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Abstract

In Ujević [A new iterative method for solving linear systems, Appl. Math. Comput. 179 (2006) 725–730], the author obtained
a new iterative method for solving linear systems, which can be considered as a modification of the Gauss–Seidel method. In this
paper, we show that this is a special case from a point of view of projection techniques. And a different approach is established,
which is both theoretically and numerically proven to be better than (at least the same as) Ujević’s. As the presented numerical
examples show, in most cases, the convergence rate is more than one and a half that of Ujević.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In [21], Ujević obtained a new iterative method for solving linear systems, which can be considered as a modifi-
cation of the Gauss–Seidel method. In fact, virtually the new iterative method can be termed as a “one-dimensional
double successive projection method” (referred to as 1D-DSPM) while an elementary Gauss–Seidel method is noth-
ing but a “one-dimensional single successive projection method” (referred to as 1D-SSPM) [17], as will be seen
shortly.

We still consider the iterative solution of n × n nonsingular linear systems of equations

Ax = b, (1)

where A ∈ Rn×n is a symmetric positive definite matrix (referred to as an SPD matrix) and b ∈ Rn is given and x ∈ Rn

is unknown. For solving such linear systems, there has been an explosion of activity in iterative methods spurred by
demand due to extraordinary technological advances in engineering and sciences. We refer the reader to the excel-
lent survey [18]. Most of the existing practical iterative techniques for solving large linear systems of equations utilize
a projection process in one way or another; see, e.g., [6,19,15,3,5,13,20]. Householder’s book [11] contains a fairly good
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overview of iterative methods—specially oriented towards projection methods. Projection techniques are present in
different forms in many other areas of scientific computing and can be formulated in abstract Hilbert functional spaces
and finite element spaces. For more general, including nonlinear, projection processes, the reader is recommended to
consult [14].

Projection techniques are the process in which one attempts to solve a set of equations by solving each separate
equation by a correction that is small in some norm. These techniques could be used for over- or under-determined
linear systems, such as those that arise in tomography problems. This has led to the methods of [7,12], which were
later identified as instances of Gauss–Jacobi and/or Gauss–Seidel for related systems with ATA or AAT. The idea
of projection process is to extract an approximate solution to (1) from a subspace of Rn. For more details, refer to
[17]. Denote K and L the search subspace and the constraints subspace, respectively, and let m be their dimension
and x0 ∈ Rn be an initial guess to the solution. Typically, a projection method onto the subspace K and orthog-
onal to L is a process which does its possible to find an approximate solution x ∈ Rn to (1) by imposing the
Petrov–Galerkin conditions that x belong to the affine space x0 +K and that the new residual vector be orthogonal to
L, i.e.,

Find x ∈ x0 + K such that b − Ax ⊥ L. (2)

From this point of view, the new iterative method proposed in [21] can be viewed as a special case of the projection
techniques in which two pairs of K and L of dimension one are chosen separately while it makes double corrections at
each step of the process cycled for i = 1, . . . , n. Therefore, we term it as 1D-DSPM. Further analysis will be presented
in Section 2. In addition, an elementary Gauss–Seidel method is a projection method with K = L = span{ei}, where
ei is the ith column of the identity matrix. And single correction is made at each step of these projection steps cycled
for i = 1, . . . , n. A different approach in Section 3 is obtained with the combination of the double subspaces K chosen
at each step of those of Ujević’s and still proceeds to make double corrections at each step of the projection steps
cycled for i = 1, . . . , n; that is we impose the Patrov–Galerkin conditions onto the subspace K and orthogonal to
the identical subspace L of dimension two at each step. We call it as “two-dimensional double successive projection
method” (referred to as 2D-DSPM). As the theory in this section indicates, 2D-DSPM gives better (at least the same)
reduction of the error than 1D-DSPM. The presented numerical examples in Section 4 show that, in most cases, the
convergence rate of 2D-DSPM is more than one and a half that of 1D-DSPM.

