14 research outputs found

    On a new iterative method for solving linear systems and comparison results

    Get PDF
    AbstractIn Ujević [A new iterative method for solving linear systems, Appl. Math. Comput. 179 (2006) 725–730], the author obtained a new iterative method for solving linear systems, which can be considered as a modification of the Gauss–Seidel method. In this paper, we show that this is a special case from a point of view of projection techniques. And a different approach is established, which is both theoretically and numerically proven to be better than (at least the same as) Ujević's. As the presented numerical examples show, in most cases, the convergence rate is more than one and a half that of Ujević

    Inexact Arnoldi residual estimates and decay properties for functions of non-Hermitian matrices

    Get PDF
    This paper derives a priori residual-type bounds for the Arnoldi approximation of a matrix function together with a strategy for setting the iteration accuracies in the inexact Arnoldi approximation of matrix functions. Such results are based on the decay behavior of the entries of functions of banded matrices. Specifically, a priori decay bounds for the entries of functions of banded non-Hermitian matrices will be exploited, using Faber polynomial approximation. Numerical experiments illustrate the quality of the results

    Tuned preconditioners for the eigensolution of large SPD matrices arising in engineering problems

    Get PDF
    In this paper, we study a class of tuned preconditioners that will be designed to accelerate both the DACG-Newton method and the implicitly restarted Lanczos method for the computation of the leftmost eigenpairs of large and sparse symmetric positive definite matrices arising in large-scale scientific computations. These tuning strategies are based on low-rank modifications of a given initial preconditioner. We present some theoretical properties of the preconditioned matrix. We experimentally show how the aforementioned methods benefit from the acceleration provided by these tuned/deflated preconditioners. Comparisons are carried out with the Jacobi-Davidson method onto matrices arising from various large realistic problems arising from finite element discretization of PDEs modeling either groundwater flow in porous media or geomechanical processes in reservoirs. The numerical results show that the Newton-based methods (which includes also the Jacobi-Davidson method) are to be preferred to the - yet efficiently implemented - implicitly restarted Lanczos method whenever a small to moderate number of eigenpairs is required. \ua9 2016 John Wiley & Sons, Ltd

    Novel Monte Carlo Methods for Large-Scale Linear Algebra Operations

    Get PDF
    Linear algebra operations play an important role in scientific computing and data analysis. With increasing data volume and complexity in the Big Data era, linear algebra operations are important tools to process massive datasets. On one hand, the advent of modern high-performance computing architectures with increasing computing power has greatly enhanced our capability to deal with a large volume of data. One the other hand, many classical, deterministic numerical linear algebra algorithms have difficulty to scale to handle large data sets. Monte Carlo methods, which are based on statistical sampling, exhibit many attractive properties in dealing with large volume of datasets, including fast approximated results, memory efficiency, reduced data accesses, natural parallelism, and inherent fault tolerance. In this dissertation, we present new Monte Carlo methods to accommodate a set of fundamental and ubiquitous large-scale linear algebra operations, including solving large-scale linear systems, constructing low-rank matrix approximation, and approximating the extreme eigenvalues/ eigenvectors, across modern distributed and parallel computing architectures. First of all, we revisit the classical Ulam-von Neumann Monte Carlo algorithm and derive the necessary and sufficient condition for its convergence. To support a broad family of linear systems, we develop Krylov subspace Monte Carlo solvers that go beyond the use of Neumann series. New algorithms used in the Krylov subspace Monte Carlo solvers include (1) a Breakdown-Free Block Conjugate Gradient algorithm to address the potential rank deficiency problem occurred in block Krylov subspace methods; (2) a Block Conjugate Gradient for Least Squares algorithm to stably approximate the least squares solutions of general linear systems; (3) a BCGLS algorithm with deflation to gain convergence acceleration; and (4) a Monte Carlo Generalized Minimal Residual algorithm based on sampling matrix-vector products to provide fast approximation of solutions. Secondly, we design a rank-revealing randomized Singular Value Decomposition (R3SVD) algorithm for adaptively constructing low-rank matrix approximations to satisfy application-specific accuracy. Thirdly, we study the block power method on Markov Chain Monte Carlo transition matrices and find that the convergence is actually depending on the number of independent vectors in the block. Correspondingly, we develop a sliding window power method to find stationary distribution, which has demonstrated success in modeling stochastic luminal Calcium release site. Fourthly, we take advantage of hybrid CPU-GPU computing platforms to accelerate the performance of the Breakdown-Free Block Conjugate Gradient algorithm and the randomized Singular Value Decomposition algorithm. Finally, we design a Gaussian variant of Freivalds’ algorithm to efficiently verify the correctness of matrix-matrix multiplication while avoiding undetectable fault patterns encountered in deterministic algorithms

