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SUMMARY

In this paper, we study a class of tuned preconditioners that will be designed to accelerate both the DACG–
Newton method and the implicitly restarted Lanczos method for the computation of the leftmost eigenpairs 
of large and sparse symmetric positive definite matrices arising in large-scale scientific computations. These 
tuning strategies are based on low-rank modifications of a given initial preconditioner. We present some the-
oretical properties of the preconditioned matrix. We experimentally show how the aforementioned methods 
benefit from the acceleration provided by these tuned/deflated preconditioners. Comparisons are carried out 
with the Jacobi–Davidson method onto matrices arising from various large realistic problems arising from 
finite element discretization of PDEs modeling either groundwater flow in porous media or geomechanical 
processes in reservoirs. The numerical results show that the Newton-based methods (which includes also 
the Jacobi–Davidson method) are to be preferred to the – yet efficiently implemented – implicitly restarted 
Lanczos method whenever a small to moderate number of eigenpairs is required. 
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1. INTRODUCTION

Consider a symmetric positive definite (SPD) matrix A, which is also assumed to be large and
sparse. We will denote as

�1 < �2 < � � � < �p < : : : < �n

the eigenvalues of A and

v1; v2; � � � ; vp; : : : ; vn

the corresponding (normalized) eigenvectors.
The computation of the p � n leftmost eigenpairs of A is a common task in many scientific

applications. Typical examples are offered by the vibrational analysis of mechanical structures [1],
and the electronic structure calculations [2]. Computation of a few eigenpairs is also crucial in the
approximation of the generalized inverse of the graph Laplacian [3, 4].

Recently in [5], an efficiently preconditioned Newton method (deflation-accelerated conjugate
gradient [DACG]–Newton, DN in short) has been developed, which has proven to display compa-
rable performances against the well-known Jacobi–Davidson (JD) method [6]. However, one can
wonder if the JD method can be considered as the optimal benchmark to test an iterative eigen-
solver. Actually, the preconditioned Arnoldi method is commonly considered the most efficient tool
especially for SPD eigenproblems.
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428 Á. MARTÍNEZ

The advantage offered by the accelerated Newton and JD solvers versus Krylov-like methods is
that the former require a number of linear system solutions to a (possibly) very low accuracy while
for the latter methods, ‘exact’ (i.e., very accurate) solution to the inner linear systems is mandatory.
In recent papers such as [7, 8], however, inexact variants of the implicitly restarted Arnoldi (IRA)
(Lanczos for symmetric matrices, IRL in the sequel) method have been studied, which improve its
efficiency by properly relaxing the tolerance of the inner linear systems. Also, a family of ad hoc
tuned preconditioners have been developed with the purpose of accelerating the solution of the same
linear systems.

The main purpose of this paper is to provide a class of tuned preconditioners that will be designed
to accelerate both the DN method and the inexact Lanczos’ method. We develop some theoretical
properties and perform a set of experimental tests, which account for the effectiveness of such
acceleration. Moreover, these two eigensolvers are compared with the JD method on a set of large
SPD matrices arising from finite element discretization of PDE modeling either groundwater flow
in porous media or geomechanical processes in reservoirs.

The numerical results show the significant improvement provided by the low-rank modification of
a given initial preconditioner for both DN and IRL methods on all test problems. Comparisons with
the well-established JD method reveal that all in all, JD still proves the most performing algorithm,
yet displaying similar efficiency as the DN method.

The outline of the paper is as follows: In Section 2, we recall the BFGS preconditioner in the
framework of the DN method. We summarize its theoretical properties and sketch its implementa-
tion details. Section 3 is devoted to the definition of a number of tuned preconditioners to accelerate
the Lanczos method. Section 4 reports the numerical results and comparisons against the JD method,
while Section 5 draws the conclusions.

2. THE DACG–NEWTON METHOD WITH BFGS PRECONDITIONER

The computation of the leftmost eigenpair of an SPD matrix A can be recast as the following
nonlinear problem

Ax � q.x/x D 0; jjxjj D 1; (1)

being q.A;x/ D x>Ax the Rayleigh quotient. The corresponding Jacobian matrix can be written as

JC .x/ � A � x
>AxI � 2xx>A: (2)

The .k C 1/-th iteration of Newton’s method applied to Equation (1) can therefore be written as

JC .uk/sk D �
�
Auk �

�
u>k Auk

�
uk
�

ukC1 D
uk C sk

kuk C skk

However, it has been observed by various authors (e.g., [9, 10]) that Newton’s method applied
to Equation (1) suffers stagnation. The most popular and efficient variant consists in projecting
the Jacobian JC in the space orthogonal to the current iterate uk giving rise to the following
Newton–Grassmann method, where Jk D

�
I � uku

>
k

�
.A � u>

k
AukI /

�
I � uku

>
k

�
and rk D�

Auk �
�
u>
k
Auk

�
uk
�
:

Repeat until convergence:

Set u0 as an initial approximation of v1; k D 0

solve approximately Jksk D �rk for sk ? uk (3)

set ukC1 D
uk C sk

kuk C skk
; k D k C 1 (4)

Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2016; 23:427–443
DOI: 10.1002/nla

2



EFFICIENT PRECONDITIONERS FOR THE EIGENSOLUTION OF LARGE SPD MATRICES 429

Note that the previous iteration is the basis of the well-known JD method, which combines the
projected Newton’s iteration (also called the correction equation) with a Rayleigh–Ritz step.
Following the idea described in [5, 11–13], we propose a sequence of preconditioners for the cor-
rection Equation (3) using the BFGS rank-two update of a given initial approximation of A�1.
To precondition the initial Newton system J0s0 D �r0, we chose to use a projected incom-
plete Cholesky preconditioner with partial fill-in [14]: P0 D

�
I � u0u

>
0

� bP 0 �I � u0u>0 � withbP 0 D �
LL>

��1
being L D IC.LFIL; �IC ; A/ an incomplete triangular Cholesky factor of A, with

parameters LFIL, maximum fill-in of a row in L, and �IC the threshold for dropping small elements
in the factorization. Then a sequence of projected preconditioners for the subsequent linear systems
JkC1skC1 D �rkC1 may be defined by using an approximated BFGS formula as

bP kC1 D � sks>k
s>
k
rk
C I �

skr
>
k

s>
k
rk

! bP k
 
I �

rks
>
k

s>
k
rk

!
: (5)

For details of the development of this formula, see [5].

2.1. Theoretical properties of the BFGS preconditioner

Let us define the difference between the approximated and the exact eigenvector ek D v1 � uk and
the difference between the preconditioned Jacobian and the identity matrix as

Ek D I � J
1=2

k
PkJ

1=2

k
:

The following theorem will state the so-called bounded deterioration [15] of the preconditioner at
step kC 1 with respect to that of step k, namely that the distance of the preconditioned matrix from
the identity matrix at step kC 1 is less or equal than that at step k plus a constant that may be small
as desired, depending on the closeness of u0 to the exact solution.

Theorem 1
For every constant K > 0, there exist ı0; ı > 0 such that if kE0k < ı0, and ke0k < ı, then

kEkC1k 6 kEkk CK
p
kekk:

Proof
See [5]. �

2.2. Computing several eigenpairs

When seeking an eigenvalue different from �1, say �j , the projected Jacobian matrix at iteration k
changes, like in the JD algorithm [16], as

Jk D
�
I �QkQ

>
k

�
.A � �kI /

�
I �QkQ

>
k

�
where Qk D

�
v1 v2 : : : vj�1 uk

�
is the matrix whose first j � 1 columns are the previously

computed eigenvectors. Analogously, also the preconditioner must be chosen orthogonal to Qk as

Pk D
�
I �QkQ

>
k

� bP k �I �QkQ
>
k

�
: (6)

2.3. Choice of the initial Newton vector

An important issue in the efficiency of the Newton approach for eigenvalue computation is rep-
resented by the appropriate choice of the initial guess. To properly start the Newton iteration
‘sufficiently’ close to the exact eigenvector, we propose to perform some preliminary iterations
of the DACG [17, 18] eigensolver, which is based on the preconditioned conjugate gradient
(PCG) (nonlinear) minimization of the Rayleigh quotient. This method has proven very robust,
and not particularly sensitive to the initial vector, in the computation of a few eigenpairs of large
SPD matrices.

Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2016; 23:427–443
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430 Á. MARTÍNEZ

Algorithm 1 Computation of c D Pkgl for the BFGS preconditioner.

INPUT: Vector gl , vectors rs; ss and scalar products ˛s D s>s rs; s D 1; : : : ; k � 1.

w D gl

FOR s WD k � 1 TO 0
1. as WD s>s w=˛s
2. w WD w � asrs

END FOR

c D bP 0w
FOR s WD 0 TO k � 1

1. b WD r>s c=˛s
2. c WD c � .as C b/ss

END FOR

´ WD Q>
k
c

c WD c �Qk´

2.4. Implementation of the BFGS preconditioner update

At a certain nonlinear iteration level k of the Krylov subspace method of choice, we need to apply
the preconditioner, that is, to compute c D Pkgl ; where gl is the residual of the linear system at
iteration l . Let us suppose we compute an initial preconditioner P0. Then, at the initial nonlinear
iteration k D 0, we simply have c D P0´l . At step k, the preconditioner bP k is defined recursively
by (5), while Pk using (6) can be written as

Pk D
�
I �QkQ

>
k

� bP k �I �QkQ
>
k

�
D

D
�
I �QkQ

>
k

� ´ 
I �

sk�1r
>
k�1

s>
k�1
rk�1

!bP k�1 I �
rk�1s

>
k�1

s>
k�1
rk�1

!
�
sk�1s

>
k�1

s>
k�1
rk�1

μ �
I �QkQ

>
k

�
:

(7)
To compute vector c, first we observe that gl is orthogonal toQk , so there is no need to apply matrix
I �QkQ

>
k

on the right of (7). Application of preconditioner bP k to the vector gl can be performed
at the price of 2k dot products and 2k daxpys as sketched in Algorithm 1. The scalar products
˛s D s>s rs; which appear at the denominator of bP k , can be computed once and for all before
starting the solution of the k-th linear system. Last, the obtained vector c must be orthogonalized
against the columns of Qk by a classical Gram–Schmidt procedure.

