
Calculation Methodology for Flexible Arithmetic Processing

Abstract
 A new operation model of flexible calculation that
allows us to adjust the operation delay depending on the
available time is presented. The operation method design
uses look-up tables and progressive construction of the
result. The increase in the operators’ granularity opens
up new possibilities in calculation methods and
microprocessor design. This methodology, together with
the advances in technology, enables the functions of an
arithmetic unit to be implemented on the basis of
techniques based on stored data that provide quality
results and systematization in the implementation.
 The proposed techniques are applied in the design of
a multiplier operator. We report an evaluation of the
architecture in area, delay and computation error, as
well as a suitable implementation of an application
example in FPGA to validate the design.

1. Introduction

 In the last years a spectacular development of the
scientific and commercial applications has taken place.
Although calculation performance has grown to a
considerable speed, there are a great number of
applications that overflow the processing possibilities of
the most advanced systems. In addition, other
computational problems are difficult to fit into the rigid
schemes of the calculation of conventional arithmetic
architectures [1], [2], [3].
 We can find several examples in which an intensive
processing of data provided by peripheral takes place. In
these cases, a strong coordination among sensors and the
rest of system is necessarily produced. For example, in
systems of mobile objects guidance, when the speed of
the object is increased, the system has less time to
process the information that is received from the sensors
and to make decisions about its movement. In this
application, a fast answer in appropiate time that allows
decisions to be made at every moment may be advisable,
with the drawback of less precision in the results.
 For these applications it would be advantageous to
have a calculation methodology allowing the design of
high performance operators with control on the results
and act on the even quality of the result and processing
delay based on the specific computational requirements
of each case. The progressive improvement in
performance provided by advances in electronic
technology justifies the search for new proposals that
would probably have been prohibitive some time ago.
 In this work, we present a flexible calculation model
that supplies variable quality of the result based on the
available time. The methodology must make good use of

the operands’ structure, provides strategies that
contribute determinism in the response time and, at the
same time, allows parallel designs.
 We propose a flexible method of calculation of the
arithmetical multiplication as an example of this
methodology and its use in a realistic application.
 This paper is structured in the following way: in
section 2 we establish the operator’s design principles
and describe the architecture for the flexible arithmetic
unit. Next, in section 3 the flexible multiplication
algorithm is proposed based in that principles and
evaluated under the scope of the area cost, delay and
computation error. Finally, we present a suitable
application example of the proposed method.

2. Design principles

 The design objective is to conceive a calculation
method of the mathematical functions that supplies to the
processor with flexible adjustment in time and precision.
The proposal consists of the combination of two
techniques: using precalculated data in look-up tables
and obtaining the result in a successive processing way.
 The construction of operators based on the following
design principles will depend on the characteristics of
each function, and it is not applicable in all the cases.
Nevertheless, in those operations in which it is possible
take place advantages relative to the performance and
flexibility of the processing.

2.1 Design based on Look-up tables

 Traditionally, most elementary operators consider a
bit to be the minimum unit of information that can be
processed. They are called bit-to-bit operators. A new
step in their evolution consists of increasing the
granularity and taking a group of bits as the minimum
unit of operation. For some functions, this calculation
model offers a superior performance to the classic bit-to-
bit operations and is therefore an advance in the design
of high performance and quality operators.
 In this study, the elementary operators that take a
number of k bits as the minimum unit of information that
can be processed are called k-operators. The
fundamental idea consists of obtaining advantages in the
design of the generic arithmetic operators by using k-
operator elements in their construction.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/32322392?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Figure 1 shows schematically the functionality of a
generic k-operator.

