
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 7, JULY 2010 1067

Adaptive and Deadlock-Free Tree-Based Multicast
Routing for Networks-on-Chip

Faizal Arya Samman, Student Member, IEEE, Thomas Hollstein, Member, IEEE, and Manfred Glesner, Fellow, IEEE

Abstract—This paper presents the first synthesizable net-
work-on-chip (NoC) based on a mesh topology, which supports
adaptive and deadlock-free tree-based multicast routing without
virtual channels. The deadlock-free routing algorithms for unicast
and multicast packets are the same. Therefore, the routing func-
tion gate-level implementation is very efficient. Multicast packets
are injected to the network by sending multiple packet headers
beforehand. The packet headers contain destination addresses to
set up multicast trees connecting a source with multiple destina-
tion nodes. An additional locally uniform identification (ID) field
is packetized together with flits belonging to the same packet.
Therefore, flits of different unicast or multicast packets can be
interleaved in the same queue because of the local ID-tags, which
are updated and mapped dynamically to support bandwidth scal-
ability of interconnection links. Deadlocks in tree-based multicast
routing are handled using a flit-by-flit round arbitration and a
fair hold–release tagging mechanism. The effectiveness of the
novel mechanism has been experimented under multiple multicast
conflicts scenarios, where the experimental results show that all
traffic is accepted in-order and lossless in their destination nodes
even if adaptive routing functions are used and the sizes of the
multicast messages are very long.

Index Terms—Network-on-chip (NoC), tree-based multi-
cast routing, synchronous parallel pipeline, wormhole packet
switching.

I. INTRODUCTION

N ETWORKS-ON-CHIP (NoC) are a challenging research
topic, providing a scalable solution for multiproces-

sors-on-chip (MPoC). In embedded reconfigurable systems,
NoCs provide a flexible communication infrastructure, in
which links interconnecting processor/DSP cores, memories,
and other intellectual property (IP) components can be reconfig-
ured for a certain embedded computing application. NoC-based
MPoCs provide a scalable communication infrastructure com-
pared with bus-based platforms, which have limited bandwidth
capacity. NoCs combine performance with design modularity,
allowing the integration of many design elements on single chip
die [1]. An example of a NoC in a 2-D mesh 4 4 topology is
presented in Fig. 1.

Manuscript received July 24, 2008; revised November 21, 2008 and February
20, 2009; accepted March 17, 2009. First published September 01, 2009; current
version published June 25, 2010.

F. A. Samman is with Institute of Microelectronic Systems, Darmstadt Uni-
versity of Technology, D-64283 Darmstadt, Germany and also with the Depart-
ment of Electrical Engineering, Hasanuddin University at Makassar, 90245 In-
donesia (e-mail: faizal.samman@mes.tu-darmstadt.de; faizalas@unhas.ac.id).

T. Hollstein and M. Glesner are with the Institute of Microelectronic Systems,
Darmstadt University of Technology, D-64283 Darmstadt, Germany (e-mail:
thomas.hollstein@mes.tu-darmstadt.de; glesner@mes.tu-darmstadt.de).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2009.2019758

Fig. 1. NoC in 2-D mesh 4� 4 topology.

Services in terms of efficient routing and scheduling are crit-
ical with respect to the performance of NoC-based multicore
processor systems. Historically, the first-generation multicom-
puters supported unicast communication only (single PE sends
a message to single PE unit). Nowadays, multicomputers have
been developed toward collective communication services. The
collective communication services embrace multicast (the same
message is sent from a source node to an arbitrary number of
destination nodes), scatter (different messages are sent from a
source node to an arbitrary number of destination nodes), and
broadcast (the same message is sent from a source node to all
nodes in the network). With software implementation, a multi-
cast message can be injected into the network by sending sepa-
rate copies of the message from the source to every destination
node (unicast-based multicast delivery). However, this approach
is inefficient in terms of communication latency and energy.

The multicast delivery service has been intensively used in
large-scale multiprocessor systems, and has been a fundamental
service of some data-parallel computer languages. The fol-
lowing points present the need for multicast services in parallel
computing and multicomputer applications (cited from [2]).

• Numerous parallel algorithms, e.g., parallel search and par-
allel graph algorithms, have been shown to benefit from the
use of multicast services.

• In a single-program multiple-data (SPMD) programming
model, multicast communication is of benefit. The same
program is executed on different processors with different
data, and several data are processed in parallel.

• In a data-parallel programming model, a variety of process
control operations and global data movement such as
reduction, replication, permutation, segmented scan, and
barrier synchronization require collective communication
models. Specifically, the replication and the barrier syn-
chronization are performed using multicast delivery.

• In a distributed shared-memory paradigm, multicast ser-
vices may be used to efficiently support shared-data inval-
idation and updating.

1063-8210/$26.00 © 2009 IEEE

1068 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 7, JULY 2010

Several NoC prototypes that have been published have spe-
cific features and characteristics and are designed in different
network topologies. Some NoC prototypes such as Octagon [3]
are designed in octagon topology. INoC [4], NoC presented by
Bartic et al. [5], Xpipes [6], and Æthereal [7] are developed
using a customized irregular topology. The Cell EIB [9] NoC
uses a ring topology. Most of the NoCs such as Nostrum [10],
Tile64 [11], TRIPS [12], Teraflops [13], and SCC [14] use a
mesh topology. Nevertheless, most of the NoCs mentioned
above do not support multicast delivery services. Æthereal
[7] and Nostrum [10] have used a time-division multiplexing
method in order to potentially be able to support multicast
services. However, experiments by evaluating the NoCs perfor-
mances over multicast traffic and possible multicast deadlock
configurations have not been released so far.

Development of programming models for the NoC-based
MPoC systems has been recently a hot topic in the MPoC
research area. Ultimately, multicast communication services
as standard services in data-parallel programming languages
such as Fortran-D [15], Distributed Fortran 90 [16], and
High Performance Fortran [17], as well as message-passing
libraries for parallel computation such as Message Passing
Interface (MPI) [18] and Parallel Virtual Machine (PVM)
[19], [20], will be included in the programming models of
NoC-based MPoC systems. Both libraries have been developed
for computer languages such as Fortran and C/C++. Multicast
communications in the programming model can be effectively
and efficiently implemented in the application layer of the
NoC-based MPoC systems, as long as hardware infrastructures
in network, data-link, and physical layers support also the
multicast services. Indeed, the multicast support as one of the
collective communication services can simplify the program-
ming models and alleviate programming efforts for NoC-based
MPoC systems.

In higher level protocols (e.g., cache coherence) of an inter-
connected multiprocessor system, multicast messages can be
tied to message types such as request, response, send, receive,
completion, etc. Although the underlying network is free from
deadlock routing, message-dependent deadlocks can still occur
because of the dependencies between those different message
types. The message dependencies occur at network endpoints,
i.e., on injection and reception resources, and may block the
messages to sink at their target nodes. This kind of deadlock
is not discussed further in this paper.

This paper is organized as follows. Section II presents the
motivation of our investigation and related work. The brief de-
scription of the main contribution of the paper is presented in
Section III. Section IV presents the adaptive routing algorithms
being implemented in the NoC prototypes. More details on how
the proposed multiplexing and arbitration method to solve a
multicast deadlock configuration are described in Section V.
Section VI exhibits the on-chip router microarchitecture and
the characteristic of our Extendable Hierarchical and Irregular
Network-on-Chip (XHINoC). Experimental results to see the
effectiveness of the methodology are presented in Section VII.
Section VIII presents the synthesis results. Finally, concluding
remarks about the work are presented in Section IX.

II. RELATED WORKS AND MOTIVATIONS

Multicast messages can be routed in the network using path-
based [2], [21], [22] or tree-based [23]–[25] multicast routing.

In path-based multicast routing, PEs that inject the message
have to set up the order of headers containing the addresses of
all multicast destination nodes, in order to find optimum paths
from the PEs to the destination nodes. The path-based multicast
routing is aimed at avoiding multicast messages conflicts in in-
termediate nodes. Each multicast packet will acquire at most
two sinking ports in a destination node to forward the multi-
cast message, i.e., LOCAL port (connected directly to a resource
tile) and the other (one) port for forwarding/duplicating the mul-
ticast message to other destination nodes.

In the tree-based multicast routing, the header ordering in
source nodes is not required (the order of the destination ad-
dresses can be freely determined). The multicast routing will
form communication paths like branches of trees connecting the
source node with the destination nodes at the end points of the
tree branches. A higher probability that multicast deadlock oc-
curs in intermediate nodes is the disadvantage of the tree-based
multicast routing. However, our novel multicast scheduling for
adaptive tree-based multicast routing has solved effectively and
efficiently the multicast deadlock problem in the intermediate
nodes, which could probably and hopefully make the method-
ology more interesting.

