linear
rational arithmetic while suggesting a more suitable notation for linear-arithmetic fingerprints.

184 CHAPTER 7. BEYOND THE CLASSICAL DECISION PROBLEM

y3
t1 t2 t3 t4

A
B

C
ν3(r, s, t1) = {C}
ν3(r, s, t2) = {A,C}
ν3(r, s, t3) = {A}
ν3(r, s, t4) = {A,B}

Figure 7.2: Illustration of the solution set of three linear-arithmetic atoms A(y1, y2, y3) (in green),
B(y1, y2, y3) (in blue), and C(y1, y2, y3) (in red) for certain fixed values r for y1 and s for y2. The
thin vertical lines mark values yielding the four possible fingerprints ν3(r, s, t) for any rational
t ∈ Q that is assigned to y3. The overall fingerprint ν2(r, s) is represented by the sequence
{C}|{A}{C}{B}. Intuitively, we construct ν2(r, s) = S0|S1S2S3 as follows. Traversing the y3-axis
from −∞ to +∞ for fixed y1 = r, y2 = s, we start in a situation where C but neither A nor B are
satisfied under Q. Hence, we set S0 := {C}. On our traversal of the axis, we first encounter some
point at which A changes its truth value — it becomes true (and will stay so for the rest of our
journey along the y3-axis). Since exclusively the truth value of A changes at this point, we append
the set S1 := {A}. Going on in this direction, we next encounter a point where the truth value of
C changes from true to false. Since A and B keep their respective truth values, we append the
set S2 := {C}. Like for A, the truth value of C will remain unchanged for the rest of our traversal
of the axis. Finally, we reach some point at which the truth value of B flips from false to true.
Therefore, we append S3 := {B}. As nothing will change when traversing the rest of the y3-axis,
the construction of ν2(r, s) is complete.

y3

y2

s7
s6
s5
s4

s3

s2
s1

A

B

C

ν2(r, s7) =
{C}|{A}{C}{B}
ν2(r, s6) =
{C}|{A,C}{B}

ν2(r, s5) =
{C}|{C}{A}{B}
ν2(r, s4) =
{C}|{C}{A,B}

ν2(r, s3) =
{C}|{C}{B}{A}
ν2(r, s2) =
{C}|{B,C}{A}

ν2(r, s1) =
{C}|{B}{C}{A}

Figure 7.3: Illustration of the solution set of three linear-arithmetic atoms A(y1, y2, y3) (in
green), B(y1, y2, y3) (in blue), and C(y1, y2, y3) (in red) for some fixed value r for y1. The
thin horizontal lines mark values yielding the seven possible fingerprints ν2(r, s) for any ratio-
nal s ∈ Q that is assigned to y2. The overall fingerprint ν1(r) is represented by the sequence(
{C}|{B}{C}{A}

)∣∣{B,C}{A,B}{A,C}, where the initial subsequence {C}|{B}{C}{A} describes
the fingerprint at y3 = s1 and the sets {B,C}, {A,B}, {A,C} originate from the three intersection
points of the hyperplanes represented by A,B,C, respectively, when the relation symbols in A,B,C
are replaced with equality. When traversing the y2-axis from −∞ to +∞, we meet the intersection
points {B,C} at y2 = s2, {A,B} at y2 = s4, and {A,C} at y2 = s6.

7.1. SEPARATED FORMULAS AND LINEAR RATIONAL ARITHMETIC 185

y1 := r1 y1 := r2 y1 := r3

y2

y3

(1)

A

B

C

y2

y3

(1)

y2

y3

(1)

ν1(r1) = S0|{B,C}{A,B}{A,C} ν1(r2) = S0|{A,B,C} ν1(r3) = S0|{A,C}{A,B}{B,C}

Figure 7.4: Illustration of the solution set of three linear-arithmetic atoms A(y1, y2, y3) (in green),
B(y1, y2, y3) (in blue), and C(y1, y2, y3) (in red) for certain rational values r1 < r2 < r3 assigned to
y1. Each diagram represents one of the fingerprints ν1(r1), ν1(r2), ν1(r3), as indicated. The initial
sequence S0 for each of these fingerprints is the sequence {C}|{B}{C}{A}, i.e. the fingerprint
associated with (1). After S0 each fingerprint lists the intersections of the hyperplanes induced by
A,B,C in the order they occur, viewed from −∞ along the y2-axis in the positive direction. Every
set in the list represents a point in which the indicated hyperplanes intersect. The overall fingerprint

ν0 is represented by the sequence
((
{C}|{B}{C}{A}

)∣∣{B,C}{A,B}{A,C})∣∣∣{A,B,C}.

y1 := r1 y1 := r2 y1 := r3

y2

y3

(1)

A

B

y2

y3

(1)

y2

y3

(1)

ν1(r1) =
(
{A}|{A}{B}

)∣∣ε ν1(r2) =
(
{A}|{A,B}

)∣∣ε ν1(r3) =
(
{A}|{B}{A}

)∣∣ε
Figure 7.5: Illustration of the solution set of two linear-arithmetic atoms A(y1, y2, y3) (in green)
and B(y1, y2, y3) (in blue) for certain rational values r1 < r2 < r3 assigned to y1. Each diagram
represents one of the fingerprints ν1(r1), ν1(r2), ν1(r3), as indicated. The initial sequence in the
fingerprint representations differ for each of the three points, however, after the initial sequence, the
empty sequence ε follows. This means, for fixed y1 = r the fingerprints ν2(r, y2) along the y2-axis do

not change. The overall fingerprint ν0 is represented by the sequence
((
{A}|{A}{B}

)∣∣ε)∣∣∣{A,B}.

Next, we describe the virtual substitution virtual
substitution

method for the elimination of existential quantifiers
in first-order formulas over linear rational arithmetic. We have already outlined the method in
Chapter 2 (page 20). In our simple setting virtual substitution is based on two components: (a) a
method for extracting a set of testpoints from a given formula ϕ, also called an elimination set, and
(b) the virtual substitution operator

[
x//t

]
, which is a generalization of the syntactic substitution

operator
[
x/t
]
. An LRA formula is called positive positive

formulas
, if it does not contain any negation sign. Notice

that any LRA formula can be transformed into an equivalent positive LRA formula whose length

186 CHAPTER 7. BEYOND THE CLASSICAL DECISION PROBLEM

is linear in the length of the original. For example, every negative literal ¬ s ≤ t can be replaced
by the positive s > t; the relation symbol “ 6=” is treated as first-class citizen, i.e. s 6= t is not an
abbreviation for ¬ s = t. Let AtAt be a finite set of LRA atoms of the form a1z1 + . . . anzn / b where
the ai and b are rational coefficients, the zi are first-order variables, and / ∈ {<,≤,=, 6=,≥, >}. For
every zi the elimination set Elimzi(At)Elimz(At) is the smallest set of formal terms satisfying the following
properties:

(i) −∞ ∈ Elimzi(At).

(ii) For every atom (a1z1 + . . .+ anzn / b) ∈ At with ai 6= 0 we set
t := 1

ai

(
b− a1z1 + . . .+ ai−1zi−1 + ai+1zi+1 + . . .+ anzn

)
.

We require that

if ai > 0 and / ∈ {=,≥}, then t ∈ Elimzi(At),

if ai < 0 and / ∈ {=,≤}, then t ∈ Elimzi(At),

if ai > 0 and / ∈ {6=, >}, then (t+ ε) ∈ Elimzi(At),

if ai < 0 and / ∈ {6=, <}, then (t+ ε) ∈ Elimzi(At).

The symbol ε is used as a “dummy symbol for [. . .] a positive infinitesimal” [LW93], page 454.
Notice that for any zi the number of testpoints in Elimzi(At) is at most linear in the number of
atoms that belong to At. Moreover, only atoms contribute to Elimzi(At) in which zi occurs with a
non-zero coefficient and that entail some kind of lower bound for zi. We could, dually, restrict our
attention to upper bounds instead of lower bounds [LW93, HVW17a].

Given any testpoint t, the application of the virtual substitution operator
[
zi//t

]
A
[
z//t
]

to LRA atoms
is defined as follows. Consider any atom A(z1, . . . , zn) of the form a1z1 + . . .+anzn / b with ai = 0.
Then, we set A[zi//t] := A. Consider any atom A(z1, . . . , zn) that is equivalent to zi / s for some
LRA expression s of the form s := 1

ai

(
b−a1z1 + . . .+ai−1zi−1 +ai+1zi+1 + . . .+anzn

)
with ai 6= 0

and where / ∈ {<,≤,=, 6=,≥, >}. We then define

A
[
zi//t

]
:= t / s if t 6= −∞ and t 6= t′ + ε for any t′,

A
[
zi//−∞

]
:=

{
true if / ∈ {<,≤, 6=},
false if / ∈ {=,≥, >},

A
[
zi//t

′ + ε
]

:=

t′ < s if / ∈ {<,≤},
t′ ≥ s if / ∈ {≥, >},
false if / ∈ {=},
true if / ∈ {6=}.

For technical reasons, we assume that necessary normalization steps are done implicitly, i.e.
in order to apply the operator

[
z//t
]

to any LRA atom A, the atom need not be in the form
a1z1 + . . . + anzn / b. It is only required that A has an equivalent in this syntactic form. This
is certainly true for the atoms true and false, for example, as the former is equivalent to
0z1 + . . .+ 0zn ≤ 0 and the latter is equivalent to 0z1 + . . .+ 0zn < 0. For compound LRA formulas
the virtual substitution operator shall behave like the usual operator for syntactic substitution.

Loos and Weispfenning have shown that virtual substitution can be used to eliminate existential
quantifiers from LRA formulas.

Proposition 7.1.3 ([LW93], Theorem 3.5). Consider any positive LRA formula ∃zi. ψ(z̄) with
quantifier-free ψ(z̄). Let At be the set of all atoms that occur in ψ(z̄) normalized so that each has
the form a1z1 + . . . anzn / b. Then, we have

Q |=
(
∃zi. ψ(z̄)

)
←→

∨
t∈Elimzi

(At)

ψ
[
zi//t

]
.

7.1. SEPARATED FORMULAS AND LINEAR RATIONAL ARITHMETIC 187

The quantifier elimination technique in Proposition 7.1.3 makes use of the fact that existential
quantification can be conceived as a disjunction over all domain elements. Innermost existential
quantifiers are replaced by finite (syntactic) disjunction over a finite set of elimination terms. This
is done in a way that implicitly constructs a Skolem function using only specific terms that can be
derived from the formula at hand. This implicit Skolem function includes an unspecific case split:
one of the “proposed” solutions will work. An explicitly formulated function, however, would be
more specific about which solution has to be used in what case.

In what follows, we use Proposition 7.1.3 and our observations regarding elimination sets to
formally derive an upper bound regarding the number of fingerprints that appear with respect to
a given LRA sentence. The missing link between the two concepts of fingerprints and quantifier
elimination by means of virtual substitution is a representation of fingerprints by first-order
sentences. Let At be a finite set of LRA atoms of the form a1z1 + . . .+ anzn / b where the ai and
b are rational coefficients and / ∈ {<,≤,=, 6=,≥, >}. Let Ψn Ψibe the set of all formulas of the form
∃zn.

∧
A∈At[¬]A(z1, . . . , zn), where [¬]ψ stands as placeholder for a negated or non-negated formula.

For every i with 1 ≤ i < n let Ψi be the set of all formulas of the form ∃zi.
∧
ψ∈Ψi+1

[¬]ψ(z1, . . . , zi).

Then, every set Ψi contains 2↑n−i+1(|At|) formulas. In each of these formulas the variables
z1, . . . , zi−1 occur freely.

Remark 7.1.4. It is easy to see that any formula ψ(z1, . . . , zi−1) in any Ψi represents exactly one
possible fingerprint for tuples 〈r1, . . . , ri−1〉 of rationals. The formula sets Ψi emphasize the close
relationship between the notion of fingerprint and the standard model-theoretic notion of type.1 In
model theory types are usually used to investigate expressiveness of full first-order logic with respect
to certain structures. Hence, the atoms from which types are built are often only restricted by the
considered vocabulary, the variables that may occur freely, and limits imposed on the quantifier rank.
The sets Ψi, on the other hand, are limited to certain forms of atoms, namely the ones given in
At. Hence, it may happen that an atom P (x1, x2, x3) plays a role in Ψi and P (x1, x1, x1) does not.
In the present text such fine-grained distinctions make sense, since they allow us to focus on the
expressiveness of concrete sentences — e.g. with respect to dependences between quantified variables

— rather than expressiveness of the whole language of first-order logic over a given vocabulary. Such
fine-grained considerations do not seem to be common practice in (finite) model theory.

Let Ãt Ãt, Abe the set Ãt := At ∪
{
A
∣∣ A ∈ At

}
, where the atom A is the converse of A, e.g.

(s ≤ t) = (s > t), (s = t) = (s 6= t), (s < t) = (s ≥ t). Let Ãt−〈zj ,...,zn〉 Ãt−〈zj ,...,zn〉be the result of eliminating

zn, zn−1, . . . , zj one after the other from the atoms in Ãt by means of virtual substitution. Formally,

Ãt−〈zj ,...,zn〉 is defined as follows:

Ãt−〈zn〉 :=
{
A
[
zn//t

]
, A
[
zn//t

] ∣∣∣ A ∈ Ãt and t ∈ Elimzn

(
Ãt
)}

, and

Ãt−〈zi,...,zn〉 :=
{
A
[
zi//t

]
, A
[
zi//t

] ∣∣∣ A ∈ Ãt−〈zi+1,...,zn〉 and t ∈ Elimzi

(
Ãt−〈zi+1,...,zn〉

)}
.

Since we know that the number of testpoints in any elimination set Elimzi(S) is at most linear in
the cardinality of S, there must be some positive constant c such that we observe∣∣Ãt−〈zn〉

∣∣ ≤ 2c · |Ãt|2 ,∣∣Ãt−〈zn−1,zn〉
∣∣ ≤ 2c ·

(
2c · |Ãt|2

)2
,

...∣∣Ãt−〈zi,...,zn〉
∣∣ ≤ (2c)2n−i+1 · |Ãt|2n−i+1 ≤ 2(log 2c)·2n−i+1 · 2(log |At|)·2n−i+1

= 2(log 2c+log |At|)·2n−i+1

.

For every i, 1 ≤ i ≤ n, and any sequence r̄ := r1, . . . , ri−1 of rationals let the set Ψ̂i(r̄) Ψ̂i(r̄)be
the set of formulas ψ(z1, . . . , zi−1) ∈ Ψi for which we have Q |= ψ(r̄). In the beginning of the

1Compare, e.g., the notion of type in [CK90] or rank-k type in [Lib04]. Another close relative is the notion of
constituent by Hintikka, see [Hin65, Ran87]

188 CHAPTER 7. BEYOND THE CLASSICAL DECISION PROBLEM

present section we explained intuitively why the set of actually occurring fingerprints with respect
to LRA formulas is very limited compared to the general case. The next lemma will show a similar
discrepancy between the sets Ψi and Ψ̂i(r̄). More precisely, only comparatively few formulas from
Ψi are satisfied under Q for certain tuples r̄ of rationals. We shall then link these two observations
in Lemma 7.1.8.

Lemma 7.1.5. For any fixed sequence r̄ := r1, . . . , ri−1 of rationals we have
∣∣Ψ̂i(r̄)

∣∣ ∈
O
(
2(d+log |At|)·2n−i) for some positive constant d.

Proof. Let β := [z1 7→r1, . . . , zi−1 7→ri−1].

Claim I: For any two distinct formulas ∃zi. ψ1(z1, . . . , zi) and ∃zi. ψ2(z1, . . . , zi) from Ψ̂i(r̄) and
all distinct rationals qi, q

′
i we observe that Q, β[zi 7→qi] |= ψ1(z1, . . . , zi) together with

Q, β[zi 7→q′i] |= ψ2(z1, . . . , zi) entails qi 6= q′i.

Proof: By definition of Ψi, ψ1 and ψ2 are conjunctions of formulas (∃zi. . . .) such that, without
loss of generality, ψ1 contains at least one conjunct ¬ϕ with ϕ ∈ Ψi+1 while ψ2 contains the
conjunct ϕ. But then, we have Q, β[zi 7→qi] |= ¬ϕ(z1, . . . , zi) and Q, β[zi 7→q′i] |= ϕ(z1, . . . , zi),
which entails qi 6= q′i. ♦

Consider any two distinct formulas ∃zi. ψ1(z1, . . . , zi) and ∃zi. ψ2(z1, . . . , zi) from Ψ̂i(r̄). Let
ψ′1ψ′1, ψ′2 be the result of first transforming ψ1 into negation normal form and then replacing every

atom ¬A by its converse A. Let ψ′2 be defined analogously, starting from ψ2. Then, ψ′1 and
ψ′2 are positive formulas and Q-equivalent to ψ1 and ψ2, respectively. Moreover, all atoms

occurring in ψ′1 and ψ′2 belong to Ãt. Using virtual substitution, all existential quantifiers in
the formulas ψ′1(z1, . . . , zi) and ψ′2(z1, . . . , zi) can be eliminated, yielding quantifier-free formulas

ψ′′1 (z1, . . . , zi)ψ′′1 , ψ′′2 and ψ′′2 (z1, . . . , zi) over the atoms in Ãt−〈zi+1,...,zn〉 that are Q-equivalent to ψ1 and
ψ2, respectively. With another application of virtual substitution, the existential quantifier ∃zi
in both ∃zi. ψ′′1 (z1, . . . , zi) and ∃zi. ψ′′2 (z1, . . . , zi) can be eliminated, using only a subset of the

testpoints from Elimzi

(
Ãt−〈zi+1,...,zn〉

)
, which is a set of size∣∣Elimzi

(
Ãt−〈zi+1,...,zn〉

)∣∣ ∈ O(2(d+log |At|)·2n−i)
for some positive constant d. Put more precisely, ∃zi. ψ′′1 (z1, . . . , zi) is Q-equivalent to∨

t∈Elimzi
(Ãt−〈zi+1,...,zn〉)

ψ′′1
[
zi//t

]

and ∃zn. ψ′′2 (z1, . . . , zn) is Q-equivalent to∨
t∈Elimzi

(Ãt−〈zi+1,...,zn〉)

ψ′′2
[
zi//t

]
.

By virtue of Claim I, for every testpoint t ∈ Elimzi

(
Ãt−〈zi+1,...,zn〉

)
we have that Q, β |= ψ′′1

[
zi//t

]
entails Q, β 6|= ψ′′2

[
zi//t

]
. Consequently, for every ∃zi. ψ in Ψ̂i(r̄) and ψ’s quantifier-free equivalent ψ′

(obtained by means of virtual substitution) there is at least one testpoint t ∈ Elimzi

(
Ãt−〈zi+1,...,zn〉

)
such that Q, β |= ψ′

[
zi//t

]
and Q, β 6|= ϕ′

[
zi//t

]
for every ∃zi. ϕ in Ψ̂i(r̄) with ϕ 6= ψ and ϕ’s

quantifier-free equivalent ϕ′. This entails
∣∣Ψ̂i(r̄)

∣∣ ≤ ∣∣Elimzi

(
Ãt−〈zi+1,...,zn〉

)∣∣ ∈ O(2(d+log |At|)·2n−i)
for some positive constant d.

Corollary 7.1.6. The number of sentences in Ψ1 that are satisfied under Q is at most doubly
exponential in n and at most polynomial in the number of atoms in At.

7.1. SEPARATED FORMULAS AND LINEAR RATIONAL ARITHMETIC 189

Now consider any LRA sentence ϕ := ∀x1∃y1 . . . ∀xn∃yn. ψ(x̄, ȳ) with quantifier-free ψ in which
the tuples x̄ := 〈x1, . . . , xn〉 and ȳ := 〈y1, . . . , yn〉 are separated. Without loss of generality, we
assume that ϕ is a positive formula and that every atom in it has the form a1z1 + . . . anzn / b. Let
At be the set of atoms occurring in ϕ. Then, At can be partitioned into two parts Atx̄ and Atȳ

such that vars(Atx̄) ⊆ x̄ and vars(Atȳ) ⊆ ȳ.

Definition 7.1.7 (Fingerprint functions µ`). We define the family of fingerprint functions µ`
with 0 ≤ ` ≤ n in analogy to Definition 4.2.4 as follows:
µn : Qn → PAtx̄ such that for every sequence r̄ ∈ Qn and every A(x̄) ∈ Atx̄ we have A(x̄) ∈

µn(r̄) if and only if Q |= A(r̄).
For every `, 1 ≤ ` < n, we set
µ` : Q` → Pn−`+1Atx̄ such that for every sequence r̄ ∈ Q` and every S ∈ Pn−`Atx̄ we have

S ∈ µ`(r̄) if and only if there is some rational number q such that µ`+1(r̄, q) = S.
Moreover, we define
µ0 ⊆ Pn+1Atx̄ such that for every S ∈ PnAtx̄ we have S ∈ µ0 if and only if there is some

rational number q such that µ1(q) = S.

We denote the image of a fingerprint function µ` by im(µ`) :=
{
µ`
(
r̄
) ∣∣ r̄ ∈ Q`

}
.

Lemma 7.1.8. For every i, 0 ≤ i ≤ n − 1, and any fixed sequence r̄ ∈ Qi we have
∣∣µi(r̄)∣∣ ∈

O
(
2(d+log |Atx̄|)·2n−i) for some positive constant d.

Proof. We define the sets Ψx̄
i and Ψ̂x̄

i (r̄) Ψx̄
i , Ψ̂x̄

i (r̄)in analogy to the sets Ψi and Ψ̂i(r̄) based on Atx̄ rather
than an arbitrary set At. Moreover, let the bijections ρi : Pn−i+1Atx̄ → Ψx̄

i ρibe defined inductively

as follows: For every S ∈ PAtx̄ we set ρn(S) := ∃xn.
(∧

A∈S A
)
∧
(∧

A∈Atx̄\S ¬A
)
. For every i < n

and every S ∈ Pn−i+1Atx̄ we set ρi(S) := ∃xi.
(∧

T∈S ρi+1(T)
)
∧∧T∈Pn−iAtx̄\S ¬ρi+1(T).

Claim I: For every i and every S ∈ Pn−i+1Atx̄ we have S ∈ µi−1(r̄) if and only if ρi(S) ∈ Ψ̂x̄
i (r̄).

Proof: We proceed by induction on i, starting from i = n going downwards.

Base case: Let i = n. Given any tuple r̄ ∈ Qn−1, for every set S ∈ µn−1(r̄) there is some
qn ∈ Q such that for every A(x̄) ∈ Atx̄ we have Q |= A(r̄, qn) if and only if A ∈ S. In
other words, we have

Q, [x1 7→r1, . . . , xn−1 7→rn−1] |= ∃xn.
(∧
A(x̄)∈S

A(x̄)
)
∧

∧
A(x̄)∈Atx̄\S

¬A(x̄)

︸ ︷︷ ︸
= ρn(S)

,

which holds if and only if ρn(S) ∈ Ψ̂x̄
n(r̄).

Conversely, from ρn(S) ∈ Ψ̂x̄
n(r̄) follows the existence of some qn for which Q |= A(r̄, qn)

if and only if A(x̄) ∈ S. Then, S ∈ µn−1(r̄).

Inductive case: Let i < n. Given any tuple r̄ ∈ Qi−1, for every set S ∈ µi−1(r̄) there is
some qi ∈ Q such that S = µi(r̄, qi). By induction, for every T ∈ Pn−(i+1)+1Atx̄ we
have T ∈ S if and only if Q, [x1 7→r1, . . . , xi−1 7→ri−1, xi 7→qi] |= ρi+1(T). Hence, we have

Q, [x1 7→r1, . . . , xi−1 7→ri−1] |= ∃xi.
(∧
T∈S

ρi+1(T)
)
∧

∧
T∈(Pn−iAtx̄)\S

¬ρi+1(T)

︸ ︷︷ ︸
= ρi(S)

,

which holds if and only if ρi(S) ∈ Ψ̂x̄
i (r̄).

Conversely, from ρi(S) ∈ Ψ̂x̄
i (r̄) follows the existence of some qi for which
Q, [x1 7→r1, . . . , xi−1 7→ri−1, xi 7→qi] |= ρ(T)

if and only if T ∈ S. Then, S ∈ µi−1(r̄). ♦

190 CHAPTER 7. BEYOND THE CLASSICAL DECISION PROBLEM

The lemma follows by Lemma 7.1.5 and Claim I, which establishes the one-to-one correspondence
between fingerprints in µi−1(r̄) and the formulas in Ψ̂x̄

i (r̄) for every i, 1 ≤ i ≤ n, and every
r̄ ∈ Qi−1.

It follows by Lemmas 4.2.7 and 7.1.8 that, if the LRA sentence ϕ is valid in Q, then there is a
µ-uniform satisfying strategy σ (in a sense analogous to Definitions 4.2.2 and 4.2.6) whose target
set

Tσ Tσ :=
⋃

1≤k≤n

{
q ∈ Q

∣∣ there is some tuple r̄ ∈ Qk such that σk(r̄) = q
}

contains at most

n∑
k=0

k∏
j=0

max
r̄∈Qj

(
|µj(r̄)|

)
≤ (n+ 1) ·

(
c · 2(d+log |Atx̄|)·2n)(n+1)

= 2log(n+1) · 2(n+1)·log c · 2(n+1)·(d+log |Atx̄|)·2n

= 2log(n+1)+(n+1)·log c+d·(n+1)·2n+(n+1)·log |Atx̄|·2n

≤ 2e·n·log |Atx̄|·2n .

elements for certain positive constants c, d, e. Notice that this is a slight improvement compared
to the non-separated case, where the number of testpoints that need to be considered is in the
worst case doubly exponential in 2n rather than n. Although this hardly changes the asymptotic
behavior, it can make a difference in practice.

It is known that proving validity of a given LRA sentence under Q by means of virtual
substitution requires worst-case computing time that is “polynomial in the length of the input
formula, exponential in the number of quantified variables, and doubly exponential in the number of
quantifier blocks” [LW93], page 1. Hence, the problem of checking validity of LRA sentences with a
bounded number of quantifier alternations lies in ExpTime. When we consider any LRA sentence
ϕ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ with quantifier-free ψ in which universally and existentially quantified
variables are separated, we obtain a similar result, if we bound the degree of interaction of existential
and also universal variables by one. In other words, we require that the sets x̄1, . . . , x̄n, ȳ1, . . . , ȳn
are all pairwise separated in ϕ. This separateness condition is even stricter than the one for the
strongly separated fragment (cf. Definition 3.2.3). Then, by a straightforward adaptation of the
proof of Lemma 3.2.5, we can argue that ϕ is equivalent to some LRA sentence ϕ′ that is a Boolean
combination of sentences of the form ∀x̄i. χk(x̄i) or ∃ȳi. η`(ȳi) for certain quantifier-free formulas
χk and η` which exclusively contain atoms that stem from the original ϕ. Since there are only
exponentially many such subformulas (up to equivalence), the length of ϕ′ needs to be at most
exponential in the length of ϕ. In order to decide whether ϕ′ is satisfied under Q, we can eliminate
all quantifiers in the subsentences ∀x̄i. χk(x̄i) and ∃ȳi. η`(ȳi), treating each subsentence individually.
Each such exhaustive elimination step can be done deterministically in at most exponential time
in the length of the quantifier prefix and in polynomial time in the length of the subsentence.
Therefore, deciding Q |= ϕ′ lies in ExpTime and the same hold for deciding Q |= ϕ.

Proposition 7.1.9. Let BSF-LRA be the class of block-separated LRA sentences which we define
to be the class of LRA sentences of the form ϕ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ with quantifier-free ψ in
which the sets x̄1, . . . , x̄n, ȳ1, . . . , ȳn are all pairwise separated. The problem of checking whether
any given BSF-LRA sentence is satisfied under Q lies in ExpTime.

7.2. SKOLEMIZATION POLICIES TAKING WEAK DEPENDENCES INTO ACCOUNT 191

7.2 Skolemization Policies Taking Weak Dependences into
Account

Beyond the applicability to the classical decision problem, discovering that existential variables
are only weakly depending on or entirely independent of universal variables has also implications
for proof complexity and automated reasoning. It is folklore in automated reasoning that shifting
existential quantifiers inwards before applying Skolemization is beneficial in most cases. If there
is potential for reducing the arity of Skolem functions, this potential may be used to reduce the
length of shortest proofs or to substantially reduce the search space that theorem provers have to
explore for finding proofs. The equivalences in Proposition 1.0.1 enable the formulation of certain
strategies for quantifier shifting known as, e.g., miniscoping [NW01] or anti-prenexing [Egl94],
that have turned out to be very useful in automated reasoning. Moreover, for first-order logic
non-standard Skolemization techniques have been considered that lead to Skolem functions with
smaller arity, see [BEL01, NW01] for an overview. In terms of proof complexity, choosing an
unsuitable Skolemization technique can make shortest proofs exponentially or even non-elementarily
longer in the worst case [Egl94, BL94, BFL94].

Remark 7.2.1. In the fields of QBF solving and CSP 2 solving so-called dependency schemes
have been developed that help to exploit Boolean structure to optimize the arity of Skolem functions
[Sam08, SS09, Lon12, BB16]. For QBF sentence it is clear that an analysis based on separateness
of (propositional) variables yields only trivial results, as every atom can contain at most one such
variable. However, the fact that QBF solvers strongly benefit from the optimization techniques based
on dependency schemes, one could hope for a significant impact in first-order reasoning as well. It
seems to be promising to lift QBF dependency schemes to first-order logic and then combine them
with analysis techniques based on separateness — see also Section 3.6 for the combined analysis of
separateness and Boolean structure.

There has been work on exploiting certain forms of independence in first-order logic as well.
Notably, any work that tries to improve the results of Skolemization does, at least implicitly, long
for the minimization of dependencies between existentially and universally quantified variables.
Examples of improved Skolemization policies can be found in [BEL01, NW01]. Goubault-Larrecq
[Gou95] has analyzed dependencies in first-order logic, using first-order BDDs as a tool.

To the best of the present author’s knowledge, currently used techniques in automated reasoning
do not detect and exploit weak dependences, as defined and investigated in Chapter 4. On the
syntactic level, we introduced Lemma 3.2.4 in Section 3.2 as a tool for shifting existential quantifiers
∃y also into certain conjunctions although the bound variable y may occur in each conjunct. The
price that has to be paid is a potentially exponential blowup of the formula. What we possibly
gain are smaller arities of Skolem functions. In the extreme case of GBSR sentences, we even get
Skolem constants in the end, which, in terms of small arities of Skolem functions, is clearly the
best result we could possibly achieve. On the other hand, reducing the arity of Skolem functions
comes at the price of an increasing number of Skolem functions (with smaller arity). This trade-off
situation — formula length vs. arities of Skolem functions vs. number of Skolem functions — has to
be dealt with gracefully. It seems to be an interesting direction for future research to find out when
exactly automated reasoning benefits from quantifier shifting in the spirit of Lemma 3.2.4 and when
the additional cost outweighs the potential gain. This is even more interesting as the described
ideas are not limited in scope to pure uninterpreted first-order logic. Some of the employed proof
methods are completely oblivious to predicate symbols or function symbols with a-priori-fixed
interpretations.

Example 7.2.2. Consider the open formula
ϕ := ∀z∀x∃y.

(
P (x) ∨R(y, z)

)
∧Q(y, y).

Standard quantifier shifting cannot move the ∃y inwards any further. Naive Skolemization yields
ϕ′ := ∀z∀x.

(
P (x) ∨R(fy(z, x), z)

)
∧Q(fy(z, x), fy(z, x)).

2QBF stands for quantified Boolean formulas; CSP stands for constraint satisfaction problems.

192 CHAPTER 7. BEYOND THE CLASSICAL DECISION PROBLEM

On the other hand, applying a simplified variant of Lemma 3.2.4 to ϕ and removing redundant
subformulas results in

∀z∀x.
(
∃y2. Q(y2, y2)

)
∧
(
P (x) ∨ ∃y3.

(
R(y3, z) ∧Q(y3, y3)

))
.

Since universal quantifiers distribute over conjunctions, we can now apply standard quantifier
shifting to move the quantifiers ∀z∀x inwards and obtain(

∃y2. Q(y2, y2)
)
∧
((
∀x. P (x)

)
∨
(
∀z∃y3. R(y3, z) ∧Q(y3, y3)

))
.

Skolemization of this result leads to

ϕ′′ :=
(
Q(cy2

, cy2
)
)
∧
((
∀x. P (x)

)
∨
(
∀z.R(fy3

(z), z) ∧Q(fy3
(z), fy3

(z))
))

.

Comparing ϕ′ and ϕ′′, we see that we trade a sentence with a single Skolem term fy(z, x) and three
distinct atoms for a sentence with two Skolem terms cy2

and fy3
(z) and four distinct atoms.

The following considerations constitute a first step towards Skolemization methods that are
sensitive to weak dependences. But before we start, one more remark is in order concerning the
relation to known concepts of quantification that include explicit dependence information.

Remark 7.2.3. In [Hen61] Henkin introduced a generalized form of existential quantifiers, to
which we shall refer as Henkin quantifiers, but they are sometimes also called finite partially
ordered quantifiers or branching quantifiers or nonlinear quantifiers (see [KM95] for a broader
overview.) Henkin quantifiers can explicitly express dependence of existentially quantified variables
on universally quantified ones. For instance, in the sentence ψ := ∀z∀x∃zy.Q(z, y) ↔ P (x) the
value of y may depend on the value of z but has to be independent from x’s value. This sentence
is equivalent to the second-order formula ψSk := ∃fy.∀z∀x.Q(z, fy(z))↔ P (x) for some Skolem
function fy. One could say that Henkin quantifiers make independence explicit by not listing
certain universally quantified variables as a subscript.

The patterns of weak vs. strong dependence induced by separateness of variables are more subtle
than a strict classification into full dependence vs. full independence as encouraged by Henkin-
style quantification. For example, the slightly modified sentence ϕ := ∀z∀x∃y.Q(z, y)↔ P (x) is
equivalent to

ϕ′ := ∀z∃y1y2∀x.
(
Q(z, y1)→ P (x)

)
∧
(
P (x)→ Q(z, y2)

)
,

where the weakness of the dependence of y on x in ϕ becomes evident. Using second-order quantifiers,
we can make this explicit:

ϕ′′ := ∃g1g2.∀x.
∨
i∈{1,2} ∀z.

(
Q(z, gi(z))↔ P (x)

)
,

which is again equivalent to ϕ.

Altogether, the example illustrates that separateness of existentially quantified and universally
quantified variables leads to a certain degree of independence, but it does not reach the level of
independence Henkin quantifiers can guarantee. This is not at all surprising, because Henkin
quantifiers increase the expressiveness of first-order logic significantly.

In recent years concepts of dependence and independence in first-order logic have been studied that
are much more sophisticated than Henking quantifiers. This has recently become an active field of
research. Introductory material and further references can be found in [Vää07, GKVV16, AKVV16].
Possible relations to the notion of weak dependence studied in Chapter 4 and the present section
remain to be investigated.3

The transformations outlined in Example 7.2.2 have been done more systematically in the
proof of Lemma 2.0.3 and 2.0.4 (Chapter 2). Moreover, this approach was central to the numerous
translation procedures devised in Chapter 3, e.g. for translating GBSR into BSR, GAF into AF,
and so on. Schematically, the technique can be stated as follows:
Consider a relational first-order sentence ϕ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ in standard form. A basic
formulabasic

formulas
is any atom A, any negated atom ¬A, and any formula Qv. χ with Q ∈ {∃,∀}. An

occurrence of a basic formula η in a formula ψ is considered maximal, if the occurrence is not a
proper part of an occurrence of another basic formula. We start by setting k := 0 and ψ0 := ψ:

3This was suggested to the author of the present thesis by Erich Grädel at the Algorithmic Model Theory Meeting
in Berlin, Germany, in March 2018.

7.2. SKOLEMIZATION POLICIES TAKING WEAK DEPENDENCES INTO ACCOUNT 193

(1) Transform ψk into a disjunction of conjunctions of basic formulas (maximal occurrences of
basic formulas in ψk are treated as indivisible units) by application of the laws of Boolean
algebra.

(2) Set ψ′k := ∃ȳn−k. ψk and shift the leading existential quantifiers inwards as far as possible.
We do not rename bound variables and thus the result may contain multiple occurrences of
quantifiers with the same variable name.

(3) Transform ψ′k into a conjunction of disjunctions of basic formulas (maximal occurrences of
basic formulas in ψ′k are treated as indivisible units) by application of the laws of Boolean
algebra.

(4) Set ψk+1 := ∀x̄n−k. ψ′k and shift the leading universal quantifiers inwards as far as possible.
Again, we do not rename bound variables.

(5) Stop if k = n− 1, otherwise increment k by one and continue at Step (1).

In the previous sections we have often assumed that certain sets of variables are separated and
have then shown that after applying the above scheme there is no quantifier Qv whose scope
contains variables from two separated sets. We now proceed in the other direction and devise an
overapproximation of the variables captured in the scopes of quantifiers in ψn. The analysis will
be based on ϕ and we will be using reasonably simple syntactic criteria.

Let x̄ := x̄1 ∪ . . . ∪ x̄n and ȳ := ȳ1 ∪ . . . ∪ ȳn. Moreover, let At be the set of all atoms occurring
in ϕ. In this section, we need a refinement of the notion of the index of a variable.

Definition 7.2.4 (Extended upward closure of captured quantified variables). The block index of
a variable v ∈ x̄ ∪ ȳ is denoted by bidxϕ(v) bidxϕ(v)and defined such that

bidxϕ(v) :=

{
2k − 1 if v ∈ x̄k,

2k if v ∈ ȳk.

Let �ϕ v �ϕ v′be the smallest reflexive and transitive relation over the variables in ϕ such that v �ϕ v′
whenever bidxϕ(v) ≤ bidxϕ(v′) and there is some atom in ϕ in which v and v′ co-occur. For every
variable v in ϕ the upward closure V �vϕ V �vϕ , V̂ �vϕ

is the set {v′ ∈ vars(ϕ) | v �ϕ v′}. The extended upward

closure V̂ �vϕ is the smallest set satisfying the following properties:

(a) V �vϕ ⊆ V̂ �vϕ , and

(b) for all v′, v′′ with bidxϕ(v) ≤ bidxϕ(v′) ≤ bidxϕ(v′′) and v′′ ∈ V̂ �vϕ ∩ V �v′ϕ we have V �v
′

ϕ ⊆
V̂ �vϕ .

For all of the above notations we omit the subscript ϕ if the respective ϕ is clear from the context.

Intuitively, for any quantifier Qv in ϕ the set V̂ ≺v overapproxiamtes the set of all bound
variables that occur in the scope of Qv during and after finishing the procedure described above.
We leave it to the reader to prove this intuition formally.

Lemma 7.2.5. Let u, v ∈ vars(ϕ) be any two variables in ϕ.

(i) If bidx(u) = bidx(v), then we either have V̂ �u = V̂ �v or V̂ �u ∩ V̂ �v = ∅.

(ii) If bidx(u) < bidx(v), then we either have V̂ �v (V̂ �u or V̂ �v ∩ V̂ �u = ∅.

Proof. We start by proving the following auxiliary results:

Claim I: Let w, z be two variables in ϕ with bidx(w) ≥ bidx(z). Then, V �w ⊆ V̂ �z entails

V̂ �w ⊆ V̂ �z.

194 CHAPTER 7. BEYOND THE CLASSICAL DECISION PROBLEM

Proof: For every w′′ ∈ V̂ �w there is some chain of variables w′1, w
′′
1 , . . . , w

′
m, w

′′
m such that

bidx(w) ≤ bidx(w′i) ≤ bidx(w′′i) for every i, and

w′′1 ∈ V �w ∩ V �w
′
1 ,

w′′2 ∈ V �w
′
1 ∩ V �w′2 ,

...
w′′m ∈ V �w

′
m−1 ∩ V �w′m ,

w′′ ∈ V �w′m .

By definition of V̂ �z, our assumption V �w ⊆ V̂ �z entails that the existence of the chain
w′1, w

′′
1 , . . . , w

′
m, w

′′
m leads to V �w

′
i ⊆ V̂ �z for every w′i. Hence, w′′ ∈ V̂ �z. In other words,

we have V̂ �w ⊆ V̂ �z. ♦

Claim II: Let w, z be two variables in ϕ with bidx(w) ≥ bidx(z). If there is some variable x′′ with

x′′ ∈ V̂ �w ∩ V̂ �z, then V̂ �w ⊆ V̂ �z.

Proof: Because of x′′ ∈ V̂ �w we have bidx(x′′) ≥ bidx(w) and there is some chain of variables
w′1, w

′′
1 , . . . , w

′
m, w

′′
m such that

bidx(z) ≤ bidx(w) ≤ bidx(w′i) ≤ bidx(w′′i) for every i, and

w′′1 ∈ V �w ∩ V �w
′
1 ,

w′′2 ∈ V �w
′
1 ∩ V �w′2 ,

...
w′′m ∈ V �w

′
m−1 ∩ V �w′m ,

x′′ ∈ V �w′m .

Because of x′′ ∈ V̂ �z we have bidx(x′′) ≥ bidx(z) and there is some chain of variables
z′1, z

′′
1 , . . . , z

′
q, z
′′
q such that

bidx(z) ≤ bidx(z′j) ≤ bidx(z′′j) for every j, and

z′′1 ∈ V �z ∩ V �z
′
1 ,

z′′2 ∈ V �z
′
1 ∩ V �z′2 ,

...
z′′q ∈ V �z

′
q−1 ∩ V �z′q ,

x′′ ∈ V �z′q .

By definition of V̂ �z, we get V �z
′
j ⊆ V̂ �z for every z′j (following the chain V �zV �z

′
1 . . . V �z

′
q)

and V �w
′
i ⊆ V̂ �z for every w′i (following the chain V �w

′
m . . . V �w

′
1V �w) and V �w ⊆ V̂ �z.

By virtue of Claim I, the last observation entails V̂ �w ⊆ V̂ �z. ♦

Assume bidx(u) = bidx(v) and suppose that V̂ �u ∩ V̂ �v contains at least one variable w. By

virtue of Claim II, we get V̂ �u ⊆ V̂ �v and V̂ �v ⊆ V̂ �u. Therefore, V̂ �u = V̂ �v.
Now assume bidx(u) < bidx(v) and suppose that V̂ �u ∩ V̂ �v contains at least one variable w.

By virtue of Claim II, we get V̂ �v ⊆ V̂ �u. Moreover, we have u ∈ V �u ⊆ V̂ �u on the one hand
but u 6∈ V̂ �v on the other hand. The latter holds as for every z ∈ V̂ �v we have bidx(z) ≥ bidx(v).

Consequently, V̂ �u) V̂ �v.

For any set V ⊆ vars(ϕ) we denote by Atϕ(V)Atϕ(V) the set of all atoms occurring in ϕ that contain
at least one variable from V . The following lemma follows immediately from Lemma 7.2.5.

Lemma 7.2.6. Let u, v ∈ vars(ϕ) be two variables for which bidx(u) ≤ bidx(v) and v 6∈ V̂ �u.

Then, Atϕ(V̂ �u) ∩Atϕ(V̂ �v) = ∅ and, hence, the sets V̂ �u and V̂ �v are separated in ϕ.

7.2. SKOLEMIZATION POLICIES TAKING WEAK DEPENDENCES INTO ACCOUNT 195

It is now our aim to show that any existentially quantified variable y∗ in ϕ depends only weakly
on any universally quantified v if there is no z such that V̂ �z contains both y∗ and v. Moreover,
we intend to exploit this insight when Skolemizing any of the existentially quantified variables in ϕ.
We start with a syntactic approach. A semantically-minded alternative will follow later.

Theorem 7.2.7. Let ϕ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ be a first-order sentence in standard form with
quantifier-free ψ. Consider any k, 1 ≤ k ≤ n, and let y∗ be some variable in ȳk. Let W Wbe the

union of all sets V̂ �vϕ that contain y∗ and let x̄∗ be a tuple containing exactly the variables x from
(x̄1 ∪ . . . ∪ x̄k) ∩W . Then, there is some positive integer m such that ϕ is equivalent to some
sentence of the form

ϕ′ := ∃f1 . . . fm.∀x̄1∃ȳ1 . . . ∀x̄k∃
(
ȳk\{y∗}

)
.
∨

1≤j≤m
ψ′
[
y∗/fj(x̄∗)

]
.

Moreover, every atom in ψ′ is a copy of some atom from ψ where bound variables are possibly
renamed after shifting quantifiers.

Proof sketch. Let W Wbe the complement of W , i.e. W := vars(ϕ) \W . By Lemmas 7.2.5 and 7.2.6,

we observe the following properties for all u ∈W and v ∈W :

(a) V̂ �uϕ ∩ V̂ �vϕ = ∅,

(b) V̂ �uϕ ⊆W and V̂ �vϕ ⊆W , and

(c) the sets V̂ �uϕ , V̂ �vϕ are separated in ϕ.

It follows that the sets W and W are separated in ϕ.
Let ūi, v̄i, w̄i, z̄i with i = 1, 2 be tuples of variables defined as follows:

ū1 contains all the variables from W ∩ (x̄1 ∪ . . . ∪ x̄k),

ū2 contains all the variables from W ∩ (x̄k+1 ∪ . . . ∪ x̄n),

v̄1 contains all the variables from W ∩ (ȳ1 ∪ . . . ∪ ȳk),

v̄2 contains all the variables from W ∩ (ȳk+1 ∪ . . . ∪ ȳn),

w̄1 contains all the variables from W ∩ (x̄1 ∪ . . . ∪ x̄k),

w̄2 contains all the variables from W ∩ (x̄k+1 ∪ . . . ∪ x̄n),

z̄1 contains all the variables from W ∩ (ȳ1 ∪ . . . ∪ ȳk) \ {y∗},

z̄2 contains all the variables from W ∩ (ȳk+1 ∪ . . . ∪ ȳn).

Then, the sets ū1∪ ū2∪ v̄1∪ v̄2 and w̄1∪ w̄2∪{y∗}∪ z̄1∪ z̄2 are separated in ϕ. Using the techniques
from the proofs of Lemmas 2.0.3 and 2.0.4, we can transform ϕ into an equivalent sentence ϕ′′ ϕ′′of
the form

ϕ′′ := ∀x̄1∃ȳ1 . . . ∀x̄k∃
(
ȳk\{y∗}

)
∃y∗.

∨
i∈I

χi(ū
1, v̄1) ∧ ηi(w̄1, y∗, z̄

1) ,

where I is some finite set of indices, the quantifiers for the variables in ū2 ∪ v̄2 have been shifted
into the subformulas χi(ū

1, v̄1), and the quantifiers for the variables in w̄2 ∪ z̄2 have been shifted
into the subformulas ηi(w̄

1, y∗, z̄1). Next, we show that ϕ′′ is equivalent to some sentence ϕ′ ϕ′that
has the form

ϕ′ := ∃f1 . . . fm.∀x̄1∃ȳ1 . . . ∀x̄k∃(ȳk\{y∗}).
∨

1≤k≤m

∨
i∈I

χi(ū
1, v̄1) ∧ ηi(w̄1, y∗, z̄

1)
[
y∗/fk(w̄1)

]
.

In the rest of the proof, we use ū1, v̄1, w̄1, z̄1 without superscripts, i.e. we write ū, v̄, w̄, z̄ instead.

196 CHAPTER 7. BEYOND THE CLASSICAL DECISION PROBLEM

Any model of ϕ′ is certainly a model of ϕ′′, i.e. we have ϕ′ |= ϕ′′. Let A be any model of ϕ′′.
Then, there are mappings σv̄ : A|ū| ×A|w̄| → A|v̄|, σy∗ : A|ū| ×A|w̄| → A, and σz̄ : A|ū| ×A|w̄| → A|z̄|

that resemble parts of some satisfying strategy that exists for ϕ′′. More precisely, we have

A |=
∨
i∈I

χi
(
ā, σv̄(ā, c̄)

)
∧ ηi

(
c̄, σy∗(ā, c̄), σz̄(ā, c̄)

)
for all ā ∈ A|ū| and c̄ ∈ A|w̄|. Every pair ā, b̄ of tuples ā ∈ A|ū| and b̄ ∈ A|v̄| can be characterized
by the setSā,b̄, Tc̄,d̄ Sā,b̄ :=

{
i ∈ I

∣∣ A |= χi(ā, b̄)
}

. Similarly, for every pair c̄, d̄ with c̄ ∈ A|w̄| and

d̄ ∈ A|z̄| we define the set Tc̄,d̄ :=
{
i ∈ I

∣∣ A |= ∃y∗. ηi(c̄, y∗, d̄)
)}

. Then, we observe that

A |= ∨
i∈I χi

(
ā, σv̄(ā, c̄)

)
∧ ∃y∗. ηi

(
c̄, y∗, σz̄(ā, c̄)

)
holds if and only if Sā,σv̄(ā,c̄) ∩ Tc̄,σz̄(ā,c̄) is not

empty.
For every c̄ there is a smallest integer mc̄ and two lists ā1, . . . , āmc̄ and T1, . . . , Tmc̄ of tuples

āk ∈ A|ū| and of sets Tk ⊆ I that satisfy the following properties.

(a) For every k we have Tk = Tc̄,σz̄(āk,c̄).

(b) For every ā the set Sā,σv̄(ā,c̄) shares at least one element with at least one of the Tk.

Hence, there exist mappings τz̄ : A|ū| × A|w̄| → A|z̄| and τy∗ : A|ū| × A|w̄| → A such that for every ā

(i) there is some k such that τz̄(ā, c̄) = σz̄(āk, c̄),

(ii) Tc̄,τz̄(ā,c̄) ∩ Sā,σv̄(ā,c̄) contains at least one index j, and

(iii) τy∗ is defined such that A |= ηj
(
c̄, τy∗(ā, c̄), τz̄(ā, c̄)

)
for some j ∈ Sā,σv̄(ā,c̄).

This entails A |= ∨i∈I χi(ā, σv̄(ā, c̄)
)
∧ ηi

(
c̄, τy∗(ā, c̄), τz̄(ā, c̄)

)
.

Let m := max{mc̄ | c̄ ∈ A|w̄|}. Notice that m ≤ |I|. Let τ1, . . . , τm be mappings with the
signature τk : A|w̄| → A such that for every c̄ and every k, 1 ≤ k ≤ mc̄, we set τk(c̄) := τy∗(āk, c̄) —
for k > mc̄ we can define τk(c̄) arbitrarily. Then, we observe

A |=
∨
i∈I

(
χi
(
ā, σv̄(ā, c̄)

)
∧

∨
1≤k≤m

ηi
(
c̄, τk(c̄), τz̄(ā, c̄)

))
|=|

∨
1≤k≤m

∨
i∈I

χi
(
ā, σv̄(ā, c̄)

)
∧ ηi

(
c̄, τk(c̄), τz̄(ā, c̄)

)
.

This entails that A satisfies ϕ′, which finishes the proof.

Notice that we used a quite different notion of fingerprint in the proof of Theorem 7.2.7 than
we have used before. This approach is encouraged by the special syntactic form of the matrix of ϕ′.

Theorem 7.2.7 is somewhat unsatisfactory, because the shape of the formula ψ′ can only be
determined by following the scheme described earlier (page 192), which in general requires a
lot of syntactic transformations. It seems to be much more appealing to find a purely semantic
argument (or a way of gracefully undoing the syntactic transformations), which in the end gives
us a non-standard Skolemization technique that requires only straightforward replacement of
subformulas. In the rest of the present section we shall make such an attempt and show the
following result.

Theorem 7.2.8. Let ϕ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ be a first-order sentence in standard form with
quantifier-free ψ. Consider any k, 1 ≤ k ≤ n, and let y∗ be some variable in ȳk. Let WW be the

union of all sets V̂ �vϕ that contain y∗ and let x̄∗ be a tuple containing exactly the variables x from
(x̄1 ∪ . . .∪ x̄k)∩W . Then, there is some positive integer m such that ϕ is equivalent to the sentence

ϕ′ := ∃f1 . . . fm.∀x̄1∃ȳ1 . . . ∀x̄k∃(ȳk \ {y∗}).
∨

1≤i≤m
∀x̄k+1∃x̄k+1 . . . ∀x̄n∃ȳn. ψ

[
y∗/fi(x̄∗)

]
.

7.2. SKOLEMIZATION POLICIES TAKING WEAK DEPENDENCES INTO ACCOUNT 197

Fix any structure A over the vocabulary of ϕ and consider the model-checking game associated
with ϕ over A. In the context of Theorem 7.2.8, we use the notion of strategy and related concepts
from Chapter 4. Again, let W := vars(ϕ) \W Wdenote the complement of W . By Lemmas 7.2.5

and 7.2.6, we know that W and W are separated in ϕ and that, hence, the sets of atoms At(W)
and At(W) are disjoint (see also the proof of Theorem 7.2.7). Recall that a strategy σ is a sequence
〈σ1, . . . , σn〉 of mappings σi : A|x̄1| × . . .× A|x̄i| → A|ȳi|. We divide every x̄i into two parts x̄1

i , x̄
2
i

x̄1
i , x̄2

i ,
ȳ1
i , ȳ2

i ,
σ1
i , σ2

i

such that x̄1
i = x̄i ∩W and x̄2

i = x̄i ∩W . Analogously, we divide every ȳi into two parts ȳ1
i , ȳ2

i . For

convenience, we also split every σi into two parts: σ1
i : A|x̄

1
1| × A|x̄

2
1| × . . .× A|x̄

1
i | × A|x̄

2
i | → A|ȳ

1
i |

and σ2
i : A|x̄

1
1| × A|x̄

2
1| × . . .× A|x̄

1
i | × A|x̄

2
i | → A|ȳ

2
i |.

Next, we define fingerprint functions that suit the setting of Theorem 7.2.8. In this situation
it is convenient to use two complementing kinds of fingerprints. On the one hand, the mappings
νk, ν

′
k assign fingerprints over the set At(W) to sequences of tuples ā1, c̄1, . . . , āk, c̄k with āi ∈ A|x̄

1
i |

and c̄i ∈ A|ȳ
1
i |. The mappings ξk, ξ

′
k, on the other hand, assign fingerprints over the set At(W) to

sequences of tuples b̄1, d̄1, . . . , b̄k, d̄k with b̄i ∈ A|x̄
2
i | and d̄i ∈ A|ȳ

2
i |.

Definition 7.2.9 (Fingerprint functions νk, ν
′
k). Based on ϕ and A, we define the family of

fingerprint functions νk, ν
′
k νk, ν′kwith 0 ≤ k ≤ n as follows

ν′n : A|x̄
1
1| × A|ȳ

1
1| × . . . × A|x̄

1
n| × A|ȳ

1
n| → PAt(W) such that for all tuples ā1, . . . , ān, c̄1, . . . , c̄n

and every A ∈ At(W) we have A(x̄1
1, ȳ

1
1, . . . , x̄

1
n, ȳ

1
n) ∈ νn(ā1, c̄1, . . . , ān, c̄n) if and only if

A |= A(ā1, c̄1, . . . , ān, c̄n);

νn : A|x̄
1
1| × A|ȳ

1
1| × . . .× A|x̄

1
n−1| × A|ȳ

1
n−1| × A|x̄

1
n| → P2At(W) such that for all tuples ā1, . . . , ān,

c̄1, . . . , c̄n−1 and every S ∈ PAt(W) we have S ∈ ν′n(ā1, c̄1, . . . , ān−1, c̄n−1, ān) if and only if
there is some c̄n such that ν′n(ā1, c̄1, . . . , ān−1, c̄n−1, ān, c̄n) = S;

ν′n−1 : A|x̄
1
1| × A|ȳ

1
1| × . . . × A|x̄

1
n−1| × A|ȳ

1
n−1| → P3At(W) such that for all tuples ā1, . . . , ān−1,

c̄1, . . . , c̄n−1 and every S ∈ P2At(W) we have S ∈ ν′n−1(ā1, c̄1, . . . , ān−1, c̄n−1) if and only if
there is some ān such that νn(ā1, c̄1, . . . , ān−1, c̄n−1, ān) = S;

...

ν′1 : A|x̄
1
1| × A|ȳ

1
1| → P2n−1At(W) such that for all tuples ā1, c̄1 and every S ∈ P2n−2At(W) we

have S ∈ ν′1(ā1, c̄1) if and only if there exist some ā2 such that ν2(ā1, c̄1, ā2) = S.

ν1 : A|x̄
1
1| → P2nAt(W) such that for every tuple ā1 and every S ∈ P2n−1At(W) we have

S ∈ ν1(ā1) if and only if there exist some c̄1 such that ν′1(ā1, c̄1) = S.

We denote the image of any fingerprint function ν′k by

im(ν′k),
im(νk)

im(ν′k) :=
{
ν′k(ā1, c̄1, . . . , āk, c̄k)

∣∣ āi ∈ A|x̄
1
i |, c̄i ∈ A|ȳ

1
i | for every i

}
.

Analogously, we denote the image of any fingerprint function νk by im(νk). Given a strategy σ, we
denote the image under σ of any fingerprint function ν′k by

imσ(ν′k),
imσ(νk)

imσ(ν′k) :=
{
ν′k
(
ā1, σ

1
1(ā1, b̄1), . . . , āk, σ

1
k(ā1, b̄1, . . . , āk, b̄k)

) ∣∣ āi ∈ A|x̄
1
i |, b̄i ∈ A|x̄

2
i | for every i

}
.

Analogously, we denote the image under σ of any fingerprint function νk by imσ(νk).

Definition 7.2.10 (Fingerprint functions ξk, ξ
′
k). Based on ϕ and A, we define the family of

fingerprint functions ξk, ξ
′
k ξk, ξ′kwith 0 ≤ k ≤ n as follows

ξ′n : A|x̄
2
1| × A|ȳ

2
1| × . . . × A|x̄

2
n| × A|ȳ

2
n| → PAt(W) such that for all tuples b̄1, . . . , b̄n, d̄1, . . . , d̄n

and every A ∈ At(W) we have A(x̄2
1, ȳ

2
1, . . . , x̄

2
n, ȳ

2
n) ∈ ξn(b̄1, d̄1, . . . , b̄n, d̄n) if and only if

A |= A(b̄1, d̄1, . . . , b̄n, d̄n);

ξn : A|x̄
2
1| × A|ȳ

2
1| × . . .× A|x̄

2
n−1| × A|ȳ

2
n−1| × A|x̄

2
n| → P2At(W) such that for all tuples b̄1, . . . , b̄n,

d̄1, . . . , d̄n−1 and every S ∈ PAt(W) we have S ∈ ξn(b̄1, d̄1, . . . , b̄n−1, d̄n−1, b̄n) if and only
if there is some d̄n such that ξ′n(b̄1, d̄1, . . . , b̄n−1, d̄n−1, b̄n, d̄n) = S;

198 CHAPTER 7. BEYOND THE CLASSICAL DECISION PROBLEM

ξ′n−1 : A|x̄
2
1| × A|ȳ

2
1| × . . . × A|x̄

2
n−1| × A|ȳ

2
n−1| → P3At(W) such that for all tuples b̄1, . . . , b̄n−1,

d̄1, . . . , d̄n−1 and every S ∈ P2At(W) we have S ∈ ξ′n−1(b̄1, d̄1, . . . , b̄n−1, d̄n−1) if and only
if there is some b̄n such that ξn(b̄1, d̄1, . . . , b̄n−1, d̄n−1, b̄n) = S;

...

ξ′1 : A|x̄
2
1| × A|ȳ

2
1| → P2n−1At(W) such that for all tuples b̄1, d̄1 and every S ∈ P2n−2At(W) we

have S ∈ ξ′1(b̄1, d̄1) if and only if there exist some b̄2 such that ξ2(b̄1, d̄1, b̄2) = S.

ξ1 : A|x̄
2
1| → P2nAt(W) such that for every tuple b̄1 and every S ∈ P2n−1At(W) we have S ∈ ξ1(b̄1)

if and only if there exist some d̄1 such that ξ′1(b̄1, d̄1) = S.

In analogy to Definition 7.2.9, we denote the image of any fingerprint function ξk by im(ξ′k)im(ξ′k),
im(ξk)

and
the image of any ξk by im(ξk). Moreover, given any strategy σ, we denote the image under σ of
any fingerprint function ξk by

imσ(ξ′k),
imσ(ξk)

imσ(ξ′k) :=
{
ξ′k
(
b̄1, σ

2
1(ā1, b̄1), . . . , b̄k, σ

2
k(ā1, b̄1, . . . , āk, b̄k)

) ∣∣ āi ∈ A|x̄
1
i |, b̄i ∈ A|x̄

2
i | for every i

}
,

and the image under σ of any fingerprint function ξk is denoted by imσ(ξk).

Next we show that, staring from any given strategy, we can construct a strategy with a similar
outcome that is uniform with respect to the just defined fingerprint functions.

Lemma 7.2.11. For every strategy σ = 〈σ1, . . . , σn〉 there is a strategy τ = 〈τ1, . . . , τn〉 that
satisfies the following conditions.

(a) τ is required to be ν-ξ-uniformν-ξ-uniform-
ity

. That is, for every k and all tuples ā1, ā
′
1 ∈ A|x̄

1
1|, . . . , āk, ā′k ∈

A|x̄
1
k| ∈ A|x̄

1
k|, b̄1, b̄

′
1 ∈ A|x̄

2
1|, . . . , b̄k, b̄′k ∈ A|x̄

2
k| we observe

τ1
k (ā1, b̄1, . . . , āk, b̄k) = τ1

k (ā1, b̄
′
1, . . . , āk, b̄

′
k)

and
τ2
k (ā1, b̄1, . . . , āk, b̄k) = τ2

k (ā′1, b̄1, . . . , ā
′
k, b̄k)

whenever we have

ν`
(
ā1, τ

1
1 (ā1, b̄1), . . . , ā`−1, τ

1
`−1(ā1, b̄1, . . . , ā`−1, b̄`−1), ā`

)
= ν`

(
ā′1, τ

1
1 (ā′1, b̄1), . . . , ā′`−1, τ

1
`−1(ā′1, b̄1, . . . , ā

′
`−1, b̄`−1), ā′`

)
and

ξ`
(
b̄1, τ

1
1 (ā1, b̄1), . . . , b̄`−1, τ

1
`−1(ā1, b̄1, . . . , ā`−1, b̄`−1), b̄`

)
= ξ`

(
b̄′1, τ

1
1 (ā1, b̄

′
1), . . . , b̄′`−1, τ

1
`−1(ā1, b̄

′
1, . . . , ā`−1, b̄

′
`−1), b̄′`

)
for every `, 1 ≤ ` ≤ k

(b) Outτ ⊆ Outσ.

Proof. For i = 1, . . . , n we define AiAi
αi,〈...〉

S
(k)

, T
(k)

as abbreviation of A|x̄
1
1| × A|x̄

2
1| × . . . × A|x̄

1
i | × A|x̄

2
i |. We

construct certain representatives α
k,〈S(k)

,T
(k)〉 ∈ Ak inductively as follows. The S

(k)
and T

(k)
stand

for a sequences S1 . . . S2k−1 and T1 . . . T2k−1 of 2k− 1 fingerprints each, satisfying S2k−1 ∈ S2k−2 ∈
. . . ∈ S1 and T2k−1 ∈ T2k−2 ∈ . . . ∈ T1.

Let k = 1.A
k,〈S(k)

,T
(k)〉 We partition A1 into sets A1,〈S1,T1〉 with S1 ∈ im(ν1) and T1 ∈ im(ξ1) by set-

ting A1,〈S1,T1〉 :=
{
〈ā1, b̄1〉 ∈ A|x̄

1
1| × A|x̄

2
1|
∣∣ ν1

(
ā1

)
= S1 and ξ1

(
b̄1

)
= T1

}
. We pick one

representative α1,〈S1,T1〉 ∈ A1,〈S1,T1〉 from every set A1,〈S1,T1〉.

Let k > 1. We construct subsets A
k,〈S(k)

,T
(k)〉 ⊆ Ak with S2i ∈ S2i−1 ∈ im(νi) and T2i ∈ T2i−1 ∈

7.2. SKOLEMIZATION POLICIES TAKING WEAK DEPENDENCES INTO ACCOUNT 199

im(ξi) for every i, 1 ≤ i ≤ k, by setting A
k,〈S(k)

,T
(k)〉 :={〈

c̄1,d̄1, . . . , c̄k−1, d̄k−1, āk, b̄k
〉 ∣∣

āk ∈ A|x̄
1
k|, b̄k ∈ A|x̄

2
k| and there is some

α
k−1,〈S(k−1)

,T
(k−1)〉 =

〈
c̄1, d̄1, . . . , c̄k−1, d̄k−1

〉
,

c̄i ∈ A|x̄
1
i | and d̄i ∈ A|x̄

2
i |, for every i, such that

ν′k−1

(
c̄1, σ

1
1(c̄1, d̄1), . . . , c̄k−1, σ

1
k−1(c̄1, d̄1, . . . , c̄k−1, d̄k−1)

)
= S2k−2,

ξ′k−1

(
d̄1, σ

2
1(c̄1, d̄1), . . . , d̄k−1, σ

2
k−1(c̄1, d̄1, . . . , c̄k−1, d̄k−1)

)
= T2k−2,

νk
(
c̄1, σ

1
1(c̄1, d̄1), . . . , c̄k−1, σ

1
k−1(c̄1, d̄1, . . . , c̄k−1, d̄k−1), āk

)
= S2k−1, and

ξk
(
d̄1, σ

2
1(c̄1, d̄1), . . . , d̄k−1, σ

2
k−1(c̄1, d̄1, . . . , c̄k−1, d̄k−1), b̄k

)
= T2k−1

}
.

We pick one representative α
k,〈S(k)

,T
(k)〉 from each nonempty A

k,〈S(k)
,T

(k)〉.

Having all the representatives α
k,〈S(k)

,T
(k)〉 at hand, we inductively construct τ , starting from

τ1
1 , τ

2
1 and going to τ1

n, τ
2
n.

Let k = 1. Consider any representative 〈c̄1, d̄1〉 := α1,〈S1,T1〉 for any fingerprints S1, T1. Let

S2 := ν′1
(
c̄1, σ

1
1(c̄1, d̄1)

)
and T2 := ξ′1

(
d̄1, σ

2
1(c̄1, d̄1)

)
.

For any tuple ā1 ∈ A|x̄
1
1| with ν1

(
ā1

)
= S1 we define τ1

1 (ā1, d̄1) as follows. Since S2 ∈ S1 =

ν1

(
ā1

)
, there is some tuple ē1 for which ν′1

(
ā1, ē1

)
= S2. We set τ1

1 (ā1, d̄1) := ē1. In case of
ā1 = c̄1, we make sure that ē1 = σ1

1(c̄1, d̄1), i.e. we set τ1
1 (α1,〈S1,T1〉) := σ1

1(α1,〈S1,T1〉). Hence,

we get ν′1
(
ā1, τ

1
1 (ā1, d̄1)

)
= S2.

Symmetriaclly, for any tuple b̄1 ∈ A|x̄
2
1| with ξ1

(
b̄1

)
= T1 we define τ2

1 (c̄1, b̄1) as follows. Since

T2 ∈ T1 = ξ1
(
b̄1

)
, there is some tuple f̄1 for which ξ′1

(
b̄1, f̄1

)
= T2. We set τ2

1 (c̄1, b̄1) := f̄1. In
case of b̄1 = d̄1, we make sure that f̄1 = σ2

1(c̄1, d̄1), i.e. we set τ2
1 (α1,〈S1,T1〉) := σ2

1(α1,〈S1,T1〉).
Hence, we get ξ′1

(
b̄1, τ

2
1 (c̄1, b̄1)

)
= T2.

Now, consider any two tuples ā1 ∈ A|x̄
1
1|, b̄1 ∈ A|x̄

2
1|, and let S1 := ν1(ā1) and T1 := ξ1(b̄1).

Moreover, let 〈c̄1, d̄1〉 := α1,〈S1,T1〉. We set and τ1
1 (ā1, b̄1) := τ1

1 (ā1, d̄1) and τ2
1 (ā1, b̄1) :=

τ2
1 (c̄1, b̄1).

Let k > 1. Consider any representative 〈c̄1, d̄1, . . . , c̄k, d̄k〉 := α
1,〈S(k)

,T
(k)〉 for any two sequences of

fingerprints S
(k)
, T

(k)
. Let S2k := ν′k

(
c̄1, σ

1
1(c̄1, d̄1), . . . , c̄k, σ

1
k(c̄1, d̄1, . . . , c̄k, d̄k)

)
and T2k :=

ξ′k
(
d̄1, σ

2
1(c̄1, d̄1), . . . , d̄k, σ

2
k(c̄1, d̄1, . . . , c̄k, d̄k)

)
.