    Advanced Lanczos methods for large-scale matrix problems

    Get PDF

    Backward error analysis of an inexact Arnoldi method using a certain Gram Schmidt variant

    Get PDF
    In numerous recent applications including tensor computations, compressed sensing and mixed precision arithmetics vector operations like summing, scaling, or matrix-vector multiplication are subject to inaccuracies whereas inner products are exact. We investigate the behavior of Arnoldi's method for Hermitian matrices under these circumstances. We introduce a special purpose variant of Gram Schmidt orthogonalization and prove bounds on the distance to orthogonality of the now-not-anymore orthogonal Krylov subspace basis. This Gram Schmidt variant additionally implicitly provides an exactly orthogonal basis. In the second part we perform a backward error analysis and show that this exactly orthogonal basis satisfies a Krylov relation for a perturbed system matrix -- even in the Hermitian case. We prove bounds for the norm of the backward error which is shown to be on the level of the accuracy of the vector operations. Care is taken to avoid problems in case of near breakdowns. Finally, numerical experiments confirm the applicability of the method and of the proven bounds

    Spectral two-level preconditioners for sequences of linear systems

    Get PDF
    De nombreuses simulations numériques nécessitent la résolution d'une série de systèmes linéaires impliquant une même matrice mais des second-membres différents. Des méthodes efficaces pour ce type de problèmes cherchent à tirer bénéfice des résolutions précédentes pour accélérer les résolutions restantes. Deux grandes classes se distinguent dans la façon de procéder: la première vise à réutiliser une partie du sous-espace de Krylov, la deuxième à construire une mise à jour du préconditionneur à partir de vecteurs approximant un espace invariant. Dans cette thèse, nous nous sommes intéressés à cette dernière approche en cherchant à améliorer le préconditionneur d'origine. Dans une première partie, une seule mise à jour du préconditionneur est considérée pour tous les systèmes. Cette mise à jour consiste en une correction spectrale de rang faible qui permet de translater de un la position des plus petites valeurs propres en module de la matrice du système préconditionné de départ. Des expérimentations numériques sont réalisées en utilisant la méthode GMRES couplée à un préconditionneur de type inverse approchée. L'information spectrale est obtenue par un solveur de valeurs propres lors d'une phase préliminaire au calcul. Dans une deuxième partie, on autorise une possible mise à jour entre chaque système. Une correction spectrale incrémentale est proposée. Des expérimentations numériques sont réalisées en utilisant la méthode GMRES-DR, d'une part parce qu'elle est efficace en tant que solveur linéaire, et d'autre part parce qu'elle permet une bonne approximation des petites valeurs propres au cours de la résolution linéaire. Des stratégies sont développées afin de sélectionner l'information spectrale la plus pertinente. Ces approches ont été validées sur des problèmes de grande taille issus de simulations industrielles en électromagnétisme. Dans ce but, elles ont été implantées dans un code parallèle développé par EADS-CCR. ABSTRACT : Many numerical simulations in scientific and engineering applications require the solution of a set of large linear systems involving the same coefficient matrix but different right-hand sides. Efficient methods for tackling this problem attempt to benefit from the previously solved right-hand sides for the solution of the next ones. This goal can be achieved either by recycling Krylov subspaces or by building preconditioner updates based on near invariant subspace information. In this thesis, we focus our attention on this last approach that attempts to improve a selected preconditioner. In the first part, we consider only one update of the preconditioner for all the systems. This update consists of a spectral low-rank correction that shifts by one the smallest eigenvalues in magnitude of the matrix of the original preconditioned system. We perform experiments in the context of the GMRES method preconditioned by an approximate inverse preconditioner. The spectral information is computed by an eigensolver in a preprocessing phase. In the second part, we consider an update of the preconditioner between each system. An incremental spectral correction of the preconditioner is proposed. We perform experiments using the GMRES-DR method, thanks to its efficiency as a linear solver and its ability to recover reliable approximations of the desired eigenpairs at run time. Suitable strategies are investigated for selecting reliable eigenpairs. The efficiency of the proposed approaches is in particular assessed for the solution of large and challenging problems in electromagnetic applications. For this purpose, they have been implemented in a parallel industrial code developed by EADS-CCR