The multicast routings presented in [2], [21]–[25] are not suit-
able for on-chip networks. All these works utilise virtual chan-
nels to solve multicast deadlock problems. In general, first-in
first-out (FIFO) queues as the main components in virtual chan-
nels dominate significantly the logic gate consumption. Indeed,
the routing hardware units presented in those works are very
complex, and may also increase the logic area after gate-level
synthesis. In our NoCs, the adaptive routing algorithms used to
route unicast and multicast packets are the same, resulting in a
very efficient routing function gate-level implementation.

The NoC presented in [26] has introduced path-based multi-
cast routing to avoid multicast deadlock in the destination nodes
by reserving virtual channels and giving priority to the multicast
message over the unicast message on arbitration of link band-
width. Experiments in the work show that the proposed multi-
cast technique improves throughput, and does not exhibits sig-
nificant impact on the unicast performance in a network with
mixed unicast-multicast traffic “only if” the network is not sat-
urated. Our proposed multicast scheduling does not give pri-
ority to multicast messages (fair flit-by-flit arbitration between
the unicast and multicast messages). Hence, our multicast tech-
nique does not have a significant impact on the unicast perfor-
mance “even if” the network is saturated. Indeed, the NoC in
[26] has not been synthesized into logic gate level.

The NoC presented in [27] uses a time-space-time switch de-
signed for time-division-multiplexing based NoCs. Slot map ta-
bles as central components are used as time slot interchangers to
directly control the read and write operation to random-access
frame buffers. Although this work has mentioned the feasibility
of implementing the multicast scheduling technique, a concrete
multicasting procedure, system-level or RTL-level simulations,
for measuring the NoC performance over multimessage mul-
ticast traffic and the NoC’s capability to handle the multicast
deadlock problem has not been presented so far.

III. CONTRIBUTION

By using the tree-based multicast routing, there is a high prob-
ability that multicast deadlocks are configured in intermediate
router nodes of the network, even if we have implemented a

SAMMAN et al.: ADAPTIVE AND DEADLOCK-FREE TREE-BASED MULTICAST ROUTING 1069

Fig. 2. Multicast deadlock configuration.

routing function that can avoid cyclic dependency (e.g., by pro-
hibiting a few turns in the routing function). Fig. 2 shows an
example of a multicast deadlock configuration, where the entire
distribution of the multicast packet is blocked in node (2,2) and
(2,1) when any of its branches are blocked, especially if the mes-
sage is not very short. A novel methodology to solve the multi-
cast deadlock problem is presented in this paper. The multicast
deadlock problem presented in Fig. 2 arises from two facts, i.e.,
1) once a flow acquires a port, it will not release it until the en-
tire packet has been forwarded, and 2) a multicast packet that
should be forwarded to multiple output ports is not forwarded
unless all the output ports have been acquired. Hence, we use a
flit-by-flit routing technique to solve the problem. However, this
technique comes with a new problem, because once we split the
flits of a packet then we need to keep track of which flit belongs
to which packet.

We solve the new problem by inserting an additional ID-tag
field on each flit. Flits belonging to the same packet will have the
same ID-tag in every local communication channel. An ID-tag
management unit at each output port and a combined routing
table and routing machine unit at each input port are then imple-
mented to keep the track of each packet. By implementing both
modules, the second problem can be solved. Thus, the afore-
mentioned multicast deadlock problem can be solved accord-
ingly. As far as the authors know, the XHINoC is the first syn-
thesizable NoC for mesh networks, in which its hardware mi-
croarchitecture supports both deadlock-free static and partially
adaptive tree-based multicast routing without virtual channels
(without subnet partitioning).

IV. ADAPTIVE TREE-BASED MULTICAST ROUTING FUNCTION

A. Packet Format and Address Encoding Scheme

Fig. 3 presents the packet formats used in our multicast NoC.
The packet format for unicast and multicast communication are
shown in Fig. 3(a) and (c), respectively. The packet consists of a
header flit followed by payload flits. Two additional 3-bit heads
identify the type and ID (Identity) number of a flit. The flit types
can be header, data body, and the end of databody (the last flit).
The binary encoding of the flit types is presented in Fig. 3(b).
Each flit belonging to the same packet has the same local iden-
tity number (ID-tag) to differentiate it from other packets, when
it passes through a communication link of the NoC. The local
ID-tag of each data flit of the packet will vary over different
communication links in order to provide a flexible way to share
the communication links and to schedule the link arbitration. An

Fig. 3. Packet format for (a) unicast and (c) multicast, and (b) binary encoding
of the flit types.

ID-tag management unit located at each outgoing port of the
routers is then implemented to update and organize an ID-tag
mapping procedure.

In the XHINoC wormhole packetization model, a message
(short or very long message such as a stream) is associated
as single packet (the message will not be divided into several
packets). Hence, for one destination node (e.g., a unicast mes-
sage) the message will have only one packet header. Therefore,
a packet denotes the same thing as a message in this paper. The
packet header (using static or adaptive routing) will make once
a routing direction on each router node. Afterward, payload flits
will follow the routing directions made by the header. The de-
tailed explanation of the multicast routing mechanism will be
presented in Section IV-B. Therefore, an out-of-order problem
can be avoided, even when adaptive routing algorithm is used to
route the packet.

Fig. 3(c) shows the format of the multicast packets. The
number of the packet header flits is related to of multicast
destinations. The proposed multicast address-encoding scheme
enables us to send a large number of multicast destinations and
is not limited by the word size of the flits. But certainly, extra
cycle periods are needed to inject the header flits, before the
payload data is injected to the network.

B. Multicast Routing Phase

Fig. 3 exhibits four snapshots of our proposed multicasting
procedure. In each incoming port, there is a routing engine (RE)
module, which consists of combination of a router hardware
logic (RHL) unit and a routing lookup table (LUT) unit (see also
the detailed combinational structure of the RHL and LUT units
presented in Fig. 9). The combination is aimed at supporting a
runtime link interconnect configuration. If the RE units identify
a header flit in the output of a FIFO buffer, then the RHL unit
will find a routing direction based on destination address stated
in the header flit and current address (location) of the router.
A routing direction slot in the LUT unit is then assigned and
indexed based on its ID-tag. The illustration of the routing di-
rection slots of a LUT unit is presented in Fig. 4. In the next
time periods, when the RE units identify payload flits having the
same ID-tag number as a previously forwarded header flit, then
the routing direction will be looked up directly from the LUT
unit. Subsequent flits will then be forwarded in accordance with
their ID-tag and the assignments in the routing table.

For the sake of simplicity, only the LUT unit of the WESTern
incoming port is presented in Fig. 4. The following items will
explain how the multicast packets perform tree branching.

1070 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 7, JULY 2010

Fig. 4. Four successive two-clock cycles of the multicasting procedure. (a) First Snapshot. (b) Second Snapshot. (c) Third Snapshot. (d) Fourth Snapshot.

• First Snapshot. In Fig. 4(a), a packet coming from the
WEST port with ID-tag 4 has three header flits. The first
header flit is now being forwarded to the LOCAL port with
the new ID-tag 0 (It is assumed that the packet is the first
packet which uses the outgoing port. Hence, the packet
header is allocated to the first free ID-slot, i.e., ID-tag 0).
The RHL unit has found an appropriate routing direction
(the LOCAL direction in this case) and set the LOCAL
routing request state in the register number 4 (in accor-
dance with its ID-tag number) of the LUT unit.

• Second Snapshot. In Fig. 4(b), the second header flit is now
being forwarded to the EAST outgoing link with the new
ID-tag 0. The RHL unit has found again an appropriate
routing direction (the EAST direction in this case) and set
the EAST routing request state in the register number 4 of
the LUT unit.

• Third Snapshot. The situation in Fig. 4(c) depicts the same
mechanism as shown in the two previous snapshots, where
in this case the third header flit is routed to the NORTH
outgoing link with the new ID-tag 0.

• Fourth Snapshot. The register with index number 4 in the
LUT shown in Fig. 4(d) has now three routing direction
assignments i.e., EAST, NORTH, and LOCAL. Therefore,
all payload flits coming from the EAST port with ID-tag 4
will be forwarded simultaneously into the three outgoing
links [as shown in Fig. 4(d)] to track the paths that have
been set up by the multicast header flits.

C. Routing Adaptivity

In a 2-D mesh network, there are eight possible turns that can
be used to route packets in the network. By using static routing
algorithms, e.g., X-First routing algorithm, four turns, i.e.,
north-to-east, north-to-west, south-to-east, and south-to-west
turns, must be prohibited to avoid deadlock configurations. A
deadlock configuration is a situation where packet cannot be
forwarded because of a cyclic dependency.

By committing only two prohibited turns, then partially adap-
tive routing algorithms can be performed. In our multicast NoC
prototypes, we implement three deadlock-free adaptive routing
algorithms. Fig. 5(a)–(c) represents the turn models of adaptive
west-first (WF), east-last (EL), and negative-first (NeF) routing
algorithms, respectively [28], [29]. The dashed arrows denote
the prohibited turns. The implemented routing function is min-
imal, i.e., a packet will not be routed away from its destination
node. Therefore, the routing algorithms are also livelock-free.