For any sequence of tuples ā1, . . . , āk with
ν`
(
ā1, τ

1
1 (ā1, d̄1), . . . , ā`−1, τ

1
`−1(ā1, d̄1, . . . , ā`−1, d̄`−1), ā`

)
= S2`−1

for every `, 1 ≤ ` ≤ k, we define τ1
1 (ā1, d̄1, . . . , āk, d̄k) as follows. Since S2k ∈ S2k−1, there is

some tuple ēk for which
ν′k
(
ā1, τ

1
1 (ā1, d̄1), . . . , āk−1, τ

1
k−1(ā1, d̄1, . . . , āk−1, d̄k−1), āk, ēk

)
= S2k.

We set τ1
k (ā1, d̄1, . . . , āk, d̄k) := ēk. In case of āi = c̄i for every i, we make sure that

ēk = σ1
k(c̄1, d̄1, . . . , c̄k, d̄k), i.e. we set τ1

k (α
k,〈S(k)

,T
(k)〉) := σ1

k(α
k,〈S(k)

,T
(k)〉). Hence, we get

ν′k
(
ā1, τ

1
1 (ā1, d̄1), . . . , āk−1, τ

1
k−1(ā1, d̄1, . . . , āk−1, d̄k−1), āk, τ

1
k (ā1, d̄1, . . . , āk, d̄k)

)
= S2k.

Symmetrically, for any sequence of tuples b̄1, . . . , b̄k with
ξ`
(
b̄1, τ

2
1 (c̄1, b̄1), . . . , b̄`−1, τ

2
`−1(c̄1, b̄1, . . . , c̄`−1, b̄`−1), b̄`

)
= T2`−1

for every `, 1 ≤ ` ≤ k, we define τ2
k (c̄1, b̄1, . . . , c̄k, b̄k) as follows. Since T2k ∈ T2k−1, there is

some tuple f̄k for which
ξ′k
(
b̄1, τ

2
1 (c̄1, b̄1), . . . , āk−1, τ

2
k−1(c̄1, b̄1, . . . , c̄k−1, b̄k−1), b̄k, f̄k

)
= T2k.

We set τ2
k (c̄1, b̄1, . . . , c̄k, b̄k) := f̄k. In case of b̄i = d̄i for every i, we make sure that

200 CHAPTER 7. BEYOND THE CLASSICAL DECISION PROBLEM

f̄k = σ2
k(c̄1, d̄1, . . . , c̄k, d̄k), i.e. we set τ2

k (α
k,〈S(k)

,T
(k)〉) := σ2

k(α
k,〈S(k)

,T
(k)〉). Hence, we get

ξ′k
(
b̄1, τ

2
1 (c̄1, b̄1), . . . , b̄k−1, τ

2
k−1(c̄1, b̄1, . . . , c̄k−1, b̄k−1), b̄k, τ

2
k−1(c̄1, b̄1, . . . , c̄k, b̄k)

)
= T2k.

Now, consider any sequence of tuples ā1, b̄1, . . . , āk, b̄k with āi ∈ A|x̄
1
i | and b̄i ∈ A|x̄

2
i | for every

i. Let S
(k)

:= S1 . . . S2k−1 be a sequence of fingerprints such that
S2i−1 := νi

(
ā1, τ

1
1 (ā1, b̄1), . . . , āi−1, τ

1
i−1(ā1, b̄1, . . . , āi−1, b̄i−1), āi

)
and

S2i := ν′i
(
ā1, τ

1
1 (ā1, b̄1), . . . , āi−1, τ

1
i−1(ā1, b̄1, . . . , āi−1, b̄i−1), āi, τ

1
i (ā1, b̄1, . . . , āi, b̄i)

)
for every i, 1 ≤ i ≤ k − 1, and, moreover,

S2k−1 := νk
(
ā1, τ

1
1 (ā1, b̄1), . . . , āk−1, τ

1
k−1(ā1, b̄1, . . . , āk−1, b̄k−1), āk

)
.

In addition, let T
(k)

:= T1 . . . T2k−1 be a sequence of fingerprints such that
T2i−1 := ξi

(
b̄1, τ

2
1 (ā1, b̄1), . . . , b̄i−1, τ

2
i−1(ā1, b̄1, . . . , āi−1, b̄i−1), b̄i

)
and

T2i := ξ′i
(
b̄1, τ

2
1 (ā1, b̄1), . . . , b̄i−1, τ

2
i−1(ā1, b̄1, . . . , āi−1, b̄i−1), b̄i, τ

2
i (ā1, b̄1, . . . , āi, b̄i)

)
for every i, 1 ≤ i ≤ k − 1, and, moreover,

T2k−1 := ξk
(
b̄1, τ

2
1 (ā1, b̄1), . . . , b̄k−1, τ

2
k−1(ā1, b̄1, . . . , āk−1, b̄k−1), b̄k

)
.

Suppose there exists a representative 〈c̄1, d̄1, . . . , c̄k, d̄k〉 := α
k,〈S(k)

,T
(k)〉 — we show in Claim II

that this is always the case. Then, we set τ1
k (ā1, b̄1, . . . , āk, b̄k) := τ1

k (ā1, d̄1, . . . , āk, d̄k) and
τ2
k (ā1, b̄1, . . . , āk, b̄k) := τ2

k (c̄1, b̄1, . . . , c̄k, b̄k).

Claim Ia: For all k, 1 ≤ k ≤ n, we have imτ

(
νk
)
⊆ imσ

(
νk
)

(where we consider imτ (νk) to be
defined such that any value νk(. . .) can only enter imτ (νk) if all of its arguments are defined).

Proof: Fix some νk and let S ∈ imτ (νk). Then, there are tuples ā1 ∈ A|x̄
1
1|, . . . , āk ∈ A|x̄

1
k|,

b̄1 ∈ A|x̄
2
1|, . . . , b̄k−1 ∈ A|x̄

2
k−1| such that τ1(ā1, b̄1), . . . , τk−1(ā1, b̄1, . . . , āk−1, b̄k−1) are defined

and we have
S = νk

(
ā1, τ

1
1 (ā1, b̄1), . . . , āk−1, τ

1
k−1(ā1, b̄1, . . . , āk−1, b̄k−1), āk

)
.

By construction of τ , the mapping τ1
k−1 is defined in such a way that

ν′k−1

(
ā1, τ

1
1 (ā1, b̄1), . . . , āk−1, τ

1
k−1(ā1, b̄1, . . . , āk−1, b̄k−1)

)
= ν′k−1

(
c̄1, τ

1
1 (c̄1, d̄1), . . . , c̄k−1, τ

1
k−1(c̄1, d̄1, . . . , c̄k−1, d̄k−1)

)
= ν′k−1

(
c̄1, σ

1
1(c̄1, d̄1), . . . , c̄k−1, σ

1
k−1(c̄1, d̄1, . . . , c̄k−1, d̄k−1)

)
for a certain representative 〈c̄1, d̄1, . . . , c̄k−1, d̄k−1〉 = α

k−1,〈S(k−1)
,T

(k−1)〉.

Since S ∈ ν′k−1

(
ā1, τ

1
1 (ā1, b̄1), . . . , āk−1, τ

1
k−1(ā1, b̄1, . . . , āk−1, b̄k−1)

)
, the definition of ν′k−1

entails that there is some tuple ā′k ∈ A|x̄
1
k| such that

νk
(
c̄1, σ

1
1(c̄1, d̄1), . . . , c̄k−1, σ

1
k−1(c̄1, d̄1, . . . , c̄k−1, d̄k−1), ā′k

)
= S.

Consequently, we have S ∈ imσ(νk). ♦

Claim Ib: For all k, 1 ≤ k ≤ n, we have imτ

(
ξk
)
⊆ imσ

(
ξk
)

(where we consider imτ (ξk) to be
defined such that any value ξk(. . .) can only enter imτ (ξk) if all of its arguments are defined).

Proof: The proof is similar to the proof of Claim Ia. ♦

Claim II: For every k, 1 ≤ k ≤ n, and all tuples ā1, . . . , āk, b̄1, . . . , b̄k there is a (unique)
representative α

k,〈S(k)
,T

(k)〉 such that

S1 = ν1

(
ā1

)
,

S2 = ν′1
(
ā1, τ

1
1 (ā1, b̄1)

)
,

...

S2k−1 = νk
(
ā1, τ

1
1 (ā1, b̄1), . . . , āk−1, τ

1
k−1(ā1, b̄1, . . . , āk−1, b̄k−1), āk

)
,

7.2. SKOLEMIZATION POLICIES TAKING WEAK DEPENDENCES INTO ACCOUNT 201

and

T1 = ξ1
(
b̄1

)
,

T2 = ξ′1
(
b̄1, τ

2
1 (ā1, b̄1)

)
,

...

T2k−1 = ξk
(
b̄1, τ

2
1 (ā1, b̄1), . . . , b̄k−1, τ

2
k−1(ā1, b̄1, . . . , āk−1, b̄k−1), b̄k

)
.

Proof: We proceed by induction on k.

Let k = 1. Consider any pair of tuples ā1, b̄1 and set S1 := ν1

(
ā1

)
and T1 := ξ1

(
b̄1

)
.

Obviously, we have S1 ∈ im(ν1) and T1 ∈ im(ξ1) and 〈ā1, b̄1〉 ∈ A1,〈S1,T1〉. Since the set
is nonempty, there is a representative α1,〈S1,T1〉 ∈ A1,〈S1,T1〉.

Let k > 1. Consider any sequence of tuples ā1, . . . , āk, b̄1, . . . , b̄k. Let the sequences

S
(k)

:= S1 . . . S2k−1 and T
(k)

:= T1 . . . T2k−1 be defined as indicated in the claim. By
Claim Ia and Claim Ib, we have S2j−1 ∈ imτ (νj) ⊆ imσ(νj) ⊆ im(νj) and T2j−1 ∈
imτ (ξj) ⊆ imσ(ξj) ⊆ im(ξj) for every j, 1 ≤ j ≤ k. Moreover, the definitions of the νj
and the ξj entail that S2j ∈ S2j−1 and T2j ∈ T2j−1 for every j, 1 ≤ j ≤ k. Therefore,
we have constructed the subset A

k,〈S(k)
,T

(k)〉 ⊆ Ak when defining representatives. We

next show that this set is not empty.

By induction, there is some representative 〈c̄1, d̄1, . . . , c̄k−1, d̄k−1〉 := α
k−1,〈S(k−1)

,T
(k−1)〉.

More precisely, the definition of τ entails

S2k−3 = νk−1

(
c̄1, σ

1
1(c̄1, d̄1), . . . , c̄k−2, σ

1
k−2(c̄1, d̄1, . . . , c̄k−2, d̄k−2), c̄k−1

)
= νk−1

(
c̄1, τ

1
1 (c̄1, d̄1), . . . , c̄k−2, τ

1
k−2(c̄1, d̄1, . . . , c̄k−2, d̄k−2), c̄k−1

)
,

and

T2k−3 = ξk−1

(
d̄1, σ

2
1(c̄1, d̄1), . . . , d̄k−2, σ

2
k−2(c̄1, d̄1, . . . , c̄k−2, d̄k−2), d̄k−1

)
= ξk−1

(
d̄1, τ

1
1 (c̄1, d̄1), . . . , d̄k−2, τ

2
k−2(c̄1, d̄1, . . . , c̄k−2, d̄k−2), d̄k−1

)
.

The mappings τ1
k−1 and τ2

k−1 are defined in such a way that

S2k−2 = ν′k−1

(
ā1, τ

1
1 (ā1, b̄1), . . . , āk−1, τ

1
k−1(ā1, b̄1, . . . , āk−1, b̄k−1)

)
= ν′k−1

(
ā1, τ

1
1 (ā1, d̄1), . . . , āk−1, τ

1
k−1(ā1, d̄1, . . . , āk−1, d̄k−1)

)
= ν′k−1

(
c̄1, σ

1
1(c̄1, d̄1), . . . , c̄k−1, σ

1
k−1(c̄1, d̄1, . . . , c̄k−1, d̄k−1)

)
and

T2k−2 = ξ′k−1

(
b̄1, τ

2
1 (ā1, b̄1), . . . , b̄k−1, τ

2
k−1(ā1, b̄1, . . . , āk−1, b̄k−1)

)
= ξ′k−1

(
b̄1, τ

2
1 (c̄1, b̄1), . . . , b̄k−1, τ

2
k−1(c̄1, b̄1, . . . , c̄k−1, b̄k−1)

)
= ξ′k−1

(
d̄1, σ

2
1(c̄1, d̄1), . . . , d̄k−1, σ

2
k−1(c̄1, d̄1, . . . , c̄k−1, d̄k−1)

)
By definition of ν′k−1 and ξ′k−1 and the fact that S2k−1 ∈ S2k−2 and T2k−1 ∈ T2k−2,

there are tuples ā′k, b̄
′
k such that

S2k−1 = νk
(
c̄1, σ

1
1(c̄1, d̄1), . . . , c̄k−1, σ

1
k−1(c̄1, d̄1, . . . , c̄k−1, d̄k−1), ā′k

)
and

T2k−1 = ξk
(
d̄1, σ

2
1(c̄1, d̄1), . . . , d̄k−1, σ

2
k−1(c̄1, d̄1, . . . , c̄k−1, d̄k−1), b̄′k

)
.

Therefore, we have 〈c̄1, d̄1, . . . , c̄k−1, d̄k−1, ā
′
k, b̄
′
k〉 ∈ A

k,〈S(k)
,T

(k)〉. Hence, A
k,〈S(k)

,T
(k)〉 is

not empty. This means we have defined some — indeed, exactly one — representative
α
k,〈S(k)

,T
(k)〉. ♦

Claim III: τ satisfies (a), i.e. it is ν-ξ-uniform.

202 CHAPTER 7. BEYOND THE CLASSICAL DECISION PROBLEM

Proof: By construction of τ . ♦

It remains to show Outτ ⊆ Outσ. Let U ∈ Outτ , i.e. there exist tuples ā1, . . . , ān, b̄1, . . . , b̄n
such that U = outτ (ā1, b̄1, . . . , ān, b̄n). Since the sets At(W) and At(W) are disjoint, we may
partition U into two (possibly empty) parts S2n := U ∩ At(W) and T2n := U ∩ At(W) which
constitute the fingerprints

S2n = ν′n
(
ā1, τ

1
n(ā1, b̄1), . . . , ān, τ

1
n(ā1, b̄1, . . . , ān, b̄n)

)
and

T2n = ξ′n
(
b̄1, τ

2
n(ā1, b̄1), . . . , b̄n, τ

2
n(ā1, b̄1, . . . , ān, b̄n)

)
.

Claim II guarantees the existence of some representative 〈c̄1, d̄1, . . . , c̄n, d̄n〉 := α
n,〈S(n)

,T
(n)〉 such

that
S2n−1 = νn

(
c̄1, τ

1
n(c̄1, d̄1), . . . , c̄n−1, τ

1
n−1(c̄1, d̄1, . . . , c̄n−1, d̄n−1), c̄n

)
and

T2n−1 = ξn
(
d̄1, τ

2
n(c̄1, d̄1), . . . , d̄n−1, τ

2
n−1(c̄1, d̄1, . . . , c̄n−1, d̄n−1), d̄n

)
.

The mappings τ1
n, τ

2
n are defined in such a way that

S2n = ν′n
(
ā1, τ

1
n(ā1, b̄1), . . . , ān, τ

1
n(ā1, b̄1, . . . , ān, b̄n)

)
= ν′n

(
c̄1, σ

1
n(c̄1, d̄1), . . . , c̄n, σ

1
n(c̄1, d̄1, . . . , c̄n, d̄n)

)
and

T2n = ξ′n
(
b̄1, τ

2
n(ā1, b̄1), . . . , b̄n, τ

2
n(ā1, b̄1, . . . , ān, b̄n)

)
= ξ′n

(
d̄1, σ

2
n(c̄1, d̄1), . . . , d̄n, σ

2
n(c̄1, d̄1, . . . , c̄n, d̄n), d̄n

)
.

Consequently, we have U = outτ (ā1, b̄1, . . . , ān, b̄n) = outσ(c̄1, d̄1, . . . , c̄n, d̄n) ∈ Outσ.
Altogether, it follows that Outτ ⊆ Outσ.

Lemma 7.2.11 entails the existence of satisfying strategies that are uniform simultaneously for
the fingerprint functions νk, ν

′
k, ξk, ξ

′
k, if there are satisfying strategies at all. Since this uniformity

applies with respect to finitely many fingerprints, the existence of such strategies reveals the weak
character of certain dependences in the sentence ϕ. The next lemma makes this explicit.

Lemma 7.2.12. Suppose that A is a model of ϕ and let σ be a strategy that is satisfying for ϕ
under A. There is some sequence m1, . . . ,mn of positive integers and there is a strategy τ and
a family of mappings ρjk : A|x̄

2
1| × . . . × A|x̄

2
k| → A|ȳ

2
k| with 1 ≤ k ≤ n and 1 ≤ j ≤ mk such the

following conditions are met.

(a) For every k and for all sequences ā1, . . . , āk, b̄1, . . . , b̄k there is some j such that we have
τ2
k (ā1, b̄1, . . . , āk, b̄k) = ρjk(b̄1, . . . , b̄k).

(b) The strategy τ is satisfying for ϕ under A.

Proof. Without loss of generality, we assume that σ is ν-ξ-uniform (cf. Requirement (a) in Lemma
7.2.11). In other words, we assume that σ is ν-ξ-uniform. Before we start constructing τ , we define

the following notation. Let ā1, . . . , āk and b̄1, . . . , b̄k be sequences with āi ∈ A|x̄
1
i | and b̄i ∈ A|x̄

2
i |. By

νk(ā1, b̄1, . . . , āk, b̄k)νk we mean the pair 〈S1 . . . S2k−1, T1 . . . T2k−1〉 such that for every i, 1 ≤ i ≤ k,
we have

S2i−1 := νk
(
ā1, σ

1
1(ā1, b̄2), . . . , āk−1, σ

1
k−1(ā1, b̄1, . . . , āk−1, b̄k−1), āk

)
,

S2i := ν′k
(
ā1, σ

1
1(ā1, b̄2), . . . , āk−1, σ

1
k−1(ā1, b̄1, . . . , āk−1, b̄k−1), āk, σ

1
k(ā1, b̄1, . . . , āk, b̄k)

)
,

T2i−1 := ξk
(
b̄1, σ

2
1(ā1, b̄2), . . . , b̄k−1, σ

2
k−1(ā1, b̄1, . . . , āk−1, b̄k−1), b̄k

)
,

T2i := ξ′k
(
b̄1, σ

2
1(ā1, b̄2), . . . , b̄k−1, σ

2
k−1(ā1, b̄1, . . . , āk−1, b̄k−1), b̄k, σ

2
k(ā1, b̄1, . . . , āk, b̄k)

)
.

We now show that there is a witness for the strategy τ . For every k, let mkmk be the number of
pairs 〈S1 . . . S2k−1, T1 . . . T2k−1〉 for which

S2i−1 ∈ imσ(νi) and S2i ∈ imσ(ν′i) for every i, and S2k−1 ∈ S2k−2 ∈ . . . ∈ S1,

7.2. SKOLEMIZATION POLICIES TAKING WEAK DEPENDENCES INTO ACCOUNT 203

T2i−1 ∈ imσ(ξi) and T2i ∈ imσ(ξ′i) for every i, and T2k−1 ∈ T2k−2 ∈ . . . ∈ T1.

We associate with each such pair 〈S1 . . . S2k−1, T1 . . . T2k−1〉 one mapping ρjk ρjkand set

ρjk(b̄1, . . . , b̄k) := σ2
k(ā1, b̄1, . . . , āk, b̄k)

for all sequences b̄1, . . . , b̄k for which there exists a sequence ā1, . . . , āk with νk(ā1, b̄1, . . . , āk, b̄k) =
〈S1 . . . S2k−1, T1 . . . T2k−1〉. For all other b̄1, . . . , b̄k, ρjk shall be undefined. By ν-ξ-uniformity of σ,

the ρjk are well defined.
It is now easy to see that we can set τ1

k := σ1
k and τ2

k := σ2
k for every k.

Now consider again the two sentences ϕ = ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ and

ϕ′ := ∃f1 . . . fm.∀x̄1∃ȳ1 . . . ∀x̄k∃(ȳk \ {y∗}).
∨

1≤i≤m
∀x̄k+1∃x̄k+1 . . . ∀x̄n∃ȳn. ψ

[
y∗/fi(x̄∗)

]
from Theorem 7.2.8, where we use m := mk with mk being defined like in the proof of Lemma 7.2.12
as the number of pairs 〈S1 . . . S2k−1, T1 . . . T2k−1〉 for which we have

S2i−1 ∈ imσ(νi) and S2i ∈ imσ(ν′i) for every i, and S2k−1 ∈ S2k−2 ∈ . . . ∈ S1,

T2i−1 ∈ imσ(ξi) and T2i ∈ imσ(ξ′i) for every i, and T2k−1 ∈ T2k−2 ∈ . . . ∈ T1.

It is easy to see that we have ϕ′ |= ϕ.
Let A be a model of ϕ. Then, there exists a strategy σ that is satisfying for ϕ under A.

Applying Lemma 7.2.12, we can assume that σ is ν-ξ-uniform. In particular, there are mappings
ρ1, . . . , ρm with ρj : A|x̄

2
1|× . . .×A|x̄

2
k| → ȳ2

k that exhibit the following properties. For all sequences
ā1, . . . , āk, b̄1, . . . , b̄k there is some j for which we have

A, [x̄1
1 7→ā1, x̄

2
1 7→b̄1, . . . , x̄

1
k 7→āk, x̄

2
k 7→b̄k,

ȳ1
1 7→σ1

1(ā1, b̄1), . . . , ȳ1
k−1 7→σ1

k−1(ā1, b̄1, . . . , āk−1, b̄k−1),

ȳ2
1 7→σ2

1(ā1, b̄1), . . . , ȳ2
k−1 7→σ2

k−1(ā1, b̄1, . . . , āk−1, b̄k−1),

ȳ2
k 7→ρj(b̄1, . . . , b̄k)] |= ∀x̄k+1∃ȳk+1 . . . ∀x̄n∃ȳn. ψ .

Since x̄∗ = (x̄1 ∪ . . . ∪ x̄k) ∩W coincides with 〈x̄2
1, . . . , x̄

2
k〉 and because of y∗ ∈ ȳk ∩W = ȳ2

k, this
implies that A |= ϕ′. Therefore, we have ϕ |= ϕ′.

This finishes the proof of Theorem 7.2.8.

Notice that Theorem 7.2.8 does not subsume the results that we have obtained for GBSR and
GAF in Chapter 4. Even in the setting of SF the theorem would not suffice to show decidability.
Some dependences can still be removed and the theorem strengthened. For a more fine-grained
analysis of dependences, it might make sense to define W differently — see the conjecture below.
As already mentioned earlier, the set V̂ �v overapproximates the set of variables that must lie in
the scope of the quantifier Qv. For example, in the sentence ∀u∀v∃y. P (u, v) ∧ R(u, y) we have

V̂ �u = {u, v, y}, V̂ �v = {v}, and V̂ �y = {y}. Evidently, y could very well be outside of the scope

of ∀v, although V̂ �u does not indicate this; however, V̂ �v does indicate it. In contrast to the
setting of Theorem 7.2.8, there is no neat partition of the set of atoms into one part that exclusively
contains variables y only weakly depends on and a disjoint part collecting the variables having
strong ties with y.

Compared to Theorem 7.2.7, Theorem 7.2.8 can already be considered an advance. Nevertheless,
it leaves plenty of room for improvement. Using more sophisticated arguments, one should be able
to proof the following strengthening.

Conjecture 7.2.13. Let ϕ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ be a first-order sentence in standard form with
quantifier-free ψ. Consider any k, 1 ≤ k ≤ n, and let y∗ be some variable in ȳk. Let x̄∗ be a tuple

204 CHAPTER 7. BEYOND THE CLASSICAL DECISION PROBLEM

containing exactly the variables x from x̄1 ∪ . . . ∪ x̄k for which we have y∗ ∈ V̂ �x. Then, there is
some positive integer m such that ϕ is equivalent to the sentence

ϕ′ := ∃f1 . . . fm.∀x̄1∃ȳ1 . . . ∀x̄k∃(ȳk\{y∗}).
∨

1≤i≤m
∀x̄k+1∃x̄k+1 . . . ∀x̄n∃ȳn. ψ

[
y∗/fi(x̄∗)

]
.

Intuitively, the conjecture states that the existentially quantified y∗ cannot depend strongly on
any universally quantified variable v with y∗ 6∈ V̂ �v. Moreover, in such cases we replace y∗ with
several, though finitely many, Skolem terms that need not have v as an argument.

Further room for improvement may be provided when taking Boolean structure into account,
either similarly to the approach outlined in Section 3.6 or in a yet-to-be developed way.

7.3 Elimination of Second-Order Quantifiers in Second-Order
SF

Elimination of second-order quantifiers can be conceived as a generalization of the satisfiability
problem of first-order logic. Consider any relational first-order sentence ϕ and let P1, . . . , Pn be an
enumeration of all the predicate symbols occurring in ϕ. Now consider the second-order sentence
∃P1 . . . Pn. ϕ. Elimination of all second-order quantifiers in ∃P1 . . . Pn. ϕ yields an equivalent first-
order sentence ψ in which the equality sign is the only predicate symbol. In other words, ψ is
an MFO≈ sentence over the empty vocabulary. Therefore, we can decide satisfiability of ψ. In
summary, any procedure that can eliminate all second-order quantifiers in ∃P1 . . . Pn. ϕ can be
turned into a decision procedure for the first-order sentence ϕ.

Second-order quantifier elimination has a number of applications in knowledge representation and
automated reasoning, see, e.g., [GSS08, Wer15b, Wer15a, KRSW17]. It is a classical result that the
monadic fragment of second-order logic (MSO) admits elimination of second-order quantifiers. This
was discovered by Löwenheim [Löw15], Skolem [Sko19], and Behmann [Beh22]. As almost all of the
novel fragments we introduced in Section 3 generalize MFO while retaining a decidable satisfiability
problem, it is natural to ask whether second-order versions of these fragments admit elimination
of second-order quantifiers. We shall only sketch a preliminary answer to this questions for the
simplest fragment and, hence, focus on SF in the present section. Interestingly, already Ackermann
gave a counterexample. In an article from 1935 [Ack35], Ackermann argued that the quantifier ∃P
in the following formula cannot be eliminated: ∃P. P (x) ∧ ¬P (y) ∧ ∀uv. ¬P (u) ∨ P (v) ∨ ¬N(u, v).
The only atom in this formula that could potentially break the separateness condition is N(u, v).
But since both variables u and v are universally quantified, universal variables are separated from
existential variables and the sentence is in SF.

Although Ackermann’s observation seems to be discouraging, it only means that there is,
apparently, no straight-forward way of extending the quantifier-elimination techniques that work for
MSO to a second-order version of SF. In the following we shall present certain syntactic restrictions
that allow the elimination of existentially quantified unary predicate symbols in separated formulas.
To emphasize it again: the presented results are of a preliminary character and are not yet fully
developed. They provide only a first hint at some directions that might be worth following in
future work.

Our starting point will be the equivalence-preserving transformation from SF into BSR, which
we need to adapt only slightly to the needs of second-order quantifier elimination.

Lemma 7.3.1. Let ϕ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ(x̄, ȳ, z̄) be a relational first-order formula in standard
form with quantifier-free ψ. We set x̄ := x̄1 ∪ . . . ∪ x̄n and ȳ := ȳ1 ∪ . . . ∪ ȳn and we assume
that every variable in the quantifier prefix also occurs in the matrix. Let x̃1, . . . , x̃m1

⊆ x̄ and
ỹ1, . . . , ỹm2 ⊆ ȳ be partitions of the sets x̄ and ȳ, respectively, such that the x̃1, . . . , x̃m1 , ỹ1, . . . , ỹm2

are nonempty, pairwise disjoint, and pairwise separated in ϕ. Then, ϕ is equivalent to a finite
disjunction of formulas of the form(∧

k

∀x̃′′k .
∨
`

Kk`(x̃
′′
k , z̄)

)
∧
(∧
i

∃ỹ′′i .
∧
j

Lij(ỹ
′′
i , z̄)

)
,

7.3. ELIMINATION OF SECOND-ORDER QUANTIFIERS IN SECOND-ORDER SF 205

where the Kk` and the Lij are literals whose atoms are renamed variants of atoms that occur in ϕ.
Moreover, any two sets x̃′′k1

, x̃′′k2
with k1 6= k2, ỹ′′i1 , ỹ

′′
i2

with i1 6= i2, and x̃′′k , ỹ
′′
i are separated in the

resulting formula.

Proof. For convenience, we pretend that z̄ is empty. The argument works for nonempty z̄ as well.

We transform ϕ into an equivalent CNF formula of the form

∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn.
∧
i∈I

(
χi(x̄) ∨

∨
k∈Ji

Lk(ȳ)
)

where I I, Ji, Lkand the Ji are finite, pairwise disjoint sets of indices, the subformulas χi are disjunctions
of literals, and the Lk are literals. By Lemma 3.2.4, we can construct an equivalent formula of the
form

ϕ′ ϕ′:= ∀x̄1∃ȳ1 . . . ∀x̄n.
∧
S⊆I
S 6=∅

(∨
i∈S

χi(x̄)
)
∨
∨
f∈F

(
∃ȳn.

∧
i∈S

ηf(i)(ȳ)
)

where F is the set of all selection functions over the index sets Ji, i ∈ I. We shift the universal
quantifier block ∀x̄n inwards and thus obtain

ϕ′′ ϕ′′:= ∀x̄1∃ȳ1 . . . ∃ȳn−1.
∧
S⊆I
S 6=∅

(
∀x̄n.

∨
i∈S

χi(x̄)
)
∨
∨
f∈F

(
∃ȳn.

∧
i∈S

ηf(i)(ȳ)
)
.

We now iterate these two steps in an alternating fashion until all quantifier blocks have been shifted

inwards in the described way. The constituents of the result ϕ(3) ϕ(3):=
∧
q

(
χ

(3)
q ∨

∨
p η

(3)
qp

)
of this

process have the form

χ(3)
q χ

(3)
q= ∀x̄1.

∨
`1

∀x̄2.
∨
`2

(
. . .
(∨
`n−1

∀x̄n.
∨

i∈S`1,...,`n−1

χi(x̄)
)
. . .
)

where the S`1,...,`n−1 are certain subsets of I and the χi are still disjunctions of literals, and

η(3)
qp η

(3)
qp= ∃ȳ1.

∧
`1

∃ȳ2.
∧
`2

(
. . .
(∧
`n−1

∃ȳn.
∧

k∈J`1,...,`n−1

Lk(ȳ)
)
. . .
)

where the J`1,...,`n−1 are certain subsets of
⋃
i∈I Ji.

By definition of the sets x̃1, . . . , x̃m1 , which are pairwise separated in the χ
(3)
q , we can rewrite

every χ
(3)
q into the following form by regrouping the inner disjuncts:

χ(4)
q χ

(4)
q= ∀x̄1.

∨
`1

∀x̄2.
∨
`2

(
. . .
(∨
`n−1

∀x̄n.
∨

1≤i′≤m1

χ′¯̀i′(x̃i′)
)
. . .
)

where the χ′¯̀i′ are (possibly empty) disjunctions of literals. Analogously, we rewrite every η
(3)
qp into

the form

η(4)
qp η

(4)
qp= ∃ȳ1.

∧
`1

∃ȳ2.
∧
`2

(
. . .
(∧
`n−1

∃ȳn.
∧

1≤j′≤m2

η′¯̀j′(ỹj′)
)
. . .
)

where the η′¯̀j′ are (possibly empty) conjunctions of literals.

206 CHAPTER 7. BEYOND THE CLASSICAL DECISION PROBLEM

We then observe the following equivalences, starting from χ
(4)
q :

∀x̄1.
∨
`1

∀x̄2.
∨
`2

(
. . .
(∨
`n−1

∀x̄n.
∨

1≤i′≤m1

χ′¯̀i′(x̃i′)
)
. . .
)

|=| ∀x̄1.
∨
`1

∀x̄2.
∨
`2

(
. . .
(∨
`n−1

∨
1≤i′≤m1

∀(x̄n ∩ x̃i′). χ
′
¯̀i′(x̃i′)

)
. . .
)

|=| ∀x̄1.
∨
`1

∀x̄2.
∨
`2

(
. . .
(∨

1≤i′≤m1

∨
`′n−1

∀(x̄n ∩ x̃i′). χ
′
¯̀′i′(x̃i′)

)
. . .
)

...

|=|
∨

1≤i′≤m1

∀(x̄1 ∩ x̃i′).
∨
`′1

∀(x̄2 ∩ x̃i′).
∨
`′2

(
. . .
(∨
`′n−1

∀(x̄n ∩ x̃i′). χ
′
¯̀′i′(x̃i′)

)
. . .
)

|=|
∨

1≤i′≤m1

∀x̃′i′ . χ′′i′(x̃′i′) ,

where the χ′′i′ are disjunctions of literals. Before shifting universal quantifiers outwards in the last
step of the above transformation, bound variables are renamed so that all quantifiers bind pairwise
distinct variables. Analogously, we have

η(4)
qp |=|

∧
1≤j′≤m2

∃ỹ′j′ . η′′j′(ỹ′j′) ,

where the η′′j′ are conjunctions of literals.

Consequently, we have rewritten ϕ(3) =
∧
q

(
χ

(3)
q ∨

∨
p η

(3)
qp

)
into an equivalent formula ϕ(4) of

the form
ϕ(4)ϕ(4) =

∧
q

((∨
1≤i′≤m1

∀x̃′i′ . χ′′qi′(x̃′i′)
)
∨
(∨
p

∧
1≤j′≤m2

∃ỹ′j′ . η′′qpj′(ỹ′j′)
))

.

After renaming bound variables again in such a way that all quantifiers bind pairwise distinct
variables, we transform ϕ(4) into an equivalent formula that is a disjunction of formulas of the form∧

k

(
∀x̃′′k .

∨
`

Kk`(x̃
′′
k)
)
∧
∧
i

(
∃ỹ′′i .

∧
j

Lij(ỹ
′′
i)
)
.

Lemma 7.3.1 provides the syntactic transformations for eliminating second-order quantifiers
that occur in a separated formula under certain conditions.

Example 7.3.2. Consider the SF sentence ϕ := ∀x1∃y1∀x2∃y2. R(x1, x2) ↔ Q(y1, y2). Nested
alternating quantifiers can be transformed away, as indicated by Lemma 7.3.1. An intermediate
result of this process is

∀x1∃y1.
((
∀x2. R(x1, x2)

)
∨
(
∃y2.¬Q(y1, y2)

))
∧
((
∀x2.¬R(x1, x2)

)
∨
(
∃y2. Q(y1, y2)

))
.

Continuing the transformation, we eventually obtain(
∃y1y2y3. Q(y1, y2) ∧ ¬Q(y1, y3)

)
∨
((
∀x1x2. R(x1, x2)

)
∧
(
∃y1y2. Q(y1, y2)

))
∨
((
∀x1x2.¬R(x1, x2)

)
∧
(
∃y1y2.¬Q(y1, y2)

))
∨
((
∀x1x2x3. R(x1, x2) ∨ ¬R(x1, x3)

)
∧
(
∃y1y2. Q(y1, y2)

)
∧
(
∃y3y4.¬Q(y3, y4)

))
,

which is equivalent to ϕ but does not contain any quantifier alternation.

7.3. ELIMINATION OF SECOND-ORDER QUANTIFIERS IN SECOND-ORDER SF 207

Next, we formulate syntactic restrictions that enable the elimination of second-order quantifiers
over unary predicates from sentences that belong to a second-order variant of SF. Again, separateness
of sets of variables in a formula plays a central role in our criterion. However, this time it is not
only of interest that universally quantified and existentially quantified variables are separated.
In addition, it is important that within each set of non-separated variables there is at most one
variable that occurs as the argument of the predicate symbol that is bound by the second-order
quantifier we intend to eliminate.

Lemma 7.3.3. Let ϕ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ(x̄, ȳ, z̄) be a relational first-order formula in which
ψ is quantifier free and the sets x̄ := x̄1 ∪ . . .∪ x̄n and ȳ := ȳ1 ∪ . . .∪ ȳn are separated. We assume
that every variable occurring in the quantifier prefix and in z̄ also occurs in the matrix ψ.

Let x̃1, . . . , x̃m1
⊆ x̄ and ỹ1, . . . , ỹm2

⊆ ȳ be partitions of the sets x̄ and ȳ, respectively, such
that the x̃1, . . . , x̃m1

, ỹ1, . . . , ỹm2
are nonempty, pairwise disjoint, and pairwise separated in ϕ. Let

P be a unary predicate symbol satisfying the following conditions:

(1) For every set x̃i, 1 ≤ i ≤ m1, there is at most one variable x∗i ∈ x̃i for which ϕ contains
atoms P (x∗i).

(2) For every set ỹi, 1 ≤ i ≤ m2, there is at most one variable y∗i ∈ ỹi for which ϕ contains
atoms P (y∗i).

Then, ∃P. ϕ is equivalent to a finite disjunction of formulas of the form

θ(z̄) ∧ ∃P.
∧
k1

(
∀x̃′k1

. χk1
(x̃′k1

, z̄) ∨ P (x∗k1
)
)
∧
∧
k2

(
∀x̃′k2

. χ′k2
(x̃′k2

, z̄) ∨ ¬P (x∗k2
)
)

∧
∧
i1

(
∃ỹ′i1 . ηi1(ỹ′i1 , z̄) ∧ P (y∗i1)

)
∧
∧
i2

(
∃ỹ′i2 . η′i2(ỹ′i2 , z̄) ∧ ¬P (y∗i2)

)
∧
∧
`1

P (z∗`1) ∧
∧
`2

¬P (z∗`2) ,

where (a) the χk1 and the χ′k2
are disjunctions of literals and the ηi1 and the η′i2 are conjunctions of

literals, (b) all the atoms in θ and in the χk1 , χ′k2
, ηi1 , and η′i2 are renamed variants of atoms that

occur in ϕ and do not contain the predicate symbol P , and (c) the variables z∗`1 , z∗`2 are pairwise
distinct and stem from z̄.

Proof. By Lemma 7.3.1, we know that ϕ can be rewritten into an equivalent formula that is a
finite disjunction of formulas in which no universal quantifier lies within the scope of an existential
quantifier and vice versa. We apply this transformation to ϕ and obtain a formula as described
in Lemma 7.3.1. In the next step, we isolate atoms that exclusively contain variables from z̄,
shift first-order quantifiers inwards so that these atoms are not within their scopes anymore, and
transform the result into a formula ϕ′ that is a disjunction of formulas of the form(∧

k

∀x̃′k.
∨
`

Kk`(x̃
′
k, z̄)

)
∧
(∧
i

∃ỹ′i.
∧
j

Lij(ỹ
′
i, z̄)

)
∧
∧
r

Mr(z̄) ,

where the Kk` and the Lij are literals whose atoms are renamed variants of atoms from ϕ and
contain at least one variable from some x̃′k or ỹ′i. The Mr are literals whose atoms occur in ϕ and
contain exclusively variables from z̄. Moreover, any two sets x̃′k1

, x̃′k2
with k1 6= k2, ỹ′i1 , ỹ

′
i2

with
i1 6= i2, and x̃′k, ỹ

′
i are separated in ϕ′. By inspection of the transformations performed in the proof

of Lemma 7.3.1, we observe that Conditions (1) and (2) are preserved such that they also apply to
the sets x̃′k and ỹ′i with respect to variables x∗k and y∗i , respectively.

This enables us to regroup the disjunctions and conjunctions in the constituents of ϕ′ so that

208 CHAPTER 7. BEYOND THE CLASSICAL DECISION PROBLEM

each of these disjuncts has the form∧
k′

(
∀x̃′k′ .

(∨
`′

Kk′`′(x̃
′
k′ , z̄)

)
∨ [¬]P (x∗k′)

)
∧
∧
i′

(
∃ỹ′i′ .

(∧
j′

Li′j′(ỹ
′
i′ , z̄)

)
∧ [¬]P (y∗i′)

)
∧
(∧
r′

Mr′(z̄)
)
∧
∧
q

[¬]P (z∗q) ,

where the literals Kk′`′ , Li′j′ , and Mr′ do not contain the predicate symbol P . The variables z∗q
stem from z̄. Moreover, we replace disjuncts (conjuncts) which contain two literals P (v) and ¬P (v)
with the logical constant true (false). Having this, it only remains to regroup conjuncts and
distribute the second-order quantifier ∃P over the topmost disjunction, in order to obtain the
formula advertised in the lemma.

The formula resulting from Lemma 7.3.3 gives us the right starting point for the elimination
of the second-order quantifier ∃P . Before we elaborate on this, we present the Basic Elimination
Lemma that we shall employ for elimination.

Proposition 7.3.4 (Basic Elimination Lemma, see [Wer15a], Lemma 3, and [Beh22]). Let P be
a unary predicate symbol and let χ, η be first-order formulas in which P does not occur. Then,
∃P.

(
∀x. χ ∨ P (x)

)
∧
(
∀x. η ∨ ¬P (x)

)
is semantically equivalent to ∀x. χ ∨ η.

Consider any formula ϕ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ(x̄, ȳ, z̄) satisfying the prerequisites of Lemma
7.3.3. Moreover, let there be sets x̃1, . . . , x̃m1 and ỹ1, . . . , ỹm2 and a unary predicate symbol P as
described in the lemma. Then, Lemma 7.3.3 stipulates the existence of a formula equivalent to ϕ
that is a disjunction of formulas of the form

θ(z̄) ∧ ∃P.
∧
k1

(
∀x̃′k1

. χk1(x̃′k1
, z̄) ∨ P (x∗k1

)
)
∧
∧
k2

(
∀x̃′k2

. χ′k2
(x̃′k2

, z̄) ∨ ¬P (x∗k2
)
)

∧
∧
i1

(
∃ỹ′i1 . ηi1(ỹ′i1 , z̄) ∧ P (y∗i1)

)
∧
∧
i2

(
∃ỹ′i2 . η′i2(ỹ′i2 , z̄) ∧ ¬P (y∗i2)

)
∧
∧
`1

P (z∗`1) ∧
∧
`2

¬P (z∗`2) ,

in which we can eliminate the quantifier ∃P as follows. The shape of the above formula is very
similar to what Behmann called “Eliminationshauptform” in [Beh22] (see [Wer15a] for a modern
exposition of Behmann’s results related to quantifier elimination). With the next two transformation
steps we come closer to the syntactic shape of the “Eliminationshauptform”. First, we shift the
first-order quantifiers inwards that do not bind variables x∗k or y∗i :

θ(z̄) ∧ ∃P.
∧
k1

(
∀x∗k1

.
(
∀(x̃′k1

\{x∗k1
}). χk1

(x̃′k1
, z̄)
)︸ ︷︷ ︸

=: χ∗k1

∨P (x∗k1
)
)

∧
∧
k2

(
∀x∗k2

.
(
∀(x̃′k2

\{x∗k2
}). χk2

(x̃′k2
, z̄)
)︸ ︷︷ ︸

=: χ∗k2

∨¬P (x∗k2
)
)

∧
∧
i1

(
∃y∗i1 .

(
∃(ỹ′i1 \{y∗i1}). η′i1(ỹ′i1 , z̄)

)︸ ︷︷ ︸
=: η∗i1

∧P (y∗i1)
)

∧
∧
i2

(
∃y∗i2 .

(
∃(ỹ′i2 \{y∗i2}). η′i2(ỹ′i2 , z̄)

)︸ ︷︷ ︸
=: η∗i2

∧¬P (y∗i2)
)

∧
∧
`1

P (z∗`1) ∧
∧
`2

¬P (z∗`2) .

7.3. ELIMINATION OF SECOND-ORDER QUANTIFIERS IN SECOND-ORDER SF 209

Next, we treat the subformulas χ∗k and η∗i as indivisible units, shift universal quantifiers outwards
(over

∧
k1

and
∧
k2

) that occur in different conjuncts (and merge them while doing so), shift
first-order existential quantifiers outwards (over

∧
i1

and
∧
i2

; without merging them), and rename
the variables that are bound by the shifted quantifiers. Moreover, we reorder the conjunctions in
the scope of the quantifier blocks ∃ū and ∃v̄:

θ(z̄) ∧ ∃P.
(
∀x.

(∧
k1

χ∗k1

[
x∗k1

/x
])

︸ ︷︷ ︸
=: χ∗1(x,z̄)

∨P (x)
)

∧
(
∀x.

(∧
k2

χ∗k2

[
x∗k2

/x
])

︸ ︷︷ ︸
=: χ∗2(x,z̄)

∨¬P (x)
)

∧
(
∃ū.

(∧
i1

η∗i1
[
y∗i1/ui1

])
︸ ︷︷ ︸

=: η∗1 (ū,z̄)

∧
∧
i1

P (ui1)
)

∧
(
∃v̄.

(∧
i2

η∗i2
[
y∗i2/vi2

])
︸ ︷︷ ︸

=: η∗2 (v̄,z̄)

∧
∧
i2

¬P (vi2)
)

∧
(∧
`1

P (z∗`1) ∧
∧
`2

¬P (z∗`2)
)
.

In what follows we treat the χ∗1, χ
∗
2 and η∗1 , η

∗
2 as indivisible units. One more step remains to

establish a kind of “Eliminationshauptform”. We shift the quantifier blocks ∃ū and ∃v̄ outwards
over the second-order quantifier ∃P , reorder the conjuncts within the scope of ∃P , and shift
∃P inwards so that its scope does not contain the η∗1 , η

∗
2 anymore. Moreover, we make use of

Proposition 3.3.6 and turn the literals P (ui1) into subformulas ∀x. x ≈ ui1 → P (x). We proceed
analogously with the literals ¬P (vi2), P (z∗`1), and ¬P (z∗`2):

θ(z̄) ∧ ∃ūv̄. η∗1(ū, z̄) ∧ η∗2(v̄, z̄)

∧ ∃P.
(
∀x. χ∗1(x, z̄) ∨ P (x)

)
∧
(
∀x. χ∗2(x, z̄) ∨ ¬P (x)

)
∧
(
∀x.

∧
i1

(
x ≈ ui1 → P (x)

))
∧
(
∀x.

∧
i2

(
x ≈ vi2 → ¬P (x)

))
∧
(
∀x.

∧
`1

(
x ≈ z∗`1 → P (x)

))
∧
(
∀x.

∧
`2

(
x ≈ z∗`2 → ¬P (x)

))
.

At this point, the subformula staring with ∃P is almost in “Eliminationshauptform”. After
converting the implications into disjunctions and factoring out the [¬]P (x), we arrive at a formula
from which the second-order quantifier ∃P can be eliminated immediately via the basic elimination
lemma:

θ(z̄) ∧ ∃ūv̄. η∗1(ū, z̄) ∧ η∗2(v̄, z̄)

∧ ∃P.
(
∀x.

(
χ∗1(x, z̄) ∧

∧
i1

x 6≈ ui1 ∧
∧
`1

x 6≈ z∗`1
)
∨ P (x)

)
∧
(
∀x.

(
χ∗2(x, z̄) ∧

∧
i2

x 6≈ vi2 ∧
∧
`2

x 6≈ z∗`2
)
∨ ¬P (x)

)
.

210 CHAPTER 7. BEYOND THE CLASSICAL DECISION PROBLEM

Using Proposition 7.3.4, we eliminate the quantifier ∃P and obtain

θ(z̄) ∧ ∃ūv̄. η∗1(ū, z̄) ∧ η∗2(v̄, z̄)

∧ ∀x.
((
χ∗1(x, z̄) ∧

∧
i1

x 6≈ ui1 ∧
∧
`1

x 6≈ z∗`1
)

∨
(
χ∗2(x, z̄) ∧

∧
i2

x 6≈ vi2 ∧
∧
`2

x 6≈ z∗`2
))

.

In order to convert this result into a somewhat nicer form, we proceed as described in the proof of
Lemma 19 in [Wer15a]. In particular, we remove the disequations x 6≈ y, where x is a universally
quantified variable. To this end, we first distribute disjunction over conjunction within the scope
of the quantifier ∀x:

θ(z̄) ∧ ∃ūv̄. η∗1(ū, z̄) ∧ η∗2(v̄, z̄)

∧ ∀x.
(
χ∗1(x, z̄) ∨ χ∗2(x, z̄)

)
∧
((∧

i2

x 6≈ vi2 ∧
∧
`2

x 6≈ z∗`2
)
∨ χ∗1(x, z̄)

)
∧
((∧

i1

x 6≈ ui1 ∧
∧
`1

x 6≈ z∗`1
)
∨ χ∗2(x, z̄)

)
∧
((∧

i1

x 6≈ ui1 ∧
∧
`1

x 6≈ z∗`1
)
∨
(∧
i2

x 6≈ vi2 ∧
∧
`2

x 6≈ z∗`2
))

.

Next, we factor the subformulas χ∗1, χ∗2, and
∧
i2
x 6≈ vi2 ∧

∧
`2
x 6≈ z∗`2 into the conjunctions with

which they are disjunctively connected, respectively. Moreover, we turn the resulting disjunctions
into implications:

θ(z̄) ∧ ∃ūv̄. η∗1(ū, z̄) ∧ η∗2(v̄, z̄)

∧ ∀x.
(
χ∗1(x, z̄) ∨ χ∗2(x, z̄)

)
∧
(∧
i2

(
x ≈ vi2 → χ∗1(x, z̄)

)
∧
∧
`2

(
x ≈ z∗`2 → χ∗1(x, z̄)

))
∧
(∧
i1

(
x ≈ ui1 → χ∗2(x, z̄)

)
∧
∧
`1

(
x ≈ z∗`1 → χ∗2(x, z̄)

))
∧
(∧
i1

(
x 6≈ ui1 →

(∧
i2

x 6≈ vi2 ∧
∧
`2

x 6≈ z∗`2
)))

∧
(∧
`1

(
x 6≈ z∗`1 →

(∧
i2

x 6≈ vi2 ∧
∧
`2

x 6≈ z∗`2
)))

.

Finally, we apply Proposition 3.3.6 in a reverse fashion to remove the universal variable x from
some of the subformulas:

θ(z̄) ∧
(
∀x. χ∗1(x, z̄) ∨ χ∗2(x, z̄)

)
∧ ∃ūv̄. η∗1(ū, z̄) ∧ η∗2(v̄, z̄)

∧
∧
i2

χ∗1(vi2 , z̄) ∧
∧
`2

χ∗1(z∗`2 , z̄) ∧
∧
i1

χ∗2(ui1 , z̄) ∧
∧
`1

χ∗2(z∗`1 , z̄)

∧
∧
i1

∧
i2

ui1 6≈ vi2 ∧
∧
i1

∧
`2

ui1 6≈ z∗`2 ∧
∧
`1

∧
i2

z∗`1 6≈ vi2 ∧
∧
`1

∧
`2

z∗`1 6≈ z∗`2 .

Consequently, we get the following result.

7.3. ELIMINATION OF SECOND-ORDER QUANTIFIERS IN SECOND-ORDER SF 211

Theorem 7.3.5. Let ϕ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ(x̄, ȳ, z̄) be a relational first-order formula in which
ψ is quantifier free and the sets x̄ := x̄1 ∪ . . .∪ x̄n and ȳ := ȳ1 ∪ . . .∪ ȳn are separated. We assume
that every variable occurring in the quantifier prefix and in z̄ also occurs in the matrix ψ.

Let x̃1, . . . , x̃m1 ⊆ x̄ and ỹ1, . . . , ỹm2 ⊆ ȳ be partitions of the sets x̄ and ȳ, respectively, such
that the x̃1, . . . , x̃m1 , ỹ1, . . . , ỹm2 are nonempty, pairwise disjoint, and pairwise separated in ϕ. Let
P be a unary predicate symbol satisfying the following conditions:

(1) For every set x̃i, 1 ≤ i ≤ m1, there is at most one variable x∗i ∈ x̃i for which ϕ contains
atoms P (x∗i).

(2) For every set ỹi, 1 ≤ i ≤ m2, there is at most one variable y∗i ∈ ỹi for which ϕ contains
atoms P (y∗i).

Then, ∃P.ϕ is equivalent to some first-order formula ϕ′ that is a finite disjunction of formulas
of the form

θ(z̄) ∧
(
∀x. χ∗1(x, z̄) ∨ χ∗2(x, z̄)

)
∧ ∃ūv̄. η∗1(ū, z̄) ∧ η∗2(v̄, z̄)

∧
∧
i2

χ∗1(vi2 , z̄) ∧
∧
`2

χ∗1(z∗`2 , z̄) ∧
∧
i1

χ∗2(ui1 , z̄) ∧
∧
`1

χ∗2(z∗`1 , z̄)

∧
∧
i1

∧
i2

ui1 6≈ vi2 ∧
∧
i1

∧
`2

ui1 6≈ z∗`2 ∧
∧
`1

∧
i2

z∗`1 6≈ vi2 ∧
∧
`1

∧
`2

z∗`1 6≈ z∗`2 .

Moreover, all the ui1 are variables from ū, the vi2 are from v̄, and the z∗`1 and z∗`2 are free variables
from z̄.

Example 7.3.6. Consider the sentence ϕ := ∃P.∀x1∃y∀x2. R(x1, x2)↔ P (y). We transform it
into the equivalent sentence

∃P.
(
∀x1x2x3. R(x1, x2) ∨ ¬R(x1, x3)

)
∧
((
∀x1x2. R(x1, x2)

)
∨
(
∃y.¬P (y)

))
∧
((
∀x1x2.¬R(x1, x2)

)
∨
(
∃y. P (y)

))
.

For the sake of simplicity, we shift ∃P inwards so that its scope only stretches over the last two
conjuncts, which we thereafter transform into a disjunction of conjunctions. This yields(

∀x1x2x3. R(x1, x2) ∨ ¬R(x1, x3)
)

∧
(
∃P.

((
∀x1x2. R(x1, x2)

)
∧
(
∃y. P (y)

))
∨
((
∀x1x2.¬R(x1, x2)

)
∧
(
∃y.¬P (y)

))
∨
((
∃y. P (y)

)
∧
(
∃y.¬P (y)

)))
.

Since we can distribute the quantifier ∃P over disjunction, it is enough to eliminate ∃P in the
following three formulas:

(1) ∃P.∃y. P (y)
|=| ∃y.∃P.∀x.

(
x 6≈ y ∨ P (x)

)
∧
(
true ∨ ¬P (x)

)
|=| ∃y∀x. x 6≈ y ∨ true
|=| true

(2) ∃P.∃y.¬P (y)
|=| ∃y.∃P.∀x.

(
x 6≈ y ∨ ¬P (x)

)
∧
(
true ∨ P (x)

)
|=| ∃y∀x. x 6≈ y ∨ true
|=| true

212 CHAPTER 7. BEYOND THE CLASSICAL DECISION PROBLEM

(3) ∃P.
(
∃y. P (x)

)
∧
(
∃y.¬P (x)

)
|=| ∃y1y2.∃P.

(
∀x. x 6≈ y1 ∨ P (x)

)
∧
(
∀x. x 6≈ y2 ∨ ¬P (x)

)
|=| ∃y1y2∀x. x 6≈ y1 ∨ x 6≈ y2

|=| ∃y1y2. y1 6≈ y2

Hence, ϕ is semantically equivalent to(
∀x1x2x3. R(x1, x2) ∨ ¬R(x1, x3)

)
∧
((
∀x1x2. R(x1, x2)

)
∨
(
∀x1x2.¬R(x1, x2)

)
∨
(
∃y1y2. y1 6≈ y2

))
.

Remark 7.3.7. Several remarks regrading the shape of the resulting formulas in Theorem 7.3.5
are in order. (a) Although the elimination of ∃P potentially introduces new (dis)equations, these
only involve existentially quantified and free variables. This means, the separation conditions
are not violated by these newly introduced equations. Hence, the introduction of such atoms in
one elimination step does not pose an obstacle to the iterated elimination of multiple existential
second-order quantifiers. (b) As the subformulas χ∗1(vi2 , z̄) may contain universal quantifiers ∀w
and atoms R(. . . w . . . vi2 . . .), the separateness condition regarding universally and existentially
quantified variables might be violated when introducing the subformulas χ∗1(vi2 , z̄) and, similarly,
the subformulas χ∗2(ui1 , z̄). (c) Perhaps more severely, the introduction of atoms R(. . . w . . . vi2 . . .)
may create co-occurrences of variables from the sets x̃k and ỹi, if w ∈ x̃k and vi2 ∈ ỹi. Then, the
sets x̃k and ỹi are not separated anymore in formulas that contain the new atom. Similar effects
might affect pairs x̃k, x̃k′ and ỹi, ỹi′ . Hence, if we were to predict whether elimination of the two
second-order quantifiers in a formula ∃Q∃P.ϕ is possible using the methods outlined above, we
would need to predict which sets of variables will be separated after the elimination of ∃P .

The above observations seem to indicate that it is not straightforward to formulate a version of
Theorem 7.3.5 that neatly facilitates iterative elimination of multiple quantifiers in second-order SF.
On the other hand, it might be worthwhile to base the theorem on a second-order variant of GBSR
instead, as Observation (b) might cause fewer troubles in the GBSR setting. Another interesting
aspect is that the symmetry regarding the two Conditions (1) and (2) in Theorem 7.3.5 is perhaps
more restrictive than necessary. It seems that Condition (2) is obsolete, as the resulting formula in
Lemma 7.3.3 could be generalized in such a way that the restriction imposed by (2) is not satisfied
but second-order quantifiers can still be eliminated. Altogether, it is subject to future investigations
whether Theorem 7.3.5 can be enhanced to facilitate iterative elimination of multiple quantifiers.

The presented result can only be a first step towards the formulation of a novel fragment of
second-order logic that (i) extends the monadic second-order fragment, (ii) is based on the concept
of separateness, (iii) admits elimination of second-order quantifiers, also in an iterated fashion.
Remark 7.3.7 already makes clear that a lot remains to be done, in order to achieve this goal.
Furthermore, there seems to be no good reason to confine ourselves to the elimination of quantifiers
over unary predicates only, but aim for higher arities as well. Moreover, the requirements regarding
separateness of variables could be weakened by taking boolean structure into account instead of only
concentrating on the atoms in a given formula, compare also Section 3.6. For example, the formula
∃P.∀xy. P (x)∧

(
P (y)∨R(x, y)

)
does not satisfy the prerequisites of Theorem 7.3.5, as {x} and {y}

are not separated and the set {x, y} contains two variables that occur as arguments of P . However,
the theorem can be applied to the equivalent formula ∃P.∀x1x2y. P (x1)∧

(
P (y)∨R(x2, y)

)
, as the

sets {x1} and {x2, y} are separated and x2 does not occur as argument of P . As a third possible
improvement, equations between universal and existential variables should be allowed in a less
restrictive way than they are at the moment. To this end, some of the methods that are used to
handle equations during quantifier elimination in the monadic second-order fragment might be
applicable in the more general setting as well.

In the outlined approach we concentrated on transforming the input formulas syntactically
until the Basic Elimination Lemma (Proposition 7.3.4) is applicable. In future work, it is of course
advisable to also try other known approaches, such as the ones described in [GSS08], e.g. the SCAN
algorithm, the DLS* algorithm, hierarchical theorem proving, or variations thereof. The unmodifed

7.3. ELIMINATION OF SECOND-ORDER QUANTIFIERS IN SECOND-ORDER SF 213

DLS algorithm, as presented in [GSS08], fails on the logic fragment described in Theorem 7.3.5. In
particular, the preprocessing phase is not always able to transform the input into the required form,
although this would be possible in principle. This is already true for monadic sentences such as
ϕ := ∃P.∀x∃y.

(
¬P (x) ∨ P (y)

)
∧
(
P (x) ∨ ¬P (y)

)
, which is equivalent to ∃P.∀x∃y. P (x)↔ P (y).

Conradie gave a necessary and sufficient condition regarding the syntax of formulas in which DLS
can successfully eliminate an existential second-order quantifier [Con06]. It turns out that the
occurrences of P in ϕ violate Conradie’s condition in many ways — every occurrence of P is in
malignant conjunctions and disjunctions and inside a ∀∃-scope. Nonetheless, it is not hard to see
that there is a first-order formula that is equivalent to ϕ, namely true. A slight modification of
the DLS preprocessing step in the spirit of Lemma 3.2.4 might already solve this particular issue.

214 CHAPTER 7. BEYOND THE CLASSICAL DECISION PROBLEM

Part II

First-Order Linear Arithmetic
with Uninterpreted Predicates

215

Chapter 8

Linear Arithmetic with
Uninterpreted Predicates

In Part I of the present thesis we have mainly treated first-order logic where only the distinguished
equality predicate had a fixed semantics. The semantics of all other predicate symbols and function
symbols was open to interpretation and only determined by the structures that we considered.
In the literature, such symbols are sometimes referred to as uninterpreted, meaning that their
interpretation is not fixed a priori. In Part II we will be interested in first-order languages where the
vocabulary contains uninterpreted predicate and function symbols alongside interpreted symbols.
Moreover, parts of the domain are fixed and other parts are not predetermined, i.e. we technically
have a sorted setting. In particular, we shall be considering fragments of the language of linear
arithmetic over the rationals or integers with additional uninterpreted predicate symbols and ask
whether the associated satisfiability problems are decidable.

We have already encountered two well-known decidable arithmetic theories1 in Chapter 2 (pages
20–22) and in Section 7.1: Presburger arithmetic — the first-order theory of the integers2 with
addition and the usual ordering — and linear rational arithmetic — the first-order theory of linear
sentences over the rational numbers with the usual ordering. Both fragments admit quantifier
elimination, first elimination procedures were devised by Presburger [Pre29] (see [Sta84] for an
English translation and [End01] for a textbook exposition) and Tarski [Tar57], respectively. In 1974
the computational time complexity of deciding membership in the theory of Presburger arithmetic
was shown to be doubly exponential by Fischer and Rabin [FR74], and a more precise lower bound
was later derived by Berman [Ber80]. The computational complexity of deciding validity in linear
rational arithmetic is at least exponential, as follows from results in [FR74], see also Section 7.4
in [BM07]. Weispfenning has shown that quantifier elimination in linear rational arithmetic requires
at least doubly exponential time [Wei88]. A very recent account of the history and the current
state of affairs regarding Presburger arithmetic can be found in [Haa18]. For a survey of the recent
developments regarding quantifier elimination in real closed fields and some historical background
see [Stu17, Stu18]; these methods also work for rational arithmetic formulas as long as they are
linear. Both arithmetic languages found numerous applications. For a textbook introduction to
linear arithmetic over the rationals or over the integers in the context of automated reasoning and
verification see, e.g., Chapters 7 and 8 in [BM07] and Chapter 5 in [KS16].

Undecidability of First-Order Arithmetic with Uninterpreted Predicate Symbols

It has been discovered more than half a century ago that the addition of a single uninterpreted
unary predicate symbol to Presburger arithmetic renders the associated satisfiability problem (and

1Formally, a logical Σ-theory T is considered decidable, if there is an algorithm that can decide membership of
any given Σ-sentence in T .

2Originally, Presburger arithmetic considers the domain of the nonnegative integers. But this is not serious
restrictions, see, e.g., Example 3.7 in [BM07].

217

218 CHAPTER 8. LINEAR ARITHMETIC WITH UNINTERPRETED PREDICATES

also the associated validity problem) undecidable. In 1957 Putnam [Put57] discussed this theory
as one example of an undecidable first-order theory that is somewhat stronger than the decidable
first-order theory of natural numbers with the successor function and a single uninterpreted unary
predicate symbol.3 Lifshits mentioned in a note [Lif69] (without giving a proof) that the addition
of one uninterpreted predicate symbol — of unspecified arity — to Presburger arithmetic leads to
undecidability. In the technical report [Dow72] Downey gave an encoding of two-counter machines4

and their halting problem in the Horn fragment of Presburger arithmetic with a single unary
predicate symbol that is uninterpreted. Moreover, undecidability is also implied by a general result
due to Garfunkel and Schmerl [GS74] published in 1974. Seventeen years later Halpern [Hal91]
strengthened the undecidability result for Presburger arithmetic with a single uninterpreted unary
predicate symbol in that he proved Π1

1-completeness of the associated validity problem, which, given
that the considered language is closed under negation, entails Σ1

1-completeness of satisfiability.5 Only
recently, Speranski [Spe13b] gave an alternative characterization of the analytical hierarchy that is
based on a reduction of Π1

n-formulas with multiplication to Π1
n-formulas without multiplication

but with an uninterpreted unary predicate symbol. Halpern’s Π1
1-completeness can be conceived

as a special case of this more general point of view. We shall add some results to this line of
contributions in Chapter 11. As a starter, we will give simple encodings of the halting problem
for two-counter machines based on ∃∗∀∗ sentences with a very restricted arithmetic language and
a single uninterpreted predicate symbol whose arity is greater than one. On the arithmetic side
we get along with one of the following fragments where c ∈ Q and / ranges over the relations
<,≤,=, 6=,≥, >: difference constraints x−y / c, additive constraints x+y / c, quotient constraints
x / c · y, and multiplicative constraints x · y / c. The details of the encodings can be found in
Section 11.1. In the rest of Chapter 11, we will focus on the universal fragment of Presburger
arithmetic plus a single unary uninterpreted predicate symbol. We shall devise a novel encoding of
two-counter machines and investigate several variants of it. Our results will shed more light on the
border between decidability and undecidability in this context. We will also see that allowing for a
∀∃ quantifier alternation even leads to Σ1

1-completeness (of satisfiability). Furthermore, we shall
assess the relevance of the undecidability results for a number of verification frameworks. The
mentioned results will not change substantially when we use the rationals as underlying domain
instead of the integers.

Decidable First-Order Arithmetic Fragments with Uninterpreted Predicate Symbols

All of the above said leads to one conclusion: In order to obtain decidable subfragments of the
combination of linear arithmetic with uninterpreted predicate symbols, the arithmetic part needs to
be restricted considerably.6 We shall explore the decidable side in Chapter 10 and investigate two
decidable fragments. Both will be an extension of the Bernays–Schönfinkel–Ramsey fragment (BSR)
with a restricted form of linear-arithmetic constraints. For notational convenience, we use the
notation Λ ∧ Γ→ ∆ for BSR clauses with arithmetic constraints, where Λ and Γ are conjunctions
of atoms, respectively, and ∆ is a disjunction of atoms. The part Λ contains exclusively arithmetic
atoms and no uninterpreted symbols. The parts Γ and ∆, on the other hand, only contain atoms
that are either (a) relational atoms with some uninterpreted predicate symbol or (b) non-arithmetic
equations u ≈ v, where u and v are implicitly universally quantified first-order variables of a
sort that is not pre-determined, i.e. of an uninterpreted sort. We extend BSR in two ways with
linear-arithmetic expressions and call the obtained clause fragments BSR with simple linear rational

3Büchi [Büc60, Büc62] and Rabin [Rab69] proved that the theory remains decidable, if an arbitrary number of
uninterpreted unary predicate symbols is admitted.

4Two-counter machines are a special case of Minsky machines, see [Min67], Sections 11 and 14. See also
Section 11.1 of the present thesis.

5For the definition of the analytical hierarchy and the sets Π1
1 and Σ1

1, see, e.g., Chapter IV.2 in [Odi92] or
Chapter 16 in [Rog87].

6There are still alternatives. One possibility could be to consider sentences in CNF and restrict the occurrences
of variables as arguments of uninterpreted predicate symbols in clauses, as is done in certain decidable clause classes
(cf. Chapter 3, pages 27–28). This was pointed out by Christoph Weidenbach in a discussion in January 2019. We
shall not consider this approach any further in the present thesis.

219

constraints — BSR(SLR) — and BSR with bounded difference constraints — BSR(BD).
In the first clause class BSR(SLR), which we shall treat in detail in Section 10.2, we allow arithmetic

atoms of the form s / t, x / t, and x / y in the Λ-part of clauses, where x and y are rational-
valued variables that are implicitly universally quantified, s and t are linear arithmetic terms
that are variable free (ground), and / ranges over <,≤,=, 6=,≥, >. The ground terms s and t
may contain uninterpreted constant symbols of sort Q. Since their value is not predetermined,
they can be conceived as being existentially quantified. An exemplary BSR(SLR) clause is

d > 0 ∧ c− 1 ≤ x ∧ x < c+ 2d ∧ y < x ∧ Q(y) → P (x, y).

Remark 8.0.1. The arithmetic atoms admitted in BSR(SLR) are similar to the kind of arithmetic
atoms that appear in the context of the array property fragment [BMS06, Bra07] and extensions
thereof (see, e.g., [GdM09, HVW17a]).7 The array property fragment can be used in the context of
verification to specify certain properties of array data structures (see [KS16], Chapter 7 or [BM07],
Chapter 11 for an introduction and examples). Apart from the fact that we concentrate on the
rational domain instead of the integers in Section 10.2, the main difference is that we allow
strict inequalities and disequations between universally quantified variables. In the presence of
uninterpreted non-constant function symbols, strict inequality or disequations can be used to assert
that some uninterpreted function f is injective. This expressiveness prevents certain instantiation-
based approaches to satisfiability checking from being applicable, e.g. the methods in [BMS06, Bra07].
In the context of the array property fragment, this expressiveness even leads to undecidability, see,
e.g. Section 2.4 in [Bra07], or Theorem 11.16 in [BM07].

