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Abstract 
     A new operation model of flexible calculation that 
allows us to adjust the operation delay depending on the 
available time is presented. The operation method design 
uses look-up tables and progressive construction of the 
result. The increase in the operators’ granularity opens 
up new possibilities in calculation methods and 
microprocessor design. This methodology, together with 
the advances in technology, enables the functions of an 
arithmetic unit to be implemented on the basis of 
techniques based on stored data that provide quality 
results and systematization in the implementation. 
     The proposed techniques are applied in the design of 
a multiplier operator. We report an evaluation of the 
architecture in area, delay and computation error, as 
well as a suitable implementation of an application 
example in FPGA to validate the design. 
 
1. Introduction 
 
     In the last years a spectacular development of the 
scientific and commercial applications has taken place. 
Although calculation performance has grown to a 
considerable speed, there are a great number of 
applications that overflow the processing possibilities of 
the most advanced systems. In addition, other 
computational problems are difficult to fit into the rigid 
schemes of the calculation of conventional arithmetic 
architectures [1], [2], [3]. 
     We can find several examples in which an intensive 
processing of data provided by peripheral takes place. In 
these cases, a strong coordination among sensors and the 
rest of system is necessarily produced. For example, in 
systems of mobile objects guidance, when the speed of 
the object is increased, the system has less time to 
process the information that is received from the sensors 
and to make decisions about its movement. In this 
application, a fast answer in appropiate time that allows 
decisions to be made at every moment may be advisable, 
with the drawback of less precision in the results. 
     For these applications it would be advantageous to 
have a calculation methodology allowing the design of 
high performance operators with control on the results 
and act on the even quality of the result and processing 
delay based on the specific computational requirements 
of each case. The progressive improvement in 
performance provided by advances in electronic 
technology justifies the search for new proposals that 
would probably have been prohibitive some time ago. 
     In this work, we present a flexible calculation model 
that supplies variable quality of the result based on the 
available time. The methodology must make good use of 

the operands’ structure, provides strategies that 
contribute determinism in the response time and, at the 
same time, allows parallel designs. 
     We propose a flexible method of calculation of the 
arithmetical multiplication as an example of this 
methodology and its use in a realistic application. 
     This paper is structured in the following way: in 
section 2 we establish the operator’s design principles 
and describe the architecture for the flexible arithmetic 
unit. Next, in section 3 the flexible multiplication 
algorithm is proposed based in that principles and 
evaluated under the scope of the area cost, delay and 
computation error. Finally, we present a suitable 
application example of the proposed method. 
 
2. Design principles 
 
     The design objective is to conceive a calculation 
method of the mathematical functions that supplies to the 
processor with flexible adjustment in time and precision. 
The proposal consists of the combination of two 
techniques: using precalculated data in look-up tables 
and obtaining the result in a successive processing way. 
     The construction of operators based on the following 
design principles will depend on the characteristics of 
each function, and it is not applicable in all the cases. 
Nevertheless, in those operations in which it is possible 
take place advantages relative to the performance and 
flexibility of the processing. 
 
2.1 Design based on Look-up tables 
 
     Traditionally, most elementary operators consider a 
bit to be the minimum unit of information that can be 
processed. They are called bit-to-bit operators. A new 
step in their evolution consists of increasing the 
granularity and taking a group of bits as the minimum 
unit of operation. For some functions, this calculation 
model offers a superior performance to the classic bit-to-
bit operations and is therefore an advance in the design 
of high performance and quality operators. 
     In this study, the elementary operators that take a 
number of k bits as the minimum unit of information that 
can be processed are called k-operators. The 
fundamental idea consists of obtaining advantages in the 
design of the generic arithmetic operators by using k-
operator elements in their construction. 
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     Figure 1 shows schematically the functionality of a 
generic k-operator. 
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Figure 1: Operator comparison 

