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Abstract In numerous recent applications including tensor computations, compressed sensing
and mixed precision arithmetics vector operations like summing, scaling, or matrix-vector mul-
tiplication are subject to inaccuracies whereas inner products are exact. We investigate the
behavior of Arnoldi’s method for Hermitian matrices under these circumstances. We introduce
a special purpose variant of Gram Schmidt orthogonalization and prove bounds on the distance
to orthogonality of the now-not-anymore orthogonal Krylov subspace basis. This Gram Schmidt
variant additionally implicitly provides an exactly orthogonal basis. In the second part we per-
form a backward error analysis and show that this exactly orthogonal basis satisfies a Krylov
relation for a perturbed system matrix – even in the Hermitian case. We prove bounds for the
norm of the backward error which is shown to be on the level of the accuracy of the vector opera-
tions. Care is taken to avoid problems in case of near breakdowns. Finally, numerical experiments
confirm the applicability of the method and of the proven bounds.

Keywords inexact matrix-vector operations · Gram Schmidt orthogonalization · loss of
orthogonality · Arnoldi’s method · Krylov relation · backward error bounds
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1 Introduction

In the identification of ground states of quantum systems one has to solve eigenvalue problems of
extremely large dimension (n = 2100 is not uncommon) [20,34,35]. In particular, one is interested
in the smallest eigenvalues (in physics terms, the ground state energies) and their distance to
one another.

The matrix eigenvalue problem, i.e., obtaining eigenvalues, eigenvectors and/or invariant
subspaces of a matrix A ∈ Cn×n, i.e., solving the equation

Ax = λx
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for λ ∈ C, x ∈ Cn \ {0} is among the best studied problems in numerical linear algebra. For the
case of large sparse matrices A, most prominent are iterative methods that search in a Krylov
subspace

Kk := Kk(A, v1) := span(v1, Av1, A
2v1, . . . , A

k−1v1)

for approximations of eigenvectors. An orthonormal basis Vk = [v1, v2, . . . , vk] ∈ Cn×k of Kk
may be constructed by Arnoldi’s method [1,2,25], which computes vi+1 by orthonormalizing Avi
against the previous basis vectors v1, . . . , vi, i.e., vi+1 = α(I−ViV Hi )Avi with α chosen such that
vi+1 has unit norm. The dominant operations are thus matrix-vector products, weighted vector
sums, vector scalings, and scalar products.

Because of the high problem dimension occurring in quantum system computations the mem-
ory capacity of even a large computing cluster is not sufficient to store even a single vector in
standard format. For this reason, the vectors are usually stored in a data sparse tensor format,
like the tensor train [19, 28, 29] or the hierarchical tensor formats [15, 16, 24]. While this makes
storing vectors possible in the first place for these applications it entails the drawback that vector
operations cannot be carried out exactly. Instead only approximations of the intended quantities
are available, e.g., in case of the matrix-vector multiplication, instead of Avi we obtain Avi + fi
where fi is some small unknown vector.

In this paper we consider an inexact Arnoldi method, where matrix-vector multiplication,
vector addition and vector scaling are inaccurate. On the other hand we do assume that scalar
products can be evaluated exactly, as is the case for the mentioned tensor formats.

Apart from quantum system computations inexact vector operations occur in further scenarios
of practical interest. Our analysis is independent of the actual source of perturbation and thus
applies to all these situations alike. Other applications include

– mixed precision arithmetic: Consider an Arnoldi method where the basis vectors of the Krylov
space are stored in single precision whereas all remaining quantities and computations are
handled in double precision. (In our analysis double precision is approximated by infinite
precision.) This approach effectively halves the memory requirements of Arnoldi’s method
which are dominated by the need to store the basis vectors. However every computed vector
has to be rounded to single precision – introducing a perturbation to these operations;

– sparse eigenvectors: If the eigenvectors of interest are known to be well approximable by sparse
vectors (i.e., vectors with only a few non-zeros) then it is natural to desire sparse Arnoldi
basis vectors. This could be achieved by thresholding, i.e., neglecting small elements in the
computed basis vectors - constituting a perturbation. In this scenario, see, e.g., [4,5,7], matrix-
vector-multiplication and vector addition (including sparsification) are inexact whereas vector
scaling and scalar products are exact;

– Lyapunov equations: A GMRES-like method to solve Lyapunov equations AX + XAT =
−BBT (cf. [10,21,22]) builds a search space using Arnoldi’s method. Here the basis vectors are
vectorizations of matrices and the system matrix A consists of a sum of Kronecker products.
Since the solution X is often known to be well approximable by a low rank matrix, each
basis vector is the vectorization of a matrix truncated to low rank. These truncations can be
interpreted as perturbation in the vector operations.

The matrix A as it arises in quantum system computation is Hermitian. Thus later in this
paper we will assume that A is Hermitian. In this case the Arnoldi method reduces to the
Lanczos method which features a short recurrence relation. Unfortunately this short recurrence
is very sensitive to perturbations and their presence leads to a rapid loss of orthogonality and to
spurious eigenvalues. There is a variant of the Lanczos methods without these drawbacks using
full recurrence, which is used, e.g., in the popular ARPACK package [25]. We restrict the scope
to this Lanczos method with full recurrence. To unify notation we speak of Arnoldi’s method
also in the case of a Hermitian A.

Classically, i.e., without perturbations, Arnoldi’s method constructs an orthonormal basis
matrix Vk = [v1, . . . , vk] and a Hessenberg matrix Hk ∈ Ck×k such that the so-called Arnoldi
relation

AVk = VkHk + vk+1hk+1,ke
T
k (1)
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holds. Here ek denotes the k-th column of the identity matrix. The purpose of this paper is to
analyze what happens to orthonormality and the Arnoldi relation in the presence of perturba-
tions. More precisely, we consider three subproblems. a) We provide bounds on the distance from
orthonormality of the now-not-anymore orthogonal basis vectors Ṽk obtained using a certain
variant of Gram-Schmidt orthogonalization. b) The Arnoldi relation (1) does not hold anymore.
However, we will prove that its residual norm, ‖AVk − VkHk − vk+1hk+1,ke

T
k ‖, is small. In the

spirit of a backward error analysis we then show that a relation of the form (1) holds, where
Vk, Hk are replaced by the computed counterparts Ṽk, H̃k and A is replaced by A+E, where E
is small. c) If A is Hermitian, it is natural to restrict E to be Hermitian as well. Unfortunately, it
turns out that in general there is no Hermitian E such that the Arnoldi relation holds for A+E.
In order to rescue Relation (1) we have to give up the Hessenberg structure of Hk. We will show
that upon replacement of Hk by any Hermitian k×k matrix Bk, there exists a Hermitian E such
that (1) holds for A+E. Moreover, we provide bounds on the norm of E for suitable choices of
Bk.

These results complement earlier work in this field. For background on the Arnoldi process
without perturbations see, e.g., [32, section 6.5] or [8, 23, 26, 31, 33]. Arnoldi’s method with per-
turbations was considered in [11,36–38]. In every case only inexact matrix-vector products were
assumed. Consequences of perturbations to the Gram-Schmidt orthogonalization process were
analyzed in [3, 13,18,31].

The paper is structured as follows: We state our inexact Arnoldi algorithm in Section 2 and
discuss its differences to the classical method. Then, in Section 3 we analyze the distance of
the obtained basis from orthonormality and give bounds for different implementations of the
orthogonalization step. We then show that the obtained subspace can be interpreted as an exact
Krylov subspace of a matrix close to A and establish bounds for the backward error. Numerical
examples illustrate the theoretical results in Section 5. Finally we offer some concluding remarks
in Section 6.

2 The algorithm and notation

We will analyze the following method. Initialized with a matrix A and a normalized vector ṽ1 it
constructs a search space basis Ṽk and a Hessenberg matrix H̃k consisting of orthogonalization
coefficients. In order to emphasize that their computation entailed perturbations we named the
variables Ṽk and H̃k instead of Vk and Hk, i.e., with tildes. All other variables that also appear in
the standard Arnoldi method have a tilde, too. The matrices Dk := Ṽ Hk Ṽk are new; they do not
appear in the standard Arnoldi method. The vectors f (M)

k , f (0)k , and f (S)k model the perturbations
in matrix-vector multiplication, in orthogonalization and in vector scaling, respectively, in the
kth step.

Algorithm 1 Inexact Arnoldi Method
Input: A ∈ Cn×n, ṽ1 ∈ Cn normalized, m ∈ N
Output: Ṽm+1 ∈ Cn×m+1, H̃m ∈ Cm×m, h̃m+1,m, Dm+1 ∈ Cm+1×m+1,
1: Ṽ1 = ṽ1, D1 = 1, H̃0 = [ ] ∈ C0×0 (initialization)
2: for k = 1, 2, 3, . . . ,m do
3: w̃k+1 = Aṽk − f (M)

k+1
(matrix multiplication, perturbed)

4: [ṽk+1,h̃1:k,k,h̃k+1,k, Dk+1] = ComGS(w̃k+1,Ṽk,Dk) (orthogonalzation)

5: H̃k =

[
H̃k−1 h̃1:k−1,k

h̃k,k−1eTk−1 h̃k,k

]
(update H̃k)

6: Ṽk+1 = [Ṽk, ṽk+1] (update Ṽk)
7: end for

Algorithm 2 ComGS
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Input: w̃k+1 ∈ Cn, Ṽk ∈ Cn×k, Dk ∈ Ck×k

Output: ṽk+1 ∈ Cn, h̃1:k,k ∈ Ck, h̃k+1,k ∈ C, Dk+1 ∈ Ck+1×k+1

1: h̃1:k,k = D−1k Ṽ Hk w̃k+1 (orthogonalization coefficients)

2: l̃k+1 = w̃k+1 − Ṽkh̃1:k,k − f (0)k+1
(orthogonalization, perturbed)

3: h̃k+1,k = ‖l̃k+1‖2
4: ṽk+1 = (l̃k+1 − f (S)k+1)/h̃k+1,k (normalization, perturbed)

5: Dk+1 =

[
Dk Ṽ Hk ṽk+1

ṽHk+1Ṽk ṽ
H
k+1ṽk+1

]
(update Dk)

We have the following remarks. First, the standard Arnoldi method is obtained upon omitting
the perturbation vectors f (∗)k+1 and the matrix Dk in algorithms 1 and 2.