Before ending this section, we describe some of the notation we use throughout. Denote ei the ith column of the
identity matrix of appropriate order. By x∗, xk, xk+1 ∈ Rn for any nonnegative integer k, we denote the exact, the
current approximate and the latter approximate solution to (1), respectively.

By 〈x, y〉 = yTx we denote a vector inner product between the vectors x, y ∈ Rn. For any positive definite matrix
M ∈ Rn×n, the M-inner product is defined as 〈x, y〉M = 〈Mx, y〉 = yTMx. Moreover, if M is an SPD matrix, the
corresponding norm is

‖x‖2
M = 〈Mx, y〉 = xTMx = (Mx)Tx = 〈x, Mx〉 for any x ∈ Rn.

For simplicity and unification of the following illustration and computation, denote K1 = span{v1} and K2 = span{v2}
the corresponding representatives of the candidate subspaces at each step in 1D-DSPM, where 0 �= v1, v2 ∈ Rn and
v1, v2 is of linear independence. At the same time, the subspace at each step in 2D-DSPM will be K = span{v1, v2}.

Since the coefficient matrix A ∈ Rn×n considered in (1) is an SPD matrix, simply denote the inner products

a = 〈Av1, v1〉, c = 〈Av1, v2〉 = 〈Av2, v1〉, d = 〈Av2, v2〉,
and denote

p1 = 〈Axk − b, v1〉, p2 = 〈Axk − b, v2〉.

2. Interpretation of Ujević’s new iterative method in terms of projection techniques

Let us first recall some knowledge of the new iterative method derived in [21]. Making use of some trivial substitutions
and computation, we represent again the principles of 1D-DSPM ((3.3) and (3.8) of [21]) in our uniform notation as
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follows⎧⎨
⎩

xk+1 = xk + �1v1 + �2v2,

f (xk+1) − f (xk) = −p2
1

2a
− (cp1 − ap2)

2

2a2d
, k = 0, 1, 2, . . . ,

(3)

where, �1 = −p1/a, �2 = (cp1 − ap2)/ad, f (x) = 1
2 〈Ax, x〉 − 〈b, x〉.

As stated in [21], 1D-DSPM updates two components of the approximate solution xk at the same time while choosing
v1 = ei, v2 = ej , where j depends on i, j �= i, and it can be considered as a modification of the Gauss–Seidel method.
From the projection point of view, we will have a two-step investigation of 1D-DSPM at each step of the process cycled
for i = 1, . . . , n.

The first step is to choose the subspaces K1 = L1 = span{v1}, x0 = xk , and Eq. (2) turns to

Find x̃k+1 ∈ xk + K1 such that b − Ax̃k+1 ⊥ L1, (4)

where,

x̃k+1 = xk + �̃v1.

Eq. (6) can be represented in terms of inner products as

〈b − Ax̃k+1, v1〉 = 0, (5)

which is

〈b − Axk − �̃Av1, v1〉 = 〈b − Axk, v1〉 − �̃〈Av1, v1〉
= − p1 − �̃a

= 0,

giving rise to �̃ = −p1/a, which is the same with �1 in (3).
The next step is in a similar way to choose the subspaces K2 = L2 = span{v2}, x0 = x̃k+1, and this time Eq. (2)

turns to

Find xk+1 ∈ x̃k+1 + K2 such that b − Axk+1 ⊥ L2, (6)

where,

xk+1 = x̃k+1 + �̃v2.

Eq. (4) can be represented in terms of inner products as

〈b − Axk+1, v2〉 = 0, (7)

which is

〈b − Ax̃k+1 − �̃Av2, v2〉 = 〈b − Axk − �̃Av1 − �̃Av2, v2〉
= 〈b − Axk, v2〉 − �̃〈Av1, v2〉 − �̃〈Av2, v2〉
= − p2 − �̃c − �̃d

= − p2 + cp1

a
− �̃d

= 0,

giving rise to �̃ = (cp1 − ap2)/ad , which is the same with �2 in (3). After (4) and (6), the same next approximate
solution xk+1 to (1) can be obtained as in Ujević’s new iterative method.