2.5. PCG solution of the correction equation

As a Krylov subspace solver for the correction equation, we chose the PCG method because the
Jacobian Jk has been shown to be SPD in the subspace orthogonal to uk . Regarding the imple-
mentation of PCG, we mainly refer to the work [19], where the author shows that it is possible to
solve the linear system in the subspace orthogonal to uk and hence the projection step needed in
the application of Jk can be skipped. Moreover, we adopted the exit strategy for the linear system
solution described in the previous paper, which allows for stopping the PCG iteration, in addition to
the classical exit test based on a tolerance on the relative residual and on the maximum number of
iterations, whenever the current solution xl satisfies

krk;lk D

�����Axl � x>l Axlx>
l
xl
xl

����� < � �x>l Axl� (8)

Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2016; 23:427–443
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EFFICIENT PRECONDITIONERS FOR THE EIGENSOLUTION OF LARGE SPD MATRICES 431

or when the decrease of krk;lk is slower than the decrease of kglk, because in this case, further
iterating does not improve the accuracy of the eigenvector. Note that this dynamic exit strategy
implicitly defines an inexact Newton method because the correction equation is not solved ‘exactly’,
that is, up to machine precision.

We have implemented the PCG method as described in Algorithm 5.1 of [19] with the obvious
difference in the application of the preconditioner, which is described here in Algorithm 1.

2.6. Limited memory variant of the DACG–Newton method

The BFGS preconditioner defined in Algorithm 1 suffers from two main drawbacks, namely,
increasing costs of memory for storing s and r and the increasing cost of preconditioner application
with the iteration index k. To overcome these difficulties, we define kmax the maximum number of
rank-two corrections allowed. When the nonlinear iteration counter k is larger than kmax, the vectors
si ; r i ; i D k � kmax are substituted with the last computed sk; rk . Vectors ¹si ; r iº are stored in a
matrix V with n rows and 2� kmax columns. The implementation of our DN method for computing
the leftmost eigenpairs of large SPD matrices is described in Algorithm 2.

Algorithm 2 DACG-Newton Algorithm.
� INPUT:

1. Matrix A;
2. number of sought eigenpairs neig ;
3. tolerance and maximum number of its for the outer iteration: � , ITMAX;
4. tolerance for the initial eigenvector guess �DACG ;
5. tolerance and maximum number of its for the inner iteration: �PCG , MAXPCG

6. parameters for the IC preconditioner:, LFIL and �IC ;
7. maximum allowed rank-two update in the BFGS preconditioner: kmax.

� QQ WD Œ �.
� Compute an incomplete Cholesky factorization of A: bP 0 with parameters LFIL and �IC .
� FOR j WD 1 TO neig

1. Choose x0 such that QQ>x0 D 0.

2. Compute u0, an approximation to vj by the DACG procedure with initial vector x0,
preconditioner bP 0 and tolerance �DACG .

3. k WD 0, �k WD u>k Auk .

4. WHILE kAuk � �kukk > ��k AND k < IMAX DO

1. Q WD Œ QQ uk�:

2. Solve Jksk D �rk for sk ? Q by the PCG method with preconditioner Pk and
tolerance �PCG .

3. ukC1 WD
uk C sk

kuk C skk
, �kC1 D u>kC1AukC1.

4. k1 D k MOD kmax; V.�; 2k1 C 1/ WD sk; V .�; 2k1 C 2/ WD rk;
5. k WD k C 1

6. END WHILE

7. Assume vj D uk and �j D �k . Set QQ WD Œ QQ vj �

� END FOR

The previously described implementation is well suited to parallelization provided that an effi-
cient matrix–vector product (MVP) routine is available. The bottleneck is represented by the high
number of scalar products, which may worsen the parallel efficiency when a very large number of
processor is employed. Preliminary numerical results are encouraging as documented in [20].

Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2016; 23:427–443
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3. TUNED PRECONDITIONERS FOR THE IRA METHOD

3.1. Description of implicitly restarted Lanczos method

The best known method, the IRA method, is implemented within the ARPACK package [21] and
is also available in the most popular scientific computing packages. For SPD matrices, the IRA
method simplifies to the IRL method, which reduces the computational cost, by taking advantage of
the symmetry of the problem.

The idea of the Lanczos method is to project the coefficient matrix A onto a subspace generated
by an arbitrary initial vector v1 and the matrix A itself, known as Krylov subspace. In particular, a
Krylov subspace of dimension m is generated by the following set of independent vectors:

v1; Av1; � � � ; A
m�1v1:

Actually, it is convenient to work with an orthogonal counterpart of this basis and to organize
its vectors as columns of a matrix Qm. After the Gram–Schmidt process, a triangular matrix Tm
satisfying Tm D Q>mAQm is computed. It is well known that the largest eigenvalues of Tm,
�
.m/
n ; �

.m/
n�1; � � � converge, as the size of the Krylov subspacem increases, to the largest eigenvalues of

A: �n; �n�1; � � � , while the corresponding eigenvectors of A can be computed from the homologous
eigenvectors of Tm by ui D Qmu

.m/
i .