Second, we use an unusual kind of projection to orthogonalize w̃k against Ṽk. Since we know
that the basis is not orthonormal, we use the projector I − Ṽk(Ṽ Hk Ṽk)

−1Ṽ Hk for non-orthogonal
bases (instead of I− ṼkṼ Hk for orthogonal bases). For this purpose we need to construct the cross
product matrix Dk = Ṽ Hk Ṽk which can be updated during the iteration (Step 5 of Algorithm 2).
The more complicated projector is chosen in order to alleviate the damage, the perturbations
inflict on the orthogonality of Ṽk. Since the use of D−1k in Step 1 of Algorithm 2 compensates for
the non-orthogonality in Ṽk, we speak of the Compensated Gram-Schmidt process (ComGS).

ComGS is a slight modification of Classical Gram Schmidt (CGS) to work with non-orthogonal
bases. It inherits the property of CGS that all scalar products ṽH1 w̃k+1, . . . , ṽ

H
k w̃k+1 may be

computed in parallel (whereas in modified Gram Schmidt (MGS) they have do be evaluated
sequentially). We note that also MGS can deal to some extend with non-orthogonal bases, as it
implicitly solves a linear system with the matrix Dk (as ComGS does in Step 1), see [3, page 308
f.].

Our numerical tests will show that ComGS retains orthogonality much better than CGS and
is comparable to MGS. In contrast to those standard schemes, ComGS additionally provides
implicit access to a second basis that is even closer to orthogonality, see below. The price to pay
is that ComGS needs 6nk +O(k3) floating point operations (flops) in the kth iteration whereas
the CGS and MGS schemes require only 4nk flops.

Finally we note that in the unperturbed case, i.e., when all perturbations are zero,Dk becomes
the identity matrix, and thus Algorithm 2 reduces to CGS and Algorithm 1 to the standard
Arnoldi method. Note that we exclude the case that the algorithm breaks down, i.e., that h̃k+1,k

is zero or that the matrix Dk is singular.

Notation We define
l̂k+1 := w̃k+1 − Ṽkh̃1:k,k = l̃k+1 + f

(0)
k+1. (2)

Note that these exactly orthogonalized vectors are not available in practice, but we will use them
in our analysis below. Further useful quantities include

Dk =: CHk Ck, K̃k := img(Ṽk) = img(V̂k), V̂k := ṼkC
−1
k , PK̃k

:= ṼkD
−1
k Ṽ Hk = V̂kV̂

H
k . (3)

The Cholesky factor Ck of Dk, is useful for solving the linear systems with Dk that occur in
Step 1 of Algorithm 2. It can be updated along with Dk, via [17, Proof of Theorem 10.1],

Ck+1 =

[
Ck ck+1

0 γk+1

]
with ck+1 = C−Hk (Ṽ Hk ṽk+1), γk+1 =

√
‖ṽk+1‖22 − ‖ck+1‖22.

And doing so lowers the cost of ComGS from 6nk+O(k3) to 6nk+O(k2). Another useful property
of Ck is that V̂k = ṼkC

−1
k has orthonormal columns. K̃k is the search space used by our method.

Note that K̃k is in general not a Krylov subspace for A. However, since img(Ṽk) = img(V̂k) an
orthonormal basis of K̃k is implicitly available. Finally, PK̃k

denotes the orthogonal projector
onto the search space K̃k. Note that V̂k cannot be formed explicitly as its computation involves
vector sums which are inexact.
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3 Distance to orthogonality

In this section we analyze the distance to orthogonality of the basis Ṽk produced by the in-
exact Arnoldi method, Algorithm 1. Note that only the perturbations f (0)k and f

(S)
k during

orthonormalization in Algorithm 2 play a role here; those occurring during the matrix-vector
multiplication are insignificant for the deviation from orthogonality. Indeed, in the special case
with perturbation only in Algorithm 1, but not in Algorithm 2, the columns of Ṽk would be
orthonormal. (However, the spanned space would nevertheless cease to be a Krylov subspace for
A.)

As measures for the distance to orthonormality we will use the quantities ‖Ṽ Hk ṽk+1‖2, ‖Dk−
I‖∗ = ‖Ṽ Hk Ṽk − I‖∗, and ‖Ck − I‖∗, where ‖.‖∗ denote either the spectral or the Frobenius
norm. Especially ‖Dk − I‖2 is commonly used (e.g., in [14]) and is a good estimator for the
canonic distance δorth(Ṽk) := minU∈Cn×k{‖Ṽk − U‖2 : UHU = Ik}. More precisely, we have [17,
Problem 19.14] ‖D − Ik‖2/(‖Ṽk‖2 + 1) ≤ δorth(Ṽk) ≤ ‖D − Ik‖2.

Our bounds depend on the relative norm of the perturbations f (0)k , f (S)k . We assume that
‖f (0)k ‖ and ‖f

(S)
k ‖ are small compared to ‖w̃k‖ and ‖l̃k+1‖, respectively. This is the case, whenever

f
(0)
k may be interpreted as the error which arises in the vector sum in Step 2 of Algorithm 2,
because ‖wk‖2 is the largest summand within this sum. More precisely, we will assume the bounds
‖f (0)k ‖2 < kε‖wk‖2 and ‖f (S)k ‖2 < ε‖l̃k‖2. The parameter ε depends on the actual perturbation
source; in case of tensor approximation ε denotes the truncation threshold; whereas in case of
mixed precision arithmetic ε can be interpreted as the single machine precision εs ≈ 6 · 10−8.
Clearly, the best we can hope for is that the distance form orthogonality is on the order of ε.
This turns out to be the case – up to an unpleasant constant.

Theorem 1 Let A ∈ Cn×n and ṽ1 ∈ Cn with ‖ṽ1‖2 = 1. Let H̃k and Ṽk+1 = [Ṽk, ṽk+1] be as
in Algorithm 1 after k iterations. Assume that the perturbations in steps 2 and 4 of Algorithm 2
are bounded by ‖f (0)k+1‖2 ≤ kε‖w̃k+1‖2 and ‖f (S)k+1‖2 < ε‖l̃k+1‖2, for some ε < 1/(k + 2). Then

‖Ṽ Hk ṽk+1‖2 ≤ ‖Ṽk‖2(k + 1 + k‖Ṽk‖2κk)
ε

1− kε ≤ k
2(2 + κk)

ε

1− (k + 2)ε
. (4)

where κk := ‖h̃1:k,k‖2/h̃k+1,k.

The proof will require the following lemma for support.

Lemma 1 Let V = [v1, . . . , vk] ∈ Cn×k, with ‖vi‖2 ≤ 1+ ε for all i = 1, . . . , k for some ε > −1,
then ‖V ‖2 ≤

√
k(1 + ε).

Proof This follows from ‖V ‖22 ≤ ‖V ‖2F ≤ k(1 + ε)2. ut

Proof (of Theorem 1) From Algorithm 2, equation (2) and the assumed bound on ‖f (S)k+1‖2 we
have ‖ṽi‖2 ≤ 1+ε, h̃k+1,k > 0, and ṽk+1 = (l̂k+1+f

(0)
k+1+f

(S)
k+1)/h̃k+1,k. Hence, using orthogonality

of l̂k+1 to Ṽk, we have

‖Ṽ Hk ṽk+1‖2 =
‖Ṽ Hk (l̂k+1 + f

(0)
k+1 + f

(S)
k+1)‖2

h̃k+1,k

=
‖Ṽ Hk (f

(0)
k+1 + f

(S)
k+1)‖2

h̃k+1,k

≤ ‖Ṽk‖2
h̃k+1,k

(‖f (0)k+1‖2 + ‖f
(S)
k+1‖2). (5)

For ‖f (0)k+1‖2 we obtain

‖f (0)k+1‖2 ≤ kε‖w̃k+1‖2
= kε‖Ṽkh̃1:k,k + f

(0)
k+1 + l̃k+1‖2

≤ kε‖f (0)k+1‖2 + kεh̃k+1,k + kε‖Ṽkh̃1:k,k‖2.
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Solving for ‖f (0)k+1‖2 results in

‖f (0)k+1‖2 ≤
(
h̃k+1,k + ‖Ṽk‖2‖h̃1:k,k‖2

) kε

1− kε = h̃k+1,k(1 + ‖Ṽk‖2κk)
kε

1− kε

Using ‖f (S)k+1‖2 ≤ h̃k+1,kε ≤ h̃k+1,kε/(1− kε) yields

‖f (0)k+1‖2+‖f
(S)
k+1‖2 ≤ h̃k+1,k

(
(1 + ‖Ṽk‖2κk)

kε

1− kε +
ε

1− kε

)
= h̃k+1,k(k+1+k‖Ṽk‖2κk)

ε

1− kε .

Plugging this into (5) proves the first inequality. Finally, with Lemma 1 we have

‖Ṽk‖2(k + 1 + k‖Ṽk‖2κk)
ε

1− kε ≤
√
k(1 + ε)

(
(k + 1)(1 + ε) + k

√
k(1 + ε)κk

) ε

1− kε
≤
√
k(1+ε)2(k+1+k

√
kκk)

ε

1− kε ≤
√
k(k+1+k

√
kκk)

ε

1− (k + 2)ε
≤ k2(2+κk)

ε

1− (k + 2)ε
.

ut

The bound of Theorem 1 describes the degree of orthogonality of ṽk+1 to its predecessors
[ṽ1, . . . , ṽk]. Two bounds are given. The one involving ‖Ṽk‖2 is more complicated, but also sharper
than the other one. We deduct that ‖Ṽ Hk ṽk+1‖2 is small, i.e., on the order of ε, whenever the
factor (2 + κk) is not too large. In this sense (2 + κk) can be interpreted as a condition number,
with (2 + κk) ∈ [2,∞). κk gets large only if the subdiagonal element h̃k+1,k of the Hessenberg
matrix is tiny compared to the remaining elements in the k-th column of H̃k. Hence as long as
Aṽk is securely linearly independent of the previous basis vectors, κk will be moderate and the
upper bound (4) will be on the order of ε. However, (2 + κk) can become arbitrarily large, if the
subdiagonal element h̃k+1,k is very small. Usually, this situation is called a “lucky breakdown“ as
it indicates convergence of the search space to an invariant subspace of A. Here, tiny subdiagonal
elements are ”unlucky”, because the bounds (4) get large and we loose orthogonality of Ṽk+1.

