382 research outputs found

    A variable neighborhood search simheuristic for project portfolio selection under uncertainty

    Get PDF
    With limited nancial resources, decision-makers in rms and governments face the task of selecting the best portfolio of projects to invest in. As the pool of project proposals increases and more realistic constraints are considered, the problem becomes NP-hard. Thus, metaheuristics have been employed for solving large instances of the project portfolio selection problem (PPSP). However, most of the existing works do not account for uncertainty. This paper contributes to close this gap by analyzing a stochastic version of the PPSP: the goal is to maximize the expected net present value of the inversion, while considering random cash ows and discount rates in future periods, as well as a rich set of constraints including the maximum risk allowed. To solve this stochastic PPSP, a simulation-optimization algorithm is introduced. Our approach integrates a variable neighborhood search metaheuristic with Monte Carlo simulation. A series of computational experiments contribute to validate our approach and illustrate how the solutions vary as the level of uncertainty increases

    From metaheuristics to learnheuristics: Applications to logistics, finance, and computing

    Get PDF
    Un gran nombre de processos de presa de decisions en sectors estratègics com el transport i la producció representen problemes NP-difícils. Sovint, aquests processos es caracteritzen per alts nivells d'incertesa i dinamisme. Les metaheurístiques són mètodes populars per a resoldre problemes d'optimització difícils en temps de càlcul raonables. No obstant això, sovint assumeixen que els inputs, les funcions objectiu, i les restriccions són deterministes i conegudes. Aquests constitueixen supòsits forts que obliguen a treballar amb problemes simplificats. Com a conseqüència, les solucions poden conduir a resultats pobres. Les simheurístiques integren la simulació a les metaheurístiques per resoldre problemes estocàstics d'una manera natural. Anàlogament, les learnheurístiques combinen l'estadística amb les metaheurístiques per fer front a problemes en entorns dinàmics, en què els inputs poden dependre de l'estructura de la solució. En aquest context, les principals contribucions d'aquesta tesi són: el disseny de les learnheurístiques, una classificació dels treballs que combinen l'estadística / l'aprenentatge automàtic i les metaheurístiques, i diverses aplicacions en transport, producció, finances i computació.Un gran número de procesos de toma de decisiones en sectores estratégicos como el transporte y la producción representan problemas NP-difíciles. Frecuentemente, estos problemas se caracterizan por altos niveles de incertidumbre y dinamismo. Las metaheurísticas son métodos populares para resolver problemas difíciles de optimización de manera rápida. Sin embargo, suelen asumir que los inputs, las funciones objetivo y las restricciones son deterministas y se conocen de antemano. Estas fuertes suposiciones conducen a trabajar con problemas simplificados. Como consecuencia, las soluciones obtenidas pueden tener un pobre rendimiento. Las simheurísticas integran simulación en metaheurísticas para resolver problemas estocásticos de una manera natural. De manera similar, las learnheurísticas combinan aprendizaje estadístico y metaheurísticas para abordar problemas en entornos dinámicos, donde los inputs pueden depender de la estructura de la solución. En este contexto, las principales aportaciones de esta tesis son: el diseño de las learnheurísticas, una clasificación de trabajos que combinan estadística / aprendizaje automático y metaheurísticas, y varias aplicaciones en transporte, producción, finanzas y computación.A large number of decision-making processes in strategic sectors such as transport and production involve NP-hard problems, which are frequently characterized by high levels of uncertainty and dynamism. Metaheuristics have become the predominant method for solving challenging optimization problems in reasonable computing times. However, they frequently assume that inputs, objective functions and constraints are deterministic and known in advance. These strong assumptions lead to work on oversimplified problems, and the solutions may demonstrate poor performance when implemented. Simheuristics, in turn, integrate simulation into metaheuristics as a way to naturally solve stochastic problems, and, in a similar fashion, learnheuristics combine statistical learning and metaheuristics to tackle problems in dynamic environments, where inputs may depend on the structure of the solution. The main contributions of this thesis include (i) a design for learnheuristics; (ii) a classification of works that hybridize statistical and machine learning and metaheuristics; and (iii) several applications for the fields of transport, production, finance and computing

    A superior active portfolio optimization model for stock exchange

    Get PDF
    Due to the vast number of stocks and the multiple appearances of developing investment portfolios, investors in the financial market face multiple investment opportunities. In this regard, the investor task becomes extremely difficult as investors define their preferences for expected return and the amount to which they want to avoid potential investment risks. This research attempts to design active portfolios that outperform the performance of the appropriate market index. To achieve this aim, technical analysis and optimization procedures were used based on a hybrid model. It combines the strong features of the Markowitz model with the General Reduced Gradient (GRG) algorithm to maintain a good compromise between diversification and exploitation. The proposed model is used to construct an active portfolio optimization model for the Iraq Stock Exchange (ISX) for the period from January 2010 to February 2020. This is applied to all 132 companies registered on the exchange. In addition to the market portfolio, two methods, namely, Equal Weight (EW) and Markowitz were used to generate active portfolios to compare the research findings. After a thorough review based on the Sharpe ratio criterion, the suggested model demonstrated its robustness, resulting in maximizing earnings with low risks