    Dense and sparse parallel linear algebra algorithms on graphics processing units

    Full text link
    Una línea de desarrollo seguida en el campo de la supercomputación es el uso de procesadores de propósito específico para acelerar determinados tipos de cálculo. En esta tesis estudiamos el uso de tarjetas gráficas como aceleradores de la computación y lo aplicamos al ámbito del álgebra lineal. En particular trabajamos con la biblioteca SLEPc para resolver problemas de cálculo de autovalores en matrices de gran dimensión, y para aplicar funciones de matrices en los cálculos de aplicaciones científicas. SLEPc es una biblioteca paralela que se basa en el estándar MPI y está desarrollada con la premisa de ser escalable, esto es, de permitir resolver problemas más grandes al aumentar las unidades de procesado. El problema lineal de autovalores, Ax = lambda x en su forma estándar, lo abordamos con el uso de técnicas iterativas, en concreto con métodos de Krylov, con los que calculamos una pequeña porción del espectro de autovalores. Este tipo de algoritmos se basa en generar un subespacio de tamaño reducido (m) en el que proyectar el problema de gran dimensión (n), siendo m << n. Una vez se ha proyectado el problema, se resuelve este mediante métodos directos, que nos proporcionan aproximaciones a los autovalores del problema inicial que queríamos resolver. Las operaciones que se utilizan en la expansión del subespacio varían en función de si los autovalores deseados están en el exterior o en el interior del espectro. En caso de buscar autovalores en el exterior del espectro, la expansión se hace mediante multiplicaciones matriz-vector. Esta operación la realizamos en la GPU, bien mediante el uso de bibliotecas o mediante la creación de funciones que aprovechan la estructura de la matriz. En caso de autovalores en el interior del espectro, la expansión requiere resolver sistemas de ecuaciones lineales. En esta tesis implementamos varios algoritmos para la resolución de sistemas de ecuaciones lineales para el caso específico de matrices con estructura tridiagonal a bloques, que se ejecutan en GPU. En el cálculo de las funciones de matrices hemos de diferenciar entre la aplicación directa de una función sobre una matriz, f(A), y la aplicación de la acción de una función de matriz sobre un vector, f(A)b. El primer caso implica un cálculo denso que limita el tamaño del problema. El segundo permite trabajar con matrices dispersas grandes, y para resolverlo también hacemos uso de métodos de Krylov. La expansión del subespacio se hace mediante multiplicaciones matriz-vector, y hacemos uso de GPUs de la misma forma que al resolver autovalores. En este caso el problema proyectado comienza siendo de tamaño m, pero se incrementa en m en cada reinicio del método. La resolución del problema proyectado se hace aplicando una función de matriz de forma directa. Nosotros hemos implementado varios algoritmos para calcular las funciones de matrices raíz cuadrada y exponencial, en las que el uso de GPUs permite acelerar el cálculo.One line of development followed in the field of supercomputing is the use of specific purpose processors to speed up certain types of computations. In this thesis we study the use of graphics processing units as computer accelerators and apply it to the field of linear algebra. In particular, we work with the SLEPc library to solve large scale eigenvalue problems, and to apply matrix functions in scientific applications. SLEPc is a parallel library based on the MPI standard and is developed with the premise of being scalable, i.e. to allow solving larger problems by increasing the processing units. We address the linear eigenvalue problem, Ax = lambda x in its standard form, using iterative techniques, in particular with Krylov's methods, with which we calculate a small portion of the eigenvalue spectrum. This type of algorithms is based on generating a subspace of reduced size (m) in which to project the large dimension problem (n), being m << n. Once the problem has been projected, it is solved by direct methods, which provide us with approximations of the eigenvalues of the initial problem we wanted to solve. The operations used in the expansion of the subspace vary depending on whether the desired eigenvalues are from the exterior or from the interior of the spectrum. In the case of searching for exterior eigenvalues, the expansion is done by matrix-vector multiplications. We do this on the GPU, either by using libraries or by creating functions that take advantage of the structure of the matrix. In the case of eigenvalues from the interior of the spectrum, the expansion requires solving linear systems of equations. In this thesis we implemented several algorithms to solve linear systems of equations for the specific case of matrices with a block-tridiagonal structure, that are run on GPU. In the computation of matrix functions we have to distinguish between the direct application of a matrix function, f(A), and the action of a matrix function on a vector, f(A)b. The first case involves a dense computation that limits the size of the problem. The second allows us to work with large sparse matrices, and to solve it we also make use of Krylov's methods. The expansion of subspace is done by matrix-vector multiplication, and we use GPUs in the same way as when solving eigenvalues. In this case the projected problem starts being of size m, but it is increased by m on each restart of the method. The solution of the projected problem is done by directly applying a matrix function. We have implemented several algorithms to compute the square root and the exponential matrix functions, in which the use of GPUs allows us to speed up the computation.Una línia de desenvolupament seguida en el camp de la supercomputació és l'ús de processadors de propòsit específic per a accelerar determinats tipus de càlcul. En aquesta tesi estudiem l'ús de targetes gràfiques com a acceleradors de la computació i ho apliquem a l'àmbit de l'àlgebra lineal. En particular treballem amb la biblioteca SLEPc per a resoldre problemes de càlcul d'autovalors en matrius de gran dimensió, i per a aplicar funcions de matrius en els càlculs d'aplicacions científiques. SLEPc és una biblioteca paral·lela que es basa en l'estàndard MPI i està desenvolupada amb la premissa de ser escalable, açò és, de permetre resoldre problemes més grans en augmentar les unitats de processament. El problema lineal d'autovalors, Ax = lambda x en la seua forma estàndard, ho abordem amb l'ús de tècniques iteratives, en concret amb mètodes de Krylov, amb els quals calculem una xicoteta porció de l'espectre d'autovalors. Aquest tipus d'algorismes es basa a generar un subespai de grandària reduïda (m) en el qual projectar el problema de gran dimensió (n), sent m << n. Una vegada s'ha projectat el problema, es resol aquest mitjançant mètodes directes, que ens proporcionen aproximacions als autovalors del problema inicial que volíem resoldre. Les operacions que s'utilitzen en l'expansió del subespai varien en funció de si els autovalors desitjats estan en l'exterior o a l'interior de l'espectre. En cas de cercar autovalors en l'exterior de l'espectre, l'expansió es fa mitjançant multiplicacions matriu-vector. Aquesta operació la realitzem en la GPU, bé mitjançant l'ús de biblioteques o mitjançant la creació de funcions que aprofiten l'estructura de la matriu. En cas d'autovalors a l'interior de l'espectre, l'expansió requereix resoldre sistemes d'equacions lineals. En aquesta tesi implementem diversos algorismes per a la resolució de sistemes d'equacions lineals per al cas específic de matrius amb estructura tridiagonal a blocs, que s'executen en GPU. En el càlcul de les funcions de matrius hem de diferenciar entre l'aplicació directa d'una funció sobre una matriu, f(A), i l'aplicació de l'acció d'una funció de matriu sobre un vector, f(A)b. El primer cas implica un càlcul dens que limita la grandària del problema. El segon permet treballar amb matrius disperses grans, i per a resoldre-ho també fem ús de mètodes de Krylov. L'expansió del subespai es fa mitjançant multiplicacions matriu-vector, i fem ús de GPUs de la mateixa forma que en resoldre autovalors. En aquest cas el problema projectat comença sent de grandària m, però s'incrementa en m en cada reinici del mètode. La resolució del problema projectat es fa aplicant una funció de matriu de forma directa. Nosaltres hem implementat diversos algorismes per a calcular les funcions de matrius arrel quadrada i exponencial, en les quals l'ús de GPUs permet accelerar el càlcul.Lamas Daviña, A. (2018). Dense and sparse parallel linear algebra algorithms on graphics processing units [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/112425TESI