A subspace of dimension NCV 2
�
neig ; 3neig

�
is usually sufficient to assess a small number

neig of the rightmost eigenpairs to a satisfactory accuracy. The ratio between the number of MVPs
and neig is also known to decrease when neig is increasing. This eigenvalue solver exits whenever
the following test is satisfied:

neigX
kD1

1

neig

kAuk � �kukk

�k
6 �;

with � a fixed tolerance.
Convergence to the smallest eigenvalues is much slower. Hence, to compute the leftmost part of

the spectrum, it is more usual to apply the Lanczos process to the inverse of the coefficient matrix
A�1. Because A is expected to be large and sparse, its explicit inversion is not convenient from both
CPU time and storage point of view. This implies that at every stage of the Arnoldi process, a linear
system involving matrix A, namely, Aqk D y; has to be solved by an iterative method properly
preconditioned.

We also adopted the implicit restart strategy as described in [21], a technique to combine the
implicitly shifted QR scheme with a k-step Lanczos factorization and obtain a truncated form of
the implicitly shifted QR iteration. Implicit restart provides a means to extract interesting informa-
tion from large Krylov subspaces while avoiding the storage and numerical difficulties associated
with the standard approach. It does this by continually compressing the interesting information into
a fixed-size k-dimensional subspace. This is accomplished through the implicitly shifted QR mech-
anism. A Lanczos factorization of length m D k C p;AQm D QmTm C rmem, is compressed to a
factorization of length k that retains the eigeninformation of interest.

3.2. Relaxed tolerances for the inner linear systems

In order to speed-up the inner linear system solution, a number of relaxation strategies have been
proposed by several authors. This approach has been first analyzed in [22] and [23]. We adopt the
strategy described in Equation (3.15) in [7] where the authors suggest to stop the PCG iteration
using a variable tolerance, which is set to be proportional to the ‘distance’ between the converged
and the spurious eigenvalues. In this way, a sequence of increasing tolerances is defined, after the
first restart, which implies a decreasing number of iterations during the IRA process.

Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2016; 23:427–443
DOI: 10.1002/nla

6



EFFICIENT PRECONDITIONERS FOR THE EIGENSOLUTION OF LARGE SPD MATRICES 433

3.3. Preconditioners for the CG solution of the linear system

At step k of the IRL procedure, a linear system involving matrix A should be iteratively solved,
which provides the k-th vector of the Lanczos basis:

Aqk D y:

Because A is SPD, we employ the PCG method for its solution. This inner iterative procedure is
stopped when the relative residual norm is smaller than �PCG , which is to be chosen some orders
of magnitude smaller than the tolerance prescribed for the eigenproblem.

The tuned preconditioners Pk , which we will describe in the sequel, are a low-rank modification
of a given preconditioner for A, in our case the inverse of the incomplete Cholesky factorization
with variable fill-in. If we call this initial preconditioner P , Pk is defined as

Pk D P C Bk; with Bk a low-rank matrix:

The tuned preconditioners Pk must satisfy the condition PkAQk D Qk , which gives as
a consequence that the preconditioned matrix PkA has the eigenvalue 1 with (at least)
multiplicity k.

3.3.1. Freitag–Spence (FS) preconditioner. The first tuned preconditioner is a block generalization
of the preconditioner proposed in [24], in the framework of the Rayleigh quotient iteration. To solve
the k-th linear system of the IRL process, we propose a block tuned preconditioner of the form

P.FS/
k

D P �Z
�
Z>AQk

��1
Z>;

where Z D PAQk �Qk .
This preconditioner satisfies P.FS/

k
AQk D Qk; it is well defined only if Hk D .PAQk �

Qk/
>AQk is nonsingular. Singularity may occur if .PA � I /Qk is column rank deficient. In this

case, � D 1 would be an eigenvalue of PA corresponding to a linear combination of the columns of
Qk . Our code explicitly checks if .PAQk �Qk/

>AQk is nonsingular. If this check fails, we use
the previous low-rank matrix Qk�1 instead of Qk .

Also, the property of the tuned preconditioner to be SPD depends on matrix Hk , namely, on
the norm of its inverse, as well as on the goodness of the initial preconditioner. In fact, setting
N D ZH�1

k
Z>, we have

N D .PAQk �Qk/
�
Q>k APAQk �Q

>
k AQk

��1
.PAQk �Qk/

> D

D .PA � I /QkH
�1
k Q>k .PA � I /

T :

From which, after denoting by hk the norm of the inverse of Hk ,

kN k 6 kPA � Ik2hk :

From the standard perturbation theory (e.g., Theorem 7.2.2 in [25]), we have that

�min

�
P.FS/
k

�
> �min.P / � kN k > �min.P / � hkkPA � Ik

2:

If hk is small and the initial preconditioner P is a good preconditioner forA (and hence kI�PAk
is small), it is likely that P.FS/

k
remains SPD. We finally remark that in every Lanczos iteration and

every test problem considered, we found that P.FS/
k

was actually SPD.
In addition to the tuning property just defined, it has been proved in [7] that the tuned precondi-

tioners have the desirable property to cluster around one of the eigenvalues of the preconditioned
matrix.

Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2016; 23:427–443
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3.3.2. BFGS-like preconditioner. A BFGS-like preconditioner, similar to that described in Section
2 for the DN methods, can be written as follows (e.g., [26]):

P.BFGS/
k

D W C .I �WA/P.I � AW /; where W D Qk

�
Q>k AQk

��1
Q>k :

Also, P.BFGS/
k

is a tuned preconditioner. In fact,

WAQk D Qk

�
Q>k AQk

��1
Q>k AQk D Qk :

Hence, .I � AW /AQk D AQk � AQk D 0; it finally follows that

P.BFGS/
k

AQk D WAQk C .I �WA/P.I � AW /AQk D Qk :

The sequence P.BFGS/
k

provides all SPD matrices if the initial preconditioner P is so. In fact, for
every nonzero vector w 2 Rn,

w>P.BFGS/
k

w D w> .W C .I �WA/P.I � AW //w

D w>WwCw>.I �WA/P.I � AW /w

D w>WwC ´>P ´ D �W C �P :

Scalars �W and �P are both nonnegative. �W is zero if and only if Q>
k
w D 0, in which case

´ D .I � AW /w D w; hence, �P D ´>P ´ D w>Pw > 0 because P is SPD.

3.3.3. A simplified preconditioner. A variant of P.BFGS/
k

, which we will denote as sBFGS
preconditioner, is obtained by setting

P.sBFGS/
k

D W C P D P CQk
�
Q>k AQk

��1
Q>k :

Application of this preconditioner requires less computational effort with respect to the previously
defined preconditioners, especially if compared with the complete BFGS preconditioner; in addi-
tion, it is always SPD for every choice of matrix Qk . This preconditioner does not satisfy the
property PkAQk D Qk; hence, it cannot be defined a tuned preconditioner; however, it can be
proved that the eigenvalue distribution of the preconditioned matrix is more favorable than that of
PA as stated by Theorem 2. First, note that the preconditioned matrix P .sBFGS/

k
A is similar to

A1=2P
.sBFGS/

k
A1=2 � Ak . Therefore, we investigate the spectral distribution of Ak through its

Rayleigh quotient. Let us denote the initial preconditioned matrix as A0 D A1=2PA1=2.

Theorem 2
For every unit norm vector w, there exists a nonnegative real number ˛.w/ such that

q.Ak;w/ D q.A0;w/C ˛.w/:

Proof

q.Ak;w/ D w
>Akw D w

>A1=2PkA
1=2w

D q.A0;w/Cw
>A1=2Qk

�
Q>k AQk

��1
Q>k A

1=2w

D q.A0;w/Cw
>Z

�
Z>Z

��1
Z>w:

(9)

Now, let us decompose vector w as a sum of one component belonging to the subspace Z spanned
by the columns of Z and the other belonging to Z? as w D wZ C w? D Zt C Z?t?. Then we
can write

q.Ak;w/ D q.A0;w/C t
>Z>Zt D q.A0;w/C kwZk

2 D q.A0;w/C ˛.w/: (10)

Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2016; 23:427–443
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The statement of the theorem implies that Ak may have a more favorable eigenvalue distribution
than A0, because the eigenvalues of Ak are expected to be further away from zero, and particularly
so for the smallest eigenvalues of the preconditioned matrices. Moreover, it can be easily shown
that if w 2 Z is an eigenvector of A0 with eigenvalue �, then it is also an eigenvector of Ak with
eigenvalue �C 1.

�

3.4. Limited memory variants

As in the BFGS preconditioner for the Newton’s method, we want to keep fixed the maximum
number (parameter lmax) of the low-rank updates defined by the previous preconditioners. Instead
of using all the columns of matrix Qk generated by the IRL process, we use an n � lmax matrix QQ
defined as

QQ D
�
qj ; qjC1; � � � ; qk

�
; j D max¹1; k � lmax C 1º:

4. NUMERICAL RESULTS

In this section, we provide numerical results where the performances of DN algorithm for various
kmax values and the tuned IRL method with different tuning strategies are tested. We also compared
both tuned IRL and DN methods with the JD, as described in [16] and further analyzed and devel-
oped in [19, 27, 28]. In the present paper, we implemented JD following the suggestion in [19]; that
is, we made use of the PCG method as the inner solver, with the bP 0 as the preconditioner, which
is kept fixed throughout the Newton iteration. Also, the exit tests used in the two methods (DN and
JD) are identical for both the outer iteration and the inner PCG solver.

We tested the described algorithms in the computation of the 20 smallest eigenpairs of a number
of small-sized to large-sized matrices arising from various realistic applications.

