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Abstract—A portfolio optimisation problem involves allocation 

of investment to a number of different assets to maximize return 
and minimize risk in a given investment period. The selected 
assets in a portfolio not only collectively contribute to its return 
but also interactively define its risk as usually measured by a 
portfolio variance. This presents a combinatorial optimisation 
problem that involves selection of both a number of assets as well 
as its quantity (weight or proportion or units). The problem is 
extremely complex due to a large number of selectable assets.  
Furthermore, the problem is dynamic and stochastic in nature 
with a number of constraints presenting a complex model which is 
difficult to solve for exact solution. In the last decade research 
publications have reported the applications of 
metaheuristic-based optimisation methods with some success., 
This paper presents a review of these reported models, 
optimisation problem formulations and metaheuristic approaches 
for portfolio optimisation. 

Index Terms—Metaheuristic, Portfolio optimisation, 
Investment management, Asset management 

I. INTRODUCTION 

One of practical problems in asset management is how to 
allocate money to invest in different assets in order to achieve 
the investors risk appetites and return objectives (Markowitz 
1992). An investor is assumed to be a rational economic agent 
who is risk averse.  Given a level of return objective, an 
investor tries to reduce risk as much as possible.  To construct a 
portfolio of assets, a portfolio manager who acts in best 
interests of the investors, adds a number of assets to form a new 
asset portfolio that has a different risk-return characteristic than 
those of individual assets.  Choices and quantities of different 
assets that should be included into the portfolio are the 
outcomes of portfolio selection process. A portfolio of feasible 
set of assets that has a minimum risk level and a maximum 
return level is called an 登ptimal  or 兎fficient  portfolio.  

In the process of investment decision, portfolio managers 
usually face with abundant choices of investment assets.  Also, 
they may need to make timely decisions in rapidly changing 
financial market. This represents a tough optimization problem, 
which continues to present a challenge for efficient 
optimization solution techniques (Maringer 2005.) 
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A variety of different techniques have been employed to 
solve the portfolio optimisation problem . The main drawback 
of techniques for  exact solution is that the number of 
combinations of states that must be searched increases 
exponentially with the size of problem and becomes 
computationally prohibitive (Crama 2003.). Furthermore, these 
techniques are poor in handling the nonlinear objective and 
constraint functions and several assumptions are generally 
required to make the problem solvable using reasonable 
computational resources (Maringer 2005.) Alternatively, some 
heuristic-based techniques use  algorithms to find approximate 
solutions for problem instances of NP-hard problems in a 
reasonable time (Blum 2001.). By using heuristics, the 
optimisation problems can be tackled in polynomial time with a 
traded-off of their optimality. In some circumstances of the real 
world problems, the speed to reach the acceptable approximate 
solutions is very critical. Feasible near-optimum solutions are 
acceptable but untimely are not. The simple heuristic solution 
approaches are based on specialized techniques that work 
particularly well for a given problem but are only of limited 
applicability to other problems ((Blum 2003.) Furthermore 
simple heuristics, based on greedy search algorithms, tend to 
stop in inferior local optima. 
In order to overcome the above limitations, researchers in the 
last decade have focused much attention on metaheuristic 
solution techniques (Blum 2003.). Metaheuristics are general 
intelligent searches that could find the ways out of local optima. 
Despite their intelligence and generality, performances of 
metaheuristics depend on problem settings.  Over the last 
decade a number of research publications have been reported 
on applications of metaheuristic approaches addressing some 
of portfolio management and optimisation issues.  

This paper reviews the portfolio optimisation problem 
models and the solution methodologies reported in the 
literature with main focus on the applications of metaheuristic 
approaches. The next section provides general background to 
the portfolio models and a brief roadmap on solving methods. 
Section 3 reviews the portfolio optimisation problem 
formulations with realistic constraints. Section 4 reviews the 
applications of metaheuristic approaches to the portfolio 
problems with mentioning of some traditional approaches for 
comparison. The final section summarizes the paper and its 
conclusions.                    
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II. GENERAL BACKGROUND AND CONCEPTS 

A. Portfolio Optimisation and Selection 
Modern portfolio theory originated in a paper by Harry M. 

Markowitz in 1952 (Markowitz 1952 cited in Markowitz 1992 
and in Elton 1997).  The theory stated that an investor should 
not select  assets due to only characteristics that are particular to 
the assets but she/he need to consider how each asset co-moved 
with all other assets. Moreover, by taking into account of these 
co-movements, an investor can construct a portfolio that has 
less risk given the same expected return than a portfolio 
constructed by ignoring the interaction between securities 
(Elton 1997).   Since 1952, modern portfolio theory has become 
a well-develop paradigm and academic field. From simple 
single period of Markowitz, it has been many strands of 
developments.  Earlier, investor’s utility functions had been 
taken into consideration as well as additional moments rather 
than variance such as skewness (Tobin 1958, Lee 1977, Kraus 
1976, Fama 1965, and Elton 1974 cited in Elton 1997).   

An important development that has a high impact on 
practical implications has been the study of separation theorem 
that leads to mutual fund theorem. The theory states that if an 
investor has access to a risk free asset or a comparatively 
riskless asset, the investor’s optimal portfolio is independent of 
his preferences for expected return and variance (which 
represent risk). The investor then can construct an optimal 
portfolio at any expected return level from only a few elements 
namely a risk free asset and one or few market portfolios or 
mutual funds. This radically simplified investment decision 
making. The important outcomes of this strand are the Capital 
Asset Pricing Model (CAPM) (in the seminal papers, Sharp 
1964, Lintner 1965 and Mossin 1966) and the Arbitrage Pricing 
Theory (APT) (in the seminal papers, Ross 1967 and Roll 
1980). However, empirical researches still inconclusive 
whether the models actually work in reality.  Above all, due to 
practical and cost matters, portfolio managers sometime have 
still to construct market portfolios or mutual funds from a 
subset of all available assets. Another strand has been to extend 
the Markowitz model into multi-period and dynamic models. A 
comprehensive treatment of this strand of development can be 
found in Merton 1992. More recently, many researchers have 
extended the model into stochastic forms (e.g.Gulpinar 2003 
and Fernholz 1982, 2002, 2003).  However, beside Markowitz 
mean-variance model, CAPM and APT, other models still have 
lesser practical applications in the investment management 
industry.     

