328 research outputs found

    Hough Transform recursive evaluation using Distributed Arithmetic

    Get PDF
    Paper submitted to the IFIP International Conference on Very Large Scale Integration (VLSI-SOC), Darmstadt, Germany, 2003.The Hough Transform (HT) is a useful technique in image segmentation, concretely for geometrical primitive detection. A Convolution-Based Recursive Method (CBRM) is presented for generic function evaluation. In this approach, calculations are carried out by a unique parametric formula which provides all function points by successive iteration. The case of combined trigonometric functions involved in the calculation of the HT is analyzed under this scope. An architecture for reconfigurable FPGA-based hardware, using Distributed Arithmetic (DA) implements the design. It provides memory and hardware resource saving as well as speed improvements according to the experiments carried out with the HT

    Calculation Methodology for Flexible Arithmetic Processing

    Get PDF
    Paper submitted to the IFIP International Conference on Very Large Scale Integration (VLSI-SOC), Darmstadt, Germany, 2003.A new operation model of flexible calculation that allows us to adjust the operation delay depending on the available time is presented. The operation method design uses look-up tables and progressive construction of the result. The increase in the operators’ granularity opens up new possibilities in calculation methods and microprocessor design. This methodology, together with the advances in technology, enables the functions of an arithmetic unit to be implemented on the basis of techniques based on stored data that provide quality results and systematization in the implementation. The proposed techniques are applied in the design of a multiplier operator. We report an evaluation of the architecture in area, delay and computation error, as well as a suitable implementation of an application example in FPGA to validate the design.This work is being backed by grant DPI2002-04434-C04-01 from the Ministerio de Ciencia y Tecnología of the Spanish Government

    Adaptive and Deadlock-Free Tree-Based Multicast Routing for Networks-on-Chip

    Get PDF
    This paper presents the first synthesizable network-on-chip (NoC) based on a mesh topology, which supports adaptive and deadlock-free tree-based multicast routing without virtual channels. The deadlock-free routing algorithms for unicast and multicast packets are the same. Therefore, the routing function\ud gate-level implementation is very efficient. Multicast packets\ud are injected to the network by sending multiple packet headers beforehand. The packet headers contain destination addresses to set up multicast trees connecting a source with multiple destination nodes. An additional locally uniform identification (ID) field is packetized together with flits belonging to the same packet. Therefore, flits of different unicast or multicast packets can be interleaved in the same queue because of the local ID-tags, which are updated and mapped dynamically to support bandwidth scalability of interconnection links. Deadlocks in tree-based multicast\ud routing are handled using a flit-by-flit round arbitration and a\ud fair hold???release tagging mechanism. The effectiveness of the novel mechanism has been experimented under multiple multicast\ud conflicts scenarios, where the experimental results show that all traffic is accepted in-order and lossless in their destination nodes even if adaptive routing functions are used and the sizes of the\ud multicast messages are very long

    Defragmenting the Module Layout of a Partially Reconfigurable Device

    Full text link
    Modern generations of field-programmable gate arrays (FPGAs) allow for partial reconfiguration. In an online context, where the sequence of modules to be loaded on the FPGA is unknown beforehand, repeated insertion and deletion of modules leads to progressive fragmentation of the available space, making defragmentation an important issue. We address this problem by propose an online and an offline component for the defragmentation of the available space. We consider defragmenting the module layout on a reconfigurable device. This corresponds to solving a two-dimensional strip packing problem. Problems of this type are NP-hard in the strong sense, and previous algorithmic results are rather limited. Based on a graph-theoretic characterization of feasible packings, we develop a method that can solve two-dimensional defragmentation instances of practical size to optimality. Our approach is validated for a set of benchmark instances.Comment: 10 pages, 11 figures, 1 table, Latex, to appear in "Engineering of Reconfigurable Systems and Algorithms" as a "Distinguished Paper

    Dagstuhl News January - December 2005

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    Wormhole cut-through switching: Flit-level messages interleaving for virtual-channelless network-on-chip

    Get PDF
    A VLSI microrchitecture of a network-on-chip (NoC) router with a wormhole cut-through switching method is presented in this paper. The main feature of the NoC router is that, the wormhole messages\ud can be interleaved (cut-through) at flit-level in the same buffer pool and share communication links. Each flit belonging to the same message can track its routing paths correctly because a local identity-tag (ID-tag) is attached on each flit that varies over communication resources to support the wire-sharing\ud message transportation. Flits belonging to the same message will have the same local ID-tag on each\ud communication channel. The concept, on-chip microarchitecture, performance characteristics and interesting transient behaviors of the proposed NoC router that uses the wormhole cut-through switching method are presented in this paper. Routing engine module in the NoC architecture is an exchangeable module and must be designed in accordance with user specification i.e., static or adaptive routing algorithm. For quality of service purpose, inter-switch data transfers are controlled by using link-level overflow\ud control to avoid drops of data

    QUKU: A Coarse Grained Paradigm for FPGAs

    Get PDF
    To fill the gap between increasing demand for reconfigurability and performance efficiency, CGRAs are seen to be an emerging platform. The advantage lies in quick dynamic reconfiguration and power efficiency. Despite having these advantages they have failed to show their mark. This paper describes the QUKU architecture, which uses a coarse-grained dynamically reconfigurable PE array (CGRA) overlaid on an FPGA. The low-speed reconfigurability of the FPGA is used to optimize the CGRA for different applications, whilst the high-speed CGRA reconfiguration is used within an application for operator re-use

    Rapid Industrial Prototyping and SoC Design of 3G/4G Wireless Systems Using an HLS Methodology

    Get PDF
    Many very-high-complexity signal processing algorithms are required in future wireless systems, giving tremendous challenges to real-time implementations. In this paper, we present our industrial rapid prototyping experiences on 3G/4G wireless systems using advanced signal processing algorithms in MIMO-CDMA and MIMO-OFDM systems. Core system design issues are studied and advanced receiver algorithms suitable for implementation are proposed for synchronization, MIMO equalization, and detection. We then present VLSI-oriented complexity reduction schemes and demonstrate how to interact these high-complexity algorithms with an HLS-based methodology for extensive design space exploration. This is achieved by abstracting the main effort from hardware iterations to the algorithmic C/C++ fixed-point design. We also analyze the advantages and limitations of the methodology. Our industrial design experience demonstrates that it is possible to enable an extensive architectural analysis in a short-time frame using HLS methodology, which significantly shortens the time to market for wireless systems.National Science Foundatio
    • …
    corecore