Note that in this case only ṽk+1 is far from being orthogonal to Ṽk. However, Ṽk itself will be
an almost orthogonal basis of the almost invariant subspace. Moreover, note that the bound (4)
is not recursive, i.e., even if Ṽk is highly non-orthogonal, the bound for the next vector ṽk+1

may be small nevertheless (provided that κk is moderate). This fortunate behavior is a huge
advantage of the ComGS method over CGS. Indeed, CGS does not recover once orthogonality is
lost, but on the contrary only loses orthogonality even faster [12].

We note two relations to other methods: a) if κk is large then [H̃T
k , h̃k+1,kek]

T is ill-conditioned,
i.e., the R-factor of the QR-factorization of the matrix [ṽ1, AṼk] is ill-conditioned. This implies
that the matrix [ṽ1, AṼk] itself is ill-conditioned - in which case Gram Schmidt methods are
known to loose orthogonality. So the occurrence of the factor κ should not surprise. b) Loss of
orthogonality in case of convergence was also described for the Lanczos algorithm in [30]. How-
ever, there the convergence of a single eigenvector in the Krylov subspace is enough to trigger the
loss of orthogonality, whereas in our method the whole Krylov subspace has to be a converged
invariant subspace (indicated by the tiny subdiagonal element hk+1,k). This makes our method
much more stable than the Lanczos algorithm.

However, the situation is not entirely satisfying. In the case when Aṽk is nearly linear depen-
dent of Ṽk, i.e., when ‖l̃k+1‖ = O(ε), then κk = O(ε−1). In this case the bound (4) is of order
one and orthogonality is lost. Hence, we look for an improved orthogonalization scheme. We will
add a reorthogonalization step (analyzed for QR factorizations in [6]) amounting to the following
modification of Algorithm 2.

Algorithm 3 ComGSre (with reorthogonalization)
Input: w̃k+1 ∈ Cn, Ṽk ∈ Cn×k, Dk ∈ Ck×k

Output: ṽk+1 ∈ Cn, h̃1:k,k ∈ Ck, h̃k+1,k ∈ C, Dk+1 ∈ Ck+1×k+1

1: s(0) = D−1k Ṽ Hk w̃k+1
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2: l̃
(0)
k+1 = w̃k+1 − Ṽks(0) − f (0)k+1

(orthogonalization, perturbed)

3: s(1) = D−1k Ṽ Hk l̃
(0)
k+1

4: l̃
(1)
k+1 = l̃

(0)
k+1 − Ṽks(1) − f

(1)
k+1

(reorthogonalization, perturbed)

5: h̃k+1,k = ‖l̃(1)k+1‖2, h̃1:k,k = s(0) + s(1)

6: ṽk+1 = (l̃
(1)
k+1 − f

(S)
k+1)/h̃k+1,k (normalization, perturbed)

7: Dk+1 =

[
Dk Ṽ Hk ṽk+1

ṽHk+1Ṽk ṽ
H
k+1ṽk+1

]
(update D)

ComGSre needs 10nk + O(k3) flops, slightly more than the 8nk flops of CGS and MGS with
reorthogonalization.

As before we define the exactly orthogonalized vectors

l̂
(0)
k+1 := w̃k+1 − Ṽks(0) = l̃

(0)
k+1 + f

(0)
k+1 and l̂

(1)
k+1 := l̃

(0)
k+1 − Ṽks(1) = l̃

(1)
k+1 + f

(1)
k+1.

Reorthogonalization aims to improve orthogonality of ṽk+1 by projecting the result of the
first orthogonalization step l̃

(0)
k+1 a second time. In doing so, f (0)k+1 is orthogonalized to Ṽk. Un-

fortunately, also the vector sum in the reorthogonalization step is inexact which introduces a
further perturbation f

(1)
k+1. However, while f

(0)
k+1 is small compared to wk, we can assume f (1)k+1

to be small compared to l̃(0)k+1 (the largest term in the sum of Step 4), i.e., ‖f (1)k+1‖2 ≤ kε‖l̃
(0)
k+1‖2.

We have the following result for Algorithm 3 which is analogous to Theorem 1.

Theorem 2 Let A ∈ Cn×n and ṽ1 ∈ Cn with ‖ṽ1‖2 = 1. Let H̃k and Ṽk+1 = [Ṽk, ṽk+1] be as
in Algorithm 1 after k iterations. Assume that the perturbations in steps 2, 4, and 6 of Algo-
rithm 3 are bounded by ‖f (0)k+1‖2 ≤ kε‖w̃k+1‖2, ‖f (1)k+1‖2 ≤ kε‖l̃(0)k+1‖2, and ‖f

(S)
k+1‖2 ≤ ε‖l̃(1)k+1‖2,

respectively, for some ε < 1/(2k + 2). Then

‖Ṽ Hk ṽk+1‖2 ≤ ‖Ṽk‖2
(
k + 1 + k2ε ‖Ṽk‖2κk

) ε

1− 2kε
≤ k2 (2 + kεκk)

ε

1− (2k + 2)ε
, (6)

where κk := ‖h̃1:k,k‖2/h̃k+1,k.

Proof From steps 2–5 of Algorithm 3 we have

‖f (0)k+1‖2 ≤ kε‖w̃k+1‖2 = kε‖l̃(1)k+1 + f
(1)
k+1 + Ṽks

(1) + f
(0)
k+1 + Ṽks

(0)‖2
= kε‖f (0)k+1 + f

(1)
k+1 + l̃

(1)
k+1 + Ṽkh̃1:k,k‖2

≤ kε‖f (0)k+1‖2 + kε‖f (1)k+1‖2 + kε h̃k+1,k + kε‖Ṽk‖2‖h̃1:k,k‖2.

Solving for ‖f (0)k+1‖2 we obtain

‖f (0)k+1‖2 ≤
kε

1− kε
(
‖f (1)k+1‖2 + h̃k+1,k + ‖Ṽk‖2‖h̃1:k,k‖2

)
. (7)

For ‖f (1)k+1‖2 we obtain

‖f (1)k+1‖2 ≤ kε‖l̃
(0)
k+1‖2 = kε‖f (1)k+1 + l̃

(1)
k+1 + Ṽks

(1)‖2
≤ kε‖f (1)k+1‖2 + kεh̃k+1,k + kε‖Ṽks(1)‖2. (8)

Since l̂(0)k+1 is orthogonal to Ṽk, ‖Ṽks(1)‖2 can be bounded by

‖Ṽks(1)‖2 = ‖ṼkD−1k Ṽ Hk l̃
(0)
k+1‖2 = ‖PK̃k

(l̂
(0)
k+1 − f

(0)
k+1)‖2 = ‖PK̃k

f
(0)
k+1‖2 ≤ ‖f

(0)
k+1‖2. (9)
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Combining (7), (8), and (9) yields

‖f (1)k+1‖2 ≤ kε‖f (1)k+1‖2 + kεh̃k+1,k + kε
kε

1− kε
(
‖f (1)k+1‖+ h̃k+1,k + ‖Ṽk‖2‖h̃1:k,k‖2

)
≤ kε

1− kε‖f
(1)
k+1‖2 +

kε

1− kε h̃k+1,k +
(kε)2

1− kε‖Ṽk‖2‖h̃1:k,k‖2.

Solving for ‖f (1)k+1‖2 results in

‖f (1)k+1‖2 ≤
(
h̃k+1,k + kε‖Ṽk‖2‖h̃1:k,k‖2

) kε

1− 2kε
= h̃k+1,k

(
1 + kε‖Ṽk‖2κk

) kε

1− 2kε
.

Consequently, using ṽk+1 = (l̂
(1)
k+1 + f

(1)
k+1 + f

(S)
k+1)/h̃k+1,k, orthogonality of l̂(1)k+1 to Ṽ Hk , and

‖f (S)k+1‖2 ≤ h̃k+1,kε ≤ h̃k+1,kε/(1− 2kε), we have

‖Ṽ Hk ṽk+1‖2 =
‖Ṽ Hk (f

(1)
k+1 + f

(S)
k+1)‖2

h̃k+1,k

≤ ‖Ṽk‖2
h̃k+1,k

(‖f (1)k+1‖2 + ‖f
(S)
k+1‖2)

≤ ‖Ṽk‖2(
(
1 + kε ‖Ṽk‖2κk

) kε

1− 2kε
+

ε

1− 2kε
) ≤ ‖Ṽk‖2

(
k + 1 + k2ε ‖Ṽk‖2κk

) ε

1− 2kε
,

which proves the first inequality. Finally, with Lemma 1 we have

‖Ṽk‖2
(
k + 1 + k2ε ‖Ṽk‖2κk

) ε

1− 2kε
≤
√
k(1 + ε)

(
(k + 1)(1 + ε) +

√
k5ε(1 + ε)κk

) ε

1− 2kε

≤
√
k(1 + ε)2

(
k + 1 +

√
k5εκk

) ε

1− 2kε
≤
√
k
(
k + 1 +

√
k5εκk

) ε

1− (2k + 2)ε

≤ k2 (2 + kεκk)
ε

1− (2k + 2)ε
.

ut

Comparing bounds (4) and (6), we see that the reorthogonalization step improves things. The
dominant difference is the replacement of the term (2 + κk) by (2 + kεκk). This implies little
change for moderate values of κk (distance from orthogonality is still on the order of ε). For large
κk, on the other hand, we observe a huge improvement. Simply speaking, ṽk+1 will be almost
orthogonal for values of κk up to the order of ε−1.