Markowitz’s seminal paper in 1952 was the first work on 
Modern Finance in general and Modern Portfolio Theory in 
particular.  Markowitz himself has long been regarded as the 
father of Modern Finance even before he was accolade with 
Nobel Prize in Economics in 1989.  Moreover, the model is the 
first that defines the concepts of risk and risk management 
related to financial and investment management.  The concept 
of risk in the model is defined as the volatility of asset prices 
which is usually represented by the variance or standard 
deviation (square root of variance) of asset’s prices under 
consideration (even though there are other definitions of risk 
such as Value-at-Risk or VaR).  The risk management as far as 

the model concerns is not to eliminate the risk associated with 
portfolio management but to choose the combination of assets 
that yield the lowest overall portfolio’s variance given an 
expected portfolio return.  The optimum portfolio management 
by minimising portfolio’s variance is equivalent to optimum 
portfolio by maximising portfolio’s return given a portfolio’s 
variance.   

The Markowitz model is a well-defined optimisation model 
and with some modification later by Black (Black 1972) to 
allow short-selling (allowing negative weights of assets) the 
model has a closed form solution.  By removing some realistic 
assumptions such as the non-negativity constraints (i.e. no 
short sell on any assets are allowed); the integer constraints (i.e. 
shares of assets cannot be divided into lower than their trading 
units,) etc., the model has a general form that only the assets’ 
expected returns, the variance and covariance of the assets are 
parameters.  On the other hand, if we impose the non-negativity 
constraint, there exists no general form (closed form) solution 
for the optimisation problem.  Although the model with 
non-negativity constraint can be solved efficiently by 
specialised algorithms and other ad hoc methods, imposing 
other constraints (e.g. the integer constraint or maximum 
number of asset constraint) will cause large-scale problems 
became unable to be solved by mixed integer non-linear 
programming or other exact solution algorithms, within a 
reasonable time (Busetti 2000).        

The portfolio optimisation problems with realistic 
constraints are NP hard problem especially for those of exact 
solutions. The methods require complete enumeration where all 
possible and valid values for the decision variables are tested.  
The problem will be to select k out of N assets and optimize 
their portfolio weights.  Only the complexity of selection of 
assets alone is O (C (N, k)) e.g. selecting 10 out of 100 assets 
come with C (100, 10) or 1.73 x 1013 alternatives.  Moreover, 
for each of the alternatives, the optimal weights must be 
determined.  In this case, the weight must be zero or multiple of 
0.1, which have 1010 or 100 possible weight structures for each 
alternative. Obviously, the problem size can quickly get out of 
our present computation power.  .  There are two ways to cope 
with the NP hardproblems.  First, we can use more realistic 
models of portfolio optimisation problems and use approximate 
algorithms, which do not guarantee finding the optimal solution, 
but search for good enough solutions in a significantly reduced 
computational time (Blum 2003).   Second, we can use 
approximately simplified unrealistic portfolio optimisation 
models, which can be solved by standard methods or 
algorithms.     

B. Solving methods 
Heuristics are approximate algorithms.  Basic or classical 

heuristics are greedy algorithms.  In combinatorial 
optimisations, the basic heuristics include local search 
algorithms and constructive algorithms.  Local search 
algorithms start from initial solutions and repeatedly try to 
substitute the current solution with a better one in an 
appropriate vicinity or neighbourhood of the current solutions. 
Constructive algorithms generate solution from initially empty 
solution by adding components until a solution is completed.  
In most of combinatorial optimisations, heuristic methods can 
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reduce the computation complexity to at most polynomial time 
(but yield solutions that not sure to be global optima). A 
drawback of the basic heuristics is that they tends to be trapped 
with local optima that far inferior than the true or global optima 
and, for most of times, is not considered good enough.  
Metaheuristics are to combine basic heuristic methods with 
some 妬ntelligence  or 堵uided strategies  aimed to avoid the 
traps.    

 Essentially, metaheuristics are algorithms for exploring 
search spaces by using guided strategies that have a dynamic 
balance between the exploitation of the accumulated search 
experience (i.e. intensification) and the exploration of search 
space (i.e. diversification) (Blum 2001).   Metaheuristics can be 
classified into two categories, namely, local search 
metaheuristics (LSMs) and evolutionary algorithms (EAs).  
LSMs begin with single solutions and subsequently replaced by 
another (often but not always the best) solution found in the 
neighbourhood. They are call exploit-oriented (or 
intensification) methods because they are often allowed to find 
a local optima solution. However, they are different form local 
search algorithms of basic heuristics in such a way that they 
have some mechanism to strategically guide the search away 
from trapped local optima. Conversely, EAs make use of a 
randomly generated population of solutions. The initial 
population is improved through natural evolution/selection 
processes. In the processes, the whole or part of population is 
replaced by newly generated offsprings (often the most suitable 
ones). As a result, EAs are often called exploration-oriented 
method.  LSMs can be categorised into various models, based 
on guiding techniques, of which include Simulated Annealing 
(SA), Tabu Search (TS), Greedy Randomised Adaptive Search 
Procedure (GRASP) and Variable Neighbourhood Search 
(VNS). While EAs include Genetic Algorithms (GA), 
Evolution Strategies (ES), Genetic Programming (GP) , Ant 
Colonies, Estimate of Distribution Algorithms and Scatter 
Search.  Since there are active researches around the world to 
find new heuristic techniques, the lists are by no mean 
exhaustive.  Moreover, there are also hybrids and other 
metaheuristics that can fall into neither category (Alba 2005). 