Up to now, it is clear that 1D-DSPM is a special case of the projection methods.
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3. 2D-DSPM and its theoretical comparison results with 1D-DSPM

In this section, we present a different approach with the combination of the double subspaces K1,K2 chosen
at each step of those of Ujević’s in the previous section and still proceeds to make double corrections at each step
of the projection steps cycled for i = 1, . . . , n; that is we impose the Patrov–Galerkin conditions onto the subspace
K = span{v1, v2} and orthogonal to the identical subspace L = span{v1, v2} at each step, making Eq. (2) become

Find xk+1 ∈ xk + K such that b − Axk+1 ⊥ L, (8)

where,

xk+1 = xk + �v1 + �v2.

Eq. (8) can be represented in terms of inner products as{ 〈b − Axk+1, v1〉 = 0,

〈b − Axk+1, v2〉 = 0,
(9)

which is⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

〈b − Axk − �Av1 − �Av2, v1〉 = 〈b − Axk, v1〉 − �〈Av1, v1〉 − �〈Av2, v1〉
= −p1 − a� − c�
= 0,

〈b − Axk − �Av1 − �Av2, v2〉 = 〈b − Axk, v2〉 − �〈Av1, v2〉 − �〈Av2, v2〉
= −p2 − c� − d�
= 0.

(10)

For the solutions of � and � in (10), the following well-known lemma is needed.

Lemma 1. a, c, d defined in Section 1 satisfy the following inequalities{
a > 0,

d > 0,

ad − c2 > 0.

(11)

Proof. As defined in Section 1, a = 〈Av1, v1〉, c = 〈Av1, v2〉 = 〈Av2, v1〉, d = 〈Av2, v2〉, where 0 �= v1, v2 ∈ Rn

and v1, v2 is of linear independence, the first two inequalities are easy to see according to the properties of vector inner
products. The proof of the last inequality begins by expanding 〈A(v1 − �v2), v1 − �v2〉 with � ∈ R as follows

〈A(v1 − �v2), v1 − �v2〉 = 〈Av1, v1〉 − 2�〈Av1, v2〉 + �2〈Av2, v2〉.
Since v2 �= 0 and v1, v2 are supposed to be linearly independent, take �=〈Av1, v2〉/〈Av2, v2〉. Then 〈A(v1 −�v2), v1 −
�v2〉 > 0 shows the above equality

0 < 〈A(v1 − �v2), v1 − �v2〉 = 〈Av1, v1〉 − 2
〈Av1, v2〉2

〈Av2, v2〉 + 〈Av1, v2〉2

〈Av2, v2〉

= 〈Av1, v1〉 − 〈Av1, v2〉2

〈Av2, v2t〉

= a − c2

d
,

which yields the third inequality. �

Thus, solving the equations abstracted from (10){−p1 − a� − c� = 0,

−p2 − c� − d� = 0.
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We get⎧⎪⎨
⎪⎩

� = cp2 − dp1

ad − c2
,

� = cp1 − ap2

ad − c2
.

(12)

We now describe 2D-DSPM as follows.

Algorithm 1. Two-dimensional double successive projection method (2D-DSPM)

1. Choose an initial guess x0 ∈ Rn to (1)

2. For k = 0, 1, 2, . . . , until convergence, Do:

3. z1 = xk

4. For i = 1, . . . , n, Do:

5. zi+1 = zi + �v1 + �v2

6. EndDo for i

7. xk+1 = zn+1

8. EndDo for k.

where � and � are computed as (12). As noted in [21], v1, v2 can be arbitrary elements of Rn. However, suitable pairs
of v1, v2 at each step should be chosen for the efficiency in real applications. The relation of the effect with respect
to error reduction between 2D-DSPM and 1D-DSPM will be shown both in Theorem 4 and Corollary 8. The result
for specific choices of v1, v2 will be seen in Corollary 5 and striking numerical comparison results will be given in
Section 4 later.