1-bit
operator

1

x⊗y

k-operator

x
1
y

k k
x y

x⊗y

1-bit
operator

1

x⊗y

k-operator

x
1
y

k k
x y

x⊗y

Figure 1: Operator comparison

 The proposed design of the k-operators consists of
using look-up tables (LUT —Look Up Table) to make
the effective calculation. In that way, for any pair of
blocks of k bits, a memory structure contains the direct
result of the operation. These look-up tables must store
all the results for k-size operands, so that it is only
necessary to select the cell which contains the result. The
operand’s value itself is used to address the table [4].
The nature of the stored data will depend on the function
to be calculated.
 Figure 2 schematically shows a k-operator multiplier
based on memory designs.

k

k
LUT

k - multiplication

2·kX

Y

X·Y

k

k
LUT

k - multiplication

2·kX

Y

X·Y

Figure 2: Multiplication k-operator

 The implementation of the k-operators using look-up
tables provides a greater density of VLSI integration
than in the other combinational methods. In addition,
LUTs have interesting characteristics relating to real-
time processing: they work in a totally determinist way
and they can incorporate error detection and correction
mechanisms. The treatment of the operands in small
blocks promotes segmentation and a high level of
parallelism. These construction capabilities provide
robustness and flexibility to the operations [5].
 The area cost of the k-operators based on look-up
tables grows exponentially with the operand length.
Because of this, the use of spatial complexity is limited
to general cases and affects the desirable value of k that
maximizes performance. A compromise formula
between the value of k and the size of the memory must
be found. Nevertheless, advances in technology play a
crucial role in performance improvement and in the
reduction of the temporal delay.
 The use of tables in the computation of functions is a
well-known technique. In arithmetic literature, several
implementations of elementary functions based on the
use of look-up tables are analyzed [6], [7]. In this
approach, we use look-up table to process directly an
elemental operation. For performance reasons, it is

assumed that the LUT memory is implemented in the
circuitry of the Arithmetic Unit itself, thus reducing
communication costs [8].

2.2. Successive result processing

 Response quality is related to the number of
calculated stages of the operations, and therefore, will be
able to act on the time-quality-parallelism relationship.
This approach forms a new architecture that will
implicitly incorporate flexibility in order to adapt the
duration of the calculation to time availability, which is
the instrument for real-time management. This
characteristic provides capabilities for successive
refinement of the solution.
 Smaller process time is translated in smaller precision
in the results. This methodology cannot be generalized
for all the operations nor does it offer reliability in all
cases; each operation must be analyzed to verify the
benefits.

3. Flexible Aritmetic Unit

 The implementation objective is the conception of a
flexible arithmetic unit whose operations are based on
the previous design principles. The projected arithmetic
unit carry out five operations: addition, multiplication,
division and square root.
 For the calculation management, the arithmetical unit
has an operation control module that establishes the
delay-precision of the operation and translates the
application requirements into the number of processed
stages. This operation control module consists of a
combinational circuit that has the problem conditions in
its inputs and a number of operation stages in its outputs,
for example, a coder or multiplexor. Another design of
this module may be a table look-up that stores the
amount of stages to calculate in each situation.

 The figure 3 illustrates the unit's design.

addition multiplication

division square
root

Operation
Control

application
requirements

operands

result

Flexible Arithmetic Unit

addition multiplication

division square
root

Operation
Control

application
requirements

operands

result

Flexible Arithmetic Unit
Figure 3: General structure of the arithmetic unit

 In the rest of this work the multiplication operation
based on these design principles is exposed. We are
currently also investigating the adjustment to the flexible
calculation of the all those operations. They will be
presented in following works.

4. Multiplication operation

4.1 Algorithm

 The calculation method is made up of the following
steps [9]: generation of partial products, reduction in the
number of partial products and final addition.
 1. Generation of partial products: the partial products
generation process is crucial to the operation's overall
performance. Two aspects must be taken into account in
its design: the generating circuit's complexity and the
number of generated partial products. The first aspect is
linked to the time taken in generating each partial
product, whereas the second one affects the time
invested in subsequently combining them to make up the
final result. Both aspects are opposed, that is improving
one it can mean to make worse the other.
 The technique proposed is based on LUT access with
precalculated products. The method consists of
fragmenting the numbers to be multiplied into k bit
blocks and obtaining the product of each pair of blocks
directly from the LUT k-multiplication table that shows
figure 2 to form the whole of partial products. Figure 4
shows partial products for operands divided in 4 parts.