The list of the selected problems together with their size n and nonzero number n´ is reported
in Table I, where (M)FE stands for (mixed) finite elements. We also computed the fill-in � of the
initial preconditioner defined as

� D
nonzeros of L

nonzeros of lower triangular part of A
:

In most of the runs, unless differently specified, we selected the values of the parameters as
reported in Table II for the three solvers. As every eigenvalue solver needs to solve a number of linear
systems at each outer iteration, also a number of additional parameters should be fixed depending on
the eigensolver as reported in Table III. We remark that the values of the tolerances may not be fixed
during the iteration process. For instance, in the IRL method, the inner tolerance is relaxed toward

Table I. Main characteristics of the matrices used in the tests.

Matrix Where it comes from n n´

trino 3D-FE discretization of flow in porous media 4560 64,030
monte-carlo 2D-(M)FE stochastic PDE 77,120 384,320
mat268515 3D-FE discretization of flow in porous media 268,515 3,926,823
emilia-923 3D-FE elasticity problem 923,136 41,005,206

Table II. Default values of parameters.

Number of eigenpairs neig D 20

Outer iteration � D 10�8, IMAX D 100

Initial preconditioner LFIL D 20, �IC D 10
�3.
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Table III. Default values of PCG parameters.

Solver �PCG MAXPCG

IRL 10�10 200
Jacobi–Davidson 10�2 20, 30
DACG–Newton 10�2 20

IRL, implicitly restarted Lanczos; PCG, preconditioned conju-
gate gradient.
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Figure 1. Condition number of the preconditioned matrix with sBFGS tuning strategy for the trino
problem.

the end of the procedure, as explained in Section 3.4. Also, in the JD and DN methods, the CG
iteration may stop before the relative residual is below �PCG whenever the exit test (8) is satisfied.

The CPU times are expressed in seconds and were obtained by running a Fortran 90 code on a
2� Intel Xeon CPU E5645 at 2.40 GHz (six core) and with 4 GB RAM for each core.

4.1. Spectral distribution of the preconditioned matrix with sBFGS tuning strategy

We will first experimentally analyze the spectral distribution of the preconditioned matrix with the
tuning strategy proposed in Section 3.3.3. To this end, we explicitly computed all the eigenvalues
of the preconditioned matrix P .sBFGS/

k
A at each IRL step for the smallest matrix trino starting

from a very sparse initial IC preconditioner with parameters LFIL D 10; �IC D 10�1. This choice
produced an initial preconditioner with relative fill-in � D 0:21. In Figure 1, we report the condi-
tion number, that is, the ratio between the largest and the smallest eigenvalue, of P .sBFGS/

k
A as a

function of the linear system counter. It is found that the condition number is a nonincreasing func-
tion of the IRL step number. It decreases from a value of 1312 (initial linear system) to the value of
120.4 for the last linear systems.

4.2. Results with matrix monte-carlo

We report in Tables IV and V the results in terms of outer iterations (OUT), matrix-vector products
(MVP) and total CPU time of the three methods: JD, tuned IRL, and the DN methods with BFGS
preconditioner, respectively. The initial preconditioner’s fill-in is � D 2:30.

For this test problem, we notice that the JD performance is mildly dependent on the values of
the minimum (mmin/ and maximum (mmax) dimension of the subspace generated by the Davidson
algorithm. The other parameters were kept fixed as set in Tables II and III.

Regarding the tuned IRL method, Table IV accounts for the important improvement provided by
tuning with respect to keeping fixed the initial IC preconditioner. This is so irrespectively of the
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Table IV. Timings and iterations for the computation of neig D 20 eigenpairs of matrix
monte-carlo.

Prec type lmax MVP CPU

MAXPCG mmin mmax OUT MVP CPU IC – 7195 50.67

20 10 20 130 2256 24.40 FS 1 6953 51.45
20 15 20 131 2158 24.75 FS 10 4740 40.27
20 20 30 132 2110 25.50 FS 20 4144 40.04
20 25 35 132 2095 26.15 FS 30 3927 41.73
20 25 40 131 2116 28.00
30 10 20 121 2328 24.90 BFGS 1 6890 52.19
30 15 20 122 2297 25.75 BFGS 10 4633 45.68
30 20 30 121 2207 26.09 BFGS 20 3923 46.44
30 25 35 122 2236 27.50 BFGS 30 3603 49.40
30 25 40 119 2255 27.39

sBFGS 1 7024 51.64
sBFGS 5 6328 46.52
sBFGS 10 4834 40.77
sBFGS 20 4158 39.41
sBFGS 30 3932 40.65

On the left, we report the Jacobi–Davidson results; on the right table, we report the implicitly
restarted Lanczos results where NCV D 40 and OUT D 80 for every run.

Table V. Timings and iterations with the DACG–Newton
method for the computation of neig D 20 eigenpairs of matrix

monte-carlo.