One could ask the question if we could get even better results by reorthogonalizing repeatedly.
This situation is completely analyzed in [31, pp. 115–117], where the “twice is enough“ algorithm
is presented for the two vectors case and it is referred to Kahan for a corresponding analysis.
An extension to several nearly orthonormal vectors is given in [6]. This ”twice is enough“ rule
of thumb also holds in our situation under mild assumptions. We have already established that
κk can reach the order O(ε−1). In order to grow even further, the perturbation f (0)k+1 would have
to lie almost completely in img(Ṽk). This is very unlikely as long as the perturbations can be
interpreted as being random.

So far we have only considered the distance to orthogonality of just one vector to the previous
basis Ṽk. Now we shift attention to the whole cross product matrix aiming for bounds on the
distance of Dk or its Cholesky factor Ck from the identity. Abusing notation, we formulate the
bounds for both cases (with and without reorthogonalization) as follows.

Corollary 1 Let Dk, Ck, and H̃k result from k iterations of Algorithm 1 applied to A ∈ Cn×n
and ṽ1 ∈ Cn with ‖ṽ1‖2 = 1. Let ` ∈ {0, 1} be the number of reorthogonalizations used in
ComGS. Let κk := ‖h̃1:k,k‖2/h̃k+1,k and κmax,k := maxi=1,...,k κi. For ` = 0 assume that the
perturbations in steps 2 and 4 of Algorithm 2 are bounded by ‖f (0)k ‖2 ≤ kε‖w̃k+1‖2 and ‖f (S)k ‖2 ≤
ε‖l̃k+1‖2 for some ε < (

√
(k + 1)5(2 + κmax,k) + 3k + 5)−1. Similarly, for ` = 1 assume that the

perturbations in steps 2, 4, and 6 of Algorithm 3 are bounded by ‖f (0)k+1‖2 ≤ kε‖w̃k+1‖2, ‖f (1)k+1‖2 ≤



Backward error analysis of an inexact Arnoldi method using a certain Gram Schmidt variant 9

kε‖l̃(0)k+1‖2, and ‖f
(S)
k ‖2 ≤ ε‖l̃(1)k+1‖2 for some ε < (1/2)ν

(
1−

(
(1/4)

√
(k + 1)7κmax,k

)
ν2
)
with

ν = 1/
(√

(k + 1)5 + 1 + 4(k + 1)
)
.

Define the two non-negative sequences {δk} and {ζk} by δ21 := 4ε2/(1− ε) and

δ2k+1 := δ2k + 2

εmin{
√
k, 1 + ζk}

(
k + 1 +min{

√
k, 1 + ζk}k(kε)`κk

)
1− (k(`+ 1) + 2)ε

2

+
4ε2

1− ε and

ζk :=
δk√

2(1− δk)
for k = 1, 2, . . . . (10)

Then Dk is positive definite and for ∗ ∈ {2, F}, Dk and its Cholesky factor Ck satisfy

‖Dk − Ik‖∗ ≤ δk ≤
√
k5
(
2 + (kε)`κmax,k−1

)
· ε

1− (k(`+ 3) + 2)ε
, with κmax,0 = 0 (11)

‖Ck − Ik‖∗ ≤ ζk ≤
√
k5/2

(
2 + (kε)`κmax,k−1

)
· ε

1− (
√
k5(2 + (kε)`κmax,k−1) + k(`+ 1) + 2)ε

.

(12)

For the proof we need the following theorem.

Theorem 3 [41, Theorem 1.4] Let A be an n× n positive-definite matrix with the Cholesky
factorization A = CHC. If ∆A is a n× n Hermitian matrix satisfying

‖A−1‖2‖∆A‖F < 1,

then there is a unique Cholesky factorization

A+∆A = (C +∆C)(C +∆C)H ,

and
‖∆C‖F
‖C‖2

≤ κ(A)ε√
2 (1− κ(A)ε)

,

where ε = ‖∆A‖F
‖A‖2 and κ(A) = ‖A‖2‖A−1‖2.

Proof (of Corollary 1)
The right inequalities in (11) and (12) on δk and ζk are obtained by using min{

√
k, 1+ ζk} ≤√

k in the definition of {δk}. We have

δ2k = δ21 +

k−1∑
j=1

(δ2j+1 − δ2j )

≤ 4ε2

1− ε +

k−1∑
j=1

4ε2

1− ε + 2

(
ε

1− (k(`+ 1) + 2)ε

√
j(k + 1 +

√
jk(kε)`κj)

)2

≤ 4kε2

1− ε + 2

(
ε

1− (k(`+ 1) + 2)ε

)2 (
k + 1 +

√
k3(kε)`κmax,k−1

)2 k−1∑
j=1

j

≤
(

2
√
kε

1− (k(`+ 1) + 2)ε

)2

+

(
ε

1− (k(`+ 1) + 2)ε

)2 (
k + 1 +

√
k3(kε)`κmax,k−1

)2
(k2 − k)

≤
(

ε

1− (k(`+ 1) + 2)ε

(
2 + (kε)`κmax,k−1

)√
k5
)2

.
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In the last step we have used that omitting the first term is more than compensated by also
replacing k2 − k by k2. This proves the right inequality of (11). Note that by the assumed
bounds on ε, we have δi < 1 for all i = 1, . . . , k + 1. Hence, from (10) we obtain

ζk =
δk√

2(1− δk)
≤
√
k5
(
2 + (kε)`κmax,k−1

)
√
2

· ε

1− (
√
k5(2k(kε)`κmax,k−1) + k(`+ 1) + 2)ε

proving the right inequality of (12).
The proof of the left inequalities in (11) and(12) is by induction over k. For k = 1 we have

D1− I1 = ṽH1 ṽ1− 1 ≤ (1+ ε)2− 1 ≤ 2ε/
√
1− ε = δ1. Moreover, C1− I1 =

√
‖ṽ1‖22− 1 ≤ ε ≤ ζ1,

i.e., the assertion holds for k = 1. Now, suppose that ‖Dk−Ik‖F ≤ δk and ‖Ck−Ik‖F ≤ ζk holds
for some positive integer k. We will show the assertion for k + 1. From Step 5 of Algorithm 2,
we have

‖Dk+1 − Ik+1‖2F = ‖Dk − Ik‖2F + 2‖Ṽ Hk ṽk+1‖22 + (‖ṽk+1‖22 − 1)2.

Hence, it follows from the induction hypothesis and Theorem 1, respectively Theorem 2, that

‖Dk+1−Ik+1‖2F ≤ δ2k+2

(
ε

1− k(`+ 1)ε
‖Ṽk‖2

(
k + 1 + k(kε)`‖Ṽk‖2κk

))2

+(‖ṽk+1‖22−1)2. (13)

Using the assumption on ‖f (S)k+1‖2 we obtain for the rightmost term

(‖ṽk+1‖22 − 1)2 ≤ ((1 + ε)2 − 1)2 ≤ (2ε(1 + 1
2ε))

2 ≤ 4ε2

1− ε .

For ‖Ṽk‖2 we find
‖Ṽk‖2 = ‖Ck‖2 ≤ ‖Ik‖2 + ‖Ck − Ik‖2 ≤ 1 + ζk,

because the matrix ṼkC
−1
k = V̂k has orthonormal columns. Together with Lemma 1 we have

‖Ṽk‖2 ≤ min{
√
k(1 + ε), 1 + ζk} ≤ (1 + ε)min{

√
k, 1 + ζk}. Substitution into (13) yields

‖Dk+1 − Ik+1‖2F ≤ δ2k + 2

(
ε

1− k(`+ 1)ε
(1 + ε)min{

√
k, 1 + ζk} ·(

k + 1 + (1 + ε)min{
√
k, 1 + ζk}k(kε)`κk

))2
+

4ε2

1− ε
≤ δ2k + 2

(
ε

1− (k(`+ 1) + 2)ε
min{

√
k, 1 + ζk} ·(

k + 1 +min{
√
k, 1 + ζk}k(kε)`κk

))2
+

4ε2

1− ε = δ2k+1.

In order to treat the Cholesky factor, we consider Theorem 3 with A = Ik+1, ∆A = Dk+1−Ik+1,
C = Ik+1, and ∆C = Ck+1 − Ik+1. Since

‖I−1k+1‖2‖Dk+1 − Ik+1‖F < 1 · δk+1 < 1

by the assumed bound on ε, Theorem 3 is applicable and yields

‖Ck+1 − Ik+1‖F ≤
‖Dk+1 − Ik+1‖F√

2(1− ‖Dk+1 − Ik+1‖F )
≤ δk+1√

2(1− δk+1)
= ζk+1.

With that the induction proof is completed. Moreover, the assumed bound on ε implies δk < 1
and hence ensures non-negativity of {ζk}.

Finally, using the norm property ‖A‖2 ≤ ‖A‖F (cf. [14]) concludes the proof of (11), (12). ut
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In (11), (12) we have presented two bounds each for ‖Dk − I‖2 and ‖Ck − I‖2. As before
(in theorems 1 and 2) the first ones are sharper, whereas the second ones are more concise.
The sharper bounds, being recursively defined, are useful in practice, but do not convey much
theoretical insight. Both concise bounds are explicit and are of the form α1ε/(1−α2ε). So, they
are useful if max{α1, α2} � ε−1. This is the case whenever ε`−2κmax,k is not large. Then, Dk

and Ck differ from the identity by order ε. This means that our algorithms generate an almost
orthonormal basis Ṽk.

Concluding this section, we show a relation between algorithms 2 and 3, more precisely, that
Algorithm 3 is a special case of Algorithm 2.
Theorem 4 The results of Algorithm 1 using Algorithm 2 and Algorithm 1 using Algorithm 3
coincide if the perturbations are related by

f
(M,no)
k+1 = f

(M,re)
k+1 + f

(0,re)
k+1 , f

(0,no)
k+1 = f

(1,re)
k+1 , f

(S,no)
k+1 = f

(S,re)
k+1 for all k = 1, 2, . . . . (14)

Here, f (M,no)
k+1 , f (0,no)k+1 , and f

(S,no)
k+1 are the perturbations1 occuring in Algorithm 1 using Algo-

rithm 2 whereas f (M,re)
k+1 , f (0,re)k+1 , f (1,re)k+1 , and f (S,re)k+1 are the perturbations occurring in Algorithm 1

using Algorithm 3.