0k-1k2k-12k3k-14k-1 3k
A

0k-1k2k-12k3k-14k-1 3k
Bx

A0

B1 B0B2B3

A1A2A3

A0 · B0A2 · B0

A1 · B0A3 · B0

A0 · B1A2 · B1

A1 · B1A3 · B1

A0 · B2A2 · B2

A1 · B2A3 · B2

A0 · B3A2 · B3

A1 · B3A3 · B3

08k-1
A · B

+

0k-1k2k-12k3k-14k-1 3k
A

0k-1k2k-12k3k-14k-1 3k
Bx

A0

B1 B0B2B3

A1A2A3

A0 · B0A2 · B0

A1 · B0A3 · B0

A0 · B1A2 · B1

A1 · B1A3 · B1

A0 · B2A2 · B2

A1 · B2A3 · B2

A0 · B3A2 · B3

A1 · B3A3 · B3

08k-1
A · B

+

Figure 4: Generation of partial products

 The last partial product can be placed to the left of the
first one. For n-bit size operands, we can express the
number of partial products generated according to the
expression 2n/k-1.
 With this technique, a lower number of partial
products are obtained compared with other known
methods, as the following table shows.

n Simple
Generation

Booth2
[8]

LUT-Prod
k=4

LUT-Prod
k=8

8 8 5 3 1
16 16 9 7 3
32 32 17 15 7
64 64 33 31 15
Table 1: Quantity of partial products generated

 2. Reduction in the number of partial products: the
general way in which a high performance multiplier
works consists of combining the partial products in order
to reduce their number until a total of two is reached,
which will be added in the last stage of the multiplier.

There are several methods of reduction of partial
products [9], [10]. In this work a Wallace-tree reduction
is used based on 3:2 counters [11].
 3. Final addition: It is implemented by anyone of the
known addition methods [12].

4.2 Flexible multiplication

 The partial product generation stage must be carried
out completely due to the fact that, on the one hand, it is
the starting point for the following steps, and on the
other, because the cost of generating all the partial
products is constant.
 The proposed flexible method consists of beginning
the combination of generated partial products from an
initial point according to the time available. Since the
application requirements already are contemplated in the
partial product reduction stage, the addition of the result
of the combination will be made completely.
 Thus, for most restricted case, the first and the last
partial product generated are ready to go on directly to
the result. See figure 5.

0k-1k2k-12k3k-14k-1 3k
A

0k-1k2k-12k3k-14k-1 3k
Bx

A0

B1 B0B2B3

A1A2A3

A0 · B0A2 · B0

A1 · B0A3 · B0

A0 · B1A2 · B1

A1 · B1A3 · B1

A0 · B2A2 · B2

A1 · B2A3 · B2

A0 · B3A2 · B3

A1 · B3A3 · B3

08k-1
Result

Beginning the
combination

0k-1k2k-12k3k-14k-1 3k
A

0k-1k2k-12k3k-14k-1 3k
Bx

A0

B1 B0B2B3

A1A2A3

A0 · B0A2 · B0

A1 · B0A3 · B0

A0 · B1A2 · B1

A1 · B1A3 · B1

A0 · B2A2 · B2

A1 · B2A3 · B2

A0 · B3A2 · B3

A1 · B3A3 · B3

08k-1
Result

Beginning the
combination

Figure 5: Result produced for the first selection

 For other cases, partial products are combined and the
final addition is carried out. See figure 6.