Fig. 5. Turn models of adaptive (a) West-First (WF), (b) East-Last (EL), and
(c) Negative-First (NeF) routing algorithms.

The minimal adaptive routing algorithms are implemented in
exchangeable router hardware logic units in a modular-based
router microarchitecture. The routing algorithm of our NoC can
be reconfigured at design-time by exchanging and instantiating
new router hardware logic units.

The adaptiveness of the routing selection depends on the
availability of free ID-slots on the two possible outgoing ports
(provided by an ID management (IDM) unit). The packet will
be routed to an outgoing direction, where more free ID-slots
are available. The number of used ID-tags in the IDM unit
located at each outgoing port represents the number of packets
which are currently using the outgoing communication link.
Hence, the more packets using the communication link, the
slower the rates of the packets flowing through the outgoing
link, because the bandwidth capacity of the link is consumed by
more packets. Each FIFO queue in the routers consists of only
two registers depth , and there is sometimes a situation, in
which the FIFO queue is not full, but the link connected to the
FIFO has been consumed by many packets. Hence, we select
the availability of free ID-slots as the congestion information
to route the packets adaptively.

If the numbers of the free ID-slots are the same in the two
possible directions, then the router will prefer non turn packet
forwarding. For instance, if a packet coming from WEST port
has two possible directions i.e., to EAST or to NORTH, and the
number of available free ID-slots is the same in both outgoing
link, then the packet will be routed to EAST to make the non
turn packet forwarding. Fig. 6 shows a minimal adaptive West-
First routing algorithm implemented in a routing hardware unit
located in the WEST incoming port. In each routing hardware
unit, the routing algorithm is customized in accordance with the
allowed and prohibited turns for gate consumption efficiency.

V. SCHEDULING AND ARBITRATION RULES

Fig. 7 presents six snapshots of the multicast scheduling pro-
cedure and the fair flit-by-flit round arbitration of our so-called

SAMMAN et al.: ADAPTIVE AND DEADLOCK-FREE TREE-BASED MULTICAST ROUTING 1071

Fig. 6. West-First routing algorithm implemented in the RHL unit.

Fig. 7. Hold and release tagging mechanism.

hold–release tagging mechanism. The descriptions of each
snapshot are mentioned in the following points.

1) In Snapshot 1, three multicast packets, i.e., from EAST,
from WEST, and from the SOUTH incoming ports,

request different and the same outgoing links. The NORTH
and WEST outgoing links are requested by Packets and

. The other outgoing links are only requested by one
Packet, i.e., the EAST and SOUTH outgoing links are re-
quested by Packet B, and the LOCAL link by Packet .
The flits and represent the flits with local
ID-tag 0.

2) Although the outgoing links are requested by more than
one packet, of the flits of all packets can be granted one
by one as a winner to access the outgoing link at every
stage as shown in Snapshot 2. In this stage, we assume that
flit is firstly selected to access the NORTH outgoing
link, while flit is granted as the winner to access the
WEST outgoing link. The other outgoing links, i.e., EAST,
SOUTH, and LOCAL, also select their single request from
flits in the incoming port.

3) In the next stage, as presented in Snapshot 3, all granted
flits are accepted in the outgoing links. However, the
states of all incoming flits are different and depend on
whether their multicast requests have been granted by
their required outgoing ports. For instance, all multicast
requests of Packet to access EAST and SOUTH ports
have been granted by these ports. Hence, flit (with
state) can be released from the FIFO buffer in the WEST

input port and its request is now replaced by the request
of the new incoming flit . But flits and (with

state) must be still withheld in input buffers, because
their other requests (presented in dashed lines) to access
another port have not been granted in this stage. In this
stage, all ID-tags of the packets are mapped and updated
with new ID-tag 0.

4) In the next stage as shown in Snapshot 4, by using the
flit-by-flit round arbitration method, the NORTH and
WEST outgoing ports change their selection to other flits,
which also request these ports. The NORTH port selects
now flit , while the WEST port selects flit . The
EAST and SOUTH outgoing ports select again the flit
coming from the WEST incoming port (i.e., flit),
because these ports are only requested by packet from
WEST incoming port. But the LOCAL outgoing port will
not grant again flit , because flit has been granted
in the previous stage. This decision is made to avoid flit
C1 being transferred two times into the LOCAL outgoing
port (avoiding improper multicast replication).

5) In the next stage as presented in Snapshot 5, flits
and are transferred to the outgoing links, and can be re-
leased from EAST, WEST, and SOUTH input buffers (with

state) respectively, because their multiple requests have
been granted step by step in Snapshot 2 and Snapshot 4.
Their request are now replaced by the requests of new in-
coming flits, i.e., flits and . Because ID-tag 0
has already been used by packet in the NORTH and by
packet in the WEST outgoing link, new local ID-tags 1
(and) are assigned to packet in the NORTH
and packet in the WEST outgoing link.

6) Snapshot 6 shows generally the same mechanism with the
situation shown in Snapshot 2.

The following descriptions will give a sketch of the proposed
hold–release tagging mechanism and the flit-by-flit arbitration.

Theorem: The ID-field being part of every flit allows to
implement a flit-by-flit arbitration and an ID-based routing for
interleaving different packets in the same queue, where flits
belonging to the same packet have the same ID-tag on every
local communication channel. Hence, the multicast deadlock
problem can be solved at each router by further applying a
hold–release tagging mechanism to control and manage con-
flicting multicast requests.

Definition 1: For a number of input ports and a number
of output ports of a router, we can describe the port number

of an input port as , and the port number
of an output port as (e.g., a typical mesh
router has and).

Definition 2: A Routing Request Matrix , having
the matrix elements , describes the requests of all in-
coming flits to access the output ports at time-stage unit , where

and represent the row and column coordinates of the matrix
element and are associated to the input and output port number,
respectively as explained in Definition 1. The elements of are
either 0 or 1. The element is 1 if there is a routing re-
quest from input port to output port , else its value is 0. For
a unicast request, , and for multicast re-
quest, . If , then
there is no contention to access the output port . Equation (1)
(left-side) shows an example of the for the Snapshot

1072 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 7, JULY 2010

1 in Fig. 7 by assuming that the E, N, W, S, and L ports are rep-
resented as port numbers 1, 2, 3, 4, and 5, respectively

(1)

Definition 3: An Arbitration Matrix , having the matrix ele-
ments , describes the grant signal from an arbiter unit
to select one flit from the input port to access its requested output
port. Hence, is strongly related to . For example, if the
output port has two requests from input ports as shown
in column 2 of matrix in (1), i.e., ,
then the two possible bit-set combinations of the column 2 of the

are and . In other words, in
each time-stage , where the arbiter rotates the selection among
existing requests, the arbiter can only select one flit from input
port. This means the sum of the column elements in must be
either 0 or 1, or . Equation (1) (right side)
shows an example of the for the Snapshot 2 in Fig. 7.

Definition 4: A Tagged Matrix is a support ma-
trix that is useful to determine whether a flit must be held or
can be released from the input queue, and to compute the next
routing request matrix . For each time-stage unit , the matrix
request will be updated as presented in (2). The func-
tion contains operators to update each element in , which
depends on the current and , as well as a tagged matrix

. If we compare matrices in (1), then we can see there are
two elements which do not match each other, i.e., and

do not match and , respectively.
Therefore, these two elements are tagged with the symbol as
presented in (3). If minimal one element of row is tagged with

, then the others elements having the value 1 in same row
will be marked with the symbol . As presented in (3), the ele-
ment and are assigned with .
The other elements of the row having no 1-element, being
tagged with symbol or , are assigned with symbol .
As presented in (3), all elements in row 3, i.e., and

, are assigned with . If any element of the row in
is assigned with or , then the flit coming from the re-

lated input port must be held in the FIFO buffer. While, if all
elements of the row in the are assigned with , then the
flit coming from the related input port can be released from
the FIFO buffer

(2)

(3)

Proof Sketch: The circulating arbitration mechanism can
guarantee that one flit of unicast or multicast packets can be
forwarded to each outgoing link at each router node, where mul-
ticast conflict may occur. After arbitration process at each time
, a hold–release tagging mechanism can also guarantee that

improper replication of the multicast packets can be avoided,
because: 1) the granted multicast bit-requests will be assigned
and will not be included again in the next arbitration process

and 2) the flits having multicast bit-requests will be kept in the
FIFO queue until all its multiple bit-requests are granted.

The circulating selection result of the arbitration process
at each output port may be random and not uniform. There-
fore, there are two possible configurations after the arbitration
process, i.e., 1) all requests of a multicast flit are granted at the
same time-stage, or 2) not all the multicast requests of the flit
are granted. In the situation 1), the multicast flit can be released
from FIFO queue, and in the situation 2), the multicast flit must
be held in FIFO queue, and the hold–release mechanism will
then cover the situation.