     The proposed design of the k-operators consists of 
using look-up tables (LUT —Look Up Table) to make 
the effective calculation. In that way, for any pair of 
blocks of k bits, a memory structure contains the direct 
result of the operation. These look-up tables must store 
all the results for k-size operands, so that it is only 
necessary to select the cell which contains the result. The 
operand’s value itself is used to address the table [4]. 
The nature of the stored data will depend on the function 
to be calculated. 
     Figure 2 schematically shows a k-operator multiplier 
based on memory designs. 
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Figure 2: Multiplication k-operator 

     The implementation of the k-operators using look-up 
tables provides a greater density of VLSI integration 
than in the other combinational methods. In addition, 
LUTs have interesting characteristics relating to real-
time processing: they work in a totally determinist way 
and they can incorporate error detection and correction 
mechanisms. The treatment of the operands in small 
blocks promotes segmentation and a high level of 
parallelism. These construction capabilities provide 
robustness and flexibility to the operations [5]. 
     The area cost of the k-operators based on look-up 
tables grows exponentially with the operand length. 
Because of this, the use of spatial complexity is limited 
to general cases and affects the desirable value of k that 
maximizes performance. A compromise formula 
between the value of k and the size of the memory must 
be found. Nevertheless, advances in technology play a 
crucial role in performance improvement and in the 
reduction of the temporal delay. 
     The use of tables in the computation of functions is a 
well-known technique. In arithmetic literature, several 
implementations of elementary functions based on the 
use of look-up tables are analyzed [6], [7]. In this 
approach, we use look-up table to process directly an 
elemental operation. For performance reasons, it is 

assumed that the LUT memory is implemented in the 
circuitry of the Arithmetic Unit itself, thus reducing 
communication costs [8]. 
 
2.2. Successive result processing 
 
     Response quality is related to the number of 
calculated stages of the operations, and therefore, will be 
able to act on the time-quality-parallelism relationship. 
This approach forms a new architecture that will 
implicitly incorporate flexibility in order to adapt the 
duration of the calculation to time availability, which is 
the instrument for real-time management. This 
characteristic provides capabilities for successive 
refinement of the solution. 
     Smaller process time is translated in smaller precision 
in the results. This methodology cannot be generalized 
for all the operations nor does it offer reliability in all 
cases; each operation must be analyzed to verify the 
benefits. 
 
3. Flexible Aritmetic Unit 
 
     The implementation objective is the conception of a 
flexible arithmetic unit whose operations are based on 
the previous design principles. The projected arithmetic 
unit carry out five operations: addition, multiplication, 
division and square root. 
     For the calculation management, the arithmetical unit 
has an operation control module that establishes the 
delay-precision of the operation and translates the 
application requirements into the number of processed 
stages. This operation control module consists of a 
combinational circuit that has the problem conditions in 
its inputs and a number of operation stages in its outputs, 
for example, a coder or multiplexor. Another design of 
this module may be a table look-up that stores the 
amount of stages to calculate in each situation. 

     The figure 3 illustrates the unit's design. 
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Figure 3: General structure of the arithmetic unit 

 
     In the rest of this work the multiplication operation 
based on these design principles is exposed. We are 
currently also investigating the adjustment to the flexible 
calculation of the all those operations. They will be 
presented in following works. 



 

 

4. Multiplication operation 
 
4.1 Algorithm 
 
     The calculation method is made up of the following 
steps [9]: generation of partial products, reduction in the 
number of partial products and final addition. 
     1. Generation of partial products: the partial products 
generation process is crucial to the operation's overall 
performance. Two aspects must be taken into account in 
its design: the generating circuit's complexity and the 
number of generated partial products. The first aspect is 
linked to the time taken in generating each partial 
product, whereas the second one affects the time 
invested in subsequently combining them to make up the 
final result. Both aspects are opposed, that is improving 
one it can mean to make worse the other. 
     The technique proposed is based on LUT access with 
precalculated products. The method consists of 
fragmenting the numbers to be multiplied into k bit 
blocks and obtaining the product of each pair of blocks 
directly from the LUT k-multiplication table that shows 
figure 2 to form the whole of partial products. Figure 4 
shows partial products for operands divided in 4 parts. 
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Figure 4: Generation of partial products 