A close relative of the array property fragment is the hashtable property fragment presented
in [Bra07], see also [BM07], Section 11.3. It admits the same syntax for arithmetic atoms.

In the BSR(BD) clause class BSR(BD), treated in Section 10.4, we allow arithmetic atoms of the
form x / c, x / y, and x − y / c in the Λ-part of clauses, where x and y are rational-valued
variables, c could be any rational number, and / ranges over <,≤,=, 6=,≥, > again. We refer
to atoms of the form x − y / c as difference constraints. An exemplary BSR(BD) clause is

x− y < 1 ∧ −2 ≤ x ∧ x ≤ 2 ∧ −1 ≤ y ∧ y ≤ 3 ∧ y < z ∧ Q(y, z) → P (x, y) ∨ P (y, x).

Remark 8.0.2. Already in the seventies, Pratt identified difference constraints and Boolean com-
binations thereof as an important tool for the formalization of verification conditions [Pra77].8

Applications include the verification of timed systems and scheduling problems (see, e.g. [Pra77,
NMA+02, TSSP04, dMB11], the textbook [KS16] (Section 5.7), the handbook article [BT18] (Sec-
tion 11.4.5), and Mahfoudh’s PhD thesis [Mah03] for references). Dedicated decision procedures
for Boolean combinations of difference constraints have been devised, see, e.g. [SSB02, MNAM02,
CAMN04, ACGM04, NO05, CM06, WGG06] and the references therein.

As unrestricted combinations of uninterpreted predicate symbols with difference constraints
lead to an undecidable satisfiability problem (once more, two-counter machines and their halting
problem can be encoded, see Sections 11.1 and 11.4), we have to further confine the language.
We require that every difference constraint x − y / c has to be conjoined with four additional
constraints cx ≤ x, x ≤ dx, cy ≤ y, y ≤ dy, where cx, dx, cy, dy are rationals. This restriction seems
to weaken expressiveness severely. Indeed, it has to, since we aim for a decidable satisfiability
problem. Yet, we show in Section 10.5 that BSR(BD) clause sets are expressive enough to formulate
the reachability problem for timed automata, for instance.

The main result of Chapter 10 is that the satisfiability problems associated with BSR(SLR)
and BSR(BD) are decidable (cf. Theorems 10.2.14 and 10.4.10). Both results have a very similar
proof outline, which, roughly speaking, proceeds as follows. Given some satisfiable sentence
ϕ := ∃z̄∀x̄. ∧i Ci(z̄, x̄), where the Ci are clauses adhering to the syntactic restrictions of BSR(SLR)
or BSR(BD), and given any model A |= ϕ, we define a suitable equivalence relation ∼ over tuples
of rationals such that ∼-equivalent tuples cannot be distinguished by the arithmetic constraints

7This was brought to the attention of the author of the present theses by Viorica Sofronie-Stokkermans at the
VTSA summer school in Koblenz, Germany, in August 2015

8In parts of the literature difference constraints are referred to as separation predicates [SSB02, TSSP04].

220 CHAPTER 8. LINEAR ARITHMETIC WITH UNINTERPRETED PREDICATES

occurring in ϕ. We can formulate this property more precisely as follows. Let x̄′ be the restriction
of x̄ to rational-valued variables. Moreover, let ā be a tuple of elements from A’s domain such
that A |= ∀x̄. ϕ(ā, x̄) — notice that apart from rationals ā may also contain elements from some
uninterpreted sort. For any two ∼-equivalent tuples r̄, s̄ ∈ Q|x̄′| we require for all conjunctions of
constraints Λ(z̄, x̄′) in ϕ that Q |= Λ(ā, r̄) if and only if Q |= Λ(ā, s̄). The key to decidability is
that we choose ∼ so that it induces only finitely many equivalence classes. Based on A, ā, and
∼, we then construct a model B |= ϕ that interprets the uninterpreted sorts with finite sets and
whose interpretations of uninterpreted predicate symbols do not distinguish ∼-equivalent tuples
of rational numbers. We call structures of this form uniform with respect to ∼. The proof of
B’s existence is partially based on basic methods from Ramsey theory. If A contains a certain
collection Q of finite sets Q1, . . . , Qk ⊆ Q such that any two ∼-equivalent tuples over elements
from Q are indistinguishable under 〈A, ā〉, then B treats any tuple r̄ over Q like the ∼-equivalent
tuples q̄ over Q. For this approach to work, it is essential that Q covers all ∼-equivalence classes
over Q and each Qi contains a critical mass of rational numbers. Ramsey theory provides the right
methods to show that such sets exist for any pair 〈A, ā〉 with A |= ∀x̄. ∧i Ci(ā, x̄). The guaranteed
existence of models that are uniform with respect to an equivalence relation ∼ inducing only a
finite number of equivalence classes is similar to the finite model property in entirely uninterpreted
settings and it immediately implies decidability.

Example 8.0.3. Consider the following BSR(SLR) sentence ϕ1 and the BSR(BD) sentence ϕ2

(we use convenient notation that could easily be converted into syntax that adheres to the restrictions
posed by BSR(SLR) and BSR(BD)):

ϕ1 := ∃z1z2∀xy.
(
3 < z1 < z2 <

31
5

)
∧
(
3 ≤ x < z1 ∧ 3 < y < z2 → P (x, y)

)
∧
(
z1 ≤ x < y ∧ y < 31

5 → P (x, y)
)

and
ϕ2 := ∀xy.

(
−2 < x− y < 0 ∧ −2 ≤ x ≤ 2 ∧ −2 ≤ y ≤ 2 → P (x, y)

)
∧
(

x ≤ −2 ∧ −2 < y < 0 → P (x, y)
)

∧
(

1 ≤ x ∧ 1 < y < 2 → P (x, y)
)
.

Figure 8.1 illustrates suitable equivalence relations ∼1 and ∼2 for dimension two (we only have
two universally quantified variables per sentence and per clause). Moreover, satisfying uniform
interpretations are depicted for the predicate symbol P in ϕ1 and ϕ2, respectively. Decidability of
the associated satisfiability problem follows from the fact that ∼1 and ∼2 induce only finitely many
equivalence classes.

The outlined approach to proving decidability is quite general. For a given language combining
linear rational arithmetic with uninterpreted predicate symbols we just have to find a suitable
equivalence relation ∼ and the rest can be developed along the same lines as outlined above. Hence,
the outlined approach may turn out to be applicable to other fragments as well. Moreover, in the
light of the insights we have gained in Chapter 3 it is possible to generalize the decidability results
for BSR(SLR) and BSR(BD) to SF and GBSR variants of the two fragments, cf. Theorem 10.3.2
and Corollary 10.3.4.

More on Related Work

We have already elaborated on undecidable fragments of first-order arithmetic with uninterpreted
predicate symbols. There is also a number of works describing decidable fragments of first-order
logic in which linear rational or integer arithmetic is mixed with uninterpreted function or predicate
symbols. However, the results seem to be scattered across the literature. We shall report on a few
such results in what follows. An early result can be found in [Put57]: the first-order theory of the
natural numbers with the successor function plus a single uninterpreted unary predicate symbol
is decidable. This result is subsumed by results due to Büchi [Büc60, Büc62], later extended by
Rabin [Rab69], who show that the monadic second-order theory of the natural numbers with the
successor function (today also known as the monadic second-order theory of one successor (S1S))

221

3 s1 s2 31
5

3

s1

s2

31
5

−2 −1 0 1 2

−2

−1

0

1

2

Figure 8.1: Left: Partition of the two-dimensional rational plane into ∼1-equivalence classes with
respect to two rational values s1, s2 assigned to z1, z2 in ϕ1, respectively. Right: Partition of the
two-dimensional rational plane into ∼2-equivalence classes with respect to the sentence ϕ2. Every
dot, line segment, rectangular white area, and triangular white area represents an equivalence
class. Moreover, the orange-colored parts represent subsets of the rational plane that represent
interpretations of the predicate P (x, y) that are satisfying for ϕ1 and ϕ2, respectively, if we put
the x-axis horizontally and the y-axis vertically. These interpretations are uniform in the sense
that any of the equivalence classes is either completely contained in the respective subset or it is
disjoint from the subset.

is decidable. Shelah [She75] reproved some of these results using different methods; the article
also contains a historical overview and additional references to related works. Moreover, Shelah
showed in the same article that the monadic second-order theory of the usual order over the real
numbers is undecidable. Ferrante and Rackoff [FR79] investigated the computational complexity
for deciding the monadic first-order theory of one successor with an uninterpreted predicate symbol:
they obtain doubly exponential upper and lower bounds.

The satisfiability problem for existential first-order sentences combining linear rational or integer
arithmetic with uninterpreted function and predicate symbols can be shown to be decidable using
the Nelson–Oppen combination framework (see Section 10.3). Pratt [Pra77] elaborated on the
subcase where the arithmetic atoms are restricted to difference constraints, i.e. atoms of the form
x− y / c where c ranges over the integers. This kind of arithmetic atoms will play a major role
in Sections 10.4 and 11.4. On the one hand, we show that satisfiability is decidable for a certain
first-order fragment combining bounded difference constraints with uninterpreted predicate symbols
of arbitrary arity in the former section. In the latter section, on the other hand, we show how the
halting problem of two-counter machines can be encoded using only arithmetic atoms of the form
x− y / c where c is an uninterpreted arithmetic constant.

An interesting subcase of the existential first-order fragment of linear integer arithmetic with
uninterpreted function symbols with a decidable satisfiability problem is counter logic. This
fragment was motivated and investigated in [BLS02] in the context of hardware verification. The
arithmetic part is restricted to the positive integers with the successor function and the predecessor
function (see Section 11.5.3 for more details). Suitable decision procedures were presented in [BLS02,
GHN+04, ABRS09]. In [ABRS09] also the case of successor and predecessor modulo some fixed
integer is treated. Further positive results stem from the field of software verification, where data
structures, such as arrays, or memory are often formalized using uninterpreted function symbols and
restricted forms of arithmetic over integer indices, partly allowing for universal quantification over
indices. See, for example, [BMS06, HIV08, ABRS09, GdM09, KPSW10, Sof14, RIS17, HVW17a]
and the references therein. See also the textbooks [BM07, KS16] and the handbook article [BT18]

222 CHAPTER 8. LINEAR ARITHMETIC WITH UNINTERPRETED PREDICATES

for further references. We will show in Section 11.5 that little extensions of several of the mentioned
fragments lead to undecidable satisfiability problems.

There are also decidability results based on theory combination beyond the Nelson–Oppen case,
involving universal quantification. Interesting results in this direction are due to Fontaine and his
collaborators [Fon07, Fon09, AF11, CFR14], where component theories are considered that can be
expressed in the decidable first-order fragments MFO≈, BSR, AF with equality, GF, LGF, or FO2

(cf. Sections 10.3 and 12.1.1).
Finally, there is the vast field of constraint logic programming (see, for instance, [FA03] for

an introduction), where one can also find positive results regarding first-order arithmetic with
uninterpreted predicate symbols, e.g. [CMT92, CM93].

To the best knowledge of the author, the decidability results that come closest to the results
developed in Chapter 10 of the present thesis can be found in [GdM09, KW12, Kru13, FW12, Fie13].
In [GdM09] Ge and de Moura presented a very general instantiation approach that is a decision
procedure for certain subfragments of linear integer and rational arithmetic with uninterpreted
function and predicate symbols. For instance, BSR(SLR) without strict inequalities and without
arithmetic disequations can be decided using this instantiation method. It fails, however, in the
presence of <, 6=, > in arithmetic atoms in BSR(SLR) clauses. In [KW12, Kru13] Kruglov and
Weidenbach devise a procedure based on hierarchic superposition that decides satisfiability for the
existential first-order fragment of arithmetic with uninterpreted predicate symbols. The calculus
is not limited to the language of arithmetic though, but also serves as a decision procedure for
other background theories. It can even handle universal quantification in Horn clause sets as long
as all variables in background-theory terms are existentially quantified. The setting of linear and
nonlinear arithmetic with uninterpreted predicate symbols was treated in [AKW09, EKK+11] in
particular. In [FW12, Fie13] Fietzke and Weidenbach described an encoding of the reachability
problem for timed automata in a fragment of first-order linear arithmetic with uninterpreted
predicate symbols whose arity depends on the number of clocks in the input automaton (cf.
Section 10.5). Then, they show that Kurglov and Weidenbach’s hierarchic superposition calculus
modulo linear arithmetic [AKW09, KW12, FW12] can decide (un)satisfiability for the resulting
logic fragment. As we have already mentioned above, we prove in Section 10.5 that the reachability
problem for timed automata can be formalized using BSR(BD) clause sets. However, the latter
does not cover all the clauses that result from the encoding of Fietzke and Weidenbach, called the
FOL(LA) encoding of timed automata in Section 10.5 (cf. Definition 10.5.7). The two fragments
are syntactically incomparable: while the FOL(LA) encoding of timed automata results in Horn
clause sets and contains essentially arithmetic atoms of the form u− v = x− y, BSR(BD) is not
restricted to Horn clauses and does not admit arithmetic atoms u− v = x− y. We shall show in
Section 10.5 that this form of atoms is not required to capture the reachability problem for timed
automata.

One direction to look for new decidable fragments is to draw inspiration from similar encodings
of extensions of the timed automaton formalism. There are numerous kinds of extensions of timed
automata that have been proposed and might be worthwhile targets for such an approach, see,
e.g. the handbook articles [BFL+18, DFPP18] for references. Another source of inspiration might
come from metric temporal logic (MTL), a family of extensions of linear-time temporal logic (LTL).
In MTL the usual temporal operators of LTL, e.g. eventually and until, are enhanced in such a way
that certain quantitative timing constraint can be expressed. An overview and more references can
be found in [OW08, HOD17, BLM+17], for example.

Chapter 9

Additional Technical Preliminaries

We take over and reuse the basic notions and notation introduced in Part I, in particular in
Chapter 1. In Part II we mainly consider many-sorted first-order logic with equality and a mixture
of interpreted and uninterpreted predicate and function symbols. Some of the terminology we shall
use is borrowed from the framework of hierarchic combinations of uninterpreted first-order logic with
background theories due to Bachmair, Ganzinger, and Waldmann, see [BGW94, BW13b, BW13a].
In particular, in order to simplify terminology and definitions, we take over the neat distinction
of the interpreted part of the considered language, ambiguously referred to as background theory
or base theory (together with background/base sorts), from the uninterpreted part. The latter
comprises uninterpreted sorts and uninterpreted predicate and function symbols, all of which have
to be assigned a meaning in terms of structures. Although this is technically not necessary, we
mostly restrict our attention to single-sorted background theories, such as linear rational or linear
integer arithmetic with the base sorts Q and Z, respectively.1 Similarly, we most of the time only
consider a single uninterpreted sort S (we sometimes also use the term free sort). This sort needs
to be interpreted with some nonempty domain, as usual. We continue to use the symbol ≈ ≈, =to
denote the built-in equality predicate for sort S — for the arithmetic sort we use the sign = to
denote the identity relation.

In accordance with this division, we use pairwise-disjoint, countably infinite sets of variables
VarQ,VarZ,VarS of the respective sorts. Moreover, vocabularies now come equipped with sort
information. An uninterpreted predicate symbol P , for instance, can have a mixed-sort signature
P : ξ1 × . . . × ξm, where the ξi can be any of the sorts Q,Z,S. To avoid confusion, we tacitly
assume that no predicate or function symbol is overloaded, i.e. each of them has a unique sort.

Recall the definition of linear rational arithmetic (LRA) terms and formulas from Section 7.1.
The underlying vocabulary is ΣLRA := 〈{<,≤,=, 6=,≥, >},Q∪{+, ·}〉 ΣLRA, where Q is the only occurring
sort. LRA terms LRA termsare all ΣLRA-terms in which multiplication only occurs in (sub)terms of the form
r ·x where r is a rational coefficient and x is a first-order variable of sort Q. Variables of other sorts
are not admitted in LRA terms. For convenience, we use abbreviations such as − 1

2x− y for the
formal expression − 1

2 · x+ (−1) · y and the like. LRA formulas are all first-order ΣLRA-formulas in
which all terms are LRA terms. The terms of Presburger arithmetic PA terms, called PA terms, are defined
to be the terms over the vocabulary ΣPA := 〈{<,≤,=, 6=,≥, >}, {0, 1,+,−}〉 ΣPA, where the only sort
is Z. We also use convenient abbreviations for PA terms, such as −3x+2y for the formal expression
0− (x+ x+ x) + y + y.2 In Chapter 11 we shall consider the extended language of PA+P termsPA+P terms
and PA+P formulas which is based on the vocabulary ΣPA+P ΣPA+P:= 〈{<,≤,=, 6=, P}, {0, 1,+,−}〉

1We use symbols such as Q, Z, N, and R with different meaning. Depending on the current context, we use them
to address the respective sets of numbers, structures, or sorts.

2Notice that the formal term length of the LRA term t1 := 4x− 2 differs significantly from the length of the
PA term t2 := 4x − 2. While the former has term length len(t1) = len(4 · x + (−2)) = 5, the latter has length
len(t2) = len(x+x+x+x−1−1) = 11. More generally, the rational numbers in LRA terms are formally represented
by constant symbols, the integers in (abbreviated) PA terms can be conceived as being represented in a unary
encoding. Since we will not be concerned with PA terms when analyzing computational complexity of certain
decision procedures later, this technical curiosity will not impact our investigations any further.

223

224 CHAPTER 9. ADDITIONAL TECHNICAL PRELIMINARIES

where P is an uninterpreted unary predicate symbol of sort Z. Furthermore, we shall also consider
a second extended language: LRA+PN termsLRA+PN

terms,
ΣLRA+PN

and LRA+PN formulas. Both are based on the
vocabulary ΣLRA+PN := 〈{<,≤,=, 6=, P,N}, {0, 1,+,−}〉 with P,N being uninterpreted unary
predicate symbols of sort Q.

Throughout the following chapters we shall concentrate on clauses (disjunctions of literals)
and sets of clauses. Occasionally, we treat sets N of clauses as if they were sentences. Then, we
consider any variables that occur in N as implicitly universally quantified. More precisely, given
any clause set N that is finite, it can be conceived as a sentence ϕN := ∀x̄. ∧C(x̄)∈N C(x̄), where x̄
is a tuple collecting all variables occurring in N . Existentially quantified variables are represented
by uninterpreted constant symbols, called Skolem constants , of the respective sort, but their value
is not predetermined. This means, we implicitly restrict our attention to the ∃∗∀∗ prefix class,
if not explicitly stated otherwise. Given any clause C, we use the following notation: the set of
all constant symbols occurring in C is denoted by consts(C)consts(C) — this includes rational numbers or
integers. Similar notation is used for other syntactic objects, e.g. clause sets.

For finite clause sets N we define len(N) :=
∑
C∈N len(C)len(N),

‖N‖
and ‖N‖ :=

∑
C∈N ‖C‖. Since the

vocabulary underlying any formula ϕ cannot be assumed to be finite if ϕ contains LRA terms, the
encoding length ‖ϕ‖ of such formulas can in general not be expressed in terms of len(ϕ) alone.
Instead, the bit length of the rational numbers occurring in ϕ has to be taken into account as
well. Therefore, we redefine our notion of encoding length accordingly. Henceforth, we assume that
‖ϕ‖ ∈ O

(
len(ϕ) · log(|Π|+ |Ω|+ |vars|+ κ)

)
where Π and Ω are the sets of predicate and function

symbols occurring in ϕ and κ is the smallest integer that is larger than the absolute value of any
numerator and denominator occurring in any rational number in ϕ (represented by an equivalent
irreducible fraction). The same applies to clause sets containing LRA terms.

In the following chapters a Bernays–Schönfinkel–Ramsey clause (BSR clause)BSR clause is understood
to be a disjunction of literals that may contain constant symbols but no function symbols of
positive arity. In order to denote BSR clauses that contain arithmetic constraints alongside
with uninterpreted symbols, we use the notation Λ ∧ Γ → ∆Λ ∧ Γ→ ∆ , where Λ and Γ are conjunctions
of atoms, respectively, and ∆ is a disjunction of atoms. Since ∧ and ∨ bind stronger than →,
explicitly putting the implicit parentheses yields (Λ ∧ Γ)→ (∆). The part Λ contains exclusively
arithmetic atoms and no uninterpreted symbols. The parts Γ and ∆, on the other hand, only
contain atoms that are either (a) relational atoms with some uninterpreted predicate symbol
or (b) non-arithmetic equations u ≈ v, where u and v are first-order variables of a sort that
is not pre-determined, i.e. of an uninterpreted sort. Requiring the parts Γ and ∆ of clauses to
not contain any arithmetic terms apart from variables does not limit expressiveness. First of
all, for every implication Λ ∧ Γ → ∆ ∨ s / t where / ∈ {<,≤,=, 6=,≥, >} there is an equivalent
implication s /′ t ∧ Λ ∧ Γ → ∆ where /′ ∈ {<,≤,=, 6=,≥, >} is the negated counterpart of /.
Hence, every clause is equivalent to some clause in which all purely arithmetic atoms occur in
the Λ part. Moreover, every arithmetic term t in Γ or ∆ that is not a variable and that is not
part of a purely arithmetic atom can be safely replaced with a fresh base-sort variable xt when an
arithmetic constraint xt = t is added to the Λ part of the clause (a process known as purification

purification or abstraction [BGW94, KW12]).
Concerning semantics, we adhere to the definitions given in Chapter 1. However, we tacitly

assume that all structures that we shall consider in the following chapters interpret the arithmetic
function and predicate symbols in the usual way, unless explicitly stated otherwise. Notice that
this also affects notions such as semantic entailment and semantic equivalence, which are implicitly
re-defined based on the restriction to the mentioned class of structures. Given any clause set N , we
occasionally write A |= NA |= N if we have A |= ϕN for the associated sentence ϕN := ∀x̄. ∧C(x̄)∈N C(x̄),
where x̄ is a tuple collecting all variables occurring in N . This notation takes into account that
all variables in N are implicitly considered to be universally quantified. Similarly, we extend the
notions A satisfies N and A is a model of N to clause sets, if we actually mean “A satisfies ϕN”
or “A is a model of ϕN” for the associated sentence ϕN . Furthermore, we tacitly assume that all
considered variable assignments and substitutions respect sorts, i.e. given any first-order variable
x of sort Q (or Z), any variable assignment β, and any substitution σ, we assume that β(x) is a
value from Q (or Z) and that the term σ(x) has the sort Q (or Z). We assume the same for any

225

first-order variable that is of any uninterpreted sort S (in the context of a given structure A that
interprets S with some nonempty set SA).

For any two sets R,Q ⊆ Q we write R < Q R < Qif r < q holds for all r ∈ R and q ∈ Q. Given any
real or rational number r, we denote the integral part of r by brc brc, fr(r), i.e. brc is the largest integer with
brc ≤ r. Dually, dre addresses the smallest integer with dre ≥ r. By fr(r) we denote the fractional
part of r, i.e. fr(r) := r− brc. Notice that fr(r) is always nonnegative, e.g. fr(3.71) = 0.71, whereas
fr(−3.71) = 0.29. Given any tuple r̄ of reals or rationals, we write fr(r̄) to address the corresponding
tuple of fractional parts, i.e. fr

(
〈r1, . . . , rµ〉

)
:=
〈
fr(r1), . . . , fr(rµ)

〉
. We use the notation br̄c and

dr̄e in a component-wise fashion as well. Throughout Part II we shall use the usual notation for
intervals of the number line: for example, with respect to the rational numbers (−∞, r] denotes
the set {q ∈ Q | q ≤ r} and [r, s) denotes the set {q ∈ Q | r ≤ q < s}. It will always be clear from
the current context what the underlying domain is. Finally, Q≥0, R≥0, and Z≥0 Q≥0, R≥0,

Z≥0

address the sets
of all nonnegative rational numbers, real numbers, and integers, respectively.

226 CHAPTER 9. ADDITIONAL TECHNICAL PRELIMINARIES

Chapter 10

Decidable Fragments of Linear
Rational Arithmetic with
Uninterpreted Predicate Symbols

We have emphasized in Chapter 8 that the syntax of decidable first-order fragments combining
arithmetic with uninterpreted predicate symbols has to be restricted considerably on both sides,
the arithmetic part as well as the uninterpreted part. In the present chapter, we shall introduce and
investigate two subfragments with a decidable satisfiability problem, both based on the Bernays–
Schönfinkel–Ramsey fragment: BSR with simple linear rational constraints — BSR(SLR) — and
BSR with bounded difference constraints — BSR(BD). We have already sketched the definitions in
Chapter 8. The formal definitions are as follows.

Definition 10.0.1 (BSR with simple linear rational constraints — BSR(SLR)). A BSR(SLR)
clause has the form Λ ∧ Γ → ∆, where the conjunctions Λ, Γ and the disjunction ∆ satisfy the
following conditions:

(i) Every atom in Λ is an LRA atom of the form s / t or x / t or x / y where s, t are ground
(i.e. variable-free) LRA terms, x, y ∈ VarQ, and / ∈ {<,≤, =, 6=,≥, >}.

(ii) Every atom in Γ and ∆ is either an equation s ≈ s′ over free-sort variables and constant
symbols, or a non-equational atom P (s1, . . . , sm) that is well sorted and where the si range
over base-sort variables, free-sort variables, and free-sort constant symbols.

Definition 10.0.2 (BSR with bounded difference constraints — BSR(BD)). A BSR(BD) clause
has the form Λ ∧ Γ→ ∆, where the conjunctions Λ, Γ and the disjunction ∆ satisfy Condition (ii)
of Definition 10.0.1, and every atom in Λ is an LRA atom of the form x / c, x / y, or x− y / c
where c ∈ Z may be any integer (not a Skolem constant!), x, y ∈ VarQ are distinct, and / ∈ {<,≤,
=, 6=,≥, >}. Moreover, we require that whenever Λ contains an atom of the form x− y / c, then
Λ also contains LRA atoms cx ≤ x, x ≤ dx, cy ≤ y, and y ≤ dy with cx, dx, cy, dy ∈ Z. We shall
refer to atoms of the form x− y / c as difference constraints.

Limiting the right-hand sides of arithmetic atoms in BSR(BD) clauses to integers instead of
rational numbers simplifies their treatment. This restriction does not severely restrict expressiveness,
as long as we are only interested in the satisfiability problem. We could multiply all rational
numbers in a BSR(BD) clause set with the least common multiple of their denominators and thus
obtain an equisatisfiable clause set in which only integers occur.

In Chapter 9 we have argued that requiring the parts Γ and ∆ of clauses to not contain any
arithmetic terms apart from variables does not limit expressiveness. In order to simplify syntax
even further, we often restrict our attention to clause sets in the following normal forms.

227

228 CHAPTER 10. DECIDABLE FRAGMENTS

Definition 10.0.3 (BSR(SLR) normal form for clauses and clause sets). A BSR(SLR) clause
Λ ∧ Γ→ ∆ is in BSR(SLR) normal form if every variable that occurs in Λ also occurs in Γ or in
∆.

A BSR(SLR) clause set N is in BSR(SLR) normal form if the following conditions are met.
All clauses in N are in normal form and pairwise variable disjoint. Moreover, N can be divided
into two parts NQ and NBSR such that

(a) every clause in NQ has the form Λ→ false, i.e. the parts Γ and ∆ are empty, and

(b) for every clause Λ ∧ Γ→ ∆ in NBSR either Γ or ∆ is nonempty and any LRA atom s / t in
Λ is such that s and t are either base-sort variables or Skolem constants, respectively.

Moreover, we assume that NBSR contains at least one free-sort constant symbol.

Definition 10.0.4 (BSR(BD) normal form for clauses and clause sets). A BSR(BD) clause
Λ∧ Γ→ ∆ is in BSR(BD) normal form if every variable that occurs in Λ also occurs in Γ or in ∆.
A BSR(BD) clause set N is in BSR(BD) normal form if all clauses in N are in normal form and
pairwise variable disjoint. Moreover, we assume that N contains at least one free-sort constant
symbol.

We have already seen exemplary clause sets for both fragments in Example 8.0.3. The
requirement that (implicitly universally quantified) variables in the Λ-part of a clause Λ ∧ Γ →
∆ have to occur in Γ or ∆ or in both can be established by any procedure for eliminating
existentially quantified variables in conjunctions of LRA atoms. Establishing the other requirements
in Definitions 10.0.3 and 10.0.4 is straightforward. We shall postpone the proof of this claim for a
little while (cf. Lemma 10.0.7), and first derive an auxiliary result that will be useful to analyze
the blowup that we incur during the normal form transformation.

The following is standard methodology in the area of difference logic, see, e.g. Section 5.7
in [KS16], Section 2.1 in [CM06], or Section 11.4.5 in [BT18]. Let mm, x̄ be any positive integer. Let
x̄ be any m-tuple of pairwise-distinct first-order variables x1, . . . , xmx0, xi of sort Q and let x0 be any
first-order variable of sort Q that does not occur in x̄. Let Λ(x0, x̄) := x0 =0 ∧ Λ′(x0, x̄)Λ(x0, x̄) be a
conjunction where Λ′(x0, x̄) is a conjunction of atoms of the form x − y ≤ c or x − y < c with
x, y ∈ x̄ ∪ {x0} and c ∈ Z.

Definition 10.0.5 (Difference constraint graph GΛ, cf. Definition 5.17 and Excercise 5.16 in [KS16]).
The difference constraint graph G(Λ)G(Λ) is a weighted directed graph 〈V,E〉 with V = {x0, x1, . . . , xm}
and E ⊆ V × V ×Q such that

〈x, x, 0〉 ∈ E for all x ∈ V ,

〈x, y, c〉 ∈ E if and only if Λ contains the constraint x− y ≤ c, and

〈x, y, c− δ〉 ∈ E if and only if Λ contains the constraint x− y < c,

where we set δ := 1
2 (m+ 1)−1.

A path π in GΛ is any finite, nonempty sequence 〈xi1 , xi2 , c1〉〈xi2 , xi3 , c2〉 . . . 〈xi`−1
, xi` , c`〉 of

edges from GΛ. We call π simple, if the indices i1, . . . , i`−1 are pairwise distinct, i.e. π traverses
every vertex in GΛ at most once, except for the end point which may coincide with the starting
point but does not have to. A simple cycle in GΛ is any simple path whose start and end point
coincide. The length of a path in GΛ is the sum of the weights associated with the edges the path
traverses. Notice that δ in Definition 10.0.5 is chosen such that the following property is satisfied.
Let π be any simple path in GΛ. Let c1, . . . , c` be the weights associated with the edges π traverses.
We have

(∑
1≤i≤`dcie

)
− 1 <

∑
1≤i≤` ci ≤

∑
1≤i≤`dcie.

Proposition 10.0.6 (cf. Theorem 1 in [CM06]). Consider the difference constraint graph GΛ and
suppose that we have Q |= ∃x0x̄.Λ(x0, x̄). Then, for every pair x, y ∈ x̄ ∪ {x0} and every rational
number r we have

229

(a) Q |= ∀x0x̄.Λ(x0, x̄) → x − y ≤ r if and only if y is reachable from x in GΛ and ddx,ye ≤ r,
and

(b) Q |= ∀x0x̄.Λ(x0, x̄)→ x− y < r if and only if y is reachable from x in GΛ and we have either
ddx,ye < r or dx,y < ddx,ye = r,

where dx,y is the length of a shortest simple path from x to y in GΛ.

In fact, a variant of Proposition 10.0.6 yields a deterministic decision procedure for the sentence
ψ := ∃x0x̄.Λ(x0, x̄) under Q that runs in polynomial time [KS16, BT18]: ψ is satisfied by Q if and
only if there is some simple cycle in GΛ that has a negative length. In other words, we then have
Q |= ∀x0x̄.Λ(x0, x̄)→ x− x ≤ −1 for some x ∈ x̄ ∪ {x0}.

Next, we prove the existence of BSR(SLR) and BSR(BD) normal forms.

Lemma 10.0.7. For every BSR(SLR) (or BSR(BD)) clause set N there is an equisatisfiable
BSR(SLR) (or BSR(BD)) clause set N ′ in BSR(SLR) normal form (BSR(BD) normal form) such
that

(a) the length of N ′ is at most exponential in the length of N ,

(b) for any clause C in N ′ the number of variables occurring in C is not larger than the number
of variables occurring in any clause in N ,

(c) if N is a BSR(SLR) clause set, the number of distinct rational numbers and Skolem constants
occurring in N ′ is linear in the length of N ,

(d) if N is a BSR(BD) clause set, then

(d.1) the number of clauses in N ′ grows at most exponentially in the number of atoms s 6= t
occurring in any clause in N ,

(d.2) the length of any clause in N ′ is at most polynomial in the length of the longest clause
in N ,

(d.3) every free-sort Skolem constant occurring in N ′ also occurs in N , and

(d.4) the absolute value of any integer in N ′ is linear in κ · λ, where κ is the smallest positive
integer that is larger than the absolute value of any integer occurring in N , and λ is the
smallest positive integer that is larger than the maximal number of universally quantified
variables occurring in any clause in N .

Proof sketch. We start with the BSR(SLR) case. First, we show how make sure that every base-sort
variable that occurs in Λ in a clause Λ ∧ Γ→ ∆ also occurs in Γ or in ∆. Consider any BSR(SLR)
clause Λ ∧ Γ → ∆ Λ ∧ Γ→ ∆,

x̄
and let x̄ be some nonempty tuple of base-sort variables that occur in Λ but

neither in Γ nor in ∆. Recall that all variables in clauses are implicitly universally quantified. We
observe that ∀x̄. (Λ ∧ Γ→ ∆) is equivalent to (∃x̄.Λ) ∧ Γ→ ∆. Since Λ is a conjunction of LRA
atoms, we may apply virtual substitution (cf. Section 7.1, page 185) to eliminate the quantifier
block ∃x̄ and compute some disjunction of conjunctions of LRA atoms

∨
i Λ′i Λ′ithat is Q-equivalent to

∃x̄.Λ. Then, the clause (∃x̄.Λ)∧Γ→ ∆ is equivalent to the conjunction of clauses
∧
i(Λ
′
i ∧Γ→ ∆).

The length of
∧
i(Λ
′
i ∧ Γ→ ∆) is at most exponential in the length of Λ ∧ Γ→ ∆ (cf. Theorem 3.7

in [LW93]), the length of each Λi is at most linear in the length of Λ, and the set of variables
occurring in any Λ′i is a subset of the variables occurring freely in ∃x̄.Λ. In BSR(SLR) clauses the
used elimination sets contain only testpoints of the form t, t + ε, or −∞, where t is some LRA
term occurring in N in some atom x / t. Virtually substituting such a testpoint in any arithmetic
atom that is admitted in BSR(SLR) yields again an atom admitted in BSR(SLR).

Next, we describe how to modify N in such a way that it can be partitioned into NQ and NBSR

as required in Definition 10.0.3. Clauses of the form s / t∧Λ′∧Γ→ ∆, where t is neither a variable
nor a Skolem constant, are replaced — under preservation of (un)satisfiability — with two clauses
t 6= c→ false (which is equivalent to t = c) and s / c ∧ Λ′ ∧ Γ→ ∆ for some fresh uninterpreted

230 CHAPTER 10. DECIDABLE FRAGMENTS

constant symbol c of sort Q. Doing this exhaustively for all clauses with nonempty part Γ or ∆
leads to the desired partition of N in NQ and NBSR.

Now we treat the BSR(BD) case. Again, we first show how to make sure that every base-
sort variable that occurs in Λ in a clause Λ ∧ Γ → ∆ also occurs in Γ or in ∆. Clauses of the
form s 6= t ∧ Λ′ ∧ Γ → ∆ are equivalently replaced with two clauses s < t ∧ Λ′ ∧ Γ → ∆ and
s > t ∧ Λ′ ∧ Γ→ ∆. We do this exhaustively for all atoms s 6= t that contain at least one variable
not occurring in the Γ or ∆ part of the respective clause. In the worst case, treating a clause in
N in this way produces 2k clauses if the original clause contains k atoms s 6= t that need to be
replaced.

Consider any BSR(BD) clause C := Λ′ ∧Λ∧Γ→ ∆C, Λ′, Λ, Γ,
∆, x̄, v̄

where every atom in Λ′ contains a variable
x that does not occur in Λ, Γ, and ∆. Let x̄ be some tuple listing all these variables exactly once
and let v̄ be some tuple listing all the other variables occurring in C. We assume that Λ′ does not
contain any atoms of the from s 6= t. Moreover, we assume that all atoms s = t in Λ′ have been
replaced with conjunctions s ≤ t ∧ t ≤ s. We observe that ∀x̄. (Λ′(x̄, v̄) ∧ Λ(v̄) ∧ Γ(v̄)→ ∆(v̄)) is
equivalent to

(
∃x̄.Λ′(x̄, v̄)

)
∧Λ(v̄)∧Γ(v̄)→ ∆(v̄). Since Λ′(x̄, v̄) is a conjunction of LRA atoms, we

may apply the Fourier-Motzkin elimination procedure to eliminate the variables x̄ in
(
∃x̄.Λ′(x̄, v̄)

)
one by one.

Consider any x ∈ x̄x . In order to eliminate x from ∃x.Λ′(x̄, v̄), we proceed as follows. Let
Λ′0,Λ

′
1,Λ
′
2Λ′0, Λ′1, Λ′2 be the shortest conjunctions satisfying the following properties:

(i) every atom from Λ′ that does not contain x occurs in Λ′0,

(ii) for every atom in Λ′ that contains x there is a Q-equivalent atom in Λ′1 ∧ Λ′2,

(iii) every atom in Λ′1 has the form s ≤ x or s < x where s is either an integer, a variable, or an
LRA term y + c for some variable y ∈ x̄ ∪ v̄ of sort Q and some integer c, and

(iv) every atom in Λ′2 has the form x ≤ t or x < t where t is either an integer, a variable, or an
LRA term y + c for some variable y ∈ x̄ ∪ v̄ of sort Q and some integer c.

Let Λ′′Λ′′ be the conjunction of the following set of atoms{
s < t

∣∣∣ (s /1 x) ∈ Λ′1 and (x /2 t) ∈ Λ′2 where at least one of /1, /2 is the strict <
}

∪
{
s ≤ t

∣∣∣ (s ≤ x) ∈ Λ′1 and (x ≤ t) ∈ Λ′2
}
.

Let x̄′ := x̄ \ {x} .x̄′ It is well known that the two formulas ∃x.Λ′1(x, x̄′, v̄)∧Λ′2(x, x̄′, v̄) and Λ′′(x̄′, v̄)
are Q-equivalent (see, e.g. [Sch99], Section 12.2). Hence, ∃x.Λ′(x, x̄′, v̄) can be replaced with
the Q-equivalent formula Λ′0(x̄′, v̄) ∧ Λ′′(x̄′, v̄). Concerning the atoms in Λ′′(x̄, v̄) we find that
every atom therein can be transformed into an equivalent atom of the form y / c, y / z, or
y − z / c where y, z ∈ x̄′ ∪ v̄, c is some integer, and / ∈ {<,≤,≥, >}. As we need to keep at most
4 · |x̄′ ∪ v̄|+ 8 · |x̄′ ∪ v̄|2 of these atoms — at most one atom y / c for each pair y, / and at most two
atoms y − z / d and z − y / e for every triple y, z, / —, we may assume that the length of Λ′′(x̄′, v̄)
is at most polynomial in the number of variables in x̄′, v̄.

We apply the described elimination procedure to eliminate the other variables in x̄ as well, in a
variable-by-variable fashion. Hence, the final conjunction Λ′′′(v̄)Λ′′′(v̄) contains at most 4 · |v̄|+ 8 · |v̄|2
atoms, and we replace the clause C(x̄, v̄) in N with the equivalent clause Λ′′′(v̄)∧Λ(v̄)∧Γ(v̄)→ ∆(v̄).
In addition, we can bound the absolute value of the integers occurring in Λ′′′ as follows. It is easy
to verify that we can transform Λ(x̄, v̄) into a Q-equivalent conjunction Λdiff(x̄, v̄)Λdiff(x̄, v̄) of difference
constraints in the sense of Definition 10.0.5 and Proposition 10.0.6 (see the paragraph preceding
Definition 10.0.5). We have mentioned right after Proposition 10.0.6 that we can check in polynomial
time whether ∃x̄v̄.Λdiff(x̄, v̄) is satisfied under Q. In the opposite case, Λ′′′ can in fact be replaced
by false. Henceforth, we assume that Q |= ∃x̄v̄.Λdiff(x̄, v̄). Since Λ′′′(v̄) is the result of applying
Fourier-Motzkin elimination to ∃x̄.Λ′(x̄, v̄), we observe that for every atom of the form u− v ≤ c
occurring in Λ′′′(v̄) we have Q |= ∀x̄v̄.Λdiff(x̄, v̄)→ u−v ≤ c. Let κκ be the smallest positive integer

10.1. BASIC TOOLS FROM RAMSEY THEORY 231

that is larger than the absolute value of any integer occurring in Λ′. Then, by Proposition 10.0.6,
we observe c ≥ −κ · (|x̄ ∪ v̄|+ 1) and, in addition, that there exists some integer k satisfying the
following properties:

(1) −κ · (|x̄ ∪ v̄|+ 1) ≤ k ≤ κ · (|x̄ ∪ v̄|+ 1), and

(2) Q |= ∀x̄v̄.Λ′(x̄, v̄)→ u− v / k.

This means, if c > κ · (|x̄ ∪ v̄|+ 1), then we can replace u− v ≤ c in Λ′′′ with the atom u− v ≤ k,
which subsumes the former. Using similar arguments we can show the same for other atoms
occurring in Λ′′′. Consequently, we may assume that Λ′′′ contains only integers whose absolute
value is linear in κ · (|x̄ ∪ v̄|+ 1).

The main result of the present Chapter is that satisfiability of finite BSR(SLR) clause sets and
finite BSR(BD) clause sets is decidable, respectively (Theorems 10.2.14 and 10.4.10). The proof
technique is very similar for the two fragments. It is partially based on methods from Ramsey
theory, which will be briefly introduced in the following section.

10.1 Basic Tools from Ramsey Theory

In the present section we establish two technical results based on methods usually applied in
Ramsey theory. We shall use these results later on to prove the existence of models of a particular
kind for finite and satisfiable BSR(SLR) or BSR(BD) clause sets. These models meet certain
uniformity conditions. In order to construct them, we rely on the existence of certain finite subsets
of Q that are used to construct prototypical tuples of rational numbers. These finite subsets, in
turn, have to behave nicely as well, since rational tuples that are not distinguishable by BSR(SLR)
or BSR(BD) clauses are required to have certain uniformity properties.

A tuple 〈r1, . . . , rm〉 ∈ Qm is called ascending ascending
tuples,
coloring

if r1 < . . . < rm. A coloring is a mapping
χ : S → C for any set S and any finite set C. For the most basic result of this section (Lemma 10.1.1),
we consider an arbitrary coloring χ of m-tuples of rational numbers and stipulate the existence of
a finite subset Q ⊆ Q of a given cardinality n such that all ascending m-tuples of elements from Q
are assigned the same color by χ. We call such a set Q uniformly colored uniformly

colored sets
.

Lemma 10.1.1. Let n,m > 0 be positive integers. Let χ : Qm → C be any coloring. There is some
positive integer n̂ such that for every set R ⊆ Q with |R| ≥ n̂ — i.e. R needs to be sufficiently large

— there exists a subset Q ⊆ R of cardinality n such that all ascending tuples 〈r1, . . . , rm〉 ∈ Qm are
assigned the same color by χ.

Proof. This proof is an adaptation of the proof of Ramsey’s Theorem on page 7 in [GRS90]. For
n < m the lemma is trivially satisfied, since in this case Qm cannot contain any ascending tuple.
Hence, we assume n ≥ m. In order to avoid technical difficulties when defining the sequence
of elements sm−1, sm, sm+1, . . . below, we assume for the rest of the proof that R is finite but
sufficiently large. This assumption does not pose a restriction, as we could always consider a
sufficiently large finite subset of R, if R were to be infinite.

We proceed by induction on m ≥ 1. The base case m = 1 is easy, since χ can assign only

finitely many colors to elements in R and thus some color must be assigned at least
⌊ |R|
|C|
⌋

times.

Hence, if R contains at least n|C| elements, we find a uniformly colored subset Q of size n. Suppose
m > 1. At first, we pick the m − 2 smallest rational numbers s1 < . . . < sm−2 s1, . . . , sm−2from R and set
Sm−2 := R \ {s1, . . . , sm−2} Sm−2. Thereafter, we simultaneously construct two sufficiently long but
finite sequences sm−1, sm, sm+1, . . . and Sm−1, Sm, Sm+1, . . . as follows:
Given Si, we define si+1 si+1to be the smallest rational number in Si.
Given Si and the element si+1, we define an equivalence relation ∼i ∼i, S′ion the set S′i := Si \ {si+1}
so that s ∼i s′ holds if and only if for every sequence of indices j1, . . . , jm−1 with 1 ≤ j1 <
. . . < jm−1 ≤ i+ 1, we have χ(sj1 , . . . , sjm−1

, s) = χ(sj1 , . . . , sjm−1
, s′). This equivalence relation

232 CHAPTER 10. DECIDABLE FRAGMENTS

partitions S′i into at most |C|(i+1
m−1) equivalence classes. We choose one such class with largest

cardinality to be Si+1Si+1 .
By construction of the sequence s1, s2, s3, . . ., we must have χ(sj1 , . . . , sjm−1 , sK) = χ(sj1 , . . . ,

sjm−1
, sK′) for every sequence of indices j1 < . . . < jm−1 and all indices K,K ′ ≥ jm−1 + 1. Notice

that this covers all ascending m-tuples in {s1, s2, s3, . . .}m starting with sj1 , . . . , sjm−1, i.e. they all
share the same color. We now define a new coloring χ′ : {s1, s2, s3, . . .}m−1 → Cχ′ so that χ′(sj1 , . . . ,
sjm−1

) := χ(sj1 , . . . , sjm−1
, sjm−1+1) for every sequence of indices j1 < . . . < jm−1 (in case of jm−1

being the index of the last element in the sequence s1, s2, s3, . . ., χ
′(sj1 , . . . , sjm−1) shall be an

arbitrary color from C). By induction, there exists a subset Q ⊆ {s1, s2, s3, . . .}Q of cardinality n,
such that every ascending (m− 1)-tuple r̄ ∈ Qm−1 is colored the same by χ′. The definition of χ′

entails that now all ascending m-tuples r̄′ ∈ Qm are colored the same by χ. Hence, Q is the sought
set.

Based on Lemma 10.1.1, one can derive similar results for more structured ways of coloring
tuples of rational numbers. We shall employ such a structured coloring when proving that the
satisfiability problem for finite BSR(SLR) clause sets is decidable. More precisely, the proof of
Lemma 10.2.9 will rely on such a result, namely Lemma 10.1.4. But before we formulate and prove
this lemma, we present two auxiliary results.

Lemma 10.1.2. Let n,m, p > 0 be positive integers and let χ : Qmp → C be an arbitrary coloring.
Let R1, . . . , Rp be sufficiently large but finite subsets of Q. There exist subsets Q1 ⊆ R1, . . . , Qp ⊆
Rp, each of cardinality n and there is some color C ∈ C, such that for all ascending m-tuples
r̄1 ∈ Qm1 , . . . , r̄p ∈ Qmp we have χ(r̄1, . . . , r̄p) = C.

Proof. This proof is an adaptation of the proof of Theorem 5 on page 113 in [GRS90]. As in the
proof of Lemma 10.1.1, we assume n ≥ m. We proceed by induction on p ≥ 1. The case p = 1 is
covered by Lemma 10.1.1. Suppose p > 1. We define an equivalence relation ∼p over the set Rmp
so that s̄ ∼p s̄′ holds if and only if for all ascending tuples r̄1 ∈ Rm1 , . . . , r̄p−1 ∈ Rmp−1 the colors

χ
(
r̄1, . . . , r̄p−1, s̄

)
and χ

(
r̄1, . . . , r̄p−1, s̄

′) are identical. This equivalence relation induces at most

|C|(|R1|
m)·...·(|Rp−1|

m) equivalence classes over Rmp . It thus induces a coloring of χ′ : Rmp → C′p where
C′p contains one color for each of these equivalence classes. By virtue of Lemma 10.1.1, we can
construct a subset Qp ⊆ Rp with n elements such that all ascending m-tuples r̄ ∈ Qmp are colored
identically by χ′. Let the coloring χ′′ be defined by χ′′(r̄1, . . . , r̄p−1) := χ(r̄1, . . . , r̄p−1, s̄) for some
fixed ascending m-tuple s̄ ∈ Qmp . By induction, we find subsets Q1 ⊆ R1, . . . , Qp−1 ⊆ Rp−1, each
containing n elements, such that for all ascending m-tuples r̄1 ∈ Rm1 , . . . , r̄p−1 ∈ Rmp−1 the colors
χ′′(r̄1, . . . , r̄p−1) are identical. But then, the definition of χ′′ and χ′ entail that the sets Q1, . . . , Qp
satisfy the requirements posed by the lemma.

Recall that we write [K] to address the set {1, . . . ,K} for any positive integer K > 0.

Lemma 10.1.3. Let n,m, p > 0 be positive integers, let K ≥ 0 be a nonnegative integer and let
χ : Qm → C be an arbitrary coloring. Let R1, . . . , Rp be sufficiently large but finite subsets of Q.
Let q1, . . . , qK be fixed rational numbers. Let ρ : [m]→ [p+K]× [m] be some mapping such that
ρ(i) = 〈K, `〉 with K > p implies ` = 1.

There exist subsets Q1 ⊆ R1, . . . , Qp ⊆ Rp, each of cardinality n, and there exists some color
C ∈ C such that for all ascending tuples

r̄1 = 〈r〈1,1〉, . . . , r〈1,m〉〉 ∈ Qm1
...

r̄p = 〈r〈p,1〉, . . . , r〈p,m〉〉 ∈ Qmp
r̄p+1 = 〈r〈p+1,1〉〉 := 〈q1〉

...

r̄p+K = 〈r〈p+K,1〉〉 := 〈qK〉

10.2. DECIDABILITY OF BSR WITH SIMPLE LINEAR RATIONAL CONSTRAINTS 233

we have χ(r̄ρ(1), . . . , r̄ρ(m)) = C.

Proof. We again assume n ≥ m. We define a new coloring χ′ : Qmp → C by

χ′(r〈1,1〉, . . . , r〈1,m〉, . . . , r〈p,1〉, . . . , r〈p,m〉) := χ(rρ(1), . . . , rρ(m))

for every mp-tuple 〈r̄1, . . . , r̄p〉 ∈ Rm1 × . . . × Rmp with ascending r̄1, . . . , r̄p. By Lemma 10.1.2,
there exist subsets Q1 ⊆ R1, . . . , Qp ⊆ Rp, each with n elements, such that for all ascending
tuples r̄1 ∈ Qm1 , . . . , r̄p ∈ Qmp the colors χ′(r̄1, . . . , r̄p) are the same. By definition of χ′, the sets
Q1, . . . , Qp satisfy the requirements of the lemma.

Now we have the right tools at hand to prove Lemma 10.1.4

Lemma 10.1.4. Let n,m, p > 0 be positive integers, let K ≥ 0 be a nonnegative integer and let
χ : Qm → C be an arbitrary coloring. Let R1, . . . , Rp be sufficiently large but finite subsets of
Q. Let q1, . . . , qK be fixed rational numbers. Let ρ1, . . . , ρL be some enumeration of all mappings
ρj : [m] → [p + K] × [m] for which ρj(i) = 〈K, `〉 with K > p entails ` = 1. Then, there exist
subsets Q1 ⊆ R1, . . . , Qp ⊆ Rp, each of cardinality n, such that for all ascending tuples

r̄1, r̄
′
1 ∈ Qm1
...

r̄p, r̄
′
p ∈ Qmp

r̄p+1 := 〈rp+1,1〉 := 〈q1〉
...

r̄p+K := 〈rp+K,1〉 := 〈qK〉

and every index j, 1 ≤ j ≤ L, we have
χ
(
rρj(1), . . . , rρj(m)

)
= χ

(
r′ρj(1), . . . , r

′
ρj(m)

)
.

Proof. We again assume n ≥ m. We construct sequences of subsets S`,0 ⊇ . . . ⊇ S`,L for every `,
1 ≤ ` ≤ p, such that

S`,0 = R`, and

S`,j+1 ⊆ S`,j is a subset of sufficient cardinality that is constructed by application of Lemma
10.1.3 for ρ := ρj+1, i.e. for all ascending tuples

〈s〈1,1〉, . . . , s〈1,m〉〉 ∈ Sm1,j+1

...

〈s〈p,1〉, . . . , s〈p,m〉〉 ∈ Smp,j+1

the colors χ(s̄ρj+1(1), . . . , s̄ρj+1(m)) are the same.

Then the sets S1,L, . . . , Sp,L are the sought Q1, . . . , Qp.

10.2 The Bernays–Schönfinkel–Ramsey Fragment with Sim-
ple Linear Rational Constraints is Decidable

For the rest of the present section we fix two positive integers m,m′ > 0 and some finite BSR(SLR)
clause set N N , m, m′in BSR(SLR) normal form. For the sake of simplicity, we assume that all uninterpreted

predicate symbols P occurring in N have the sort P : Sm′ ×Qm. This assumption does not limit
expressiveness, as the arity of a predicate symbol P can easily be increased in an (un)satisfiability-
preserving way by padding the occurring atoms with additional arguments. For instance, every

234 CHAPTER 10. DECIDABLE FRAGMENTS

occurrence of an atom P (t1, . . . , tm) can be replaced with P (t1, . . . , tm, v, . . . , v) for some fresh
first-order variable v that is added sufficiently often as argument.

Given the BSR(SLR) clause set N , every structure A induces a partition of Q into finitely
many intervals: the rational numbers occurring in N together with the interpretations of all the
Skolem constants c occurring in N yield point intervals that are interspersed with and enclosed by
open intervals.

Definition 10.2.1 (A-induced partition of Q). Let A be any structure and let r1, . . . , rk be an
enumeration of all the values in the set {cA | c ∈ consts(N) is of sort Q} in ascending order. By
JAJA we denote the following partition of Q:

JA :=
{

(−∞, r1), {r1}, (r1, r2), {r2}, . . . , (rk−1, rk), {rk}, (rk,+∞)
}

,
where the sets {ri} represent point intervals, i.e. closed intervals containing exactly one value ri.

The idea underlying the following equivalence relation is that equivalent tuples are indis-
tinguishable with respect to the arithmetic atoms that we allow in the BSR(SLR) clause set
N .

Definition 10.2.2 (JA-equivalence, ∼JA). Let A be any structure and let k be any positive integer.
We call two k-tuples r̄, q̄ ∈ Qk JA-equivalent if and only if

(i) for every i, 1 ≤ i ≤ k, and every interval J ∈ JA we have ri ∈ J if and only if qi ∈ J and

(ii) for all i, j, 1 ≤ i, j ≤ k we have ri < rj if and only if qi < qj.

The induced equivalence relation over tuples of positive length is denoted by ∼JA∼JA .

For every positive k the relation ∼JA induces only finitely many equivalence classes over the
set of all k-tuples over the rationals.

Example 10.2.3. Consider an exhaustively Skolemized variant of the sentence ϕ1 from Exam-
ple 8.0.3:

ϕSk := ∀xy.
(
3 < c1 < c2 <

31
5

)
∧
(
3 ≤ x < c1 ∧ 3 < y < c2 → P (x, y)

)
∧
(
c1 ≤ x < y ∧ y < 31

5 → P (x, y)
)
.

Although we use convenient notation, the sentence essentially meets the syntax of BSR(SLR). Let
A be any structure satisfying 3 < cA1 < cA2 < 31

5 . Then, the partition JA of Q is given by

JA =
{

(−∞, 3), {3}, (3, cA1), {cA1 }, (cA1 , cA2), {cA2 }, (cA2 , 31
5), { 31

5 }, (31
5 ,+∞)

}
.

Figure 10.1 illustrates the equivalence relation ∼JA induced by JA over the two-dimensional rational
plane.
Obviously, the number of equivalence classes is finite: there are 91 classes in the quotient set
Q2/∼JA .

Proposition 10.2.4. Any equivalence relation ∼JA in accordance with Definition 10.2.2 induces
finitely many equivalence classes over the set Qk.

Proof. Given any k-tuple r̄, every component belongs to exactly one of the intervals in JA, and if
multiple such components stem from the same interval, there are only finitely many possibilities
for their ordering relative to one another.

We intend to show that, if N is satisfiable, then there is some model A for N which does not
distinguish between different JA-equivalent tuples. First, we need some notion that reflects how
the structure A treats a given tuple r̄ ∈ Qm. This role will be taken by the coloring χA, which
maps r̄ to a set of expressions of the form P ā, where P is some predicate symbol occurring in N
and ā is an m′-tuple of domain elements from SA. The presence of P ā in the set χA(r̄) indicates
that A interprets P in such a way that PA contains the tuple 〈ā, r̄〉. In this sense, χA(r̄) comprises
all the relevant information that A contains regarding the tuple r̄.

10.2. DECIDABILITY OF BSR WITH SIMPLE LINEAR RATIONAL CONSTRAINTS 235

3 cA1 cA2
31
5

3

cA1

cA2

31
5

Figure 10.1: Partition of the two-dimensional rational plane into equivalence classes induced by
∼JA . Every dot, line segment, rectangular white area, and triangular white area represents an
equivalence class. The open white areas represent open sets that stretch out towards infinity. The
same holds true for the fringe line segments.

Definition 10.2.5 (A-coloring χA). Let c1, . . . , cn be an enumeration of all constant symbols of

sort S that occur in N . Given any structure A, let Ŝ := {a ∈ SA | a = cAi for some ci}. An
A-color A-coloris any set of expressions of the form P ā where P is some uninterpreted predicate symbol

occurring in N and ā is some m′-tuple over the set Ŝ. The A-coloring of Qm is the mapping χA
assigning A-colors to m-tuples of rationals such that for every r̄ ∈ Qm we have P ā ∈ χA(r̄) if and
only if 〈ā, r̄〉 ∈ PA.

Having the coloring χA at hand, it is easy to formulate a uniformity property for any given
structure A. Two tuples r̄, r̄′ ∈ Qm are treated uniformly by A, if the colors χA(r̄) and χA(r̄′)
agree. Put differently, A does not distinguish r̄ from r̄′.

Definition 10.2.6 (JA-uniformity). A structure A is JA-uniform if χA colors each and every
∼JA-equivalence class uniformly, i.e. for all ∼JA-equivalent tuples r̄, r̄′ we have χA(r̄) = χA(r̄′).

We next show that there exists a JA-uniform model A of N , if N is satisfiable. Since such a
model does not distinguish between JA-equivalent m-tuples, and as there are only finitely many
equivalence classes induced by ∼JA , only a finite amount of information is required to describe the
structure A. This insight will give rise to a decision procedure that nondeterministically guesses
how each and every equivalence class shall be treated by the uniform model.

Given some model A of N , the following lemma assumes the existence of certain finite sets Qi
with a fixed finite cardinality which are subsets of the open intervals in JA. All JA-equivalent
m-tuples that can be constructed from the rationals belonging to the Qi are required to be colored
identically by χA. The existence of the sets Qi is stipulated (and proved) in Lemma 10.2.9.

Lemma 10.2.7. Let λ λbe the maximal number of distinct base-sort variables in any single clause
in N . In case of λ < m we set λ := m. Let A be a model of N . Let J0, {r1}, J1, . . . , {rκ}, Jκ Ji, ribe an
enumeration of all intervals in JA sorted in ascending order with the Ji being the open intervals.
Suppose we are given a collection of finite sets Q0, . . . , Qκ Qipossessing the following properties:

(i) Qi ⊆ Ji and |Qi| = λ for every i.

(ii) Let Q :=
⋃
iQi ∪ {r1, . . . , rκ} Q. For all JA-equivalent m-tuples q̄, q̄′ ∈ Qm we have χA(q̄) =

χA(q̄′).

Then, we can construct a model B of N that is JB-uniform and that interprets the free sort S with
a finite set. Moreover, B interprets all constant symbols in N in the same way A does.

236 CHAPTER 10. DECIDABLE FRAGMENTS

Proof.

Claim I: Let µ be any positive integer with 1 ≤ µ ≤ λ. For each of the finitely many equivalence
classes in Qµ/∼JA we find a representative lying in Qµ.

Proof: Given any equivalence class [r̄]∼JA ∈ Qµ/∼JA , we define the following ascending sequences
for every i, 0 ≤ i ≤ κ:

si,1 < . . . < si,ki enumerating in ascending order all the values occurring in r̄ that stem
from Ji, and

qi,1 < . . . < qi,λ comprising all rationals from Qi in ascending order.

In every Qi ⊆ Ji we find λ ≥ µ ≥ ki distinct rationals.

We can now construct a tuple q̄′ ∈ [r̄]∼JA ∩Q
µ by setting

q′` :=

{
cA if r` = cA for some c ∈ consts(N) of sort Q,
qi,j if r` = si,j for some i, 0 ≤ i ≤ κ, and some j, 1 ≤ j ≤ ki,

for every `, 1 ≤ ` ≤ µ. Clearly, r̄ and q̄′ are JA-equivalent. ♦

Let c1, . . . , cnci, Ŝ be an enumeration of all constant symbols of sort S that occur in N and let Ŝ
denote the set {a ∈ SA | a = cAi for some ci}. We construct the structure BB as follows. We set

SB := Ŝ, and for every constant symbol c occurring in N we set cB := cA. Moreover, for every
uninterpreted predicate symbol P occurring in N and for all tuples ā ∈ Ŝm′ and r̄ ∈ Qm we pick
some tuple q̄ ∈ Qm which is JA-equivalent to r̄, and we define PB so that

〈ā, r̄〉 ∈ PB if and only if 〈ā, q̄〉 ∈ PA .

Claim II: The structure B is JB-uniform.

Proof: By construction of B and by Requirement (ii). ♦

We next show B |= N . Consider any clause C = Λ ∧ Γ → ∆ in N and let β be any variable
assignment ranging over SB ∪Q. Starting from β, we derive a special variable assignment γC as
follows. Let x1, . . . , xλC be an enumeration of all base-sort variables occurring in C. By Claim I,
there is some tuple 〈q1, . . . , qλC 〉 ∈ QλC such that 〈q1, . . . , qλC 〉 ∼JA

〈
β(x1), . . . , β(xλC)

〉
. We

define γC(xi) := qi for every i, 1 ≤ i ≤ λC . For all other base-sort variables, γC can be defined
arbitrarily. For every free-sort variable u we set γC(u) := β(u). We observe〈

β(x1), . . . , β(xλC)
〉
∼JB

〈
γC(x1), . . . , γC(xλC)

〉
. (10.1)

As A is a model of N , we get A, γC |= C. By case distinction on why A, γC |= C holds, we can
infer B, β |= C as follows:

Case A, γC 6|= t / t′ for some LRA atom t / t′ in Λ, where t, t′ are base-sort variables or ground
LRA terms. Notice that, since we assume C to be in BSR(SLR) normal form, if t is a variable,
then t′ is either a variable or a constant symbol, and if t′ is a variable, then t is either a
variable or a constant symbol. Since B and A interpret constant symbols in the same way
and due to (10.1), we conclude B, β 6|= t / t′.

Case A, γC 6|= t ≈ t′ for some free-sort equation t ≈ t′ ∈ Γ. In this case, t and t′ are either
variables or constant symbols of the free sort, which means they do not contain subterms of
the base sort. Since B and A behave identical on free-sort constant symbols and β(u) = γC(u)
for every variable u ∈ VS , we have B, β 6|= t ≈ t′.

Case A, γC |= t ≈ t′ for some t ≈ t′ ∈ ∆. In analogy to the above case, we get B, β |= t ≈ t′.

10.2. DECIDABILITY OF BSR WITH SIMPLE LINEAR RATIONAL CONSTRAINTS 237

Case A, γC 6|= P (t′1, . . . , t
′
m′ , t1, . . . , tm) for some non-equational atom P (t′1, . . . , t

′
m′ , t1, . . . , tm) in

Γ. This translates to〈
A(γC)(t′1), . . . ,A(γC)(t′m′),A(γC)(t1), . . . ,A(γC)(tm)

〉
6∈ PA.

Moreover, since N is in BSR(SLR) normal form,, C must belong to NBSR and thus each tj
is either a variable of sort Q or a Skolem constant of sort Q. By definition of γC , we have
A(γC)(tj) ∈ Q for every j, 1 ≤ j ≤ m. Therefore, and by construction of B,〈

A(γC)(t′1), . . . ,A(γC)(t′m′),A(γC)(t1), . . . ,A(γC)(tm)
〉
6∈ PB.

We observe the following properties:

(I) We have A(γC)(t′j) = B(β)(t′j) for every j, 1 ≤ j ≤ m′, due to the definition of B and
γC .

(II) Since A and B interpret constant symbols in the same way, we get A(γC)(tj) = B(γC)(tj)
for every j, 1 ≤ j ≤ m.

(III) The definition of γC entails that
〈
B(γC)(t1), . . . ,B(γC)(tm)

〉
and〈

B(β)(t1), . . . ,B(β)(tm)
〉

are JB-equivalent.

The first two observations imply〈
B(β)(t′1), . . . ,B(β)(t′m′),B(γC)(t1), . . . ,B(γC)(tm)

〉
6∈ PB.

Due to this result and the fact that B is JB-uniform (Claim II), the third observation leads
to
〈
B(β)(t′1), . . . ,B(β)(t′m′),B(β)(t1), . . . ,B(β)(tm)

〉
6∈ PB.

Put differently, we have B, β 6|= P (t′1, . . . , t
′
m′ , t1, . . . , tm).

Case A, γC |= P (t′1, . . . , t
′
m′ , t1, . . . , tm) for some non-equational atom P (t′1, . . . , t

′
m′ , t1, . . . , tm) in

∆. In analogy to the previous case we may infer B, β |= P (t′1, . . . , t
′
m′ , t1, . . . , tm).

Altogether, we have shown B |= N .

In order to show that uniform models always exist for satisfiable clause sets N , we still need to
prove the existence of the sets Qi required in Lemma 10.2.7. We use Lemma 10.1.4 to show this.
As an auxiliary result, we first show a correspondence between the equivalence classes with respect
to ∼JA and mappings ρ : [m]→ [|JA|]× [m].

Lemma 10.2.8. Let A be any structure. Let J1, {q1}, J2, {q2}, . . . , {qκ}, Jκ+1 Ji, qibe an enumeration
of all intervals in JA sorted in ascending order with the Ji being the open intervals. Let S ∈
Qm/∼JA be any equivalence class with respect to ∼JA containing m-tuples. There is some mapping

ρ : [m]→ [|JA|]× [m] ρsuch that

(i) whenever ρ(i) = 〈k, `〉 with k > κ+ 1 then ` = 1, and

(ii) for all ascending tuples

r̄1 = 〈r〈1,1〉, . . . , r〈1,m〉〉 ∈ Jm1 ,
...

r̄κ+1 = 〈r〈κ+1,1〉, . . . , r〈κ+1,m〉〉 ∈ Jmκ+1,

r̄κ+2 = 〈r〈κ+2,1〉〉 = 〈q1〉
...

r̄2κ+1 = 〈r〈2κ+1,1〉〉 = 〈qκ〉

we have 〈rρ(1), . . . , rρ(m)〉 ∈ S, and

(iii) for every tuple 〈s1, . . . , sm〉 ∈ S there exist ascending tuples r̄1, . . . , r̄2κ+1 defined like in (ii)
such that 〈s1, . . . , sm〉 = 〈rρ(1), . . . , rρ(m)〉.

238 CHAPTER 10. DECIDABLE FRAGMENTS

Proof. Fix any S ∈ Qm/∼JA . Let s̄′ be some representative taken from S, i.e. S = [s̄′]∼JA . Given
s̄′, we construct 2κ + 1 possibly empty sequences s̄′′k := 〈s′′k,1, s′′k,2, . . .〉, such that every s̄′′k with
k ≤ κ + 1 lists all elements of s̄′ in ascending order that lie in Jk, and every s̄′′k with k > κ + 1
contains exactly the value qk−κ−1. We construct the mapping ρ in such a way that ρ(i) = 〈k, `〉
holds if and only if s′i = s′′k,`.

Now let r̄1, . . . , r̄2κ+1 be any tuples of rationals chosen in accordance with requirement (ii). It
is easy to verify that r̄ρ := 〈rρ(1), . . . , rρ(m)〉 is JA-equivalent to s̄′, i.e. r̄ρ belongs to S.