Even though, metaheuristics are not problem specific, but 
very often, in order to reach good solutions, they need to make 
use of detailed knowledge of the problem domains. As a result, 
most of efficient metaheuristics are not reusable for different 
problems or even different instances of the same problem, 
without redevelopment or in some cases, adjustment of relevant 
parameters. 

III. PORTFOLIO OPTIMIZATION PROBLEM FORMATION  

A. The Markowitz Mean-Variance Model  
The Markowitz model assumes that investors make their 

decision in portfolio construction by choosing assets that 
maximise their portfolio returns at the end of investment period 
(expected returns).  By assuming that investors are risk averse, 
the simplest model with a number of unrealistic constraints 
namely, perfect market without taxes, no transaction costs, no 
short sales, assets are infinitely divisible, the Markowitz 
portfolio optimisation can be stated mathematically as follows: 
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Where  σij  is covariance between asset i and j, if i = j, it is 
variance of asset i.  

σ2
P  is variance of the portfolio of assets. 

     ri   is   expected return of asset i  
     rP  is the expected return of the portfolio  
     r* is a predefined level of return   

These additional conditions must hold so that the 
optimisation has a solution: 
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Where  σi  is standard deviation (square root of variance)  of 
asset i. 

   ρij is correlation coefficient of asset i and asset j  
       rj  is   expected return of asset j 

B. Some Realistic Constraints  
The Markowitz model is a simplified model to focus only a 

theoretical point of view. In the real world of investment 
management, portfolio managers face a number of realistic 
constraints those arise from normal business practices, practical 
matters and industry regulations.  The realistic constraints that 
are of practical importance include (not exhaustively) integer 
constraints, cardinality constraints, floor and ceiling constraints, 
turnover constraints, trading constraints, buy-in threshold and 
transaction cost inclusions.  Integer constraints make the 
number of any asset include in the portfolio must be integer or 
indivisible (i.e. cannot be in any fraction of normal trading lot). 
This may not suffer for metaheuristic optimisations because 
they are combinatorial but suffers the other optimisation 
methods that require continuity of the variables. The integer 
constraints can be expressed as 
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Where ni is number of unit of asset (share) and li is trading lot 

of the asset i.   
 Cardinality constraints are the maximum number and 

minimum number of assets that a portfolio manager wishes to 
include in the portfolio due to monitoring reasons or 
diversification reasons or transaction cost control reasons 
(Stein 2005).  The constraints can be expressed as follows 
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Where  Cl and Cu are the lowest number of assets and the 
highest number of assets required to include in a portfolio 
respectively. 

Floor and ceiling constraints define lower and upper limits 
on the proportion of each asset, which can be hold in a portfolio. 
These constraints may result from institutional policy in order 
to diversify portfolio and to rule out negligible holding of assets 
for the ease of control (Crama 2003). They can be expressed 
mathematically as follows 

    
)14(icxf iii ∀≤≤  

Where fi and ci are the lowest proportion and the highest 
proportion that asset i can be held in the portfolio respectively.   

Turnover constraints impose upper bound for variations of 
the asset holding from one period to the next. The constraints 
are a mean to curb the transaction costs therefore they can be 
modeled indirectly by incorporating transaction costs and read 
as follows 
 

)16()0,max(

)15()0,max(
0

0

iSxx

iBxx

iuii

iuii

∀≤−

∀≤−
 

Where x0 i , Biu and Siu are the holding proportion of asset i in 
the initial portfolio, the maximum purchase and the maximum 
sales of asset i during the current holding period. 
 On the other hand, trading constraints impose limits on 
buying and selling tiny quantities of assets due to practical 
reasons and can be stated as follows  
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Where Bil and Sil denote the minimum purchase and sale of 
asset i during the current holding period (Crama 2003).  
 In business of asset trading, stock brokers, bond dealers, etc. 
are doing their business for money therefore transaction costs 
associated with purchases and sales of assets are inevitable and 
should be incorporated in the realistic models.  Transaction 
costs have many forms as follows 
 

)22(:.

)21(},max{:/.
)20(:

)19(:

0

0

0

iipfi

iipfi

iipi

fi

SntTTfixedplusprop

SnttTfloorwprop
SntTalproportion

TTfixed

+=

=

=

=

where Τι , Τf ,t p ,tf, ni  and S0i are transaction cost of inclusion of 
asset i into the portfolio, fixed fee per transaction of purchase 
asset i, minimum (floor) fee per-transaction, variable fee per 
amount (in pound) of purchase and current trading or market 
price of asset i  (at the time of purchase) respectively.  
 The transaction costs affect the fund that can be invested in 
all assets. Let V0 be the initial endowment the portfolio 
manager is entrusted to construct a portfolio.  And ni is the 
amount of asset i (assuming the integer constraints hold) then 
the amount of fund that can be invested in the portfolio will not 
equal V0 but will equal (assuming the fund is invested 
completely on assets) 
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And if there is no trading during the holding period then the 
expected portfolio return on the initial endowment for the 
holding period will be  
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Where T0i and T1i  are (purchase) transaction cost of asset i at the 
beginning of the holding period and (sale) transaction cost at 
the end of the holding period  (to convert all assets to cash) 
respectively. 

IV. METHODOLOGIES AND ANALYSIS 

A. Closed Form Solution 
By removing the non-negativity constraint in (6) and let xi 

can be any real number (short-selling allowed), the solution of 
the Markowitz model then has a closed form solution (but far 
from representing the real world problems). Black (see Black 
1972) did this simplification.  