0k-1k2k-12k3k-14k-1 3k

A
0k-1k2k-12k3k-14k-1 3k

Bx

A0

B1 B0B2B3

A1A2A3

A0 · B0A2 · B0

A1 · B0A3 · B0

A0 · B1A2 · B1

A1 · B1A3 · B1

A0 · B2A2 · B2

A1 · B2A3 · B2

A0 · B3A2 · B3

A1 · B3A3 · B3

Beginning the
combination

08k-1

Result

0k-1k2k-12k3k-14k-1 3k
A

0k-1k2k-12k3k-14k-1 3k
Bx

A0

B1 B0B2B3

A1A2A3

A0 · B0A2 · B0

A1 · B0A3 · B0

A0 · B1A2 · B1

A1 · B1A3 · B1

A0 · B2A2 · B2

A1 · B2A3 · B2

A0 · B3A2 · B3

A1 · B3A3 · B3

Beginning the
combination

08k-1
Result

+
+

0k-1k2k-12k3k-14k-1 3k
A

0k-1k2k-12k3k-14k-1 3k
Bx

A0

B1 B0B2B3

A1A2A3

A0 · B0A2 · B0

A1 · B0A3 · B0

A0 · B1A2 · B1

A1 · B1A3 · B1

A0 · B2A2 · B2

A1 · B2A3 · B2

A0 · B3A2 · B3

A1 · B3A3 · B3

Beginning the
combination

08k-1

Result

0k-1k2k-12k3k-14k-1 3k
A

0k-1k2k-12k3k-14k-1 3k
Bx

A0

B1 B0B2B3

A1A2A3

A0 · B0A2 · B0

A1 · B0A3 · B0

A0 · B1A2 · B1

A1 · B1A3 · B1

A0 · B2A2 · B2

A1 · B2A3 · B2

A0 · B3A2 · B3

A1 · B3A3 · B3

Beginning the
combination

08k-1
Result

+
+

Figure 6: Result produced for the 2nd and 3rd selection

 In this way, we obtain an imprecise result in less
processing time than we need to carry out the complete
operation of combination and final addition of partial
products.
 The amount of possibilities depends on the length of
the operands and the operation control module. This last
one transforms the requirements of the problem into a
discreet position of combination beginning.

5. Architecture

 This architecture is suitable for specific purpose
applications where time restrictions are present.

5.1 Design

 Figure 7 shows the proposed arithmetic unit
architecture for multiplication operation. We assume, for
example, the numbers are fragmented into 4 blocks of k
bits.

CSA

CSA

CSA

LUT
k- multiplication

LUT
k- multiplication

CSA

CSA

CSA

mux

Adder

mux

k

Operation
Control

2

Application
requirements

R = N1 · N2

A

B

A0A1A2A3

B3 B2 B1 B0
k

k k k k k k

4k4k4k

4k

4k4k8k

a3·b3 a1·b3 a0·b0a2·b0

a1·b0
a3·b0

a0·b1
a2·b3

a0·b3
a3·b2

a3·b1

a0·b2
a2·b1

a1·b1
a3·b2

a1·b2

8k
8k

8k
8k

CSA

CSA

CSA

LUT
k- multiplication

LUT
k- multiplication

CSA

CSA

CSA

mux

Adder

mux

k

Operation
Control

2

Application
requirements

R = N1 · N2

A

B

A0A1A2A3

B3 B2 B1 B0
k

k k k k k k

4k4k4k

4k

4k4k8k

a3·b3 a1·b3 a0·b0a2·b0

a1·b0
a3·b0

a0·b1
a2·b3

a0·b3
a3·b2

a3·b1

a0·b2
a2·b1

a1·b1
a3·b2

a1·b2

8k
8k

8k
8k

Figure 7: Block diagram of the proposed architecture

The main features of this architecture are:
• The Operation Control module consists of a

combinational circuit that has application conditions
in its inputs and a number of operation stages in its
outputs.

• Access to the LUT k-multiplication provides the
partial results for all the pairs of blocks.

• The partial product reduction is carried out by
means of a tree scheme based on Carry Save
Adders.

• Several results with different qualities of degree and
delay are extracted from operation circuits. There
are 4 execution paths that provide results with
different precision degree with respect to the exact
retult and with different time delay.

• The Operation Control circuit selects the partial
result that best fits the conditions of the problem.