In order to show (iii), we construct the tuples r̄1, . . . , r̄2κ+1 from 〈s1, . . . , sm〉 in the same way
we have constructed the s̄′′k from s̄′ above. In addition, we pad them with suitable values from
the respective intervals Jk to reach the length m for every tuple. Then, it is easy to verify that
〈s1, . . . , sm〉 = 〈rρ(1), . . . , rρ(m)〉.

Lemma 10.2.9. Let A be any structure. Let J0, {r1}, J1, . . . , {rκ}, JκJi, ri be an enumeration of all
intervals in JA sorted in ascending order with the Ji being the open intervals. Let λ be any positive
integer. There is a collection of finite sets Q0, . . . , Qκ such that Requirements (i) and (ii) of
Lemma 10.2.7 are met:

(i) We have Qi ⊆ Ji and |Qi| = λ for every i, 1 ≤ i ≤ κ+ 1.

(ii) Let Q :=
⋃
iQi ∪ {r1, . . . , rκ}. For all JA-equivalent m-tuples q̄, q̄′ ∈ Qm we have χA(q̄) =

χA(q̄′).

Proof. Let the sets Q1, . . . , Qκ+1 be the Q1, . . . , Qp which we obtain by virtue of Lemma 10.1.4
when we set n := λ, p := κ+ 1, χ := χA, R1 := J1, . . . , Rp := Jκ+1. Requirement (i) is obviously
satisfied for Q1, . . . , Qκ+1. By Lemma 10.2.8, the equivalence class to which any two given JA-
equivalent tuples q̄, q̄′ belong corresponds to some mapping ρ : [m]→ [2κ+ 1]× [m]. Part (ii) of
Lemma 10.2.8 states that q̄ can be written in the form 〈rρ(1), . . . , rρ(m)〉 for appropriate values
r〈k,`〉 and q̄′ can be represented in the form 〈r′ρ(1), . . . , r

′
ρ(m)〉 for appropriate r′〈k,`〉. We then know

by Lemma 10.1.4 that χA(q̄) = χA(〈rρ(1), . . . , rρ(m)〉) = χA(〈r′ρ(1), . . . , r
′
ρ(m)〉) = χA(q̄′).

Lemmas 10.2.7 and 10.2.9 together entail the existence of some JA-uniform model A |= N with
a finite free-sort domain SA, if N is satisfiable.

Corollary 10.2.10. If N has a model, then it has a model A that is JA-uniform and that interprets
the sort S with some finite set.

Corollary 10.2.10 provides the key tool for devising a decision procedure for finite BSR(SLR)
clause sets. But before we present such a procedure, we need to develop a variant of Lemma 10.2.7
that is easier to handle from the computational point of view.1 Recall that we assume N to be
in normal form (cf. Definition 10.0.3). Therefore, N can be partitioned into NQ, NBSR, where
NBSR ⊆ N is a subset that contains exactly the clauses Λ∧ Γ→ ∆ from N with nonempty Γ or ∆.
By Requirement (b) of Definition 10.0.3, we may assume that NBSR does not contain any symbol
from the arithmetic part of the underlying vocabulary, except for <,≤. That is, NBSR does neither
contain any rational numbers nor any arithmetic operators. Our aim is to treat NQ and NBSR in
isolation: combining a decision procedure for LRA and one for BSR sentences over uninterpreted
vocabularies.

Let c1, . . . , ckci, di be an enumeration of all the constant symbols in NQ ∪NBSR that are of the sort
Q and let d1, . . . , d` be an enumeration of all free-sort constant symbols occurring in NBSR. We

1The author of the present thesis is indebted to Pascal Fontaine for pointing out in a discussion in November 2017
that Lemma 10.2.7 and Corollary 10.2.10 alone are not sufficient for devising a decision procedure for BSR(SLR).

10.2. DECIDABILITY OF BSR WITH SIMPLE LINEAR RATIONAL CONSTRAINTS 239

define ψ to be the following BSR sentence (with constant symbols)

ψ ψ:=
(
∀v.Rat(v)↔ ¬Free(v)

)
∧
(
∀xy. x < y ∨ x ≤ y → Rat(x) ∧ Rat(y)

)
∧
∧

1≤i≤k
Rat(ci) ∧

∧
1≤j≤`

Free(dj)

∧
(
∀xyz.Rat(x) ∧ Rat(y) ∧ Rat(z) −→

((
¬x < x

)
∧
(
x < y ∧ y < z → x < z

)
∧
(
x ≈ y ∨ x < y ∨ y < x

)
∧
(
x ≤ y ↔ x ≈ y ∨ x < y

)))
,

which explicitly stipulates sort membership for constant symbols and contains the axioms of total
orders for < and ≤. We assume, without loss of generality, that the predicate symbols Rat and
Free do not occur in N . The length of ψ is linear in the length of NQ ∪NBSR. Notice that we use
the equality sign ≈ instead of =, and thus refrain from treating arithmetic variables in a privileged
way. The reason will become apparent in Lemma 10.2.11.

Let ū be some tuple listing all variables from vars(NBSR)∩VarS and let x̄ be some tuple listing
all variables from vars(NBSR) ∩VarQ. We define the sentence ϕNBSR

ϕNBSR := ψ ∧ ∀ūx̄.
(∧
u∈ū

Free(u) ∧
∧
x∈x̄

Rat(x)
)
→

∧
C(ū,x̄)∈NBSR

C(ū, x̄) ,

which is evidently equivalent to some BSR sentence and whose length is linear in the length of
NQ ∪ NBSR. In addition, we define the sentence η� for any total preorder � �(a reflexive and
transitive binary relation) over the constant symbols c1, . . . , ck as follows. We write ci ≺ cj ci ≺ cjif and
only if we have ci � cj and cj 6� ci. Suppose that cj1 ≺ . . . ≺ cjk′ is a maximal ≺-chain with
k′ ≤ k. Let λ λbe the maximal number of distinct base-sort variables in any single clause in NBSR.
In case of λ < m we set λ := m. Let z̄0, . . . , z̄k′ z̄ibe pairwise-disjoint tuples of first-order variables
of length λ each. We set

η� η�:= ∃z̄0 . . . z̄k′ .
(∧

1≤i≤λ−1

z0,i < z0,i+1

)
∧ z0,λ < cj1 ∧ cj1 < z1,1

∧
(∧

1≤i≤λ−1

z1,i < z1,i+1

)
∧ z1,λ < cj2 ∧ cj1 < z2,1

...

∧ zk′−1,λ < cjk′ ∧ cjk′ < zk′,1

∧
(∧

1≤i≤λ−1

zk,i < zk,i+1

)
∧

∧
ci�cj
∧ cj�ci

ci ≈ cj .

Written in a more convenient notation, η� establishes the chain

z0,1 < . . . < z0,λ < cj1 < z1,1 < . . . < z1,λ < cj2 < . . .

< cjk′−1
< zk′−1,1 < . . . < zk′−1,λ < cjk′ < zk′,1 < . . . < zk′,λ

and identifies ci and cj whenever ci � cj � ci. Notice that the length of η� is at most quadratic in
the length of NQ ∪NBSR.

240 CHAPTER 10. DECIDABLE FRAGMENTS

For the following variant of Lemma 10.2.7 we make an exception for the sentences ϕNBSR
and

η� and treat <,≤ as uninterpreted predicate symbols and consider both sentences without sorts.

Lemma 10.2.11. Let � be any total preorder over the constant symbols c1, . . . , ck. Suppose there is
a model A |= ϕNBSR

∧η� with a single-sorted domain and in which <,≤ are treated as uninterpreted
predicate symbols. Assume that A’s domain is minimal, i.e. A does not contain any substructure
that also satisfies ϕNBSR ∧ η� — notice that this entails that A is finite. Furthermore, assume that
for all m-tuples q̄, q̄′ of elements from RatA which are JA-equivalent2 we have χA(q̄) = χA(q̄′).

Then, we can construct a model B of NBSR that is JB-uniform, contains the rational numbers
as subdomain, interprets the predicate symbols <,≤ as the usual relations over the rationals, and
interprets the free sort S with some finite set. Moreover, we have B |= ci < cj if and only if
A |= ci < cj if and only if ci ≺ cj.

The proof of Lemma 10.2.11 proceeds along the same lines as the proof of Lemma 10.2.7 does.
We only need to switch from the setting of NBSR mixing interpreted arithmetic relations over the
rationals with uninterpreted predicate symbols to the point of view of the purely uninterpreted
setting of ϕNBSR

∧ η�. Moreover, Corollary 10.2.10 guarantees the existence of a model A as
described in Lemma 10.2.11 whenever NBSR is satisfiable (in the arithmetic setting).

Proposition 10.2.12. If N has a model B, then there is some total preorder � over the base-sort
Skolem constant symbols c1, . . . , ck occurring in N and a JA-uniform3 model A |= ϕNBSR ∧ η� with
a finite domain. Moreover, we have B |= ci < cj if and only if A |= ci < cj if and only if ci ≺ cj.

Now we have all pieces together to devise a nondeterministic decision procedure for finite
BSR(SLR) clause sets in normal form. Consider such a clause set N . Recall that since N is in
normal form, we can divide N into two disjoint parts NQ and NBSR such that NBSR does neither
contain any rational numbers nor any arithmetic operators (except for the predicate symbols <,≤).
Our previous observations lead to the following nondeterministic decision procedure:

(I) Nondeterministically fix a total preorder � over the set of all base-sort Skolem constants
occurring in NQ ∪NBSR.

Define a clause set N� that enforces � for base-sort Skolem constants:

N�N� :=
{
c > c′ → false

∣∣ c � c′} .
(II) Check whether the clause set NQ ∪N� is satisfiable under Q, that is, check whether there

is some assignment γ : {c1, . . . , ck} → Q such that Q |=
(
NQ ∪N�

)[
c1/γ(c1), . . . , ck/γ(ck)

]
where

(
NQ ∪N�

)[
c1/γ(c1), . . . , ck/γ(ck)

]
denotes the syntactic replacement of every ci with

γ(ci) in NQ ∪N�.

(III) Check whether the (single-sorted) BSR sentence ϕNBSR
∧ η� — transformed into prenex

normal form with a ∃∗∀∗ quantifier prefix — is satisfied by some model A that is JA-uniform.

(IV) If both Step (II) and Step (III) succeed, then N is satisfiable.

Step (II) relies on the fact that NQ ∪N� is variable free and that the existential fragment of linear
rational arithmetic is decidable (cf. Proposition 10.2.13). Notice also that Steps (II) and (III) could
be done in any order. By Lemma 10.2.11 and Proposition 10.2.12, the procedure is a correct and
complete decision procedure for the satisfiability of finite BSR(SLR) clause sets in normal form.

Next, we investigate the time complexity of the outlined decision procedure. To this end, we
first argue that Step (II) can be done in nondeterministic polynomial time.

2Although JA-equivalence and the coloring function χA are technically defined for a different setting, we reuse
the definitions in Lemma 10.2.11 and in Proposition 10.2.12 with their intended meaning without formally adapting
them to the new setting.

3See Footnote 2.

10.2. DECIDABILITY OF BSR WITH SIMPLE LINEAR RATIONAL CONSTRAINTS 241

Proposition 10.2.13. Let ϕQ := ∃v̄. ∧C∈NQ∪N� C
[
c1/v1, . . . , ck/vk

]
where v̄ contains k fresh

variables v1, . . . , vk of sort Q and C
[
c1/v1, . . . , ck/vk

]
denotes the clause C after replacing every ci

in C with vi. The question whether Q |= ϕQ holds can be decided nondeterministically in polynomial
time with respect to ‖NQ ∪N�‖, i.e. with respect to the length of the binary encoding of the clause
set NQ ∪N�.

Proof sketch. We devise the following nondeterministic decision procedure:

(1) Let At be the set of all atoms occurring in ϕQ. Nondeterministically choose a subset S ⊆ At.

(2) Construct the propositional counterpart ϕprop of ϕQ by replacing every arithmetic atom A in
ϕQ with the propositional variable pA. Check whether

(∧
A∈S pA

)
∧
(∧

A∈At\S ¬pA
)
→ ϕprop

is a valid propositional formula.

(3) Let ψ(v̄) :=
(∧

A(v̄)∈S A(v̄)
)
∧
(∧

A(v̄)∈At\S ¬A(v̄)
)

and check whether we have Q |= ∃v̄. ψ(v̄).

(4) If both Steps (2) and (3) succeed, then ϕQ is satisfied under Q.

As the formula
(∧

A∈S pA
)
∧
(∧

A∈At\S ¬pA
)

in Step (2) describes a complete assignment of all

the propositional variables occurring in ϕprop, Step (2) amounts to checking whether ϕprop is
satisfied under this assignment. Hence, Step (2) can be done in polynomial time (with respect to
len(ϕprop)). Regarding Step (3), conjunctions of linear inequalities with existentially quantified
variables over the rational numbers can be solved deterministically in polynomial time (with
respect to the length of their binary encoding) via a transformation into a linear program (see,
for instance, [BM07], pages 217–218 in Section 8.3 and Theorem 8.17). It is well known that for
any feasible linear program over the rational numbers a solution can be computed in polynomial
time [Kha80, GL81, Kar84] (see also [RESW14] and [Sch99], Sections 10, 13, and 14).

By virtue of Proposition 10.2.13, Step (II) can be done nondeterministically in polynomial time
with respect to ‖NQ ∪N�‖, where the formula length of N� (and also ‖N�‖) is at most quadratic
in the length of NQ ∪NBSR. On the other hand, the sentence ϕNBSR ∧ η� has a formula length
that is polynomial in the length of NQ ∪NBSR. By Proposition 3.1.6, we know that, if ϕNBSR ∧ η�
is satisfiable, then it has a model whose domain contains at most as many elements as ϕNBSR

∧ η�
contains existentially quantified variables plus constant symbols.

Unfortunately, we cannot invoke Proposition 5.0.1 directly to obtain an upper bound regarding
the computational complexity of Step (III), because the proposition only speaks about the general
first-order satisfiability problem and Step (III) is about satisfiability with respect to a restricted
class of structures. However, the decision procedure underlying Proposition 5.0.1 (see, e.g.,
Proposition 6.0.4 in [BGG97]) starts with nondeterministically guessing a structure A that is a
candidate model for the sentence at hand, and then checks in deterministic exponential time whether
A is indeed a model. It is easy to see that we could restrict the guessing step to structures that are
JA-uniform4. The latter in fact amounts to an additional step for checking whether the candidate
model is indeed JA-uniform, which can be done deterministically in time that is exponential in the
length of the considered sentence. Hence, by a modified variant of Proposition 5.0.1, we conclude
that the satisfiability problem that needs to be solved in Step (III) belongs to NExpTime, and, as
the problem is at least as hard as BSR-Sat, it is in fact NExpTime-complete.

Theorem 10.2.14. The satisfiability problem for finite BSR(SLR) clause sets is decidable, and
for clause sets in BSR(SLR) normal form the problem is NExpTime-complete.

By Lemma 10.0.7, every finite BSR(SLR) clause set N can be transformed into an equisatisfiable
clause set N ′ in BSR(SLR) normal form. The occurring blowup is such that (a) the length of
N ′ is at most exponential in the length of N , (b) the number of variables occurring in any
clause in N ′ is not larger than the number of variables occurring in any clause in N , (c) the
number of uninterpreted constant symbols occurring in N ′ is linear in the length of N . Hence, by

4See Footnote 2 on page 240.

242 CHAPTER 10. DECIDABLE FRAGMENTS

Proposition 10.2.13 plus the modified variant of Proposition 5.0.1 (see above), Steps (I) to (IV) can
still be done nondeterministically in time that is at most exponential in the length of the original
clause set N .

Corollary 10.2.15. The satisfiability problem for finite BSR(SLR) clause sets is NExpTime-
complete.

10.3 Shifting Perspective: BSR(SLR) from the Viewpoint
of Combinations of Theories

In automated reasoning there are often specialized decision procedures tailored towards specific
theories, such as (fragments of) arithmetic over the rationals or integers, equality over uninterpreted
function symbols, and theories concerning data structures such as arrays, bit vectors, pointers,
and strings. In applications originating from verification of software systems, for instance, it
is often necessary to be able to reason about formulas that are based on more than one of
these theories. In such applications, one mostly considers existentially quantified formulas and
universal quantification is not allowed. Indeed, such syntactic restrictions are one possible way to
make certain satisfiability problems decidable which would be undecidable otherwise. From an
engineering perspective it is then desirable to combine several decision procedures, each capable
of reasoning in one component theory, into a procedure that can handle the combined theory.
It turns out that this is a non-trivial task, which can, however, be solved in a satisfying way in
certain practically relevant cases. Two basic approaches for solving this challenge were presented
by Nelson and Oppen [NO79, Opp80, Nel84, TH96] and by Shostak [Sho84, RS01, Gan02]. Over
the years, combination of theories has received quite a bit of attention. The survey article [MZ02]
summarizes the development of the field until 2002. Since then the field has developed further, of
course. Here we can only give an incomplete list of works that is intended to mention many of
the recent contributors: [SR02, TR03, TZ05, RRT04, RRZ05, CK06, GNZ08, ABRS09, WPK09,
TRRK10, Sof13, CFR15, GG18]. A more detailed overview and further references can be found
in [BM07], Chapter 10, [KS16], Chapter 10, and [BT18], Section 11.5. A conceptual continuation
of the combination-of-theories paradigm in the full first-order setting is embodied in hierarchic
superposition [BGW92, BGW94, BW13b, BW13a, KW12, Kru13]. The latter is a calculus for
reasoning about first-order logic modulo background theories, which aims at a tight integration of first-
order theorem proving with solvers for the considered background theories. For further references,
see [Kru13], in particular the related-works section in Chapter 1, and also [GHW03, Sof14], for
instance.

The method by Nelson and Oppen was originally designed for combining theories whose
vocabularies are disjoint and which are stably infinite (see below). Often, it is attempted to relax
the mentioned restrictions towards the to-be-combined theories (disjointness of vocabularies and
stable infiniteness). The general setup of the framework is the following. We consider a first-order
sentence ∃v̄. ψ1(v̄)∧ψ2(v̄) where ψ1 and ψ2 are formulas over disjoint vocabularies Σ1,Σ2 that may
contain uninterpreted or interpreted function and predicate symbols. Hence, the only non-logical
symbols common to ψ1 and ψ2 are the equality sign ≈ and the variables from v̄. In contrast to the
rest of the chapter, the interpreted part of the vocabularies Σ1,Σ2 is not limited to arithmetic.
Usually, ψ1 and ψ2 are restricted to existential formulas, i.e. they are required to be equivalent to
some ∃∗ prefix formula. Then, the only means of exchanging information between the parts ψ1 and
ψ2 is, in essence, equations v ≈ v′ and disequations v 6≈ v′ with v, v′ ∈ v̄. Given decision procedures
DP1,DP2DP1, DP2 that can decide satisfiability of ∃v̄. ψ1(v̄) ∧ η(v̄) and of ∃v̄. ψ2(v̄) ∧ η(v̄), respectively,
where η is any conjunction of (dis)equations [¬]v ≈ v′, the Nelson–Oppen approach combines the
two into one decision procedure for ∃v̄. ψ1(v̄) ∧ ψ2(v̄) as follows.

(1) Nondeterministically construct an equivalence relation ∼∼ over the variables in v̄. Let η∼ be
the formula

η∼(v̄)η∼(v̄) :=
(∧
v∼v′

v ≈ v′
)
∧
(∧
v 6∼v′

v 6≈ v′
)
.

10.3. BSR(SLR) FROM THE VIEWPOINT OF COMBINATIONS OF THEORIES 243

(2) Use DP1 to check whether ∃v̄. ψ1(v̄) ∧ η∼(v̄) is satisfiable with respect to the fixed semantics
of the interpreted parts of Σ1.

(3) Use DP2 to check whether ∃v̄. ψ2(v̄) ∧ η∼(v̄) is satisfiable with respect to the fixed semantics
of the interpreted parts of Σ2.

(4) If both Steps 2 and Step 3 succeed, then ∃v̄. ψ1(v̄) ∧ ψ2(v̄) is satisfiable with respect to the
fixed semantics of the interpreted parts of Σ1 ∪ Σ2.

The outlined decision procedure is correct and complete provided that the semantic restrictions
underlying Σ1,Σ2 are such that whenever ∃v̄. ψ1(v̄) ∧ η∼(v̄) and ∃v̄. ψ2(v̄) ∧ η∼(v̄) are satisfiable,
then there are (single-sorted) models A1 |= ∃v̄. ψ1(v̄) ∧ η∼(v̄) and A2 |= ∃v̄. ψ2(v̄) ∧ η∼(v̄) that
have infinite domains. This property is referred to as stable infiniteness stable

infiniteness
.

The decision procedure that we have developed for finite BSR(SLR) clause sets shows great
similarities with the Nelson–Oppen approach to combining decision procedures. In what follows we
shall abstract from the BSR(SLR) syntax (in normal form) to a certain extent and generalize the
results we have obtained to far.

Consider a sentence ϕ := ∃v̄. ϕ1(v̄)∧∃ȳ∀z̄. ϕ2(v̄, ȳ, z̄) ϕ, ϕ1, ϕ2with the following properties. The conjunct
ϕ1 is a formula over the language of rational arithmetic (without uninterpreted constant symbols).
The conjunct ϕ2 is a relational quantifier-free formula that does neither contain rational numbers
nor any arithmetic operators except for <,≤. However, ϕ2 may contain uninterpreted predicate
symbols. Notice that the BSR(SLR) normal form falls into the syntactic category of ϕ. The
syntax of ϕ emphasizes the loose connection that ϕ establishes between the arithmetic part and the
non-arithmetic predicates via the order relations <,≤. While in the classical Nelson–Oppen setting
the only information the two procedures DP1,DP2 need to exchange are equations v ≈ v′ over
existentially quantified variables v, v′, in the case considered here, component decision procedures
need to exchange information about the order relations <,≤ that are common to the two parts ϕ1

and ϕ2. More precisely, only the relative positions of the shared variables from v̄ with respect to <
need to be exchanged. This leads to the following adapted decision procedure, which is based on
the one for finite BSR(SLR) clause sets from Section 10.2:

(1) Nondeterministically choose a total preorder � over the set of all variables from v̄ — there

are at most 2|v̄|
2

different choices for �. We write vi ≺ vj if and only if we have vi � vj and
vj 6� vi. Let vj1 ≺ . . . ≺ vjk be a maximal ≺-chain. Define the formula

η�(v̄) η�(v̄):=
(∧
v≺v′

v < v′
)
∧
(∧
v�v′
∧ v′�v

v = v′
)
.

(2) Find a tuple r̄ ∈ Q|v̄| such that Q |= ϕ1(r̄) ∧ η�(r̄).

(3) Check whether the BSR sentence ∃v̄ȳ∀z̄. ϕ2(v̄, ȳ, z̄) ∧ η�(v̄) (with a mixture of interpreted
and uninterpreted function and predicate symbols) is satisfiable, using the methods from
Section 10.2, Lemma 10.2.11 in particular. If the answer is positive, construct a model
A |= ∃v̄ȳ∀z̄. ϕ2(v̄, ȳ, z̄) ∧ η�(v̄).

(4) If both Steps (2) and Step (3) succeed, then ϕ is satisfiable. More precisely, we then get
A |= ϕ1(r̄) ∧

(
∃ȳ∀z̄. ϕ2(r̄, ȳ, z̄)

)
∧ η�(r̄).

Notice that in this scheme the Steps (2) and (3) are independent of each other and only linked
by the formula η�, which is based on the nondeterministically constructed preorder �. From
the perspective of ϕ2, the variables in v̄ are constants whose exact values are unknown and not
important. In fact, most parts of the structure Q are not important for constructing a model for ϕ2.
However, in general we have to make sure that any cardinality constraints that might be imposed by
ϕ2 are not in conflict with the fact that < and ≤ under Q are dense linear orders without endpoints.
For example, a BSR sentence of the form χ := ∀z1z2. z1 6= z2 →

∨n
i=1

(
Pi(z1) ↔ ¬Pi(z2)

)
limits

244 CHAPTER 10. DECIDABLE FRAGMENTS

the domain to 2n elements. In this case, using the rational numbers as (sub)domain is not possible.
Such cardinality conflicts are resolved in Lemma 10.2.11 by (a) conjoining the formulas ψ and η�
(defined on pages 239 and 239) and (b) requiring JA-uniformity of the model A. In case of χ, this
means that A |= η� entails the existence of two distinct domain elements a, b with a <A b that
are indistinguishable with respect to their belonging to the sets PAi , i.e. A |= ∧

i

(
Pi(a)↔ Pi(b)

)
.

Hence, we get A 6|= χ.

Remark 10.3.1. The combination approach outlined so far allows for a neat black-box-style
integration of arithmetic solving with theorem proving for purely uninterpreted first-order logic, in
particular for BSR. From a practical point of view, the combined decision procedure suffers from the
drawback that the (nondeterministic) search for a suitable preorder does not take the information
into account that the decision procedures employed in Steps (2) and (3) gather while trying to solve
the two parts ∃v̄. ϕ1(v̄) ∧ η�(v̄) and ∃v̄ȳ∀z̄. ϕ2(v̄, ȳ, z̄) ∧ η�(v̄) individually. If we aim at combined
decision procedures that are more efficient in practice, then a tighter cooperation of the component
decision procedures is desirable, which could lead to a more directed search for the preorder �.

Consider again the sentence ϕ = ∃v̄. ϕ1(v̄) ∧ ∃ȳ∀z̄. ϕ2(v̄, ȳ, z̄). In the light of the above said,
it becomes clear that the constituent ϕ1(v̄) does not necessarily have to be a linear-arithmetic
sentence without quantifiers. In fact, the only requirement that is necessary for the described
combination approach to work is the availability of a procedure that is able to provide us with a
solution r̄ for the variables v̄ such that ϕ1(r̄) is a valid arithmetic statement. Indeed, there are
such procedures available for formulas ϕ1(v̄) over the language of linear rational arithmetic with
additional quantifiers and, more generally, for linear arithmetic over ordered fields. We have met
one such a procedure based on quantifier elimination, namely virtual substitution [Wei88, LW93]
in Section 7.1. When we consider the reals as domain, we could even allow polynomials instead of
linear terms only — in this case, we are restricted to the model class of real closed fields.5 For this
language there are also quantifier-elimination procedures known that generalize the ones for the
linear case, see [Stu17] for an overview. Regarding the second constituent ∃ȳ∀z̄. ϕ2(v̄, ȳ, z̄) of ϕ, we
have focused on BSR sentences until now. But in the light of our insights gained in Chapter 3, in
particular in Sections 3.2 and 3.5, it becomes clear that we could also use SF or GBSR formulas
here.

Theorem 10.3.2. Consider the class of first-order sentences of the form ϕ = ∃v̄. ϕ1(v̄) ∧ ϕ2(v̄)
that satisfy the following properties.

(a) ϕ1(v̄) is a formula over the language of real arithmetic based on the vocabulary 〈{<,≤,=,
6=,≥, >},Q ∪ {+, ·}〉. Then, all terms in ϕ1(v̄) are polynomials over real-valued variables
with rational coefficients.

(b) ∃v̄. ϕ2(v̄) is a two-sorted GBSR sentence over the sort R and the uninterpreted sort S. The
underlying vocabulary contains the interpreted predicate symbols <,≤,=, 6=,≥, > over the
sort R and may also contain uninterpreted predicate symbols with signatures mixing the sorts
R and S. On the other hand, rational numbers or arithmetic operations such as +,−, · are
not admitted in ϕ2(v̄).

The satisfiability problem for the described class is decidable.

Proof sketch. The theorem follows from the fact that ∃v̄. ϕ2(v̄) can be transformed into an equivalent
BSR sentence (cf. Lemma 3.5.2) and the availability of first-order quantifier-elimination procedures
for ∃v̄. ϕ1(v̄)∧η�(v̄) for any preorder � on the variables in v̄. Together with these two components,
the combined decision procedure described earlier suffices to solve the decision problem posed in
the theorem.

As explained above, the theorem is also valid if we replace R with Q under the restriction that
all arithmetic terms in the constituent ϕ1(v̄) are linear arithmetic terms.

5Recall that validity in the theory of the rationals with addition and multiplication is undecidable, cf. Footnote 2
on page 20.

10.4. DECIDABILITY OF BSR WITH BOUNDED DIFFERENCE CONSTRAINTS 245

By virtue of Theorem 10.3.2 and an adapted variant of Lemma 10.0.7, the following generalization
of BSR(SLR) has a decidable satisfiability problem.

Definition 10.3.3 (GBSR with simple linear rational constraints — GBSR(SLR)). A GBSR(SLR)
sentence is any sentence of the form ϕ := ∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn. ψ with quantifier-free ψ that adheres
to Definition 3.4.1 and may contain LRA atoms that are subject to the following restriction. Every
LRA atom in ϕ has the form s / t or x / t or x / x′ where x, x′ ∈ (x̄1 ∪ . . . ∪ x̄n) ∩VarQ and s, t
are LRA terms that do not contain any variable from x̄1 ∪ . . . ∪ x̄n but may contain variables from
(ȳ1 ∪ . . . ∪ ȳn) ∩VarQ. Every non-arithmetic atom in ϕ is either an equation s ≈ s′ over variables
from VarS , or a non-equational atom P (s1, . . . , sm) that is well sorted and where the si range over
base-sort variables and free-sort variables.

Corollary 10.3.4. The satisfiability problem for the class of GBSR(SLR) sentences is decidable.

10.4 The Bernays–Schönfinkel–Ramsey Fragment with
Bounded Difference Constraints is Decidable

Similarly to the previous section, we fix some finite BSR(BD) clause set N Nin BSR(BD) normal
form, and we assume that all uninterpreted predicate symbols P occurring in N have the sort
P : Sm′ × Qm for two fixed nonnegative integers m,m′ m, m′. Moreover, we assume that all rational
numbers in N are in fact integers. This does not lead to a loss of generality, as we could multiply all
rational numbers with the least common multiple of their denominators to obtain an equisatisfiable
clause set in which only integers occur. We could even allow Skolem constants, if we were to add
clauses stipulating that every such constant is assigned a value that is (a) an integer and (b) is
bounded from above and below by some integer bounds. Dropping any of these two restrictions
renders the satisfiability problem undecidable, cf. Chapter 11, Sections 11.2 and 11.4 in particular.
For the sake of simplicity, we do not consider Skolem constants in this section.

Our general approach to proving decidability of the satisfiability problem for finite BSR(BD)
clause sets is very similar to the route taken for BSR(SLR) in the previous section. However,
due to the nature of the LRA atoms in BSR(BD) clause sets, the employed equivalence relation
characterizing indistinguishable tuples has to be different from the one tailor-made for BSR(SLR).
In fact, we use one equivalence relation '̂κ over the unbounded space Qm and another equivalence
relation 'κ over the bounded subspace (−κ− 1, κ+ 1)m for some positive integer κ. Our definition
of the relations 'κ and '̂κ is inspired by the notion of clock equivalence used in the context of
timed automata (see, e.g., [AD94, BK08], and Section 10.5 of the present thesis).

Definition 10.4.1 (bounded region equivalence 'κ). Let κ be any positive integer. We define the
equivalence relation 'κ 'κon (−κ− 1, κ+ 1)m such that we get 〈r1, . . . , rm〉 'κ 〈s1, . . . , sm〉 if and
only if the following conditions are met:
(i) For every i we have bric = bsic, and fr(ri) = 0 if and only if fr(si) = 0.
(ii) For all i, j we have fr(ri) ≤ fr(rj) if and only if fr(si) ≤ fr(sj).

The relation 'κ induces only a finite number of equivalence classes over (−κ − 1, κ + 1)m.
Over Qm, on the other hand, an analogous equivalence relation '∞ would lead to infinitely many
equivalence classes. In order to overcome this problem and obtain an equivalence relation over Qm
that induces only a finite number of equivalence classes, we use the following compromise.

Definition 10.4.2 (unbounded region equivalence '̂κ). Let κ be any positive integer. We define
the equivalence relation '̂κ '̂κon Qm in such a way that we have 〈r1, . . . , rm〉 '̂κ 〈s1, . . . , sm〉 if and
only if

(i) for every i either ri > κ and si > κ, or ri < −κ and si < −κ, or the following conditions
are met:

(i.i) bric = bsic and

246 CHAPTER 10. DECIDABLE FRAGMENTS

(i.ii) fr(ri) = 0 if and only if fr(si) = 0,

and

(ii) for all i, j

(ii.i) if ri, rj > κ or ri, rj < −κ, then ri ≤ rj if and only if si ≤ sj,
(ii.ii) if −κ ≤ ri, rj ≤ κ, then fr(ri) ≤ fr(rj) if and only if fr(si) ≤ fr(sj).

Obviously, the equivalence relations 'κ and '̂κ coincide on the subspace (−κ, κ)m. Over
(−κ− 1, κ+ 1)m the relation 'κ constitutes a proper refinement of '̂κ. Figure 10.2 depicts the
equivalence classes induced by 'κ and '̂κ in a two-dimensional setting for κ = 1. We will need
both relations in our approach.

r r rr r rr r r���
�
��

��
��

�
�
�
�

��
��

��
��

��

�
�
�
�
�
�

��
��

��

��
��

��
��

�
�
�
�
�
�
�
�

��
��

��
��

��
��

��

�
�
�
�
�
�

��
��

��

��
��

�
�
�
�

��
��

���
�
��

〈0, 0〉PP
PP

PPPi

��
��

���1r r rr r rr r r
���
�
��

��
��
��

��

�
�
�
�
�
�
�
�

��
��

��
��

���
�
��

Figure 10.2: Left-hand side: partition of the set (−2, 2)2 induced by '1. Right-hand side: partition
of Q2 induced by '̂1. Every dot, line segment, and white area represents an equivalence class.

Definition 10.4.3 ('κ-uniform and '̂κ-uniform structures). Let κ be any positive integer. We
call any structure A 'κ-uniform if its corresponding coloring χA (cf. Definition 10.2.5) colors each
'κ-equivalence class over (−κ− 1, κ+ 1)m uniformly, i.e. for all tuples q̄, q̄′ ∈ (−κ− 1, κ+ 1)m

with q̄ 'κ q̄′ we require χA(q̄) = χA(q̄′). We call A '̂κ-uniform if χA colors each 'κ-equivalence
class over Qm uniformly.

The parameter κ will be determined by the rational number in N with the largest absolute
value. If κ is defined in this way, one can show that the LRA atoms occurring in N cannot
distinguish between two '̂κ-equivalent m-tuples of rationals. This observation will be crucial for
the proof of Lemma 10.4.4, where we will prove the existence of '̂κ-uniform models for satisfiable
finite BSR(BD) clause sets N . To this end, we start from some model A of N and rely on the
existence of a certain finite set Q ⊆ [0, 1) of fractional parts. This set Q can be expanded to a set

Q̂ ⊆ (−κ− 1, κ+ 1) by addition of the fractional parts in Q with integral parts k from the range

−κ−1 ≤ k ≤ κ. Hence, Q̂ contains 2(κ+1)·|Q| rational numbers. We assume that all 'κ-equivalent

tuples s̄, s̄′ from Q̂m are treated uniformly by A. Put differently, we require χA(s̄) = χA(s̄′). We
choose to formulate this requirement with respect to 'κ because of the more regular structure of
its equivalence classes, which facilitates a more convenient way of invoking Lemma 10.1.1. Due to
the fact that 'κ constitutes a refinement of '̂κ on the subspace (−κ− 1, κ+ 1)m, and since for

every '̂κ-equivalence class Ŝ over Qm there is some 'κ-equivalence class S ⊆ (−κ − 1, κ + 1)m

such that S ⊆ Ŝ, we can use the color χA(r̄) of representative m-tuples r̄ constructed from Q̂ to
serve as a blueprint when constructing a '̂κ-uniform model B.

Lemma 10.4.4. Let λλ, A, κ be the maximal number of distinct base-sort variables in any single clause
in N ; in case of λ < m, we set λ := m. Suppose that N is satisfiable and let A be any model of N .
Let κ be the smallest positive integer that is larger than the absolute value of any rational number
occurring in N . Suppose we are given a finite set Q ⊆ [0, 1)Q of cardinality λ+ 1 such that 0 ∈ Q
and for all tuples r̄, s̄ ∈ Q̂m, r̄ 'κ s̄ entails χA(r̄) = χA(s̄), where

Q̂Q̂ :=
{
q + k

∣∣ q ∈ Q and k is any integer with −κ− 1 ≤ k ≤ κ
}

.
Then, we can construct a model B of N that is '̂κ-uniform and that interprets the free sort S with
some finite set.

10.4. DECIDABILITY OF BSR WITH BOUNDED DIFFERENCE CONSTRAINTS 247

Proof. The construction of B from A is similar to the construction of uniform models outlined in
the proof of Lemma 10.2.7.

Claim I: Let µ be any positive integer with 1 ≤ µ ≤ λ. For each of the finitely many equivalence
classes S ∈ Qµ/'̂κ and every r̄ ∈ S r̄, there is some q̄ ∈ S ∩ Q̂µ such that r̄ '̂κ q̄ and
for all i1, i2, i3 with ri1 < −κ and ri2 > κ and −κ ≤ ri3 ≤ κ and fr(ri3) > 0 we have
fr(qi1) < fr(qi2) < fr(qi3).

Proof: Let i1, i2, . . . ij , `jbe all the indices from {1, . . . , µ} for which we have rij > κ for every j.
Analogously, let `1, `2, . . . be all the indices from {1, . . . , µ} such that r`j < −κ holds for
every j. We define the rational number

δ := min
({

fr(ri)
∣∣ −κ ≤ ri ≤ κ and fr(ri) > 0 and 1 ≤ i ≤ m

}
∪
{

1
2

})
. δ

There must be some integer t for which we get − 1
2δ <

1
t r`j < 0 < 1

t rij′ <
1
2δ for all j, j′. Let

r̄′ be the tuple that we obtain from r̄ by replacing every rij with 1
t rij + 1

2δ + κ and every
r`j with 1

t r`j + 1
2δ − κ− 1. By construction, we observe r̄′ ∈ (−κ− 1, κ+ 1)µ and r̄ '̂κ r̄′.

Moreover, we have 0 < fr(r̄′`j) <
1
2δ < fr(r̄′ij′) < δ ≤ fr(rk) for all j, j′ and every rk with

−κ ≤ rk ≤ κ and fr(rk) > 0.

Next, we define the following ascending sequences

s′0 < s′1 < . . . < s′k, where s′0 = 0 and the values s′j with j ≥ 1 are the strictly positive
fractional parts in ascending order that occur in fr(r̄′), and

q′0 < q′1 < . . . < q′λ, which comprises all rationals in Q in ascending order, including q′0 = 0.

We now construct a tuple q̄ ∈ S ∩ Q̂µ q̄by setting q` := br′`c+ q′j for j such that fr(r′`) = s′j .

Clearly, r̄′ and q̄ are 'κ-equivalent. Since 'κ is a refinement of '̂κ over the subspace
(−κ− 1, κ+ 1)µ, this entails r̄ '̂κ q̄. ♦

Let c1, . . . , c` be an enumeration of all constant symbols in N that are of the sort S. Let Ŝ
Ŝ, Bdenote the set {a ∈ SA | a = cAi for some ci}. We construct the structure B as follows. We set

SB := Ŝ, and for every constant symbol c occurring in N we set cB := cA. Furthermore, for every
uninterpreted predicate symbol P occurring in N and for all tuples ā ∈ Ŝm′ and r̄ ∈ Qm we pick
some tuple q̄ ∈ Q̂m in accordance with Claim I — i.e. q̄ satisfies r̄ '̂κ q̄ — and define PB in such a
way that

〈ā, r̄〉 ∈ PB if and only if 〈ā, q̄〉 ∈ PA .

Claim II: The structure B is '̂κ-uniform.

Proof: Let r̄1, r̄2 ∈ Qm r̄1, r̄2,
q̄1, q̄2

be two '̂κ-equivalent tuples. By Claim I, there exist two tuples q̄1, q̄2 ∈ Q̂m
such that q̄1 '̂κ r̄1 and q̄2 '̂κ r̄2. By transitivity and symmetry of '̂κ, we have q̄1 '̂κ q̄2.
Even stronger, we can infer q̄1 'κ q̄2 as follows. Suppose, q̄1 6'κ q̄2. We observe the following
properties, which follow from q̄1 '̂κ q̄2 and the fact that q̄1, q̄2 ∈ (−κ− 1, κ+ 1)m:

(i) bq̄1c = bq̄2c and dq̄1e = dq̄2e.
(ii) For all i, j for which −κ ≤ q1

i , q
1
j ≤ κ we have fr(q1

i) ≤ fr(q1
j) if and only if fr(q2

i) ≤ fr(q2
j).

(iii) For all i, j for which q1
i , q

1
j < −κ or κ < q1

i , q
1
j we have q1

i ≤ q1
j if and only if q2

i ≤ q2
j .

Because of q̄1, q̄2 ∈ (−κ − 1, κ + 1)m, we even obtain fr(q1
i) ≤ fr(q1

j) if and only if

fr(q2
i) ≤ fr(q2

j).

Hence, our assumption q̄1 6'κ q̄2 entails that there are two indices i, j such that fr(q1
i) ≤ fr(q1

j)

and fr(q2
i) > fr(q2

j) (or fr(q1
i) < fr(q1

j) and fr(q2
i) ≥ fr(q2

j)), and one of the following cases
applies:

(1) κ < q1
i , q

2
i and −κ ≤ q1

j , q
2
j ≤ κ, or

(2) κ < q1
i , q

2
i and q1

j , q
2
j < −κ, or

248 CHAPTER 10. DECIDABLE FRAGMENTS

(3) −κ ≤ q1
i , q

2
i ≤ κ and κ < q1

j , q
2
j , or

(4) −κ ≤ q1
i , q

2
i ≤ κ and q1

j , q
2
j < −κ, or

(5) q1
i , q

2
i < −κ and −κ ≤ q1

j , q
2
j ≤ κ, or

(6) q1
i , q

2
i < −κ and κ < q1

j , q
2
j .

Ad (1). By Claim I, we have fr(q1
i) < fr(q1

j) and fr(q2
i) < fr(q2

j).

Ad (2). By Claim I, we have fr(q1
i) > fr(q1

j) and fr(q2
i) > fr(q2

j).

Ad (3). By Claim I, we have fr(q1
i) > fr(q1

j) and fr(q2
i) > fr(q2

j).

Ad (4). By Claim I, we have fr(q1
i) > fr(q1

j) and fr(q2
i) > fr(q2

j).

Ad (5). By Claim I, we have fr(q1
i) < fr(q1

j) and fr(q2
i) < fr(q2

j).

Ad (6). By Claim I, we have fr(q1
i) < fr(q1

j) and fr(q2
i) < fr(q2

j).

Since all cases yield a contradiction, we must have q̄1 'κ q̄2.

Because of q̄1, q̄2 ∈ Q̂m and due to our assumptions regarding Q and Q̂m, we have χA(q̄1) =
χA(q̄2). Moreover, by construction of B, we have χB(r̄1) = χA(q̄1) and χB(r̄2) = χA(q̄2).
Consequently, χB(r̄1) = χB(r̄2). ♦

We next show B |= N . Consider any clause C = Λ ∧ Γ → ∆C=Λ∧Γ→∆
β

in N and let β be any variable

assignment ranging over SB ∪Q. Starting from β, we derive a special variable assignment γC as
follows. Let x1, . . . , x` be an enumeration of all base-sort variables in C. By Claim I, there exists
some tuple q̄ := 〈q1, . . . , q`〉 such that 〈q1, . . . , q`〉 '̂κ

〈
β(x1), . . . , β(x`)

〉
and q̄ ∈ Q̂`. We define

γC(xi) := qiγC for every i. Hence, we have〈
γC(x1), . . . , γC(x`)

〉
'̂κ
〈
β(x1), . . . , β(x`)

〉
. (10.2)

For all other base-sort variables y 6∈ {x1, . . . , x`} we could define γC(y) arbitrarily. For every
free-sort variable u we set γC(u) := β(u).

As A is a model of N , we know A, γC |= C. By case distinction on why A, γC |= C holds, we
use this result to infer B, β |= C.

Case A, γC 6|= x / c for some atom x / c in Λ. Hence, βC(x) 6/ c. Due to Equivalence (10.2), the
assumption |c| ≤ κ, and the definition of '̂κ, we know that γC(x) / c holds if and only if
β(x) / c. Consequently, we get β(x) 6/ c and thus B, β 6|= x / c.

Case A, γC 6|= x / y for some atom x / y in Λ. By Equivalence (10.2) and the definition of '̂κ, we
know that γC(x) / γC(y) if and only if β(x) / β(y). Consequently, we get B, β 6|= x / y.

Case A, γC 6|= x− y / c for some atom x− y / c in Λ. By definition of BSR(BD) clause sets, Λ
must also contain atoms cx ≤ x, x ≤ dx, cy ≤ y, and y ≤ dy for certain rational numbers
cx, dx, cy, dy whose absolute value is at most κ. If one of these atoms is not satisfied by γC ,
then the first case applies.

If all of these atoms are satisfied by γC , then, by Equivalence (10.2), they are also satisfied
by β. Moreover, Equivalence (10.2) and the definition of '̂κ, entail bγC(x)c = bβ(x)c,
bγC(y)c = bβ(y)c, dγC(x)e = dβ(x)e, dγC(y)e = dβ(y)e, fr(γC(x)) ≤ fr(γC(y)) if and only if
fr(β(x)) ≤ fr(β(y)), and fr(γC(x)) ≥ fr(γC(y)) if and only if fr(β(x)) ≥ fr(β(y)). Hence, the
following two observations hold:

bγC(x)− γC(y)c = bγC(x)c − bγC(y)c+
⌊
fr(γC(x))− fr(γC(y))

⌋
= bβ(x)c − bβ(y)c+

⌊
fr(β(x))− fr(β(y))

⌋
= bβ(x)− β(y)c

10.4. DECIDABILITY OF BSR WITH BOUNDED DIFFERENCE CONSTRAINTS 249

and

dγC(x)− γC(y)e = dγC(x)e − dγC(y)e+
⌈
fr(γC(x))− fr(γC(y))

⌉
= dβ(x)e − dβ(y)e+

⌈
fr(β(x))− fr(β(y))

⌉
= dβ(x)− β(y)e .

Consequently, since we assume c to be an integer, we have γC(x)− γC(y) / c if and only if
β(x)− β(y) / c. In other words, A, β 6|= x− y / c.

Case A, γC 6|= t ≈ t′ for some atom t ≈ t′ ∈ Γ. Hence, t and t′ are either variables or constant
symbols of the free sort, which means they do not contain subterms of the base sort. Since B
and A behave identical on free-sort constant symbols and β(u) = γC(u) for every variable
u ∈ VS , we get B, β 6|= t ≈ t′.

Case A, γC |= t ≈ t′ for some t ≈ t′ ∈ ∆. In analogy to the above case, we obtain B, β |= t ≈ t′.

Case A, γC 6|= P (t′1, . . . , t
′
m′ , t1, . . . , tm) for some non-equational atom P (t′1, . . . , t

′
m′ , t1, . . . , tm) in

Γ. This translates to〈
A(γC)(t′1), . . . ,A(γC)(t′m′),A(γC)(t1), . . . ,A(γC)(tm)

〉
6∈ PA.

By construction of γC , we have A(γC)(tj) ∈ Q̂ for every j. Due to our assumptions regarding

Q̂ and by construction of B, we therefore have〈
A(γC)(t′1), . . . ,A(γC)(t′m′),A(γC)(t1), . . . ,A(γC)(tm)

〉
6∈ PB.

We observe the following properties:

We have A(γC)(t′j) = B(β)(t′j) for every tj due to the definition of B and γC .

Since all the tj are base-sort variables, we get A(γC)(tj) = B(γC)(tj) for every tj .

These two observations yield〈
B(β)(t′1), . . . ,B(β)(t′m′),B(γC)(t1), . . . ,B(γC)(tm)

〉
6∈ PB.

Because of this result, and due to '̂κ-uniformity of B,〈
B(γC)(t1), . . . ,B(γC)(tm)

〉
'̂κ
〈
B(β)(t1), . . . ,B(β)(tm)

〉
entails 〈

B(β)(t′1), . . . ,B(β)(t′m′),B(β)(t1), . . . ,B(β)(tm)
〉
6∈ PB.

Put differently, we have B, β 6|= P (t′1, . . . , t
′
m′ , t1, . . . , tm).

Case A, γC |= P (t′1, . . . , t
′
m′ , t1, . . . , tm) for some non-equational atom P (t′1, . . . , t

′
m′ , t1, . . . , tm) in

∆. In analogy to the previous case we infer B, β |= P (t′1, . . . , t
′
m′ , t1, . . . , tm).

Altogether, we have shown B |= N .

We shall employ Lemma 10.1.1 to prove the existence of the set Q that is required for Lemma
10.4.4. This will finish the proof concerning the existence of '̂κ-uniform models for finite satisfiable
BSR(BD) clause sets. But first, we need the following auxiliary result.

Lemma 10.4.5. Let S ∈ (−κ− 1, κ+ 1)m/'κ Sbe an equivalence class with respect to 'κ. There
are two mappings ρ : [m]→ {0, 1, . . . ,m} and σ : [m]→ {−κ− 1, . . . , 0, . . . , κ} such that

(i) for every ascending tuple 〈r0, r1, . . . , rm〉 ∈ [0, 1)m+1 with r0 = 0 we have
〈
rρ(1) + σ(1), . . . ,

rρ(m) + σ(m)
〉
∈ S, and

(ii) for every tuple 〈s1, . . . , sm〉 ∈ S there is an ascending tuple 〈r0, r1, . . . , rm〉 ∈ [0, 1)m+1 with
r0 = 0 such that

〈
s1, . . . , sm

〉
=
〈
rρ(1) + σ(1), . . . , rρ(m) + σ(m)

〉
.

Proof. Fix some tuple q̄ q̄, q′itaken from S. Given q̄, we set q′0 := 0 and further construct the sequence
q′1, q

′
2, . . . in such a way that it lists all strictly positive fractional values occurring in fr(q̄) in

250 CHAPTER 10. DECIDABLE FRAGMENTS

ascending order. We construct σσ, ρ by setting σ(i) := bqic for every i, and ρ such that ρ(i) = k holds
if and only if fr(qi) = q′k. Consequently, we have

〈q1, . . . , qm〉 =
〈
fr(q1) + bq1c, . . . , fr(qm) + bqmc

〉
=
〈
q′ρ(1) + σ(1), . . . , q′ρ(m) + σ(m)

〉
. (10.3)

Let 〈r0, r1, . . . , rm〉 ∈ [0, 1)m+1ri be any ascending tuple with r0 = 0. For all i, j we observe the
following properties:

(1) brρ(i) + σ(i)c = σ(i) = bqic.

(2) fr(rρ(i) + σ(i)) = fr(rρ(i)) = rρ(i).

(3) ρ(i) = 0 if and only if fr(qi) = q′0 = 0, which entails that fr(rρ(i) + σ(i)) = 0 holds if and only
if we have fr(qi) = 0.

(4) fr(qi) = q′ρ(i).

(5) We have fr(rρ(i) + σ(i)) ≤ fr(rρ(j) + σ(j))
if and only if rρ(i) ≤ rρ(j)
if and only if ρ(i) ≤ ρ(j)
if and only if q′ρ(i) ≤ q′ρ(j)
if and only if fr(qi) ≤ fr(qj).

Taken together, these observations imply q̄ 'κ 〈rρ(1) + σ(1), . . . , rρ(m) + σ(m)〉. Hence, we have
just proved (i).

In fact, we have also already proved (ii), by giving the construction of the sequence q′0, q
′
1, q
′
2, . . .

and by having derived Equation (10.3). If the sequence q′1, q
′
2, . . . is shorter than m elements, we

can simply pad it in an ascending fashion with arbitrary values from the interval (0, 1).

We now have all necessary auxiliary results in place to prove Lemma 10.4.6, which stipulates
the existence of the set Q required by Lemma 10.4.4.

Lemma 10.4.6. Let AA, κ, λ be any structure and let κ, λ be positive integers with λ ≥ m. There exists

a finite set Q ⊆ [0, 1) of cardinality λ + 1 such that 0 ∈ Q and for all tuples s̄, s̄′ ∈ Q̂m, s̄ 'κ s̄′
entails χA(s̄) = χA(s̄′), where

Q̂ :=
{
q + k

∣∣ q ∈ Q and k is any integer with −κ− 1 ≤ k ≤ κ
}

.

Proof. Let S1, . . . , SkSj be some enumeration of all equivalence classes in (−κ− 1, κ+ 1)m/'κ . By
Lemma 10.4.5, there is a (not necessarily unique) sequence 〈ρ1, σ1〉, . . . , 〈ρk, σk〉〈ρj , σj〉 of pairs of mappings
such that each pair 〈ρj , σj〉 corresponds to the equivalence class Sj in the sense of Lemma 10.4.5.

Let c1, . . . , c` be an enumeration of all constant symbols in N that are of the sort S. Let ŜŜ denote

the set {a ∈ SA | a = cAi for some ci} containing all domain elements assigned to free-sort constant

symbols by A. We define a coloring χ̂χ̂ : Qm →
(
P{P ā | ā ∈ Ŝm′ and P occurs in N}

)k
by setting

χ̂(r̄) :=
〈
χA
(
〈rρ1(1) + σ1(1), . . . , rρ1(m) + σ1(m)〉

)
, . . . , χA

(
〈rρk(1) + σk(1), . . . , rρk(m) + σk(m)〉

)〉
for every tuple r̄ = 〈r1, . . . , rm〉 ∈ (0, 1)m, where we define r0 to be 0. By virtue of Lemma 10.1.1,
there is a set Q′ ⊆ (0, 1)Q′, Q of cardinality λ such that all ascending tuples 〈r1, . . . , rm〉 ∈ Q′m are
assigned the same color by χ. We then set Q := Q′ ∪ {0}.

Consider any equivalence class Sj and the corresponding pair 〈ρj , σj〉 and let s̄, s̄′ ∈ Q̂m be two
'κ-equivalent tuples. Let q1, q2, . . . be an enumeration of all the strictly positive fractional parts
in fr(s̄) in ascending order and let q0 := 0. Hence, q0 < q1 < q2 < By definition of ρj , σj , there
are two ascending tuples q̄ := 〈0, q1, . . . , qm〉 and q̄′ := 〈0, q′1, . . . , q′m〉 in [0, 1)m+1 such that

s̄ = 〈qρj(1) + σj(1), . . . , qρj(m) + σj(m)〉
and

s̄′ = 〈q′ρj(1) + σj(1), . . . , q′ρj(m) + σj(m)〉.

10.4. DECIDABILITY OF BSR WITH BOUNDED DIFFERENCE CONSTRAINTS 251

Because of s̄, s̄′ ∈ Q̂m, we know that 〈q1, . . . , qm〉 ∈ Q′m and 〈q′1, . . . , q′m〉 ∈ Q′m. Then,
χ̂(〈q1, . . . , qm〉) = χ̂(〈q′1, . . . , q′m〉) entails

χA(s̄) = χA
(
〈qρj(1) + σj(1), . . . , qρj(m) + σj(m)〉

)
= χA

(
〈q′ρj(1) + σj(1), . . . , q′ρj(m) + σj(m)〉

)
= χA(s̄′) .

Lemmas 10.4.4 and 10.4.6 together entail the existence of '̂κ-uniform models for finite satisfiable
BSR(BD) clause sets, where κ is defined like in Lemma 10.4.4.

Corollary 10.4.7. Let κ be the smallest positive integer that is larger than the absolute value of
any rational number occurring in N . If N is satisfiable, then it has a model A that is '̂κ-uniform
and whose interpretation of the sort S is some finite set.

Similarly to the BSR(SLR) case, Lemma 10.4.4 and Corollary 10.4.7 do not immediately lend
themselves to constructing a decision procedure for finite BSR(BD) clause sets. We need results
that are easier to handle computationally. To this end, we reuse some ideas that we have already
presented in the context of BSR(SLR). Let κ κ, λbe the smallest positive integer that is larger than
the absolute value of any rational number occurring in N . Let λ be the maximal number of distinct
base-sort variables in any single clause in N ; in case of λ < m we set λ := m. Let Varκ Varκbe a set of
first-order variables defined by

Varκ :=
{
zqi+k

∣∣ where qi + k is a formal term for any pair of

integers i, k with 0 ≤ i ≤ λ and −κ− 1 ≤ k ≤ κ
}
.

Then, Varκ contains (λ+ 1) · (2κ+ 2) variables, each of which is intended to represent one value

from the set Q̂, defined in Lemma 10.4.4. Let z̄ z̄be a tuple listing all variables from Varκ is any
order. Moreover, let d1, . . . , d` djbe an enumeration of all free-sort constant symbols occurring in
N . We construct a formula ηκ(z̄) ηκ(z̄)(also containing the constant symbols d1, . . . , d`) that has the
following properties:

(a) ηκ(z̄) contains the axioms of (strict) linear orders for <,≤ (treated as uninterpreted predicate
symbols),

(b) ηκ(z̄) introduces two fresh unary uninterpreted predicate symbols Rat and Free to represent
the sorts Q and S, respectively, and makes sure that the constant symbols dj are assigned to
sort S and that the variables in z̄ are assigned to sort Q, and

(c) ηκ(z̄) introduces fresh binary uninterpreted predicate symbols Px−y/k with −κ− 1 ≤ k ≤ κ
and / ∈ {<,≤,=, 6=,≥, >} which are intended to represent the predicates x − y / k by
uninterpreted predicate symbols, and ηκ(z̄) makes sure that the Px−y/k are defined in the
intended way over the elements represented by the variables in z̄.

Formally, we define ηκ as follows:

ηκ(z̄) :=
(
∀v.Rat(v)↔ ¬Free(v)

)
∧
(
∀xy. x < y ∨ x ≤ y → Rat(x) ∧ Rat(y)

)
∧

∧
−κ−1≤k≤κ

/∈{<,≤,=,6=,≥,>}

(
∀xy. Px−y/k(x, y)→ Rat(x) ∧ Rat(y)

)
∧
∧
z∈z̄

Rat(z) ∧
∧

1≤j≤`
Free(dj)

∧
(
∀xyw.Rat(x) ∧ Rat(y) ∧ Rat(w) −→

((
¬x < x

)
∧
(
x < y ∧ y < w → x < w

)
∧
(
x ≈ y ∨ x < y ∨ x < y

)
∧
(
x ≤ y ↔ x ≈ y ∨ x < y

)))
∧

∧
−κ−1≤k≤κ

((∧
0≤j≤λ−1

zqj+k < zqj+1+k

)
∧ zqλ+k < zq0+k+1

)
.

252 CHAPTER 10. DECIDABLE FRAGMENTS

The length of ηκ is polynomial in the number of variables in Varκ, in κ and λ, and in the number
of free-sort constant symbols occurring in N . In addition to ηκ, we define η′κ(z̄)η′κ(z̄) to be a first-order
formula stipulating the order axioms for the fresh predicate symbols Px−y/k. That is, ηκ(z̄) in
conjunction with η′κ(z̄) satisfies the following properties for all i, j, j′, k, k′ with −κ ≤ i ≤ κ and
0 ≤ j, j′ ≤ λ and −κ− 1 ≤ k, k′ ≤ κ :

ηκ(z̄) ∧ η′κ(z̄) |= Px−y=i(zqj+k, zqj′+k′) if and only if k − k′ = i and j = j′,

ηκ(z̄) ∧ η′κ(z̄) |= Px−y<i(zqj+k, zqj′+k′) if and only if k − k′ < i or k − k′ = i and j < j′,

ηκ(z̄) ∧ η′κ(z̄) |= Px−y>i(zqj+k, zqj′+k′) if and only if k − k′ > i or k − k′ = i and j > j′,

ηκ(z̄) ∧ η′κ(z̄) |= Px−y≤i(zqj+k, zqj′+k′) if and only if ηκ(z̄) ∧ η′κ(z̄) |= Px−y<i(zqj+k, zqj′+k′)

or ηκ(z̄) ∧ η′κ(z̄) |= Px−y=i(zqj+k, zqj′+k′),

ηκ(z̄) ∧ η′κ(z̄) |= Px−y≥i(zqj+k, zqj′+k′) if and only if ηκ(z̄) ∧ η′κ(z̄) |= Px−y>i(zqj+k, zqj′+k′)

or ηκ(z̄) ∧ η′κ(z̄) |= Px−y=i(zqj+k, zqj′+k′),

ηκ(z̄) ∧ η′κ(z̄) |= Px−y 6=i(zqj+k, zqj′+k′) if and only if ηκ(z̄) ∧ η′κ(z̄) |= Px−y<i(zqj+k, zqj′+k′)

or ηκ(z̄) ∧ η′κ(z̄) |= Px−y>i(zqj+k, zqj′+k′),

where all predicate symbols in ηκ(z̄)∧η′κ(z̄) are treated as uninterpreted in the current context. The
length of η′κ is at most polynomial in |Varκ| and κ — we could simply specify for every quadruple
zqj+k, zqj′+k′ , /, i whether Px−y/i(zqj+k, zqj′+k′) is satisfied or not. We assume, without loss of
generality, that none of the predicate symbols Rat, Free, and Px−y/k occur in N . Moreover, we
assume that none of the variables from Varκ occur in N . Let ū be some tuple listing all variables
from vars(N)∩VarS and let x̄ be some tuple listing all variables from vars(N)∩VarQ. Recall that
we assume that all rational numbers in the BSR(BD) clause set N are integers. Let N ′N ′ be the
result of replacing every integer k in N with the variable zq0+k. We now define the sentence

ϕN,κϕN,κ := ∃z̄. ηκ(z̄) ∧ η′κ(z̄) ∧ ∀ūx̄.
(∧
u∈ū

Free(u) ∧
∧
x∈x̄

Rat(x)
)
→

∧
C(z̄,ū,x̄)∈N ′

C(z̄, ū, x̄) ,

which is evidently equivalent to some BSR sentence. Furthermore, we observe that the length of
ϕN,κ is polynomial in κ, λ, and the length of N . For the following variant of Lemma 10.4.4 we
again make an exception for the sentences ϕN,κ and treat <,≤ as uninterpreted predicate symbols
and consider the sentence without sorts.

Lemma 10.4.8. Suppose there is a model A |= ϕN,κ with a single-sorted domain and in which
<,≤ and the Px−y/k are treated as uninterpreted predicate symbols. Assume that A’s domain is
minimal, i.e. A does not contain any substructure that also satisfies ϕN,κ — notice that this entails

that A is finite. Furthermore, assume that for all m-tuples q̄, q̄′ of elements from RatA that are
'̂κ-equivalent6 we have χA(q̄) = χA(q̄′).

Then, we can construct a model B of N that is '̂κ-uniform, constains the rational numbers
as subdomain, interprets the predicate symbols <,≤ as the usual relations over the rationals, and
interprets the free sort S with some finite set.

The proof of Lemma 10.4.8 proceeds along the same lines as the proof of Lemma 10.4.4 does.
We only need to switch from the setting of N mixing interpreted arithmetic relations and difference
constraints over the rationals with uninterpreted predicate symbols to the point of view of the
purely uninterpreted setting of ϕN,κ. Moreover, Corollary 10.4.7 guarantees the existence of a
model A as described in Lemma 10.4.8 whenever N is satisfiable (in the arithmetic setting).

6Although 'κ-equivalence and '̂κ-equivalence and the coloring function χA are technically defined for a different
setting, we reuse the definitions in Lemma 10.4.8 and in Proposition 10.4.9 with their intended meaning without
formally adapting them to the new setting.

10.4. DECIDABILITY OF BSR WITH BOUNDED DIFFERENCE CONSTRAINTS 253

Proposition 10.4.9. If N has a model B, then there is a '̂κ-uniform7 model A |= ϕN,κ with a
finite domain.

Finally, we have all pieces together to devise a nondeterministic decision procedure for finite
BSR(BD) clause sets N that proceeds as follows:

(I) Construct the sentence ϕN,κ corresponding to N and transform it into prenex normal form
with some ∃∗∀∗ quantifier prefix. Suppose the result is of the form ∃v̄∀w̄. ψ(v̄, w̄) with
quantifier-free ψ(v̄, w̄). In what follows we treat all predicate symbols in this sentence as if
they were uninterpreted.

(II) Nondeterministically construct a candidate model A such that

(a) A’s domain is minimal: we do not introduce more domain elements than necessary to
assign suitable values to v̄ and the constant symbols occurring in ϕN,κ, and

(b) A is '̂κ-uniform8 with respect to the elements in RatA.

(III) Check whether A is indeed a model of ϕN,κ.

By Lemma 10.4.8 and Proposition 10.4.9, the procedure is a correct and complete decision procedure
for the satisfiability problem for finite BSR(BD) clause sets. Concerning computational complexity,
we observe the following: Step (I) can certainly be done in polynomial time with respect to κ and
the length of N . As we may assume that the integers in N are encoded in binary, the dependence
on κ leads to a runtime bound that is polynomial in 2‖N‖. Proposition 3.1.6 together with a
modified variant of Proposition 5.0.1 — compare the discussion right before Theorem 10.2.14 on
page 241 — entails that Steps (II) and (III) together can be done nondeterministically in time
p
(
nk · len(ϕN,κ)

)
where p is some polynomial in a single argument, n := |z̄|+ |consts(ϕN,κ)| n, k, and

k denotes the number of universal quantifiers in ϕN,κ, which we may assume to be linear in the
maximal number of variables in any clause in N . Since n is linear in 2‖N‖, k is linear in len(N),
and len(ϕN,κ) is polynomial in κ, λ and len(N) and, hence, polynomial in 2‖N‖, we in the end
get that the satisfiability problem for finite BSR(BD) clause sets lies in NExpTime. It is even
NExpTime-complete, since the subproblem BSR-Sat is already NExpTime-hard.

Theorem 10.4.10. Satisfiability of finite BSR(BD) clause sets is decidable, and for clause sets in
BSR(BD) normal form the problem is NExpTime-complete.

By virtue of Lemma 10.0.7, transforming any finite BSR(BD) clause set N into an equisatisfiable
finite clause set N ′ in BSR(BD) normal form leads to a blowup that is such that (a) the length of
N ′ is at most exponential in the length of N , (b) for any clause C in N ′ the number of variables
occurring in C is not larger than the number of variables occurring in any clause in N , (c) every
free-sort Skolem constant occurring in N ′ also occurs in N , and (d) the absolute value of any
integer in N ′ is linear in κN · λN , where κN is the smallest positive integer that is larger than the
absolute value of any integer occurring in N and λN is the maximal number of variables occurring
in any clause in N . Let n′ be the number of existentially quantified variables plus the number of
constant symbols occurring in ϕN ′,κ′ . Then, we observe that n′ is polynomial in κN ·λN and len(N)
and, hence, n′ is polynomial in 2‖N‖. Let k′ be the number of universal quantifiers occurring in
ϕN ′,κ′ . Then, k′ is linear in λN , which in turn is smaller than len(N). Consequently, satisfiability

of N can be checked nondeterministically in time that is bounded from above by p
(
2(len(N))d+1

)
for some polynomial p and some positive integer constant d.

Corollary 10.4.11. The satisfiability problem for finite BSR(BD) clause sets is NExpTime-
complete.

7See Footnote 6 on page 252.
8See Footnote 6 on page 252.

254 CHAPTER 10. DECIDABLE FRAGMENTS

10.5 An Application: Formalizing Reachability for Timed
Automata in BSR(BD)

Timed automata (cf. Definition 10.5.3), introduced in the 1990s [AD90, AD94, Lew90, HNSY94],
and extensions thereof are a well-established and widely-used formalism for modeling behavior
of state-based real-time systems. See [BK08] for a gentle textbook exposition and see the very
recent handbook articles [BFL+18, DFPP18] for comprehensive surveys. In the present section,
we consider the reachability problem for timed automata, which poses the question whether one
can reach a certain set of states from the initial state, possibly under timing restrictions. The
involved concepts will be defined below (Definitions 10.5.2–10.5.4). Our goal is to show that this
problem can be formalized using finite BSR(BD) clause sets. The encoding we shall use will be a
variant of an encoding devised by Fietzke and Weidenbach [FW12]. The central idea underlying
the modification is that time progress does not have to be modeled as precisely as done in the
original encoding. It is well known that the clock constraints in any given timed automaton induce
finitely many regions in the space of clock valuations. We shall refer to these regions as TA regions
(cf. Definition 10.5.5). If two clock valuations belong to one and the same TA region, they are
indistinguishable by the automaton and its clock constraints. This leads to a more abstract point
of view where only the reachability of TA regions matters. As we adopt this point of view, passage
of time can be modeled as a movement from one TA region into reachable regions rather than
the movement of a single point in the space of clock valuations to a ray of reachable points (cf.
Figure 10.4 on page 257). It turns out that difference constraints are sufficient to formalize time
progress in terms of TA regions. This approach will be made precise in Lemmas 10.5.9 and 10.5.10.
Furthermore, it not hard to see that it is sufficient to consider a bounded subspace of the space Qm≥0,
if we intend to decide reachability for a timed automaton with m clocks (cf. Proposition 10.5.6).
For every such automaton there exists a computable integer κ, depending on m and the integers
occurring in clock constraints, such that any valuation r̄ of the clocks can be projected to some
valuation r̄′ that is indistinguishable from r̄ by the occurring clock constraints and that lies inside
of the space [0, κ+ 1)m. This is the reason why bounded difference constraints suffice to formalize
reachability.