B. Algorithms for Exact Solutions 
The standard Markowitz models with non-negativity 

constraints are NP-hard, only small problem size i.e. the 
number of assets (N) are small that can be solved within 
reasonable time for an exact solution using standard 
optimisation software (quadratic optimisation tools) (Maringer 
2005, Wolfe 1959 cited in Crama 2003). In Jagannathan 2003 
(cited in Maringer 2005), the non-negativity constraints are 
incorporated by modifying the covariance matrix without 
reducing complexity.  Some ad hoc methods are taken 
advantages of the special structure of the covariance matrix 
(see Perold 1984 and Bienstock 1996 both cited in Crama 
2001). Other researchers investigated some techniques that can 
be solve only models with only a subset of constraints e.g. 
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Dembo 1989 using network flow models, Konno 1991 using 
linear programming models with embedded absolute deviation 
approach to measure risk, Takehara 1993 (cited in Crama 2003) 
using an interior point algorithm,    Bienstock 1996 (ibid.) and 
Horniman 2001 (cited in Stein 2005) using branch and cut 
approaches (as a subset of Mixed Integer Quadratic 
Programming – MIQP).    

C. Simulated Annealing  
Simulate Annealing is the oldest among the metaheuristics. It 

allows moves toward worse solutions in order to escape from 
local optima. The probability of such worse moves is 
diminished like molecules are slowing down when the system’s 
temperature is cooling down (which the name is derived from.) 
(Blum 2003)   

Crama and Schyns (Crama 2003) applied simulated annealing 
to solve complex portfolio selection problems with floor, 
ceiling, turnover, trading and cardinality constraints. They 
encoded a solution of the problem as an n-dimensional vector X 
whose element xi represents the holding of asset i in the 
portfolio. The quality of a solution is measured by the variance 
of the portfolio. They use specific approaches to handle 
specific classes of constraint either by explicitly restricting the 
solutions to be in feasible region or by penalizing infeasible 
solutions. They found that the algorithm can be approximate 
the optimal portfolio frontier for medium size problem (151 
assets) within acceptable computing time and can be handle 
more classes of constraints than those of classical approaches. 
Also it is quite versatile to apply to different measures of risk 
other than variance as well as different covariance matrix 
properties. However, the algorithm still needs to customize and 
to delicately fine tune parameters to account for different 
classes of constraints.   

D. Tabu Search  
Tabu Search uses the history of the search in the form of tabu 

list that keeps track of the recently visited solutions and forbids 
moves toward the list. This metaheuristic uses the tabu list both 
to avoid local optima and to implement an explorative search 
strategy (Blum 2003.)   

Busetti (Busetti 2000) used Tabu Search/Scatter Search tools 
in the Opt quest module of Decisioneering Inc.’s Crystal Ball 
for cardinality constraint case.  The results then compared with 
those of Genetic Algorithms (GA). He found that tabu/scatter 
search method is unsuitable for optimisation portfolio with 
cardinality constraints (of the size of 40 assets). Therefore, he 
concluded that GA is better than tabu/scatter search for this 
application and problem size. Moreover, the GA applied to 
portfolio optimisation is effective and robust with respect to 
quality of solution and speed of convergence. It is also 
versatility by not relying on restrictive properties of the model, 
by ease of new constraint addition and by ease of the objective 
function’s modifications. In contrary to other metaheuristic 
methods, the needs for tailoring, customising and fine-tuning 
are not an issue for GA, even though these may improve 
performance of the model in somewhat extent but not 
necessary.                       

E. Ant Colony Search  
Ant Colony Search is the imitation of behavior of ants that 

enable them to find shortest path between food sources and 
their nest. While moving to/from the nest ants deposit 
pheromone on the ground. Using the concentration of 
pheromone, they decide the likelihood of which direction to go 
(Blum 2003.)       

Maringer (Maringer 2005) applied ant colony algorithms to 
solve optimisation problems in small portfolios (with 
cardinality constraints). He asserts that the problems can be 
regard as Knapsack problems with some modifications. Firstly, 
the “value” of any included asset is dependent on the overall 
structure of portfolio rather than independent of other (asset) 
selections as in the knapsack, due to diversification effects. 
Secondly, the investor has to decide jointly whether to include 
an asset or not and in what amount (or proportion) of the asset 
to include in the portfolio. He tested for two cases of choosing 
three stocks (k = 3) and ten (k = 10) stocks respectively from 
S&P 100 (with 161,700 and 1.73 x 1013 alternatives 
respectively). In the case of standard parameter setting (no 
evaporation of the pheromone) for k = 3 only 16 % of all run in 
which the global optimum was found and for k = 10 in just 2 out 
of the 1,000 independent runs that the global optimal was found. 
However, when the parameters were set to appropriate values 
(with some evaporation), for k = 3, about two third of the run 
that global optimum was found, and for k = 10, from half and 
two third of the run that global optima was found.             

F.  Hybrid Local Search 
Maringer (Maringer 2003, 2005) also applied hybrid local 

search algorithm to solve portfolio optimisation problems. 
The algorithm combine population based heuristic with local 
search.  A crystal-like structure represents a portfolio of 
assets.   Its structure depicts both the assets and their weights. 
All of the crystals represent the population. The algorithm 
begins with a random initialization of crystals and their 
random structure but valid respect to the constraints. Then 
subsequent iterations consist of three stages; first, 
modification of crystal (portfolio) structure; second, 
evaluation and ranking of the modified structure; third, 
replacement of the poorest crystal in the population. The 
author has tested the algorithm against other two algorithms, 
namely, simulated annealing (SA) and simulated annealing 
with a group of isolate crystals (as a way to introduce 
evolutionary strategies into SA.) The author conducted such a 
test in order to determine whether a group of agents 
outperform individual agents and whether the use of 
evolutionary strategies improves performance of SA. The 
results indicate that the hybrid local search (HA) performs the 
best among the three algorithms in respect to the average 
deviation from the supposed optimal portfolios (both for 
DAX data set and FTSE data set). The next is GSA. And the 
worst is SA. He concluded that introducing evolutionary 
strategies do improve performances of metaheuristic 
algorithms in solving portfolio optimisation problems.  