By applying a “hold–release” assignment in
and by circulating the bit-set selection in the column of at
each time-stage , it is possible to find in such a
way that all conflicting multicast flits can be rescued from mul-
ticast dependency, in finite time . In this situation, all multi-
cast dependencies are resolved, and if the multicast dependency
problem can be solved at each router, then the network is free
from a multicast deadlock problem as long as the routing algo-
rithm used to route unicast and multicast packets does not form
cyclic dependencies [28]. depends on the concrete multicast
conflict situation in each router. For instance, in the multicast
conflict case presented in Fig. 7, the flit coming from the WEST
port can be rescued from the multicast dependency after gener-
ating one in-column bit-set combination of as shown
in Snapshot 2. While the flits coming from EAST and NORTH
ports can be rescued after generating two in-column bit-set com-
binations of as shown in Snapshot 2 and Snapshot 4,
respectively.

Additionally we assume, that enough local IDs are available
in each output port of every router; otherwise deadlocks could
occur. In that case the deadlock can be avoided by dropping the
packet which is lacking to receive a local ID in the router and
informing the packet source node about the packet loss.

The theoretical proof of the deadlock-free property is not
complete yet, because the proof sketch focuses only on the exis-
tence of a schedule that results in deadlock-free network. Nev-
ertheless, it probably gives a sufficient idea of the procedure to
follow and to derive the complete proof. This work can be an
interesting topic for future investigations.

The most interesting thing of the methodology is that the data
configuration in the matrix and , as well as the function-
ality of the tagged matrix , can be implemented as a cen-
tral hardware component that we have designed, called Switch
Controller and Flow Supervisor (SCFS). The centralized SCFS
plays an important role to control and manage the multicast con-
flicts in each router (depicted in Fig. 12, Section VI-E).

VI. ROUTER MICROARCHITECTURE AND CHARACTERISTICS

The XHINoC is designed as a modularized microarchitecture.
Some components are exchangeable with other components to
obtain an on-chip router with specific characteristics at design
time. New components can be also instantiated in the microar-
chitecture for inserting new services. The upper part of Fig. 8
exhibits the switch/router microarchitecture of the XHINoC.
General characteristics of the XHINoC are described in the fol-
lowing subsections.

XHINoC has some common characteristics and specific fea-
tures as mentioned in the following.

• Message data are switched using wormhole packet
switching.

SAMMAN et al.: ADAPTIVE AND DEADLOCK-FREE TREE-BASED MULTICAST ROUTING 1073

Fig. 8. Switch. Generic architecture and timing diagram for the transfer of mul-
ticast data from a switch/router to an outgoing communication link.

• Link-level flit flow control between routers is used to avoid
data overflow.

• A routing engine consisting of a routing table and a
router hardware logic is allocated at each incoming port
to support routing parallelism (up to five simultaneous
crossbar connections). The router hardware logic, in
which a deadlock-free static or adaptive routing algorithm
is implemented, is an exchangeable module.

• The routing algorithm is minimal, deadlock-free by imple-
menting a turn model (without virtual channels), and can
be applied for routing unicast and multicast packet headers.

• By using a flit-by-flit arbitration and a local ID-tag field
present in each flit, data flits of different messages can be
interleaved on the same communication link.

• On each communication link, flits belonging to the same
message will have the same local ID-tag. The local ID-tag
varies over different communication links and is updated
and managed by an ID-tag management unit located at
each outgoing port to support a flexible data multiplexing
and scheduling.

A. Synchronous Parallel Pipeline Wormhole Switching

HINoC uses a synchronous pipeline router architecture in
order to be compliant with available standards from CAD in-
dustries. The data communication between routers is also syn-
chronous. The lower part of Fig. 8 shows a timing diagram ex-
ample to transfer flits from an input port of the south FIFO buffer
(FO(S)) to the north Dout(N) and east Dout(E) outgoing
links. As long as the FIFO buffers in the north and east neigh-
bors are not full, two cycle periods are needed to replicate and
forward the data flit from FO(S) into Dout(N) and Dout(E). In
the first cycle period, the flit is stored in the south FIFO, then the
RE unit will find routing directions and assign them as valid sig-
nals Rreq(S) to the SCFS module. If the full flags of the FIFO
buffers in the north and east neighbors are not set, the SCFS
gives a grant signal GrantRn(S) to read the flit from the south

FIFO buffer and sets signals win(N) and win(E) as flag for
selecting and forwarding the flit from the south to the north and
east outgoing links, respectively.

If the full flag from the north neighbor is set as shown in Stage
3 in the lower part of Fig. 8, then the GrantRn(S) signal will not
be set. Hence, in the first cycle of the next stage (Stage 4), Flit
in the south FIFO will not be forwarded to Dout(N) for a while,
but it can be forwarded to Dout(E) (The flit can cut-through
virtually into the next outgoing link). At the same cycle, the full
flag from the north neighbor is reset. Hence, GrantRn(S) is set
again in the second cycle of Stage 4. In Stage 5, Flit can be
now forwarded to Dout(N), but it will not be forwarded again to
Dout(E), because the data transfer has been done in the previous
stage. This mechanism is undertaken to avoid unnecessary or
improper flit transfer duplications in the network, and is fully
supported and controlled by the SCFS module.

Our router supports also a parallel pipeline switching method.
Since there are five incoming-outgoing ports in the mesh router,
where one routing engine is located in each incoming port,
our NoC can forward maximum five flits simultaneously from
different incoming-outgoing data switching pairs. This archi-
tecture design choice is certainly very helpful to reduce data
transfer latency in the router and to increase the communication
link bandwidth of the network accordingly.

B. Link-Level Flits Flow Control

Our NoC can guarantee lossless and in-order packet delivery
even if the network is saturated, because of the link-level con-
trol and automatic/dynamic injection rate control mechanism.
Therefore, the size of the FIFO buffers in the router can be
freely determined. Based on our synthesis experiments, the
FIFO buffers dominate the logic area. The larger the FIFO’s
depth is, the larger the FIFO’s logic area consumption and
domination. Hence, in our NoC prototypes, the depth of the
FIFO is selected to be two registers.

The upper part of Fig. 9 presents the router components in the
outgoing and incoming ports. The outgoing port components
are a data multiplexor (DMx), an ID-tag management (IDM)
unit, and a link-state controller (LSC). The incoming port com-
ponents are a first-in first-out buffer (FIFO), a router hardware
logic (RHL), a routing lookup table (LUT), a routing request
multiplexor (RMx), and a request/valid detector logic (RL).

The lower part of Fig. 9 exhibits a timing diagram of the syn-
chronous pipeline data flits transmission from a communication
link into an incoming port. The communication link in the figure
represents the link between the east outgoing port in node (1,1)
and the west incoming port in node (2,1). Two clock cycles are
needed to transfer data flits from the communication link into
the FIFO in the incoming port. In the first cycle, when a flit is
downloaded in the outgoing link, a valid signal (reqWn) is sent
to the LSC unit. In the second clock cycle, the LSC unit will
set a grantWn signal for FIFO write-enable state as long as the
FIFO is not full. If the grantWn signal is set, then the flit will be
stored in one free space of the FIFO queue, else the flit will be
kept staying in the communication link.

As shown in Stage 3 in the lower part of Fig. 9, the
grantRn(W) signal in the west FIFO at node (2,1) is not set.
Hence, Flit 2 stays yet in Reg0 of the FIFO, but grantWn(E)
is still set in the second cycle of Stage 3, because the FIFO is
not yet full (there is still one space register). In the next stage
(Stage 4), Flit 3 is stored in Reg1 of the FIFO. Hence, the full

1074 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 7, JULY 2010

Fig. 9. Components in incoming and outgoing ports and timing diagram for
the transfer of data from a link to incoming ports.

out flag is set and back propagated to the node (1,1). Thus, in
the second cycle of Stage 4, the grantWn(E) signal is not set
and Flit 4 is kept staying in the communication link. In the
same second clock cycle of Stage 4, the grantRn(W) signal is
now set. Therefore, in the first clock cycle of the next stage
(Stage 5), Flit 2 is switched to the next downstream node, and
the full flag (full out) signal is now reset (there is again one
free space in the FIFO). Hence, in the second clock cycle, the
grantWn(E) is set again allowing Flit 4 to be stored in the free
register space in the next stage.

C. ID-Based Routing and Scheduling Organization

This section will explain why flits of different messages can
be interleaved in the same queues. Communication links in
HINoC are shared by interleaved messages. The Æthereal NoC
[7] has used time-based scheduling to perform contentionless
routing. A reconfiguration unit (RCU) is then introduced to
allow interconnect reconfiguration at compile-time by using
time-division multiplexing-based (TDM-based) links sched-
uling. However, an expensive effort is required to configure the
network interconnect at compile-time because of the need for
global network view. Runtime interconnect configuration using
time slot TDM-based scheduling is also not an easy approach
as presented self by the Æthereal authors in [7], because the
probability that a packet fails to reserve a timing slot in each
router is high.