5.2 Path time

 The path time of the proposed architecture is set by
the delay of the slowest path in the circuit. Depending on
the application requirements and the selected operation,
it can be any of the main paths of the implementation.
There are the same number of paths as possibilities of
result selection. These paths, as shown in figure 7, are
the following:
• Max(Op.Control, LUT-Multiplier) + mux
• Max(Op.Control, LUT-Multiplier) + CSA +

Addition + 2mux
• Max(Op.Control, LUT-Multiplier) + 3CSA +

Addition + 2mux
• Max(Op.Control, LUT-Multiplier) + 4CSA +

Addition + 2mux
 Apparently, the improvement in time of one
incomplete operation is not very significant,
nevertheless, when the amount of the multiplications to
be made is elevated, the architecture acquires a greater
relevance.

6. Evaluation of the proposed architecture

 In this section, we present estimates of the area costs,
execution time and error computation of the architecture
proposed in the previous section. The power
consumption of the circuit is not important for this
research and is therefore not dealt with in this paper. It
will be studied in depth in the event that it can be
implemented in a chip.

6.1 Area estimations

 The model we use for the area estimations is taken
from [7], [13] and [14] as well as of our own estimations
and experiments.The unit used is the size of a complex
gate τa, since the area of the compound LUT-
multiplication, selection circuits, adder and multiplexors
are easily expressed in this unit.
 The main contributions to the area of the architecture
come from the compound LUT k-multiplication. The
area of the other components of the circuit is small when
compared to the area of the LUT, therefore, the
estimation is focused only on the LUT k-multiplication.
 Data storage imposes severe restrictions on k block
size. Table 2 shows the cost for the most common sizes.

k Size (bits)
4 256 B
6 6 KB
8 128 KB

k Size (τa)
4 ≈ 70 τa

6 ≈ 1441 τa

8 ≈ 20478 τa
Table 2: LUT k-multiplication size

 As we can see, the area cost increases exponentially
with the k value. Therefore, we have to achieve a
balance between the memory required and the
complexity of the circuit. The model assumes a 40
τa/Kbit rate for tables addressed by words of up to 6-bits

long, a 35 τa/Kbit rate for 7-11 input bit tables, a 30
τa/Kbit rate for 12-13 input bit tables and 25 τa/Kbit one
for 14-16 input bit tables.
 As shown in the previous table, the amount of area is
much greater than in conventional multiplier designs
based on simple combinational circuits, nevertheless,
this architecture is still suitable for applications in which
the size of the circuit is not a problem.

6.2 Delay estimations

 Delays in a complete operation calculus are divided
into access to the LUT k-operator and combination of
partial results.
 Let τt be the delay of a complex gate, such as one
full-adder. According to [7], [14] analysis1 we assume a
delay of about TLUT = 3.5τt for 8 input bit tables, TLUT =
5τt for 12-13 input tables and TLUT = 6.5τt for 16 input
bit tables. We suppose a concurrent access of all the
operand’s blocks in a multiport memory.
 The delay estimations for each module of the propose
architecture are:
• Access time to the LUT k-multiplication to obtain

the precalculated partial products. This time will
only be determined by memory access time TLUT.

• Reduction of partial products: Let TCSA be the time
taken in the Carry Select Adder that reduces 3
partial results to 2. According to [9] design, a
reduction step consists of two complex gates τt, so
TCSA = 2 τt.

• Final Addition: We consider anyone addition
method. The standar adder delay depends on the
operand’s length. According [12], addition delay is
TAdder = τt lg n.

 The comparison of the propose methodology with
other algorithms is focused in the first part of the
operation. Due to the fact that the different methods
generate a different quantity of partial products, in order
to compare them homogenously, we reduced the number
of products generated by including stages of 3:2
counters.
 Table 3 shows the results obtained in terms of costs
of complex gate levels and LUT access time. The table
access model is shown as LUTP-x, in which the index
indicates the k size. We assumed an arbitrary operand
size.