G.  Genetic Algorithms 
Genetic Algorithms (GA) are population based heuristic 

algorithms. In GA, solutions are represented as chromosomes 
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that to be breed by crossover or modified by mutation. 
Selection processes are used to find optima solutions 
imitating the natural selection of survival of the fittest 
(Maringer 2005).   
Busetti (Busetti 2000, ibid. in section D) compared GA with 

tabu search and found that GA performs better for portfolio 
optimisation problems in the problem setting. Streichart et al. 
(Streichart 2004a) applied the Multi-Objective Evolutionary 
Algorithm (MOEA) to solve portfolio optimisation problem. 
However, they are not the first group to applied Evolutionary 
Algorithms to solve the problem.  Tettamanzi et al. (cited in 
Arnone 1993, and Loraschi 1995a and 1995b) transformed 
the multi objective optimisation problem into a 
single-objective problem by using a trade-off function 
(therefore not a true multi-objective). In their paper, they 
compared performance of different GA representations of 
portfolio optimisations with several combinations of real 
world constraints on the Hang Seng data set with 31 assets. 
The representations are binary bit-string based genotypes or 
gray-code encoding and real-valued genotype. They also 
investigated the size of the bit string from 32 bit ‘continuous’ 
representation to 7 bit ‘discrete’ representation. They also 
compare GA with and without Lamarckism (hybrid GA in 
which the genotype can be modified not only being removed 
from the population) and Knapsack GA (KGA) with and 
without Larmarckism. The constraints imposed on the 
optimisation problems are cardinality and integer (discrete) 
constraints. The results show that KGA produced better 
results as well as converged faster than ordinary GA due to 
more efficient removal of surplus assets.  This conclusion is 
drawn from the fact that, in the problems without constraints, 
both GA and KGA perform almost the same. They also found 
that GAs without Larmarckism tend to be premature 
convergence because the neutrality of the search space cause 
the GAs to be trapped in the sub-optimal search space but for 
KGAs, even without Larmarckism, do not have this tendency.  
For the bit strings, on average the real value coding 
performed worst in all problem instances. Also, the 
differences were not much if a constraint was not added. The 
discrete 7-bit string performed better than the ‘continuous’ 
32-bit string because the mutation and crossover operators 
are more effective. Thus, the hybrid KGA with 7 - bit 
gray-coding and Larmarckism was the best in the most 
problem instances with real-world constraints. In another 
paper (Streichert 2005), the same group of authors introduced 
an alternative hybrid encoding for evolutionary algorithms, 
which combines both ‘continuous’ real value and ‘discrete’ 
binary value together. The algorithm then compared with the 
different EA representations. When the algorithm and the 
other EAs without Larmarckism were applied on the problem 
with only cardinality constraints, the algorithms performed 
better than those of standard EAs. However, with introducing 
Larmarckism into the algorithms as well as into all standard 
EAs, the algorithm’s performance was only comparable to 
other standard EAs. Same as the results in the previous paper, 
when added more constraints to the problems, the algorithms 
with Larmarckism were among the best of all due to its ability 
to remove some of the neutrality in the search space.     

H.  Hybrid Evolutionary Algorithm 
Subbu et al. (Subbu 2005) presented a new hybrid 

evolutionary multi-objective portfolio optimisation problem 
algorithm called Pareto Sorting Evolutionary Algorithm 
(PSEA) that integrates evolutionary computation with linear 
programming. The problem can be stated as 

Max  Portfolio Expected Return 
Min  Surplus Variance 
Min  Portfolio Value at Risk 
Subject to: Duration mismatch <= target 1 
     Convexity mismatch <= target 2 
     Linear portfolio investment constraints 

However, the aim of the paper is only to design algorithm and 
architecture for portfolio optimisation not to measure or 
compare performance of the algorithm.  

V. CONCLUSION 
This paper presents an overview of the concepts of portfolio 
optimisation problem with a bibliographical survey of relevant 
background, problem settings and the present state of solution 
techniques. The references provide a representative sample that 
is relevant to applying metaheuristic optimisation to the 
problem domain. A clear trend is heading toward hybrid 
models, which is the blend of population based techniques (e.g. 
evolutionary algorithm, genetic algorithm) and search based 
algorithm (e.g. local search, rule-based heuristic). This paper is 
based on many research articles published from 1952 to date in 
the field of economics, finance, mathematics, operation 
research and computer science. 
 A portfolio optimisation problem involves a huge 
combination of alternative set of assets. Combining with 
sophisticate constraints, finding a global optima by an 
exhaustive search is a NP hard problem.Using pure search 
based metaheuristics, the search tends to be trapped in local 
optima. While using pure population based tends to time 
inefficient. Therefore, the uses of hybrid algorithms can 
improve the situations if we can blend techniques of both the 
search based and the population based algorithms that 
appropriate for solving the problem.        
 Our future work will be toward improving hybrid 
metaheuristic implementations to solve the problem with 
focusing on novel techniques on problem representation, 
constraint handling, crossover and mutation as well as 
embedded search heuristics. We also plan to extend the 
techniques to implement on other portfolio selection models 
with different definition of risk and return, and also on 
estimations of the volatility and forecasting of the returns.    