Therefore, we use a more flexible approach that has higher
probability to perform successfully the runtime interconnects
configuration using a multiplexing technique based on local
ID-tags. This scheduling is done by the ID-tag mapping and
management (IDM) unit. When a packet flit is switched to an
outgoing port, then the IDM unit will identify the local ID-tag
and the flit type of a flit that flows through an outgoing link. If
the flit is a header, the IDM unit will find a free local ID-slot
to replace the old local ID-tag of the packet with a new one.
The new local ID-tag (represented as the ID-slot allocation)
is then indexed based on the old local ID-tag and from which
incoming port the header flit comes. In the next periods, when-
ever payload flits belonging to the packet are switched through
the outgoing link, they will get the new local ID-tag from the

Fig. 10. IDM-LUT working organization.

ID-slot in the IDM unit by identifying their old local ID-tag
and from which port they come.

Fig. 10 presents the IDM unit at the EAST outgoing port
in node (3,3). Three packets from north, west, and south with
ID-tags 4, 3, and 4 respectively acquire the same outgoing link
(EAST port). In the IDM unit, there are eight available local
ID-slots. In the figure, it looks that the three packets get assigned
the new local ID-tags 0, 1, and 2 respectively. Three ID-slots of
the IDM unit have been used, and this value (the number of the
reserved ID-slots) is sent to router hardware logics in incoming
ports for routing adaptivity (see again Section IV-C).

Fig. 10 shows also the LUT of the routing engine at the WEST
incoming port in node (3,4). The procedure for routing direc-
tion assignment in the routing table of the LUT unit has been
explained in Section IV-B. As shown in the figure, the mul-
ticast routing directions of the three packets coming from the
WEST incoming port of the mesh router node (3,4) have been
assigned in the routing table of the LUT unit. The IDM-LUT
working organization enables the use of a fair flit-by-flit round
arbitration for wire-through share methodology, where flits of
different packets can be mixed (interleaved) in the same queue
and share the link in a fair manner using the combined worm-
hole and flit-level virtual cut-through switching.

D. ID-Slot Updating and Management

Fig. 11 presents how a packet header, coming from the
SOUTH port with ID-tag 4, which is just switched by the
crossbar switch, is updated. The ID update process will be
explained in four steps. In the first step, the IDM detects a new
incoming packet header and then looks for a free ID slot by
checking the ID-state table. In this case, the ID-tag 2 is free and
then in the second step, the ID is assigned as the new ID-tag
for the new packet. In the third step, the ID-slot 2 is indexed
based on the previous old local ID-tag 4 and SOUTH direction
value from which the flit comes. Hence, every time a payload
flit coming from SOUTH port with ID-tag 4 will get the same
new ID-tag 2. In the fourth step, the ID-tag 2 state is set from
“free” to “used” state, and the number of used IDs (UIDs) is
incremented. When the UID equals to (is the number
of available ID slots), then the “empty free ID flag” is set. When
a tail flit (the end of databody) is passing through the outgoing
port, then the related ID-tag 2 state is set from “used” to “free”

SAMMAN et al.: ADAPTIVE AND DEADLOCK-FREE TREE-BASED MULTICAST ROUTING 1075

Fig. 11. ID-tag updating and mapping management.

state, the UID is decremented, and the information related to
the tail flit ID-number is then deleted from the ID Slot Table.
Furthermore the “empty free ID flag” is reset.

In any situation, where a packet requires links that do not have
a free ID-tag any more, then this will cause a blocking of packets
with a consequence of falling into a deadlock, especially if all
packets that have reserved the links in advance are very long and
do not set free the ID-tags for short time. Therefore, it is very
important to determine the number of available ID-tags in each
communication link to avoid such situation. This can be solved
by using the uppermost ID for forwarding the packet headers
only to the target node and dropping the remaining part of the
packet in the actual router. The target node has to inform the
source node that the packet (or a branch of a multicast message)
has been lost and has to be resent.

In embedded multicomputer systems which run a fixed or a
few number of applications, the number of available ID-tags can
be determined after application mapping (before manufacturing
process). After the acceptable application mapping, the traffic
patterns can be then predicted; thus we can estimate how many
packets requiring ID-tags on each communication link. For the
sake of security, an additional tolerance number must be given
to the determined number of the ID-tags. This situation will be
more flexible when the systems will be implemented on a re-
configurable device such as FPGAs.

E. Switch Control and Flow Supervisor

Fig. 12 presents the detailed microarchitecture of the Switch
Controller and Flow Supervisor (SCFS) module. By organizing
the control path signals in the switch/router, the SCFS module
plays a very important role to implement the multicasting con-
trol and multiple data conflict management, which can guar-
antee the deadlock-free tree-based multicast routing. It consists
of 20 components and can be classified into four types of units,
i.e., an arbiter, a winner-selection encoder (ECWin), a request-
validation feedback controller (RFC), and a grant read-state
controller (GRC). The functionalities of the components are in
the following.

• The arbiter units are used to select a winner flit to access
an outgoing link. A fair flit-by-flit round arbitration for
multiple routing requests from all incoming ports is imple-
mented in this module. The selection results are then for-
warded to the EncWin units. The arbiter units receive also
full flags from neighbor nodes. The arbiter for the LOCAL
outgoing port service receives the full flag from a network

Fig. 12. SCFS module.

interface (NI) of a resource tile. If the full flag from the
neighbor or NI is set, then the unit will not select a winner
flit to access the related outgoing link of the neighbor or to
access the input queue of the NI.

• The ECWin units are used to encode winner signals from
the arbiter to be three-bit Win signals that will be sent to
the data multiplexor (DMx) in the crossbar switch for data
output selection, and to give decoded grant (GR) signals
that will be distributed to the GRC units for data release/
input-read selection.

• The GRC units are in charge of making a decision, whether
a flit in a FIFO queue must be withheld for a while or can be
released. These units receive signals from the EncWin and
the RFC units (see again Fig. 12 for details). For instance,
if a flit coming from the EAST port requests two outgoing
links, i.e., WEST and LOCAL for instance,
then the signal GrantRn(E) from the GRC unit for EAST
port service will not be set, until the unit receives grant
signals efw and efl from ECWin units.

• The RFC units are responsible for controlling the vali-
dation of routing-request signals from the routing engine
units in incoming ports. These units receive feedback
signals from the GRC (Rn signals) and from the ECWin
(GR signals). This unit will reset a routing-request signal
if the request has been granted. For instance, if two flits
from NORTH and WEST incoming ports request the same
EAST port (Rreq(N) to E and Rreq(W) to E are set), then
the and signals are set in the same cycle and
sent to the same arbiter unit. When in the next cycle,
the Rreq(N) to E signal and/or Rreq(W) to E have been
granted by the arbiter unit (GR nfe and/or GR wfe are set),
then the and/or signal are reset by the RFC. This
mechanism must be done to avoid unnecessary/improper

1076 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 7, JULY 2010

Fig. 13. Traffic scenario 1 (multiple multicast deadlock traffic).

data flit replication in the on-chip network. When the flit
in the north FIFO or the flit from the west FIFO has been
released from the queue ((N) or (W) has been set),
then the RFC unit will read new routing-requests (Rreq)
from routing engines if such requests are present.

VII. EXPERIMENTAL RESULTS

We use two traffic scenarios for performance evaluation of
the multicast NoC. The first scenario is called “synthetic mul-
tiple deadlock,” and the second one is a combination of the syn-
thetic multiple deadlock plus random selected unicast and mul-
ticast traffics. Both scenarios are used to evaluate the perfor-
mance of the multicast NoC prototypes using static and adap-
tive routing algorithms under different traffic pattern conditions.
Although these scenarios do not represent a traffic workload of
a certain application, we are sure that the scenarios can be ac-
cepted to evaluate the effectiveness of our multicast technique
to overcome the multicast deadlock problem that is previously
mentioned as the objective of our novel hold–release multi-
cast scheduling with flit-by-flit fair arbitration mechanism. The
second traffic scenario presents a better case scenario to validate
the novel scheduling and arbitration mechanism.