We also consider the following problem:

f (x) = 1
2 〈Ax, x〉 − 〈b, x〉 → inf . (13)

Before giving the theoretical comparison results with respect to error reduction between 2D-DSPM and 1D-DSPM,
we first show that the reduction of f in the above form is equivalent to the reduction of the error in Lemma 2 and then
we present in Theorem 3 the reduction between f (xk) and f (xk+1) when xk+1 is computed with 2D-DSPM.

Lemma 2 (Ujević [21]). The reduction between f (xk) and f (xk+1) is of equivalence to the reduction of error=x−x∗
in the A-norm when f is in the form of (13).

Proof. The proof is easy as follows

‖xk+1 − x∗‖A − ‖xk − x∗‖A = 〈Axk+1 − Ax∗, xk+1 − x∗〉 − 〈Axk − Ax∗, xk − x∗〉
= 〈Axk+1, xk+1〉 − 2〈b, xk+1〉 − (〈Axk, xk〉 − 2〈b, xk〉)
= 2f (xk+1) − 2f (xk). � (14)

Theorem 3. 2D-DSPM gives the reduction between f (xk) and f (xk+1) as follows

f (xk) − f (xk+1) = dp2
1 + ap2

2 − 2cp1p2

2(ad − c2)
. (15)

Proof. Since xk+1 = xk + �v1 + �v2 computed in 2D-DSPM, with some trivial computation,

f (xk+1) = f (xk + �v1 + �v2)

= f (xk) + �〈Axk − b, v1〉 + �〈Axk − b, v2〉
+ 1

2 �2〈Av1, v1〉 + ��〈Av1, v2〉 + 1
2 �2〈Av2, v2〉

= f (xk) + p1� + p2� + 1
2 a�2 + c�� + 1

2 d�2. (16)
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Let

g(�, �) = p1� + p2� + 1
2 a�2 + c�� + 1

2 d�2.

A better reduction between f (xk) and f (xk+1) requires to minimize g(�, �) in terms of �, �. And the necessity to
minimize g(�, �) gives birth to the following equations⎧⎪⎪⎨

⎪⎪⎩
�g

��
= p1 + a� + c� = 0,

�g

��
= p2 + c� + d� = 0,

which have the same solutions presented in (12). By trivial symbolic computation, the expressions of �, � in (12) show
(16),

f (xk+1) = f (xk) − dp2
1 + ap2

2 − 2cp1p2

2(ad − c2)
,

which completes the proof. �

Now we depict the comparison results with respect to error reduction between 2D-DSPM and 1D-DSPM.

Theorem 4. 2D-DSPM gives a better (at least the same) reduction of the function f in the form of (13) than 1D-DSPM;
in other words, 2D-DSPM gives a better (at least the same) reduction of the error than 1D-DSPM.

Proof. As (3) reveals, 1D-DSPM gives the reduction between f (xk) and f (xk+1) as

f (xk) − f (xk+1) = p2
1

2a
+ (cp1 − ap2)

2

2a2d
. (17)

The work we have to do is to compare (15) and (17). Subtract (17) from (15), we have

dp2
1 + ap2

2 − 2cp1p2

2(ad − c2)
−
(

p2
1

2a
+ (cp1 − ap2)

2

2a2d

)
= c2(cp1 − ap2)

2

2a2d(ad − c2)
�0,

which proves the first part of the assertion and the second part follows immediately by (14). �

Corollary 5. If 〈Av1, v2〉 = 0 or 〈Axk − b, cv1 − av2〉 = 0 at each step of 2D-DSPM, then 1D-DSPM and 2D-DSPM
have the same reduction effect; If 〈Axk − b, cv1 − av2〉 = 0 at each step of both 1D-DSPM and 2D-DSPM, the
reduction effects of 1D-SSPM, 1D-DSPM and 2D-DSPM are all the same, and both of 1D-DSPM and 2D-DSPM
regress to 1D-SSPM, i.e., the Gauss–Seidel method.