REFERENCES 
[Abdelazim 2006] Hazem Y. Abdelazim and Khaled Wahba, 

“An artificial intelligence approach to portfolio selection 
and management,” International Journal of Financial 
Services Management, Volume 1, Number 2-3 / 2006, pp. 
243-254.   

[Alba 2005] E. Alba, E-G. Talbi, G. Luque and N. Melab. 
Metaheuristic and Parallelism. In Enrique Alba, editor, 
“Parallel Metaheuristic: A New Class of Algorithms”, John 
Wiley and Sons, Hoboken, NJ.,  2005[Armananzas 2005] R. 



 7

Armananzas,   Lozano, J.A. “A multiobjective approach to 
the portfolio optimization problem Evolutionary 
Computation,” The 2005 IEEE Congress on, v.2 IEEE 2005
 pp. 1388-1395 

[Arnone 1993] S. Arnone, A. Loraschi, and Tettamanzi, “A 
genetic approach to portfolio selection,” Journal on Neural 
and Mass-Parallel Computing and Information Systems, Vol. 
3 (1993), pp. 597-604   

[Avouyi-Dovi 2004] Sanvi Avouyi-Dovi, Sébastien Morin 
and David Neto “Optimal Asset Allocation with Omega 
Function” 
 http://crem.univ-rennes1.fr/site_francais/seminaires/textesse
minaires/textes_seminaires_2004/sadovi_6_04.pdf   

[Bienstock1996]  D. Bienstock, “Computational study of a 
family of mixed-integer quadratic programming problems,” 
Mathematical Programming 74 (1996) pp. 121-140 
[Black 1972] Black, F., M.C. Jensen, and M. Scholes, “The 

Capital Asset Pricing Model: Some Empirical Tests,” in 
Studies of the Theory of Capital Markets, ed. By M.C. Jensen, 
Praeger Publishers, In., New York, 1972   

[Blum 2003] C. Blum and A. Roli. “Metaheuristic in 
Combinatorial Optimization: Overview and Conceptual 
Comparison”. Computing Surveys, v. 35,, 2003, pp. 
268-308 

[Busetti 2000] Franco Raoul Busetti,  “Metaheuristic 
Approaches to Realistic Portfolio Optimisation,”  MSc 
thesis in Operation Research, University of South Africa, 
2000  
http://arxiv.org/ftp/cond-mat/papers/0501/0501057.pdf on 
04-Jul-06 

[Chekhlov 2003a] Alexei Chekhlov, Stanislav Uryasev and 
Michael Zabarankin, “Portfolio Optimization with 
Drawndown Constraints”  
 http://plaza.ufl.edu/zabarank/Drawdown.pdf 04-Jul-06 

[Chekhlov 2003b] Alexei Chekhlov, Stanislav Uryasev and 
Michael Zabarankin, “Drawndown Measure in Portfolio 
Optimization,”  RESEARCH REPORT # 2003-, Center for 
Applied Optimization, Department of Industrial and 
Systems Engineering,  University of Florida 2003   

[Crama 2003] Y. Crama and M. Schyns, “Simulated 
Annealing for Complex Portfolio Selection Problems,”
 European Journal of Operational Research, v. 150  
 2003 pp. 546-571  

[Dembo 1989] Dembo R.S., Mulvey J.M., Zenios S.A., 
“Large-scale nonlinear network models and their application,” 
Operations Research 37 (1989) pp. 353-372 
[Derigs 2004] Ulrich Derigs and Nils-H. Nickel “On a 

Local-Search Heuristic for a Class of Tracking Error 
Minimization Problems in Portfolio Management,” Annals 
of Operations Research, Volume 131, Numbers 1-4 
 Springer Netherlands 2004 pp. 45-77   

[Doerner 2001] KL Doerner, WJL Gutjahr, RFL Harti, CL 
Strauss, C Stummer. “Ant Colony Optimization in 
Multiobjective Portfolio Selection”  MIC’2001 - 4th 
Metaheuristics International Conference,Porto, Portugal, 
July 16-20, 2001
 http://webhost.ua.ac.be/eume/MIC2001/MIC2001_243_2
48.pdf 04-Jul-06 

[Doerner 2004] KL Doerner, WJL Gutjahr, RFL Harti, CL 
Strauss, C Stummer,  “Pareto Ant Colony Optimization: A 
Metaheuristic Approach to Multiobjective Portfolio 
Selection” Annals of Operations Research, v. 131, No. 1-4 
 Springer Netherlands 2004 pp. 79-99  

[Dupaèová 1999] Jitka Dupaèová, “Portfolio optimization via 
stochastic programming: Methods of output analysis’
 Mathematical Methods of Operations Research (ZOR), 
Volume 50, Number 2 , pp. 245 - 270   

[Ehrgott 2004] Matthias Ehrgott, Kathrin Klamroth, Christian 
Schwehm, “An MCDM approach to portfolio 
optimization” European Journal of Operational Research 
v.155  2004 752-770  

[Elton 1974] Elton E.J., Gruber, M.J., 撤ortfolio Theory when 
Investment Relatives are Lognormally distributed,  
Journal of Finance v. 29, 1974, pp. 1265-1273  

[Elton 1997] E.J. Elton, M.J. Gruber, “Modern Portfolio 
Theory, 1950 to date,” Journal of Banking & Finance 21 
1997, pp. 1743-1759  

[Fama 1965] Fama, E.F., 撤ortfolio Analysis in a Stable 
Paretian Market,  Management Science 11. 1965, pp. 
409-419 

[Fernholz 1982] R. Fernholz and B. Shay, “Stochastic Portfolio 
Theory and Stock Market Equilibrium,” Journal of Finance 
v. 37, 1982, pp. 615-622 