Method Generation
delay

Reduction
stages (3:2)

Total
delay

Simple 0.5 τT 5 10.5 τT
Booth2 [8] 2 τT 3 8 τT

LUTP-4 3.5 τT 2 7.5 τT
LUTP-6 5 τT 1 7 τT
LUTP-8 6.5 τT 0 6.5 τT

Table 3: Homogenous comparison between the partial
product generation methods

1 Implementation using a family of standard gates from the AMS 0.35
µm CMOS library

 The LUT k-multication module performance plays a
fundamental role in the calculation time. Therefore, the
look-up table is proposed as part of the arithmetic unit
itself in order to accelerate its access. These table sizes
are easily handled with the rest of the arithmetic unit by
today’s high speed, high density memories and it may
already be possible to implement the entire hardware on
a single chip.
 In addition, the circuit delays depend on the
technology used and on the implementation itself. In
order to prove this, the LUT k-multiplication have been
implemented in VHDL and tested on FPGA2. The LUT
implementation corresponds to the design presented in
[15], [16], and has been integrated into the selection
circuit. Table 4 shows the results obtained after the
synthesis and simulation of each k-multiplication for
some k wordlength in homogenous comparison.

Method Generation
delay

Reduction
stages (3:2)

Total
delay

Simple 0.573 4.704 5.277
Booth2 [8] 2.181 2.352 4.533

LUTP-4 2.754 2.352 5.106
LUTP-6 2.946 1.176 4.149
LUTP-8 3.132 0 3.132

Table 4: Delays of partial product generation in
homogenous comparison (ns)

 The previous results demonstrate that the proposed k-
operator design presents a delay similar or better to the
conventional designs for this particular implementation,
and they show the technology’s high degree of
dependency on performance.
 The total delay of the complete operation for several
operand sizes n is shown in the following table in term
of complex gate delay:

n Generation
delay, k=8

Reduction of
partial product

Final
addition

Total
delay

16 6.5 τt 2 τt 4 τt 12.5 τt
32 6.5 τt 8 τt 5 τt 19.5 τt
64 6.5 τt 12 τt 6 τt 24.5 τt

Table 5: Complex gate delay of multiplication

 Complex gate delay will take different values
according to the implementation technology used.

6.3. Error computation analysis in flexible
multiplication

 With the objective of testing the error computation
while ignoring the correct combination of all the
sequence of partial results, an exhaustive set of
experiments has been made to prove the method for all
cases. The experiments have been carried out by means

2 See appendix A.

of a simulation in a C programming environment3. They
are both in individual operations and in sequences of
successive operations.
 The profile of the experiments is the following: A
LUT 8-multiplication, operand size n = 64 bits and
operands are rational numbers at the interval [0, 1). To
process the complete number 8 stages are needed.

6.3.1. Independent multiplications

 This test consists of calculating the average error rate
in 107 multiplications of two random rational numbers.
Figure 8 shows a graph of error evolution in stages. The
dotted line indicates the limit of precision for numbers
represented according to the IEEE 754 double precision
standard [17].

Figure 8: Evolution of the error average in independent
multiplications

 The following figure shows the error dispersion. It is
located around the interval that depends on the amount
of processed stages.

Figure 9: Error dispersion in incomplete operations

6.3.1. Successive multiplications

 This test is aimed at empirically analyzing error
propagation while processing inaccurate values
consecutively. The error average is calculated in 1,000

3 C++ Builder 5.0 Professional. Borland software corporation.
http://www.borland.com
6 http://www.ua.es/i2rc/

sets of 1,000 successive operations of random rational
numbers within the interval [0,1) for each of the
operation's loops. The numbers are generated at a
positive interval, so they do not compensate positive
errors with negative ones in the successive operations.
The graph in figure 10 shows the results obtained in this
test:

Figure 10: Evolution of the error average in succesive

multiplications

 The previous figures graph the decreasing tendency
of the error with the number of operation stages. With
the sufficient stages the wished precision is reached with
a saving of time with respect to the complete operation.