Proof. From Theorems 3 and 4, it can be easily showed as follows. On the one hand, if 〈Av1, v2〉 = 0, that is to say
c = 0, which yields for both 1D-DSPM and 2D-DSPM the same reduction effect as (p2

1/2a) + (p2
2/2d) in terms of f.

On the other hand, if 〈Axk − b, cv1 − av2〉 = 0, which means

cp1 − ap2 = 0,

then 1D-SSPM, 1D-DSPM and 2D-DSPM all give the reduction of p2
1/2a in terms of f and in such cases 1D-DSPM

and 2D-DSPM both regress to 1D-SSPM, which completes the proof. �

It should be noted that different choices of pairs of v1, v2 at each step determine different reductions of the error,
which is also of dependence on the interrelationship between the two vectors with respect to the coefficient matrix as
well as on the relation between the current residual vector and the two vectors v1, v2, as is somewhat revealed in the
above corollary and will be seen in the numerical examples.
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From Theorem 4 and Corollary 5, we can see that the reduction of the error in 2D-DSPM is better than (at least the
same as) that in 1D-DSPM. Before giving a further relation between (15) and (17) in the next theorem, a lemma is
needed.

Lemma 6. If cp1(cp1 − ap2)�0 and dp1 �= cp2 are satisfied, then the following inequality holds

0� c2(cp1 − ap2)
2

a2(dp1 − cp2)
2

< 1. (18)

Proof. First (18) exists because of its nonzero denominator for dp1 �= cp2. Then if a2(dp1−cp2)
2−c2(cp1−ap2)

2 > 0,
then (18) holds. In fact, by trivial computation, we have

a2(dp1 − cp2)
2 − c2(cp1 − ap2)

2 = (ad − c2)((ad + c2)p2
1 − 2acp1p2). (19)

By Lemma 1 and assumptions, we have{
ad − c2 > 0,

(ad + c2)p2
1 − 2acp1p2 > 2c2p2

1 − 2acp1p2 = 2cp1(cp1 − ap2)�0.

From the above inequalities, (19) is positive, and we are done. �

Theorem 7. If the conditions in Lemma 6 are satisfied, then the reduction of the function f in the form of (13) between
2D-DSPM and 1D-DSPM have the following relation

1� �f2D−DSPM

�f1D−DSPM

� 1

1 − c2(cp1 − ap2)
2/a2(dp1 − cp2)

2
, (20)

where �f2D−DSPM and �f1D−DSPM denote (15) and (17), respectively.

Proof. The left-hand side of (20) is straightforward from the proof of Theorem 4. The proof of the right-hand side
inequality begins by setting

��f2D−DSPM = �f1D−DSPM

with a scalar �,

�
dp2

1 + ap2
2 − 2cp1p2

2(ad − c2)
= p2

1

2a
+ (cp1 − ap2)

2

2a2d
.

Expanding the above equality follows

� = 1 − c2(cp1 − ap2)
2

a2(d2p2
1 − 2cdp1p2 + adp2

2)
.

Observing that ad > c2, we obtain

��1 − c2(cp1 − ap2)
2

a2(dp1 − cp2)
2

> 0,

where the above equality holds in the cases appearing in Corollary 5, and the result follows immediately by
Lemma 6. �

Corollary 8. The relation of the error reduction between 2D-DSPM and 1D-DSPM has the same form as (20).

Proof. It is direct by lemma 2 and the preceding theorem. �

Here, the convergence of 2D-DSPM can be guaranteed for solving linear systems of equations of (1).
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4. Numerical comparison results

In this section, we compare our 2D-DSPM approach with the given methods presented in [21] with two classes of
matrices: one is as the presented in [21, Example 1]; the other is the coefficient matrix of the linear systems generated
by the discretization of two-dimensional partial differential equations appearing in [1,2,9,16,4,8], etc. First we present
in detail a generalized algorithm similar to the particular method stated in [21] for implementing the process of the
iterative solution to (1).