[Fernholz 2002] Robert Fernholz, Stochastic Portfolio Theory, 
Springer, 2002     

[Fernholz 2003] R. Fernholz, “The Application of Stochastic 
Portfolio Theory to Equity Management,”2003 
 http://www.intechjanus.com/pub/research/The_Applicati
on_of_Stochastic_Portfolio_Theory_to_Equity_Managem
ent.pdf. On 07-Jul-06 

[Ghaoui 2003] Laurent El Ghaoui, Maksim Oks, and Francois 
Oustry, “Worst-Case Value-At-Risk and Robust Portfolio 
Optimization: A Conic Programming Approach,”
 Operations Research, v. 51, No. 4  2003 pp. 543-556 
  

[Gilli 2006] M Gilli, E Kellezi, H Hysi, “A Data-Driven 
Optimization Heuristic for Downside Risk Minimization” 
 Journal of Risk, 2006    

[Gulpinar 2003] N Gulpýnar, B Rustem, R Settergren,  
Multistage Stochastic Mean-Variance Portfolio Analysis 
with Transaction Costs Innovations in Financial and 
Economic Networks, v. 3, Edward Elgar Publishing Inc., 
2003, p.46-63,  

[Horniman 2001] M. D. Horniman, N. J. Jobst, C. A. Lucas, 
and G. Mitra, “Computational Aspects of Alternative 
Portfolio Selection Models in the Presence of Discrete 
Assets Choice Constraints,” Quantitative Finance, Vol. 
1,(2001), pp. 489-501  

[Jagannathan 2003] R. Jagannathan and T. Ma, “Risk 
Reduction in Large Portfolios: Why Imposing the Wrong 
Constraints Helps,” Journal of Finance Vol. 58 No. 4 
(2003), pp. 1651-1638   

[Jobst 2001] N.J. Jobst , M.D. Horniman , C.A. Lucas , G. Mitra 
 “Computational aspects of alternative portfolio selection 
models in the presence of discrete asset choice constraints”
 Quantitative Finance, Volume 1, Number 5, 2001  pp. 
489-501    



 8

[Kabanov 2004] Yuri Kabanov and Claudia Klüppelberg,
 “A geometric approach to portfolio optimization in 
models with transaction costs” Finance and Stochastics, 
Volume 8, Number 2, 2004 pp. 207-227  

[Konno 1991] H. Konno, Yamazaki H., Mean-absolute 
deviation portfolio optimization model and its applications 
to Tokyo stock market, Management Science 37 (1991) pp. 
519-531[Kraus 1976] Kraus, A., Litzenberger, R., 
鉄kewness Preference and the Valuation of Risky Assets,  
Journal of Finance 21 (4), 1976, pp. 1085-1100 

[Lee 1977] Lee, C.F., 擢unction Form Skewness Effect and 
Risk Return Relationship.  Journal of Finance a\and 
Quantitative Analysis, v. 12, 1977, p. 55 

[Lintner 1965] Lintner J., 典he Valuation of Risk Assets and the 
Selection of Risky Investments in Stock Portfolio and 
Capital Budgets,  Review of Economics and Statistics, 
47(1), 1965, pp. 13-37   

[Loraschi 1995a] A. Loraschi and A. Tettamanzi, 鄭n 
evolutionary algorithm for portfolio selection in a downside 
risk framework,  Working Papers in Financial Economics, 
Vol. 6, (1995), pp. 8-12   

[Loraschi 1995b] A. Loraschi, A. Tettamanzi, M. Tomassini, 
and P. Verda, 泥istributed genetic algorithms with an 
application to portfolio selection problems,  In Artificial 
Neural Networks and Genetic Algorithms, eds. D. W. 
Pearson, N. C. Steele, and R. F. Albrecht, Springer, Wein, 
1995 pp. 384-387  

[Lyuu 2002] Yuh-Dauh Lyuu, Financial Engineering and 
Computation: Priciples, Mathematics, Algorithms, 
Cambridge University Press, Cambridge, UK, 2002  

[Mansiri 2003] Renata Mansini, Wodzimierz Ogryczak and M. 
Grazia Speranza, “LP solvable models for portfolio 
optimization: a classification,” IMA Journal of 
Management Mathematics 2003 14(3) IMA, University of 
Oxford Press, 2003  pp.187-220 

[Markowitz 1952] H. M. Markowitz, “Portfolio Selection” The 
Journal of Finance , 7(1), March, 1952 pp. 77-91 

[Markowitz 1992] H. M. Markowitz, Portfolio Selection 
[Maringer 2003] Dietmar Maringer and Han Kellerer

 “Optimization of cardinality constrained portfolios with a 
hybrid local search algorithm,”  OR Spectrum, Volume 
25, Number 4  Springer Berlin, 2003, pp. 481-495 

[Maringer 2005] Maringer, Dietmar, 撤ortfolio Management 
with Heuristic Optimization . Advanced in Computational 
Management Science Series Vol. 8, Springer, 2005   

[Markus 1994]  Rudolf  Markus, “ Algorithms for Portfolio 
Optimization and Portfolio Insurance,”  Doctoral 
Dissertation in Finance, University of St. Gallen, Germany 
  1994  a.v.i.
 http://www.whu-koblenz.de/banking/publications/mrpub/
Content.pdf  

[Mitchell 2002] John E. Mitchell and Stephen Braun
 “Rebalancing an Investment Portfolio in the Presence of 
Transaction Costs” 
http://www.optimization-online.org/DB_FILE/2002/11/57
3.pdf 

[Mitra 2006] G Mitra, E F D Ellison, “A Scowcroft
 Quadratic Programming for Portfolio Planning: Insights 
into Algorithmic and Computational Issues”