7. Application example

 This section describes a simple example that
illustrates the specific application of the proposed
architecture.
 The experiment is located in the Specialized
Processing Architectures and Communications Systems
research groups of the University of Alicante, Spain6.
One of the most interesting lines of research consists of
the development of a Real-Time processor that considers
the temporal restrictions in the low level of the
architecture [4]. It is usefulness in many interest
applications: calculation of trajectories for moving
bodies, guidance and positioning systems, high
frequency communications etc.…To process this
successfully, the flexibility and determinism of the
calculations plays a fundamental role in the correct
working of the processor.
 Let there be an object that moves according to a
vector position s

r
. The application consists of

calculating the scalar product of this vector in relation to
a reference vector r

r
.

r
r

 = (rx, ry, rz) ; s
r

 = (sx, sy, sz) ;

r
r

 · s
r

 = rxsx + rysy + rzsz (1)

 We proposed the following architecture to resolve the
expresion vector multiplication (1):

Flexible
multiplication

Addition

Operation
control

stages

|v|

rα · sα

r · s

sαrα
n n

2n

Flexible
multiplication

Addition

Operation
control

stages

|v||v|

rα · sα

r · s

sαrα
n n

2n

Figure 11: Architecture for the calculation of the scalar
product

 The product of the individual components is made
sequentially by flexible multiplication operator In the
time of LUT k-multiplication, the operation control
module decides the number of stages that will be made
in the reduction step of multiplication operations. The
criterion is based on the speed of the moving object. At
greater speed, fewer partial results are selected.
 For example, we assume: xi ∈ [0, 1),

| v
r

| ∈ [0, 150], n = 32 bits, k = 8.

 Table 6 shows the number of selection stages, the
time-saving that takes place in the three multiplications
and the computation error. Simulation is made in FPGA
for a set of 1000 series of operations.

| v
r

|
selection

stages
delay
(ns)

Saving of time
(ns) |Error|

[0, 32) 4 28.88 0,0 2-30,91
[32, 64) 3 23.23 5.65 (19.5%) 2-22,97
[64, 96) 2 16.07 12.81 (44.3%) 2-14,82
[96, 150] 1 14.02 14.6 (50.8%) 2-6,89

Table 6: Average experimental results

 The simulation results demonstrate that this technique
saves considerable time in cases in which a fast response
is necessary. Error is maintained within the acceptable
margins. Although the value of the scalar product is not
obtained with absolute precision, the result can be
sufficient to make a decision.

8. Conclusions

 The following conclusions have been drawn from the
research described in this paper:
• The use of precalculated results in stored logic

allows the construction of fast operators comparable
to existing methods and lays the foundations for the
design of high performance architectures. At the

same time, the new calculation method offer
inherent advantages due to memory structure:
flexibility, robustness, parallelism and reusability.
The implementation example of a simple operation
based on these ideas demonstrates these
improvements.

• The partial product generation by means of LUT k-
multiplication equals or improves other common
methods of generation. In addition, technological
improvements in manufacture or in communication
with the selection circuit will tend to reduce LUT
access time and, therefore, total operation time.

• The operator’s flexible behavior, which produces
more and more precise results as the number of
iterations increase, is suitable for the construction of
systems with temporal/precision restrictions, in
which result quality is exchanged for response
determinism and speed.

• Finally, the error analysis carried out shows that the
algorithm provides limited results in multiplication
operations, even in cases in which successive
calculations are made with imprecise operands.

9. Acknowledgments

We want to thank Comunications Systems research
group of Computer Technology and Architecture
Department of University of Alicante for providing
positioning system model as well as for discussions on
methodology calculation.
 This work is being backed by grant DPI2002-04434-
C04-01 from the Ministerio de Ciencia y Tecnología of
the Spanish Government.

10. References

[1] W. A. Halang, K. M. Sacha. "Real-Time Systems.

Implementation of Industrial Computerised Process
Automation.” World Scientific Publishing Co. 1992.

[2] G. C. Butazzo. “Hard Real-Time Computing Systems.
Predictable Scheduling Algoritms and Applications.”
Kluwer Academic Publishers. 1997.