A. Synthetic Multiple Multicast Deadlock Configuration

Fig. 13 shows the synthetic multiple deadlock configuration.
This scenario is deliberately designed, so that some multicast
messages will perform the multiple deadlock configuration,
when static routing algorithm is used. In the figure, six nodes
denoted by symbol , where denotes the node number, from
where the multicast messages are injected to the network. The

symbols denote the target node of a multicast message
injected from source node . For instance, a message injected
from source node [node (0,4)] will be addressed to four
multicast destinations, i.e., [node (3,6)], [node (3,1)],

[node (7,5)], and [node (4,2)].
The multicast messages injected from source nodes

and have four target nodes, the multicast
messages injected from source nodes and have three
target nodes; and 2048 flits are injected into each source node.
The total number of 12.288 (6 2048) flits is injected to the

Fig. 14. (a) Required number of clock cycle until ejection of the last flits in
the target nodes and (b) average transfer latency of experiments using the traffic
scenario from Fig. 13.

six source nodes. The flits are then replicated in the network
(because of the requested multicast communication) and will
be ejected from 22 multicast destination nodes. Each injected
flit is identified with a special code and ordering number. Thus,
it enables us to check and verify, whether any flit is lost or is
replicated improperly in the network or is accepted out-of-order
in the destination nodes.

As presented in Fig. 13, the source nodes are allocated in two
horizontal line addresses (line addresses 4 and 5). While all des-
tination nodes are allocated in the horizontal line address 4 and
5, and in the vertical line addresses 3 and 4. When using the
static X-First (XY) routing algorithm, the traffic flows can be
easily predicted and drawn in the figure. The traffic will be dis-
tributed in such a “vertical-horizontal double cross line area,”
and as shown in the figure, multiple multicast deadlock con-
figurations are performed in nodes (3,4), (3,5), (4,4), and (4,5),
where all multicast packets have conflicts or contentions to ac-
cess the same outgoing ports of the routers in the nodes. For
instance in node (3,4), the multiple multicast deadlock is config-
ured, because: 1) the EAST outgoing link is acquired by the mul-
ticast messages injected from nodes and ; 2) the NORTH
outgoing link is acquired by the multicast messages injected
from nodes and ; 3) the WEST outgoing link is ac-
quired by the multicast messages injected from nodes and

; and 4) the SOUTH outgoing link is acquired by the multi-
cast messages injected from nodes and .

The number of required clock cycles until the transfer the last
flit of each multicast message from the source node to the des-
tination nodes is depicted in Fig. 14(a). The multicast messages
are ejected from three or four destination nodes. Thus we have
gained three or four transfer latency data values, but we select
only one data value to be plotted in the figure for the sake of sim-
plicity. The plotted data is the largest transfer latency of the three
or four latency data values. For instance, the last flit transfer la-
tencies of sending the multicast message from to four target
nodes, i.e., and using adaptive West-First
routing are 22 964, 22 958, 22 966, and 22 970 clock cycle pe-
riods respectively. The largest latency data is 22 970 cycle pe-
riod and is plotted as the representative data in Fig. 14(a).

Fig. 14(a) presents the average number of required cycles to
transfer the last flits of the multicast packets from the source
to the destination nodes. It looks that the multicast NoC with
the static XY routing algorithm gives worst transfer time perfor-
mance than the other three multicast NoCs with adaptive routing

SAMMAN et al.: ADAPTIVE AND DEADLOCK-FREE TREE-BASED MULTICAST ROUTING 1077

algorithms. As mentioned earlier, we have deliberately synthe-
sized this traffic scenario, in such a way that the multiple dead-
lock configurations are performed when using the static X-First
(XY) routing algorithm. A fair evaluation will be exhibited later
in the next subsection (Section VII-B). The experimental re-
sult has shown that the network is deadlock-free and all work-
load traffics can be accepted in the multicast destination nodes
(in-order and no improper multicast replication).

By using adaptive routing algorithms, the number of mul-
ticast contentions to access the same outgoing ports can be
reduced. The adaptive router hardware logics will route the
packets into the less congested alternative outgoing links (in
this case, congestion means that many packets have used or
reserved the ID-slots of the node’s links) For instance, the
adaptive West-First (WF) routing hardware units will route
packets injected from source nodes and into north
and south directions rather than to the east direction to escape
from the congested outgoing link. But the packets injected from
source nodes and are routed first to west because
their multicast destinations are located in the west sides (in
the adaptive WF routing, north-to-west and south-to-west
turns are prohibited). The NoC with adaptive East-Last (EL)
routing algorithm gives the best performance among other
routing algorithms, because in the adaptive EL routing, the
packets injected from source nodes and must be
routed firstly to north or south (to the less congested area),
if the destination nodes are located in northeast or southeast
quadrant-areas (east-to-north and east-to-south turns are pro-
hibited). The packets injected from source nodes and
have also alternative paths (by making adaptively the allowed
west-to-north, north-to-west, west-to-south, and south-to-west
turns) to attain the destination nodes.

B. Multiple Deadlock Plus Random Unicast-Multicast Traffics

Fig. 15 presents the combined scenario of the multi dead-
lock configuration presented in Fig. 13 plus randomly selected
unicast and multicast traffics. In this scenario, the total number
of source nodes is 26 nodes (20 additional source nodes of six
source nodes in the previous scenario), while the total number of
target nodes is 54 nodes. Multicast packets are injected to source
nodes until (ten source nodes), while unicast packets are
injected to source nodes until (16 source nodes). All
multicast sources will perform multicast tree-branches to four
destination nodes, except for and , which have only three
destination nodes.

As shown in Fig. 15, the additional source and target nodes,
which will generate unicast and multicast packets are randomly
selected in four “quadrant areas,” i.e., in northeast, northwest,
southeast, and southwest areas, which are in the outside areas
of the vertical-horizontal double cross line area exhibited in the
previous traffic scenario in Section VII-A. In addition, only the
unicast target nodes and are located in the
center area of the vertical-horizontal double cross line area.

This benchmarking model is used to measure the network
performance over mixed unicast and multicast messages, and
to evaluate the impact of the higher traffic participation of the
interprocessor communication over static and adaptive routing
algorithms. The additional random source and target nodes in
this scenario can be assumed as disturbance workload traffic
for the previously determined synthetic traffic. In the previous

Fig. 15. Traffic Scenario 2 (multicast deadlock plus random traffics).

traffic scenario (see Fig. 13), the traffic pattern representing the
number of processing element participating in the data commu-
nication is not too large, because there is no processing element
in the four quadrant areas that inject packets to the NoC.

Fig. 16(a) presents the required clock cycles to transfer the
last flit of each message from the source nodes to the destination
nodes. The multicast messages are ejected from three or four
destination nodes. Thus we have gained three or four transfer
latency data, but we select only one data to be plotted in the
figure for the sake of simplicity. The selected data are the largest
transfer latency of the all latency data of the multicast message.
As shown in the figure, the transfer latency variations of the
unicast and multicast messages are dependent on the number
of other unicast or multicast messages, which share the same
communication link with the unicast or multicast messages.

The average number of cycles required to transfer the last flits
of each unicast and multicast packet from source to destination
nodes is presented in Fig. 16(b). It looks that the multicast NoC
with the static XY routing algorithm gives better transfer time
performance than the other three multicast NoCs with adaptive
routing algorithms. The scenario gives a contrary result from the
previous scenario in Section VII-A, because in this scenario, the
possible escape links in the four quadrant-areas have been ac-
quired by other randomly selected multicast and unicast traffics
as depicted in Fig. 15.

C. General Results of the Performance Evaluation

As already explained, each flit of all unicast and multicast
messages is coded and numbered in-order. We have experi-
mented our novel methodology, and the results show that there
is no out-of-order multicast delivery problem, even if adaptive
routing algorithms are used, and the NoCs are free from the
multicast deadlock configurations. There is also neither flit-lose
nor improper flit replication in the on-chip network.

The NoC prototypes with adaptive routing algorithms give
better transfer latency performance than the NoC with a static
XY routing algorithm in a traffic scenario, in which the number
of processing elements participating in interprocess communi-
cation is not too high, or the probability of the number of pro-
cessing elements that are passing messages into the network is

1078 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 7, JULY 2010

Fig. 16. (a) Cycle requirement to eject the last flits in the target nodes and (b) average transfer latency of experiments using traffic scenario from Fig. 15.

TABLE I
SYNTHESIS RESULTS USING 180-nm AND 130-nm TECHNOLOGIES

low. In the traffic scenario where only a small number of pro-
cessing elements generates multicast traffic, the adaptive routing
can find more alternative paths to route a multicast packet to less
congested area and to alleviate the link sharing probability with
other packets.

In the traffic scenario where a large number of processing
elements generates multicast traffics and the traffics are mixed
with unicast traffics, there are not many alternative paths to
route the packet headers adaptively. The adaptive routers
have only congestion information (available free ID-slots)
from the next outgoing links connected to one-hop neighbors.
Therefore, when the packets are routed to a locally optimal
direction, then in the next downstream node, probably the
congestion states of the next alternative links are not better
than in the previous upstream node. In other words, the packets
are probably trapped in high-traffic regions because of the
lack of the global network congestion view of the adaptive
routing engines. As explained in Section IV-A, once a header
of a packet has found an optimal routing direction locally, the
payload flits will follow it by reading the routing direction
from a routing table. Indeed, if one of the tree-branches of a
multicast packet enters a more congested outgoing link, then
the low data rate of the tree-branch will affect the data rates
of the other tree-branches, although the other tree-branches do
not enter high-traffic regions. The addition of unicast messages
most likely makes the traffic closer to uniform traffic. Since
the XY routing can easily balance the uniform traffic, then
it performs better than the partially minimal adaptive routing
algorithms. Among adaptive routing algorithms, we cannot
generalize, which routing algorithm is better, because based on
our experiments, the performance of the routing algorithms is
strongly dependent on traffic situations.