 
     The last partial product can be placed to the left of the 
first one. For n-bit size operands, we can express the 
number of partial products generated according to the 
expression 2n/k-1. 
     With this technique, a lower number of partial 
products are obtained compared with other known 
methods, as the following table shows. 
 

n Simple 
Generation 

Booth2 
[8] 

LUT-Prod 
k=4 

LUT-Prod
k=8 

8 8 5 3 1 
16 16 9 7 3 
32 32 17 15 7 
64 64 33 31 15 
Table 1: Quantity of partial products generated 

 
     2. Reduction in the number of partial products: the 
general way in which a high performance multiplier 
works consists of combining the partial products in order 
to reduce their number until a total of two is reached, 
which will be added in the last stage of the multiplier. 

There are several methods of reduction of partial 
products [9], [10]. In this work a Wallace-tree reduction 
is used based on 3:2 counters [11]. 
     3. Final addition: It is implemented by anyone of the 
known addition methods [12]. 
 
4.2 Flexible multiplication 
 
     The partial product generation stage must be carried 
out completely due to the fact that, on the one hand, it is 
the starting point for the following steps, and on the 
other, because the cost of generating all the partial 
products is constant. 
     The proposed flexible method consists of beginning 
the combination of generated partial products from an 
initial point according to the time available. Since the 
application requirements already are contemplated in the 
partial product reduction stage, the addition of the result 
of the combination will be made completely. 
     Thus, for most restricted case, the first and the last 
partial product generated are ready to go on directly to 
the result. See figure 5. 
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Figure 5: Result produced for the first selection 

 
     For other cases, partial products are combined and the 
final addition is carried out. See figure 6. 
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Figure 6: Result produced for the 2nd and 3rd selection 

 
     In this way, we obtain an imprecise result in less 
processing time than we need to carry out the complete 
operation of combination and final addition of partial 
products. 
     The amount of possibilities depends on the length of 
the operands and the operation control module. This last 
one transforms the requirements of the problem into a 
discreet position of combination beginning. 
 



 

 

5. Architecture 
 
     This architecture is suitable for specific purpose 
applications where time restrictions are present. 
 
5.1 Design 
 
     Figure 7 shows the proposed arithmetic unit 
architecture for multiplication operation. We assume, for 
example, the numbers are fragmented into 4 blocks of k 
bits. 
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Figure 7: Block diagram of the proposed architecture 

 
The main features of this architecture are: 
• The Operation Control module consists of a 

combinational circuit that has application conditions 
in its inputs and a number of operation stages in its 
outputs. 

• Access to the LUT k-multiplication provides the 
partial results for all the pairs of blocks. 

• The partial product reduction is carried out by 
means of a tree scheme based on Carry Save 
Adders. 

• Several results with different qualities of degree and 
delay are extracted from operation circuits. There 
are 4 execution paths that provide results with 
different precision degree with respect to the exact 
retult and with different time delay. 

• The Operation Control circuit selects the partial 
result that best fits the conditions of the problem. 

5.2 Path time 
 
     The path time of the proposed architecture is set by 
the delay of the slowest path in the circuit. Depending on 
the application requirements and the selected operation, 
it can be any of the main paths of the implementation. 
There are the same number of paths as possibilities of 
result selection. These paths, as shown in figure 7, are 
the following: 
• Max(Op.Control, LUT-Multiplier) + mux 
• Max(Op.Control, LUT-Multiplier) + CSA + 

Addition + 2mux 
• Max(Op.Control, LUT-Multiplier) + 3CSA + 

Addition + 2mux 
• Max(Op.Control, LUT-Multiplier) + 4CSA + 

Addition + 2mux 
     Apparently, the improvement in time of one 
incomplete operation is not very significant, 
nevertheless, when the amount of the multiplications to 
be made is elevated, the architecture acquires a greater 
relevance. 
 