We choose: v1 = ei, v2 = ej , where j depends on i, j �= i, i = 1, . . . , n. Then from Algorithm 1, we have exactly
at each step

xk+1 = xk + �iei + �iej for k = 0, 1, . . . ,

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�i = aijpj − ajjpi

aiiajj − a2
ij

,

�i = aijpi − aiipj

aiiajj − a2
ij

,

pi = 〈ai, xk〉 − bi,

pj = 〈aj , xk〉 − bj .

Here, ai, aij denote the ith column and the (i, j)th entry of A ∈ Rn×n, respectively, and bi denotes the ith element of
b ∈ Rn, for i, j = 1, . . . , n. In a generalized way, we choose j = i − ijgap for i = 1, . . . , n and j = i − ijgap + n if
i� ijgap, where ijgap is an introduced positive integral parameter which is less than n. The above results provide the
next algorithm.

Algorithm 2. A particular implementation of 2D-DSPM in a generalized way

1. Choose an initial guess x0 ∈ Rn to (1) and a prescribed ijgap(< n)

2. Until convergence, Do:

3. x = x0

4. For i = 1, . . . , n, Do:

5. j = i − ijgap

6. If i� ijgap, then

7. j = i − ijgap + n

8. Endif

9. pi = 〈ai, x〉 − bi

10. pj = 〈aj , x〉 − bj

11. �i = aiiajj − a2
ij

12. �i = aijpj − ajjpi

�i

13. xi = xi + �i

14. �i = aijpi − aiipj

�i

15. xj = xj + �(i)

16. EndDo for i

17. x0 = x

18. Stopping criteria

19. EndDo
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Table 1
Comparison results for Example 1

ijgap it1D it2D

1 6 7
2 13 6

100 13 6
500 13 7
999 13 7

Table 2
Comparison results for Example 2

ijgap it1D it2D

1 8 8
2 14 8
3 14 9

100 14 9
500 15 10
999 14 8

It can be observed that the Algorithm 1 in [21] is the special case when ijgap = 1 in 1D-DSPM. In the following, the
systems of linear equations (1) will be solved with a PC-Pentium(R) 4, CPU 3.06 GHz, 512 M of RAM and performed
in MATLAB 6.5 with machine precision 10−16. Let b = Ae, where e is the n × 1 vector whose elements are all equal
to unity, such that x = (1, 1, . . . , 1)T is the exact solution to (1). The stopping criteria is ‖xk+1 − xk‖ < 10−6. All these
tests here are started with an initial guess equal to x0 = (x1, . . . , xn), xi = 0.001 ∗ i, i = 1, . . . , n.

Now, we give the numerical comparison results in terms of iteration number of 1D-DSPM and 2D-DSPM as follows.
Denote it1D, it2D the iteration number of 1D-DSPM and 2D-DSPM, respectively.

Example 1 (Ujević [21]). Let the matrix A be given by

aii = 4n, ai,i+1 = ai+1,i = n, aij = 0.5 for i = 1, . . . , n, j �= i, i + 1.

In order to compare the convergence rate between 2D-DSPM and 1D-DSPM, we also choose n = 1000.

We separately solve the above problem by Algorithm 2 and by its counterpart in [21] with different ijgap, which
means to choose different pairs of v1, v2 at each step. Then we shall see, in most cases, the convergence rate of
2D-DSPM is more than twice that of 1D-DSPM according to the comparison results listed in Table 1.

A further observation is made that at each step of 2D-DSPM when ijgap = 1, one of the first part of Corollary 5
holds; that is the reduction effect is about the same for 1D-DSPM and 2D-DSPM. In fact, 〈Axk −b, cv1 −av2〉 at each
step in 2D-DSPM shows (0, −0.3638, −0.3638, 0, 0, 0)× 10−8 while 〈Axk − b, cv1 − av2〉 at each step in 1D-DSPM
shows (−3.5490, 0.0625, 0.0003, −0.0001, −0.0000, −0.0000) ×103. Therefore, in a sense of efficiency, in [21,
Algorithm 1] obtained the optimal choices for v1, v2. However, it seems more difficult in real applications to choose
the suitable pairs of v1, v2 beforehand. Whereas, 2D-DSPM always seems to give its best error reduction in this case
whatever v1, v2 are chosen.