Proof The k-th iteration of Algorithm 1 using Algorithm 2 generates

h̃1:k,k = D−1k Ṽ Hk (Aṽk − f (M,no)
k+1 ),

h̃k+1,k = ‖Aṽk − f (M,no)
k+1 − Ṽkh̃1:k,k − f (0,no)k+1 ‖2,

ṽk+1h̃k+1,k = Aṽk − f (M,no)
k+1 − Ṽkh̃1:k,k − f (0,no)k+1 − f (S,no)k+1 ,

whereas the k-th iteration of Algorithm 1 using Algorithm 3 yields

h̃1:k,k = s(0) +D−1k Ṽ Hk (Aṽk − f (M,re)
k+1 − Ṽ Hk s(0) − f (0,re)k+1 )

h̃k+1,k = ‖Aṽk − f (M,re)
k+1 − Ṽkh̃1:k,k − f (0,re)k+1 − f (1,re)k+1 ‖2,

ṽk+1h̃k+1,k = Aṽk − f (M,re)
k+1 − Ṽkh̃1:k,k − f (0,re)k+1 − f (1,re)k+1 − f (S,re)k+1 .

Both sets of results coincide if (14) holds. ut
Thus, in the following analysis we only consider Algorithm 1 using Algorithm 2. Due to the fact
that reorthogonalization requires extra scalar products and is only necessary for large κmax,k−1,
we propose to only carry out the reorthogonalization step if κmax,k−1 exceeds a certain threshold.
Also this hybrid technique fits in the framework of Algorithm 2.

Finally, we recall that next to Ṽk we have also implicit access to an orthonormal basis V̂k of
the same subspace, see (3).

4 Krylov-like relations

The classical Arnoldi method produces an orthonormal basis and a Hessenberg matrix satisfying
an Arnoldi relation (1). Due to the perturbations, this is no longer true for the results of Algo-
rithm 1. Here we want to derive a relation between A, Ṽk, and H̃k that is close to an Arnoldi
relation in order to admit a backward error analysis of our method. From Step 3 of Algorithm 1
and steps 2 and 4 of Algorithm 2 for j = 1, . . . , k we have

Aṽj = w̃j+1 + f
(M)
j+1

= Ṽj h̃1:j,j + l̃j+1 + f
(0)
j+1 + f

(M)
j+1

= Ṽj h̃1:j,j + ‖l̃j+1‖ ṽj+1 + f
(S)
j+1 + f

(0)
j+1 + f

(M)
j+1

= Ṽk+1

[
h̃1:j,j
‖l̃j+1‖

]
+ f

(S)
j+1 + f

(0)
j+1 + f

(M)
j+1 .

1 where the superscripts (re) and (no) indicate that reorthogonalization was used (re)/was not used (no)
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Hence, after k steps we obtain the relation

AṼk = ṼkH̃k + ṽk+1h̃k+1,ke
T
k + Fk. (15)

Here Fk = [f
(M)
2 + f

(0)
2 + f

(S)
2 , . . . , f

(M)
k+1 + f

(0)
k+1 + f

(S)
k+1] is the matrix consisting of the individual

perturbations occurring throughout the Algorithms 1 and 2. In order to bound Fk, we assume
that the perturbations are bounded by ‖f (0)j+1‖2 ≤ ε‖w̃j+1‖2, ‖f (S)j+1‖2 ≤ εh̃j+1,j (as in Theorem 1),
and ‖f (M)

j+1 ‖2 ≤ ε‖A‖2. The latter assumption is reasonable since f (M)
j+1 can be interpreted as error

in the matrix-vector-product which is proportional to the norms of the factors A and ṽi. Then
each column of F can be bounded by

‖Fej‖2 ≤ ‖f (M)
j+1 ‖2 + ‖f

(0)
j+1‖2 + ‖f

(S)
j+1‖2 ≤ ε(‖A‖2 + ‖w̃j+1‖2 + h̃j+1,j) ≤ 3ε‖A‖2.

Thus,
‖Fk‖2 ≤ ‖Fk‖F ≤ 3

√
k‖A‖2ε. (16)

Since H̃k is a Hessenberg matrix and the norm of Fk is small, (15) is close to an Arnoldi
relation. Consequently, K̃k = img(Ṽk) is close to a Krylov subspace of A. However, (15) fails to
be an exact Arnoldi relation for two reasons: (i) the presence of Fk and (ii) the non-orthogonality
of Ṽk.

We address the latter issue by switching from Ṽk to V̂k = ṼkC
−1
k , the known orthonormal

basis of K̃k. Post-multiplication of Equation (15) by C−1k yields

AṼkC
−1
k = (ṼkH̃k + ṽk+1h̃k+1,ke

T
k )C

−1
k + FkC

−1
k

= [Ṽk, ṽk+1]C
−1
k+1Ck+1

[
H̃k

h̃k+1,ke
T
k

]
C−1k + FkC

−1
k .

Exploiting the upper triangular structure of Ck we define a Hessenberg matrix Ĥk and a scalar
ĥk+1,k by [

Ĥk

ĥk+1,ke
T
k

]
:= Ck+1

[
H̃k

h̃k+1,ke
T
k

]
C−1k .

Introducing further F̂k := FkC
−1
k and using [V̂k, v̂k+1] = V̂k+1 = Ṽk+1C

−1
k+1 = [Ṽk, ṽk+1]C

−1
k+1

results in
AV̂k = V̂kĤk + v̂k+1ĥk+1,ke

T
k + F̂k. (17)

This would be an Arnoldi relation if F̂k was not present. Therefore we now remove F̂ by inter-
preting it as backward error of A. Indeed, relation (17) is equivalent to

(A+ Ek)V̂k = V̂kĤk + v̂k+1ĥk+1,ke
T
k , (18)

whenever Ek ∈ Cn×n fulfills
EkV̂k = −F̂k. (19)

E.g., Ek may be chosen as Ek = −F̂kV̂ Hk as in [36, 39, 40]. In this way we have managed to
arrive at a correct Arnoldi relation (18). In the remainder of this section we consider Hermitian
matrices A. In this case choosing Ek = −F̂kV̂ Hk is not satisfying, because this choice of Ek is in
general not Hermitian which does not seem appropriate when A is. Unfortunately, the following
lemma rules out the existence of a Hermitian matrix Ek satisfying (19).

Lemma 2 Let V ∈ Cn×k have orthonormal columns and F ∈ Cn×k. Then there is a Hermitian
E with EV = F if and only if V HF is Hermitian.

Proof The proof is simple and, for k = 1, is contained in [27]. We give it for completeness. Let
E be any matrix such that EV = F . Now, if E is Hermitian, then so is V HEV = V HF . Hence,
if V HF is not Hermitian, then there is no Hermitian E with EV = F . On the other hand, let
V HF be Hermitian, i.e., V HF = FHV . Then E = FV H + V HF − V FHV V H is Hermitian and
EV = F . ut
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It turns out that a solution to this dilemma is to replace the (non-Hermitian) Hessenberg
matrix Ĥk with a Hermitian matrix Bk. In fact any Hermitian matrix will do. To this end we
relax the concept of the Arnoldi relation by allowing non-Hessenberg Hk. We say that A ∈
Cn×n, Vk+1 = [Vk, vk+1] ∈ Cn×k+1, Hk ∈ Ck×k satisfy a Krylov relation (as introduced by
Stewart in [39]), if (1) holds and Vk+1 has orthonormal columns. We have the following result.

Theorem 5 Let A ∈ Cn×n be Hermitian, let V̂k+1 = [V̂k, v̂k+1] ∈ Cn×k+1 have orthonormal
columns, and suppose that Ĥk ∈ Ck×k, ĥk+1,k ∈ C and F̂k ∈ Cn×k are such that (17) holds.

Then for every Hermitian matrix Bk ∈ Ck×k there exists a Hermitian matrix Ek ∈ Cn×n
such that

(A+ Ek)V̂k = V̂kBk + v̂k+1ĥk+1,ke
T
k+1 (20)

is a Krylov relation and for ∗ ∈ {2, F} Ek is bounded by

α∗‖(I − PK̃k
)F̂k‖∗ ≤ ‖Ek‖∗ ≤ ‖Bk − Ŝk‖∗ + α∗‖(I − PK̃k

)F̂k‖∗ ≤ ‖Bk − Ŝk‖∗ + α∗‖F̂k‖∗ (21)

with Ŝk := V̂ Hk AV̂k, PK̃k
as in (3), and α2 = 1, αF =

√
2.

The lower bound holds for any Hermitian Ek ∈ Cn×n for which a Bk ∈ Ck×k exists such
that (20) holds.

Proof We prove the lower bound first. Assume that Ek and Bk are such that (20) holds and let
V̂⊥ ∈ Cn×n−k be any matrix such that [V̂k, V̂⊥] is unitary. Pre-multiplicating (20) by V̂⊥ gives
V̂ H⊥ (A + Ek)V̂k = 0, i.e., V̂ H⊥ AV̂k = −V̂ H⊥ EkV̂k. Pre-multiplicating (17) by V̂⊥ gives V̂ H⊥ AV̂k =

V̂ H⊥ F̂k. Together, V̂
H
⊥ EkV̂k = −V̂ H⊥ F̂k. Thus, since Ek is Hermitian, it must be of the form

Ek = [V̂k, V̂⊥]

[
E11 −F̂Hk V̂⊥
−V̂ H⊥ F̂k E22

]
[V̂k, V̂⊥]

H , (22)

where E11, E22 are still undetermined. Let E∗ be the matrix that is obtained by setting E11 and
E22 in (22) to zero. Then ‖Ek‖∗ ≥ ‖E∗‖∗ = α∗‖V̂ H⊥ F̂k‖∗ = α∗‖(I −PK̃k

)F̂k‖∗, proving the lower
bound on ‖Ek‖∗ in (21).