CPU

�DACG kmax OUT MVP DACG Newton Total

0.1 0 195 4395 8.23 32.48 40.71
0.1 1 141 3339 8.08 23.73 31.80
0.1 5 112 2702 8.06 18.42 26.49
0.1 10 112 2701 8.09 18.39 26.47
0.01 0 149 3991 11.81 25.37 37.18
0.01 1 118 3332 11.66 21.11 32.77
0.01 5 96 2880 11.68 16.10 27.78
0.01 10 96 2880 11.61 16.00 27.61

tuning strategy. The optimal lmax parameter is between 15 and 20, with the FS and sBFGS tuning
variants slightly more performing than the full BFGS one, because of the larger cost of application
of the BFGS tuning preconditioner. As for the DN method with BFGS preconditioner, the number of
low-rank updated kmax greatly influences its performance. With kmax D 10, the DN method displays
a comparable performance as JD both in terms of total MVP and overall CPU time. The IRL method
with both tuning and relaxed-tolerance strategy again needs more MVP and CPU time than the other
two solvers.

4.3. Matrix mat268515

For matrix mat268515, we consider two different initial preconditioners:

(1) CASE #1: LFIL D 20; �IC D 10
�3 H) � D 2:67.

(2) CASE #2: LFIL D 20; �IC D 10
�2 H) � D 0:87.

4.3.1. CASE #1. Numerical results. To clarify the importance of the tuning and relaxation strategies
in the IRL method, we first report in Figure 2 a comparison of the number of inner iterations using

Copyright © 2016 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2016; 23:427–443
DOI: 10.1002/nla

11



438 Á. MARTÍNEZ

either a fixed preconditioner or the tuning preconditioner with lmax D 20 in the computation of 20
eigenpairs with NCV D 40. Notice that the combination of tuning (from the second IRL step) and
relaxation (which starts from the first restart, i.e., after 40 steps) reduces the linear iterations from
the initial 70–80 to the final 25.

The results corresponding to CASE #1 are summarized in Tables VI and VII, which account for
the number of outer iterations, MVP, and CPU times for JD, tuned IRL, and DN methods with BFGS
preconditioner, respectively.

Once again, JD and DN outperform the tuned IRL method for each tuning strategy and lmax value.
With this relatively dense preconditioner, however, the influence of the BFGS acceleration in the
DN method is modest.
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Figure 2. Number of iterations for the preconditioned conjugate gradient solution of the inner systems with
implicitly restarted Lanczos in the solution of the mat268515 test problem. Comparison against the fixed

preconditioner of CASE #1 and the three tuned preconditioners with lmax D 20.

Table VI. Timings and iterations for the computation of neig D 20 eigenpairs of matrix mat268518.

Prec type lmax MVP CPU

MAXPCG mmin mmax OUT MVP CPU IC – 5685 265.36

20 10 20 114 1624 99.86 FS 1 5630 247.36
20 15 20 111 1577 109.49 FS 10 3485 184.99
20 20 30 114 1596 110.29 FS 15 3112 178.68
20 25 35 114 1578 110.12 FS 20 3034 180.57
20 25 40 116 1568 116.65 FS 30 2912 184.86
30 10 20 106 1738 116.01
30 15 20 108 1604 103.12 BFGS 1 5325 258.82
30 20 30 102 1605 105.54 BFGS 10 3295 191.15
30 25 35 108 1585 106.51 BFGS 15 2936 183.47
30 25 40 105 1627 108.39 BFGS 20 2828 185.20

BFGS 30 2653 189.26

sBFGS 1 5435 260.29
sBFGS 10 3471 169.91
sBFGS 15 3193 178.86
sBFGS 20 3096 178.62
sBFGS 30 3009 183.17

On the left, we report the Jacobi–Davidson results, and on the right table, we report the implicitly restarted
Lanczos results where NCV D 40 and OUT D 80 for every run. The initial preconditioner is set as in CASE #1.
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Table VII. Timings and iterations with the DACG–Newton method for the
computation of neig D 20 eigenpairs of matrix mat268515.

CPU

�DACG kmax OUT MVP DACG Newton Total

0.02 0 105 2236 44.56 74.26 118.82
0.02 1 100 2051 44.30 67.51 111.81
0.02 5 96 2880 44.93 61.22 106.15
0.02 10 96 2880 44.53 60.84 105.37

The initial preconditioner is set as in CASE #1.

Table VIII. Comparison of all the methods considered for the computation of neig D 20
eigenpairs of matrix mat268515 using the sparse initial preconditioner of CASE # 2.

Method Parameters OUT MVP CPU

DACG–Newton �DACG kmax
0.02 0 256 6425 224.31
0.02 1 151 4196 155.99
0.02 5 119 3538 135.17
0.02 10 119 3538 135.70

Jacobi–Davidson mmin mmax MAXPCG
10 20 20 143 2237 99.04
15 20 20 141 2314 106.31
25 30 20 139 2300 110.97
25 35 20 139 2308 113.40
10 20 30 134 2670 117.46
15 20 30 135 2698 119.30
20 30 30 132 2660 120.47
25 35 30 133 2688 124.31

IRL Prec type lmax NCV
IC – 30 75 9532 255.11
FS 5 30 75 6774 210.10
FS 10 30 75 5684 182.81
FS 20 30 75 5018 190.42
FS 25 30 75 4832 190.72
BFGS 5 30 75 6569 217.15
BFGS 10 30 75 5452 191.24
BFGS 20 30 75 4663 194.36
BFGS 25 30 75 4511 202.81
sBFGS 5 30 75 6708 192.04
sBFGS 10 30 75 5579 186.21
sBFGS 20 30 75 4806 168.91
sBFGS 25 30 75 4696 175.16

4.3.2. CASE #2. Numerical results. In Table VIII, we report a number of selected runs of the three
methods. It is worth noticing that the BFGS acceleration of DN is much more evident here than with
the denser initial preconditioner. The same consideration applies with the tuning strategy within
IRL. In this test case, the new approximated tuning strategy sBFGS reveals the most efficient one.