Remark 10.5.1. In [NMA+02] an encoding of the reachability problem for timed automata in
difference logic (Boolean combinations of difference constraints without uninterpreted predicate
symbols) is given, which facilitates deciding bounded reachability for timed automata, i.e. the
problem of reaching a given set of states within a bounded number of transition steps. When using
BSR(BD) as a modeling language, we do not have to fix an upper bound on the number of steps a
priori.

There are also other encodings of the reachability problem for timed automata and related
formalisms into linear arithmetic known, for instance [QSW17] (based on mixtures of Presburger
arithmetic and linear rational arithmetic) and [CJ98, CJ99] (based on the additive theory of
rationals or integers).

We shall use the standard definitions for timed automata and related notions (see, e.g. [AD94,
BK08, BFL+18]). In what follows, we fix a positive integer mm, x̄ and a finite tuple x̄ of length m
containing pairwise-distinct first-order variables that have sort Q, called clock variablesclock

variables
or clocks

for short.

Definition 10.5.2 (Clock constraints). An atomic clock constraint over x̄ is an atom of the form
true, x / c, or x− y / c, where x, y ∈ x̄, / ∈ {<,≤,=,≥, >}, and c ≥ 0 is a nonnegative integer.
By ACC(x̄)ACC(x̄) we denote the set of all atomic clock constraints over x̄.

A clock constraint over x̄ is a finite conjunction ϕ = ϕ1 ∧ . . . ∧ ϕk of atomic clock constraints
ϕ1, . . . , ϕk ∈ ACC(x̄) for some k ≥ 1. We denote the set of all clock constraints over x̄ by CC(x̄)CC(x̄) .

Definition 10.5.3 (Timed automaton). A timed automaton is a tuple
A :=

〈
Loc, `0, x̄,

(
inv`(x̄)

)
`∈Loc

, T
〉

where Loc is a finite set of locations (i.e. control states); `0 ∈ Loc is the initial location; x̄ is a

10.5. FORMALIZING REACHABILITY FOR TIMED AUTOMATA IN BSR(BD) 255

tuple of clock variables; inv`(x̄) ∈ CC(x̄) is a clock constraint describing the location invariant of
location `; T ⊆ Loc × CC(x̄) × P(x̄) × Loc is the location transition relation of the automaton,
including transition guards with respect to clocks and the set of clocks that are being reset to zero
whenever the transition is taken. In addition, we assume Q |= inv`0(0̄) and, moreover, we assume
that every clock constraint ψ(x̄) occurring in a timed automaton over x̄ is satisfiable under Q, i.e.
we have Q |= ∃x̄. ψ(x̄).

The latter property can be checked in polynomial time, as already mentioned right after
Proposition 10.0.6. Since we will be concerned with the reachability problem only, we do not
consider an alphabet of actions that could provide additional labels for transitions. Hence, we
implicitly assume a one-letter alphabet, but the obtained results could easily be transferred to
richer alphabets.

Notice that we allow atoms x− y / c in clock constraints. Such constraints are often referred to
as diagonal constraints in the timed-automata literature. It is known that they do not add expres-
siveness to the formalism, as any timed automaton with diagonal constraints can be transformed
into an equivalent timed automaton that does not contain any diagonal constraints (see [BPDG98],
Section 4.2). Two timed automata are considered to be equivalent , if they accept the same (timed)
language ([BPDG98], Section 2.2).

Although the control flow of any timed automaton can be described by finite means, the fact
that clocks can assume infinitely many values yields an infinite state space. Formally, the semantics
of a timed automaton is given by an infinite transition system.

Definition 10.5.4 (Semantic transition system of a timed automaton). The semantics of a
timed automaton A :=

〈
Loc, `0, x̄,

(
inv`(x̄)

)
`∈Loc

, T
〉

is given by an infinite state transition system

TS(A) := 〈S, s0, ↪→〉 TS(A)with the following components:

S := Loc×Qm≥0 =
{
〈`, r̄〉

∣∣ ` ∈ Loc and r̄ ∈ Qm≥0

}
is the state space consisting of locations paired

with clock valuations clock
valuations

— such a valuation is a total mapping x̄→ Qm≥0 assigning nonnegative
reals to m clock variables;

s0 := 〈`0, 0̄〉 is the initial state, where 0̄ denotes the tuple of length m containing all zeros;

↪→ ⊆ S × S is the transition relation containing two kinds of transitions:
delay transitions

{
〈`, r̄〉 ↪→ 〈`, r̄′〉

∣∣ ` ∈ Loc and there is some t ≥ 0 such that
r̄′ := r̄ + t and Q |= inv`(r̄

′)
}

;

location transitions
{
〈`, r̄〉 ↪→ 〈`′, r̄′〉

∣∣ there is some
〈
`, ψ(x̄), Z, `′

〉
∈ T such that

Q |= ψ(r̄), r̄′ := r̄[Z 7→0], and Q |= inv`′(r̄
′),

where r̄ + t is the tuple 〈r1 + t, . . . , rm + t〉 and r̄[Z 7→0] stands for the tuple r̄′ with

r′i :=

{
0 if xi ∈ Z,

r̄i if xi 6∈ Z
for every index i.

We denote the reflexive transitive closure of ↪→ by ↪→∗ ↪→∗.
Any pair 〈`, r̄〉 ∈ Loc×Qm is called reachable in A reachable

in A
, if we have s0 ↪→∗ 〈`, r̄〉.

Consider any timed automaton A :=
〈
Loc, `0, x̄,

(
inv`(x̄)

)
`∈Loc

, T
〉
. It is easy to verify that

every clock constraint occurring in A — be it as the initial condition, as transition invariant, or as
transition guard — can be transformed into an equivalent conjunction ψ of difference constraints in
the sense of Definition 10.0.5 and Proposition 10.0.6 (see the paragraph preceding Definition 10.0.5).
Let κ κbe the smallest positive integer that is larger than the absolute value of any integer occurring
in any clock constraint in A. Let µ := κ ·m µ.9 Since we assume all clock constraints in timed
automata to be satisfiable under Q, Proposition 10.0.6 entails that none of the clock constraints
in A can distinguish two clock valuations r̄, r̄′ ∈

[
0, µ+ 1

)m
that are 'µ-equivalent. On the one

9Notice that it is sufficient to set µ = κ ·m instead of µ := κ · (m+ 1), as the start and end points of the paths we
need to consider in difference constraint graphs associated with clock constraints in timed automata do not coincide.

256 CHAPTER 10. DECIDABLE FRAGMENTS

hand, the following equivalence relation ∼A over Q≥0 is a refinement of '̂µ over Q≥0 and, on the
other hand, 'µ constitutes a refinement of ∼A over [0, µ+ 1

)m
.

Definition 10.5.5 (∼A, TA regions). Let A :=
〈
Loc, `0, x̄,

(
inv`(x̄)

)
`∈Loc

, T
〉

be a timed automaton.
Let κ be the smallest positive integer that is larger than the absolute value of any integer occurring
in any clock constraint in A and let µ := κ ·m. We define the equivalence relation ∼A∼A on Qm≥0

such that r̄ ∼A s̄ holds if and only if

(i) for every i we either have bric = bsic, or ri > µ and si > µ, and

(ii) for all i, j we either have bri−rjc = bsi−sjc, or ri−rj > µ and si−sj > µ, or ri−rj < −µ
and si − sj < −µ.

We call the equivalence classes induced by ∼A over Qm≥0 the TA regions of A.

Figure 10.3 illustrates the TA regions for a timed automaton with two clocks and in which all
integer constants have an absolute value of at most 2. For every TA region R ⊆ Q2

≥0 of such an

automaton, there is at least one representative r̄ ∈ R which lies in the subspace [0, 5)2.

〈0, 0〉 r r rr r r rr r r rr rr r��
��

�
�
�
�

��
��
�
��

�
�
�

�
��

��
��

�
�
�
�

��
��
�
�
�
��

�
�
�
�
�

�
�
�
��

��
��

�
�
�
�

��
��
�
�
�
�
�
��

�
�
�
�
�
�
�

�
�
�
�
�
��

��
��

�
�
�
�

��
��
�
�
�
��

�
�
�
�
�

�
�
�
��

��
��

�
�
�
�

��
��
�
��

�
�
�

�
��

Figure 10.3: Partition of the set Q2
≥0 into ∼A-equivalence classes of clock valuations that cannot

be distinguished by a timed automaton with two clocks in which the absolute value of integer
constants occurring in location invariants and transition guards does not exceed 2. Every dot, line
segment, and white area represents some equivalence class.

Proposition 10.5.6. Let A :=
〈
Loc, `0, x̄,

(
inv`(x̄)

)
`∈Loc

, T
〉

be any timed automaton and consider

the transition system TS(A) := 〈S, s0, ↪→〉 associated with A. Given two clock valuations r̄, s̄ ∈ Qm≥0

with r̄ ∼A s̄ and any location ` ∈ Loc, we have s0 ↪→∗ 〈`, r̄〉 if and only if s0 ↪→∗ 〈`, s̄〉.

Proof. This is an immediate consequence of the definition of TS(A) and the observation that the
clock constraints in A cannot distinguish ∼A-equivalent clock valuations. The latter results from
Proposition 10.0.6.

Fietzke and Weidenbach have presented an encoding of the semantic transition system of a
given timed automaton A into a first-order clause set with linear arithmetic constraints [FW12].
We shall use this encoding as a starting point.

Definition 10.5.7 (FOL(LA) encoding of a timed automaton, [FW12]).
Let A :=

〈
Loc, `0, x̄,

(
inv`(x̄)

)
`∈Loc

, T
〉

be a timed automaton. The FOL(LA) encoding of A is the

set NANA containing the following clauses, where Reach is a (m + 1)-ary predicate symbol of sort
Loc × Q × . . . × Q, the ` ∈ Loc are reused as free-sort constant symbols, x̄′ is some m-tuple of
pairwise-distinct clock variables, and z is one more first-order variable (we assume x̄, x̄′, and {z}
to be pairwise disjoint):

10.5. FORMALIZING REACHABILITY FOR TIMED AUTOMATA IN BSR(BD) 257

the initial clause
∧
xi∈x̄ xi = 0 ∧ inv`0(x̄)→ Reach(`0, x̄);

delay clauses z ≥ 0 ∧ ∧
xi∈x̄ x

′
i = xi + z ∧ inv`(x̄

′) ∧ Reach(`, x̄)→ Reach(`, x̄′)
for every location ` ∈ Loc;

transition clauses ψ(x̄) ∧ ∧xi∈Z x′i = 0 ∧∧xi∈x̄\Z x
′
i = xi ∧ inv`′(x̄

′) ∧ Reach(`, x̄)

→ Reach(`′, x̄′)
for every location transition

〈
`, ψ(x̄), Z, `′

〉
∈ T .

Proposition 10.5.8 (Corollary 4.3 and Proposition 4.4 in [FW12]).
Let A :=

〈
Loc, `0, x̄,

(
inv`(x̄)

)
`∈Loc

, T
〉

be a timed automaton, let TS(A) = 〈S, s0, ↪→〉 be its semantic

transition system, and let NA be its FOL(LA) encoding.

(i) Let A be a model of NA. For every location ` ∈ Loc and every tuple r̄ ∈ Qm≥0, we have
A |= Reach(`, r̄) if and only if s0 ↪→∗ 〈`, r̄〉.

(ii) Let ψ(x̄) ∈ CC(x̄) be some clock constraint describing the set S :=
{
r̄ ∈ Qm≥0 | Q |= ψ(r̄)

}
of clock valuations. Moreover, let ` ∈ Loc be some location in A. Any pair 〈`, r̄〉 with
r̄ ∈ S is reachable in the transition system TS(A) if and only if the clause set NA ∪

{
ψ(x̄) ∧

Reach(`, x̄)→ false
}

does not have a model.

In the FOL(LA) encoding described in Definition 10.5.7 the passage of time is formalized in a
synchronous fashion in delay clauses. This is done by adding the constraint z ≥ 0∧∧xi∈x̄ x

′
i = xi+z

to the premise of the delay clause, where z is implicitly universally quantified (with respect to the
whole clause). Since z does not occur in the rest of the delay clause, we could equivalently use the
constraint x1 ≤ x′1 ∧

∧
xi∈x̄ x1 − xi = x′1 − x′i instead.

Next, we argue that the passage of time does not have to be formalized as a synchronous
progression of all clocks. Instead, it is sufficient to require that clocks progress in such a way
that their valuations do not drift apart excessively. Although this weakens the semantics slightly,
reachability remains unaffected. Figure 10.4 illustrates the underlying idea. We first prove an

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�
�
�
�

�
�
�

�
�

�
�
�
�
�

�
�
�

�
�

�
�
�
�

�
�
�
�

�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�
�
�
�

�
�
�

�
�

�
�
�
�
�

�
�
�

�
�

�
�
�
�

�
�
�
�

�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�
�
�
�

�
�
�

�
�

�
�
�
�
�

�
�
�

�
�

�
�
�
�

�
�
�
�

�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�
�
�
�

�
�
�

�
�

�
�
�
�
�

�
�
�

�
�

�
�
�
�

�
�
�
�

�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�

�
�
�

�

�
�

�
�

�
�

�
�

�
�
�

�

�
�
�

�

�
�

�
�

�
�

�
�

�
�
�

�

�
�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�

�
�
�

�

�
�

�
�

�
�

�
�

�
�
�

�

�
�
�

�

�
�

�
�

�
�

�
�

�
�
�

�

�
�
�

�

�
�

�
�

�
�

�
�

�
�
�

�

�
�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�

�
�
�

�

�
�

�
�

�
�

�
�

�
�
�

�

�
�
�

�

�
�

�
�

�
�

�
�

�
�
�

�

�
�
�

�

�
�

�
�

�
�

�
�

�
�
�

�

�
�
�

�

�
�

�
�

�
�

�
�

�
�
��

�
�
��

�
�

��

�
�
��

�
�

��
�
�
��

�
�
��

�
�

��
�
�
��

�
�
��

�
�
��

�
�
��

�
�

��

�
�
��

�
�

��

�
�

��
t
t
t

t
t
t

t
t
t

r
r
r

r
r
r

r
r
r

��
��
��

��
��
��

��
��
��

��
��

t��
��
��
��

��
��
��

��
��
��

��

t

1

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�
�
�
�

�
�
�

�
�

�
�
�
�
�

�
�
�

�
�

�
�
�
�
�
�
�
�

�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�

�
�
�
�
�
�
�
�

�
�

�
�
�
�
�
�
�
�

�
�

�
�
�
�
�
�
�
�

�
�

�
�
�
�
�
�
�
�

�
�

�
�
�

�
�
�
�
�

�
�

�
�
�

�
�
�
�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
�

�

�
�
�
�

�
�

�
�
�

�

�
�
�
�

�
�

�
�
�

�

�
�
�
�

�
�

�
�
�

�

�
�
�
�

�
�

�
�
�

�

�
�
�
�

�
�
�

�
�

�

�
�
�
�

�
�
�

�
�

�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�
�
�
�

�
�
�

�
�

�
�
�
�
�

�
�
�

�
�

�
�
�
�
�
�
�
�

�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�

�
�
�
�
�
�
�
�

�
�

�
�
�
�
�
�
�
�

�
�

�
�
�
�
�
�
�
�

�
�

�
�
�
�
�
�
�
�

�
�

�
�
�

�
�
�
�
�

�
�

�
�
�

�
�
�
�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
�

�

�
�
�
�

�
�

�
�
�

�

�
�
�
�

�
�

�
�
�

�

�
�
�
�

�
�

�
�
�

�

�
�
�
�

�
�

�
�
�

�

�
�
�
�

�
�
�

�
�

�

�
�
�
�

�
�
�

�
�

�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�

�
�
�

�

�
�

�
�

�
�

�
�

�
�
�

�

�
�
�

�

�
�

�
�

�
�

�
�

�
�
�

�

�
�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�

�
�
�

�

�
�

�
�

�
�

�
�

�
�
�

�

�
�
�

�

�
�

�
�

�
�

�
�

�
�
�

�

�
�
�

�

�
�

�
�

�
�

�
�

�
�
�

�

�
�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�

�
�
�

�

�
�

�
�

�
�

�
�

�
�
�

�

�
�
�

�

�
�

�
�

�
�

�
�

�
�
�

�

�
�
�

�

�
�

�
�

�
�

�
�

�
�
�

�

�
�
�

�

�
�

�
�

�
�

�
�

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�

��

�
�
��

�
�

��

�
�

��
t
t
t

t
t
t

t
t
t

r
r
r

r
r
r

r
r
r

6�
�
���

�
���

�

�
�
�
�7

�
�
�
�
�
�
�
�
��

�
�
�>t

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

1

Figure 10.4: Synchronous versus asynchronous progress of time for two clocks. Left-hand side:
Synchronous progress of time illustrated for two starting valuations within the same TA region.
Right-hand side: Asynchronous progress of time illustrated for one starting valuation. The dashed
blue lines mark the boundaries within which drifting of clocks does not affect reachability. In both
cases the light green area depicts the union of TA regions that is reachable from the TA region
containing the starting valuations.

auxiliary result.

Lemma 10.5.9. Let µ be any positive integer and let S ∈ [0, µ+ 1)m/'µ be any equivalence class

258 CHAPTER 10. DECIDABLE FRAGMENTS

with respect to 'µ. We define the two sets T1, T2T1, T2 as follows:

T1 :=
{
q̄′ ∈ [0, µ+ 1)m

∣∣ there is some q̄ ∈ S such that for every i, 1 ≤ i ≤ m,

we have qi ≤ q′i and q1 − qi = q′1 − q′i
}
,

and

T2 :=
{
q̄′ ∈ [0, µ+ 1)m

∣∣
there is some q̄ ∈ S such that for all i1, i2, 1 ≤ i1, i2 ≤ m,

qi1 ≤ q′i1 and for every integer k, −µ ≤ k ≤ µ, we have

qi1 − qi2 ≤ k if and only if q′i1 − q′i2 ≤ k, and

qi1 − qi2 ≥ k if and only if q′i1 − q′i2 ≥ k
}
.

Then, we observe T1 = T2.

Proof. We obviously have T1 ⊆ T2.
In order to prove T2 ⊆ T1, consider any q̄′ ∈ T2.q̄′, s̄ Pick some s̄ ∈ S for which si ≤ q′i for every i.

Such an s̄ must exist because of S ⊆ T2. By construction of T2, we observe bsi − sjc = bq′i − q′jc
and dsi − sje = dq′i − q′je for all i, j.

Claim I: For all indices i, j, 1 ≤ i, j ≤ m, we have fr(si) = fr(sj) if and only if fr(q′i) = fr(q′j).

Proof: For all rational numbers r, t we have fr(r) = fr(t) if and only if br − tc = dr − te. Using
this fact, we get that fr(si) = fr(sj) entails bq′i− q′jc = bsi− sjc = dsi− sje = dq′i− q′je which

in turn implies fr(q′i) = fr(q′j). Symmetrically, fr(q′i) = fr(q′j) entails fr(si) = fr(sj). ♦

Claim II: Let k1, . . . , kmbe some enumeration of the indices in {1, . . . ,m} such that fr(sk1) ≤
. . . ≤ fr(skm). There is some ` such that

fr(q′k`+1
) ≤ . . . ≤ fr(q′km) ≤ fr(q′k1

) ≤ . . . ≤ fr(q′k`).

Proof: Suppose Claim II does not hold, while Claim I is satisfied. More precisely, suppose there
are indices j1, j2, j3 such that fr(sj1) < fr(sj2) < fr(sj3) and fr(q′j3) < fr(q′j2) < fr(q′j1) (or
fr(q′j2) < fr(q′j1) < fr(q′j3) or fr(q′j1) < fr(q′j3) < fr(q′j2) — these cases can be treated in an
analogous fashion).

For all rational numbers r, t we have br − tc = brc − btc+ bfr(r)− fr(t)c, where

bfr(r)− fr(t)c =

{
0 if fr(r) ≥ fr(t)

−1 if fr(r) < fr(t).

Hence, we get the following system of equations:

bsj1c − bsj2c − 1 = bsj1 − sj2c = bq′j1 − q′j2c = bq′j1c − bq′j2c
bsj1c − bsj3c − 1 = bsj1 − sj3c = bq′j1 − q′j3c = bq′j1c − bq′j3c
bsj2c − bsj3c − 1 = bsj2 − sj3c = bq′j2 − q′j3c = bq′j2c − bq′j3c

As this system entails 0 = 1, we obtain a contradiction. ♦

It remains to prove the existence of some tuple q̄ ∈ S that satisfies the following requirements:

(i) bq̄c = bs̄c and dq̄e = ds̄e.

(ii) bqi − qjc = bsi − sjc = bq′i − q′jc and dqi − qje = dsi − sje = dq′i − q′je for all i, j.

(iii) q1 − qi = q′1 − q′i for every i.

(iv) qi ≤ q′i for every i.

10.5. FORMALIZING REACHABILITY FOR TIMED AUTOMATA IN BSR(BD) 259

The existence of such a q̄ would immediately entail q̄′ ∈ T1. Notice that Requirement (ii) is entailed
by Requirement (iii) and the definition of T2.

Consider any i with 1 ≤ i ≤ m. Requirement (i) entails that q̄ must satisfy qi = bsic+ fr(qi).
Therefore, we set bqjc := bsjc bqjcfor every j. This entails

bqjc ≤ bq′jc for every j. (10.4)

Moreover, it follows that q1−qi = bs1c+fr(q1)−bsic−fr(qi) and q′1−q′i = bq′1c+fr(q′1)−bq′ic−fr(q′i).
Hence, Condition (iii) requires bs1c − bsic+ fr(q1)− fr(qi) = bq′1c − bq′ic+ fr(q′1)− fr(q′i), which is
equivalent to

fr(q1)− fr(qi) = (bq′1c − bq′ic)− (bs1c − bsic) + fr(q′1)− fr(q′i) . (10.5)

We distinguish several cases:

If q̄′ ∈ S, we simply set q̄ := q̄′. Then, Requirements (i)–(iv) are satisfied.

If there is some j such that bsjc = dsje, then, by Requirement (i), qj must satisfy fr(qj) = 0 and,
therefore, for every `, fr(q`) is determined by (10.5). Then, Conditions (i)–(iii) are satisfied.
As we have

qj = bqjc
(10.4)

≤ bq′jc ≤ q′j ,
Condition (iii) entails q` ≤ q′` for every `. Hence, Condition (iv) is satisfied as well.

If fr(s1) = . . . = fr(sm), we observe bq′j − q′`c = bsj − s`c = dsj − s`e = dq′j − q′`e for all j, `.
Hence, we have bq′1− q′jc = dq′1− q′je, which implies fr(q′1) = fr(q′j) for every j. As this entails
q′1 − q′j = bq′1 − q′jc = bs1 − sjc = s1 − sj , Requirements (i)–(iii) are satisfied if we set q̄ := s̄.
Recall that we have chosen s̄ such that sj ≤ q′j for every j. Hence, Condition (iv) is satisfied
because of q̄ = s̄.

If none of the above cases apply, we have bsic = dsie − 1 for every i. Moreover, there must be
indices i1, i2 such that fr(si1) < fr(si2).

Let k1, . . . , km kjbe some enumeration of the indices in {1, . . . ,m} such that

fr(sk1) ≤ . . . ≤ fr(skm) . (10.6)

Notice that fr(sk1) < fr(skm) holds due to fr(si1) < fr(si2). By Claim II, there is some ` `such
that

fr(q′k`+1
) ≤ . . . ≤ fr(q′km) ≤ fr(q′k1

) ≤ . . . ≤ fr(q′k`) . (10.7)

If ` = 0, i.e. fr(q′k1
) ≤ . . . ≤ fr(q′m), we set fr(q̄) := fr(q̄′). Then, by Equation (10.4),

Requirement (iv) is satisfied. Claim I together with fr(q′k1
) ≤ . . . ≤ fr(q′m) entails that we

have bfr(s1)− fr(sj)c = bfr(q′1)− fr(q′j)c for every j. Consequently,

bs1c − bsjc+ bfr(s1)− fr(sj)c = bs1 − sjc = bq′1 − q′jc = bq′1c − bq′jc+ bfr(q′1)− fr(q′j)c

entails bs1c − bsjc = bq′1c − bq′jc for every j. This means we have

q1 − qj = bq1c − bq1c+ fr(qj)− fr(qj)

= bs1c − bsjc+ fr(q′1)− fr(q′j)

= bq′1c − bq′jc+ fr(q′1)− fr(q′j)

= q′1 − q′j
for every j. In other words, Requirements (i)–(iv) are met.

If ` > 0, then Claim I together with fr(sk1
) < fr(skm) entails that fr(q′km) is strictly smaller

than fr(q′k1
). In this case, we define a rational number ε := 1

2

(
fr(q′k1

) − fr(q′km)
)

ε. For

every j ≤ ` we set fr(qkj) := ε +
(
fr(q′kj) − fr(q′k1

)
)
. fr(qkj)For every j ≥ ` + 1 we set fr(qkj) :=

ε+ 1−
(
fr(q′k1

)− fr(q′kj)
)
.

260 CHAPTER 10. DECIDABLE FRAGMENTS

Claim III: We get 0 < fr(qk1
) ≤ . . . ≤ fr(qk`) ≤ fr(qk`+1

) ≤ . . . ≤ fr(qkm) < 1.

Proof:

We observe the following:

• fr(qk1) = ε+
(
fr(q′k1

)− fr(q′k1
)
)

= ε > 0.

• fr(qkm) = ε+1−
(
fr(q′k1

)− fr(q′km)
)

= 1
2

(
fr(q′k1

)− fr(q′km)
)

+1−
(
fr(q′k1

)− fr(q′km)
)

=

1− 1
2

(
fr(q′k1

)− fr(q′km)
)
< 1.

• Because of fr(q′k`) ∈ [0, 1) and fr(q′k`+1
) ∈ [0, 1), we obtain fr(q′k`) ≤ fr(q′k`+1

) + 1.

Hence, we get fr(qk`) = ε+ fr(q′k`)− fr(q′k1
) ≤ ε+ fr(q′k`+1

) + 1− fr(q′k1
) = ε+ 1−(

fr(q′k1
)− fr(q′k`+1

)
)

= fr(qk`+1
).

The above observations entail 0 < fr(qk1
), fr(qk`) ≤ fr(qk`+1

), and fr(qkm) < 1. By
definition of the fr(qkj) and our assumptions fr(q′k1

) ≤ . . . ≤ fr(q′k`) and fr(q′k`+1
) ≤

. . . ≤ fr(q′km), these observations imply Claim III. ♦

Claim IV: For every j we have
(
bsk1
c+ fr(qk1

)
)
−
(
bskjc+ fr(qkj)

)
= q′k1

− q′kj .
Proof: If 1 ≤ j ≤ `, then we have(

bsk1c+ fr(qk1)
)
−
(
bskjc+ fr(qkj)

)
= bsk1c+ ε+

(
fr(q′k1

)− fr(q′k1
)
)
− bskjc − ε−

(
fr(q′kj)− fr(q′k1

)
)

= bsk1
c − bskjc+ fr(q′k1

)− fr(q′kj)

= bsk1 − skjc+ δ + fr(q′k1
)− fr(q′kj)

= bq′k1
− q′kjc+ δ + fr(q′k1

)− fr(q′kj)

= bq′k1
c − bq′kjc+ fr(q′k1

)− fr(q′kj)

= q′k1
− q′kj ,

where

δ :=

{
0 if fr(q′k1

) = fr(q′kj) or fr(sk1
) = fr(skj), and

1 if fr(q′k1
) < fr(q′kj) or fr(sk1

) < fr(skj)

(recall that we have fr(q′k1
) ≤ fr(q′kj) and fr(sk1

) ≤ fr(skj) and that Claim I entails that

fr(q′k1
) = fr(q′kj) if and only if fr(sk1

) = fr(skj), hence, δ is well defined).

If `+ 1 ≤ j ≤ m, then we have(
bsk1c+ fr(qk1)

)
−
(
bskjc+ fr(qkj)

)
= bsk1c+ ε+

(
fr(q′k1

)− fr(q′k1
)
)
− bskjc − ε− 1 +

(
fr(q′k1

)− fr(q′kj)
)

= bsk1
c − bskjc+ fr(q′k1

)− fr(q′kj)− 1 .

Since fr(q′km) is strictly smaller than fr(q′k1
), we get fr(q′kj) < fr(q′k1

). Moreover, Claim I

together with fr(sk1
) ≤ fr(skj) entails fr(sk1

) < fr(skj). Hence, bsk1
− skjc = bsk1

c −
bskjc − 1 and bq′k1

− q′kjc = bq′k1
c − bq′kjc. Consequently, we get

bsk1c − bskjc+ fr(q′k1
)− fr(q′kj)− 1

= bsk1
− skjc+ 1 + fr(q′k1

)− fr(q′kj)− 1

= bq′k1
− q′kjc+ fr(q′k1

)− fr(q′kj)

= bq′k1
c − bq′kjc+ fr(q′k1

)− fr(q′kj)

= q′k1
− q′kj .

♦

Claim V: For every j we have bskjc+ fr(qkj) ≤ q′kj .

10.5. FORMALIZING REACHABILITY FOR TIMED AUTOMATA IN BSR(BD) 261

Proof: As we assume q̄′ 6∈ S, there is at least one i such that bq′kic > bskic. This entails

q′ki ≥ bq′kic > bskic + fr(qki). One consequence of Claim IV is that we have
(
bskic +

fr(qki)
)
−
(
bskjc + fr(qkj)

)
= q′ki − q′kj for every j. This can be rewritten into the

equivalent equation q′kj −
(
bskjc + fr(qkj)

)
= q′ki −

(
bskic + fr(qki)

)
. Combined with

q′ki > bskic+ fr(qki), this entails q′kj > bskjc+ fr(qkj) for every j. ♦

This means, if we set qkj := bskjc+fr(qkj) qkjfor every j, then Requirements (i)–(iv) are satisfied.

Now we have all necessary tools at hand to show that, if we are only interested in reachability
analysis for timed automata, progress of time does not need to be synchronized over all clocks.
Much rather is it sufficient to formalize the requirement that time progress is never negative and
that clocks must not drift apart excessively.

Lemma 10.5.10. Consider any delay clause
C(x̄, x̄′, z) := z ≥ 0 ∧ ∧xi∈x̄ x

′
i = xi + z ∧ inv`(x̄

′) ∧ Reach(`, x̄)→ Reach(`, x̄′)
that belongs to the FOL(LA) encoding of any timed automaton A :=

〈
Loc, `0, x̄,

(
inv`(x̄)

)
`∈Loc

, T
〉
.

Let µ be any positive integer. Let M(x̄, x̄′) be a finite clause set corresponding to the following
formula

ϕ(x̄, x̄′) :=
(∧
xi,xj∈x̄

∧
−µ≤k≤µ

(
xi − xj ≤ k ↔ x′i − x′j ≤ k

)
∧
(
xi − xj ≥ k ↔ x′i − x′j ≥ k

)
∧
∧
xi∈x̄

x′i ≥ xi ∧ inv`(x̄
′) ∧ Reach(`, x̄)

)
−→ Reach(`, x̄′) .

For every 'µ-uniform structure A we have A |= ∀z. C(r̄, r̄′, z) for all tuples r̄, r̄′ ∈ [0, µ+ 1)m if
and only if A |= M(q̄, q̄′) holds for all tuples q̄, q̄′ ∈ [0, µ+ 1)m.

Proof. We first show that the clause C is equivalent to the clause

C ′(x̄, x̄′) :=
∧
xi∈x̄

xi ≤ x′i ∧
∧
xi∈x̄

x1 − xi = x′1 − x′i ∧ inv`(x̄
′) ∧ Reach(`, x̄)→ Reach(`, x̄′) .

Since the variable z in C occurs only in the premise, ∀z. C(x̄, x̄′, z) is equivalent to

(∃z. z ≥ 0 ∧
∧
xi∈x̄

x′i − xi = z) ∧ inv`(x̄
′) ∧ Reach(`, x̄)→ Reach(`, x̄′) .

For the part ∃z. z ≥ 0 ∧∧xi∈x̄ x
′
i − xi = z in the latter formula we observe

∃z. z ≥ 0 ∧
∧
xi∈x̄

x′i − xi = z

|=|
∧
xi∈x̄

xi ≤ x′i ∧
∧

xi,xj∈x̄

x′i − xi = x′j − xj

|=|
∧
xi∈x̄

xi ≤ x′i ∧
∧
xi∈x̄

x′1 − x1 = x′i − xi

|=|
∧
xi∈x̄

xi ≤ x′i ∧
∧
xi∈x̄

x1 − xi = x′1 − x′i .

Consequently, the formulas ∀z. C(x̄, x̄′, z) and C ′(x̄, x̄′) are equivalent.
Let A be any 'µ-uniform structure.

Claim I: For every equivalence class S ⊆ [0, µ + 1)m with respect to 'µ we have that, if
A |= Reach(`, r̄) holds for one r̄ ∈ S, then A |= Reach(`, q̄) holds for every q̄ ∈ S.

262 CHAPTER 10. DECIDABLE FRAGMENTS

Proof: By 'µ-uniformity of A.

Now suppose A |= C ′(r̄, r̄′) holds for all tuples r̄, r̄′ ∈ [0, µ + 1)m. Moreover, suppose there
is some pair of tuples q̄, q̄′ ∈ [0, µ+ 1)m such that A 6|= ϕ(q̄, q̄′). In other words, A, [x̄ 7→q̄, x̄′ 7→q̄′]
satisfies the premise of ϕ — among them inv`(x̄

′) — but does not satisfy the consequent Reach(`, x̄′).
Let S := [q̄]'µS be the equivalence class with respect to 'µ to which q̄ belongs. As we have

A |=
∧

xi,xj∈x̄

∧
−µ≤k≤µ

(
qi − qj ≤ k ↔ q′i − q′j ≤ k

)
∧
(
qi − qj ≥ k ↔ q′i − q′j ≥ k

)
∧
∧
xi∈x̄

q′i ≥ qi ,

we conclude that q̄′ ∈ T2, where T2T2 is defined like in Lemma 10.5.9, based on S. Moreover, we know
that A |= Reach(`, s̄) for every s̄ ∈ S, as A is 'µ-uniform. The fact that A |= C ′(r̄, r̄′) holds for all
tuples r̄, r̄′ ∈ [0, µ+ 1)m entails A |= Reach(`, s̄′) for every s̄′ ∈ T1 for which Q |= inv`(s̄

′), where
T1T1 is defined like in Lemma 10.5.9, based on S. Hence, Lemma 10.5.9 entails A |= Reach(`, s̄′′) for
every s̄′′ ∈ T2 for which Q |= inv`(s̄

′′), in particular for s̄′′ = q̄′. This contradiction implies that
A |= ϕ(q̄, q̄′) holds for all tuples q̄, q̄′ ∈ [0, µ+ 1)m.

The opposite direction can be argued analogously. Consequently, we have A |= ∀z. C(r̄, r̄′, z)
for all tuples r̄, r̄′ ∈ [0, µ+ 1)m if and only if A |= ϕ(q̄, q̄′) holds for all tuples q̄, q̄′ ∈ [0, µ+ 1)m.

Consider any timed automaton A :=
〈
Loc, `0, x̄,

(
inv`(x̄)

)
`∈Loc

, T
〉

A, κ, µ , let κ be the smallest positive
integer that is larger than the absolute value of any integer occurring in any clock constraint
in A, and let µ := κ ·m (recall that m = |x̄|). In order to decide for A which states 〈`, r̄〉 are
reachable, Proposition 10.5.6 entails that it is sufficient to consider a bounded subspace of Qm.
More precisely, any valuation r̄ ∈ Qm≥0 of A’s clocks can be projected to some ∼A-equivalent
valuation r̄′ ∈ [0, µ+ 1)m that A cannot distinguish from r̄. In the subspace [0, µ+ 1)m, A’s TA
regions coincide with (finite unions of) equivalence classes with respect to 'µ (cf. Definition 10.4.1).
In fact, the quotient [0, µ+ 1)m/'µ , i.e. the partition of [0, µ+ 1)m into finitely many equivalence
classes induced by 'µ, constitutes a refinement of the division of [0, µ+ 1)m into TA regions with
respect to ∼A. That is, for every set S ∈ [0, µ + 1)m/'µ there is some set T ∈ [0, µ + 1)m/∼A

such that S ⊆ T . Conversely, for every set T ∈ [0, µ+ 1)m/∼A
there is a finite collection of sets

S1, . . . , Sk ∈ [0, µ+ 1)m/'µ such that T = S1 ∪ . . . ∪ Sk. Since, by Proposition 10.5.6, every pair
〈`, r̄〉 with r̄ ∈ R for some TA region R ∈ Qm≥0/∼A

is reachable if and only if all pairs 〈`, r̄′〉 with
r̄′ ∈ R are reachable, any minimal model A of the FOL(LA) encoding NA is 'µ-uniform (where

minimality of A refers to the minimality of the set ReachA with respect to set inclusion ⊆). This
is why it is sufficient that Lemma 10.5.10 focuses on 'µ-uniform structures.

Given the FOL(LA) encoding NA of A, we obtain a BSR(BD) encoding N ′A of reachability with
respect to A in the following two steps:

(1) Replace every delay clause in NA(x̄, x̄′, z) with the clauses from the finite set M(x̄, x̄′)
constructed in Lemma 10.5.10, where we use µ := κ ·m.

(2) Conjoin the formula 0 ≤ y ∧ y < µ + 1 to every Λ-part of clauses in which a base-sort
variable y occurs.

Since any '̂µ+1-uniform model ofN ′A is'µ-uniform over the subspace (−µ−1, µ+1)m, Lemma 10.5.10
entails that N ′A faithfully encodes reachability for A.

Theorem 10.5.11. The reachability problem for a given timed automaton can be expressed in
terms of satisfiability of a finite BSR(BD) clause set.

Chapter 11

Undecidable Fragments of Linear
Arithmetic with Uninterpreted
Predicate Symbols

In Chapter 8 we have already discussed that adding uninterpreted predicate symbols to the
language of Presburger arithmetic renders the associated satisfiability problem undecidable. Indeed,
already the availability of a single uninterpreted unary predicate symbol P — recall that we
have baptized this language PA+P in Chapter 9 — results in a satisfiability problem that is
not even semi-decidable. The latter was observed by Halpern in 1991 [Hal91]. Halpern’s proof
rests on a result by Harel, Pnueli, and Stavi (Proposition 5.1 in [HPS83]), which states that the
set of Gödel numbers of recurring Turing machines is Σ1

1-complete.1 A nondeterministic Turing
machine is considered to be recurring recurring

Turing
machine

if, started on an empty input tape, it is able to perform a
nonterminating computation in which it infinitely often reaches its initial state (but not necessarily
its initial configuration). The encoding of recurring Turing machines that Halpern employs in his
proof results in formulas with two quantifier alternations. More precisely, the used sentences start
with a ∀∗∃∗∀∗-prefix of first-order quantifiers when written in prenex normal form. However, this
pattern of quantifier alternations can be simplified to ∀∗∃∗, as pointed out by Speranski in [Spe13a].
Formally, Downey’s encoding of two-counter machines in [Dow72] exhibits a ∀∃ alternation as well.
However, suitable modifications lead to an encoding that does not require existential quantification
at all, see Section 11.2.4.

In the present chapter we develop refined undecidability results that restrict the used language
even further, e.g. by considering only the universal subfragment, or by allowing only very simple
arithmetic atoms. Most of the presented results will be based on a novel encoding of the runs of
two-counter machines that we shall reuse multiple times in slightly different variants. A crucial
difference between Downey’s encoding and ours is that the former concentrates on reachability
of configurations, while the latter also considers the temporal order in which configurations are
reached. One consequence is that our encoding facilitates the formalization of recurrence for
nondeterministic two-counter machines. This requires some chronological information regarding
the configurations that occur in a run, which goes beyond reachability.

In Section 11.1 we will give some basic definitions and first undecidability results based on fairly
simple and straightforward encodings of two-counter machines. More complicated encodings under
stronger syntatic restrictions will follow in the subsequent sections. In Sections 11.1 and 11.2 we
shall restrict the admitted language so that only universal first-order quantifiers may be used (in
prenex sentences). Yet, the associated validity and satisfiability problems remain undecidable. To

1Halpern’s proof shifts the perspective from the validity problem to the problem of satisfiability. A Σ1
1-complete

satisfiability problem entails a Π1
1-complete validity problem and vice versa, given that the considered languages are

closed under negation. For the definition of the analytical hierarchy and the sets Π1
1 and Σ1

1, see, e.g., Chapter IV.2
in [Odi92] or Chapter 16 in [Rog87].

263

264 CHAPTER 11. UNDECIDABLE FRAGMENTS

be more precise, we show Σ0
1-completeness of the set of unsatisfiable sentences from the universal

fragment of PA+P (cf. Theorems 11.2.2 and 11.3.3). As it turns out, this result is still valid when
we use the rationals or reals as the underlying domain (Theorem 11.2.6). Our proof proceeds
by a reduction of the (negated) halting problem for two-counter machines (cf. [Min67]) to the
satisfiability problem in the described language. A run of such a machine, started with a certain
input, can be represented by a potentially infinite sequence of configurations 〈`, c1, c2〉 — triples of
natural numbers —, where ` denotes the current control state of the machine and c1, c2 are the
current values of the machine’s counters. It is not very hard to imagine that such a sequence of
configurations can be encoded by a potentially infinite sequence of bits. On the other hand, we
can conceive any interpretation of a unary predicate P over the natural numbers as a bit sequence.
Given this basic idea, it remains to devise a translation of the program of an arbitrary two-counter
machine into a suitable sentence from the universal fragment of PA+P . Suitable in this case means
that any model of the resulting sentence interprets P such that it faithfully represents a run of the
given machine on the given input.

In Section 11.3 we will relax our language restrictions a bit and show that allowing one
quantifier alternation entails a high degree of undecidability. More precisely, the set of satisfiable
∀∗∃-ΣPA+P -sentences is Σ1

1-complete. The proof rests on a lemma that is due to Alur and Henzinger
[AH94] and that rephrases Harel et al.’s Σ1

1-hardness result for recurring Turing machines in terms
of recurring two-counter machines. In order to apply this lemma, we will have to adapt the
encoding presented in Section 11.2 only slightly. All we need to do is to add the possibility of
nondeterministic branching of the control flow and to replace the check for the reachability of
the halt instruction by a condition that formalizes the recurrence property. Moreover, we will
observe that our undecidability and Σ1

1-hardness results in the integer setting can be transfered
to corresponding results in the realm of rational and real numbers. We will do so at the end of
Sections 11.2 and 11.3, respectively.

In Section 11.4 we shall develop an encoding of two-counter machines that only uses difference
constraints and where the interpretation of the occurring uninterpreted predicate symbols can
be restricted to finite subsets of the rational interval [0, 1]. In the presence of a ∃∀ quantifier
alternation, the associated satisfiability problem is undecidable. This nicely contrasts our findings
from Section 10.4, where we have shown that satisfiability of finite BSR(BD) clause sets is decidable.

Finally, we will discuss the relevance of our findings to the field of verification in Section 11.5.
In particular, we will derive undecidability results for quantified fragments of separation logic
(Section 11.5.1), the theory of arrays (Section 11.5.2), and combinations of the theory of equality
over uninterpreted functions with restricted forms of integer arithmetic (Sections 11.5.3 and 11.5.4).
In certain cases, our results even imply the absence of sound and complete deductive calculi.

It should be stressed once again that most of the results outlined above are obtained based on
refinements of the encoding of two-counter machines presented in Section 11.2. To the author’s
knowledge, a similarly general applicability is not documented for any other encoding of undecidable
problems in the language of Presburger arithmetic augmented with uninterpreted predicate symbols.

11.1 Minsky’s Two-Counter Machines, the Universal frag-
ment of Presburger Arithmetic, and Simple Encodings

In Chapter 9 we have defined the language of Presburger arithmetic to comprise all first-order
formulas with equality over the vocabulary ΣPA = 〈{<,≤,=, 6=}, {0, 1,+,−}〉, where the only
sort is Z. The universal fragment of Presburger arithmeticuniversal

Presburger
arithmetic

confines the language of Presburger
arithmetic to sentences in prenex normal form in which only universal quantification is allowed
and existential quantification may not occur. Analogously, we say that the universal fragment of
PA+Puniversal

fragment of
PA+P

is the set of all prenex ΣPA+P -sentences without existential quantifiers, where ΣPA+P is
the vocabulary 〈{<,≤,=, 6=, P}, {0, 1,+,−}〉 with the uninterpreted unary predicate symbol P of
sort Z, as we have defined it in Chapter 9.

Minsky has introduced the two-counter machine as a Turing-complete model of computation

11.1. MINSKY MACHINES, UNIVERSAL PRESBURGER ARITHMETIC, ENCODINGS 265

(Theorem 14.1-1 in [Min67]). We shall only briefly recap the basic architecture of this kind of
computing device.

Definition 11.1.1. A two-counter machineM consists of two counters C1, C2 and a finite program
whose lines are labeled with integers 0, . . . ,K for some nonnegative integer K. Each program line
contains one of five possible instructions with the following meaning:

inc(C1) increment counter C1 and proceed with the next instruction;

inc(C2) increment counter C2 and proceed with the next instruction;

test&dec(C1,`) if C1 > 0 then decrement C1 and proceed with the next instruction,
otherwise proceed with instruction ` and leave the counters unchanged;

test&dec(C2,`) if C2 > 0 then decrement C2 and proceed with the next instruction,
otherwise proceed with instruction ` and leave the counters unchanged;

goto(`) leave the counters unchanged and proceed with instruction `;

halt halt the computation.

We tacitly assume that the last program line, i.e. line K, of any two-counter machine contains
the halt instruction and that there is no other line containing halt. This assumption is not
a restriction, as the goto instruction is available. In the initial state of a given two-counter
machine the input is stored in the two counters. The computation of the machine starts at the first
program line, labeled 0. We occasionally refer to the initial and last program line as `init `init, `haltand `halt,
respectively.

A run of a two-counter machineM is a possibly infinite sequence of triples 〈`, c1, c2〉, also called
configurations, with three nonnegative integer values each, where ` denotes the current program
line — to be executed in the next step — and c1, c2 denote the current values of the two counters
C1, C2, respectively. The first triple in a run has the form 〈0,m, n〉, where m,n constitutes the
input. Given two successive triples 〈`, c1, c2〉 and 〈`′, c′1, c′2〉 in a run, the latter is the result of
applying program line ` to the configuration 〈`, c1, c2〉. For instance, the successor of 〈`, c1, c2〉
is 〈` + 1, c1, c2 + 1〉 if the `-th program line of M is inc(C2). Only finite runs contain a triple
〈K, c1, c2〉 where K is the program line containing the halt instruction, and then 〈K, c1, c2〉 is the
very last triple in the sequence.

Notice that the described machine model describes deterministic computation processes. Since
the machine model is strong enough to simulate any deterministic Turing machine, the halting
problem for two-counter machines is undecidable.

Proposition 11.1.2 (Corollary of Theorem 14.1-1 from [Min67]). It is impossible to devise an
algorithm that is able to decide for every two-counter machine M and every input 〈m,n〉 ∈ N× N
whether M ever reaches a program line containing the halt instruction when started on 〈m,n〉.

It turns out that two-counter machines can be encoded easily even when only a very restricted
syntax is allowed for arithmetic atoms. In what follows we shall take a look at several simple
encodings where uninterpreted predicate symbols of arity greater than one are used and the
arithmetic atoms are restricted to one of four categories: (1) difference constraints x − y / c,
(2) additive constraints x + y / c, (3) quotient constraints x / c · y (which could equivalently
be written x

y / c, hence the name), and (4) multiplicative constraints2 In case of quotient and
multiplicative constraints one could also use the rational or integer domain and formulate an
encoding in such a way that imposing lower and upper bounds on the used variables does not result
in a decidable fragment — which would be the case if we were using variables over the integers. We
shall devise such an encoding below and, based on a fragment only containing difference constraints,
in Section 11.4.

2While atoms of the form x / c · y, with c being any nonnegative integer, can be read as an abbreviation of PA
terms x / y + . . .+ y︸ ︷︷ ︸

c times

, atoms of the form x · y / c cannot. We view the latter as nonlinear arithmetic terms either

over the integers or over the reals. They will not play any significant role in the rest of the present thesis.

266 CHAPTER 11. UNDECIDABLE FRAGMENTS

We start with difference constraints. We use the predicate symbol M : Z×Z×Z×Z to address
the state of the two-counter machine as follows: M(u, x, y, z) stands for a machine at instruction
u with counter values c1 = x− z − 1 and c2 = y − z − 1, where the last argument z keeps track
of an offset relative to which x and y store the values of the counters. Following this principle,
the increment instruction for the first counter C1 is realized by adding 1 to the x-component of
M(u, x, y, z) and leaving the offset z untouched. Decrementing the first counter then amounts
to adding 1 to the y- and z-component of M(u, x, y, z), i.e. relative to the offset stored in the
z-component the value of the x-component is reduced by one, while the value in the y-component
keeps its distance to the offset in z. Moreover, we use the relative distance of 1 between a counter
and the offset to encode zero. Hence, the initial state is set to M(`init, 1, 1, 0), i.e. the offset (last
argument) starts at 0, while the second and third components start at 1, which is intended to
represent the counter values zero. In this way, we make sure that it is sufficient to use only the
constant 1 in all the difference constraints. The offset is an appropriate tool that allows us to have
a uniform syntactic structure for all atomic constraints. It is due to the offset encoding that we
can easily use a difference constraint when checking whether a counter is zero or not.

In Table 11.1 we give prototypical encodings of the instructions of two-counter machines. The
encoding is only given for counter C1; the encoding for counter C2 can be done analogously. The
symbols `, `′, `init, `halt are placeholders for concrete nonnegative integers that are used as labels
for program statements. Whenever we write `+ 1, we mean the natural number that is the result
of incrementing ` and not the formal term “`+ 1”. The symbols m,n stand for concrete integers
that constitute the input.

Operation Encoding

` : inc(C1) ∀xyzx′. x′ − x = 1 ∧ M(`, x, y, z)→M(`+ 1, x′, y, z)

` : test&dec(C1,`
′)

(
∀xyzx′y′z′. x− z > 1 ∧ y′ − y = 1 ∧ z′ − z = 1 ∧ M(`, x, y, z)

→M(`+ 1, x, y′, z′)
)

∧
(
∀xyz. x− z = 1 ∧ M(`, x, y, z)→M(`′, x, y, z)

)
` : goto(`′) ∀xyz. M(`, x, y, z)→M(`′, x, y, z)

`halt : halt ∀xyz. M(`halt, x, y, z)→M(`halt, 0, 0, 0)

Initial condition: M(`init,m, n, 0)
Halting condition: M(`halt, 0, 0, 0)

Table 11.1: Encoding of the basic two-counter-machine instructions using difference constraints.

Lemma 11.1.3. Suppose we are given a sentence ϕM encoding the behavior of a two-counter
machine M as described above, then the sentence M(`init,m, n, 0) ∧ ϕM ∧ ¬M(`halt, 0, 0, 0) is
unsatisfiable if and only if M halts when started on any given input 〈m,n〉.

Notice that the sentence in Lemma 11.1.3 could also be transformed into a Horn sentence.
Hence, by Proposition 11.1.2, it follows that satisfiability for Presburger arithmetic sentences
restricted to difference constraints (requiring only the constant 1 besides the input) plus a single
4-ary uninterpreted predicate symbol is undecidable.

Encoding two-counter machines using quotient constraints works very similarly. We only need
to change the representation of counter values in a state M(`, x, y, z) as follows: c1 = log2(x2z) =
log2(x)− log2(z)− 1 and c2 = log2(y2z) = log2(y)− log2(z)− 1. Incrementing the first counter is
encoded by the sentence ∀xyzx′. x′ = 2 · x ∧M(`, x, y, z)→M(`+ 1, x′, y, z), and the conditional
decrement instruction for the first counter is encoded by(

∀xyzy′z′. x > 2 · z ∧ y′ = 2 · y ∧ z′ = 2 · z ∧ M(`, x, y, z) → M(`+ 1, x, y′, z′)
)

∧
(
∀xyz. x = 2 · z ∧ M(`, x, y, z) → M(`′, x, y, z)

)
.

11.2. ENCODING TWO-COUNTER-MACHINE RUNS IN A UNARY PREDICATE 267

Analogous to the case of difference constraints, we thus infer undecidability of the satisfiability
problem for Presburger arithmetic restricted to quotient constraints (requiring only the constant 2)
and a single uninterpreted 4-ary predicate symbol. In this encoding incrementing a counter amounts
to multiplying the corresponding component of M by two.

If we leave the realm of the integers and go to the rational numbers or the reals, we could
represent an increment operation with division by two. This means that we actually do not have
to leave the unit interval and still represent arbitrarily large counter values. More technically,
the current value of counter C1 would be c1 = − log2(2x

z) = − log2(x) + log2(z) − 1. Then,
incrementing C1 is encoded by the sentence ∀xyzx′. 2 · x′ = x ∧M(`, x, y, z)→M(`+ 1, x′, y, z),
and test&dec(C1, `

′) is encoded by(
∀xyzy′z′. 2 · x < z ∧ 2 · y′ = y ∧ 2 · z′ = z ∧ M(`, x, y, z) → M(`+ 1, x, y′, z′)

)
∧
(
∀xyz. 2 · x = z ∧ M(`, x, y, z) → M(`′, x, y, z)

)
.

In this encoding, we can limit the range of the last three components of M to the rational or
real unit interval [0, 1), i.e. they are bounded from below and above. Nevertheless, the associated
satisfiability problem is undecidable.

Having additive constraints of the form x + y / c at hand, we can simulate subtraction by
defining the additive inverse using an atom x+ x− = 0. To keep track of inverses, we adjust the
arity of M accordingly and add the side condition

∀xx−yy−zz−. M(`, x, x−, y, y−, z, z−) → x+ x− = 0 ∧ y + y− = 0 ∧ z + z− = 0 .

Counter values are represented in the same way as we have done for difference constraints. The
increment instruction for the first counter is thus encoded by the sentence

∀xx−yy−zz−x′x′−. x′ + x− = 1 ∧ x′ + x′− = 0 ∧ M(`, x, x−, y, y−, z, z−)

→ M(`+ 1, x′, x′−, y, y−, z, z−) .

It is now straightforward to come up with the encoding of the conditional decrement. Hence,
satisfiability for Presburger arithmetic restricted to additive constraints and a single free predicate
symbol of arity 7 is undecidable. However, this time we need two constants, namely 1 and 0.

In order to complete the picture, we leave the realm of linear arithmetic for a little while and
consider multiplicative constraints of the form x · y / c. These relate to quotient constraints like
additive constraints relate to difference constraints. Hence, combining the previously used ideas of
offsets and inverses, we can encode two-counter machines also with multiplicative constraints:

∀xx−1yy−1zz−1x
′x′−1. x · x′−1 = 2 ∧ x′ · x′−1 = 1 ∧ M(`, x, x−1, y, y−1, z, z−1)

→ M(`+ 1, x′, x′−1, y, y−1, z, z−1)

encodes the increment instruction on the first counter, for instance, using the rationals or reals as
domain. As in the case of quotient constraints, we could restrict the range of variables to (0, 1].
Consequently, this yields another fragment of Rational arithmetic with uninterpreted predicate
symbols for which the satisfiability problem is undecidable.

Theorem 11.1.4. The satisfiability problem associated with Presburger arithmetic plus uninter-
preted predicate symbols is undecidable, even if we restrict arithmetic atoms to difference constraints,
additive constraints, or quotient constraints. Over the domain of rational or real numbers, we
have the same undecidability results for the same fragments, plus the fragment with multiplicative
constraints (which is nonlinear). In addition, in the case of quotient and multiplicative constraints,
the result still holds if we restrict the domain to the rational or real unit interval.

11.2 Encoding Two-Counter Machine Computations Using
a Single Unary Predicate

It turns out that it is sufficient to add a single uninterpreted unary predicate symbol P to
the vocabulary of Presburger arithmetic to facilitate encodings of two-counter machines, their

268 CHAPTER 11. UNDECIDABLE FRAGMENTS

computations, and the associated halting problem. As soon as we have constructed a ΣPA+P -
sentence ϕ that encodes the behavior of a given machine M together on a given input pair
〈m,n〉, we are interested in the (un)satisfiability of ϕ. Hence, we pose the question: Is there a
ΣPA+P -structure A (extending the integers with addition, subtraction, and order relations) with
PA ⊆ Z such that A |= ϕ, or is there no such structure? For the sake of simplicity, we shall
restrict the domain we consider to N = Z≥0 most of the time, if not explicitly stated otherwise.
We shall first give an informal description in the next section, and then we will get more formal in
Section 11.2.2. Sections 11.2.3 and 11.2.4 are devoted to encoding variants that use a minimal
number of quantifiers. In Section 11.2.5, we shall transfer our undecidability result to the rational
domain, and in Section 11.2.6 we will discuss the case where P is replaced with an uninterpreted
function symbol.

11.2.1 Informal Description of the Encoding

Since any interpretation PA of the predicate symbol P is a subset of the natural numbers, we can
conceive PA as an infinite sequence of bits b0b1b2 . . ., where for every n ∈ N we have

bn :=

{
0 if n 6∈ PA,
1 if n ∈ PA.

Given a two-counter machine M with K + 1 program lines, labeled 0, . . . ,K, and two input values
m,n, we shall represent in PA all the configurations that occur during the run of M when started
on input 〈m,n〉. One such configuration consists of the label of the program line that is to be
executed in the next step, the current value c1 of the first counter C1, and the current value c2 of
the second counter C2.

We divide the bit sequence PA into chunks of growing length, each delimited by the bit sequence
001011. Such a chunk is divided into three subchunks, using the bit sequence 0011 as a delimiter.
The first subchunk contains the current program line encoded in unary. The second and third
subchunks store the current values of the counters C1, C2, respectively, also encoded in unary
notation. Hence, every chunk has the form

001011︸ ︷︷ ︸
left de-
limiter

1`0 . . . 0 0011︸︷︷︸
first sub-
delimiter

1c10 . . . 0 0011︸︷︷︸
second
subde-
limiter

1c20 . . . 0 ,

where ` is the label of the program line to be executed next, c1 is the value currently stored in
counter C1, and c2 is the value currently stored in counter C2. The subsequences 1`, 1c1 and 1c2

are followed by blocks of zeros that fill up the gap before the next 0011 delimiter (indicating the
start of the subsequent subchunk) or the next 001011 delimiter (indicating the beginning of the
successor configuration).

We devise the encoding in such a way that the length of each chunk and its subchunks increases
with the number of computation steps that have already been performed. This makes sure that
there is always enough space available to store the current counter values, which may thus become
arbitrarily large. Of course, we have to provide sufficient space in the beginning such that the label
of any program line and the initial counter values m and n may be stored. In order to achieve
this, we define the constant d := max{K,m, n} + 6 and require that the leftmost chunk starts
at position d, i.e. there is a 001011 delimiter starting at position d but none starting left of d.3

The first three subchunks have length d each. Thus, the second chunk starts at position 4d. The
subchunks of the second chunk, however, shall have a length of 4d each.4 Hence, the total length

3Using d as a starting point instead of 0, say, is convenient, since we can use this information about the starting
point to determine the length of subchunks.

4Technically, a length of d + 1 for the subchunks of the second chunk would suffice. After all, the value of a
counter can increase by at most one in a single computation step. However, we have chosen to increase the length in
an exponential fashion rather than a linear one, as this will keep the encoding simple.

11.2. ENCODING TWO-COUNTER-MACHINE RUNS IN A UNARY PREDICATE 269

of the second chunk is 12d. This scheme shall continue indefinitely, i.e. the starting points of the
chunks in the bit sequence are d, 4d, 16d, 64d, 256d, and so on. Consequently, all the chunks are
large enough to store all possibly occurring counter values, as these can increase by at most one
in every step of the computation. Figure 11.1 illustrates the structure of a single chunk in the
sequence, starting at position x.

0
. -001011 0011 0011 001011 0011 . . .

︷ ︸︸ ︷
1 . . . 1 0 . . .

︷ ︸︸ ︷
1 . . . 1 0 . . .

︷ ︸︸ ︷
1 . . . 1 0 . . . 1 . . . 10 . . .

unary encoding
of the current
program line

unary encoding
of the current

value of C1

unary encoding
of the current

value of C2

�
earlier

configu-
rations

-
later

configu-
rations

-�
x -�

3x

-�
x

-�
x

-�
x

-�
4x

Figure 11.1: Structure of a single chunk of length 3x.

11.2.2 Formal Encoding of Two-Counter Machine Computations

Recall that we assume to be given a two-counter machine M with K + 1 program lines, labeled
0, . . . ,K, and two input values m and n. We use the following abbreviations for arbitrary terms t:

ψ001011(t) := ¬P (t) ∧ ¬P (t+ 1) ∧ P (t+ 2) ∧ ¬P (t+ 3) ∧ P (t+ 4) ∧ P (t+ 5)

ψ0011(t) := ¬P (t) ∧ ¬P (t+ 1) ∧ P (t+ 2) ∧ P (t+ 3)

ψ01(t) := ¬P (t) ∧ P (t+ 1)

ψ10(t) := P (t) ∧ ¬P (t+ 1)

χ`(t) := ψ10(t+ 5 + `) for ` = 0, . . . ,K

First of all, we set up the general structure of the predicate P . Let d denote the integer with
the value d := max{K + 6,m+ 4, n+ 4}. We use d as the starting point of our encoding.

ϕ1 ϕ1:= ψ001011(d) (11.1)

∧
(
∀x. x < d −→ ¬P (x)

)
(11.2)

∧
(
∀x. ψ001011(x) −→ ψ0011(2x) ∧ ψ0011(3x) ∧ ψ001011(4x)

)
(11.3)

∧
(
∀xy. ψ001011(x) ∧ ψ001011(y) ∧ x ≤ y ∧ y < 4x −→ x = y

)
(11.4)

∧
(
∀xy. ψ001011(x) ∧ ψ0011(y) ∧ x ≤ y −→ y ≥ 2x

)
(11.5)

∧
(
∀xy. ψ001011(x) ∧ ψ0011(y) ∧ 2x < y −→ y ≥ 3x

)
(11.6)

∧
(
∀xy. ψ001011(x) ∧ ψ0011(y) ∧ 3x < y −→ y ≥ 4x

)
(11.7)

∧
(
∀xy. ψ001011(x) ∧ ψ01(y) ∧ x+ 5 < y ∧ y < 4x −→ ψ0011(y − 1)

)
(11.8)

Subformula (11.1) sets the first 001011 delimiter at position d and Subformula (11.2) ensures that
this is indeed the leftmost such delimiter. Subormula (11.3) sets up all the other delimiters and
Subformulas (11.4) to (11.7) guarantee that there are no spurious delimiters in between them.
Subformula (11.8) stipulates that every 01 subsequence is part of one of the delimiters, i.e. there
cannot be a subsequence 01 that lies outside of a 001011 or 0011 delimiter. This does also entail that
between one delimiter (001011 or 0011) and the subsequent one there is exactly one subsequence
10, possibly overlapping with the last or first bit of one of the delimiters. Hence, this subsequence
uniquely marks the end of the number encoded in the respective subchunk.

270 CHAPTER 11. UNDECIDABLE FRAGMENTS

The following formula sets the initial values of the counters. Moreover, it sets the initial program
line, which we assume to be zero:

ϕm,n2ϕm,n2 := χ0(d) ∧ ψ10(2d+ 3 +m) ∧ ψ10(3d+ 3 + n) .

Regarding the encoding of program lines, we have to enforce that the current program line never
exceeds K. This is easily done with the formula

ϕK3ϕK3 := ∀xy. ψ001011(x) ∧ ψ10(y) ∧ x+ 5 ≤ y ∧ y ≤ 2x −→ y ≤ x+ 5 +K .

The previous formulas already ensure that exactly one label of a program line is encoded in every
chunk.

Next we encode the control flow of M. We assume that the following instructions occur in
program line ` for some ` ∈ {0, . . . ,K}.

Encoding of the instruction ` : inc(C1):

∀xyz. ψ001011(x) ∧ 2x ≤ y ∧ y ≤ 3x ∧ ψ10(y) ∧ 3x ≤ z ∧ z ≤ 4x ∧ ψ10(z) ∧ χ`(x)

−→ ψ10(6x+ y + 1) ∧ ψ10(9x+ z) ∧ χ`+1(4x)

The subfomula ψ001011(x) in the premise of the implication states that the chunk encoding
the currently regarded configuration starts at position x. The other preconditions make
clear that y and z correspond to the positions at which we find 10 subsequences in the two
subchunks storing the current counter values:

x 2x y 3x z
↓ ↓ ↓ ↓ ↓
001011︸ ︷︷ ︸
left de-
limiter

1`0 . . . 0 0011︸︷︷︸
first sub-
delimiter

1c1−110 . . . 0 0011︸︷︷︸
second
subde-
limiter

1c2−110 . . . 0

Hence, C1 and C2 currently store the values c1 = y− 2x− 3 and c2 = z− 3x− 3, respectively.
Since the subsequent chunk starts at position 4x and its second and third subchunks start
at positions 8x and 12x, respectively, we know that there must be one 10 subsequence at
position 8x+ 3 + c1 + 1 = 6x+ y + 1 — the first counter is incremented by 1 — and one 10
subsequence must be at position 12x+ 3 + c2 = 9x+ z — the value of the second counter
remains unchanged. Moreover, the machine currently executes program line ` and is to
continue at program line `+ 1. Therefore, we put the formula χ`(x) in the premise and the
formula χ`+1(4x) into the consequent of the implication.

Encoding of the instruction ` : inc(C2):

∀xyz. ψ001011(x) ∧ 2x ≤ y ∧ y ≤ 3x ∧ ψ10(y) ∧ 3x ≤ z ∧ z ≤ 4x ∧ ψ10(z) ∧ χ`(x)

−→ ψ10(6x+ y) ∧ ψ10(9x+ z + 1) ∧ χ`+1(4x) .

Encoding of the instruction ` : test&dec(C1,`
′):

The case of C1 storing 0:

∀xyz. ψ001011(x) ∧ 2x ≤ y ∧ y ≤ 3x ∧ ψ10(y) ∧ 3x ≤ z ∧ z ≤ 4x ∧ ψ10(z) ∧ χ`(x)

∧ y = 2x+ 3

−→ ψ10(6x+ y) ∧ ψ10(9x+ z) ∧ χ`′(4x) .

The condition y = 2x+ 3 ensures that the first counter stores the value 0.

11.2. ENCODING TWO-COUNTER-MACHINE RUNS IN A UNARY PREDICATE 271

The case of C1 storing a value greater than 0:

∀xyz. ψ001011(x) ∧ 2x ≤ y ∧ y ≤ 3x ∧ ψ10(y) ∧ 3x ≤ z ∧ z ≤ 4x ∧ ψ10(z) ∧ χ`(x)

∧ y > 2x+ 3

−→ ψ10(6x+ y − 1) ∧ ψ10(9x+ z) ∧ χ`+1(4x) .

The condition y > 2x+ 3 ensures that the first counter stores a value strictly greater
than 0.

Encoding of the instruction ` : test&dec(C2,`
′):

The case of C2 storing 0:

∀xyz. ψ001011(x) ∧ 2x ≤ y ∧ y ≤ 3x ∧ ψ10(y) ∧ 3x ≤ z ∧ z ≤ 4x ∧ ψ10(z) ∧ χ`(x)

∧ z = 3x+ 3

−→ ψ10(6x+ y) ∧ ψ10(9x+ z) ∧ χ`′(4x) .

The case of C2 storing a value greater than 0:

∀xyz. ψ001011(x) ∧ 2x ≤ y ∧ y ≤ 3x ∧ ψ10(y) ∧ 3x ≤ z ∧ z ≤ 4x ∧ ψ10(z) ∧ χ`(x)

∧ z > 3x+ 3

−→ ψ10(6x+ y) ∧ ψ10(9x+ z − 1) ∧ χ`+1(4x) .