For the upper bound, let Bk ∈ Ck×k be Hermitian. Pre-multiplying equation (17) with V̂ Hk
shows that Ŝk, Ĥk, and F̂k are related via

Ŝk = Ĥk + V̂ Hk F̂k. (23)

The proof is constructive: choose Ek = E∗ + V̂k(Bk − Ŝk)V̂ Hk and note that with A and Bk also
Ŝk and Ek are Hermitian. Then

(A+ Ek)V̂k = AV̂k + E∗V̂k + V̂k(Bk − Ŝk)V̂ Hk V̂k

= (V̂kĤk + v̂k+1,ke
T
k + F̂k)− V̂⊥V̂ H⊥ F̂k + V̂k(Bk − (Ĥk + V̂ Hk F̂k))

= V̂kBk + v̂k+1,ke
T
k ,

where we have used V̂kV̂ Hk + V̂⊥V̂ H⊥ = I. This proves (20). For the norm of Ek we have

‖Ek‖∗ = ‖E∗ + V̂k(Bk − Ŝk)V̂ Hk ‖∗ ≤ ‖E∗‖∗ + ‖Bk − Ŝk‖∗ ≤ α∗‖F̂k‖∗ + ‖Bk − Ŝk‖∗
which concludes the proof. ut

It follows from equation (20) that K̃k is a Krylov subspace for the Hermitian matrix A+Ek.
Note that the perturbation Ek depends on k. Hence, although K̃j is a Krylov subspace of A+Ej ,
in general it is not a Krylov subspace of A+ Ek for j < k.

Theorem 5 opens up some freedom in the choice of Bk. Which matrix should be used in
practice? One criterion could be that for positive definite A also Bk should be definite. By left
multiplication of (20) by V̂ Hk we see that Bk = V̂ Hk (A + Ek)V̂k, implying that Bk is guaran-
teed to be definite, whenever A + Ek is. Hence, ‖Ek‖ should be small. Corollary 2 below will
provide bounds on the norm of Ek corresponding to the following choices of Bk. In light of
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Bk α2,Bk
β2,Bk

αF,Bk
βF,Bk

Ŝk 1 0
√
2 0

1
2
(Ĥk + ĤH

k ) 2 0 1 +
√
2 0

1
2
(H̃k + H̃H

k ) 2 1 1 +
√
2 1

TŜk
1 +

√
2k 0 2

√
2 0

TĤk
2 +

√
k 0 2 +

√
2 0

TH̃k
2 +

√
k 1 +

√
k 2 +

√
2 2.

Table 1 Coefficients of the error bound (25) for different choices of Bk

our bound (21), a perfect choice is Bk = Ŝk = V̂ Hk AV̂k, as it minimizes this bound on ‖Ek‖∗.
Unfortunately, constructing Ŝk requires matrix-vector-products with A, which are not possible
without perturbations. In the special case when f

(M)
k = 0 for all k, Ŝk can be computed as

Ŝk = C−Hk S̃kC
−1
k , where S̃k := Ṽ Hk AṼk can be updated along V and H̃k in Algorithm 1 by

S̃k =

[
S̃k−1 Ṽ Hk−1w̃k+1

w̃Hk+1Ṽk−1 ṽHk w̃k+1

]
.

When the matrix-vector-multiplication is inexact, other choices for Bk have to be found.
Considering the two terms in the bound (21), a Bk is acceptable, whenever ‖Bk − Ŝk‖∗ is not
much larger than ‖F̂k‖∗. By (23) Ĥk is close to Ŝk. Since Ĥk itself is non-Hermitian, we propose
to use its Hermitian part, 1

2 (Ĥk + ĤH
k ).

In some situations Bk may be required to be tridiagonal. Possible reasons for this restriction
may be theoretical (it implies that K̃j is a Krylov subspace for A+Ek for j ≤ k) or just practical
(computation of eigenvalues for tridiagonal matrices is faster and more accurate than for general
Hermitian matrices [9]). For these situations we will analyze the choices Bk = TŜk

, Bk = TĤk
,

where TH denotes the tridiagonal part of the Hermitian part of H, i.e.,

(TH)i,j :=

{
1
2 (hi,j + hj,i)/2, for |i− j| ≤ 1

0, otherwise.
(24)

Finally, we will also look at Bk = 1
2 (H̃k + H̃H

k ) and Bk = TH̃k
. The reasoning behind these

choices is that without perturbations, Algorithm 1 would reduce to the Lanczos method and
H̃k would be Hermitian and tridiagonal. With perturbations, H̃k is neither, but should still be
close. Thus, its Hermitian or Hermitian tridiagonal parts should be good approximations of the
original tridiagonal matrix. In particular, the choice Bk = TH̃k

is used in the ARPACK [25] for
Hermitian A. We obtain the following bounds on Ek.

Corollary 2 Let A ∈ Cn×n be Hermitian and let V̂k+1 = [V̂k, v̂k+1] ∈ Cn×k+1 have orthonormal
columns. Suppose that Ĥk ∈ Ck×k is Hessenberg, ĥk+1,k ∈ C and F̂k ∈ Cn×k is such that (17)
holds. Let Ŝk := V̂ Hk AV̂k and Ĥk := [ĤT

k , ĥk+1,kek]
T . Let Ck ∈ Ck×k and Ck+1 ∈ Ck+1×k+1 be

invertible upper triangular matrices such that ‖Ck − Ik‖2 ≤ ζk and ‖Ck+1 − Ik+1‖2 ≤ ζk+1 < 1.
Moreover, define H̃k := [Ik, 0]C

−1
k+1ĤkCk and TŜk

, TĤk
, TH̃k

as in (24).
Then, for Bk ∈ {Sk, TŜk

, 12 (Ĥk+Ĥ
H
k ), TĤk

, 12 (H̃k+H̃
H
k ), TH̃k

} there exists a Hermitian matrix
Ek ∈ Cn×n such that (20) is a Krylov relation and for ∗ ∈ {2, F} ‖Ek‖∗ is bounded by

‖Ek‖∗ ≤ α∗,Bk
‖F̂k‖∗ + β∗,Bk

‖Ĥk‖∗
ζk + ζk+1

1− ζk+1
(25)

with constants α∗,Bk
, β∗,Bk

given in Table 1.

For the proof we need the following perturbation lemma, see, e.g., [14, Lemma 2.3.3].

Lemma 3 (Perturbation Lemma) Let ∗ ∈ {2, F} and C ∈ Cn×n with ‖C − I‖∗ ≤ ζ < 1. Then
i) C is invertible, ii) C−1 =

∑∞
i=0(I − C)i, iii) ‖C−1 − I‖∗ ≤ ζ

1−ζ , and iv) ‖C−1‖∗ ≤ 1
1−ζ .
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Proof (of Corollary 2) The error bounds of the different choices of Bk are proved separately.
• Case Bk = Ŝk : This case follows directly from (21).
• Case Bk = 1

2 (Ĥk + ĤH
k ): Using relation (23) and that Ŝk is Hermitian, we have

1
2 (Ĥk + ĤH

k )− Ŝk = 1
2 (Ŝk − V̂ Hk F̂k + ŜHk − (V̂ Hk F̂k)

H)− Ŝk = − 1
2 (V̂

H
k F̂k + F̂Hk V̂k)

implying that

‖ 12 (Ĥk + ĤH
k )− Ŝk‖∗ = 1

2‖V̂ Hk F̂k + F̂Hk V̂k‖∗ ≤ ‖V̂ Hk F̂‖∗ ≤ ‖PK̃k
F̂‖∗. (26)

Hence by (21), the backward error corresponding to Bk = 1
2 (Ĥk + ĤH

k ) is bounded by

‖Ek‖∗ ≤ ‖ 12 (Ĥk + ĤH
k )− Ŝk‖∗ + α∗‖(I − PK̃k

)F̂k‖∗ ≤ ‖PK̃k
F̂k‖∗ + α∗‖(I − PK̃k

)F̂k‖∗
≤ α∗, 12 (Ĥk+ĤH

k )
‖F̂k‖2

with α∗ as in Theorem 5.
• Case Bk = TĤk

: For Bk = TĤk
we consider a splitting Ĥk = T̂ + Û , where T̂ is the tridiagonal

part of Ĥk and Û = Ĥk − T̂ is strictly upper triangular. Then

TĤk
= 1

2 (T̂ + T̂H) = 1
2 (Ĥ + ĤH)− 1

2 (Û + ÛH). (27)

From (23) we have

Ĥk − ĤH
k = Ŝk − V̂ Hk F̂k − (ŜHk − F̂Hk V̂k) = F̂Hk V̂k − V̂ Hk F̂k. (28)

Hence, we have

‖Û+ÛH‖∗ ≤ ‖Û+ÛH‖F = ‖Û−ÛH‖F ≤ ‖Ĥk−ĤH
k ‖F = ‖F̂Hk V̂k−V̂ Hk F̂k‖F ≤ 2‖V̂ Hk F̂k‖F .

Thus, together with (27) and (26) we have

‖TĤk
− Ŝk‖∗ ≤ ‖ 12 (Ĥk + ĤH

k )− Ŝk‖∗ + 1
2‖Û + ÛH‖∗ ≤ ‖PK̃k

F̂k‖∗ + ‖PK̃k
F̂k‖F .

Hence, with (21), the backward error Ek corresponding to Bk = TĤk
is bounded by

‖Ek‖∗ ≤ ‖TĤk
− Ŝk‖∗ + α∗‖(I − PK̃k

)F̂k‖∗ ≤ ‖PK̃k
F̂k‖∗ + ‖PK̃k

F̂k‖F + α∗‖(I − PK̃k
)F̂k‖∗

≤ α∗,TĤk
‖F̂k‖∗.

• Case Bk = TŜk
: For Bk = TŜk

we consider a splitting Ŝk = TŜk
+ U + UH , where U denotes

the upper triangular part of Ŝk − TŜk
(note that the main and the first super diagonals of U are

zero). Since Ĥk is a Hessenberg matrix it follows from (23) that Ŝk and V̂ Hk F̂k coincide below
the first subdiagonal. Hence, ‖UH‖F ≤ ‖V̂ Hk F̂k‖F and it follows

‖Ŝk − TŜk
‖∗ ≤ ‖Ŝk − TŜk

‖F = ‖U + UH‖F =
√
2‖UH‖F ≤

√
2‖V̂ Hk F̂k‖F =

√
2‖PK̃k

F̂k‖F

Thus, using (21), the backward error Ek corresponding to Bk = TŜk
is bounded by

‖Ek‖∗ ≤ ‖Ŝk − TŜk
‖∗ + α∗‖(I − PK̃k

)F̂k‖∗ ≤
√
2‖PK̃k

F̂k‖F + α∗‖(I − PK̃k
)F̂k‖∗ ≤ α∗,TŜk

‖F̂k‖∗.