TABLE II
ESTIMATED CELL AREA AND POWER OF SELECTED COMPONENTS

VIII. SYNTHESIS RESULTS

Our NoCs have been synthesized using a CMOS stan-
dard-cell technology library from United Microelectronics
Corp. (UMC). Table I shows the synthesis results with 180- and
130-nm CMOS standard-cell technologies. The total number of
logic cells, total estimated logic cells area, cell internal power,
and net switching power of each multicast-enabled on-chip
router with static XY and adaptive West-First (WF), adaptive
East-Last (EL), and adaptive Negative-First (NeF) are presented
in the table. The migration from the 180-nm technology to the
newer and smaller transistor feature size technology (130-nm
technology) can decrease the total cells area about 38%, the
cells internal power about 80%, and the net switching power
about 46%.

Table II presents the estimated cell area, cell internal power,
and net switching power of the selected components (FIFO
buffers, IDM, LUT, and SCFS) using the 180-nm standard-cell
library. The percentage values in the table present the area and
power contributions of the components over the total numbers
of area and power of the multicast router with adaptive Nega-
tive-First routing algorithm. By implementing 2-deep-register
FIFOs in the incoming ports of the router, the FIFO buffers give
23% area contribution. The FIFO buffers give the largest cell
internal power contribution of about 81% of the total cell in-
ternal power. The IDM units dominate the logic area by giving
33.6% contribution to the total cell area. The cell internal and
net switching power of the IDM units are about 6% and 12.9%
of the total cell internal and net switching power of the router.

Fig. 17 shows us the circuit layout of the square-area on-chip
router with an adaptive Negative-First routing algorithm. The
automatic place-and-route is done using the Cadence Silicon
Encounter tool with 180-nm CMOS standard-cell library from
UMC. The highlighted cells area as exhibited in the figure
is the cell area of the FIFO buffers. The work in [30] has
investigated the advantages and disadvantages of implementing

SAMMAN et al.: ADAPTIVE AND DEADLOCK-FREE TREE-BASED MULTICAST ROUTING 1079

Fig. 17. Circuit layout of the multicast router with adaptive NeF routing algo-
rithm (FIFO queues area is highlighted).

on-chip routers in the nanometer regime. In the square-area
router (based on the analysis result in [30]), all metal layers
can be freely utilized for resources, and there is no routing/pin
congestion over resource due to network.

We have also analyzed the timing performance of the mul-
ticast routers with adaptive routing algorithms. By using the
180-nm standard-cell technology, the routers can be clocked
at about 230 MHz. The maximum working frequency can be
increased at about 370 MHz, when the 130-nm standard-cell
library is used. The migration from 180-nm to 130-nm tech-
nology can increase the maximum working frequency of about
1.6 times.

Area overhead to update the XHINoC routers from uni-
cast-only to multicast support with the same routing algorithm
(4-depth FIFO) is about 20% by using 180-nm CMOS stan-
dard-cell technology. Comparisons with other NoC routers,
which do not support multicast service, are shown in the
following. The TRIPS NoC [12] contains two data networks,
the OPN and the OCN, in which the logic areas of the OCN
and OPN routers are 1.10 mm and 0.43 mm , respectively
by using 130-nm technology. Teraflops [13] NoC router uses
a double-pumped crossbar switch to reduce the routing area
enabling a compact 0.34 mm router design using 65-nm
technology. The SCC [14] NoC router synthesis result by using
65-nm standard-cell library is 0.097 mm .

IX. CONCLUSION

The novel scheduling mechanism for tree-based multi-
cast routing using deadlock-free partially adaptive routing
algorithms has successfully solved the multicast deadlock
configuration problem in the intermediate nodes of the on-chip
networks. By using the hold–release tagging rule and the ability
of the on-chip router to interleave flits of different messages in
the same queue, then the multicast deadlock problem can be
solved easily.

The novel smart and simple method can handle not only the
deadlock situations without involving virtual channels to over-
come the problem, but also can guarantee lossless flit ejection in

multiple destination nodes even if the size of the multicast mes-
sages is very long (for instance, a streaming data in video appli-
cation). There is no out-of-order delivery problem, even if adap-
tive routing algorithms are used to route the multicast messages
because of the packet format choice and the efficient working
organization of the combined router hardware logic and routing
lookup table units. Although we know that virtual channels can
help to solve the multicast deadlock problem, we deliberately do
not implement them in our NoC prototypes in order to confirm
the special feature and characteristic of our adaptive multicast
NoC and to save chip area.

Because flits of different packets can be mixed in the same
queues in the NoC router, we will have an interesting issue for
targeted on-chip network interfaces (OCNIs), especially when
the OCNI receives interleaved packets. We have also imple-
mented a specific OCNI for a distributed shared-memory pro-
gramming interface, which can handle the interleaved packets
by using a list-pointer technique. The area overhead for the tar-
geted OCNI is about 10% over our NoC router, because of the
need for additional pointer-tables beside the input and output
queues and some additional buffers.

The proposed routing protocol is free from deadlock if cer-
tain configurations are considered, i.e., the amount of ID slots
in each routing table and each ID management unit is suffi-
cient to support the considered traffic, or if packets (or multicast
branches) are dropped in the rare cases when no free ID slots are
available. The number of ID slots in the LUT and IDM units can
be determined at design time. Larger number of ID slots implies
larger router area, while small number of ID slots may cause per-
formance penalty, e.g., communication channels cannot support
the considered traffic as mentioned before. Based on our current
router architecture, the area overheads to implement an LUT and
an IDM unit from 8 to 16 ID slots are about 87% and 115%,
respectively.

ACKNOWLEDGMENT

The authors gratefully acknowledge the helpful suggestions
made by the reviewers, and DAAD (Deutcher Akademischer
Austausch-Dienst, German Academic Exchange Service)
awarding a DAAD-Scholarship for the first author to pursue a
doctoral degree at the Darmstadt University of Technology in
Germany.

REFERENCES

[1] J. D. Owens, W. J. Dally, R. Ho, D. N. Jayasimha, S. W. Keckler, and
L.-S. Peh, “Research challenges for on-chip interconnection networks,”
IEEE Micro, vol. 27, no. 5, pp. 96–108, Sep.-Oct. 2007.

[2] X. Lin, P. K. McKinley, and L. M. Ni, “Deadlock-free multicast worm-
hole routing in 2-D mesh multicomputers,” IEEE Trans. Parallel Dis-
trib.Syst., vol. 5, no. 8, pp. 793–804, Aug. 1994.

[3] F. Karim, A. Nguyen, and S. Dey, “An interconnect architecture for
networking systems on chips,” IEEE Micro, vol. 22, no. 5, pp. 36–45,
Sep.–Oct. 2002.

[4] C. Neeb and N. Wehn, “Designing efficient irregular networks for
heterogeneous systems-on-chip,” J. Syst. Arch., vol. 54, no. 3–4, pp.
384–396, Mar.–Apr. 2008.

[5] T. A. Bartic, J.-Y. Mignolet, V. Nollet, T. Marescaux, D. Verkest, S.
Vernalde, and R. Lauwereins, “Topology adaptive network-on-chip de-
sign and implementation,” IEE Proc. Comput. Digital Tech., vol. 152,
no. 4, pp. 467–472, Jul. 2005.

[6] L. Benini and D. Bertozzi, “Network-on-chip architectures and de-
sign methods,” IEE Proc. Comput. Digital Tech., vol. 152, no. 2, pp.
261–272, Mar. 2005.

1080 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 7, JULY 2010

[7] E. Rijpkema, K. Goossens, A. Radulescu, J. Dielissen, J. van Meer-
bergen, P. Wielage, and E. Waterlander, “Trade-offs in the design of
a router with both guaranteed and best-effort services for networks on
chip,” IEE Proc. Comput. Digital Tech., vol. 150, no. 5, pp. 294–302,
Sep. 2003.

[8] I. M. Panades, A. Greiner, and A. Sheibanyrad, “A low cost net-
work-on-chip with guaranteed service well suited to the GALS
approach,” in Proc. 1st Int. Conf. Workshop on Nano-Networks, 2006,
pp. 1–5.

[9] T. W. Ainsworth and T. M. Pinkston, “Characterizing the cell EIB
on-chip network,” IEEE Micro, vol. 27, no. 5, pp. 6–14, Sep.-Oct. 2007.