6. Evaluation of the proposed architecture 
 
     In this section, we present estimates of the area costs, 
execution time and error computation of the architecture 
proposed in the previous section. The power 
consumption of the circuit is not important for this 
research and is therefore not dealt with in this paper. It 
will be studied in depth in the event that it can be 
implemented in a chip. 
 
6.1 Area estimations 
 
     The model we use for the area estimations is taken 
from [7], [13] and [14] as well as of our own estimations 
and experiments.The unit used is the size of a complex 
gate τa, since the area of the compound LUT-
multiplication, selection circuits, adder and multiplexors 
are easily expressed in this unit. 
     The main contributions to the area of the architecture 
come from the compound LUT k-multiplication. The 
area of the other components of the circuit is small when 
compared to the area of the LUT, therefore, the 
estimation is focused only on the LUT k-multiplication. 
     Data storage imposes severe restrictions on k block 
size. Table 2 shows the cost for the most common sizes. 
 

k Size (bits) 
4 256 B
6 6 KB
8 128 KB 

k Size (τa) 
4 ≈ 70 τa

6 ≈ 1441 τa

8 ≈ 20478 τa 
Table 2: LUT k-multiplication size 

 
     As we can see, the area cost increases exponentially 
with the k value. Therefore, we have to achieve a 
balance between the memory required and the 
complexity of the circuit. The model assumes a 40 
τa/Kbit rate for tables addressed by words of up to 6-bits 



 

 

long, a 35 τa/Kbit rate for 7-11 input bit tables, a 30 
τa/Kbit rate for 12-13 input bit tables and 25 τa/Kbit one 
for 14-16 input bit tables. 
     As shown in the previous table, the amount of area is 
much greater than in conventional multiplier designs 
based on simple combinational circuits, nevertheless, 
this architecture is still suitable for applications in which 
the size of the circuit is not a problem. 
 
6.2 Delay estimations 
 
     Delays in a complete operation calculus are divided 
into access to the LUT k-operator and combination of 
partial results. 
     Let τt be the delay of a complex gate, such as one 
full-adder. According to [7], [14] analysis1 we assume a 
delay of about TLUT = 3.5τt for 8 input bit tables, TLUT = 
5τt for 12-13 input tables and TLUT = 6.5τt for 16 input 
bit tables. We suppose a concurrent access of all the 
operand’s blocks in a multiport memory. 
     The delay estimations for each module of the propose 
architecture are: 
• Access time to the LUT k-multiplication to obtain 

the precalculated partial products. This time will 
only be determined by memory access time TLUT. 

• Reduction of partial products: Let TCSA be the time 
taken in the Carry Select Adder that reduces 3 
partial results to 2. According to [9] design, a 
reduction step consists of two complex gates τt, so 
TCSA = 2 τt. 

• Final Addition: We consider anyone addition 
method. The standar adder delay depends on the 
operand’s length. According [12], addition delay is 
TAdder = τt lg n. 

     The comparison of the propose methodology with 
other algorithms is focused in the first part of the 
operation. Due to the fact that the different methods 
generate a different quantity of partial products, in order 
to compare them homogenously, we reduced the number 
of products generated by including stages of 3:2 
counters. 
     Table 3 shows the results obtained in terms of costs 
of complex gate levels and LUT access time. The table 
access model is shown as LUTP-x, in which the index 
indicates the k size. We assumed an arbitrary operand 
size. 

Method Generation 
delay  

Reduction 
stages (3:2) 