• Case Bk = 1
2 (H̃k + H̃H

k ): Define H̃k := C−1k+1ĤkCk and note that H̃k consists of the top k

rows of H̃k. Then we have H̃k = (C−1k+1 − Ik+1 + Ik+1)Ĥk(Ck − Ik + Ik) implying that

H̃k = Ĥk + (C−1k+1 − Ik+1)Ĥk + Ĥk(Ck − Ik) + (C−1k+1 − Ik+1)Ĥk(Ck − Ik).
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With ‖Ck − Ik‖2 = ζk and (using Lemma 3 iii) ) ‖C−1k+1 − Ik+1‖2 ≤ ζk+1

1−ζk+1
, we have

‖H̃k − Ĥk‖∗ ≤ ‖H̃k − Ĥk‖∗
≤ ‖C−1k+1 − Ik+1‖2‖Ĥk‖∗ + ‖Ĥk‖∗‖Ck − Ik‖2 + ‖C−1k+1 − Ik+1‖2‖Ĥk‖∗‖Ck − Ik‖2

≤ ‖Ĥk‖∗
(

ζk+1

1− ζk+1
+ ζk +

ζkζk+1

1− ζk+1

)
= ‖Ĥk‖∗

ζk + ζk+1

1− ζk+1
. (29)

Consequently, with (26) and ‖ 12 (H̃k + H̃H
k )− 1

2 (Ĥk + ĤH
k )‖∗ ≤ ‖H̃k − Ĥk‖∗, we have

‖ 12 (H̃k + H̃H
k )− Ŝk‖∗ ≤ ‖ 12 (H̃k + H̃H

k )− 1
2 (Ĥk + ĤH

k )‖∗ + ‖ 12 (Ĥk + ĤH
k )− Ŝk‖∗

≤ ‖Ĥk‖∗
ζk + ζk+1

1− ζk+1
+ ‖PK̃k

F̂k‖∗. (30)

Thus, using (21), the backward error Ek corresponding to Bk = 1
2 (H̃k + H̃H

k ) is bounded by

‖Ek‖∗ ≤ ‖Ŝk − 1
2 (H̃k + H̃H

k )‖∗ + α∗‖(I − PK̃k
)F̂k‖∗

≤ ‖Ĥk‖∗
ζk + ζk+1

1− ζk+1
+‖PK̃k

F̂k‖∗+α∗‖(I−PK̃k
)F̂k‖∗ ≤ ‖Ĥk‖∗

ζk + ζk+1

1− ζk+1
+α∗, 12 (H̃k+H̃H

k )
‖F̂k‖∗.

•Case Bk = TH̃k
: Using a splitting H̃k = T̃ + Ũ , where T̃ is the tridiagonal part of H̃k and

Ũ = H̃k − T̃ is strictly upper triangular, leads to

TH̃k
= 1

2 (T̃ + T̃H) = 1
2 (H̃k + H̃H

k )− 1
2 (Ũ + ŨH). (31)

Using (28) and (29) we have

‖H̃k − H̃H
k ‖∗ ≤ ‖Ĥk − ĤH

k ‖∗ + 2‖H̃k − Ĥk‖∗ ≤ ‖F̂Hk V̂k − V̂ Hk F̂k‖∗ + 2‖Ĥk‖∗
ζk + ζk+1

1− ζk+1
.

Hence, with γ2 :=
√
k, γF := 1 it follows that

‖Ũ + ŨH‖∗ ≤ ‖Ũ + ŨH‖F = ‖Ũ − ŨH‖F ≤ ‖H̃k − H̃H
k ‖F ≤ γ∗‖H̃k − H̃H

k ‖∗

≤ γ∗
(
‖F̂Hk V̂k − V̂ Hk F̂k‖∗ + 2‖Ĥk‖∗

ζk + ζk+1

1− ζk+1

)
≤ 2γ∗‖PK̃k

F̂k‖∗ + 2γ∗‖Ĥk‖∗
ζk + ζk+1

1− ζk+1
. (32)

Consequently, with (31), (30), and (32)

‖TH̃k
− Ŝk‖∗ ≤ ‖ 12 (H̃k + H̃H

k )− Ŝk‖∗ + 1
2‖Ũ + ŨH‖∗

≤ ‖Ĥk‖∗
ζk + ζk+1

1− ζk+1
+ ‖PK̃k

F̂k‖∗ + γ∗‖PK̃k
F̂k‖∗ + γ∗‖Ĥk‖∗

ζk + ζk+1

1− ζk+1

= (1 + γ∗)‖PK̃k
F̂k‖∗ + (1 + γ∗)‖Ĥk‖∗

ζk + ζk+1

1− ζk+1
.

Hence, by (21), the backward error corresponding to Bk = TH̃k
is bounded by

‖Ek‖∗ ≤ ‖TH̃k
− Ŝk‖∗ + α∗‖(I − PK̃k

)F̂k‖∗

≤ (1 + γ∗)‖PK̃k
F̂k‖∗ + (1 + γ∗)‖Ĥk‖∗

ζk + ζk+1

1− ζk+1
+ α∗‖(I − PK̃k

)F̂k‖∗

≤ (1 + γ∗ + α∗)‖F̂k‖∗ + (1 + γ∗)‖Ĥk‖∗
ζk + ζk+1

1− ζk+1

concluding the proof. ut
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Not surprisingly, the bound is best for Ŝk, but it is not much worse for 1
2 (Ĥk + ĤH

k ) making
it a good candidate when Ŝk is not available. All the bounds for tridiagonal Bk involve a

√
k

factor. This stems from the use of the Frobenius norm and is likely to be an overestimation in
our case. Moreover, it is noteworthy that for those Bk involving H̃k the bounds contain a term
‖Ĥk‖2‖Ck − I‖2.

Remark 1 Combining the bounds of Corollary 2 with those of Corollary 1 and (16), we can show
that Ek can be bounded in terms of ‖A‖2ε. For example, for Bk = TĤk

we obtain

‖Ek‖F ≤ (2 +
√
2)‖F̂‖F ≤ (2 +

√
2)‖F‖F (1 +O(ε)) ≤ 3(2 +

√
2)
√
k‖A‖2ε+O(ε2)
≤ 11

√
k‖A‖2ε+O(ε2)

where we used ‖C−1k ‖2 = 1 +O(ε) (by Corollary 1).
For Bk = TH̃k

we obtain (using ‖Ĥk‖2 ≤ ‖A + Ek‖2 = ‖A‖2(1 + O(ε)) and ‖C−1k − Ik‖2 =√
2k3(1 + εκmax,k)ε+O(ε2) which follows from the coarse bound in Corollary 1)

‖Ek‖F ≤ (2 +
√
2)‖F̂‖F + 2‖Ĥk‖F ζk+ζk+1

1−ζk+1

≤ (2 +
√
2)‖F‖F (1 +O(ε)) + 2

√
k‖Ĥk‖2(2

√
(k + 1)5/2(2 + (k + 1)εκmax,k+1)ε+O(ε2))

≤ (2 +
√
2)3
√
k‖A‖2ε+ 2

√
k‖A‖22

√
(k + 1)5/2(2 + (k + 1)εκmax,k+1)ε+O(ε2)

≤
(
7(k + 1)3 + 3(k + 1)4εκmax,k+1

)
‖A‖2ε+O(ε2).

Comparing these results suggests that TĤk
should be preferred over TH̃k

. The numerical Exam-
ple 3 below shows that this is indeed the case when κ is large. Otherwise these two choices of Bk
actually perform rather similar.

5 Numerical results

In this section we present some numerical experiments that verify the previous theoretical results.

Example 1 Our first numerical example assesses the robustness of the orthogonalization variant
compensated Gram Schmidt (ComGS) in comparison to the well known classical (CGS) and
modified (MGS) Gram Schmidt schemes and their variants with reorthogonalization (CGSre,
MGSre). In this test these schemes are used in an (inexact) QR factorization of a general n×m
matrix A.

Algorithm 4 QR factorization (inexact)
Input: A = [a1, . . . , am] ∈ Cn×m, ε ≥ 0
Output: Ṽ ∈ Cn×m, R̃ ∈ Cm×m upper triangular such that Ṽ H Ṽ ≈ I, A ≈ Ṽ R̃
1: for k = 0, . . .m− 1 do
2: [ṽk+1, r̃k+1,k+1, r̃1:k,k+1] = inexact_orthonormalize(ak+1, Ṽk, Dk, ε)
3: end for

This algorithm consists exclusively of orthonormalizations. So any deficiency in the numerical
results can be directly traced back to a weakness in the orthonormalization scheme.

For completeness we state here what we mean by inexact CGS and MGS with and without
reorthogonalization. All variants obtain as

Input: w̃k+1 ∈ Cn, Ṽk ∈ Cn×k, ε ≥ 0 and return as
Output: ṽk+1 ∈ Cn, h̃1:k+1,k ∈ Ck+1 such that Ṽ Hk ṽk+1 ≈ 0 and w̃k+1 ≈ [Ṽk, ṽk+1]h̃1:k+1,k.
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As before all vector operations yielding a vector are inexact, while the scalar products are exact.
The inexactness is expressed in the vectors f (∗)k+1.