Encoding of the instruction ` : goto(`′):

∀xyz. ψ001011(x) ∧ 2x ≤ y ∧ y ≤ 3x ∧ ψ10(y) ∧ 3x ≤ z ∧ z ≤ 4x ∧ ψ10(z) ∧ χ`(x)

−→ ψ10(6x+ y) ∧ ψ10(9x+ z) ∧ χ`′(4x) .

Encoding of the instruction ` : halt:

∀xyz. ψ001011(x) ∧ 2x ≤ y ∧ y ≤ 3x ∧ ψ10(y) ∧ 3x ≤ z ∧ z ≤ 4x ∧ ψ10(z) ∧ χ`(x)

−→ ψ10(6x+ y) ∧ ψ10(9x+ z) ∧ χK(4x) .

The consequent of the implication ensures that the counters remain unchanged and that the
computation continues at program line K. Since we assume the K-th program line to contain
the instruction halt, the rest of the bit sequence will repeat the same chunk structure again
and again, as the counter values will remain unchanged and the encoded program line will
also repeat indefinitely.

Finally, we pose the central question concerning the halting behavior of the machine: Does the
machine ever reach a program line containing the halt instruction? The question is posed as a
requirement in a negative fashion:

ϕK4 ϕK4:= ∀x. ψ001011(x) −→ ¬χK(x) .

Technically speaking, we require that the machine never reaches the K-th program line, which we
assume to be the one and only line containing the halt instruction.

Given the the two-counter machineM, we denote by ϕM ϕMthe sentence that encodesM’s behavior

in accordance with the described formula schemes. Then, the sentence ϕ1 ∧ϕm,n2 ∧ϕK3 ∧ϕK4 ∧ϕM
is satisfied if and only if the machine will never reach the instruction halt when started on the
given input.

Lemma 11.2.1. The two-counter machine M with K + 1 program lines, labeled 0, . . . ,K, started
on input 〈m,n〉 eventually reaches a program line containing the instruction halt if and only if the
ΣPA+P -sentence ϕ1 ∧ ϕm,n2 ∧ ϕK3 ∧ ϕK4 ∧ ϕM is unsatisfiable.

272 CHAPTER 11. UNDECIDABLE FRAGMENTS

Proof sketch. We first observe the following technical properties of every structure A with A |= ϕ1.

(a) For every integer r ∈ N we have A |= ψ001011(r) if and only if r = 4id for some i ∈ N.

(b) For every integer r ∈ N we have A |= ψ0011(r) if and only if r = 2 · 4id or r = 3 · 4id for some
i ∈ N.

(c) For every integer r ∈ N we have A |= ψ01(r) if and only if

r ∈
⋃
i∈N

{
4id+ 1, 4id+ 3, 2 · 4id+ 1, 3 · 4id+ 1

}
.

(d) Suppose there are integers i, r, q ∈ N such that 4id+ 5 ≤ r, q < 2 · 4id. If we have A |= ψ10(r)
and A |= ψ10(q), then it follows that r = q.

(e) Suppose there are integers i, r, q ∈ N such that 2 ·4id+3 ≤ r, q < 3 ·4id. If we have A |= ψ10(r)
and A |= ψ10(q), then it follows that r = q.

(f) Suppose there are integers i, r, q ∈ N such that 3·4id+3 ≤ r, q < 4i+1d. If we have A |= ψ10(r)
and A |= ψ10(q), then it follows that r = q.

(g) For every integer i ∈ N there are integers r1, r2, r3 ∈ N such that

• 4id+ 5 ≤ r1 < 2 · 4id and A |= ψ10(r1),

• 2 · 4id+ 3 ≤ r2 < 3 · 4id and A |= ψ10(r2), and

• 3 · 4id+ 3 ≤ r3 < 4i+1d and A |= ψ10(r3).

Due to the above observations, it is clear that any model A of ϕ1 interprets P in such a way that it
uniquely represents an infinite sequence of triples of nonnegative integers encoded in unary, just as
we have described it earlier (cf. Figure 11.1). If, in addition, A satisfies ϕm,n2 and ϕK3 , then the first
triple of the sequence has the form 〈0,m, n〉 and the first component of every triple in the sequence
does not exceed K. Then, for any model A |= ϕ1 ∧ ϕm,n2 ∧ ϕK3 ∧ ϕM the interpretation PA of P
does not only represent a sequence of triples of integers but also establishes relations between the
triples in the sequence, such that they mimic M’s behavior. The only technical difference is that
whenever M enters a configuration 〈`, c1, c2〉 such that program line ` contains halt, then all later
configurations have the form 〈K, c1, c2〉. All in all, PA is a faithful encoding of some run of M
starting from the input 〈m,n〉.

On the other hand, since M is deterministic, there is a unique sequence

τ := 〈`init,m, n〉〈`1, c1,1, c2,1〉〈`2, c1,2, c2,2〉〈`3, c1,3, c2,3〉 . . .

of configurations that represents the run of M started on input 〈m,n〉. If τ is finite and thus
contains a halting configuration 〈`, c1, c2〉 as its last triple, we concatenate the infinite sequence
〈K, c1, c2〉〈K, c1, c2〉 . . . and thus obtain an infinite sequence again. This infinite sequence (be
it originally infinite or made so artificially) can be translated into a structure Aτ such that
Aτ |= ϕ1 ∧ ϕm,n2 ∧ ϕK3 ∧ ϕM.

So far, we have seen that ϕ1∧ϕm,n2 ∧ϕK3 ∧ϕM is satisfiable and that every model represents the
unique run τ ofM started on input 〈m,n〉. Then, we observe for any modelA |= ϕ1∧ϕm,n2 ∧ϕK3 ∧ϕM
that A |= ϕK4 holds if and only if τ does not contain a triple 〈K, c1, c2〉 for any c1, c2 ∈ N. Hence,
ϕ1 ∧ ϕm,n2 ∧ ϕK3 ∧ ϕM ∧ ϕK4 is unsatisfiable if and only if M reaches the halt instruction when
started on the input 〈m,n〉.

Together with the fact that the halting problem for two-counter machines is undecidable (cf.
Proposition 11.1.2), we get the following theorem.

Theorem 11.2.2. (Un)satisfiability of the universal fragment of PA+P is undecidable.

11.2. ENCODING TWO-COUNTER-MACHINE RUNS IN A UNARY PREDICATE 273

11.2.3 Reducing the Number of Variables to Two

We can formulate the encoding with at most two variables per subformula. All we have to do are
little modifications of the encodings of the two-counter machine instructions.

Modified encoding of the instruction ` : inc(C1):

∀xy. ψ001011(x) ∧ 2x ≤ y ∧ y ≤ 3x ∧ ψ10(y) ∧ χ`(x) −→ ψ10(6x+ y + 1) ∧ χ`+1(4x)

∀xz. ψ001011(x) ∧ 3x ≤ z ∧ z ≤ 4x ∧ ψ10(z) ∧ χ`(x) −→ ψ10(9x+ z)

For this instruction and most of the others we split the encoding formula into two parts: the
first formula realizes the y-part of the original encoding and the second formula realizes the
z-part.

Modified encoding of the instruction ` : inc(C2):

∀xy. ψ001011(x) ∧ 2x ≤ y ∧ y ≤ 3x ∧ ψ10(y) ∧ χ`(x) −→ ψ10(6x+ y) ∧ χ`+1(4x)

∀xz. ψ001011(x) ∧ 3x ≤ z ∧ z ≤ 4x ∧ ψ10(z) ∧ χ`(x) −→ ψ10(9x+ z + 1)

Modified encoding of the instruction ` : test&dec(C1,`
′):

The case of C1 storing 0:

∀xz. ψ001011(x) ∧ 3x ≤ z ∧ z ≤ 4x ∧ ψ10(z) ∧ χ`(x) ∧ ψ10(2x+ 3)

−→ ψ10(8x+ 3) ∧ ψ10(9x+ z) ∧ χ`′(4x)

The subformula ψ10(2x+ 3) in the premise ensures that the counter C1 currently stores
a 0 and the subformula ψ10(8x + 3) requires that C1 still stores 0 in the next step.
Notice that we do not need a variable y to address the corresponding bit positions, since
we can directly compute these positions from x.

The case of C1 storing a value greater than 0:

∀xy. ψ001011(x) ∧ 2x ≤ y ∧ y ≤ 3x ∧ ψ10(y) ∧ χ`(x) ∧ y > 2x+ 3

−→ ψ10(6x+ y − 1) ∧ χ`+1(4x)

∀xz. ψ001011(x) ∧ 3x ≤ z ∧ z ≤ 4x ∧ ψ10(z) ∧ χ`(x) ∧ ¬ψ10(2x+ 3)

−→ ψ10(9x+ z)

In the first sentence y > 2x+ 3 ensures that the value of C1 is greater than zero. In the
second sentence C1’s exact value is not important and thus ¬ψ10(2x+ 3) is sufficient
for ensuring that C1’s value is strictly positive.

Modified encoding of the instruction ` : test&dec(C2,`
′):

The case of C2 storing 0:

∀xy. ψ001011(x) ∧ 2x ≤ y ∧ y ≤ 3x ∧ ψ10(y) ∧ χ`(x) ∧ ψ10(3x+ 3)

−→ ψ10(6x+ y) ∧ ψ10(12x+ 3) ∧ χ`′(4x)

The case of C2 storing a value greater than 0:

∀xy. ψ001011(x) ∧ 2x ≤ y ∧ y ≤ 3x ∧ ψ10(y) ∧ χ`(x) ∧ ¬ψ10(3x+ 3)

−→ ψ10(6x+ y) ∧ χ`+1(4x)

∀xz. ψ001011(x) ∧ 3x ≤ z ∧ z ≤ 4x ∧ ψ10(z) ∧ χ`(x) ∧ z > 3x+ 3

−→ ψ10(9x+ z − 1)

274 CHAPTER 11. UNDECIDABLE FRAGMENTS

Modified encoding of the instruction ` : goto(`′):

∀xy. ψ001011(x) ∧ 2x ≤ y ∧ y ≤ 3x ∧ ψ10(y) ∧ χ`(x) −→ ψ10(6x+ y) ∧ χ`′(4x)

∀xz. ψ001011(x) ∧ 3x ≤ z ∧ z ≤ 4x ∧ ψ10(z) ∧ χ`(x) −→ ψ10(9x+ z)

Modified encoding of the instruction ` : halt:

∀xy. ψ001011(x) ∧ 2x ≤ y ∧ y ≤ 3x ∧ ψ10(y) ∧ χ`(x) −→ ψ10(6x+ y) ∧ χK(4x)

∀xz. ψ001011(x) ∧ 3x ≤ z ∧ z ≤ 4x ∧ ψ10(z) ∧ χ`(x) −→ ψ10(9x+ z)

Theorem 11.2.3. (Un)satisfiability of the universal fragment of PA+P is undecidable, if we allow
at least two quantifiers.

11.2.4 Undecidability with One Variable Only Using Another Encoding

It is not obvious how to refine the encoding from the previous section in such a way that a
single variable would suffice. However, the result of Theorem 11.2.3 can be improved, if we
use a different approach. The following is an adaptation of Downey’s encoding [Dow72]. It
results in a sentence that could easily be transformed into one containing only a single quantifier.
Let p1, . . . , pK+4 be the K + 4 smallest prime numbers. In the following sentences, we shall
address them by qt, qC1 , qC2 , q0, q1, . . . , qK and use them as prime factors. A configuration of the
encoded two-counter machine is described by a single natural number with the prime factorization
(qt)

t · q` · (qC1
)c1 · (qC2

)c2 , where t denotes the current time stamp, ` is the current program
line, which is to be executed next, and c1, c2 are the current values of the two counters C1, C2,
respectively. The sentences entail that P contains every reachable configuration.

Initial condition: P
(
qt · q`init

· qmC1
· qnC2

)
.

The sentence stipulates that the initial configuration 〈1, `init, n,m〉 can be reached.

Encoding of the instruction ` : inc(C1): ∀x. P (q` · x)→ P (qt · q`+1 · qC1
· x).

If the machine can reach any configuration 〈t, `, c1, c2〉, then the machine can also reach the
configuration 〈t+ 1, `+ 1, c1 + 1, c2〉.

Encoding of the instruction ` : inc(C2): ∀x. P (q` · x)→ P (qt · q`+1 · qC2 · x).

Encoding of the instruction ` : test&dec(C1, `
′):

∀x.
qC1
−1∧

i=1

(
P
(
q` · (qC1

· x+ i)
)
→ P

(
qt · q`′ · (qC1

· x+ i)
))

∧ ∀x. P (q` · qC1
· x)→ P (qt · q`+1 · x) .

The first part of the sentence stipulates that, if the machine can reach any configuration
〈t, `, 0, c2〉 where the counter C1 is zero, then it can also reach 〈t+ 1, `′, 0, c2〉. Notice that
any natural number qC1 · x+ i with 1 ≤ i ≤ qC1 − 1 is not divisible by qC1 . Conversely, for
every natural number y > 0 that is not divisible by qC1 there are natural numbers x ≥ 0 and
i ≥ 1 such that y = qC1

· x+ i and 1 ≤ i ≤ qC1
− 1. The second part says that, if the machine

can reach any configuration 〈t, `, c1, c2〉 with c1 > 0, then it can also reach the configuration
〈t+ 1, `+ 1, c1 − 1, c2〉.

Encoding of the instruction ` : test&dec(C2, `
′):

∀x.
qC2
−1∧

i=1

(
P
(
q` · (qC2

· x+ i)
)
→ P

(
qt · q`′ · (qC2

· x+ i)
))

∧ ∀x. P (q` · qC2
· x)→ P (qt · q`+1 · x) .

11.2. ENCODING TWO-COUNTER-MACHINE RUNS IN A UNARY PREDICATE 275

Encoding of the instruction ` : goto(`′): ∀x. P (q` · x)→ P (qt · q`′ · x).

If the machine can reach any configuration 〈t, `, c1, c2〉, then it can also reach 〈t+ 1, `′, c1, c2〉.

Encoding of the instruction ` : halt: ∀x. P (q` · x)→ P (qt · q` · x).

If the machine can reach any configuration 〈t, `, c1, c2〉, then the machine will loop forever
while staying at program line `, which contains the instruction halt.

For any two-counter machine M with a program containing K + 1 ≥ 2 lines the computation
ofM on the input m,n can be formalized using the above encoding. Then, for any model A of the
encoding, we have A |= P

(
qtt · q` · qc1C1

· qc2C2

)
if and only ifM reaches the configuration 〈t, `, c1, c2〉 at

the t-th step of its run. Let ϕM,m,n be the sentence resulting from the encoding. Then, we observe
that the sentence ϕM,m,n ∧ ∀x.¬P (q`halt

· x) is satisfiable if and only if M does not halt when
started on the input m,n. Notice that this sentence can be converted into an equivalent PA+P
sentence in conjunctive normal form that is Horn and Krom and contains exactly one universal
quantifier.

Theorem 11.2.4. (Un)satisfiability of the universal fragment of PA+P is undecidable, even if we
restrict the language to sentences that are Horn and Krom and contain only a single first-order
variable.

We have not yet explained why we have introduced the time stamps to the configurations. This
allows keeping track of the sequence of configurations. In the context of the halting problem, this
is not utterly important, as one is merely concerned with the reachability of the program line
containing halt. However, in the context of the recurrence problem, this ability is crucial. The
sentence ϕM,0,0 ∧ ∀x∃y. x < y ∧ P (q`init · y) is satisfiable if and only if M’s run is recurring when
started on the input m = 0, n = 0, i.e. if it reaches the program line `init infinitely often.

Proposition 11.2.5. The recurrence problem for deterministic two-counter machines can be
expressed in the Horn-Krom fragment of PA+P using a single ∀∃ quantifier alternation and at
most two variables per clause.

The recurrence problem will be of importance in Section 11.3, where we shall use it to show
that the satisfiability problem for PA+P with a single quantifier alternation is Σ1

1-hard.

11.2.5 Using the Rationals or Reals as Underlying Domain

Presburger arithmetic is defined on the integers and we have shown that adding a single uninterpreted
unary predicate symbol yields an undecidable satisfiability problem. We can directly use the
encoding that we have presented for the integers in order to show undecidability over the rational
and real domains. The crucial point is that we have encoded the reachability of the halt instruction
in a negative fashion. If the machine M reaches a halt instruction, then we cannot find a model
of the encoding sentence ϕ1 ∧ ϕm,n2 ∧ ϕK3 ∧ ϕM ∧ ϕK4 , since any structure that faithfully represents
the run of M on the given input must violate the condition ¬χK(j) for some integer j for which
ψ001011(j) is true. We have used this observation to prove Lemma 11.2.1. The described conflict
does not vanish when we assume a larger domain. If, on the other hand, the machine M does not
reach a halt instruction, then there is a model of ϕ1 ∧ϕm,n2 ∧ϕK3 ∧ϕM ∧ϕK4 . In particular, there
is a model in which P is interpreted such that it exclusively contains integers and no reals at all.
Hence, the fact that we are dealing with an extended domain does not affect the circumstances
under which the encoding sentence is unsatisfiable or not. Consequently, we have the following
undecidability result.

Theorem 11.2.6. (Un)satisfiability of the universal fragment of linear arithmetic over the rationals
or reals with a single uninterpreted unary predicate symbol is undecidable.

276 CHAPTER 11. UNDECIDABLE FRAGMENTS

11.2.6 Unary Function Symbols and the Horn Fragment

The uninterpreted unary predicate symbol P in our encoding of two-counter machines can be
replaced with an uninterpreted unary function symbol f : N→ N over the natural numbers. We
simply add the assertion ∀x. f(x) ≤ 1 and substitute every negative literal ¬P (t) with f(t) = 0 and
every positive literal P (t) with f(t) = 1, where t is any term. (Implicitly, we exploit the fact that f
is interpreted by a total function fA in any structure A.) After this substitution, transforming the
encoding formula set from Section 11.2.2 into conjunctive normal form (CNF) yields a sentence
that can easily be transformed into a Horn sentence, i.e. every clause contains at most one positive
literal. The reason is that we can use negation very liberally: ¬P (t) corresponds to f(t) = 0 and,
at the same time, to ¬f(t) = 1; P (t) corresponds to f(t) = 1 and, at the same time, to ¬f(t) = 0.
By this line of argument we obtain the following theorem.

Theorem 11.2.7. (Un)satisfiability of the universal Horn fragment of Presburger arithmetic with
a single uninterpreted unary function symbol is undecidable.

Over the domain of the reals, we can replace the predicate symbol P in the same spirit, yet
in a slightly different way. For one thing, we add the assertion ∀x. 0 ≤ f(x) ∧ f(x) ≤ 1 to the
encoding, which also introduces an explicit lower bound to the values of f . As this assertion alone
does not guarantee that in any model the image of f : R → R contains at most two values, we
replace any occurrence of ¬P (t) with f(t) = 0 and any occurrence of P (t) with f(t) > 0. Again, a
CNF transformation yields a sentence that can be transformed into a Horn sentence.

Theorem 11.2.8. (Un)satisfiability of the universal Horn fragment of linear arithmetic over the
rationals or reals with a single additional uninterpreted unary function symbol is undecidable.

11.3 Degrees of Unsolvability

We have shown that the unsatisfiability problem of the universal fragment of PA+P is undecidable.
Next, we shall argue that the set of unsatisfiable sentences from this fragment is recursively
enumerable. In order to prove this, it suffices to give a sound calculus that, given an unsatisfiable
sentence over the language in question, derives false or the empty clause in finitely many steps.
This property is known as refutational completenessrefutational

complete-
ness

. In fact, such a calculus would constitute a
semi-decision procedure for unsatisfiable sentences.

Indeed, hierarchic superposition [BGW94, BW13b, BW13a] (cf. Section 10.3) is such a refuta-
tionally complete calculus for all unsatisfiable hierarchic clause sets that are sufficiently complete, if
the considered background theory is compact (cf. Theorem 24 in [BGW94]). The universal fragment
of Presburger arithmetic with uninterpreted predicate symbols can be treated in this framework:
We consider finite clause sets over the vocabulary ΣPA enriched with arbitrary uninterpreted
predicate symbols. All occurring first-order variables are implicitly universally quantified and
we do not consider any uninterpreted constant or function symbols. Presburger arithmetic is
conceived as the background theory and, hence, determines the interpretation of all symbols from
ΣPA. In this setting, the two requirements — sufficient completeness and compactness of the
background theory — are satisfied. Sufficient completeness (cf. Definition 20 in [BGW94]) concerns
uninterpreted constant and function symbols that range over the background sort. Since we do not
allow such symbols in our language, all sentences are sufficiently complete. For the same reason,
the background theory is compact. This means, every set of first-order sentences over ΣPA that is
not satisfied under Z has some finite (even a singleton) subset that is not satisfied under Z. Hence,
the following proposition holds.

Proposition 11.3.1. The set of unsatisfiable sentences over the universal fragment of Presburger
arithmetic with additional uninterpreted predicate symbols is recursively enumerable.

From the literature on the arithmetical hierarchy (see, e.g. [Rog87, Soa87, Odi92, Soa16]) we
get the following.5

5The sets Σ0
n, Π0

n are sets of sets of natural numbers that are describable by certain first-order-arithmetic

11.3. DEGREES OF UNSOLVABILITY 277

Satisfiability Unsatisfiability Validity Invalidity

∀∗-fragment Π0
1-complete Σ0

1-complete Σ0
0 Σ0

0

∃∗-fragment Σ0
0 Σ0

0 Σ0
1-complete Π0

1-complete

Table 11.2: Overview regarding the degree of unsolvability of the (un)satisfiability and (in)validity
problems for the purely universal and purely existential fragment of Presburger arithmetic with
additional uninterpreted predicate symbols. Notice that membership in Σ0

0 (which coincides with
Π0

0) entails decidability of the respective problem.

Proposition 11.3.2.

(i) The set Σ0
1 Σ0

1captures exactly the recursively enumerable sets.

(ii) The set Π0
1 Π0

1captures exactly the sets whose complement is recursively enumerable.

(iii) The halting problem for (ordinary) Turing machines is Σ0
1-complete.

Proof. (i) and (ii) are reformulations of Theorems II.1.2 and IV.1.3 in [Soa87], respectively. (iii)
combines the following parts of [Soa87]: Definitions I.3.1, I.4.1, I.4.5, Theorem II.4.2 and the
discussion after Definition IV.2.1 on page 64.

Since we have completed a chain of reductions from the halting problem of Turing machines via
the halting problem of two-counter machines to the unsatisfiability problem of the universal fragment
of Presburger arithmetic with uninterpreted predicate symbols, we conclude Σ0

1-completeness of
the latter problem by Lemma 11.2.1 together with Propositions 11.3.1 and 11.3.2.

Theorem 11.3.3. The set of unsatisfiable sentences from the universal fragment of Presburger
arithmetic with uninterpreted predicate symbols is Σ0

1-complete.

It is worth noticing that the theorem can be translated to the realm of linear arithmetic over the
reals. The reason is that hierarchic superposition is also refutationally complete over the universal
fragment of this language, if there are no uninterpreted constant or function symbols involved.

Since any reduction of a problem S to a problem T (both read as a set of Gödel numbers) at
the same time yields a reduction from S to T , the complement of a Σ0

1-complete set is complete
for Π0

1. Hence, Theorem 11.3.3 entails Π0
1-completeness of the set of satisfiable sentences over the

same language.
There are strong ties between (un)satisfiability in the universal fragment of the language we

consider and (in)validity in the dual language, the existential fragment. The bottom line is that
the obtained completeness results can be transfered to the corresponding (in)validity problems.
The overall situation is depicted in Table 11.2.

For the sake of completeness, we briefly discuss (un)satisfiability for the existential fragment.
Kruglov and Weidenbach [KW12, Kru13] have presented a general result regarding the satisfiability
problem for hierarchic clause sets that are ground. More precisely, they have devised a decision
procedure for that problem, based on a hierarchic superposition calculus.

Proposition 11.3.4 (Corollary of Theorem 23 from [KW12]). Satisfiability of the existential
fragment of Presburger arithmetic with additional uninterpreted predicate symbols is decidable.

With this knowledge we can complete the overview in Table 11.2 and thus reveal the full picture
of where the (un)satisfiability and (in)validity problems of the universal and existential fragments of
Presburger arithmetic augmented with uninterpreted predicate symbols reside in the arithmetical
hierarchy.

formulas. Whenever we speak of problems or sets of sentences belonging to Σ0
n or Π0

n, or being complete for these
classes, we implicitly refer to the Gödelization of these problems or sets of sentences.

278 CHAPTER 11. UNDECIDABLE FRAGMENTS

One ∀∃ Quantifier Alternation Yields Σ1
1-Completeness

Halpern has shown that the satisfiability problem for Presburger arithmetic with any choice
of additional uninterpreted function symbols and predicate symbols lies in Σ1

1 in the analytical
hierarchy6 (Theorem 3.1 in [Hal91]). This result is independent of the number of occurring quantifier
alternations. In the present section, we show that already a single quantifier alternation suffices to
make the problem complete for Σ1

1. We leverage the following result, due to Alur and Henzinger.

Proposition 11.3.5 (Lemma 8 in [AH94]). The problem of deciding whether a given nondeter-
ministic two-counter machine has a recurring computation is Σ1

1-hard.

A nondeterministic two-counter machine differs from the deterministic model described in
Section 11.1 in that it allows nondeterministic branching after a program line has been executed.
This means that after the execution of a program line ` (which does not result in a jump induced
by a test&dec instruction) the machine does not necessarily proceed to the (` + 1)-st line, but
may have the choice between two specified options.

This kind of nondeterminism can easily be incorporated into the encoding presented in Sec-
tion 11.2.2. For instance, the nondeterministic version of the instruction ` : inc(C1) can be
represented by the formula

∀xyz. ψ001011(x) ∧ 2x ≤ y ∧ y ≤ 3x ∧ ψ10(y) ∧ 3x ≤ z ∧ z ≤ 4x ∧ ψ10(z) ∧ χ`(x)

−→ ψ10(6x+ y + 1) ∧ ψ10(9x+ z) ∧
(
χ`′(4x) ∨ χ`′′(4x)

)
.

The last conjunct
(
χ`′(4x) ∨ χ`′′(4x)

)
now offers a choice between program lines `′ and `′′ as the

ones that are to be executed next.
Consequently, we can reuse major parts of our encoding in order to prove Σ1

1-hardness. For any
nondeterministic two-counter machine M we write ϕ′M to address the encoding of M’s program
in accordance with Section 11.2.2 and the just described adaptations due to the nondeterministic
setting.

A run of a nondeterministic two-counter machine is considered to be recurring if and only if it
starts with both counters set to zero and reaches the initial program line (with label 0) infinitely
often. This means, we have to remove ϕ4 from the encoding set of sentences and replace it with a
proper formalization of the recurrence condition:

ϕ′5 := ∀x∃y. x ≤ y ∧ ψ001011(y) ∧ χ0(y) .

This sentence formulates recurrence in a positive fashion by saying that at any point in time
program line 0 will be reached eventually. Finally, in order to account for the specific input
requirements posed in the definition of recurrence, we construct ϕ0,0

2 rather than ϕm,n2 , i.e. we set
m = n = 0.

Lemma 11.3.6. The nondeterministic two-counter machine M has a recurring run if and only if
ϕ1 ∧ ϕ0,0

2 ∧ ϕK3 ∧ ϕ′M ∧ ϕ′5 is satisfiable.

By Proposition 11.3.5, this yields Σ1
1-hardness. Due to the result by Halpern [Hal91], we know

that the set of satisfiable Presburger arithmetic sentences with additional uninterpreted predicate
symbols lies in Σ1

1. Hence, we get the following theorem.

Theorem 11.3.7. The set of satisfiable sentences of the (∀∗∃)-fragment of PA+P is Σ1
1-complete

and, hence, neither it nor its complement are recursively enumerable.

Notice that the theorem can be reformulated in terms of uninterpreted unary function symbols
instead of uninterpreted unary predicate symbols. However, in contrast to Theorem 11.2.7, we lose

6See, e.g., [Rog87, Odi92] for a definition of the analytical hierarchy. It can be conceived as the second-order
equivalent of the arithmetical hierarchy. The main result we need in the present thesis is that any problem that is
hard or complete for Σ1

n or Π1
n with n ≥ 1 is not recursively enumerable; the same applies to the complement of

such a problem.

11.4. AN ENCODING BASED ON DIFFERENCE CONSTRAINTS 279

the property that the encoding results in a Horn sentence when transformed into CNF. The reason
is the involved nondeterminism and the way we have encoded nondeterministic branching.

Over the domains of the rationals and reals, we can only show Σ1
1-hardness of the satisfiability

problem, since Halpern’s upper bound only covers the realm of the natural numbers.

Theorem 11.3.8. The set of satisfiable sentences of the (∀∗∃)-fragment of linear arithmetic over
the rationals or reals with a single additional uninterpreted unary predicate symbol is Σ1

1-hard and,
hence, neither it nor its complement are recursively enumerable..

Moreover, the encoding from Section 11.2.4 can be used to improve Theorem 11.3.7 and show
Σ1

1-completeness for the (non-Horn) ∀∃-fragment of PA+P , cf. Proposition 11.2.5.

Theorem 11.3.9. The set of satisfiable sentences of the ∀∃-fragment of PA+P is Σ1
1-complete

and, hence, neither it nor its complement are recursively enumerable.

11.4 An Encoding Based on Difference Constraints

We have seen in Section 11.1 that difference constraints together with uninterpreted predicate
symbols yield an undecidable satisfiability problem. This contrasts our positive result from
Section 10.4 concerning the satisfiability problem for finite BSR(BD) clause sets. To sharpen the
contrast even further, we intend to show the following result in the present section. Even when
we only consider the rational unit interval [0, 1] as domain, adding arithmetic atoms of the form
x− y / c to BSR(BD) where c is an uninterpreted constant symbol of sort Q, yields an undecidable
satisfiability problem. We shall show this in two ways, first via a simple encoding similar to the
ones presented in Section 11.1, and then via an adaptation of the encoding from Section 11.2.3 in
the language LRA+PN .

We start with a refinement of the simple encoding from Section 11.1. This time, we use a 5-ary
uninterpreted predicate symbol M : Q×Q×Q×Q×Q to address the state of the two-counter
machine as follows: M(u, t, x, y, z) stands for a machine at instruction u and time step t where x
and y store counter values relative to the offset z. We use an uninterpreted constant symbol c to
determine the distance between two neighboring counter values.7 For instance, an increment of
counter C1 amounts to adding c to the x-component. Together with the offset construction that
we have already used in Section 11.1, this means that the counter values can be reconstructed from
x, y, z as follows: c1 = 1

c (x− z − c) and c2 = 1
c (y − z − c).

We use the time stamp t to make sure that the value of c is chosen sufficiently small so as to
keep all rationals occurring in the encoding of the run of M between 0 and 1. We stipulate that
the halt instruction has to be encountered before time stamp 1 is reached. After reaching halt

for the first time, all successive configurations will have the shape M(`halt, t, 0, 0, 0) where the time
stamp t will keep on increasing by c until t = 1 is reached. Suppose M halts when started on the
input m,n and further suppose that at most L increment operations are applied to any of the two
counters. Then, in any model A of the corresponding encoding, cA has to be such that cA > 0 and
cA ·

(
max(m,n) + L+ 1

)
< 1. Of course, we also have to make sure that the labels for program

lines stem from [0, 1].
In Table 11.3 we give prototypical encodings of the instructions concerning counter C1; the

encoding for counter C2 can be done analogously. The side conditions stipulated in ϕside make sure
that (a) c is positive but less than 1, (b) for every time step t there is at most one configuration
〈u, t, x, y, z〉, and (c) the time difference between any two configurations is at least c. This ensures
that there are no spurious configurations and that the run is finite.

Notice that the overall encoding sentence can be transformed into Horn form.

Remark 11.4.1. A semi-decision procedure for finite satisfiable clause sets over the language of
BSR(BD) plus the arithmetic atoms x− y / c with uninterpreted constant symbol c of sort Q that

7The idea to use an uninterpreted Skolem constant as the quantity for increment was suggested to the author
of the present thesis by Dietrich Kuske during breakfast at the 32nd Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS’17) in Reykjavik, Iceland, in June 2017.

280 CHAPTER 11. UNDECIDABLE FRAGMENTS

Operation Encoding

` : inc(C1) ∀txyzt′x′. x′ − x = c ∧ t′ − t = c ∧ t′ ≤ 1 ∧ M(`, t, x, y, z)
→ M(`+ 1, t′, x′, y, z)

` : test&dec(C1,`
′)

((
∀txyzt′x′. x− z > c ∧ y′ − y = c ∧ z′ − z = c ∧ t′ − t = c ∧ t′ ≤ 1

∧M(`, t, x, y, z)
)
→ M(`+ 1, t′, x, y′, z′)

)
∧
(
∀txyzt′. x− z = c ∧ t′ − t = c ∧ t′ ≤ 1 ∧ M(`, t, x, y, z)

→ M(`′, t′, x, y, z)
)

` : goto(`′) ∀txyzt′x′. t′ − t = c ∧ t′ ≤ 1 ∧ M(`, t, x, y, z) → M(`′, t′, x, y, z)

`halt : halt ∀txyzt′. t′ − t = c ∧ M(`halt, t, x, y, z)→M(`halt, t
′, 0, 0, 0)

Initial condition: M(`init, 0, (m+ 1) · c, (n+ 1) · c, 0)
Halting condition: M(`halt, 1, 0, 0, 0)

Side conditions:

ϕside :=

0 < c ∧ c < 1

∧ ∀utxyzu′x′y′z′. M(u, t, x, y, z) ∧ M(u′, t, x′, y′, z′)→ u = u′ ∧ x = x′ ∧ y = y′ ∧ z = z′

∧ ∀utxyzu′t′x′y′z′. t ≤ t′ ∧ t′ − t < c ∧ M(u, t, x, y, z) ∧ M(u′, t′, x′, y′, z′)→ t = t′

∧ ∀utxyz. M(u, t, x, y, z) → t ≤ 1 ∧ x ≤ 1 ∧ y ≤ 1 ∧ z ≤ 1

Table 11.3: Encoding of the basic two-counter-machine instructions, including a step counter.

is in addition conjoined with bounds cx ≤ x ≤ dx and cy ≤ y ≤ dy could proceed as follows. Let
c̄ be the tuple collecting all occurring uninterpreted constant symbols. We enumerate all tuples
r̄ of rational numbers and use them as candidate values for the constant symbols in c̄. For each
step of the enumeration, we consider the values of c̄ := r̄ to be fixed. After replacing the constant
symbols from c̄ with the values from r̄, we obtain a finite clause set that almost belongs to BSR(BD).
We now compute the least common multiple of all denominators that occur in the clause set and
multiply all rational constants with this value. After reduction of all rationals to integers we obtain
an equisatisfiable finite clause set that belongs to BSR(BD). At this point, we apply the decision
procedure from Section 10.4. If it succeeds, the clause set at hand is satisfiable.

If satisfiability is undecidable but semi-decidable, then unsatisfiability cannot be semi-decidable.
Hence, hierarchic superposition cannot be refutationally complete for the extended fragment described
above (compare with the discussion at the beginning Section 11.3). On the other hand, we have
“model completeness” in the sense that, if there is a model, it can be constructed using the procedure
we have just described. This is a somewhat unusual situation in automated reasoning, where we
often find the opposite: the set of unsatisfiable sentences is semi-decidable, e.g. due to the existence
of calculi that are sound and refutationally complete, whereas the set of satisfiable sentences is not
recursively enumerable.8

In the remaining subsections we will blend the ideas described above with the encoding from
Section 11.2.3. We shall start with an informal description.

11.4.1 Informal Description of the Encoding

Like in Section 11.2, we consider infinite sequences of bits which we divide into chunks, this time of
a fixed length, determined by an uninterpreted constant symbol dd of sort Q. Each of these chunks

8The fact that the shift of recursive enumerability from the unsatisfiability problem to the satisfiability problem
is a rather peculiar property was brought to the attention of the author of the present thesis by Dietrich Kuske, cf.
Footnote 7 on page 279.

11.4. AN ENCODING BASED ON DIFFERENCE CONSTRAINTS 281

has the form
001011︸ ︷︷ ︸
left de-
limiter

1`0d−`−6 0011︸︷︷︸
first sub-
delimiter

1c10d−c1−4 0011︸︷︷︸
second
subde-
limiter

1c20d−c2−4 ,

where ` is the address of the program line to be executed, c1 is the value currently stored in C1, and
c2 is the value currently stored in C2. The length of the chunks is 3 ·d bits each, and every subchunk
contains d bits. Obviously, the constant symbol d has to be interpreted by some positive integer that
allows the subchunks to store sufficiently large values for the current program line and the current
counter values. If M halts when started on the input 〈m,n〉, then there exists such a sufficiently
large value for d. Due to the length of the used delimiters, we set max{K + 6,m+ 4, n+ 4} as a
lower bound for d, where K is the last line of M’s program. Moreover, the leftmost chunk starts
at position 0, i.e. there is a 001011-delimiter starting at position 0 but none starting left of 0.

Figure 11.2 illustrates the structure of a single chunk in the sequence, starting at position x.

0
. . . -001011 0011 0011 001011

︷ ︸︸ ︷
1 . . . 1 0 . . .

︷ ︸︸ ︷
1 . . . 1 0 . . .

︷ ︸︸ ︷
1 . . . 1 0 . . . 1 . . . 10 . . .

unary encoding
of the current
program line

unary encoding
of the current

value of C1

unary encoding
of the current

value of C2

�
earlier

configu-
rations

-
later

configu-
rations

-�
x

-�
x+ 3d

-�
d

-�
d

-�
d

Figure 11.2: Structure of a single chunk of length 3d.

In contrast to the encoding described in Section 11.2 we this time aim for a finite number of
chunks in the sequence, i.e. we only consider finite runs of M. We use the rational number 1 to
mark the end of the run: the very last chunk starts at position 1− 3d.

For the sake of clarity, we formulate the encoding without restriction to difference constraints
in a first step. Then, in Section 11.4.3, we restate the encoding in the more restricted fragment.

11.4.2 Formal Encoding of Two-Counter Machine Computations

Recall that we assume to be given a two-counter machine M with K + 1 program lines, labeled
0, . . . ,K, and two input values m and n. We assume that 0 is the initial program line, that program
line K contains the halt instruction, and that there is no other program line containing halt.

We mark a finite subdomain of [0, 1] which will serve as pseudo-integers. The elements of this
subdomain shall be uniformly distributed within [0, 1]. To this end, we use the uninterpreted
unary predicate symbol N Nwhich shall contain exactly the pseudo-integers in any model. Moreover,
we use an uninterpreted constant c cto determine the distance between two pseudo-integers. The
following sentence ϕ′0 sets the stage for using the pseudo-integers 0, c, 2c, 3c, . . . , 1− 2c, 1− c, 1.

ϕ′0 ϕ′0:= c > 0

∧ N(0) ∧ N(1) ∧
(
∀x.N(x) → 0 ≤ x ∧ x ≤ 1

)
∧
(
∀xy. y − x = c ∧ N(x) → N(y)

)
∧
(
∀xy. x− y < c ∧ y − x < c ∧ N(x) ∧ N(y) → x = y

)
∧
(
∀x. P (x) → N(x)

)
The last subformula ensures that P contains only pseudo-integers. Having distinguished the
pseudo-integers from the other rationals in [0, 1], we can now use them as a basis for the encoding.

282 CHAPTER 11. UNDECIDABLE FRAGMENTS

The used abbreviations ψ001011, ψ0011, etc. have to be adapted as follows:

ψ001011(t)ψ001011 := ¬P (t) ∧ ¬P (t+ c) ∧ P (t+ 2c) ∧ ¬P (t+ 3c) ∧ P (t+ 4c) ∧ P (t+ 5c)

ψ0011(t)ψ0011 := ¬P (t) ∧ ¬P (t+ c) ∧ P (t+ 2c) ∧ P (t+ 3c)

ψ01(t)ψ01 := ¬P (t) ∧ P (t+ c)

ψ10(t)ψ10 := P (t) ∧ ¬P (t+ c)

χ`(t)χ` := ψ10(t+ 5c+ ` · c) for ` = 0, . . . ,K

The adapted variants of the sentences ϕ1, . . . , ϕ4 are the following. The sentence ϕ′1 sets up the
general structure of the predicate P . Let k again denote the integer k := max{K + 6,m+ 4, n+ 4}.

ϕ′1ϕ′1 := N(d) ∧ d ≥ k · c (11.9)

∧ ψ001011(0) ∧ ψ0011(d) ∧ ψ0011(2d) ∧ ψ001011(1− 3d) (11.10)

∧
(
∀x. ψ001011(x) ∧ x < 1− 3d → ψ001011(x+ 3d)

)
(11.11)

∧
(
∀x. ψ001011(x+ 3d) ∧ x ≥ 0 → ψ001011(x)

)
(11.12)

∧
(
∀x. ψ0011(x) ∧ x < 1− 3d → ψ0011(x+ 3d)

)
(11.13)

∧
(
∀x. ψ0011(x+ 3d) ∧ x ≥ 0 → ψ0011(x)

)
(11.14)

∧
(
∀x. ψ001011(x) ∧ x < 3d → x = 0

)
(11.15)

∧
(
∀x. ψ0011(x) ∧ x < 3d → x = 2d ∨ x = d

)
(11.16)

∧
(
∀xy. ψ001011(x) ∧ ψ01(y) ∧ x+ 6c ≤ y ∧ y < x+ 3d → ψ0011(y − c)

)
(11.17)

Subformula (11.10) sets the first 001011-delimiter at position 0 and the two subchunk delimiters
0011 at positions d · c and 2d · c. Moreover, the last 001011-delimiter is set to be at position 1− 3d.
Subformulas (11.11) to Formula (11.14) ensure that there are 001011- and 0011-delimiters evenly
distributed between positions 0 and 1. Subformulas (11.15) and (11.17) guarantee that there are no
spurious delimiters between 0 and 1. Due to the fact that P contains no elements outside of [0, 1],
which is entailed by ϕ′0, there is no 001011- or 0011-delimiter starting at 0, left of 0, at 1, or right
of 1. Subformula (11.17) stipulates that every 01 subsequence is part of one of the delimiters, i.e.
there cannot be a subsequence 01 that lies outside of a 001011- or 0011-delimiter. This entails that
between one delimiter (001011 or 0011) and the subsequent one there is exactly one subsequence
10, possibly overlapping with the last or first bit of one of the delimiters. Hence, this subsequence
uniquely marks the end of the number encoded in the respective subchunk.

The following sentence sets the initial values of the counters. Moreover, it sets the initial
program line, which we assume to be the very first one:

ϕ′2
m,n

ϕ′2
m,n

:= χ0(0) ∧ ψ10(d+ 3c+m · c) ∧ ψ10(2d+ 3c+ n · c) .

With the sentence ϕ′3
K

, we ensure that program lines never exceeds K:

ϕ′3
K

ϕ′3
K := ∀xy. ψ001011(x) ∧ ψ10(y) ∧ y < x+ d → y ≤ x+ 5c+K · c .

We also have to encode the condition that the two-counter machine halts at some point in time.
Recall that we assume the halt instruction to exclusively appear in program line K.

ϕ′4
K

ϕ′4
K := χK(1− 3d) .

It remains to encode the control flow of M. We assume that the following instructions occur in
program line ` for some ` ∈ {0, . . . ,K}.

In the following table we give prototypical encodings of the instructions of two-counter machines.
The encoding of operations is only given for counter C1. The encoding for counter C2 can be done
analogously.

11.4. AN ENCODING BASED ON DIFFERENCE CONSTRAINTS 283

Encoding of the instruction ` : inc(C1):

∀x. ψ001011(x) ∧ χ`(x) → χ`+1(x+ 3d)

∀xy. ψ001011(x) ∧ χ`(x) ∧ x+ d ≤ y ∧ y ≤ x+ 2d ∧ ψ10(y) → ψ10(y + 3d+ c)

∀xz. ψ001011(x) ∧ χ`(x) ∧ x+ 2d ≤ z ∧ z ≤ x+ 3d ∧ ψ10(z) → ψ10(z + 3d)

These three sentences encode a transition from a configuration 〈`, c1, c2〉 to the successor
configuration 〈`+ 1, c1 + 1, c2〉. The first sentence stipulates that the next program line is
the one with the label `+ 1. While the second sentence encodes the increase of counter C1

by 1, the third sentence makes sure that counter C2 retains its value.

The subfomula ψ001011(x) in the premises of the implications states that the chunk encoding
the currently regarded configuration starts at position x. The other preconditions make
clear that y and z correspond to the positions at which we find 10 subsequences in the two
subchunks storing the current counter values:

x x+ d y x+ 2d z
↓ ↓ ↓ ↓ ↓
001011︸ ︷︷ ︸
left de-
limiter

1`0 . . . 0 0011︸︷︷︸
first sub-
delimiter

1c1−110 . . . 0 0011︸︷︷︸
second
subde-
limiter

1c2−110 . . . 0

Hence, C1 and C2 currently store the values c1 = 1
c (y−x−d−3c) and c2 = 1

c (z−x−2d−3c),
respectively.

Encoding of the instruction ` : test&dec(C1,`
′):

The case of C1 storing 0:

∀x. ψ001011(x) ∧ χ`(x) ∧ ψ10(x+ d+ 3c) → χ`′(x+ 3d)

∀x. ψ001011(x) ∧ χ`(x) ∧ ψ10(x+ d+ 3c) → ψ10(x+ 4d+ 3c)

∀xz. ψ001011(x) ∧ χ`(x) ∧ ψ10(x+ d+ 3c) ∧ x+ 2d ≤ z ∧ z ≤ x+ 3d ∧ ψ10(z)

→ ψ10(z + 3d)

The condition ψ10(x+ d+ 3c) ensures that the first counter stores the value 0.

The case of C1 storing a value greater than 0:

∀xy. ψ001011(x) ∧ χ`(x) ∧ x+ d+ 3c < y ∧ y ≤ x+ 2d ∧ ψ10(y) → χ`+1(x+ 3d)

∀xy. ψ001011(x) ∧ χ`(x) ∧ x+ d+ 3c < y ∧ y ≤ x+ 2d ∧ ψ10(y) → ψ10(y + 3d− c)
∀xz. ψ001011(x) ∧ χ`(x) ∧ ¬ψ10(x+ d+ 3c) ∧ x+ 2d ≤ z ∧ z ≤ x+ 3d ∧ ψ10(z)

→ ψ10(z + 3d)

The condition y > x+ d+ 3 ensures that the first counter stores a value strictly greater
than 0. The same applies to condition ¬ψ10(x+ d+ 3c) in the third sentence.

Encoding of the instruction ` : goto(`′):

∀x. ψ001011(x) ∧ χ`(x) → χ`′(x+ 3d)

∀xy. ψ001011(x) ∧ χ`(x) ∧ x+ d+ 3c ≤ y ∧ y ≤ x+ 2d ∧ ψ10(y) → ψ10(y + 3d)

∀xz. ψ001011(x) ∧ χ`(x) ∧ x+ 2d ≤ z ∧ z ≤ x+ 3d ∧ ψ10(z) → ψ10(z + 3d)

284 CHAPTER 11. UNDECIDABLE FRAGMENTS

Encoding of the instruction K : halt:

∀x. ψ001011(x) ∧ χK(x) → x = 1− 3d

The sentence stipulates that, if program line K is reached, then only at the end of the
computation.

Lemma 11.4.2. Let M be any two-counter machine and let ϕ′M be the encoding of its behavior
as described above. Then, M halts on the input 〈m,n〉 if and only if there is a model A of the set

of LRA+PN sentence ϕ′1 ∧ . . .∧ϕ′4K ∧ϕM. Moreover, in that case, PA and NA are finite subsets
of the rational unit interval [0, 1].

Theorem 11.4.3. Satisfiability for the ∃2∀2 fragment of LRA+PN is undecidable, even if the
arithmetic domain is the rational interval [0, 1] and the interpretations of P and N are restricted
to finite subsets of [0, 1].

11.4.3 Restriction to Difference Constraints

As the last step, we now adapt the encoding from the previous section to exclusively use difference
constraints v − v′ / c′ with / ∈ {<,≤,=, 6=,≥, >}, where c′ is either a rational number or an
uninterpreted constant symbol of sort Q. In addition, we allow the arithmetic atom x0 = 0.

The sentence ϕ′0 requires only small changes, which yield

ϕ′0ϕ′0 :=
(
∀x. x− x < c

)
∧
(
∀x0x1. x0 = 0 ∧ x1 − x0 = 1 → N(x0) ∧ N(x1)

)
∧
(
∀xx0. x0 = 0 ∧N(x) → 0 ≤ x− x0 ∧ x− x0 ≤ 1

)
∧
(
∀xy. y − x = c ∧ N(x) → N(y)

)
∧
(
∀xy. x− y < c ∧ y − x < c ∧ N(x) ∧ N(y) → x− y = 0

)
∧
(
∀x. P (x) → N(x)

)
.

In the rest of the encoding, the abbreviations ψ001011, ψ0011, etc. cannot be used this comfortably
anymore, as the following reformulation of ϕ′1 shows.

The subformula d ≥ k · c is replaced with

∀x1 . . . xk+1. x2 − x1 = c ∧ x3 − x2 = c ∧ . . . ∧ xk − xk−1 = c ∧ xk+1 − xk = c

→ xk+1 − x1 ≤ d .
The subformula ψ001011(0) is replaced with

∀x0x1 . . . x5. x0 = 0 ∧ x1 − x0 = c ∧ x2 − x1 = c ∧ . . . ∧ x5 − x4 = c

→ ¬P (x0) ∧ ¬P (x1) ∧ P (x2) ∧ ¬P (x3) ∧ P (x4) ∧ P (x5) .

The subformula ψ0011(d) is replaced with

∀x0x1 . . . x4. x0 = 0 ∧ x1 − x0 = d ∧ x2 − x1 = c ∧ x3 − x2 = c ∧ x4 − x3 = c

→ ¬P (x1) ∧ ¬P (x2) ∧ P (x3) ∧ P (x4) .

The subformula ψ0011(2d) is replaced with

∀x0x1 . . . x4. x0 = 0 ∧ x1 − x0 = d ∧ x2 − x1 = d ∧ x3 − x2 = c ∧ x4 − x3 = c ∧ x5 − x4 = c

→ ¬P (x2) ∧ ¬P (x3) ∧ P (x4) ∧ P (x5) .

The subformula ψ001011(1− 3d) is replaced with

∀x0x1 . . . x8.
(
x0 = 0

∧ x1 − x0 = 1 ∧ x1 − x2 = d ∧ x2 − x3 = d ∧ x3 − x4 = d

∧ x5 − x4 = c ∧ x6 − x5 = c ∧ x7 − x6 = c ∧ x8 − x7 = c ∧ ∧ x9 − x8 = c
)

→ ¬P (x4) ∧ ¬P (x5) ∧ P (x6) ∧ ¬P (x7) ∧ P (x8) ∧ P (x9) .

11.5. RELEVANCE TO VERIFICATION 285

The subformula
(
∀x. ψ001011(x) ∧ x < 3d → x = 0

)
is replaced with

∀x0x1 . . . x6y1y2y3.
(
x0 = 0

∧ y1 − x0 = d ∧ y2 − y1 = d ∧ y3 − y2 = d

∧ x2 − x1 = c ∧ x3 − x2 = c ∧ x4 − x3 = c ∧ x5 − x4 = c ∧ x6 − x5 = c

∧ ¬P (x1) ∧ ¬P (x2) ∧ P (x3) ∧ ¬P (x4) ∧ P (x5) ∧ P (x6) ∧ x1 − y3 < 0
)

→ x1 − x0 = 0 .

The other constituents of ϕ′1 and the sentences ϕ′2
m,n

, . . . , ϕ′4
K

can be modified in the same spirit.
Regarding the encoding of M’s control flow, we show two examples of how to modify the

respective sentences.

Encoding of the instruction ` : inc(C1):

The subformula
∀xy. ψ001011(x) ∧ χ`(x) ∧ x+ d ≤ y ∧ y ≤ x+ 2d ∧ ψ10(y) → ψ10(y + 3d+ c)

is replaced with

∀xyx1 . . . x5v1 . . . v`+1y1y2u1u2u3u4.(
x1 − x = c ∧ x2 − x1 = c ∧ . . . ∧ x5 − x4 = c

∧ ¬P (x) ∧ ¬P (x1) ∧ P (x2) ∧ ¬P (x3) ∧ P (x4) ∧ P (x5)

∧ v1 − x5 = c ∧ v2 − v1 = c ∧ . . . ∧ v`+1 − v` = c ∧ P (v`) ∧ ¬P (v`+1)

∧ y1 − x = d ∧ y1 − y ≤ 0 ∧ y − y1 ≤ d
∧ y2 − y = c ∧ P (y) ∧ ¬P (y2)

∧ u1 − y = d ∧ u2 − u1 = d ∧ u3 − u2 = d ∧ u4 − u3 = c ∧ u5 − u4 = c
)

→ P (u4) ∧ ¬P (u5) .

Encoding of the instruction K : halt: The sentence ∀x. ψ001011(x) ∧ χK(x) → x = 1− 3d is
replaced with

∀xx0x1 . . . x5v1 . . . vK+1z1z2z3z4.(
x1 − x = c ∧ x2 − x1 = c ∧ . . . ∧ x5 − x4 = c

∧ ¬P (x) ∧ ¬P (x1) ∧ P (x2) ∧ ¬P (x3) ∧ P (x4) ∧ P (x5)

∧ v1 − x5 = c ∧ v2 − v1 = c ∧ . . . ∧ vK+1 − vK = c
)
∧ P (vK) ∧ ¬P (vK+1)

∧ x0 = 0 ∧ z1 − x0 = 1 ∧ z1 − z2 = d ∧ z2 − z3 = d ∧ z3 − z4 = d
)

→ x− z4 = 0 .

Theorem 11.4.4. Satisfiability for the LRA+PN is undecidable, even if arithmetic atoms are
restricted to difference constraints plus atoms x0 = 0, the arithmetic domain is the rational or real
interval [0, 1], and the interpretations of P and N are restricted to finite subsets of [0, 1].

11.5 Relevance to Verification

Verification of hardware and software is one driving force behind attempts to the combination of
theories, such as integer or real arithmetic and the theory of equality over uninterpreted functions
(EUF) EUF— EUF is understood to refer to the collection of all logical Σ-theories containing all
valid quantifier-free Σ-sentences over a finite vocabulary Σ without predicate symbols.9 For
quantifier-free cases the Nelson–Oppen framework provides a general-purpose approach for the

9In the literature, the definition of EUF often includes uninterpreted predicate symbols, which are then ignored
in the further treatment for convenience. See, e.g., Section 3.2 in [BM07], or Section 4.2 in [KS16].

286 CHAPTER 11. UNDECIDABLE FRAGMENTS

construction of decision procedures (see Section 10.3). Over the course of the last fifteen year
numerous approaches have been proposed to go beyond the quantifier-free setting and handle
quantification, see e.g. [FJS04, DNS05, GdM09, GBT09, BMR13, RTdM14, RK15, RBF18, Bar17].
Typically, some kind of heuristic is applied to guide instantiation towards equisatisfiable formulas
that are quantifier free. Often the methods are incomplete in the sense that unsatisfiable sentences
are not necessarily recognized as such. Nevertheless, the proposed methods have been implemented
and successfully applied, e.g. in the tools Verifun, Simplify, and the CVC family.

In verification one usually abstracts from some of the limitations that apply to real-world
computing devices. In particular, memory is often regarded as an inexhaustible resource in one
way or another. This can take the form of infinitely many memory locations — similar to the
infinite tape of a Turing machine — or the form of the capability of storing arbitrarily large integers
in single memory location — similar to the counters of counter machines. In our encoding of
two-counter machines in Sections 11.2 and 11.4 the uninterpreted predicate symbol P serves as a
representation of an unbounded memory. As we have pointed out, any interpretation PA ⊆ N can
be conceived as an infinite sequence of bits. And these bits can be accessed by integer addresses.
We have also pointed out in Section 11.2.6 that the same applies to uninterpreted function symbols
over the integers or some co-domain with at least two distinct elements. This means that our
results are relevant to all verification approaches in which an infinite memory is modeled and in
which there are sufficiently strong means available to access individual memory locations. Such
approaches inevitably face undecidability when they allow too liberal syntax. We shall discuss
several exemplary settings: separation logic over an integer-indexed heap, logics formalizing integer-
indexed arrays or similar data structures, logics with restricted forms of linear integer arithmetic.
We shall also give reasons why incomplete heuristics is sometimes the best one could hope for.

11.5.1 Separation Logic

In [RIS17] the Bernays–Schönfinkel–Ramsey fragment (∃∗∀∗-sentences) of separation logic is
investigated. The quantifiers range over memory locations. Although the authors also present a
refinement of Halpern’s undecidability result [Hal91] for PA+P , their approach differs from our
approach in Section 11.2 in an important aspect. In their setting it is sufficient to consider models
in which the unary predicate symbol P is interpreted with a finite subset of N. In our setting in
Section 11.2 finite subsets do not suffice. It is due to this difference, that their strategy can be used
to also show undecidability of the satisfiability problem for ∃∗∀∗-sentences of separation logic over
a heap with finitely many integer-indexed memory locations, each capable of storing one integer of
arbitrary size.

Our results in Sections 11.2 and 11.3 have implications for settings with integer-indexed heaps
that comprise a countably infinite number of memory locations, each capable of distinguishing
at least two values (e.g. 0 and 1) or states (e.g. allocated and not allocated). However, a slight
modification of the encoding in Section 11.2.2 leads to a result that subsumes Theorem 3 in [RIS17]
and also entails undecidability of the satisfiability problem for the ∃∗∀∗-fragment of separation
logic with integer-indexed heaps that comprise only finitely many memory locations, each capable
of storing at least one bit of information.

Lemma 11.5.1. Let M be a two-counter machine with K + 1 program lines, labeled 0, . . . ,K,
and let 〈m,n〉 be a pair of nonnegative integers. There is a sentence ϕ from the (∃∀∗)-fragment of
PA+P , such that the following statements are equivalent:

(a) ϕ is satisfied by a model A under which PA is a finite subset of N,

(b) M reaches the halt instruction when started on the input 〈m,n〉.
Proof sketch. The following is a blend of ideas from Sections 11.2 and 11.4. Let ϕ′′M be the encoding
of M’s program in accordance with Section 11.2.2 with the exception that we do not encode
the instruction in program line K. Due to our conventions, this program line contains the halt

instruction. Let ϕ′′1(z) result from ϕ1 after replacing the Subformula (11.3) with

∀x. x < z ∧ ψ001011(x) −→ ψ0011(2x) ∧ ψ0011(3x) ∧ ψ001011(4x) .

11.5. RELEVANCE TO VERIFICATION 287

Moreover, let

ϕ′′4
K

(z) := ψ001011(z) ∧ χK(z) .

Notice that both formulas ϕ′′1(z) and ϕ′′4(z) contain the free variable z. We now set

ϕ := ∃z. ϕ′′1(z) ∧ ϕm,n2 ∧ ϕK3 ∧ ϕ′′M ∧ ϕ′′4
K

(z) .

There exists a model A of ϕ if and only if M reaches program line K when started on the
input 〈m,n〉. Due to the modifications in ϕ′′1 , the formula ψ001011(x) does not have to be satisfied
for arbitrarily large values of x. One consequence is that the run of M represented by a model
of ϕ can be aborted at the point when program line K is reached. This means, in contrast to
the proof of Lemma 11.2.1, we do not have to artificially continue M’s run beyond that point.
Hence, any model of ϕ can be modified in such a way that from a certain point on the bit sequence
represented by the interpretation of P contains only zeros.

11.5.2 Verification of Data Structures

There are undecidability results in the context of verification of programs that use integer-indexed
arrays as data structures. Examples can be found in [BMS06] (Section 5), [Bra07] (Sections 2.4
and 2.6.3), [HIV08] (Section 3). The reductions presented therein are based on arrays with infinite
co-domains, such as the integers or the reals. Moreover, they typically use at least one quantifier
alternation (but face other restrictions of syntax). Usually, several arrays are used for convenience,
but could be merged into one. For our proof approach a single array is sufficient as well.

Read operations on integer-indexed arrays can be formalized as uninterpreted function symbols
with an integer domain. Hence, our results, Theorems 11.2.7 and 11.2.8 in particular, show that
reasoning about integer- or real-indexed arrays over a finite co-domain with at least two elements
can lead to undecidability, if constraints on array indices provide the necessary syntactic means.
Notice that for the proof it is not necessary to have write operations on arrays. This means, a
single integer-indexed read-only array over a Boolean co-domain suffices.

The mentioned results and arguments hold for arrays that comprise an infinite number of
elements. However, due to Lemma 11.5.1, undecidability arises also in the context of finite arrays
(over finite co-domains), as long as their length is not bounded by a concrete number.

Remark 11.5.2. The above arguments are also applicable to recursively defined data structures,
such as lists or trees, as soon as there are sufficiently strong syntactic means available to access the
stored information. That is, if one can essentially simulate arrays using a recursive data structure,
then our results apply immediately. Examples of such setting are lists where the stored elements
can be addressed by integers, or where one can access the sublist starting at the position that is x
nodes away from the head (for some integer-sort variable x for which universal quantification is
admitted).

11.5.3 Verification Using Counter Arithmetic

In [BLS02] the fragment CLU is introduced, which constitutes a strongly restricted fragment
of Presburger arithmetic with additional uninterpreted function and predicate symbols. A less
syntactically sugared subfragment is treated in [GHN+04] and in [ABRS09]. There are only two
arithmetic operators available in CLU: the successor operator succ and the predecessor operator
pred. There is no interpreted constant symbol available addressing zero or any other concrete
integer. On the other hand, some syntactic elements are added for convenience, such as lambda
abstraction and an if-then-else operator. The fragment was chosen for its expressiveness and
the fact that it facilitates efficient reasoning. Although quantifier-free in its original definition,
the authors state about their verification tool UCLID that they “have built some support for
quantifiers in CLU using automatic quantifier instantiation heuristics” ([BLS02], Section 7).

In what follows, we consider the extension of CLU with universal quantification for integer
variables. We shall refer to this extended language as uCLU. By a result due to Gurevich [Gur76]

288 CHAPTER 11. UNDECIDABLE FRAGMENTS

(see also [BGG97], Theorems 4.1.8 and 4.1.11), satisfiability of EUF sentences with universal
quantification is undecidable. Hence, satisfiability of uCLU sentences is undecidable as well.

Proposition 11.5.3 (Corollary of the Main Theorem in [Gur76]). (Un)satisfiability for uCLU
sentences is undecidable.

On the other hand, the unsatisfiable sentences of first-order logic without interpreted symbols
(and thus also of quantified EUF) are recursively enumerable. We next argue that uCLU does not
possess this property.

The encoding of two-counter machines from Section 11.2 and 11.3 cannot immediately be
translated into uCLU. First of all, we need to fix a point of reference that serves as zero (CLU does
not contain 0 as a built-in constant). Moreover, expressions of the form k · x for any integer k and
any integer-sort variable x require a form of addition that is not available as a built-in operation in
uCLU. However, with unrestricted universal quantification over integer variables at hand, we can
easily define addition as a function. Hence, we only need the following uninterpreted symbols to
encode two-counter machines: one constant symbol c0 serving as zero, one binary function symbol
realizing addition, one uninterpreted unary function or predicate symbol serving as memory.

We define the addition function (on nonnegative integers) as follows, where we use c0 as zero:

∀x. add(x, c0) = x
∀xy. succ(y) > c0 −→ add

(
x, succ(y)

)
= add

(
succ(x), y

)
∀xy. succ(y) < c0 −→ add

(
x, succ(y)

)
= x .

All abbreviations k · x are unfolded into add(x, add(x, . . . add(x, x) . . .)) and all integers that we
have used in the encoding from Section 11.2.3 shall be written as succk(c0) := succ(. . . succ(c0) . . .)
instead of just k. Moreover, we add guards x ≥ c0 → . . . to each sentence for every universally
quantified variable x that occurs in that sentence.

As we have seen in Section 11.3, in particular in Theorems 11.3.7 and 11.3.9, ∀∃ quantifier
alternations yield (un)satisfiability problems that are not even recursively enumerable. Since CLU
allows uninterpreted function symbols, uCLU essentially allows ∀∗∃∗ quantifier prefixes (modulo
Skolemization). Hence, we may introduce a fresh unary Skolem function finit and translate the
sentence ϕ′5 from Section 11.3 into the uCLU formula

∀x. x ≥ 0 −→ x ≤ finit(x) ∧ ψ001011

(
finit(x)

)
∧ χ0

(
finit(x)

)
.

This means, we can transfer Theorem 11.3.9 to uCLU and thus obtain the following result.

Theorem 11.5.4. Neither the set of satisfiable uCLU sentences nor the set of unsatisfiable uCLU
sentences is recursively enumerable. In particular, there cannot be any sound and refutationally
complete calculus for uCLU.

In [ABRS09] the authors present a combination result (Theorem 4.6) for the ground theories of
integer-offsets (the arithmetic subfragment of CLU embodied by the operators succ and pred),
arrays, and/or EUF (as long as the signature of uninterpreted functions does not contain the array
sort). The result states that the satisfiability of sentences in such combined theories can be decided
using term-rewriting methods. By a similar line of argument that led us to Proposition 11.5.4, it
follows that Theorem 4.6 in [ABRS09] cannot be generalized to cases which admit quantification
over integer-sort variables. But we do not only lose decidability, we also lose semi-decidability. In
other words, it is impossible to devise sound and complete calculi for combinations of EUF and
arithmetic — even in such a restricted form as in CLU — if universal quantification of integer
variables is admitted.

11.5.4 Almost Uninterpreted Formulas with Offsets

In [GdM09] Ge and de Moura define the fragment of almost uninterpreted formulasalmost unin-
terpreted
fragment

. It constitutes
a combination of subfragments of first-order logic, EUF, and linear arithmetic over the integers.

11.5. RELEVANCE TO VERIFICATION 289

Its language admits uninterpreted predicate symbols, function symbols, and constant symbols.
Formulas are assumed to be given in CNF. All occurring variables are universally quantified, but
may only occur as arguments of uninterpreted function or predicate symbols with the following
exceptions. Literals of the form ¬(x ≤ y), ¬(x ≤ t), ¬(x ≥ t), ¬(x = t), ¬(x ≤ y + t), x = t with
variables x, y of sort Q are allowed for all ground terms t of the integer sort. Moreover, terms
of the form f(. . . , x + t, . . .) and P (. . . , x + t, . . .) are allowed for ground terms t of the integer
sort, uninterpreted function symbols f and uninterpreted predicate symbols P . In what follows we
shall be more liberal with the syntax than this. However, the formulas that we will present can be
rewritten into equivalent ones that obey the above restrictions. Consequently, we will be able to
show undecidability of the associated satisfiability problem.

The encoding of two-counter machines given in Section 11.2 requires different syntactic means
than the ones available in Ge and de Moura’s almost uninterpreted fragment. Hence, a proof
of undecidability in the syntax of [GdM09] needs a slight shift of paradigm similar to the one
described in Section 11.4.1. We start from the encoding presented in Section 11.2.3, since it requires
at most two integer-sort variables in arithmetic atoms. The length of the chunks storing a single
configuration 〈`, c1, c2〉 increases over time. This behavior is necessary to formalize non-terminating
runs — and recurring runs in particular — by satisfiable formulas. However, in order to formalize a
run that eventually reaches the halt instruction by a satisfiable sentence, it suffices to fix the length
of the chunks representing a single configuration to a size that can accommodate all configurations
that occur in the run, depending on the machine program and on the given input. In Ge and de
Moura’s fragment uninterpreted constant symbols are available that can be used for this purpose.
In what follows, the uninterpreted constant d is used to determine the length of subchunks, as
depicted in Figure 11.3. Moreover, we now start the encoding of the run at the very first bit of the

0
. . . -001011 0011 0011 001011

︷ ︸︸ ︷
1 . . . 1 0 . . .

︷ ︸︸ ︷
1 . . . 1 0 . . .

︷ ︸︸ ︷
1 . . . 1 0 . . . 1 . . . 10 . . .

unary encoding
of the current
program line

unary encoding
of the current

value of C1

unary encoding
of the current

value of C2

�
earlier

configu-
rations

-
later

configu-
rations

-�
x -�

x+ 3d

-�
d

-�
d

-�
d

Figure 11.3: Structure of a single chunk of constant length 3d.

bit sequence represented by P . We replace the sentence ϕ1 (page 269) with the following sentence
ϕ′′′1 . Let k be the result of the expression max(K + 6,m+ 4, n+ 4), where K is the address of the
last program line and m and n are the input values. The purpose of the uninterpreted constant e
is to mark the end of the run, as we will see later.