Total 
delay 

Simple 0.5 τT 5 10.5 τT
Booth2 [8] 2 τT 3 8 τT

LUTP-4 3.5 τT 2  7.5 τT
LUTP-6 5 τT 1  7 τT
LUTP-8 6.5 τT 0 6.5 τT

Table 3: Homogenous comparison between the partial 
product generation methods 

                                                 
1 Implementation using a family of standard gates from the AMS 0.35 
µm CMOS library 

     The LUT k-multication module performance plays a 
fundamental role in the calculation time. Therefore, the 
look-up table is proposed as part of the arithmetic unit 
itself in order to accelerate its access. These table sizes 
are easily handled with the rest of the arithmetic unit by 
today’s high speed, high density memories and it may 
already be possible to implement the entire hardware on 
a single chip. 
    In addition, the circuit delays depend on the 
technology used and on the implementation itself. In 
order to prove this, the LUT k-multiplication have been 
implemented in VHDL and tested on FPGA2. The LUT 
implementation corresponds to the design presented in 
[15], [16], and has been integrated into the selection 
circuit. Table 4 shows the results obtained after the 
synthesis and simulation of each k-multiplication for 
some k wordlength in homogenous comparison. 
 

Method Generation 
delay  

Reduction 
stages (3:2) 

Total 
delay 

Simple 0.573 4.704 5.277 
Booth2 [8] 2.181 2.352 4.533 

LUTP-4 2.754 2.352 5.106 
LUTP-6 2.946 1.176  4.149 
LUTP-8 3.132 0 3.132 

Table 4: Delays of partial product generation in 
homogenous comparison (ns) 

 
     The previous results demonstrate that the proposed k-
operator design presents a delay similar or better to the 
conventional designs for this particular implementation, 
and they show the technology’s high degree of 
dependency on performance. 
     The total delay of the complete operation for several 
operand sizes n is shown in the following table in term 
of complex gate delay: 
 

n Generation 
delay, k=8 

Reduction of 
partial product 

Final 
addition 

Total 
delay 

16 6.5 τt 2 τt 4 τt 12.5 τt 
32 6.5 τt 8 τt 5 τt 19.5 τt 
64 6.5 τt 12 τt 6 τt 24.5 τt 

Table 5: Complex gate delay of multiplication 
 
     Complex gate delay will take different values 
according to the implementation technology used. 
 
6.3. Error computation analysis in flexible 
multiplication 
 
     With the objective of testing the error computation 
while ignoring the correct combination of all the 
sequence of partial results, an exhaustive set of 
experiments has been made to prove the method for all 
cases. The experiments have been carried out by means 

                                                 
2 See appendix A. 



 

 

of a simulation in a C programming environment3. They 
are both in individual operations and in sequences of 
successive operations. 
     The profile of the experiments is the following: A 
LUT 8-multiplication, operand size n = 64 bits and 
operands are rational numbers at the interval [0, 1). To 
process the complete number 8 stages are needed. 
 
6.3.1. Independent multiplications 
 
     This test consists of calculating the average error rate 
in 107 multiplications of two random rational numbers. 
Figure 8 shows a graph of error evolution in stages. The 
dotted line indicates the limit of precision for numbers 
represented according to the IEEE 754 double precision 
standard [17]. 
 

 
 

Figure 8: Evolution of the error average in independent 
multiplications 

     The following figure shows the error dispersion. It is 
located around the interval that depends on the amount 
of processed stages. 

 
Figure 9: Error dispersion in incomplete operations 

 
6.3.1. Successive multiplications 
 
     This test is aimed at empirically analyzing error 
propagation while processing inaccurate values 
consecutively. The error average is calculated in 1,000 
                                                 
3 C++ Builder 5.0 Professional. Borland software corporation. 
http://www.borland.com 
6 http://www.ua.es/i2rc/ 

sets of 1,000 successive operations of random rational 
numbers within the interval [0,1) for each of the 
operation's loops. The numbers are generated at a 
positive interval, so they do not compensate positive 
errors with negative ones in the successive operations. 
The graph in figure 10 shows the results obtained in this 
test: 
 

 
Figure 10: Evolution of the error average in succesive 

multiplications 

     The previous figures graph the decreasing tendency 
of the error with the number of operation stages. With 
the sufficient stages the wished precision is reached with 
a saving of time with respect to the complete operation. 
 