    Internet of Things in urban waste collection

    Get PDF
    Nowadays, the waste collection management has an important role in urban areas. This paper faces this issue and proposes the application of a metaheuristic for the optimization of a weekly schedule and routing of the waste collection activities in an urban area. Differently to several contributions in literature, fixed periodic routes are not imposed. The results significantly improve the performance of the company involved, both in terms of resources used and costs saving

    Risk-based Multi-Criteria Decision Analysis for Epilepsy Death Risk Reduction

    Get PDF
    L'epilessia è fra le malattie neurologiche più frequenti: nel mondo colpisce circa 43 milioni di persone. Questo tesi tratta di un caso particolare di problema di analisi multicriterio. Il problema studiato proviene dal dominio medico ad di rilevanza pratica molto importante. Dato un paziente affetto da epilessia qual'è il modo migliore di diagnosticare e curare la malattia? Questa domanda contiene in sè lo scopo di questa tesi. Il modo più comune per affrontare un problema di ottimizzazione multi-obiettivo è quello di applicare un'ottimizzazione paretiana tra le soluzioni. Viene qui proposto un modello basato sulla valutazione del rischio che utilizza strumenti sviluppati nel campo dell'analisi decisionale multicriteria (MCDA)ope

    A Variable Depth Search Algorithm for Binary Constraint Satisfaction Problems

    Get PDF
    The constraint satisfaction problem (CSP) is a popular used paradigm to model a wide spectrum of optimization problems in artificial intelligence. This paper presents a fast metaheuristic for solving binary constraint satisfaction problems. The method can be classified as a variable depth search metaheuristic combining a greedy local search using a self-adaptive weighting strategy on the constraint weights. Several metaheuristics have been developed in the past using various penalty weight mechanisms on the constraints.What distinguishes the proposed metaheuristic fromthose developed in the past is the update of k variables during each iteration when moving from one assignment of values to another. The benchmark is based on hard random constraint satisfaction problems enjoying several features that make them of a great theoretical and practical interest.The results show that the proposed metaheuristic is capable of solving hard unsolved problems that still remain a challenge for both complete and incomplete methods. In addition, the proposed metaheuristic is remarkably faster than all existing solvers when tested on previously solved instances. Finally, its distinctive feature contrary to other metaheuristics is the absence of parameter tuning making it highly suitable in practical scenarios

    Time-limited Metaheuristics for Cardinality-constrained Portfolio Optimisation

    Full text link
    A financial portfolio contains assets that offer a return with a certain level of risk. To maximise returns or minimise risk, the portfolio must be optimised - the ideal combination of optimal quantities of assets must be found. The number of possible combinations is vast. Furthermore, to make the problem realistic, constraints can be imposed on the number of assets held in the portfolio and the maximum proportion of the portfolio that can be allocated to an asset. This problem is unsolvable using quadratic programming, which means that the optimal solution cannot be calculated. A group of algorithms, called metaheuristics, can find near-optimal solutions in a practical computing time. These algorithms have been successfully used in constrained portfolio optimisation. However, in past studies the computation time of metaheuristics is not limited, which means that the results differ in both quality and computation time, and cannot be easily compared. This study proposes a different way of testing metaheuristics, limiting their computation time to a certain duration, yielding results that differ only in quality. Given that in some use cases the priority is the quality of the solution and in others the speed, time limits of 1, 5 and 25 seconds were tested. Three metaheuristics - simulated annealing, tabu search, and genetic algorithm - were evaluated on five sets of historical market data with different numbers of assets. Although the metaheuristics could not find a competitive solution in 1 second, simulated annealing found a near-optimal solution in 5 seconds in all but one dataset. The lowest quality solutions were obtained by genetic algorithm.Comment: 51 pages, 8 tables, 3 figure

    SUPPLY CHAIN NETWORK DESIGN: RISK-AVERSE VS. RISK-NEUTRAL DECISION MAKING

    Get PDF
    Recent events, such as the Heparin tragedy, highlight the necessity for designers and planners of supply chain networks to consider the risk of disruptions in spite of their low probability of occurrence. One effective way to hedge against supply chain network disruptions is to have a robustly designed supply chain network. This involves strategic decisions, such as choosing which markets to serve, which suppliers to source from, the location of plants, the types of facilities to use, and tactical decisions, such as production and capacity allocation. In this dissertation, we focus on models for designing supply chain networks that are resilient to disruptions. We consider two types of decision making policies. A risk-neutral decision making policy is based on the cost minimization approach, and the decision-maker defines the set of decisions that minimize expected cost. We also consider a risk-averse policy wherein rather than selecting facilities that minimize expected cost, the decision-maker uses a Conditional Value-at-Risk approach to measure and quantify risk. However, such network design problems belong to class of NP hard problems. Accordingly, we develop efficient heuristic algorithms and metaheuristic approaches to obtain acceptable solutions to these types of problems in reasonable runtimes so that the decision making process is facilitated with at most a moderate reduction in solution quality. Finally, we perform statistical analyses (e.g., logistic regression) to assess the likelihood of selection for each facility. These models allow us to identify the factors that impact facility selection in both the risk-neutral and risk-averse policies
    corecore