ϕ′′′1 ϕ′′′1:=

d ≥ k ∧ e ≥ 0 ∧
(
∀x. x ≤ −1 → ¬P (x)

)
∧
(
∀x. x ≥ e+ 3d → ¬P (x)

)
∧ ψ001011(0) ∧ ψ001011(e)

∧
(
∀x. ψ001011(x) ∧ x ≤ e− 1 → ψ001011(x+ 3d)

)
∧
(
∀x. ψ001011(x) ∧ x ≤ e → ψ0011(x+ d) ∧ ψ0011(x+ 2d)

)
∧
(
∀xy. ψ001011(x) ∧ ψ001011(y) ∧ x ≤ y − 1 ∧ y ≤ x+ 3d− 1 → false

)
∧
(
∀xy. ψ001011(x) ∧ ψ0011(y) ∧ x ≤ y − 1 ∧ y ≤ x+ d− 1 → false

)
∧
(
∀xyz. ψ001011(x) ∧ ψ0011(y) ∧ ψ0011(z) ∧ x ≤ y − 1 ∧ y ≤ z − 1 ∧ z ≤ x+ 2d− 1 → false

)
∧
(
∀xy. ψ001011(x) ∧ ψ01(y) ∧ x ≤ y − 6 ∧ y ≤ x+ 3d− 1 → ψ0011(y − 1)

)

290 CHAPTER 11. UNDECIDABLE FRAGMENTS

The sentences ϕm,n2 and ϕK3 (page 270) can be adapted in the same spirit:

ϕ′′′2
m,n

ϕ′′′2
m,n

:= χ0(0) ∧ ψ10(d+ 3 +m) ∧ ψ10(2d+ 3 + n)

ϕ′′′3
K

ϕ′′′3
K := ∀xy. ψ001011(x) ∧ ψ10(y) ∧ x ≤ y − (5 +K + 1) ∧ y ≤ x+ d −→ false .

The adapted encoding of an instruction ` : inc(C1) comprises the formulas

∀xy. ψ001011(x) ∧ x ≤ y − d ∧ y ≤ x+ 2d ∧ ψ10(y) ∧ χ`(x)

−→ ψ10(y + 3d+ 1) ∧ χ`+1(x+ 3d)

∀xz. ψ001011(x) ∧ x ≤ z − 2d ∧ z ≤ x+ 3d ∧ ψ10(z) ∧ χ`(x) −→ ψ10(z + 3d)

The other instructions can be adapted analogously. The only exception is the halt instruction in
the last program line which we shall not encode, as in the proof sketch for Lemma 11.5.1.

Finally, we also have to modify the condition that the two-counter machine halts at some point
in time. We use the uninterpreted constant e for this purpose:

ϕ′′′4
K

ϕ′′′4
K := χK(e) .

Consequently, using the fragment given in [GdM09], we can encode the halting problem of a
two-counter machine M on input 〈m,n〉 using only a single uninterpreted unary predicate symbol
P (or a single function symbol) plus two uninterpreted constant symbols d, e. More precisely, if
M halts on 〈m,n〉, then there is model A of the encoding sentence such that PA is a finite set of
integers.

Theorem 11.5.5. The satisfiability for the almost uninterpreted fragment with integer offsets is
undecidable.

The outlined encoding is sufficient for a halting run of a two-counter machine. However, we
cannot encode recurring counter machines in this way. Thus, we do not obtain hardness beyond
recursive enumerability. Indeed, this is in line with [GdM09], where a refutationally complete
calculus is given for the described fragment.

The realm of recursive enumerability can be left easily. For instance, it is sufficient to allow
scalar multiplication combined with addition for integer-sort variables, i.e. expressions of the form
2 · x+ y. With this construct, we could encode a progressively increasing chunk length. Moreover,
uninterpreted function symbols of positive arity can be used to simulate ∀∃ quantifier alternations.
Similarly, it would suffice to admit expressions g(x) + 2, as we can define, e.g.,

timesc(0) = 0 ∧ ∀x. x ≥ 0 → timesk(x+ 1) = timesc(x) + 2

for any positive integer k. With a syntax extended this way, one could realize the encoding from
Section 11.2.2.

Chapter 12

Conclusion

12.1 Separateness of First-Order Variables: Applications to
the Classical Decision Problem and Other Areas

In Part I of the present thesis we have introduced the concept of separateness of (sets of) first-order
variables and have examined its potential in the context of the classical decision problem and
beyond. Although the notion is easy to state and grasp, it opens the door to a number of discoveries.
We have mainly concentrated on decidable fragments of first-order logic and have only briefly
touched other areas of application. One important property of separateness is its being orthogonal
to the syntactic properties that characterize many of the known decidable fragments. Even much
better, separateness turned out to be an enabler for the definition of significant syntactic extensions
of at least nine such fragments. The reason is that suitable conditions based on separateness of
first-order variables often allow for more subtlety when formulating syntactic restrictions, which in
the end yields relaxed syntactic conditions. Figure 12.1 depicts once again the novel fragments
that we have defined and investigated in Chapter 3 (compare also Figure 1 on page 3). Hence,
separateness opens a new perspective on the landscape that research activity around the classical
decision problem has revealed over the course of the last about one hundred years. It seems likely
that separateness could be used to extend more decidable first-order fragments. For instance, the
Skolem fragment and Maslov’s fragment K may be interesting candidates for being extended, as
may be the more recent unary-negation fragment and the uniform one-dimensional fragment.

Interestingly, each and every of the novel fragments discussed in Chapter 3 properly contains
MFO. The reason is simply that in MFO sentences, by definition, any two disjoint sets of first-order
variables are separated. The inclusion of MFO could be conceived as a litmus test concerning the
generality of definitions of first-order fragments based on separateness: if MFO is not covered,
then the definition is not yet liberal enough. That is to say that, if the definition of a first-order
fragment is sufficiently strongly based on separateness, then it will inevitably contain MFO.

Another peculiarity is that every extended fragment exhibits the same expressiveness as the
underlying original fragment does, but only at the qualitative level. More precisely, we have devised
a translation procedure for every extended fragment, say F , which is capable of transforming any
given sentence based on the extended syntax of F into an equivalent sentence that belongs to the
original fragment, say G. From this perspective, the syntax of G could be conceived as a kind of
normal form with respect to F : there is a procedure bringing any F -sentence into G-normal form, so
to speak. Furthermore, we have seen that this translation for several extended fragments inevitably
leads to a super-polynomial blowup of the formula length in the worst case — see Table 12.1 for
an overview. For the translations SF-to-BSR, GBSR-to-BSR, SGF-to-GF, and SLGF-to-LGF, the
incurred cost is even so large that it cannot be bounded using elementary functions alone. This
shows that the extension of decidable first-order fragments using separateness of variables provides
the ability to express certain logical properties in a significantly more succinct way, much rather
than yielding any qualitative improvement regarding expressive power. The presented derivations

291

292 CHAPTER 12. CONCLUSION

MFO

SGF

SLGF

SFL

GAF

GGKS
SFO2

SF

GBSR

SGNF

MFO – monadic first-order fragment
SF – separated fragment

GBSR – generalized BSR
SFO2 – separated FO2

GAF – generalized AF
GGKS – generalized GKS
SFL – separated FL
SGF – separated GF

SLGF – separated LGF
SGNFO – separated GNFO

Figure 12.1: Schematic overview of the extended fragments (in green) that have been presented in
Chapter 3. Notice that MFO is properly contained in all extended fragments. The focus is on the
overlaps with MFO and on the proper containment relations between SF and GBSR, GAF and
GGKS, and SGF and SLGF. The other depicted overlaps might be unsubstantiated.

of lower bounds for such succinctness gaps have one thing in common. In the used classes of
particularly succinct sentences quantifier alternations played a key role that were not subject to the
characteristic syntactic restrictions of the respective original fragment. For example, for SF versus
BSR we used a class of SF sentences where the number of quantifier alternations was unbounded,
whereas in BSR at most one quantifier alternation is allowed. In the SLGF-versus-LGF case, the
considered class of SLGF sentences (which actually are SGF sentences) contains nested quantifiers
of unbounded depth that do not adhere to the guardedness conditions imposed by LGF. Similarly,
in the case SF versus the class of Gaifman-normal sentences, the class of sentences used for showing
the non-elementary succinctness gap contains quantifier alternations of unbounded depth that are
not allowed in first-order sentences in Gaifman normal form. Although the latter case does not fall
into the category of extended decidable first-order fragment versus original decidable first-order
fragment, it highlights a succinctness gap between a class of sentences whose definition is based on
separateness compared to a certain class of first-order sentences with a restricted syntax. Although
we have not investigated the succinctness gaps for all extended fragments, this does not mean
that the unexamined gaps are only polynomial or smaller. For instance SGNFO versus GNFO
seems to be a natural candidate for another non-elementary succinctness gap, like in the case of
SLGF versus LGF. The case of SFL versus FL seems to be more tricky, though, as FL-Sat is

12.1. SEPARATENESS, THE CLASSICAL DECISION PROBLEM, AND BEYOND 293

More succinct fragment Less succinct fragment Succinctness gap Reference
(lower bound)

SF BSR non-elementary Theorem 3.2.7
SF Gaifman-local first- non-elementary Theorem 3.3.18

order fragment
GGKS GKS exponential Theorem 3.9.9
SGF LGF non-elementary Theorem 3.10.8
SFO2 FO2 exponential Theorem 3.12.5

Table 12.1: Summary of the unconditional lower bounds regarding succinctness gaps that we have
derived in the present thesis (cf. Table 1 on page 4).

computationally very hard and thus using FL alone one can already enforce very large domain
sizes in a succinct manner. It remains to be investigated one can do significantly better using
SFL syntax instead. For the case GAF versus AF we have only derived a bound conditioned on
NExpTime 6= ExpTime in Proposition 3.8.9, and an unconditional lower bound is missing for
the time being. Similarly, the exponential lower bounds regarding the succinctness gaps between
GGKS and GKS and between SFO2 and FO2 could possibly be improved. This is left for future
work. One more aspect of the succinctness gaps that might be worth investigating in the future
will be discussed in Section 12.1.2.

Our main method for proving decidability of the newly introduced first-order fragments is based
on the mentioned equivalence-preserving translations into fragments that are already known to be
decidable. In Chapter 4 we have complemented this syntactic point of view with a semantic per-
spective, based on an investigation of dependences between existentially and universally quantified
variables in sentences. What we have found are weak dependences, which have a finite character.
BSR, SF, and GBSR are special fragments in this respect, as all dependences in sentences from
these fragments are weak. Conversely, we have observed in Theorem 4.2.1 that every sentence
in which all dependences are weak has some equivalent in the BSR fragment; one may say that
BSR semantically captures this class of sentences. Again, the BSR equivalents may be significantly
longer than the initial sentence. The weakness of all occurring dependences leads to the property
that any model of such a sentence, even if it has an infinite domain, has a finite substructure that
is a model of the very same sentence. This highlights a difference in expressive power between
BSR, SF, GBSR and other fragments, such as GAF: a GAF sentence can have a model without
satisfying substructures, see Example 4.3.1. Hence, among the other applications that we have
sketched previously, an analysis of weak dependences could perhaps also help discern expressive
power when comparing two first-order fragments.

Speaking of applications for the analysis of weak dependences, Section 7.2 offered first insights
concerning Skolemization techniques that are sensitive to weak dependences. Taking the Boolean
structure of sentences into account in addition, e.g. in the spirit of Section 3.6, might lead to further
improvements. As we have already pointed out in the beginning of that section, this might offer
interesting and valuable directions of research automated reasoning could benefit from. Moreover,
further investigations might yield new insight in proof complexity.

In addition to the already mentioned results, we have investigated the computational complexity
of SF-Sat, GBSR-Sat, and some of their subproblems in detail. Figure 5.1 on page 141 depicts an
overview and shows that both SF-Sat and GBSR-Sat have k-NExpTime-complete subfragments for
every positive integer k. The respective unrestricted satisfiability problems are non-elementary, or,
more precisely, Tower-complete (cf. Definition 5.0.2). Since the computational complexity of the
satisfiability problem associated with the Horn and Krom subcases of the ∃∗ and ∃∗∀∗ subfragments
of SF and GBSR is significantly lower (unless some of the complexity classes NL, P, NP, PSpace,
ExpTime, NExpTime coincide), we have formulated the conjecture that this behavior might
continue on a larger scale — cf. Conjecture 5.2.2 and see also Figure 5.2 on page 149.

Furthermore, we have shown that BSR and AF are closed under Craig–Lyndon interpolation,

294 CHAPTER 12. CONCLUSION

which immediately entails the same property for SF, GBSR, and GAF. From the research literature
we have concluded that SGF and SLGF are not closed under interpolation, while the class of
SGNFO sentences enjoys this property. This question is still unanswered for the other newly
introduced first-order fragments.

Finally, we have sketched more ideas concerning applications of separateness in Chapter 7,
ranging over topics such as investigations of the effects of separateness in interpreted logics, and
the elimination of certain occurrences of second-order quantifiers.

In the following sections, we shall elaborate a bit on applications of some of the decidable
fragments we have identified in the present thesis and we shall also sketch further ideas for future
work.

12.1.1 Potential Applications for the Newly Introduced Decidable First-
Order Fragments

In Part I of the present thesis we have concentrated on SF much more than on any other fragment.
The reasons for this focus on SF are manifold: (a) it has been the first novel decidable first-order
fragment discovered by the author, (b) its definition is simple and easy to handle technically, (c) it
extends BSR, which found many applications, e.g. in verification, and has attracted quite some
attention in the automated reasoning community.

The Bernays–Schönfinkel–Ramsey fragment has become popular in verification and in automated
reasoning because it constitutes a good compromise between expressiveness and simplicity, in
particular due to the finiteness of the Herbrand domain associated with any BSR sentence (after
exhaustive Skolemization). The fragment is sometimes conceived as an intermediate syntactic step
between propositional logic and full first-order logic. Compared to propositional logic, certain
logical properties can be expressed exponentially more succinct in BSR. In the automated reasoning
and verification communities the term effectively propositional logic, or EPR for short, has been
put about as an alternative name for BSR.1 There is, for instance, an EPR division at the
annual CADE ATP System Competition (CASC) [SS06, Sut18]. The research literature offers
a plethora of works based on BSR, extensions thereof, and variants of BSR in settings beyond
first-order logic, e.g. [PV07a, PV07b, WPK09, CW10, EKKV10, EKK+12, PO12, IBI+13, PV13,
BDMMS14, IBI+14, IBR+14, KBI+15, PMP+16, FMSZ17, RIS17]. In automated reasoning the
finiteness of the Herbrand domain associated with BSR sentences is appreciated very much. There
are dedicated reasoning approaches making use of this property in one form or another, see,
e.g., [PV08, Hil08, GdM09, PdMB10, HW13, AW15]. Since these methods work well in practice,
it is sometimes even worth to reduce more general first-order problems to BSR in order to apply
finite model finders to the resulting formulas, see [BFdNT09], for instance.

All of the above said indicates that SF and its larger relative GBSR could be of great interest to
the verification and automated reasoning communities, as both extend BSR and offer more syntactic
freedom for modeling the behavior of systems and their properties. The formalizations that have
been presented in Sections 3.3 and 5.3 are very instructive regarding what can be formalized in SF
and GBSR and how.

In Section 10.3 we have discussed the combination of theories in the Nelson–Oppen framework .
There is a series of papers by Fontaine and his collaborators [Fon07, Fon09, AF11, CFR14], where
component theories are considered that are axiomatized using finite sets of sentences stemming
exclusively from MFO≈, BSR, AF with equality, GF, LGF, or FO2. The results by Fontaine et al.
state that such theories are gentle ([Fon09], [AF11]), that is, for every set of literals L over T ’s
vocabulary the spectrum2 of T ∪L can be computed and is either (a) a finite set of finite cardinalities
or (b) the union of a finite set of finite cardinalities and all the (finite and infinite) cardinalities
greater than a computable finite cardinality ([Fon09], Definition 3). One of the contributions

1Although the term EPR is used ambiguously throughout the literature, e.g. sometimes referring to BSR,
sometimes only referring to BSR without equality, the alternative term should be kept in mind when looking up
publications in which BSR is used in applications.

2The spectrum of a satisfiable sentence ϕ is the set of all cardinalities κ such that there is some model A |= ϕ
whose domain A has cardinality κ.

12.1. SEPARATENESS, THE CLASSICAL DECISION PROBLEM, AND BEYOND 295

in [Fon09] is that satisfiability with respect to two vocabulary-disjoint theories T1, T2 — that is,
answering the question whether there is a model of T1 ∪ T2 ∪ {ϕ} for any sentence ϕ = ∃z̄. ∧i∈I Li
over the combined vocabulary of T1 and T2 — is decidable in the following cases: T1 is gentle and
(i) T2 is gentle as well, or (ii) T2 is a finitely axiomatized first-order theory, or (iii) T2 is a decidable
theory that only admits a fixed finite (possibly empty) known set of finite cardinalities for its
models, and possibly infinite models ([Fon09], Theorem 3). According to Fontaine, examples for
such theories T2 are real or integer linear arithmetic and certain known theories over array data
structures. In [CFR14], some of the mentioned results are extended to a setting with theories that
are not built over disjoint vocabularies but may share unary predicate symbols.

Since we have shown that (a) SF and GBSR are equivalent to BSR, (b) GAF with equality
is equivalent to AF with equality, (c) SGF is equivalent to GF, (d) SLGF is equivalent to LGF,
and (e) SFO2 is equivalent to FO2, the combination results obtained by Fontaine et al. are also
applicable to theories that are axiomatized using finite sets of sentences exclusively taken from SF,
GBSR, GAF, SGF, SLGF, or SFO2, respectively.

12.1.2 More about Future Work

There are some obvious omissions in the material covered in the present thesis that are worth being
filled in in future investigations. Examples include (a) pinning down the computational complexity
of satisfiability for the rest of the introduced decidable fragments, (b) bounding the blowup incurred
when translating sentences from the extended fragments to the underlying original fragments, (c)
investigating all the new fragments apart from SF, GBSR, and GAF under the semantic lens
and taking weakness of dependences into account, e.g. the interplay of weak dependences with
guardedness, (d) checking these fragments for closedness under interpolation and checking whether
BSR, SF, GBSR, AF, GAF are still closed under interpolation in the presence of equality, and (e)
using separateness to extend further decidable first-order fragments such as Maslov’s K. Moreover,
separateness may turn out to be even more versatile in future investigations. We have already
discussed three possible directions in Chapter 7: the effects of separateness in interpreted logics,
Skolemization techniques enhanced by a certain sensitivity to weak dependences, and the elimination
of certain occurrences of second-order quantifiers. Other topics that we have touched only very
briefly and that might be worth further investigation are the interplay between Boolean structure
and separateness, see Section 3.6, and the possible connections of weak dependences to the field of
dependence logic (broadly construed), including independence-friendly logic, logics with Henkin
quantifiers, and other related research fields, see Remark 7.2.3 on page 192 for references. It is also
worth pointing out that for most of the decidable fragments we have extended in Chapter 3 there
are resolution-based decision procedures known (consult Chapter 3, pages 23–28, for references). It
would be interesting to know whether and how existing procedures could be adapted so as to cope
with separateness and become decision procedures for the extended fragments as well.

To conclude the present section, we shall sketch one more idea. We have emphasized time and
again that, compared to BSR sentences, SF sentences can express certain logical properties much
more succinctly. This holds true in particular for properties that exhibit a high degree of structural
regularity. An example for such a property is the one described by the family of SF sentences(
ϕn
)
n≥1

with

ϕn := ∀xn∃yn . . . ∀x1∃y1.
∧n
i=1

(
Pi(x1, . . . , xn)↔ Qi(y1, . . . , yn)

)
.

We have already encountered a variant of this class of sentences in the proof of Theorem 3.2.7.
Although the domain size of the following family of models

(
An
)
n≥1

with An |= ϕn for every n

grows massively with increasing n, its interpretation of the predicate symbols Pi and Qi is given
by a rather simple pattern and, hence, each An is intuitively very regular — the latter is witnessed
by the shortness of the following definition of An:

An :=
⋃n
k=1

{
a

(k)
S , b

(k)
S

∣∣ S ∈ Pk[n]
}

,

PAni :=
{
〈a(1)
S1
, . . . , a

(n)
Sn
〉 ∈ An

∣∣ i ∈ S1 ∈ S2 ∈ . . . ∈ Sn
}

for i = 1, . . . , n, and

296 CHAPTER 12. CONCLUSION

QAni :=
{
〈b(1)
S1
, . . . , b

(n)
Sn
〉 ∈ An

∣∣ i ∈ S1 ∈ S2 ∈ . . . ∈ Sn
}

for i = 1, . . . , n.

Any of the structures An neatly captures the essence of the logical property described by ϕn, as

every domain element a
(k)
S has a corresponding twin element b

(k)
S that mirrors in the predicates

QAni exactly the role that a
(k)
S plays in the predicates PAni .

More generally, consider any logical property πn that is parameterized by some positive integer
n and that can be expressed by a (uniform) family of BSR sentences. Let f(n) be the function
representing the length of a shortest BSR sentence ψ that describes πn. Let g(n) be the function
that denotes the length of a shortest SF sentence describing πn. We know that there are properties
πn such that g(n) can be bounded from above by some polynomial but we cannot find any integer
k such that f(n) is bounded from above by some k-fold exponential function. In such a case
we would say that πn is structurally fairly regular, as we can describe it with an SF sentence of
polynomial length. Now imagine a property π′n accompanied with corresponding functions f ′(n)
and g′(n) for which we have g′(n) ∈ Ω

(
f ′(n)

)
, i.e. the length of shortest SF sentences describing

π′n is asymptotically of the same order as the length of shortest BSR sentences describing π′n.
On an intuitive level, this means that the relaxed syntactic conditions of SF do not provide a
significant edge over BSR when π′n is to be described. For instance, the possibility to use quantifier
alternations within the limits of SF does not help to formulate an asymptotically shorter description
of π′n. It seems that π′n requires a more sophisticated and lengthy description than, for instance,
πn does, or, viewed from the opposite angle, π′n exhibits a lower degree of structural regularity
than πn. A possible measure for this lack of regularity might be provided by the gap between f ′(n)
and g′(n): the smaller the gap, the higher the structural irregularity of π′n.

Instead of the comparison SF versus BSR, one could also use the comparison between SF
sentences and equivalent Gaifman-local sentences. Of course, the above said is also relevant
to other fragments and not exclusively to SF, for instance, to SLGF versus LGF or to the full
class of relational first-order sentences versus relational Gaifman-local sentences. We have already
encountered a number of examples of structurally fairly regular properties described by SF sentences
in the preceding chapters, e.g. in Section 3.2 in the proof of Theorem 3.2.7 (the property described
by the sentence ϕ), during the preparations for the proofs of Theorems 3.3.11 and 3.3.18 in
Section 3.3.3 (the property described by the χm,k on page 43) and in Chapter 5, Section 5.3.1 (the
property described by the sentence ψ1 ∧ . . . ∧ ψ16, for instance), which contains the heart of the
proof of Theorem 5.3.11.

The general idea of measuring structural regularity by means of the asymptotic length of
shortest logical descriptions appears to have some similarity to concepts investigated in the
field of algorithmic information theory and Kolmogorov complexity in particular (see, e.g., the
textbooks [DH10] and [Cal02] for introductory material). Potential connections and interrelations
remain to be studied.

12.2 First-Order Linear Arithmetic with Uninterpreted Pred-
icates

In Part II of the present thesis we have explored the decidability boundary for first-order linear
arithmetic with uninterpreted predicate symbols. On the decidable side (Chapter 10) we have
mainly focused on the domain of the rational numbers and have introduced two fragments of
the language for which the satisfiability problem is decidable: BSR with simple linear rational
constraints (BSR(SLR)) and BSR with bounded difference constraints (BSR(BD)). The two can be
conceived as extensions of the Bernays–Schönfinkel–Ramsey fragment enhanced with certain linear
rational arithmetic expressions. Indeed, we have shown that checking satisfiability is NExpTime-
complete for both fragments. The proof strategy is very similar for both cases. Although a finite
model property in the usual sense cannot be established due to the inherent infiniteness of the
underlying domain, we have derived a property with a similar flavor. In a first step, we have
identified equivalence relations ∼ over Qm that induce only finitely many equivalence classes, each
containing m-tuples that are pairwise indistinguishable from the perspective of the the admitted

12.2. FIRST-ORDER LINEAR ARITHMETIC WITH UNINTERPRETED PREDICATES 297

arithmetic atoms. Then, we have proved that it is sufficient to consider only candidate models A
that are uniform in the sense that the interpretation of predicate symbols, e.g. P : Qm, does not
distinguish ∼-equivalent tuples either: for any two such tuples r̄1, r̄2 we have r̄1 ∈ PA if and only if
r̄2 ∈ PA. For every satisfiable finite clause set over the language of BSR(SLR) or BSR(BD) there
is such a uniform model, and, moreover, this model can be described my finite means. Based on
this observation, we have devised computable transformations from finite BSR(SLR) and BSR(BD)
clause sets into equisatisfiable finite BSR clause sets without interpreted symbols, except for
equality.

On the negative side (Chapter 11) of the decidability boundary, we have identified several
fragments with a satisfiability problem that is undecidable or, in some cases, not even semi-
decidable. We have treated settings over different arithmetic domains: linear arithmetic over the
natural numbers, the rationals, and the reals. Moreover, in many cases it has turned out that
a single uninterpreted predicate symbol of arity one suffices to encode the halting problem for
two-counter machines on given inputs. We have tried to keep the number of quantifier alternations
and quantifiers at a minimum. An overview of the most important results is given in Table 12.2.
In Sections 10.4 and 11.4, we have studied the decidability boundary around one particular

Fragment description Result References

∀∗-PA+P and ∀∗-LRA+P undec., but Unsat is r.e. Theorems 11.2.2, 11.2.6, 11.3.3

∀-Horn–Krom PA+P undecidable Theorem 11.2.4

∀2∃-PA+P and ∀2∃-LRA+P undec. and not r.e. Theorems 11.3.7, 11.3.8

∀∃-PA+P undec. and not r.e. Theorem 11.3.9

∃2∀∗-LRA+PN over [0, 1],
difference constraints only, undec., but Sat is r.e. Theorem 11.4.4
N,P interpreted with finite sets

Table 12.2: Summary of the most important undecidability results obtained in Chapter 11. PA+P
stands for Presburger arithmetic with an uninterpreted unary predicate symbol P . LRA+PN
abbreviates linear rational arithmetic with two uninterpreted unary predicate symbols P,N ; LRA+P
stands for the restriction of the latter to only one such predicate symbol. The fragment in the
last line is a restricted form of LRA+PN where (a) the domain is restricted to the rational unit
interval [0, 1], (b) all arithmetic atoms have the form x0 = 0 or x− y / c where x, y are universally
quantified variables, c is either a rational number or an uninterpreted constant symbol and / ranges
over the relations <,≤,=, 6=,≥, >, and (c) the interpretation of the predicate symbols P,N is
restricted to finite subsets of [0, 1]. The abbreviation r.e. stands for recursively enumerable, as
usual, a synonym for semi-decidable. The terms Unsat and Sat address the set of unsatisfiable
sentences and the set of satisfiable sentences from the respective fragment.

kind of arithmetic atoms very closely, namely around difference constraints, that is, atoms of
the form x − y / c with universally quantified variables x, y, some integer c, and any relation
/ ∈ {<,≤,=, 6=,≥, >}. On the one hand, we have shown decidability of BSR(BD), where every
atom x− y / c needs to be conjoined with bounds cx ≤ x ∧ x ≤ dx ∧ cy ≤ y ∧ y ≤ dy regarding the
range of x and y. On the other hand, we have shown that this fragment becomes undecidable as
soon as we either drop the bounds on x and y, or as soon as we allow c to be an uninterpreted
constant symbol or an existentially quantified variable.

For some of the undecidable fragments we have been able to show that satisfiability and
unsatisfiability are not even semi-decidable (cf. Table 12.2). To this end, we have encoded the
recurrence problem for two-counter machines, which required a ∀∃ quantifier alternation. Such a
high degree of undecidability, has immediate consequences for automated reasoning. Whenever
decision procedures cannot be constructed, then one could still hope for a semi-decision procedure
in the form of a sound deductive calculus that is either complete — every logical consequence
is derivable — or refutationally complete — logical falsity is derivable from any inconsistent set

298 CHAPTER 12. CONCLUSION

of formulas. However, if a satisfiability problem or an unsatisfiability problem is even not semi-
decidable, then such calculi cannot exist — they have to be unsound or incomplete or even both.
In this situation, the best one could hope for is sound heuristics that perform reasonably well on
certain problem instances.

Apart from their theoretical value, such negative results are relevant for several areas of
verification where variants and extensions of first-order arithmetic with uninterpreted function
or predicate symbols play a role. In Section 11.5 we have elaborated on the implications for the
Bernays–Schönfinkel fragment of separation logic, quantified theories of data structures, arrays in
particular, and quantified combinations of the theory of equality over uninterpreted functions with
fragments of Presburger arithmetic. Moreover, we have argued that in certain settings we cannot
even hope for refutationally complete deductive calculi. In such cases we either have to content
ourselves with heuristics instead of sound and complete reasoning methods or formulate restricted
fragments having less hard (un)satisfiability problems.

12.2.1 Applications for the New Decidable Fragments and Future Work

We have already mentioned that BSR has found many applications, e.g. in the field of verification
of hardware and software (cf. Section 12.1.1). Moreover, we have outlined applications for various
fragments of first-order arithmetic with or without uninterpreted predicate and function symbols,
see Chapter 8, in particular Remarks 8.0.1 and 8.0.2 and the part on related work at the end of
the section; see also the beginning of Section 10.5, and Section 11.5. The application areas we have
encountered so far include scheduling problems, program analysis, and modeling and verification of
data structures and timed systems. In the light of this success, it seems likely that BSR(SLR) and
BSR(BD) could turn out to be useful in a broad variety of applications as well. Since difference
constraints have been of use in the analysis and verification of timed systems (cf. Remark 8.0.2),
the idea suggests itself that BSR(BD) may find applications in this area. Indeed, we have shown
in Section 10.5 that reachability for timed automata can be expressed with BSR(BD), although
not entirely in a straightforward fashion. To this end, we have slightly relaxed the usual notion of
synchronous progression of all clocks. Our modifications do not affect the reachability relation. It
is to be expected that BSR(BD) lends itself to even more sophisticated applications in the area of
timed systems or other fields. A further potential area of application for BSR(SLR) or BSR(BD)
is the representation of temporal precedence in ontologies and, more general, temporal reasoning in
knowledge representation. For instance, in [SWW10, Wis12] the authors have demonstrated that
a core of the large ontology named YAGO [SKW08, HSBW13, RSH+16] can be translated into
a subfragment of BSR in a semantic-preserving way. This fragment was chosen, since reasoning
procedures are available that work sufficiently well in practice. However, the authors also made
clear that temporal information had to be disregarded at that time. Clearly, BSR(SLR) offers
ways to encode temporal precedence and invites reasoning about temporal knowledge, if suitable
calculi were to be developed and implemented, e.g. based on superposition modulo (linear) rational
arithmetic [AKW09, EKK+11, Kru13]. Very first steps have been proposed in [KW12], Section 5.

In Section 10.3 we have slightly shifted our perception of BSR(SLR) and looked at it from the
perspective of the Nelson–Oppen combination framework. The setting then presented itself as a
combination of existential linear rational arithmetic with the BSR theory enhanced with a dense
linear ordering — notice that density is not finitely axiomatizable in BSR. As the interpreted
predicate symbols <,≤ are shared by the two constituent theories, our setting in fact lies beyond
the scope of the Nelson–Oppen framework. Hence, the results we obtained in Section 10.3 constitute
a contribution to the field of non-signature-disjoint combination frameworks. This particular point
of view made it easy to describe extensions of BSR(SLR) for which satisfiability is still decidable.
One such example is GBSR(SLR), which is based on the generalization of BSR presented in
Chapter 3 (cf. Definition 10.3.3 and Corollary 10.3.4). Another example is the fragment described
in Theorem 10.3.2. By Proposition 3.4.4, this immediately entails that also a combination with SF
or MFO yields decidable satisfiability problems. This is one example showing that separateness
of first-order variables also facilitates decidable extensions of decidable fragments in interpreted
settings. It turns out that also the arithmetic side can be extended. For example, universal

12.2. FIRST-ORDER LINEAR ARITHMETIC WITH UNINTERPRETED PREDICATES 299

quantification can be allowed also on the arithmetic side under certain circumstances. Furthermore,
one could consider polynomials over the real numbers (cf. Theorem 10.3.2), where quantifier-
elimination procedures are available. It seems likely that the combination-of-theories point of view
has even more potential, which might be worth exploring further.

Although the case of BSR(BD) is different in the sense that it cannot be re-formulated as a
combination of theories in an obvious way, it should be possible to extend it to a GBSR variant as
well. On the other hand, it seems to be less clear how to extend the arithmetic side of BSR(BD)
significantly so as to get a more expressive decidable fragment. This remains to be investigated
in future work. However, this may require more advanced proof techniques. Our approach in
Chapter 10 is based on the fact that it is sufficient to consider structures that are uniform with
respect to a suitable equivalence relation ∼ that induces only finitely many equivalence classes. It
might be necessary to go beyond uniformity. For example, one might consider “ultimately periodic”
structures instead of ones that are uniform — an appropriate definition of the former should
subsume the latter as a special case, and, more importantly, it should allow a description of the
structure by finite means. A set S ⊆ Z is called ultimately periodic with period p if there is some
t ∈ N such that for every r ≥ t we have r ∈ S if and only if r+ p ∈ S, and for every r ≤ −t we have
r ∈ S if and only if r − p ∈ S. Such sets capture the expressiveness of Presburger arithmetic: A
set of natural numbers is definable in Presburger arithmetic if and only if it is ultimately periodic
([End72], Theorem 32F). In the realm of the rational or real numbers one may have to add a second
parameter g ∈ N≥1, for granularity, alongside the period and require some uniformity property
similar to the following. Every interval

(
q + d

g , q + d+1
g

)
with q, d ∈ Z and 0 ≤ d ≤ g − 1 either

entirely belongs to the periodic set or it is disjoint from the set. No matter how the definition is
to be formulated in detail, the key property will be that any sets satisfying the property can be
described by finite means with a computable bound regarding the length of the description, just
like the uniform structures we have been using for BSR(SLR) and BSR(BD).

Another possible direction for extending BSR(SLR) or BSR(BD) is the addition of uninterpreted
function symbols. Steps in this direction have been made, e.g. in [GdM09, HVW17a] over the
integer domain and essentially for stratified vocabularies (cf. Section 3.14.2). Both approaches yield
extensions of the array property fragment (cf. Remark 8.0.1). From that fragment it is known that
arithmetic atoms need to be more restricted than in BSR(SLR). For instance, atoms of the form
¬x < y with universally quantified integer variables x, y are not admitted in clauses but ¬x ≤ y is.
Not adhering to these restrictions yields an undecidable satisfiability problem, cf. Theorem 2.4.2
in [Bra07] and Theorem 11.16 in [BM07].

Finally, there are plenty of decidable first-order fragments besides BSR and its separated
extensions SF and GBSR that might serve as a basis for decidable fragments of first-order
arithmetic with uninterpreted predicate or function symbols, see Chapter 3. There is quite some
research to be done in this direction.

12.2.2 Automated Reasoning in Practice: Instantiation Methods for
BSR(SLR) and BSR(BD)

As the analysis of the computational complexity of decision problems mostly focuses on worst-case
scenarios, it hardly comes as a surprise that solving problem instances originating from practical
applications does not necessarily need as much time or space as the theoretical worst-case analysis
would predict. It is meanwhile a broadly accepted fact that automated reasoning in propositional
logic, quantified Boolean logic, the Bernays–Schönfinkel fragment, or combinations of theories, to
name a few prominent examples, can be feasible in practice. This is in spite of the fact that the
traditional narrative of complexity theory claims that problems beyond the NP-hardness barrier
ought to be considered infeasible. Thanks to a great engineering effort over the last decades,
we have potent methodologies available today to make automated reasoning work in practice,
see [RV01, Bie09, CHVB18, HS18]

Instantiation of universally quantified variables is one technique that is being used in auto-
mated reasoning tools [KS10, Kor13a, RKK17, Bar17, RBF18], e.g. for reasoning in the Bernays–
Schönfinkel–Ramsey fragment or linear arithmetic. Moreover, instantiation is the method of

300 CHAPTER 12. CONCLUSION

choice to decide satisfiability for the array property fragment in [BMS06, Bra07, GdM09], for
instance. Independently from these developments, but yet along the same lines, the author of the
present thesis and two co-authors have devised improved instantiation methods for close relatives
of BSR(SLR) [VW15, HVW17a], which is, in turn, related to the array property fragment. The
approach should be transferable to BSR(SLR) and BSR(BD) but will most likely get slightly more
complicated. We shall outline the key ideas below. A full presentation of the results lies beyond
the scope of the present thesis.

We shall concentrate on subfragments of BSR(SLR) over the rational and the integer domain
where the main syntactic restriction is the following. In addition to the restrictions imposed by
the definition of BSR(SLR) (Definition 10.0.1), we restrict the options for the predicate symbol
/ in arithmetic atoms of the form x / y to ≤, =, or ≥, whenever x, y are universally quantified
variables of sort Q or Z. The rationale behind this restriction is twofold: simplicity and (practical)
efficiency of instantiation. The key difference is that we do not have to handle ∼-equivalent tuples
of rationals but it is sufficient to consider individual rational numbers — one-tuples so to say.
In the two-dimensional case illustrated in Figure 12.2, this means that we can safely ignore the
triangles that emerge around the diagonal and rather only consider a division of the rational
plane into bounded and unbounded rectangular regions. It is to be expected that there are also
good instantiation techniques for BSR(SLR) without additional syntax restrictions and also for
BSR(BD). This direction of research is left for future work.

3 s1 s2 31
5

3

s1

s2

31
5

Figure 12.2: Partition of the two-dimensional rational plane into ∼1-equivalence classes (cf.
Chapter 8, page 221) with respect to two unspecified rational values s1, s2 lying between 3 and
31
5 . Every dot, line segment, rectangular white area, and triangular white area represents an

equivalence class induced by ∼1.

The improved instantiation methods presented in [VW15, HVW17a] are based on (i) a detailed
analysis of which arguments of predicate symbols are affected by which arithmetic constraints,
(ii) optimizations inspired by well-established quantifier-elimination techniques which concern the
kind of constraints that need to be taken into account, and (iii) the observation that we can
apply different optimizations for sufficiently disconnected argument positions. All in all, one can
significantly reduce the number of instances that need to be generated to decide satisfiability,
compared to the number of instances less sophisticated instantiation methods produce that are
used to decide satisfiability for similar logic fragments, see, for example, [BMS06, Bra07, GdM09].

Example 12.2.1. Consider the sentence

ϕ := ∃z∀ux1x2y1y2.
(
x2 6= 5 ∧R(x1)→ Q(u, x2)

)
∧
(
y1 < 7 ∧ y2 ≤ 2→ Q(z, y2) ∨R(y1)

)
where the variables z and u are of an uninterpreted sort and the xi, yi are of sort Z. The results
presented in [HVW17a] reveal that this sentence is satisfiable over the integers if and only if the

12.2. FIRST-ORDER LINEAR ARITHMETIC WITH UNINTERPRETED PREDICATES 301

following sentence is satisfiable over the integers:

ϕ′ := ∃z.
(

5 + 1 6= 5 ∧ R(c−∞) → Q(z, 5 + 1)
)

∧
(

c−∞ 6= 5 ∧ R(c−∞) → Q(z, c−∞)
)

∧
(
c−∞ < 7 ∧ 5 + 1 ≤ 2 → Q(z, 5 + 1) ∨R(c−∞)

)
∧
(
c−∞ < 7 ∧ c−∞ ≤ 2 → Q(z, c−∞) ∨R(c−∞)

)
∧ c−∞ < 2 .

The sentence ϕ′ has been derived from ϕ by the following instantiation steps: (1) u has been
instantiated with the existentially quantified variable z, (2) x2 and y2 have been instantiated with
the (abstract) integer values 5 + 1 and −∞, and (3) x1 and y1 have been instantiated with −∞
only. The instantiation does not need to consider any instantiation point derived from upper bounds
y1 < 7, y2 ≤ 2, because it is sufficient to explore the integers either from −∞ upwards — in this
case upper bounds on integer variables can be ignored — or from +∞ downwards — ignoring
lower bounds.3 Moreover, instantiation does not need to consider the value 5 + 1 for x1 and y1,
motivated by the fact that in the first conjunct of ϕ the argument x1 of R is not affected by the
constraint x2 6= 5. The abstract values −∞ and +∞ are represented by fresh uninterpreted constant
symbols, together with defining axioms. For the example, we introduce the fresh Skolem constant
c−∞ to represent −∞ (a “sufficiently small” value) together with the axiom c−∞ < 2, where 2 is
the smallest integer occurring in ϕ.

If we consider ϕ over the rational domain, instantiation leads to a sentence ϕ′′ that is slightly
different from ϕ′:

ϕ′ := ∃z.
(

c5+ε 6= 5 ∧ R(c−∞) → Q(z, c5+ε)
)

∧
(

c−∞ 6= 5 ∧ R(c−∞) → Q(z, c−∞)
)

∧
(
c−∞ < 7 ∧ c5+ε ≤ 2 → Q(z, c5+ε) ∨R(c−∞)

)
∧
(
c−∞ < 7 ∧ c−∞ ≤ 2 → Q(z, c−∞) ∨R(c−∞)

)
∧ c−∞ < 2
∧ 5 < c5+ε ∧ c5+ε < 7 .

The difference between ϕ′′ and ϕ′ is that the expressions 5 + 1 have been replaced with the constant
symbol c5+ε. This constant symbol is intended to represent some value that is “just a little larger”
than 5. That is, the value of c5+ε is supposed to be larger than 5 but smaller than all occurring
rational values larger than 5. This is why the axiom 5 < c5+ε ∧ c5+ε < 7 needs to be added to ϕ′′.

In [HVW17a] it is shown in addition that the outlined instantiation methods are compatible
with uninterpreted function symbols and additional background theories under certain syntactic
restrictions. These results are based on an (un)satifiability-preserving embedding of uninterpreted
function symbols into BSR. There are interesting known logic fragments that fall into this syntactic
category: many-sorted first-order sentences over stratified vocabularies [ARS07, ARS10, Kor13b] —
see also Section 3.14.2 —, the array property fragment [BMS06, Bra07], and the finite essentially
uninterpreted fragment , possibly extended with simple integer arithmetic [GdM09]. Consequently,
reasoning procedures for these fragments that employ forms of instantiation may benefit from the
outlined instantiation approach.

Regarding automated reasoning techniques that work well in practice, it might be interesting to
devise decision procedures for BSR(SLR), BSR(BD), or other fragments of first-order arithmetic
with uninterpreted function or predicate symbols based on hierarchic superposition coupled with
strong instantiation methods. Starting points for such an endeavor can be found in [KW12, FW12,
Kru13, Fie13].

3This trick is inspired by optimizations used in the field of linear quantifier elimination over the reals [LW93].

302 CHAPTER 12. CONCLUSION

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity – A Modern Approach.
Cambridge University Press, 2009.

[ABRS09] Alessandro Armando, Maria Paola Bonacina, Silvio Ranise, and Stephan Schulz.
New Results on Rewrite-Based Satisfiability Procedures. ACM Transactions on
Computational Logic, 10(1), 2009.

[ACGM04] Alessandro Armando, Claudio Castellini, Enrico Giunchiglia, and Marco Maratea. A
SAT-based Decision Procedure for the Boolean Combination of Difference Constraints.
In Theory and Applications of Satisfiability Testing (SAT’04), Revised Selected Papers,
2004.

[Ack28] Wilhelm Ackermann. Über die Erfüllbarkeit gewisser Zählausdrücke. Mathematische
Annalen, 100:638–649, 1928.

[Ack35] Wilhelm Ackermann. Untersuchungen über das Eliminationsproblem der mathema-
tischen Logik. Mathematische Annalen, 110:390–413, 1935.

[Ack54] Wilhelm Ackermann. Solvable Cases of the Decision Problem. North-Holland, 1954.

[AD90] Rajeev Alur and David L. Dill. Automata For Modeling Real-Time Systems. In
Automata, Languages and Programming (ICALP’90), pages 322–335, 1990.

[AD94] Rajeev Alur and David L. Dill. A Theory of Timed Automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[AF11] Carlos Areces and Pascal Fontaine. Combining Theories: The Ackerman and Guarded
Fragments. In Frontiers of Combining Systems (FroCoS’11), pages 40–54, 2011.

[AG74] St̊al Aanderaa and Warren D. Goldfarb. The Finite Controllability of the Maslov
Case. Journal of Symbolic Logic, 39(3):509–518, 1974.

[AH94] Rajeev Alur and Thomas A. Henzinger. A Really Temporal Logic. Journal of the
ACM, 41(1):181–204, 1994.

[AKVV16] Samson Abramsky, Juha Kontinen, Jouko Väänänen, and Heribert Vollmer, editors.
Dependence Logic, Theory and Applications. Springer, 2016.

[AKW09] Ernst Althaus, Evgeny Kruglov, and Christoph Weidenbach. Superposition Modulo
Linear Arithmetic SUP(LA). In Frontiers of Combining Systems (FroCoS’09), pages
84–99, 2009.

[ALM17] Giovanni Amendola, Nicola Leone, and Marco Manna. Finite model reasoning over
existential rules. Theory and Practice of Logic Programming, 17(5-6):726–743, 2017.

[ANvB98] Hajnal Andréka, István Németi, and Johan van Benthem. Modal Languages and
Bounded Fragments of Predicate Logic. Journal of Philosophical Logic, 27(3):217–274,
1998.

303

304 BIBLIOGRAPHY

[ARS07] Aharon Abadi, Alexander Moshe Rabinovich, and Mooly Sagiv. Decidable Frag-
ments of Many-Sorted Logic. In Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR’07), pages 17–31, 2007.

[ARS10] Aharon Abadi, Alexander Rabinovich, and Mooly Sagiv. Decidable Fragments of
Many-Sorted Logic. Journal of Symbolic Computation, 45(2):153–172, 2010.

[AW15] Gábor Alagi and Christoph Weidenbach. NRCL – A Model Building Approach to
the Bernays–Schönfinkel Fragment. In Frontiers of Combining Systems (FroCoS’15),
LNCS 9322, pages 69–84. Springer, 2015.

[Bar17] Haniel Barbosa. New techniques for instantiation and proof production in SMT
solving. (Nouvelles techniques pour l’instanciation et la production des preuves dans
SMT). PhD thesis, University of Lorraine, Nancy, France, 2017.

[BB16] Olaf Beyersdorff and Joshua Blinkhorn. Dependency Schemes in QBF Calculi:
Semantics and Soundness. In Principles and Practice of Constraint Programming
(CP’16), pages 96–112, 2016.

[BBJ02] George S. Boolos, John P. Burgess, and Richard C. Jeffrey. Computability and Logic.
Cambridge University Press, fourth edition, 2002.

[BBMR15] Jean-François Baget, Meghyn Bienvenu, Marie-Laure Mugnier, and Swan Rocher.
Combining Existential Rules and Transitivity: Next Steps. In Artificial Intelligence
(IJCAI’15), pages 2720–2726, 2015.

[BBtC13] Vince Bárány, Michael Benedikt, and Balder ten Cate. Rewriting Guarded Negation
Queries. In Mathematical Foundations of Computer Science (MFCS’13), pages 98–110,
2013.

[BDMMS14] Davide Bresolin, Dario Della Monica, Angelo Montanari, and Guido Sciavicco. The
light side of interval temporal logic: the Bernays–Schönfinkel fragment of CDT.
Annals of Mathematics and Artificial Intelligence, 71(1-3):11–39, 2014.

[BdRV02] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, volume 53
of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
2002.

[Beh22] Heinrich Behmann. Beiträge zur Algebra der Logik, insbesondere zum Entschei-
dungsproblem. Mathematische Annalen, 86(3–4):163–229, 1922.

[BEL01] Matthias Baaz, Uwe Egly, and Alexander Leitsch. Normal Form Transformations.
In Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning,
volume I, pages 273–333. Elsevier and MIT Press, 2001.

[Ber66] Robert Berger. The undecidability of the domino problem. Memoirs of the American
Mathematical Society, (66), 1966.

[Ber80] Leonard Berman. The Complexitiy of Logical Theories. Theoretical Computer Science,
11:71–77, 1980.

[BFdNT09] Peter Baumgartner, Alexander Fuchs, Hans de Nivelle, and Cesare Tinelli. Computing
finite models by reduction to function-free clause logic. Journal of Applied Logic,
7(1):58–74, 2009.

[BFL94] Matthias Baaz, Christian G. Fermüller, and Alexander Leitsch. A Non-Elementary
Speed-Up in Proof Length by Structural Clause Form Transformation. In Logic in
Computer Science (LICS’94), pages 213–219, 1994.

BIBLIOGRAPHY 305

[BFL+18] Patricia Bouyer, Uli Fahrenberg, Kim Guldstrand Larsen, Nicolas Markey, Joël
Ouaknine, and James Worrell. Model Checking Real-Time Systems. In Edmund M.
Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook
of Model Checking, pages 1001–1046. Springer, 2018.

[BG01] Leo Bachmair and Harald Ganzinger. Resolution Theorem Proving. In Alan Robinson
and Andrei Voronkov, editors, Handbook of Automated Reasoning, volume I, pages
19–99. Elsevier and MIT Press, 2001.

[BGG97] Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem.
Perspectives in Mathematical Logic. Springer, 1997.

[BGMR14] Jean-François Baget, Fabien Garreau, Marie-Laure Mugnier, and Swan Rocher.
Extending Acyclicity Notions for Existential Rules. In European Conference on
Artificial Intelligence (ECAI’14), pages 39–44, 2014.

[BGW92] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Theorem Proving for Hier-
archic First-Order Theories. In Algebraic and Logic Programming (ALP’92), pages
420–434, 1992.

[BGW93] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Superposition with Simplifica-
tion as a Desision Procedure for the Monadic Class with Equality. In Computational
Logic and Proof Theory, Third Kurt Gödel Colloquium (KGC’93), pages 83–96, 1993.

[BGW94] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Refutational Theorem
Proving for Hierarchic First-Order Theories. Applicable Algebra in Engineering,
Communication and Computing, 5:193–212, 1994.

[Bie09] Armin Biere. Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelli-
gence and Applications. IOS Press, 2009.

[BJ15a] Maria Paola Bonacina and Moa Johansson. Interpolation Systems for Ground Proofs
in Automated Deduction: a Survey. Journal of Automated Reasoning, 54(4):353–390,
2015.

[BJ15b] Maria Paola Bonacina and Moa Johansson. On Interpolation in Automated Theorem
Proving. Journal of Automated Reasoning, 54(1):69–97, 2015.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press,
2008.

[BL94] Matthias Baaz and Alexander Leitsch. On Skolemization and Proof Complexity.
Fundamenta Informaticae, 20(4):353–379, 1994.

[BL11] Matthias Baaz and Alexander Leitsch. Methods of Cut-Elimination, volume 34 of
Trends in Logic. Springer, 2011.

[BLM10] Jean-François Baget, Michel Leclère, and Marie-Laure Mugnier. Walking the Decid-
ability Line for Rules with Existential Variables. In Knowledge Representation and
Reasoning (KR’10), 2010.

[BLM+17] Patricia Bouyer, François Laroussinie, Nicolas Markey, Joël Ouaknine, and James
Worrell. Timed Temporal Logics. In Models, Algorithms, Logics and Tools – Essays
Dedicated to Kim Guldstrand Larsen on the Occasion of His 60th Birthday, pages
211–230, 2017.

[BLS02] Randal E. Bryant, Shuvendu K. Lahiri, and Sanjit A. Seshia. Modeling and Veri-
fying Systems Using a Logic of Counter Arithmetic with Lambda Expressions and
Uninterpreted Functions. In Computer Aided Verification (CAV’02), pages 78–92,
2002.

306 BIBLIOGRAPHY

[BM07] Aaron R. Bradley and Zohar Manna. The Calculus of Computation – Decision
Procedures with Applications to Verification. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2007.

[BM17] Simone Bova and Fabio Mogavero. Herbrand property, finite quasi-Herbrand models,
and a Chandra–Merlin theorem for quantified conjunctive queries. In Logic in
Computer Science (LICS’17), pages 1–12, 2017.

[BMR13] Nikolaj Bjørner, Kenneth L. McMillan, and Andrey Rybalchenko. On Solving
Universally Quantified Horn Clauses. In Static Analysis (SAS’13), pages 105–125,
2013.

[BMRT11] Jean-François Baget, Marie-Laure Mugnier, Sebastian Rudolph, and Michaël Thomazo.
Walking the Complexity Lines for Generalized Guarded Existential Rules. In Artificial
Intelligence (IJCAI’11), pages 712–717, 2011.

[BMS06] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s Decidable About
Arrays? In Verification, Model Checking, and Abstract Interpretation (VMCAI’06),
pages 427–442, 2006.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[BPDG98] Béatrice Bérard, Antoine Petit, Volker Diekert, and Paul Gastin. Characterization
of the Expressive Power of Silent Transitions in Timed Automata. Fundamenta
Informaticae, 36(2-3):145–182, 1998.

[Bra07] Aaron R. Bradley. Safety Analysis of Systems. PhD thesis, Department of Computer
Science of Stanford University, 2007.

[BS28] Paul Bernays and Moses Schönfinkel. Zum Entscheidungsproblem der mathematischen
Logik. Mathematische Annalen, 99(1):342–372, 1928.

[BT10] Daniel Berend and Tamir Tassa. Improved bounds on Bell numbers and on moments
of sums of random variables. Probability and Mathematical Statistics, 30(2):185–205,
2010.

[BT18] Clark Barrett and Cesare Tinelli. Satisfiability Modulo Theories. In Edmund M.
Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook
of Model Checking, pages 305–343. Springer, 2018.

[BtCS11] Vince Bárány, Balder ten Cate, and Luc Segoufin. Guarded negation. In Automata,
Languages and Programming (ICALP’11), Part II, pages 356–367, 2011.

[BtCS15] Vince Bárány, Balder ten Cate, and Luc Segoufin. Guarded Negation. Journal of the
ACM, 62(3):22, 2015.

[BtCV16] Michael Benedikt, Balder ten Cate, and Michael Vanden Boom. Effective Interpolation
and Preservation in Guarded Logics. ACM Transactions on Computational Logic,
17(2):8:1–8:46, 2016.

[Büc60] J. Richard Büchi. Weak second-order arithmetic and finite automata. Zeitschrift für
mathematische Logik und Grundlagen der Mathematik, 6:66–92, 1960.

[Büc62] J. Richard Büchi. On a decision method in restricted second order arithmetic. In
Ernest Nagel, Patrick Suppes, and Alfred Tarski, editors, Proceedings of the 1960
International Congress on Logic, Methodology and Philosophy of Science, pages 1–11.
Stanford University Press, 1962.

BIBLIOGRAPHY 307

[BW13a] Peter Baumgartner and Uwe Waldmann. Hierarchic Superposition: Completeness
without Compactness. In Marek Košta and Thomas Sturm, editors, Fifth Interna-
tional Conference on Mathematical Aspects of Computer and Information Sciences
(MACIS’13), pages 8–12, 2013.

[BW13b] Peter Baumgartner and Uwe Waldmann. Hierarchic superposition with weak ab-
straction. In Automated Deduction (CADE-24), LNCS 7898, pages 39–57. Springer,
2013.

[Cal02] Cristian Calude. Information and Randomness : An Algorithmic Perspective. Springer,
second, revised and extended edition, 2002.

[CAMN04] Scott Cotton, Eugene Asarin, Oded Maler, and Peter Niebert. Some Progress in
Satisfiability Checking for Difference Logic. In Formal Modelling and Analysis of
Timed Systems and Formal Techniques in Real-Time and Fault-Tolerant Systems
(FORMATS/FTRTFT’04), pages 263–276, 2004.

[CDG+08] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree Automata Techniques and Applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 2008. Release: November, 18th 2008.

[CFR14] Paula Chocron, Pascal Fontaine, and Christophe Ringeissen. A Gentle Non-Disjoint
Combination of Satisfiability Procedures. In Automated Reasoning (IJCAR’14), pages
122–136, 2014.

[CFR15] Paula Chocron, Pascal Fontaine, and Christophe Ringeissen. A Polite Non-Disjoint
Combination Method: Theories with Bridging Functions Revisited. In Automated
Deduction (CADE-25), pages 419–433, 2015.

[CGP10a] Andrea Cal̀ı, Georg Gottlob, and Andreas Pieris. Advanced Processing for Ontological
Queries. Proceedings of VLDB, 3(1):554–565, 2010.

[CGP10b] Andrea Cal̀ı, Georg Gottlob, and Andreas Pieris. Query Answering under Non-
guarded Rules in Datalog+/−. In Web Reasoning and Rule Systems (RR’10), pages
1–17, 2010.

[CH90] Kevin J. Compton and C. Ward Henson. A Uniform Method for Proving Lower
Bounds on the Computational Complexity of Logical Theories. Annals of Pure and
Applied Logic, 48(1):1–79, 1990.

[Chu36a] Alonzo Church. Correction to A Note on the Entscheidungsproblem. Journal of
Symbolic Logic, 1(3):101–102, 1936.

[Chu36b] Alonzo Church. A Note on the Entscheidungsproblem. Journal of Symbolic Logic,
1(1):40–41, 1936.

[Chu36c] Alonzo Church. An Unsolvable Problem of Elementary Number Theory. Journal of
Symbolic Logic, 1(2):73–74, 1936.

[CHVB18] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem.
Handbook of Model Checking. Springer, 2018.

[CJ98] Hubert Comon and Yan Jurski. Multiple Counters Automata, Safety Analysis and
Presburger Arithmetic. In Computer Aided Verification (CAV’98), pages 268–279,
1998.

[CJ99] Hubert Comon and Yan Jurski. Timed automata and the theory of real numbers. In
Concurrency Theory (CONCUR’99), pages 242–257, 1999.

308 BIBLIOGRAPHY

[CK90] Chen Chung Chang and H. Jerome Keisler. Model Theory, volume 73 of Studies in
Logic and the Foundations of Mathematics. Elsevier Science Publishing, third edition,
1990.

[CK06] Sylvain Conchon and Sava Krstic. Strategies for combining decision procedures.
Theoretical Computer Science, 354(2):187–210, 2006.

[CLM81] Ashok K. Chandra, Harry R. Lewis, and Johann A. Makowsky. Embedded Impli-
cational Dependencies and their Inference Problem. In Symposium on Theory of
Computing (STOC’81), pages 342–354, 1981.

[CM93] Jim Cox and Ken McAloon. Decision procedures for constraint-based extensions of
Datalog. In Frédéric Benhamou and Alain Colmerauer, editors, Constraint Logic
Programming, Selected Research, pages 17–32. The MIT Press, 1993.

[CM06] Scott Cotton and Oded Maler. Fast and Flexible Difference Constraint Propagation
for DPLL(T). In Theory and Applications of Satisfiability Testing (SAT’06), pages
170–183, 2006.

[CMT92] Jim Cox, Ken McAloon, and Carol Tretkoff. Computational Complexity and Con-
straint Logic Programming Languages. Annals of Mathematics and Artificial Intelli-
gence, 5(2-4):163–189, 1992.

[Con06] Willem Conradie. On the strength and scope of DLS. Journal of Applied Non-Classical
Logics, 16(3-4):279–296, 2006.

[Coo71] Stephen A. Cook. The Complexity of Theorem-Proving Procedures. In Theory of
Computing (STOC’71), pages 151–158, 1971.

[Coo72] David C. Cooper. Theorem Proving in Arithmetic without Multiplication. Machine
Intelligence, 7:91–99, 1972.

[Coo04] S. Barry Cooper. Computability Theory. Chapman & Hall/CRC, 2004.

[Cra57a] William Craig. Linear Reasoning. A New Form of the Herbrand–Gentzen Theorem.
Journal of Symbolic Logic, 22(3):250–268, 09 1957.

[Cra57b] William Craig. Three Uses of the Herbrand-Gentzen Theorem in Relating Model
Theory and Proof Theory. Journal of Symbolic Logic, 22(3):269–285, 09 1957.

[CSRL01] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.
Introduction to Algorithms. McGraw-Hill Higher Education, second edition, 2001.

[CW10] Witold Charatonik and Piotr Witkowski. On the Complexity of the Bernays–
Schönfinkel Class with Datalog. In Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR-17), LNCS 6397, pages 187–201. Springer, 2010.

[Daw99] Anuj Dawar. Finite models and finitely many variables. In D. Niwinski and R. Maron,
editors, Logic, Algebra and Computer Science, volume 46 of Banach Center Publica-
tions, pages 93–117. Polish Academy of Sciences, 1999.

[DE73] George B. Dantzig and B. Curtis Eaves. Fourier–Motzkin Elimination and Its Dual.
Journal of Combinatorial Theory, Series A, 14(3):288–297, 1973.

[DFPP18] Laurent Doyen, Goran Frehse, George J. Pappas, and André Platzer. Verification of
Hybrid Systems. In Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and
Roderick Bloem, editors, Handbook of Model Checking, pages 1047–1110. Springer,
2018.

BIBLIOGRAPHY 309

[DG79] Burton Dreben and Warren D. Goldfarb. The Decision Problem: Solvable Classes of
Quantificational Formulas. Addison-Wesley, 1979.

[DGKS07a] Anuj Dawar, Martin Grohe, Stephan Kreutzer, and Nicole Schweikardt. Model Theory
Makes Formulas Large. In Automata, Languages and Programming (ICALP’07),
pages 913–924, 2007.

[DGKS07b] Anuj Dawar, Martin Grohe, Stephan Kreutzer, and Nicole Schweikardt. Model Theory
Makes Formulas Large. Technical Report NI07003-LAA, Isaac Newton Institute of
Mathematical Sciences, 2007.

[DH10] Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic Randomness and Com-
plexity. Springer, 2010.

[Din19] Lloyd L. Dines. Systems of Linear Inequalities. Annals of Mathematics, Second
Series, 20(3):191–199, 1919.

[DKW62] Burton Dreben, Andrew Kahr, and Hao Wang. Classification of AEA Formulas by
Letter Atoms. Bulletin of the American Mathematical Society, 68(5):528–532, 1962.

[DL84a] Larry Denenberg and Harry R. Lewis. The Complexity of the Satisfiability Problem
for Krom Formulas. Theoretical Computer Science, 30:319–341, 1984.

[DL84b] Larry Denenberg and Harry R. Lewis. Logical Syntax and Computational Complexity.
In Computation and Proof Theory. Proceedings of the Logic Colloquium ‘83, Aachen,
Part II, LNM 1104, pages 101–115. Springer, 1984.

[dMB11] Leonardo Mendonça de Moura and Nikolaj Bjørner. Satisfiability Modulo Theories:
Introduction and Applications. Communications of the ACM, 54(9):69–77, 2011.

[dN98] Hans de Nivelle. A Resolution Decision Procedure for the Guarded Fragment. In
Automated Deduction (CADE-15), pages 191–204, 1998.

[dNdR03] Hans de Nivelle and Maarten de Rijke. Deciding the guarded fragments by resolution.
Journal of Symbolic Computation, 35(1):21–58, 2003.

[dNP01] Hans de Nivelle and Ian Pratt-Hartmann. A Resolution-Based Decision Procedure
for the Two-Variable Fragment with Equality. In Automated Reasoning (IJCAR’01),
pages 211–225, 2001.

[DNS05] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for
program checking. Journal of the ACM, 52(3):365–473, 2005.

[Dol00] Andreas Dolzmann. Algorithmic strategies for applicable real quantifier elimination.
PhD thesis, University of Passau, Germany, 2000.

[Dow72] Peter J. Downey. Undecidability of Presburger Arithmetic with a Single Monadic
Predicate Letter. Technical report, Center for Research in Computer Technology,
Harvard University, 1972.

[Dre62] Burton Dreben. Solvable Surányi subclasses: an introduction to the Herbrand theory.
Annals of the Computation Laboratory of Harvard University, 31:32–47, 1962.

[EF99] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite model theory. Second Edition.
Perspectives in Mathematical Logic. Springer, 1999.

[EFT94] Heinz-Dieter Ebbinghaus, Jörg Flum, and Wolfgang Thomas. Mathematical Logic.
Springer, second edition, 1994.

310 BIBLIOGRAPHY

[Egl94] Uwe Egly. On the Value of Antiprenexing. In Logic Programming and Automated
Reasoning (LPAR’94), pages 69–83, 1994.

[EKK+11] Andreas Eggers, Evgeny Kruglov, Stefan Kupferschmid, Karsten Scheibler, Tino
Teige, and Christoph Weidenbach. Superposition Modulo Non-linear Arithmetic. In
Frontiers of Combining Systems (FroCoS’11), pages 119–134, 2011.

[EKK+12] Moshe Emmer, Zurab Khasidashvili, Konstantin Korovin, Christoph Sticksel, and
Andrei Voronkov. EPR-Based Bounded Model Checking at Word Level. In Automated
Reasoning (IJCAR’12), pages 210–224, 2012.

[EKKV10] Moshe Emmer, Zurab Khasidashvili, Konstantin Korovin, and Andrei Voronkov.
Encoding industrial hardware verification problems into effectively propositional logic.
In Formal Methods in Computer-Aided Design (FMCAD’10), pages 137–144, 2010.

[End72] Herbert B. Enderton. A mathematical introduction to logic. Academic Press, 1972.

[End01] Herbert B. Enderton. A mathematical introduction to logic. Harcourt/Academic
Press, 2001.

[FA03] Thom Frühwirth and Slim Abdennadher. Essentials of Constraint Programming.
Springer, 2003.

[FG06] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006.

[Fie13] Arnaud Fietzke. Labelled Superposition. PhD thesis, Department of Computer Science,
Saarland University, 2013.

[Fit96] Melvin Fitting. First-Order Logic and Automated Theorem Proving, Second Edition.
Graduate Texts in Computer Science. Springer, 1996.

[FJS04] Cormac Flanagan, Rajeev Joshi, and James B. Saxe. An Explicating Theorem Prover
for Quantified Formulas. Technical Report HPL-2004-199, HP Laboratories Palo
Alto, 2004.

[FLHT01] Christian G. Fermüller, Alexander Leitsch, Ullrich Hustadt, and Tanel Tammet.
Resolution Decision Procedures. In Alan Robinson and Andrei Voronkov, editors,
Handbook of Automated Reasoning, volume II, pages 1791–1849. Elsevier and MIT
Press, 2001.

[FLTZ93] Christian G. Fermüller, Alexander Leitsch, Tanel Tammet, and N. K. Zamov. Reso-
lution Methods for the Decision Problem. LNCS 679. Springer, 1993.

[FMSZ17] Bernd Finkbeiner, Christian Müller, Helmut Seidl, and Eugen Zalinescu. Verifying
Security Policies in Multi-agent Workflows with Loops. In Computer and Communi-
cations Security (CCS’17), pages 633–645, 2017.

[Fon07] Pascal Fontaine. Combinations of Theories and the Bernays–Schönfinkel–Ramsey
Class. In Verification Workshop in connection with CADE-21 (VERIFY’07), 2007.

[Fon09] Pascal Fontaine. Combinations of Theories for Decidable Fragments of First-Order
Logic. In Frontiers of Combining Systems (FroCoS’09), LNCS 5749, pages 263–278.
Springer, 2009.

[Fou26] Jean Baptiste Joseph Fourier. Solution d’une Question Particulière du Calcul des
Inégalités. Nouveau Bulletin des Sciences par la Société philomathique de Paris,
pages 99–100, 1826. Reprinted in Jeon Gaston Darboux (editor), Oeuvres de Fourier,
Tome II, Gauthier-Villars, Paris, 1890, pp. 317–319. Reprinted in 2013 by Cambridge
University Press.

BIBLIOGRAPHY 311

[FR74] Michael Jo Fischer and Michael O. Rabin. Super-Exponential Complexity of Pres-
burger Arithmetic. In SIAM-AMS Symposium in Applied Mathematics, pages 27–41,
1974.

[FR75] Jeanne Ferrante and Charles Rackoff. A Decision Procedure for the First Order
Theory of Real Addition with Order. SIAM Journal of Computing, 4(1):69–76, 1975.

[FR79] Jeanne Ferrante and Charles W. Rackoff. The computational complexity of logical
theories. Springer, 1979.

[FS93] Christian G. Fermüller and Gernot Salzer. Ordered Paramodulation and Resolution
as Decision Procedure. In Logic Programming and Automated Reasoning (LPAR’93),
pages 122–133, 1993.

[FSVY91] Thom W. Frühwirth, Ehud Y. Shapiro, Moshe Y. Vardi, and Eyal Yardeni. Logic
Programs as Types for Logic Programs. In Logic in Computer Science (LICS’91),
pages 300–309, 1991.