Example 2. Let the matrix A be the same as in the previous example except that the diagonal entries turn to

aii = 3n for i = 1, . . . , n.

And the other conditions remain the same with those in Example 1. We can obtain the relation of the convergence rate
between 2D-DSPM and 1D-DSPM is about one and a half as seen in Table 2.
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Table 3
Comparison results for Example 3

ijgap Case 1 Case 2 Case 3

it1D it2D it1D it2D it1D it2D

1 391 376 321 302 281 287
2 611 391 481 312 476 302

100 611 322 481 255 476 249
500 611 323 481 256 476 250
999 611 391 481 313 476 302

Example 3. For convenience of comparison, consider the two-dimensional partial differential equations on the unit
square region � = [0, 1] × [0, 1] of the form

a(x, y)uxx + b(x, y)uyy + c(x, y)ux + d(x, y)uy + e(x, y)u(x, y) = f (x, y), (21)

where a(x, y), b(x, y), c(x, y), d(x, y), e(x, y) are given real valued functions. Here, we mention three cases for
the choices of these functions with Dirichlet-type boundary conditions for the purpose of comparison.

Case 1: a(x, y) = −1, b(x, y) = −1, c(x, y) = 0, d(x, y) = 10(x + y), e(x, y) = 10(x − y), f (x, y) = 0;
Case 2: a(x, y) = −1, b(x, y) = −1, c(x, y) = −10(x + y), d(x, y) = −10(x − y), e(x, y) = 1, f (x, y) = 0;
Case 3: a(x, y) = −1, b(x, y) = −1, c(x, y) = 10exy, d(x, y) = 10e−xy, e(x, y) = 0, f (x, y) = 0.
Using five-point finite difference scheme to discretize these above problems with a uninform grid of mesh spacing

�x = �y = 1/(m + 1) in x and y directions, respectively, we can obtain different symmetric positive definite matrices
of order m × m as m varies. For details on symmetric positive definite matrices arising in discretizations, refer to [10,
Chapter 7]. In particular, the choice of m = 32 results in m × m = 32 × 32 matrices. The comparison results for the
three cases mentioned above between 1D-DSPM and 2D-DSPM are shown in Table 3, which further strengthen the
superiority of 2D-DSPM to 1D-DSPM.

5. Concluding remarks

In this paper, Ujević’s new iterative method [21] is investigated from a point of view of projection techniques, which
can be considered as a special case of the projection methods as analyzed in Section 2, and we term it as 1D-DSPM. A
different approach with the name of 2D-DSPM has been established, which shows a better (at least the same) effective
error reduction than 1D-DSPM by theoretical analysis and the corresponding comparison results at large. Its particular
implementation in a generalized way is given, whose convergence rate is always more than one and a half that of
Ujević’s with the same v1, v2, shown by the presented numerical examples.

It should be observed that the convergence rates with different choices of pairs of v1, v2 at each step of the process
cycled for i = 1, . . . , n behave differently with respect to the error reduction. Since the optimal pairs v1, v2 seem to be
difficult to predict in real scientific computing, we just gave some numerical comparison results for different choices
of v1, v2 by trial and error in this paper. Therefore, what we are concerned about next is the study on these behaviors
and on the optimal choices for the pairs of v1 and v2 in advance.

Finally, we have to point out a serious problem which has been observed by Prof. Eugene L. Wachspress. It is
well known that successive overrelaxation leads to a great improvement when the underlying iteration is consistently
ordered. Although we may improve on Gauss–Seidel, we lose the ordering and can no longer realize the SOR again.
This is a major reason for applying overlapping block iteration.
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