    Explicitly Restarted Arnoldi's Method for Monte Carlo Nuclear Criticality Calculations.

    Full text link
    A Monte Carlo implementation of explicitly restarted Arnoldi’s method is developed for estimating eigenvalues and eigenvectors of the transport-fission operator in the Boltzmann transport equation. Arnoldi’s method is an improvement over the power method which has been used for decades. Arnoldi’s method can estimate multiple eigenvalues by orthogonalising the resulting fission sources from the application of the transport-fission operator. As part of implementing Arnoldi’s method, a solution to the physically impossible—but mathematically real—negative fission sources is developed. The fission source is discretized using a first order accurate spatial approximation to allow for orthogonalization and normalization of the fission source required for Arnoldi’s method. The eigenvalue estimates from Arnoldi’s method are compared with published results for homogeneous, one-dimensional geometries, and it is found that the eigenvalue and eigenvector estimates are accurate within statistical uncertainty. The discretization of the fission sources creates an error in the eigenvalue estimates. A second order accurate spatial approximation is created to reduce the error in eigenvalue estimates. An inexact application of the transport-fission operator isalso investigated to reduce the computational expense of estimating the eigenvalues and eigenvectors. The convergence of the fission source and eigenvalue in Arnoldi’s method is analysed and compared with the power method. Arnoldi’s method is superior to the power method for convergence of the fission source and eigenvalue because both converge nearly instantly for Arnoldi’s method while the power method may require hundreds of iterations to converge. This is shown using both homogeneous and heterogeneous one-dimensional geometries with dominance ratios close to 1.Ph.D.Nuclear Engineering & Radiological SciencesUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/64765/1/jlconlin_1.pd
    corecore