 TECHNICAL REPORT, CTR/45/06 March 2006, The 
Centre for the Analysis of Risk and Optimisation Modelling 
Applications Brunel University, UK 2006 
 http://carisma.brunel.ac.uk/papers/2006/CTR%2045.pdf
 07-Jul-06 

[Mossin 1966] Mossin J., “Equilibrium in a Capital Asset 
Market,” Econometrica 34(4), 1966, pp. 768-783 

[Nagai 2000] Hideo Nagai, “Risky fraction processes and 
portfolio optimization with transaction costs 2000” 
 http://www.econ.kyoto-u.ac.jp/daiwa/Daiwa-Nagai.pdf
 07-Jul-06 

[Pafka 2003] Szil´ard Pafka and Imre Kondor, “Estimated 
Correlation Matrices and Portfolio Optimization”   
 http://arxiv.org/PS_cache/cond-mat/pdf/0305/0305475.p
df 07-Jul-06 

[Perold 1984] A.F. Perold, “Large-scale portfolio 
optimization,” Management Science 30 (1984) pp. 1143-1160 
[Ramaswamy 1998] Srichander Ramaswamy, “Portfolio 

selection using Fuzzy decision theory,”  BIS Working paper 
No. 59 – November 1998  

[Roll 1980] Roll R.R., S.A. Ross, 鄭n Empirical Investigation 
of the Arbitrage Pricing Theory,  The Journal of Finance, 
39(5), 1980, pp. 1073-1104  

[Ross 1967] Ross, S.A., 典he Arbitrage Theory of Capital asset 
Pricing,  The Journal of Economic Theory 13(3), 1967, pp. 
341-360  

[Sankaran 1999]  Jay Sankaran and C. Krishnamurti, “On the 
Optimal Selection of Portfolios under Limited 
Diversification” Journal of Banking and Finance, 
November, 1999  a.v.i.    [Schyns 2001] Michael 
Schyns, “Modellng Financial Data and Portfolio 
Optimization Problems” Doctoral Dissertation, Ecole d' 
Administration des Affaires  2001 a.v.i.  
 http://eco-gestion23.eco.fundp.ac.be/schyns/francais/_do
wnload/MSthese.pdf. 04-Jul-06 

[Sharp 1964] Shape W.E., “Capital Assets Prices: A Theory of 
Market Equilibrium and Conditions of Risk,” The Journal 
of Finance, 19(3), 1964, pp. 425-442 

[Stein 2005] M. Stein_, J. Branke, and H. Schmeck. Portfolio 
Selection: How to Integrate Complex Constraints. 
Available at 
http://symposium.fbv.uni-karlsruhe.de/10th/papers/Stein_
Branke_Schmeck%20-%20Portfolio%20Selection%20Ho
w%20to%20Integrate%20Complex%20Constraints.pdf 

[Steuer 2003] Ralph E. Steuer and Yue Qi “Computational 
Investigations Evidencing Multiple Objectives in Portfolio 
Optimization Multi-Objective Programming and Goal 
Programming: Theory and Applications”, edited by Tetsuzo 
Tanino, Tamaki Tanaka, Masahiro Inuiguchi  Springer 
Netherlands 2003 35-43  

[Streichert 2004 a]  Streichert, F.   Ulmer, H.   Zell, A. 
 “Comparing Discrete and Continuous Genotypes on the 
Constrainted Portfolio Selection Problem”  
http:///www-ra.informatik.uni-tuebingen.de/  

[Streichert 2004 b]  Streichert, F.   Ulmer, H.   Zell, A. 
 “Evaluating a hybrid encoding and three crossover 
operators on the constrained portfolio selection problem”
 Evolutionary Computation, 2004. CEC2004. Congress on, 
v.1 IEEE 2004 932-939   



 9

[Streichert 2005] Felix Streichert, Holger Ulmer, and Andreas 
Zell, “Hybrid Representation for Compositional 
Optimization and Parallelizing MOEAs” 
 http://drops.dagstuhl.de/opus/volltexte/2005/251/pdf/044
61 

[Subbu 2005] R. Subbu, Bonissone, P.P. Eklund, N. 
Bollapragada, S. Chalermkraivuth, K, “Multiobjective 
financial portfolio design: a hybrid evolutionary approach,” 
Evolutionary Computation, 2005. The 2005 IEEE Congress 
on, Vol. 2 (2005), IEEE, pp. 1722- 1729  

[Takehara 1993] H. Takehara, “An interior point algorithm for 
large scale portfolio optimization,” Annals of Operations 
Research 45 (1993) pp. 373-386 
[Tobin 1958] Tobin J., 鏑iquidity Preference as Behaviour 

toward Risk,  Review of Economic Studies, v. 25, 1958, pp. 
65-86 

[Varghese 2004] Boby Varghese and Chandra A. Poojari,
 “Genetic algorithm based technique for solving chance 
constrained problems arising in risk management”
 Technical Report, CARISMA,  Brunel University UK 
 2004  a.v.i. 
 http://www.carisma.brunel.ac.uk/papers/Varghese.pdf
 07-Jul-06 

[Yang 2005]  Shengxiang Yang and J. Branke (Ed)
 “Proceedings of the Fourth Workshop on Evolutionary 
Algorithms for Dynamic Optimization Problems” in 2005 
Genetic and Evolutionary Computation Conference 
(GECCO-2005), 26 June 2005, Washington DC, USA   

[Wolfe 1959] Wolfe P., The simplex method for quadratic 
programming, Econometrica 27 (1959) pp. 382-398, 

[Wyatt 1997] K Wyatt, “Decomposition and Search 
Techniques in Disjunctive Programs for Portfolio 
Selection” 
http://www.sci.brooklyn.cuny.edu/~wyatt/dpport.ps.
 07-Jul-06 

         

 

 


