14,677 research outputs found

    Variability management in safety‐critical systems design and dependability analysis

    Get PDF
    Safety-critical systems are of paramount importance for many application domains, where safety properties are a key driver to engineer critical aspects and avoid system failures. For the benefits of large-scale reuse, software product lines (SPL) have been adopted in critical systems industry. However, the integration of safety analysis in the SPL development process is nontrivial. Also, the different usage contexts of safety-critical systems complicates component fault modeling tasks and the identification of potential hazards. In this light, better methods become necessary to estimate the impact of dependability properties during Hazard Analysis and Risk Assessment. Existing methods incorporating the analysis of safety properties in SPL are limited as they do not include hazard analysis and component fault modeling. In this paper, we present the novel DEPendable Software Product Line Engineering (DEPendable-SPLE) approach, which extends traditional SPL processes to support the reuse of safety assets. We also present a detailed analysis of the impact of product and context features on the SPL design, safety analysis, and safety requirements. We applied DEPendable-SPLE to a realistic case study from the aerospace domain to illustrate how to model and reuse safety properties. DEPendable-SPLE reduced the effort of safety analysis for certifying system variants

    A synthesis of logic and bio-inspired techniques in the design of dependable systems

    Get PDF
    Much of the development of model-based design and dependability analysis in the design of dependable systems, including software intensive systems, can be attributed to the application of advances in formal logic and its application to fault forecasting and verification of systems. In parallel, work on bio-inspired technologies has shown potential for the evolutionary design of engineering systems via automated exploration of potentially large design spaces. We have not yet seen the emergence of a design paradigm that effectively combines these two techniques, schematically founded on the two pillars of formal logic and biology, from the early stages of, and throughout, the design lifecycle. Such a design paradigm would apply these techniques synergistically and systematically to enable optimal refinement of new designs which can be driven effectively by dependability requirements. The paper sketches such a model-centric paradigm for the design of dependable systems, presented in the scope of the HiP-HOPS tool and technique, that brings these technologies together to realise their combined potential benefits. The paper begins by identifying current challenges in model-based safety assessment and then overviews the use of meta-heuristics at various stages of the design lifecycle covering topics that span from allocation of dependability requirements, through dependability analysis, to multi-objective optimisation of system architectures and maintenance schedules

    Context-aware adaptation in DySCAS

    Get PDF
    DySCAS is a dynamically self-configuring middleware for automotive control systems. The addition of autonomic, context-aware dynamic configuration to automotive control systems brings a potential for a wide range of benefits in terms of robustness, flexibility, upgrading etc. However, the automotive systems represent a particularly challenging domain for the deployment of autonomics concepts, having a combination of real-time performance constraints, severe resource limitations, safety-critical aspects and cost pressures. For these reasons current systems are statically configured. This paper describes the dynamic run-time configuration aspects of DySCAS and focuses on the extent to which context-aware adaptation has been achieved in DySCAS, and the ways in which the various design and implementation challenges are met

    Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS - a collection of Technical Notes Part 1

    Get PDF
    This report provides an introduction and overview of the Technical Topic Notes (TTNs) produced in the Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS (Tigars) project. These notes aim to support the development and evaluation of autonomous vehicles. Part 1 addresses: Assurance-overview and issues, Resilience and Safety Requirements, Open Systems Perspective and Formal Verification and Static Analysis of ML Systems. Part 2: Simulation and Dynamic Testing, Defence in Depth and Diversity, Security-Informed Safety Analysis, Standards and Guidelines

    Managing Well Integrity using Reliability Based Models

    Get PDF
    Imperial Users onl

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India
    corecore