Algorithm 5 CGS (inexact)
1: h̃1:k,k = Ṽ Hk w̃k+1

2: l̃k+1 = w̃k+1 − Ṽkh̃1:k,k − f (0)k+1

3: h̃k+1,k = ‖l̃k+1‖2
4: ṽk+1 = (l̃k+1 − f (S)k+1)/h̃k+1,k

Algorithm 6 CGSre (inexact)
1: s(0) = Ṽ Hk w̃k+1

2: l̃
(0)
k+1 = w̃k+1 − Ṽks(0) − f (0)k+1

3: s(1) = Ṽ Hk l̃
(0)
k+1

4: l̃
(1)
k+1 = l̃

(0)
k+1 − Ṽks(1) − f

(1)
k+1

5: h̃k+1,k = ‖l̃(1)k+1‖2, h̃1:k,k = s(0) + s(1)

6: ṽk+1 = (l̃
(1)
k+1 − f

(S)
k+1)/h̃k+1,k

Algorithm 7 MGS (inexact)

1: l̃
(0)
k+1 = w̃k+1

2: for i = 1, . . . , k do
3: h̃i,k = ṽHi l̃

(i−1)
k+1

4: l̃
(i)
k+1 = l̃

(i−1)
k+1 − ṽih̃i,k − f

(i)
k+1

5: end for
6: h̃k+1,k = ‖l̃(k)k+1‖2
7: ṽk+1 = (l̃

(k)
k+1 − f

(S)
k+1)/h̃k+1,k

Algorithm 8 MGSre (inexact)

1: l̃
(0)
k+1 = w̃k+1

2: for i = 1, . . . , k do
3: s

(0)
i = ṽHi l̃

(i−1)
k+1

4: l̃
(i)
k+1 = l̃

(i−1)
k+1 − ṽis

(0)
i − f

(i)
k+1

5: end for
6: for i = 1, . . . , k do
7: s

(1)
i = ṽHi l̃

(k+i−1)
k+1

8: l̃
(k+i)
k+1 = l̃

(k+i−1)
k+1 − ṽis(1)i − f

(k+i)
k+1

9: end for
10: h̃k+1,k = ‖l̃(2k)k+1‖2, h̃1:k,k = s(0) + s(1)

11: ṽk+1 = (l̃
(2k)
k+1 − f

(S)
k+1)/h̃k+1,k

The norm of the error vectors f (∗)k+1 depend on ε as follows: i) In all variants ‖f (S)k+1‖2 ≤ ε‖l‖2
where l is the vector to be scaled. ii) In CGS and CGSre ‖f (0)k+1‖2 and ‖f (1)k+1‖2 are bounded by
k‖w̃k+1‖2 and k‖l̃(0)k+1‖2, respectively. iii) In MGS and MGSre ‖f (i)k+1‖2 is bounded by ‖l̃(i−1)k+1 ‖2,
i = 1, . . . , 2k. In the experiments we have used ε = 10−10.

In our test we chose A as a (notoriously ill-conditioned) Vandermonde matrix, more precisely,
aij = (j/m)

i−1 for i = 1, . . . , n and j = 1, . . . ,m (as in [17, section 20.7]) with n = 300, m = 180.
The condition number of Ak (the matrix consisting of the leading k columns of A) grows rapidly
with k, e.g., already for k = 9 the condition number reaches κ(A9) ≈ 1016.

Algorithm 4 computes the QR factorization column by column, i.e., ṼkR̃k = [ṽ1, . . . , ṽk][r̃ij ]
k
i,j=1

is a QR factorization of Ak. Thus, we are computing a sequence of nested inexact QR factor-
izations and it makes sense to monitor its quality as it evolves with the number of processed
columns k.

Figure 1 illustrates the loss of orthogonality of Ṽk computed by the different variants measured
by ‖Ṽ Hk Ṽk − I‖F .

We observe that, unsurprisingly, CGS performs worst, completely losing orthogonality already
after just three processed columns. Perhaps somewhat more surprising is that all variants without
reorthogonalzation lose orthogonality after five columns. On the other hand, every variant with
reorthogonalization achieves orthogonality to ε-level – at least until 90 columns. At this point
CGSre loses orthogonality, as well. However, ComGSre and MGSre keep the loss of orthogonality
to order ε for the whole process. We note that ComGS and MGS behave similarly with and
without reorthogonalization.

The main advantage of ComGS(re) compared to the other methods lies in the availability
of the cross product matrix Dk = Ṽ Hk Ṽk, which provides implicitly an orthonormal basis V̂k of
the search space. It can be seen from Figure 1 that V̂k is orthogonal to machine precision, i.e.,
V̂k is even closer to orthogonality than the basis obtained from MGS with reorthogonalization.
Note, that this holds for plain ComGS (without reorthogonalization) as well, although Ṽk loses
orthogonality completely. In other words, even without reorthogonalization ComGS gives as
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Fig. 1 Loss of orthogonality in the inexact QR factorization using the Gram Schmidt variants: Classical Gram
Schmidt (CGS), modified Gram Schmidt (MGS), compensated Gram Schmidt (ComGS, Ṽk and V̂k), each in
individual black lines, and additionally each method with reorthogonalization (gray lines, appended "re" to the
variant name).

good results as in the case with reorthogonalization. In other words, reorthogonalization is not
necessary if V̂ from ComGS is used even for this pathological example.

Thus for all following experiments we have used ComGS(re).
Additionally, we have checked ‖Ak − VkRk‖F , which is of order ε for every variant.

Example 2: In the second test we verify the bounds of Corollary 1. We applied the inexact
Arnoldi method, Algorithm 1 to a matrix A built by the following MATLAB command

A=diag([10, 9, 8, 7, 0.1+0.9∗rand(1,n−4)])
i.e., a diagonal matrix with four large eigenvalues at 7, 8, 9, 10 and the remaining eigenvalues
between 0.1 and 1. So, ‖A‖2 = 10. Since Arnoldi’s method is invariant under unitary similarity
transformations of A [3, 308 f.], diagonal matrices represent the general case.

We used n = 105, ε = 10−10, did 10 Arnoldi steps and set ṽ1 to

v1=[randn(4,1);zeros(n−4,1)]
normalized to unit norm, i.e., ṽ1 is nonzero in the first four components only. Thus it is in
the invariant subspace of A corresponding to the four large eigenvalues and the exact Arnoldi
method would experience a lucky breakdown after four iterations. The inexact Arnoldi iteration
will experience a near breakdown at that point.

As orthonormalization scheme we used ComGS with and without reorthogonalization. Fig-
ure 2 plots the distance to orthogonality of Ṽk (evolving with k) and its two bounds given in
Corollary 1. Additionally, the distance to orthogonality of V̂k is depicted.

We observe that for the first 4 steps the loss of orthogonality in Ṽk is of order ε. Then, for
plain ComGS orthogonality is lost in the 5th iteration (as predicted by a huge κ4 ≈ 106). On the
other hand using ComGSre, Ṽk stays orthogonal to order ε throughout all iterations. Moreover,
as in Example 1, V̂k is orthogonal to machine precision in both cases.

Turning towards the bounds we observe that, first of all, they hold. The recursive bound δk
overestimates (by an almost constant margin of roughly 102), but closely follows the qualitative
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Fig. 3 Backward error of the inexact Arnoldi algorithm and its bounds without (left) and with (right) reorthog-
onalization.

trends. Especially the jump from step 4 to step 5 (in the left plot) is correctly captured. The
closed form bound is (unsurprisingly) less sharp (as can be explained by the crude estimation of
min{

√
k(1 + ε), 1 + ζk} by

√
k(1 + ε) in the derivation).

Example 3: In our third test we investigate the backward error matrices Ek that are necessary
to turn (20) into an exact Krylov relation for given V̂k+1 and several choices of Bk. We illustrate
the Frobenius norm of Ek and verify its bound of Corollary 2.

The matrix A as well as all other parameters are reused form Example 2.
Figure 3 shows the results for the choices Bk = TH̃ and Bk = TĤ and their respective bounds

from (25) as they evolve over k. Since the matrix Ek is never actually formed, we state how we
obtain its Frobenius norm. From (22) we have ‖Ek‖F = (2‖EkV̂k‖2F + ‖Bk − Sk‖2F )

1
2 , where the

term ‖EkV̂k‖F can in turn be evaluated (using (20)) using

EkV̂k = AV̂k − V̂kBk − v̂k+1e
T
k ĥk+1,k.

Again, the results depend on whether reorthogonalization is used. Without reorthogonaliza-
tion ‖Ek‖ is of order ε for Bk = TĤ . The bound correctly captures the trends of the curve and
overestimates the actual value by an almost constant factor of just 2.

Using H̃k instead of Ĥ yields similar results – for the first 4 steps. Starting from step 5 (when
the near breakdown happened) this choice requires a much larger perturbation Ek. The bound
also captures the trends, and overestimates by a factor of ≈ 10. However, the bound jumps one
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step earlier than the actual value (this can be explained by the occurrence of the term ζk+1

in (25) that seems to be overly conservative).
With reorthogonalization, there is no relevant difference between TH̃k

and TĤk
, neither in

‖Ek‖F , nor in its bounds. All these quantities are of order ε.

6 Conclusions

We have investigated the behavior of Arnoldi’s method in settings where matrix-vector multipli-
cation, vector addition and -scaling are inexact, but scalar products can be evaluated without
error. We have devised a variant of Gram Schmidt orthogonalization, called compensated Gram
Schmidt (ComGS), taylored to this scenario. We have shown that ComGS (possibly enhanced
by reorthogonalization) produces a basis that is orthogonal to the same level of accuracy ε as
the vector operations themselves. Moreover, ComGS implicitly provides a second basis that is
orthogonal to machine precision – even without reorthogonalization. Numerical tests confirm the
proven bounds on the loss of orthogonality for ComGS.

We then went on to show that for Hermitian A the inexact Arnoldi method yields an exact
Krylov relation of a nearby matrix A + E. The key idea was to replace the non-Hermitian
Hessenberg matrix. Several choices are possible (some of them even tridiagonal) and we proved
bounds for the corresponding E. In numerical tests the bounds were confirmed to correctly
predict the trends of the curve, and to be accurate within one order of magnitude.

We conclude that if the improved basis and corresponding Hessenberg matrix are used, then
the norm of the backward error E is kept to ε-level. This holds even under unfavorable conditions
like the lack of reorthogonalization and occurrence of near breakdowns of the method.

A convergence analysis of the Arnoldi method under backward perturbations is work in
progress.
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