[Für81] Martin Fürer. Alternation and the Ackermann Case of the Decision Problem.
L’Enseignement Mathématique, 27(1–2):137–162, 1981.

[Für83] Martin Fürer. The computational complexity of the unconstrained limited domino
problem (with implications for logical decision problems). In Logic and Machines:
Decision Problems and Complexity, Proceedings of the Symposium ”Rekursive Kom-
binatorik”, pages 312–319, 1983.

[FW12] Arnaud Fietzke and Christoph Weidenbach. Superposition as a Decision Procedure
for Timed Automata. Mathematics in Computer Science, 6(4):409–425, 2012.

[Gai82] Haim Gaifman. On Local and Non-Local Properties. In J. Stern, editor, Proceedings
of the Herbrand Symposium, Logic Colloquium ‘81, pages 105–135. North-Holland,
1982.

[Gan02] Harald Ganzinger. Shostak Light. In Automated Deduction (CADE-18), pages
332–346, 2002.

[GBT09] Yeting Ge, Clark W. Barrett, and Cesare Tinelli. Solving quantified verification
conditions using satisfiability modulo theories. Ann. Math. Artif. Intell., 55(1-2):101–
122, 2009.

[GdM09] Yeting Ge and Leonardo Mendonça de Moura. Complete Instantiation for Quantified
Formulas in Satisfiabiliby Modulo Theories. In Computer Aided Verification (CAV’09),
LNCS 5643, pages 306–320. Springer, 2009.

[GdN99] Harald Ganzinger and Hans de Nivelle. A Superposition Decision Procedure for the
Guarded Fragment with Equality. In Logic in Computer Science (LICS’99), pages
295–303, 1999.

[Gen35a] Gerhard Gentzen. Untersuchungen über das logische Schließen. I. Mathematische
Zeitschrift, 39(1):176–210, 1935.

[Gen35b] Gerhard Gentzen. Untersuchungen über das logische Schließen. II. Mathematische
Zeitschrift, 39(1):405–431, 1935.

[GG18] Silvio Ghilardi and Alessandro Gianola. Modularity results for interpolation, amalga-
mation and superamalgamation. Annals in Pure and Applied Logic, 169(8):731–754,
2018.

312 BIBLIOGRAPHY

[GGS84] Warren D. Goldfarb, Yuri Gurevich, and Saharon Shelah. A Decidable Subclass of
the Minimal Gödel Class with Identity. Journal of Symbolic Logic, 49(4):1253–1261,
1984.

[GHK+13] Bernardo Cuenca Grau, Ian Horrocks, Markus Krötzsch, Clemens Kupke, Despoina
Magka, Boris Motik, and Zhe Wang. Acyclicity Notions for Existential Rules and
Their Application to Query Answering in Ontologies. Journal of Artificial Intelligence
Research, 47:741–808, 2013.

[GHN+04] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and Ce-
sare Tinelli. DPLL(T): Fast Decision Procedures. In Computer Aided Verification
(CAV’04), pages 175–188, 2004.

[GHS00] Lilia Georgieva, Ullrich Hustadt, and Renate A. Schmidt. Hyperresolution for Guarded
Formulae. In Proceedings of the Seventh Workshop on Automated Reasoning, Bridging
the Gap between Theory and Practice, 2000.

[GHS02] Lilia Georgieva, Ullrich Hustadt, and Renate A. Schmidt. A New Clausal Class
Decidable by Hyperresolution. In Automated Deduction (CADE-18), pages 260–274,
2002.

[GHS03] Lilia Georgieva, Ullrich Hustadt, and Renate A. Schmidt. Hyperresolution for guarded
formulae. Journal of Symbolic Computation, 36(1-2):163–192, 2003.

[GHW03] Harald Ganzinger, Thomas Hillenbrand, and Uwe Waldmann. Superposition Modulo
a Shostak Theory. In Automated Deduction (CADE-19), pages 182–196, 2003.

[GKL+07] Erich Grädel, Phokion G. Kolaitis, Leonid Libkin, Maarten Marx, Joel Spencer,
Moshe Y. Vardi, Yde Venema, and Scott Weinstein. Finite Model Theory and Its
Applications. Texts in Theoretical Computer Science. An EATCS Series. Springer,
2007.

[GKV97] Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem for
two-variable first-order logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.

[GKVV16] Erich Grädel, Juha Kontinen, Jouka Väänänen, and Heribert Vollmer. Logics for
Dependence and Independence (Dagstuhl Seminar 15261). Dagstuhl Reports, 5(6):70–
85, 2016.

[GL81] Péter Gács and László Lovász. Khachiyan’s algorithm for linear programming.
Mathematical Programming Study, (14):61–68, 1981.

[GNZ08] Silvio Ghilardi, Enrica Nicolini, and Daniele Zucchelli. A comprehensive combination
framework. ACM Transactions on Computational Logic, 9(2):8:1–8:54, 2008.

[GO99] Erich Grädel and Martin Otto. On Logics with Two Variables. Theoretical Computer
Science, 224(1-2):73–113, 1999.

[Göd32] Kurt Gödel. Ein Spezialfall des Entscheidungsproblems der theoretischen Logik.
Ergebnisse eines mathematischen Kolloquiums, (2):27–28, 1932. English translation
in Solomon Feferman, John W. Dawson, Jr., Stephen C. Kleene, Gregory H. Moore,
Robert M. Solovay, and Jean van Heijenoort, Kurt Gödel: Collected Works: Volume
I: Publications 1929-1936, Oxford University Press, 1986, pp. 230–233.

[Göd33] Kurt Gödel. Zum Entscheidungsproblem des logischen Funktionenkalküls. Monat-
shefte für Mathematik und Physik, 40:433–443, 1933. Reprinted in Solomon Feferman,
John W. Dawson, Jr., Stephen C. Kleene, Gregory H. Moore, Robert M. Solovay,
and Jean van Heijenoort, Kurt Gödel: Collected Works: Volume I: Publications
1929-1936, Oxford University Press, 1986, pp. 306–326.

BIBLIOGRAPHY 313

[Gol63] Richard Goldberg. On the Solvability of a Subclass of the Suranyi Reduction Class.
Journal of Symbolic Logic, 28(3):237–244, 1963.

[Gol84] Warren D. Goldfarb. The Unsolvability of the Godel Class with Identity. Journal of
Symbolic Logic, 49(4):1237–1252, 1984.

[Gol08] Oded Goldreich. Computational Complexity – A Conceptual Perspective. Cambridge
University Press, 2008.

[Gou95] Jean Goubault. A BDD-Based Simplification and Skolemization Procedure. Logic
Journal of the IGPL, 3(6):827–855, 1995.

[Gou05] Jean Goubault-Larrecq. Deciding H1 by resolution. Information Processing Letters,
95(3):401–408, 2005.

[Grä90a] Erich Grädel. On solvable cases of Hilbert’s ‘Entscheidungsproblem’. Habilitations-
schrift, Universität Basel, 1990.

[Grä90b] Erich Grädel. Satisfiability of Formulae with One ∀ is Decidable in Exponential Time.
Archive for Mathematical Logic, 29:265–276, 1990.

[Grä99a] Erich Grädel. Invited Talk: Decision procedures for guarded logics. In Automated
Deduction (CADE-16), pages 31–51, 1999.

[Grä99b] Erich Grädel. On the Restraining Power of Guards. Journal of Symbolic Logic,
64:1719–1742, 12 1999.

[Gro98] Martin Grohe. Finite variable logics in descriptive complexity theory. Bulletin of
Symbolic Logic, 4(4):345–398, 1998.

[GRS90] R.L. Graham, B.L. Rothschild, and J.H. Spencer. Ramsey Theory. A Wiley-
Interscience publication. Wiley, second edition, 1990.

[GS74] Solomon Garfunkel and James H Schmerl. The undecidability of theories of groupoids
with an extra predicate. Proceedings of the American Mathematical Society, 42(1):286–
289, 1974.

[GS83] Yuri Gurevich and Saharon Shelah. Random Models and the Gödel Case of the
Decision Problem. Journal of Symbolic Logic, 48(4):1120–1124, 1983.

[GSS08] Dov Gabbay, Renate Schmidt, and Andrzej Sza las. Second-Order Quantifier Elimi-
nation: Foundations, Computational Aspects and Applications. College Publications,
2008.

[Gur69] Yuri Gurevich. The Decision Problem for the Logic of Predicates and Operations.
Algebra i Logika, 8:284–308, 1969.

[Gur73] Y. Gurevich. Formulas with one ∀. In Selected Questions in Algebra and Logic; in
memory of A. Malcev, pages 97–110. Nauka, Moscow, 1973. In Russian. A German
translation is available at TIB Universität Hannover, Germany.

[Gur76] Yuri Gurevich. The Decision Problem for Standard Classes. Journal of Symbolic
Logic, 41(2):460–464, 1976.

[HA28] David Hilbert and Wilhelm Ackermann. Grundzüge der theoretischen Logik. Springer,
1928.

[Haa18] Christoph Haase. A Survival Guide to Presburger Arithmetic. SIGLOG News,
5(3):67–82, 2018.

314 BIBLIOGRAPHY

[Hal91] Joseph Y. Halpern. Presburger Arithmetic with Unary Predicates is Π1
1 Complete.

Journal of Symbolic Logic, 56(2):637–642, 1991.

[Har87] Juris Hartmanis. The Structural Complexity Column: The Collapsing Hierarchies.
Bulletin of the European Association for Theoretical Computer Science (EATCS),
(33):26–39, 1987.

[Hen61] Leon Henkin. Some remarks on infinitely long formulas. In Infinistic Methods, pages
167–183. Pergamon Press, 1961.

[Her30] Jacques Herbrand. Recherches sur la théorie de la démonstration. PhD thesis,
L’Université de Paris, 1930. English translation in Jacques Herbrand, Logical Writings
(edited by Warren D. Goldfarb), D. Reidel Publishing Company, 1971.

[Her90] Andreas Herzig. A new decidable fragment of first order logic. In Abstracts of the
Third Logical Biennial, Summer School & Conference in Honour of S. C. Kleene,
Varna, Bulgaria, 1990.

[Hil08] Thomas Hillenbrand. Superposition and Decision Procedures Back and Forth. PhD
thesis, Department of Computer Science, Saarland University, 2008.

[Hin65] Jaakko Hintikka. Distributive Normal Forms in First-Order Logic. In J.N. Crossley
and M.A.E. Dummett, editors, Formal Systems and Recursive Functions, volume 40
of Studies in Logic and the Foundations of Mathematics, pages 48–91. Elsevier, 1965.

[Hin73] Jaakko Hintikka. Logic, Language-Games and Information: Kantian Themes in the
Philosophy of Logic. Clarendon Press, 1973.

[HIV08] Peter Habermehl, Radu Iosif, and Tomás Vojnar. What Else Is Decidable about
Integer Arrays? In Foundations of Software Science and Computational Structures
(FOSSACS’08), pages 474–489, 2008.

[HM99] Eva Hoogland and Maarten Marx. Interpolation in Guarded Fragments. Techni-
cal report, Institute for Logic, Language and Computation (ILLC), University of
Amsterdam, 1999.

[HM02] Eva Hoogland and Maarten Marx. Interpolation and Definability in Guarded Frag-
ments. Studia Logica, 70(3):373–409, 2002.

[HMO99] Eva Hoogland, Maarten Marx, and Martin Otto. Beth Definability for the Guarded
Fragment. In Logic Programming and Automated Reasoning (LPAR’99), pages
273–285, 1999.

[HMU01] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, second edition, 2001.

[HNSY94] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic
Model Checking for Real-Time Systems. Information and Computation, 111(2):193–
244, 1994.

[Hod93] Wilfrid Hodges. Model theory. Cambridge University Press, 1993.

[Hod02] Ian M. Hodkinson. Loosely Guarded Fragment of First-Order Logic has the Finite
Model Property. Studia Logica, 70(2):205–240, 2002.

[HOD17] Ullrich Hustadt, Ana Ozaki, and Clare Dixon. Theorem Proving for Metric Temporal
Logic over the Naturals. In Automated Deduction (CADE-26), pages 326–343, 2017.

BIBLIOGRAPHY 315

[Hoo01] Eva Hoogland. Definability and Interpolation: Model-theoretic investigations. PhD
thesis, Institute for Logic, Language and Computation, University of Amsterdam,
2001.

[HPS83] David Harel, Amir Pnueli, and Jonathan Stavi. Propositional dynamic logic of
nonregular programs. Journal of Computer and System Sciences, 26(2):222–243,
1983.

[HS99] Ullrich Hustadt and Renate A. Schmidt. Maslov’s Class K Revisited. In Automated
Deduction (CADE-16), pages 172–186, 1999.

[HS18] Youssef Hamadi and Lakhdar Sais. Handbook of Parallel Constraint Reasoning.
Springer, 2018.

[HSBW13] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum.
YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia.
Artificial Intelligence, 194:28–61, 2013.

[HSG04] Ullrich Hustadt, Renate A. Schmidt, and Lilia Georgieva. A survey of decidable first-
order fragments and description logics. Journal on Relational Methods in Computer
Science, 1:251–276, 2004.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979.

[Hua95] Guoxiang Huang. Constructing Craig Interpolation Formulas. In Computing and
Combinatorics (COCOON’95), pages 181–190, 1995.

[Hus99] Ullrich Hustadt. Resolution-Based Decision Procedures for Subclasses of First-Order
Logic. PhD thesis, Saarland University, Saarbrücken, Germany, 1999.

[HVW17a] Matthias Horbach, Marco Voigt, and Christoph Weidenbach. On the Combination of
the Bernays–Schönfinkel–Ramsey Fragment with Simple Linear Integer Arithmetic. In
Automated Deduction (CADE’17), pages 77–94, 2017. An extended version is available
at the arXiv preprint server (arXiv.org) under the signature arXiv:1705.08792
[cs.LO].

[HVW17b] Matthias Horbach, Marco Voigt, and Christoph Weidenbach. The Universal Fragment
of Presburger Arithmetic with Unary Uninterpreted Predicates is Undecidable. ArXiv
preprint, (arXiv:1703.01212 [cs.LO]), 2017.

[HW13] Thomas Hillenbrand and Christoph Weidenbach. Superposition for Bounded Domains.
In Automated Reasoning and Mathematics – Essays in Memory of William W.
McCune, LNCS 7788, pages 68–100. Springer, 2013.

[IBI+13] Shachar Itzhaky, Anindya Banerjee, Neil Immerman, Aleksandar Nanevski, and
Mooly Sagiv. Effectively-Propositional Reasoning about Reachability in Linked Data
Structures. In Computer Aided Verification (CAV’13), pages 756–772, 2013.

[IBI+14] Shachar Itzhaky, Anindya Banerjee, Neil Immerman, Ori Lahav, Aleksandar Nanevski,
and Mooly Sagiv. Modular reasoning about heap paths via effectively propositional
formulas. In Principles of Programming Languages (POPL’14), pages 385–396, 2014.

[IBR+14] Shachar Itzhaky, Nikolaj Bjørner, Thomas W. Reps, Mooly Sagiv, and Aditya V.
Thakur. Property-Directed Shape Analysis. In Computer Aided Verification (CAV’14),
pages 35–51, 2014.

[Imm88] Neil Immerman. Nondeterministic Space is Closed Under Complementation. SIAM
Journal on Computing, 17(5):935–938, 1988.

316 BIBLIOGRAPHY

[JL77] Neil D. Jones and William T. Laaser. Complete Problems for Deterministic Polynomial
Time. Theoretical Computer Science, 3:105–117, 1977.

[JLL76] Neil D. Jones, Y. Edmund Lien, and William T. Laaser. New problems complete for
nondeterministic log space. Mathematical systems theory, 10(1):1–17, 1976.

[JMW98] Florent Jacquemard, Christoph Meyer, and Christoph Weidenbach. Unification in
Extensions of Shallow Equational Theories. In Rewriting Techniques and Applications
(RTA’98), pages 76–90, 1998.

[Joy76] William H. Joyner Jr. Resolution Strategies as Decision Procedures. Journal of the
ACM, 23(3):398–417, 1976.

[JRV06] Florent Jacquemard, Michaël Rusinowitch, and Laurent Vigneron. Tree Automata
with Equality Constraints Modulo Equational Theories. In Automated Reasoning
(IJCAR’06), pages 557–571, 2006.

[Kal33] László Kalmár. Über die Erfüllbarkeit derjenigen Zählausdrücke, welche in der
Normalform zwei benachbarte Allzeichen enthalten. Mathematische Annalen, 108:466–
484, 1933.

[Kar84] Narendra Karmarkar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4(4):373–395, 1984.

[Kas86] Simon Kasif. On the Parallel Complexity of Some Constraint Satisfaction Problems.
In Artificial Intelligence (AAAI’86), pages 349–353, 1986.

[KBI+15] Aleksandr Karbyshev, Nikolaj Bjørner, Shachar Itzhaky, Noam Rinetzky, and Sharon
Shoham. Property-Directed Inference of Universal Invariants or Proving Their
Absence. In Computer Aided Verification (CAV’15), pages 583–602, 2015.

[Kha80] Leonid Gendrichowitsch Khachiyan. Polynomial algorithms in linear programming.
USSR Computational Mathematics and Mathematical Physics, 20(1):53–72, 1980.

[KK14] Emanuel Kieronski and Antti Kuusisto. Complexity and Expressivity of Uniform
One-Dimensional Fragment with Equality. In Mathematical Foundations of Computer
Science (MFCS’14), pages 365–376, 2014.

[KM95] Micha l Krynicki and Marcin Mostowski. Henkin Quantifiers. In Micha l Krynicki,
Marcin Mostowski, and Les law W. Szczerba, editors, Quantifiers: Logics, Models and
Computation, pages 193–263. Kluwer Academic Publishers, 1995.

[Kor13a] Konstantin Korovin. Inst-Gen – A Modular Approach to Instantiation-Based Auto-
mated Reasoning. In Programming Logics – Essays in Memory of Harald Ganzinger,
pages 239–270, 2013.

[Kor13b] Konstantin Korovin. Non-cyclic Sorts for First-Order Satisfiability. In Frontiers of
Combining Systems (FroCoS’13), LNCS 8152, pages 214–228. Springer, 2013.

[Koš16] Marek Košta. New Concepts for Real Quantifier Elimination by Virtual Substitution.
PhD thesis, Department of Computer Science, Saarland University, 2016.

[KPHT18] Emanuel Kieroński, Ian Pratt-Hartmann, and Lidia Tendera. Two-variable logics
with counting and semantic constraints. SIGLOG News, 5(3):22–43, 2018.

[KPSW10] Viktor Kuncak, Ruzica Piskac, Philippe Suter, and Thomas Wies. Building a Calculus
of Data Structures. In Verification, Model Checking, and Abstract Interpretation
(VMCAI’10), pages 26–44, 2010.

BIBLIOGRAPHY 317

[KR11] Markus Krötzsch and Sebastian Rudolph. Extending Decidable Existential Rules
by Joining Acyclicity and Guardedness. In Artificial Intelligence (IJCAI’11), pages
963–968, 2011.

[Kro67] Melven R. Krom. The Decision Problem for Segregated Formulas in First-Order
Logic. Mathematica Scandinavica, 21:233–240, 1967.

[KRSW17] Patrick Koopmann, Sebastian Rudolph, Renate A. Schmidt, and Christoph Wernhard,
editors. Proceedings of the Workshop on Second-Order Quantifier Elimination and
Related Topics (SOQE 2017), volume 2013 of CEUR Workshop Proceedings. CEUR-
WS.org, 2017.

[Kru13] Evgeny Kruglov. Superposition Modulo Theory. PhD thesis, Department of Computer
Science, Saarland University, 2013.

[KS10] Konstantin Korovin and Christoph Sticksel. iProver-Eq: An Instantiation-Based
Theorem Prover with Equality. In Automated Reasoning (IJCAR’10), pages 196–202,
2010.

[KS16] Daniel Kroening and Ofer Strichman. Decision Procedures. Texts in Theoretical
Computer Science. An EATCS Series. Springer, second edition, 2016.

[Kue71] D. G. Kuehner. A note on the relation between resolution and Maslov’s inverse
method. In Machine Intelligence 6, chapter 5, pages 73–76. Edinburgh University
Press, 1971.

[KV90] Phokion G. Kolaitis and Moshe Y. Vardi. 0-1 Laws and Decision Problems for
Fragments of Second-Order Logic. Information and Computation, 87(1/2):301–337,
1990.

[KV17] Laura Kovács and Andrei Voronkov. First-Order Interpolation and Interpolating
Proof Systems. In Logic for Programming, Artificial Intelligence and Reasoning
(LPAR’17), pages 49–64, 2017.

[KW12] Evgeny Kruglov and Christoph Weidenbach. Superposition Decides the First-Order
Logic Fragment Over Ground Theories. Mathematics in Computer Science, 6(4):427–
456, 2012.

[Lei93] Alexander Leitsch. Deciding Clause Classes by Semantic Clash Resolution. Funda-
menta Informaticae, 18:163–182, 1993.

[Lei97] Alexander Leitsch. The Resolution Calculus. Texts in theoretical computer science.
An EATCS Series. Springer, 1997.

[Lei99] Alexander Leitsch. Resolution and the Decision Problem. In Andrea Cantini, Ettore
Casari, and Pierluigi Minari, editors, Logic and Foundations of Mathematics: Selected
Contributed Papers of the Tenth International Congress of Logic, Methodology and
Philosophy of Science, Florence, August 1995, pages 249–269. Springer Netherlands,
1999.

[Lev73] Leonid A. Levin. Universal Sequential Search Problems. Problemy peredachi infor-
matsii, 9(3):115–116, 1973. An English translation can be found in the appendix
in [Tra84].

[Lew78] Harry R. Lewis. Complexity of Solvable Cases of the Decision Problem for the
Predicate Calculus. In Foundations of Computer Science (FOCS’78), pages 35–47,
1978.

318 BIBLIOGRAPHY

[Lew79] Harry R. Lewis. Unsolvable Classes of Quantificational Formulas. Addison-Wesley,
1979.

[Lew80] Harry R. Lewis. Complexity Results for Classes of Quantificational Formulas. Journal
of Computer and System Sciences, 21(3):317–353, 1980.

[Lew90] Harry R. Lewis. A Logic of Concrete Time Intervals (Extended Abstract). In Logic
in Computer Science (LICS’90), pages 380–389, 1990.

[Lib04] Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2004.

[Lif69] V. A. Lifshits. Some Reduction Classes and Undecidable Theories. In Studies
in Constructive Mathematics and Mathematical Logic, volume 4 of Seminars in
Mathematics, pages 24–25. Steklov Mathematical Institute, 1969.

[Lif89] Vladimir Lifschitz. What Is the Inverse Method? Journal of Automated Reasoning,
5(1):1–23, 1989.

[LMTV12] Nicola Leone, Marco Manna, Giorgio Terracina, and Pierfrancesco Veltri. Effi-
ciently Computable Datalog∃ Programs. In Knowledge Representation and Reasoning
(KR’12), 2012.

[Löb67] Martin H. Löb. Decidability of the monadic predicate calculus with unary function
symbols. Journal of Symbolic Logic, 32:563, 1967.

[Lon12] Florian Lonsing. Dependency Schemes and Search-Based QBF Solving: Theory and
Practice. PhD thesis, Johannes–Keppler–Universität Linz, 2012.

[Loś55] Jerzy Loś. On the extending of models (I). Fundamenta mathematicae, 42:38–54,
1955.

[Löw15] Leopold Löwenheim. Über Möglichkeiten im Relativkalkül. Mathematische Annalen,
76:447–470, 1915. English translation in [vH02].

[LW93] Rüdiger Loos and Volker Weispfenning. Applying Linear Quantifier Elimination. The
Computer Journal, 36(5):450–462, 1993.

[LW13] Manuel Lamotte-Schubert and Christoph Weidenbach. BDI: A New Decidable First-
order Clause Class. In Logic for Programming, Artificial Intelligence and Reasoning
(LPAR-19), EPiC 26, pages 62–74. EasyChair, 2013.

[LW17] Manuel Lamotte-Schubert and Christoph Weidenbach. BDI: a new decidable clause
class. Journal of Logic and Computation, 27(2):441–468, 2017.

[Lyn59] Roger C. Lyndon. An interpolation theorem in the predicate calculus. Pacific Journal
of Mathematics, 9(1):129–142, 1959.

[Mah03] Moez Mahfoudh. Sur la Vérification de la Satisfaction pour la Logique des Différences.
PhD thesis, Université Joseph Fourier – Grenoble 1, 2003.

[Mar01] Maarten Marx. Tolerance Logic. Journal of Logic, Language and Information,
10(3):353–374, 2001.

[Mas64] Sergei Yu. Maslov. An Inverse Method of Establishing Deducibilities in the Classical
Predicate Calculus. Doklady Akademii Nauk SSSR, 159:1420–1424, 1964.

[Mas68] Sergei Yu. Maslov. The Inverse Method for Establishing Deducibility for Logical
Calculi (in Russian). Trudy Matem. Inst. AN SSSR, 98:26–87, 1968.
English translation in Proceedings of the Steklov Institute of Mathematics 98:25–95,
1968. American Mathematical Society, 1971.

BIBLIOGRAPHY 319

[Mey74] Albert R. Meyer. The Inherent Computational Complexity of Theories of Ordered
Sets. In Proceedings of the International Congress of Mathematicians, pages 477–482,
1974.

[Min67] Marvin Lee Minsky. Computation: finite and infinite machines. Prentice-Hall, 1967.

[MNAM02] Moez Mahfoudh, Peter Niebert, Eugene Asarin, and Oded Maler. A Satisfiability
Checker for Difference Logic. In Theory and Applications of Satisfiability Testing
(SAT’02), pages 222–230, 2002.

[MO72] Sergei Yu. Maslov and V. P. Orevkov. Decidable classes reducing to a one-quantifier
class. Trudy Matem. Inst. AN SSSR, 121, 1972. In Russian. English translation
in Proceedings of the Steklov Institute of Mathematics 121:61–72, 1972. American
Mathematical Society, 1974.

[Mor75] Michael Mortimer. On Languages with Two Variables. Mathematical Logic Quarterly,
21(1):135–140, 1975.

[Mot36] T. S. Motzkin. Beiträge zur Theorie der Linearen Ungleichungen. PhD thesis,
University of Basel, 1936.

[MP15] Fabio Mogavero and Giuseppe Perelli. Binding Forms in First-Order Logic. In
Computer Science Logic (CSL’15), pages 648–665, 2015.

[Mug11] Marie-Laure Mugnier. Ontological Query Answering with Existential Rules. In Web
Reasoning and Rule Systems (RR’11), pages 2–23, 2011.

[MZ02] Zohar Manna and Calogero G. Zarba. Combining Decision Procedures. In Formal
Methods at the Crossroads. From Panacea to Foundational Support, 10th Anniversary
Colloquium of UNU/IIST, the International Institute for Software Technology of The
United Nations University, Lisbon, Portugal, Revised Papers, pages 381–422, 2002.

[NDFK12] Timothy Nelson, Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi.
Toward a More Complete Alloy. In Abstract State Machines, Alloy, B, VDM, and Z
(ABZ’12), pages 136–149, 2012.

[Nel84] Greg Nelson. Combining satisfiability procedures by equality-sharing. Contemporary
Mathematics, 29:201–211, 1984.

[Nie96] Robert Nieuwenhuis. Basic Paramodulation and Decidable Theories (Extended
Abstract). In Logic in Computer Science (LICS’96), pages 473–482, 1996.

[NMA+02] Peter Niebert, Moez Mahfoudh, Eugene Asarin, Marius Bozga, Oded Maler, and
Navendu Jain. Verification of Timed Automata via Satisfiability Checking. In Formal
Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT’02), pages 225–244,
2002.

[NNS02] Flemming Nielson, Hanne Riis Nielson, and Helmut Seidl. Normalizable Horn Clauses,
Strongly Recognizable Relations, and Spi. In Static Analysis (SAS’02), pages 20–35,
2002.

[NO79] Greg Nelson and Derek C. Oppen. Simplification by Cooperating Decision Procedures.
ACM Transactions on Programming Languages and Systems, 1(2):245–257, 1979.

[NO05] Robert Nieuwenhuis and Albert Oliveras. DPLL(T) with Exhaustive Theory Prop-
agation and Its Application to Difference Logic. In Computer Aided Verification
(CAV’05), pages 321–334, 2005.

[Noa80] Aris Noah. Predicate-functors and the limits of decidability in logic. Notre Dame
Journal of Formal Logic, 21(4):701–707, 1980.

320 BIBLIOGRAPHY

[NW01] Andreas Nonnengart and Christoph Weidenbach. Computing Small Clause Normal
Forms. In Alan Robinson and Andrei Voronkov, editors, Handbook of Automated
Reasoning, volume I, pages 335–367. Elsevier and MIT Press, 2001.

[Odi92] Piergiorgio Odifreddi. Classical Recursion Theory, volume 125 of Studies in Logic
and the Foundations of Mathematics. Elsevier, 1992.

[Opp80] Derek C. Oppen. Complexity, Convexity and Combinations of Theories. Theoretical
Computer Science, 12:291–302, 1980.

[Ott97] Martin Otto. Bounded Variable Logics and Counting: A Study in Finite Models,
volume 9 of Lecture Notes in Logic. Springer, 1997. Reprinted by Cambridge University
Press in 2017.

[Ott00] Martin Otto. An interpolation theorem. Bulletin of Symbolic Logic, 6(4):447–462,
2000.

[OW08] Joël Ouaknine and James Worrell. Some Recent Results in Metric Temporal Logic.
In Formal Modeling and Analysis of Timed Systems (FORMATS’08), pages 1–13,
2008.

[Pap94] Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[PdMB10] Ruzica Piskac, Leonardo Mendonça de Moura, and Nikolaj Bjørner. Deciding Effec-
tively Propositional Logic Using DPLL and Substitution Sets. Journal of Automated
Reasoning, 44(4):401–424, 2010.

[Pla84] David A. Plaisted. Complete Problems in the First-Order Predicate Calculus. Journal
of Computer and System Sciences, 29(1):8–35, 1984.

[PMP+16] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham.
Ivy: safety verification by interactive generalization. In Programming Language Design
and Implementation (PLDI’16), pages 614–630, 2016.

[PO12] Alberto Policriti and Eugenio Omodeo. The Bernays–Schönfinkel–Ramsey class for
set theory: decidability. Journal of Symbolic Logic, 77:896–918, 2012.

[Pra77] Vaughan R. Pratt. Two Easy Theories Whose Combination is Hard. Technical report,
Massachusetts Institute of Technology, 1977.

[Pre29] Mojżesz Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In Spra-
wozdanie z I Kongresu matematyków krajów s lowiańskich, Warszawa, pages 92–101,
1929. See [Sta84] for an English translation.

[PST16] Ian Pratt-Hartmann, Wieslaw Szwast, and Lidia Tendera. Quine’s Fluted Fragment
is Non-Elementary. In Computer Science Logic (CSL’16), pages 39:1–39:21, 2016.

[Pur96a] William C. Purdy. Decidability of Fluted Logic with Identity. Notre Dame Journal
of Formal Logic, 37(1):84–104, 1996.

[Pur96b] William C. Purdy. Fluted Formulas and the Limits of Decidability. Journal of
Symbolic Logic, 61(2):608–620, 1996.

[Pur99] William C. Purdy. Quine’s ’Limits of Decision’. Journal of Symbolic Logic, 64(4):1439–
1466, 1999.

[Pur02] William C. Purdy. Complexity and Nicety of Fluted Logic. Studia Logica, 71(2):177–
198, 2002.

BIBLIOGRAPHY 321

[Put57] Hilary Putnam. Decidability and Essential Undecidability. Journal of Symbolic Logic,
22(1):39–54, 1957.

[PV07a] Juan Antonio Navarro Pérez and Andrei Voronkov. Encodings of Bounded LTL Model
Checking in Effectively Propositional Logic. In Automated Deduction (CADE-21),
pages 346–361, 2007.

[PV07b] Juan Antonio Navarro Pérez and Andrei Voronkov. Encodings of Problems in
Effectively Propositional Logic. In Theory and Applications of Satisfiability Testing
(SAT’07), page 3, 2007.

[PV08] Juan Antonio Navarro Pérez and Andrei Voronkov. Proof Systems for Effectively
Propositional Logic. In Automated Reasoning (IJCAR’08), pages 426–440, 2008.

[PV13] Juan Antonio Navarro Pérez and Andrei Voronkov. Planning with Effectively Propo-
sitional Logic. In Programming Logics – Essays in Memory of Harald Ganzinger,
pages 302–316, 2013.

[QSW17] Karin Quaas, Mahsa Shirmohammadi, and James Worrell. Revisiting reachability in
timed automata. In Logic in Computer Science (LICS’17), pages 1–12, 2017.

[Qui69] Willard Van Orman Quine. On the Limits of Decision. In 14th International Congress
of Philosophy, volume III, pages 57–62, 1969. An extended version appeared in
W.V.Quine Theories and Things, Harvard University Press, 1981.

[Qui76] Willard Van Orman Quine. The Variable. In Willard Van Orman Quine, editor, The
Ways of Paradox and other essays. Revised and enlarged edition. Harvard University
Press, 1976.

[Rab69] Michael O. Rabin. Decidability of Second-Order Theories and Automata on Infinite
Trees. Transactions of the American Mathematical Society, 141:1–35, 1969.

[Rac75] Charles W. Rackoff. The complexity of theories of the monadic predicate calculus.
Technical Report , IRIA Report 136, 1975.

[Ram30] Frank Plumpton Ramsey. On a Problem of Formal Logic. Proceedings of The London
Mathematical Society, s2-30:264–286, 1930.

[Ran87] Veikko Rantala. Constituents. In Radu J. Bogdan, editor, Jaakko Hintikka, pages
43–76. Springer Netherlands, 1987.

[RBF18] Andrew Reynolds, Haniel Barbosa, and Pascal Fontaine. Revisiting Enumerative
Instantiation. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’18), pages 112–131, 2018.

[RESW14] Salvatore Ruggieri, Pavlos Eirinakis, K. Subramani, and Piotr J. Wojciechowski.
On the complexity of quantified linear systems. Theoretical Computer Science,
518:128–134, 2014.

[RIS17] Andrew Reynolds, Radu Iosif, and Cristina Serban. Reasoning in the Bernays–
Schönfinkel–Ramsey Fragment of Separation Logic. In Verification, Model Checking,
and Abstract Interpretation (VMCAI’17), pages 462–482, 2017.

[RK15] Andrew Reynolds and Viktor Kuncak. Induction for SMT Solvers. In Verification,
Model Checking, and Abstract Interpretation (VMCAI’15), pages 80–98, 2015.

[RKK17] Andrew Reynolds, Tim King, and Viktor Kuncak. Solving quantified linear arithmetic
by counterexample-guided instantiation. Formal Methods in System Design, 51(3):500–
532, 2017.

322 BIBLIOGRAPHY

[Rob49] Julia Robinson. Definability and Decision Problems in Arithmetic. Journal of
Symbolic Logic, 14(2):98–114, 1949.

[Rog87] Hartley Rogers. Theory of recursive functions and effective computability. MIT Press,
1987. This is a paperback reprint of the 1967 original with the same author and title
published by McGraw-Hill.

[RRT04] Silvio Ranise, Christophe Ringeissen, and Duc-Khanh Tran. Nelson–Oppen, Shostak
and the Extended Canonizer: A Family Picture with a Newborn. In Theoretical
Aspects of Computing (ICTAC’04), Revised Selected Papers, pages 372–386, 2004.

[RRZ05] Silvio Ranise, Christophe Ringeissen, and Calogero G. Zarba. Combining Data
Structures with Nonstably Infinite Theories Using Many-Sorted Logic. In Frontiers
of Combining Systems (FroCoS’05), pages 48–64, 2005.

[RS01] Harald Rueß and Natarajan Shankar. Deconstructing Shostak. In Logic in Computer
Science (LICS’01), pages 19–28, 2001.

[RSH+16] Thomas Rebele, Fabian M. Suchanek, Johannes Hoffart, Joanna Biega, Erdal Kuzey,
and Gerhard Weikum. YAGO: A Multilingual Knowledge Base from Wikipedia,
Wordnet, and Geonames. In The Semantic Web (ISWC’16), pages 177–185, 2016.

[RTdM14] Andrew Reynolds, Cesare Tinelli, and Leonardo Mendonça de Moura. Finding
conflicting instances of quantified formulas in SMT. In Formal Methods in Computer-
Aided Design (FMCAD’14), pages 195–202, 2014.

[RV01] John Alan Robinson and Andrei Voronkov. Handbook of Automated Reasoning. I &
II. North Holland, 2001.

[Sam08] Marko Samer. Variable Dependencies of Quantified CSPs. In Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR’08), pages 512–527, 2008.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. Journal of Computer and System Sciences, 4(2):177–192, 1970.

[SBTW18] Anders Schlichtkrull, Jasmin Christian Blanchette, Dmitriy Traytel, and Uwe Wald-
mann. Formalizing Bachmair and Ganzinger’s Ordered Resolution Prover. In Auto-
mated Reasoning (IJCAR’18), pages 89–107, 2018.

[SC10] Abhisekh Sankaran and Supratik Chakraborty. On Semantic Generalizations of the
Bernays-Schönfinkel-Ramsey Class with Finite or Co-finite Spectra. ArXiv preprint,
arXiv:1002.4334 [cs.LO], 2010.

[Sch34a] Kurt Schütte. Über die Erfüllbarkeit einer Klasse von logischen Formeln. Mathema-
tische Annalen, 110(2):161–194, 1934.

[Sch34b] Kurt Schütte. Untersuchungen zum Entscheidungsproblem der mathematischen Logik.
Mathematische Annalen, 109(4):572–603, 1934.

[Sch99] Alexander Schrijver. Theory of linear and integer programming. Wiley-Interscience
series in discrete mathematics and optimization. Wiley, 1999.

[Sch08] Uwe Schöning. Logic for Computer Scientists. Birkhäuser, 2008.

[Sch16] Sylvain Schmitz. Complexity Hierarchies beyond Elementary. ACM Transactions on
Computation Theory, 8(1):3:1–3:36, 2016.

[Sco62] Dana Scott. A decision method for validity of sentences in two variables. Journal of
Symbolic Logic, 27:477, 1962.

BIBLIOGRAPHY 323

[Seg17] Luc Segoufin. A survey on guarded negation. SIGLOG News, 4(3):12–26, 2017.

[SH00] Renate A. Schmidt and Ullrich Hustadt. A Resolution Decision Procedure for Fluted
Logic. In Automated Deduction (CADE-17), pages 433–448, 2000.

[She75] Saharon Shelah. The Monadic Theory of Order. Annals of Mathematics, 102(3):379–
419, 1975.

[She77] Saharon Shelah. Decidability of a portion of the predicate calculus. Israel Journal
on Mathematics, 28:32–44, 1977.

[Sho84] Robert E. Shostak. Deciding Combinations of Theories. Journal of the ACM,
31(1):1–12, 1984.

[Sko19] Thoralf Skolem. Untersuchungen über die Axiome des Klassenkalküls und über
Produktations- und Summationsprobleme welche gewisse Klassen von Aussagen
betreffen. Videnskapsselskapets Skrifter I. Mat.-Nat. Klasse (3), 1919.

[Sko35] Thoralf Skolem. Ein Satz über Zählausdrücke. ACTA Scientarium Mathematicarum,
7:193–199, 1935.

[SKW08] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. YAGO: A Large
Ontology from Wikipedia and WordNet. Journal of Web Semantics, 6(3):203–217,
2008.

[SM75] Jürgen Schulte-Mönting. Interpolation formulae for predicates and terms which carry
their own history. Archive for Mathematical Logic, 17(3-4):159–169, 1975.

[Smu95] Raymond M. Smullyan. First-Order Logic. Dover Publications, 1995.

[Soa87] Robert Irving Soare. Recursively Enumerable Sets and Degrees. Springer, 1987.

[Soa16] Robert Irving Soare. Turing Computability Theory and Applications. Theory and
Applications of Computability, In cooperation with the association Computability in
Europe. Springer, 2016.

[Sof13] Viorica Sofronie-Stokkermans. On Combinations of Local Theory Extensions. In
Programming Logics – Essays in Memory of Harald Ganzinger, pages 392–413, 2013.

[Sof14] Viorica Sofronie-Stokkermans. Hierarchical Reasoning in Local Theory Extensions
and Applications. In Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC’14), pages 34–41, 2014.

[Spe13a] Stanislav O. Speranski. Collapsing probabilistic hierarchies. I. Algebra and Logic,
52(2):159–171, 2013.

[Spe13b] Stanislav O. Speranski. A note on definability in fragments of arithmetic with free
unary predicates. Archive for Mathematical Logic, 52(5-6):507–516, 2013.

[SR02] Natarajan Shankar and Harald Rueß. Combining Shostak Theories. In Rewriting
Techniques and Applications (RTA’02), pages 1–18, 2002.

[SR11] Helmut Seidl and Andreas Reuß. Extending H1-clauses with disequalities. Information
Processing Letters, 111(20):1007–1013, 2011.

[SR12] Helmut Seidl and Andreas Reuß. Extending H1-Clauses with Path Disequalities.
In Foundations of Software Science and Computational Structures (FOSSACS’12),
pages 165–179, 2012.

[SS06] Geoff Sutcliffe and Christian B. Suttner. The state of CASC. AI Communications,
19(1):35–48, 2006.

324 BIBLIOGRAPHY

[SS09] Marko Samer and Stefan Szeider. Backdoor Sets of Quantified Boolean Formulas.
Journal of Automated Reasoning, 42(1):77–97, 2009.

[SSB02] Ofer Strichman, Sanjit A. Seshia, and Randal E. Bryant. Deciding Separation
Formulas with SAT. In Computer Aided Verification (CAV’02), pages 209–222, 2002.

[ST08] Renate A. Schmidt and Dmitry Tishkovsky. A General Tableau Method for Deciding
Description Logics, Modal Logics and Related First-Order Fragments. In Automated
Reasoning (IJCAR’08), pages 194–209, 2008.

[Sta84] Ryan Stansifer. Presburger’s Article on Integer Arithmetic: Remarks and Translation.
Technical Report TR84-639, Cornell University, Computer Science Department, 1984.

[StC13] Luc Segoufin and Balder ten Cate. Unary negation. Logical Methods in Computer
Science, 9(3), 2013.

[Stu17] Thomas Sturm. A Survey of Some Methods for Real Quantifier Elimination, Decision,
and Satisfiability and Their Applications. Mathematics in Computer Science, 11(3-
4):483–502, 2017.

[Stu18] Thomas Sturm. Thirty Years of Virtual Substitution: Foundations, Techniques,
Applications. In Symbolic and Algebraic Computation (ISSAC’18), pages 11–16, 2018.

[Sur59] János Surányi. Reduktionstheorie des Entscheidungsproblems im Prädikatenkalkül
der ersten Stufe. Verlag der Ungarischen Akademie der Wissenschaften, 1959.

[Sut18] Geoff Sutcliffe. The 9th IJCAR Automated Theorem Proving System Competition –
CASC-J9. AI Communications, 31(6):495–507, 2018.

[SV06] Helmut Seidl and Kumar Neeraj Verma. Cryptographic Protocol Verification Using
Tractable Classes of Horn Clauses. In Program Analysis and Compilation, Theory
and Practice, Essays Dedicated to Reinhard Wilhelm on the Occasion of His 60th
Birthday, pages 97–119, 2006.

[SV08] Helmut Seidl and Kumar Neeraj Verma. Flat and one-variable clauses: Complexity
of verifying cryptographic protocols with single blind copying. ACM Transactions on
Computational Logic, 9(4):28:1–28:45, 2008.

[SVW16] Thomas Sturm, Marco Voigt, and Christoph Weidenbach. Deciding First-Order
Satisfiability when Universal and Existential Variables are Separated. In Logic
in Computer Science (LICS’16), pages 86–95. IEEE/ACM, 2016. An extended
version is available at the arXiv preprint server (arXiv.org) under the signature
arXiv:1511.08999 [cs.LO].

[SWW10] Martin Suda, Christoph Weidenbach, and Patrick Wischnewski. On the Saturation
of YAGO. In Automated Reasoning (IJCAR’10), pages 441–456, 2010.

[Sze88] Róbert Szelepcsényi. The Method of Forced Enumeration for Nondeterministic
Automata. Acta Informatica, 26(3):279–284, 1988.

[Tam91] Tanel Tammet. Resolution methods for decision problems and finite-model building.
PhD thesis, Chalmers University of Technology, Göteborg, Sweden, 1991.

[Tam95] Tanel Tammet. Using Resolution for Extending KL-ONE-type Languages. In
Information and Knowledge Management (CIKM’95), pages 326–332, 1995.

[Tar54] Alfred Tarski. Contributions to the theory of models. I. Indagationes Mathematicae,
XVI:572–581, 1954.

BIBLIOGRAPHY 325

[Tar57] Alfred Tarski. A Decision Method for Elementary Algebra and Geometry. Technical
Report R-109, RAND Corporation, 1948. Revised in 1951. Second Edition 1957.
Prepared for publication by J.C.C. McKinsey. Reprinted in 1998 [Tar98].

[Tar98] Alfred Tarski. A Decision Method for Elementary Algebra and Geometry. In Bob F.
Caviness and Jeremy R. Johnson, editors, Quantifier Elimination and Cylindrical
Algebraic Decomposition, pages 24–84. Springer, 1998.

[Teu17] Andreas Teucke. An Approximation and Refinement Approach to First-Order Auto-
mated Reasoning. PhD thesis, Department of Computer Science, Saarland University,
2017.

[TH96] Cesare Tinelli and Mehdi T. Harandi. A New Correctness Proof of the Nelson–Oppen
Combination Procedure. In Frontiers of Combining Systems (FroCoS’96), pages
103–119, 1996.

[TR03] Cesare Tinelli and Christophe Ringeissen. Unions of non-disjoint theories and
combinations of satisfiability procedures. Theoretical Computer Science, 290(1):291–
353, 2003.

[Tra84] Boris A. Trakhtenbrot. A Survey of Russian Approaches to Perebor (Brute-Force
Search) Algorithms. IEEE Annals of the History of Computing, 6(4):384–400, 1984.

[TRRK10] Duc-Khanh Tran, Christophe Ringeissen, Silvio Ranise, and Hélène Kirchner. Com-
bination of convex theories: Modularity, deduction completeness, and explanation.
Journal of Symbolic Computation, 45(2):261–286, 2010.

[TS96] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory, volume 43 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1996.

[TSSP04] Muralidhar Talupur, Nishant Sinha, Ofer Strichman, and Amir Pnueli. Range
Allocation for Separation Logic. In Computer Aided Verification (CAV’04), pages
148–161, 2004.

[Tur36] Alan Mathison Turing. On Computable Numbers, with an Application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society, s2-42(1):230–
265, 1936.

[Tur38] Alan Mathison Turing. On Computable Numbers, with an Application to the
Entscheidungsproblem. A Correction. Proceedings of the London Mathematical
Society, s2-43(1):544–546, 1938.

[TW15] Andreas Teucke and Christoph Weidenbach. First-Order Logic Theorem Proving and
Model Building via Approximation and Instantiation. In Frontiers of Combining
Systems (FroCoS’15), pages 85–100, 2015.

[TW17] Andreas Teucke and Christoph Weidenbach. Decidability of the Monadic Shallow
Linear First-Order Fragment with Straight Dismatching Constraints. In Automated
Deduction (CADE-26), pages 202–219, 2017.

[TZ05] Cesare Tinelli and Calogero G. Zarba. Combining Nonstably Infinite Theories.
Journal of Automated Reasoning, 34(3):209–238, 2005.

[Vää07] Jouko A. Väänänen. Dependence Logic – A New Approach to Independence Friendly
Logic, volume 70 of London Mathematical Society student texts. Cambridge University
Press, 2007.

[vB97] Johan van Benthem. Dynamic bits and pieces. Technical Report LP-97-01, Institute
for Logic, Language and Computation (ILLC), University of Amsterdam, 1997.

326 BIBLIOGRAPHY

[vD13] Dirk van Dalen. Logic and Structure. Springer, fifth edition, 2013.

[Vea97a] Margus Veanes. Computational Complexity of Basic Decision Problems of Finite
Tree Automata. Technical Report UPMAIL 133, Computing Science Department,
Uppsala University, 1997.

[Vea97b] Margus Veanes. On Simultaneous Rigid E-Unification. PhD thesis, Computing
Science Department, Uppsala University, 1997.

[vH02] Jean van Heijenoort. From Frege to Gödel – A Source Book in Mathematical Logic,
1879–1931. Harvard University Press, 2002.

[Voi17a] Marco Voigt. The Bernays–Schönfinkel–Ramsey Fragment with Bounded Difference
Constraints over the Reals is Decidable. In Frontiers of Combining Systems (Fro-
CoS’17), pages 244–261, 2017. An extended version is available at the arXiv preprint
server (arXiv.org) under the signature arXiv:1706.08504 [cs.LO].

[Voi17b] Marco Voigt. A Fine-Grained Hierarchy of Hard Problems in the Separated Fragment.
In Logic in Computer Science (LICS’17), pages 1–12. IEEE/ACM, 2017. An extended
version is available at the arXiv preprint server (arXiv.org) under the signature
arXiv:1704.02145 [cs.LO].

[Voi17c] Marco Voigt. On Generalizing Decidable Standard Prefix Classes of First-Order
Logic. ArXiv preprint, (arXiv:1706.03949 [cs.LO]), 2017.

[Voi17d] Marco Voigt. Towards Elimination of Second-Order Quantifiers in the Separated
Fragment. In Proceedings of the Workshop on Second-Order Quantifier Elimination
and Related Topics (SOQE 2017), pages 67–81, 2017.

[VW15] Marco Voigt and Christoph Weidenbach. Bernays–Schönfinkel–Ramsey with Simple
Bounds is NEXPTIME-complete. ArXiv preprint, arXiv:1501.07209 [cs.LO], 2015.

[Wei88] Volker Weispfenning. The Complexity of Linear Problems in Fields. Journal of
Symbolic Computation, 5(1/2):3–27, 1988.

[Wei97] Volker Weispfenning. Quantifier Elimination for Real Algebra – the Quadratic Case
and Beyond. Applicable Algebra in Engineering, Communication and Computing,
8(2):85–101, 1997.

[Wei98] Christoph Weidenbach. Sorted Unification and Tree Automata. In Wolfgang Bibel
and Peter H. Schmitt, editors, Automated Deduction – A Basis for Applications.
Volume I: Foundations – Calculi and Methods, volume 8 of Applied Logic Series, pages
291–320. Kluwer Academic Publishers, 1998.

[Wei99] Christoph Weidenbach. Towards an Automatic Analysis of Security Protocols in
First-Order Logic. In Automated Deduction (CADE-16), LNCS 1632, pages 314–328.
Springer, 1999.

[Wer15a] Christoph Wernhard. Heinrich Behmann’s Contributions to Second-Order Quantifier
Elimination from the View of Computational Logic. Technical report, TU Dresden,
2015.

[Wer15b] Christoph Wernhard. Second-Order Quantifier Elimination on Relational Monadic
Formulas – A Basic Method and Some Less Expected Applications. In Automated
Reasoning with Analytic Tableaux and Related Methods (TABLEAUX’15), pages
253–269, 2015.

[WGG06] Chao Wang, Aarti Gupta, and Malay K. Ganai. Predicate Learning and Selective
Theory Deduction for a Difference Logic Solver. In Design Automation Conference
(DAC’06), pages 235–240, 2006.

BIBLIOGRAPHY 327

[Wil86] H. Paul Williams. Fourier’s Method of Linear Programming and Its Dual. The
American Mathematical Monthly, 93(9):681–695, 1986.

[Wir76] Martin Wirsing. Das Entscheidungsproblem der Prädikatenlogik 1. Stufe mit Iden-
tität und Funktionszeichen in Herbrandformeln. PhD thesis, Ludwig–Maximilians–
Universität München, 1976.

[Wir77] Martin Wirsing. Das Entscheidungsproblem der Klasse von Formeln, die höchstens
zwei Primformeln enthalten. Manuscripta Mathematica, 22:13–25, 1977.

[Wir78] Martin Wirsing. Kleine unentscheidbare Klassen der Prädikatenlogik mit Identität
und Funktionszeichen. Archiv für mathematische Logik und Grundlagenforschung,
19(1):97–109, 1978.

[Wis12] Patrick Wischnewski. Efficient Reasoning Procedures for Complex First-Order Theo-
ries. PhD thesis, Department of Computer Science, Saarland University, 2012.

[WPK09] Thomas Wies, Ruzica Piskac, and Viktor Kuncak. Combining Theories with Shared
Set Operations. In Frontiers of Combining Systems (FroCoS’09), LNCS 5749, pages
366–382. Springer, 2009.

[Zam87] N. K. Zamov. On a Connection Between the Resolution Method and the Inverse
Method. In Fundamentals of Computation Theory (FCT’87), pages 501–505, 1987.

Index

2SAT, 143
3SAT, 145
∃∗-GBSR, 140
∃∗-SF, 140
A-color, 235
A-coloring, 235
JA-equivalence, 234
JA-uniformity, 220, 235
'̂κ-uniformity, 220
'κ-uniformity, 220
Π0

1, 277
Σ0

1, 277

abstraction, 224
Ackermann fragment (AF), 3, 24, 42, 67, 70, 76,

77, 80, 174, 222, 293–295
additive constraint, 218, 265
almost uninterpreted formulas, 288
analytical hierarchy, 278
anti-prenexing, 191
argument position, 103
arithmetical hierarchy, 276
array property fragment, 219, 298–301
atom

Σ-∼, 9
linear ∼, 89

Basic Elimination Lemma, 208
Bell number, 148
benign co-occurrence, 55, 56, 58
Bernays–Schönfinkel fragment (BS), 24, 147,

168, 298, 299
Bernays–Schönfinkel–Ramsey

fragment (BSR), 3, 5, 19, 24, 29, 39,
61, 102, 104, 124, 157, 218, 222, 227,
240, 243, 291, 293–296, 299

block-separated fragment of linear
rational arithmetic (BSF-LRA), 190

Boolean combination, 9, 26, 96, 100, 254
BSR with bounded difference

constraints (BSR(BD)), 5, 219, 227,
245, 296–301

BSR with simple linear rational
constraints (BSR(SLR)), 5, 219, 227,
233, 242, 251, 296–301

BSR(BD) normal form, 228
BSR(SLR) normal form, 228
BSR-Sat, 140, 241, 253

Church–Turing thesis, 1
classical decision problem, 23, 139, 181, 291
clause, 10

Ackermann-like ∼, 177
Bernays–Schönfinkel–

Ramsey ∼ (BSR clause), 224
unit ∼, 10

clause set
encoding length of a ∼, 224
length of a ∼, 224
saturated ∼, 170, 176

clique-guarded fragment, 27
clock, 254

atomic ∼ constraint, 254
constraint, 254
valuation, 255
variable, 254

coloring, 231
A-∼, 235

compactness, 116, 276
companion

conjunctive ∼, 63
disjunctive ∼, 63

completeness
model ∼, 280
refutational ∼, 170, 276, 280
sufficient ∼, 276

configuration of a two-counter machine, 265
conjunctive companion, 63
conjunctive normal form (CNF), 10, 28, 62, 145,

276
connected component, 56
constraint satisfaction problem (CSP), 191
counting quantifier, 30, 40
Craig–Lyndon interpolation, 6, 167, 168, 174,

293

328

INDEX 329

decision procedure, 20, 23, 147, 204, 219, 221,
229, 235, 238, 240, 242, 251, 253, 286,
295, 297, 301

degree of interaction
for GAF sentences, 137
for GBSR sentences, 58, 66, 139
of existential variables, 31, 139
of universal variables, 122, 139

dependence
finitely controllable ∼, 112, 124
strong ∼, 19, 20, 28, 111, 124
weak ∼, 5, 6, 19, 20, 28, 111, 122, 124, 293,

295
dependence logic, 192, 295
dependency scheme, 191
diagonal constraint, 255
difference constraint, 5, 218, 219, 221, 227, 254,

265, 279, 284, 297
bounded ∼, 227

difference constraint graph, 228
difference logic, 228, 254
disjunctive companion, 63
disjunctive normal form (DNF), 10, 62
distance

of domain elements, 46
domain, 11

Herbrand ∼, 13, 103
domino problem, 3

bounded ∼, 45, 149, 150
unconstrained ∼, 40, 150

domino system
bounded ∼, 149
unconstrained ∼, 41

effectively propositional logic (EPR), 294
Elementary, 140
elimination lemma, 208
elimination set, 21, 186, 229
entailment

semantic ∼, 12, 224
equality over uninterpreted functions (EUF)

theory of ∼, 242, 285, 288, 298
equisatisfiability, 11
equivalence
T -∼, 12
for timed automata, 255
semantic ∼, 12, 224

equivalence class, 14
essentially uninterpreted fragment, 301
existential first-order fragment (∃FO), 42, 140,

142
existential rule, 28
exponential-time hierarchy, 142

fingerprint, 112, 114, 117, 125, 181, 187, 196,
197

fingerprint function, 114, 117, 118, 125, 181,
189, 197

λx,`, 125
µ`, 189
µ`,k, 118

finite model property, 23, 24, 25, 29, 36, 61, 103,
109, 112, 122, 124, 139, 220, 296

finite-variable logic, 92, 95, 141
fluted fragment (FL), 3, 26, 39, 42, 99, 100, 115,

141
FOL(LA) encoding, 256
fomula

Horn, 275, 297
Krom, 275, 297

formula
Σ-∼, 9
r-local ∼, 46, 55
atomic Σ-∼, 9
basic ∼, 18, 94, 96, 101, 192
binary encoding of a ∼, 11
closed ∼, 10
encoding length of a ∼, 11, 224
first-order ∼, 9
GF ∼, 83
GNFO ∼, 93
ground ∼, 10
guarded-negation ∼, 92
guarded ∼, 83
Horn ∼, 10, 27, 37, 39, 104, 106, 143, 146,

147, 154, 156, 157, 266, 276, 279
in conjunctive normal form, 10
in disjunctive normal form, 10
in negation normal form, 10
in prenex normal form, 10
in standard form, 10
Krom ∼, 10, 25, 28, 37, 39, 143, 146, 147
length of a ∼, 10
LGF ∼, 83
local ∼, 46
loosely guarded ∼, 83
LRA+PN ∼, 224
LRA ∼, 182, 223
matrix of a ∼, 10
monadic ∼, 22
PA+P ∼, 223
PA ∼, 223
positive ∼, 185
propositional ∼, 143
quantified Σ-∼, 9
relational ∼, 10
satisfied ∼, 11
second-order ∼, 14

330 INDEX

segregated ∼, 19
separated guarded-negation ∼, 93
separated loosely guarded ∼, 83
SGF ∼, 84
SGNFO ∼, 93
SLGF ∼, 84

Fourier–Motzkin elimination, 20, 230
fractional part, 225

GAF special form, 70, 74
GAF-Sat, 70
Gaifman graph, 46
Gaifman normal form, 46, 61, 292
GBSR with simple linear rational

constraints (GBSR(SLR)), 245
GBSR-Sat, 57, 61, 140
generalized Ackermann fragment (GAF), 3, 67,

102, 292, 293, 295
generalized Bernays–Schönfinkel–Ramsey

fragment (GBSR), 3, 56, 102–104, 139,
220, 244, 291–293, 295, 298

generalized Gödel–Kalmár–Schütte
fragment (GGKS), 3, 77, 102, 292, 293

GGKS special form, 80
GGKS-Sat, 80
GNFO-Sat, 93
Gödel–Kalmár–Schütte fragment (GKS), 3, 24,

42, 77, 293
guard, 21, 83, 168, 295

atomic ∼, 83, 92
loose ∼, 83
negation ∼, 92
separated negation ∼, 93

guarded fragment (GF), 3, 26, 39, 83, 168, 222,
291, 294

guarded-negation fragment (GNFO), 3, 27, 93,
292

Gurevich–Maslov–Orevkov fragment, 24, 67, 76

H1, 27, 106
halting problem, 265, 297
hashtable property fragment, 219
Henkin quantifier, 192, 295
Herbrand domain, 13, 103, 107
Herbrand fragment, 28
Herbrand model

least ∼, 13, 27
minimal ∼, 13, 27, 105, 106

Herbrand structure, 13, 103, 105, 106, 143
Herzig’s ordered fragment, 26, 99, 100
hierarchic superposition, 242, 276, 301

independence logic, 192, 295
infinity axiom, 24, 40

integral part, 225
interpolant, 167, 168, 174
interpolation

Craig–Lyndon ∼, 6, 167, 168, 174, 293
intersection non-emptiness problem, 104
inverse method, 25

Lewis’ fragment T , 27
lexicographic path ordering (LPO), 169
linear program, 241
linear rational arithmetic (LRA), 6, 20, 181, 182,

217, 223, 297
linear-time temporal logic, 222
literal, 10
LK>⊥, 174
Löb–Gurevich fragment, 24, 31, 76, 102
location, 254

initial ∼, 254
location invariant, 255
location transition relation, 255
loosely guarded fragment (LGF), 3, 26, 83, 168,

222, 291, 294
Löwenheim fragment, 23
LRA formula, 223
LRA term, 223
LRA+PN formula, 224
LRA+PN term, 224

Maslov fragment, 25, 28, 147, 149
Maslov’s fragment K, 25, 42, 56, 76, 80, 99, 142,

291, 295
matrix, 10
metric temporal logic, 222
miniscoping, 191
Minsky machine, 1, 265
model, 11
model-checking game, 5, 20, 57, 70, 113, 117,

124, 197
monadic first-order fragment (MFO), 3, 22, 23,

29, 36, 39, 70, 76, 80, 84, 93, 95, 100,
102, 104, 115, 123, 141, 147, 157, 204,
222, 291, 292, 294, 298

monadic second-order fragment (MSO), 23, 29,
204, 212

monadic second-order theory of
one successor (S1S), 220

monadic shallow linear
Horn fragment (MSLH), 27, 104

multiplicative constraint, 218, 265

negation
guarded ∼, 92
scope of a ∼ sign, 9

negation normal form, 10

INDEX 331

negative occurrence, 168
neighborhood

r-∼, 46
Nelson–Oppen combination framework, 221, 242,

285, 294, 298

one-free fragment, 28
outcome, 117, 125

PA formula, 223
PA term, 223
PA+P formula, 223
PA+P term, 223
packed guarded fragment, 27
path, 228

length of a ∼, 228
simple ∼, 228

polarity, 21, 22, 156
polynomial-time hierarchy (PH), 142
positive occurrence, 168
positive variable dominated

clause fragment (PVD), 28
power set, 14
precedence, 169
prenex normal form, 10
preorder, 239
Presburger arithmetic, 4, 6, 20, 217, 223, 263,

264, 297
universal fragment of ∼, 264

pseudo-integers, 281
purification, 224

quantified Boolean formula (QBF), 142, 191
quantifier

block, 9
counting ∼, 30
guarded ∼, 83
Henkin ∼, 192
leading ∼, 29
rank, 10
scope of a ∼, 9, 83, 193

quantifier elimination, 20, 299
first-order ∼, 20, 183, 185, 217, 244
second-order ∼, 22, 29, 204

quantifier shifting, 12, 15, 35, 56, 62, 67
quotient constraint, 218, 265
quotient set, 14

Rabin fragment, 24, 28, 76
Ramsey theory, 24, 231
reachability problem, 6, 222, 298
recurrence problem, 275, 297
reference variable, 67, 78, 113, 124
refinement of an equivalence relation, 14

refutational completeness, 170, 276, 280
representative, 107, 119, 127, 198
resolution

ordered ∼, 169
rewrite function, 148
run

of a two-counter machine, 265

SAT, 143, 147
Horn-∼, 143, 147
Krom-∼, 143, 147

satisfiability, 11
saturation, 170
scope

of a negation sign, 9
of a quantifier, 9, 83, 193

Scott normal form, 97
selection function, 33, 205

for ordered resolution, 170
sentence

Σ-∼, 10
basic local ∼, 46
inconsistent ∼, 11
invalid ∼, 11
monadic ∼, 22
satisfiable ∼, 11
valid ∼, 11

separated k-variable fragment (SFOk), 95
separated fluted fragment (SFL), 3, 99, 100, 102,

292
separated fragment (SF), 3, 19, 29, 102, 104,

124, 139, 220, 244, 291–293, 295, 298
separated guarded fragment (SGF), 3, 83, 102,

291, 292, 295
separated guarded-negation fragment (SGNFO),

3, 93, 102, 292
separated loosely guarded fragment (SLGF), 3,

83, 102, 291, 292, 295
separated two-variable fragment (SFO2), 3, 96,

102, 292, 293
separateness of variables, 15

strict ∼, 15
separation logic, 286, 298
separation predicate, 219
sequent calculus, 174
SF-Sat, 29, 31, 40, 45, 139
SFL-Sat, 101
SFO2-Sat, 96
SGF-Sat, 84
SGNFO-Sat, 95
Shelah fragment, 24, 67, 76
Shostak combination framework, 242
signature, 9
simple cycle, 228

332 INDEX

Skolem constant, 12, 224
Skolem fragment, 25, 25, 42, 291
Skolem function, 12, 187
Skolem term, 12
Skolemization, 6, 12, 19, 111, 191, 293, 295

exhaustive ∼, 12
SLGF-Sat, 84
small model property, 23, 36, 61, 122, 124, 139
sort

background ∼, 223
base ∼, 223
free ∼, 223
uninterpreted ∼, 223

spectrum, 294
stable infiniteness, 243
standard form, 10
standard translation, 26
state transition system, 255
strategy, 5, 20, 111, 113, 117, 124, 125, 197

λ-semi-uniform ∼, 125, 126
µ-uniform ∼, 117, 118, 124, 190
ν-ξ-uniform ∼, 198, 202
satisfying ∼, 5, 20, 113, 115, 117, 124, 125,

190, 196
semi-uniform ∼, 113, 125
target set of a ∼, 123, 130, 136, 190
uniform ∼, 113, 115, 117
winning ∼, 5, 38, 113, 117

stratified occurrences of function symbols, 103
stratified vocabulary, 103, 299
strongly separated fragment (SSF), 32, 36, 42,

141, 190
structure

Σ-∼, 11
'̂κ-uniform ∼, 246
'κ-uniform ∼, 246
Herbrand ∼, 13, 103, 105, 143
sub-∼, 12
uniform ∼, 220, 299

substitution, 10, 170
sequential ∼, 10
simultaneous ∼, 10
virtual ∼, 20, 185, 229, 244

Substructure Lemma, 12
sufficient completeness, 276
superposition

hierarchic, 222, 242, 276, 277, 280, 298, 301

TA region, 254, 256
target set, 123, 130, 136, 190
term

Σ-∼, 9
encoding length of a ∼, 11
evaluation of a ∼, 11

formal ∼, 186
ground ∼, 10, 219, 227
length of a ∼, 10
linear ∼, 27, 106
LRA+PN ∼, 224
LRA ∼, 223
PA+P ∼, 223
PA ∼, 223
shallow ∼, 27
Skolem ∼, 12
unifiable ∼s, 170

testpoint, 21, 185, 229
tetration, 14
theory

background ∼, 223
base ∼, 223
decidable Σ-∼, 217
logical Σ-∼, 12
stably infinite ∼, 243

tiling, 41
time constructible function, 150
timed automaton, 6, 222, 254, 254, 298
Tower, 140
transition guard, 255
tree, 46
tree automaton, 104, 105
tree-like model property, 27
tuple

ascending, 231
Turing machine, 1, 150, 265

recurring ∼, 263
simple ∼, 150

two-counter machine, 265, 297
nondeterministic ∼, 278
recurring ∼, 275, 278, 297

two-variable fragment (FO2), 3, 25, 39, 42, 95,
96, 222, 293

type, 187

ultimately periodic set, 299
unary-negation fragment, 28, 291
unifiable terms, 170
unifier, 170

most general ∼ (mgu), 170
uniform one-dimensional fragment, 28, 291
uniformly colored set, 231
uninterpreted function symbol, 223
uninterpreted predicate symbol, 223
uninterpreteed sort, 223
unit clause, 10
universe, 11

INDEX 333

upward closure, 69, 78, 193
extended ∼, 193

variable
block index of a ∼, 193
bound first-order ∼, 10
bound second-order ∼, 14
clock ∼, 254
first-order ∼, 9
free first-order ∼, 10
free second-order ∼, 14
guard-separated sets of ∼s, 83
index of a ∼, 32, 58, 67
interaction of ∼s, 31
reference ∼, 67, 78, 113, 124
second-order ∼, 14, 22
separated sets of ∼s, 15
strictly separated sets of ∼s, 15

variable assignment, 11
explicit definition of a ∼, 11
update of a ∼, 11

virtual substitution, 20, 185, 229, 244
vocabulary, 9

relational ∼, 9
stratified ∼, 102, 103, 299, 301