4.4. Matrix emilia-923

We now report the results obtained in eigensolving the largest test matrix, which arises from the
regional geomechanical model of a deep hydrocarbon reservoir. This matrix is obtained by dis-
cretizing the structural problem with tetrahedral finite elements. Because of the complex geometry
of the geological formation, it was not possible to obtain a computational grid characterized by
regularly shaped elements. This matrix is publicly available in the University of Florida Sparse
Matrix Collection at http://www.cise.ufl.edu/research/sparse/matrices.
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Figure 3. Convergence history (relative residual norm for the eigenvector versus cumulative linear itera-
tion number) for problem emilia-923 to assess eigenpairs .�j ; vj /; j D 4; 10; and 15, from top to

bottom, respectively.

For this realistic test case, the performances of JD and DN with BFGS updates well compare in
terms of total CPU time. This is also accounted for by Figure 3 where, for a selected number of
eigenpairs, we plot the relative residual norm of the eigenvector, namely,

kAx � q.x/xk

q.x/
;

at each linear iteration, irrespective of the number of linear systems solved.
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Table IX. Comparison of all the methods considered for the computation of neig D
20 eigenpairs of matrix emilia-923.

OUT MVP CPU

DACG–Newton �DACG kmax MAXPCG
0.1 10 20 115 3007 990.94

Jacobi–Davidson mmin mmax MAXPCG
15 25 20 140 2346 885.08

IRL Prec type lmax NCV
(�PCG D 10

�13/ IC – 50 81 8135 2123.45
FS 30 50 81 5623 1755.48

BFGS 30 50 81 5157 1991.58
sBFGS 30 50 81 5662 1744.69

The fill-in of the initial preconditioner is � D 1:86.
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Figure 4. CPU times in seconds versus number of eigenpairs for DACG–Newton, Jacobi–Davidson, and
implicitly restarted Lanczos (IRL) methods. Matrix monte-carlo.

From the figure, we appreciate the similar convergence profile of the two methods. Apart from
the first eigenpair (plot not displayed), for which JD takes much time to enlarge the search subspace
and hence is slower than DN, generally JD takes a few iterations less than DN. We remark, however,
that the initial DACG iterations are less costly than both the subsequent Newton and JD ones.

It is finally worth mentioning that the ‘best’ IRL takes roughly twice the CPU time needed by
JD and DN (Table IX). This is partly due to the ill-conditioning of matrix emilia-923, which
requires to solve the inner linear system at a very high accuracy (we had to set �PCG D 10�13 in
order to have the desired accuracy on the eigenvectors).

4.5. Computing a larger number of eigenpairs

The results presented so far show that both JD and DN with low-rank preconditioner updates out-
perform the IRL method with tuning and relaxation in the computation of 20 eigenpairs. However,
if the number of eigenpairs to be sought is larger, the performance of the Newton-based methods
namely, JD and DN, is expected to worsen because of excessive reorthogonalization times with
respect to the previously computed eigenvectors.

To support this statement, we provide in Figure 4 a picture reporting the CPU times in computing
Neig D 1; 5; 20; 50; and 100 eigenpairs of matrix monte-carlo for the three methods considered
with optimal choice of parameters. As expected, when searching for a low number of eigenpairs,
DN is the optimal solver, while JD is the most efficient algorithm in computing a moderate num-
ber (10 	 80) eigenpairs. The IRL method is the most performing algorithm starting from 70–80
eigenpairs to be sought. Qualitatively comparable pictures could be provided for each test problem.
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5. CONCLUSIONS

We have performed an experimental analysis of two eigensolvers (DN method and IRL method)
both equipped by a number of deflated/tuned preconditioners, which accelerate the PCG solver in
the solution of the inner linear systems. The use of the described deflated/tuned preconditioners
(which are based on low-rank updates of a given preconditioner) greatly improves the performances
of both the aforementioned methods. A new approximated tuning strategy is proposed for the IRL
method, which is proved to shift the eigenvalues of the preconditioned matrix far from zero and
well compares with the tuning preconditioners described in previous papers. Numerical results in
the eigensolution of large SPD matrices arising from discretization of PDEs modeling realistic
flow and structural problems reveal that DN with optimal BFGS preconditioner displays compara-
ble performances as the JD method. The IRL method, implemented using an inexact variant (i.e.,
less accurate solution of the linear systems after the first restart) and optimal tuning precondition-
ers, is shown to be the slowest method on all test problems if a moderate number of eigenpairs is
being sought.
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