[3] F. Pujol, F.J. Ferrández, J.M. García. “A new Method for
Position Location in Random Media”, 8th International
Conference on Electromagnetics of Complex Media,
Lisboa (Portugal), 2000.

[4] J.M. Mora Pascual, “Real-Time Floating Point Arithmetic
Unit”, PhD Thesis, University of Alicante, 2001.

[5] B. Parhami, “Computer Arithmetic: Algorithms and
Hardware Designs”, Oxford University Press, 2000.

[6] W.F. Wong, E. Goto, “Fast Hardware-Based Algorithms
for Elementary Function Computations Using Rectangular
Multipliers”, IEEE Transaction on Computers, vol. 43 (4),
278-294. 1994.

[7] M.D. Ercegovac, T. Lang, J-M. Muller, A Tisserand,
“Reciprocation, Square Root, Inverse Square Root, and
Some Elementary Functions Using Small Multipliers”,
IEEE Transaction on Computers, vol 49, 628-636, 2000.

[8] S. Carr. “Memory Hierarchy Management”. PhD Thesis,
Rice University. 1993.

[9] G.W. Bewick. “Fast multiplication: Algorithms and
implementation”. PhD Thesis. Dept. of Electrical
Engineering, Stanford University. 1994.

[10] V.G. Oklobdzija, D. Villeger, S.S. Liu. “A method for
speed optimised partial product reduction and generation
of fast parallel multipliers using an algorithmic approach”.
IEEE Transactions on Computers. Vol. 45, no. 3, 1996.

[11] C.S. Wallace. “A Suggestion for a Fast Multiplier”. IEEE
Trans. Computers, vol. 13, no 2. 1964.

[12] R. Zimmermann. “Binary Adder Architectures for Cell-
Based VLSI and their Synthesis.” PhD Thesis, Swiss
Federal Institute of Technology. 1997.

[13] W.F. Wong, E. Goto, “Fast Hardware-Based Algorithms
for Elementary Function Computations Using Rectangular
Multipliers”, IEEE Transaction on Computers, vol. 43 (4),
278-294. 1994.

[14] J-A. Piñeiro, M.D. Ercegovac, J.D. Bruguera. “High-
Radix Logarithm with Selection by Rounding”,
Proceedings of the IEEE International Conference on
Application-Specific Systems, Architectures and
Processors (ASAP’02), 2002.

[15] S.J.E. Wilton, N.P. Jouppi. “An Enhanced Access and
Cycle Time Model for On-Chip Caches”. Digital Western
Research Laboratory. 1994.

[16] H. Nambu, K. Kanetani, K. Higeta, M. Usami, T.
Kusonoki, K. Yamaguchi, N. Homma. “A 1.8 ns Access,
5550 Mhz 4.5 Mb CMOS SRAM”. IEEE ISSCC. 1998.

[17] American National Standards Institute and Institute of
Electrical and Electronic Engineers. “IEEE Standard for
Binary Floating-Point Arithmetic”. ANSI/IEEE Standard
754. 1985.

Appendix A: Xilinx FPGA

Hardware design and simulation techniques and their
subsequent implementation in reconfigurable systems
such as FPGAs, enable valid designs to be made and a
high productivity in development to be obtained. The
results of this study are focused on designs implemented
on standard FPGAs, specifically on the Xilinx family of
FPGAs. These devices have had a wide acceptance and
are used by the scientific community as a whole for
processing results.
 In spite of the fact that the speed of these devices is
not very high (up to 50 MHz), by choosing them we aim
to establish a homogeneous basis for comparing the
addition algorithms and draw conclusions from this
comparison. Using one of these devices, the simulation
and testing of the proposed design have been carried out
with definition and simulation free software Xilinx
WebPack 3.2XEn found at http://www.xilinx.com.
 On the development platform, the architecture
proposed in VHDL code and that of other known
architectures, has been developed and the results
obtained by the software itself on the execution times
have been compared.