[10] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, “Guaranteed band-
width using looped containers in temporally disjoint networks within
the nostrum network on chip,” in Proc. Design, Automation and Test in
Eur. Conf. and Exhibition (DATE’04), 2004, pp. 890–895.

[11] D. Wentzlaff et al., “On-chip interconnection architecture of the tile
processor,” IEEE Micro, vol. 27, no. 5, pp. 15–31, Sep.-Oct. 2007.

[12] P. Gratz, C. Kim, K. Sankaralingam, H. Hanson, P. Shivakumar, S.
W. Keckler, and D. Burger, “On-chip interconnection networks of the
TRIPS chip,” IEEE Micro, vol. 27, no. 5, pp. 41–50, Sep.-Oct. 2007.

[13] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-GHz
mesh interconnects for a teraflops processor,” IEEE Micro, vol. 27, no.
5, pp. 51–61, Sep.-Oct. 2007.

[14] D. A. Ilitzky, J. D. Hoffman, A. Chun, and B. P. Esparza, “Architecture
of the scallable communications core’s network on chip,” IEEE Micro,
vol. 27, no. 5, pp. 62–74, Sept.-Oct. 2007.

[15] G. Fox et al., Fortran D language specification Center for Res. Parallel
Comput., Rice Univ., Houston, TX, Tech. Rep. CRPC-TR 90079, Dec.
1990.

[16] J. Merlin, Techniques for the automatic parallelization of distributed
Fortran 90 Southampton Univ., Southampton, U.K., Tech. Rep.
SNARC 92-02, Nov. 1991.

[17] High Performance Fortran Forum, “High Performance Fortran lan-
guage specification, version 1.0,” Sci. Program., vol. 2, no. 1, Jun.
1993.

[18] MPI-2: Extensions to the Message-Passing Interface Message Passing
Interface Forum, Univ. Tennessee, Knoxville, Tech. Rep., Nov. 2003.

[19] G. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V.
Sunderam, PVM: Parallel Virtual Machine, A User’s Guide and Tuto-
rial for Networked Parallel Computing. Cambridge, MA: MIT Press,
1994 [Online]. Available: http://www.csm.ornl.gov/pvm

[20] G. A. Geist, J. A. Kohl, and P. M. Papadopoulos, “PVM and MPI: A
comparison of features,” Calculateurs Paralleles, vol. 8, no. 2, May
1996.

[21] J. Duato, “A theory of deadlock-free adaptive multicast routing in
wormhole networks,” IEEE Trans. Parallel Distrib. Syst., vol. 6, no.
9, pp. 976–987, Sep. 1995.

[22] R. V. Boppana, S. Chalasani, and C. S. Raghavendra, “Resource dead-
locks and performance of wormhole multicast routing algorithms,”
IEEE Trans. Parallel Distrib. Syst., vol. 9, no. 6, pp. 535–549, Jun.
1998.

[23] M. Barnett, D. G. Payne, R. A. van de Geijn, and J. Watts, “Broad-
casting on meshes with worm-hole routing,” J. Parallel Distrib.
Comput., vol. 35, no. 2, pp. 111–122, 1996.

[24] M. P. Malumbres, J. Duato, and J. Torrelas, “An efficient implemen-
tation of tree-based multicast routing for distributed shared-memory
multiprocessors,” in Proc. 8th IEEE Symp. Parallel and Distributed
Process., 1996, pp. 186–189.

[25] D. R. Kumar, W. A. Najjar, and P. K. Srimani, “A new adaptive
hardware tree-based multicast routing in K-ary N-cubes,” IEEE Trans.
Comput., vol. 50, no. 7, pp. 647–659, Jul. 2001.

[26] Z. Lu, B. Yi, and A. Jantsch, “Connection-oriented multicasting in
wormhole-switched network-on-chip,” in Proc. IEEE Comput. Soc.
Annu. Symp. VLSI (ISVLSI’06), 2006, vol. 6, pp. 1–6.

[27] J. Liu, L.-R. Zheng, and H. Tenhunen, “Interconnect intellectual prop-
erty for network-on-chip (NoC),” J. Syst. Arch., vol. 50, no. 2-3, pp.
65–79, Feb. 2004.

[28] C. J. Glass and L. M. Ni, “The turn model for adaptive routing,” in
Proc. 19th Int. Symp. Comput.Arch., 1992, pp. 278–287.

[29] C. J. Glass and L. M. Ni, “Adaptive routing in mesh-connected net-
works,” in Proc. 12th Int. Conf. Distribut. Comput. Syst., 1992, pp.
12–19.

[30] D. Pamunuwa, J. Öberg, L.-R. Zheng, M. Millberg, A. Jantsch, and
H. Tenhunen, “A study on the implementation of 2-D mesh-based net-
works-on-chip in the nanometre regime,” Integration, The VLSI J., vol.
38, no. 1, pp. 3–17, Oct. 2004.

Faizal Arya Samman (S’09) was born in Makassar,
Indonesia. He received the B.E. degree in electrical
engineering in 1999 from Gadjah Mada University,
Yogyakarta, Indonesia and the M.E. degree in
electrical engineering with a scholarship award from
the Indonesian Ministry of National Education in
the Control and Computer System Laboratory and
in the Inter-University Center for Microelectronics
Research, at the Bandung Institute of Technology
in Indonesia in 2002. He is currently pursuing the
doctoral degree at the Institute of Microelectronic

Systems, Darmstadt University of Technology, Darmstadt, Germany with a
scholarship award from Deutscher Akademischer Austausch-Dienst.

In 2002, he was appointed to be a research and teaching staff member at
Hasanuddin University, Makassar, Indonesia. His research interests include
NoC microarchitecture and test strategy development, NoC-based multi-
processor system-on-chip application mapping, programming models for
multiprocessor systems, as well as design and implementation of analog and
digital electronic circuits for control system applications on FPGA/ASIC.

Thomas Hollstein (A’01–M’03) graduated in
electrical engineering/computer engineering in
1991 and in 2000 received the Ph.D. degree on the
subject “Design and interactive Hardware/Software
Partitioning of complex heterogeneous Systems,”
both from the Darmstadt University of Technology,
Darmstadt, Germany.

In 1992 he joined the research group of the Mi-
croelectronic Systems Laboratory at the Darmstadt
University of Technology. He has worked in several
research projects in neural and fuzzy computing

and industrial VHDL-based design. Since 1995 he has focused his research
on hardware/software codesign. Since 2000 he has been working as a Senior
Researcher, leading a research group focusing on system-on-chip (SoC)
communication architectures, the design of reconfigurable HW/SW SoC , and
integrated SoC test and debug methodologies. His current research interests
are in the fields of networks-on-chip, hardware/software codesign, SoC design,
printable organic and inorganic electronics, and radio-frequency ID circuit and
system design. Furthermore, he has been giving lectures on VLSI design and
CAD methods. From 2001 until now, he has been member of a leader team
initiating and establishing a new international master program in “Information
and Communication Engineering” at the Darmstadt University of Technology.

Manfred Glesner (M’93–SM’99–F’00) received
the diploma degree and Ph.D. degree from Saar-
land University, Saarbrücken, Germany, in 1969
and 1975. His doctoral research was based on the
application of nonlinear optimization techniques in
computer-aided design of electronic circuits. He
received three Doctor Honoris Causa degrees from
Tallinn Technical University, Tallinn, Estonia, in
1996, the Polytechnical University of Bucharest,
Bucharest, Romania, in 1997, and the Mongolian
Technical University, Ulan Bator, Mongolia, in 2006.

Between 1969 and 1971, he has researched work in radar signal development
for the Fraunhofer Institute, Werthoven/Bonn, Germany. From 1975 to 1981, he
was a Lecturer in the areas of electronics and CAD with Saarland University.
In 1981, he was appointed as an Associate Professor in electrical engineering
with the Darmstadt University of Technology, Darmstadt, Germany, where in
1989, he was appointed as a Full Professor for microelectronic system design.
His current research interests include advanced design and CAD for micro- and
nanoelectronic circuits, reconfigurable computing systems and architectures, or-
ganic circuit design, radio-frequency ID design, mixed-signal circuit design, and
process variations robust circuit design. With the EU-based TEMPUS initiative,
he built up several microelectronic design centers in Eastern Europe. Between
1990 and 2006, he acted as a speaker of two DFG-funded graduate schools.

Dr. Glesner is a member of several technical societies and he is active in
organizing international conferences. Since 2003, he has been the Vice-Presi-
dent of the German Information Technology Society (ITS) in VDE and also a
member of the DFG decision board for electronic semiconductors, components,
and integrated systems. He was a recipient of the honor/decoration of “Palmes
Academiques” in the order of Chevalier by the French Minister of National Ed-
ucation (Paris) for distinguished work in the field of education in 2007/2008.