7. Application example 
 
     This section describes a simple example that 
illustrates the specific application of the proposed 
architecture. 
     The experiment is located in the Specialized 
Processing Architectures and Communications Systems 
research groups of the University of Alicante, Spain6. 
One of the most interesting lines of research consists of 
the development of a Real-Time processor that considers 
the temporal restrictions in the low level of the 
architecture [4]. It is usefulness in many interest 
applications: calculation of trajectories for moving 
bodies, guidance and positioning systems, high 
frequency communications etc.…To process this 
successfully, the flexibility and determinism of the 
calculations plays a fundamental role in the correct 
working of the processor. 
     Let there be an object that moves according to a 
vector position s

r
. The application consists of 

calculating the scalar product of this vector in relation to 
a reference vector r

r
. 

 
r
r

 = (rx, ry, rz) ; s
r

 = (sx, sy, sz) ;  

r
r

 · s
r

 = rxsx + rysy + rzsz (1) 



 

 

     We proposed the following architecture to resolve the 
expresion vector multiplication (1): 

Flexible 
multiplication

Addition

Operation
control

stages

|v|

rα · sα

r · s

sαrα
n n

2n

Flexible 
multiplication

Addition

Operation
control

stages

|v||v|

rα · sα

r · s

sαrα
n n

2n
 

Figure 11: Architecture for the calculation of the scalar 
product 

     The product of the individual components is made 
sequentially by flexible multiplication operator In the 
time of LUT k-multiplication, the operation control 
module decides the number of stages that will be made 
in the reduction step of multiplication operations. The 
criterion is based on the speed of the moving object. At 
greater speed, fewer partial results are selected. 
     For example, we assume: xi ∈ [0, 1),                   

| v
r

| ∈ [0, 150], n = 32 bits, k = 8. 
 
     Table 6 shows the number of selection stages, the 
time-saving that takes place in the three multiplications 
and the computation error. Simulation is made in FPGA 
for a set of 1000 series of operations. 
 

| v
r

| 
selection 

stages 
delay 
(ns) 

Saving of time 
(ns) |Error| 

[0, 32) 4 28.88 0,0 2-30,91 
[32, 64) 3 23.23 5.65 (19.5%) 2-22,97 
[64, 96) 2 16.07 12.81 (44.3%) 2-14,82 
[96, 150] 1 14.02 14.6 (50.8%) 2-6,89 

Table 6: Average experimental results 
 
     The simulation results demonstrate that this technique 
saves considerable time in cases in which a fast response 
is necessary. Error is maintained within the acceptable 
margins. Although the value of the scalar product is not 
obtained with absolute precision, the result can be 
sufficient to make a decision. 
 
8. Conclusions 
 
     The following conclusions have been drawn from the 
research described in this paper: 
• The use of precalculated results in stored logic 

allows the construction of fast operators comparable 
to existing methods and lays the foundations for the 
design of high performance architectures. At the 

same time, the new calculation method offer 
inherent advantages due to memory structure: 
flexibility, robustness, parallelism and reusability. 
The implementation example of a simple operation 
based on these ideas demonstrates these 
improvements. 

• The partial product generation by means of LUT k-
multiplication equals or improves other common 
methods of generation. In addition, technological 
improvements in manufacture or in communication 
with the selection circuit will tend to reduce LUT 
access time and, therefore, total operation time. 

• The operator’s flexible behavior, which produces 
more and more precise results as the number of 
iterations increase, is suitable for the construction of 
systems with temporal/precision restrictions, in 
which result quality is exchanged for response 
determinism and speed. 

• Finally, the error analysis carried out shows that the 
algorithm provides limited results in multiplication 
operations, even in cases in which successive 
calculations are made with imprecise operands. 
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Appendix A: Xilinx FPGA 
 
Hardware design and simulation techniques and their 
subsequent implementation in reconfigurable systems 
such as FPGAs, enable valid designs to be made and a 
high productivity in development to be obtained. The 
results of this study are focused on designs implemented 
on standard FPGAs, specifically on the Xilinx family of 
FPGAs. These devices have had a wide acceptance and 
are used by the scientific community as a whole for 
processing results. 
     In spite of the fact that the speed of these devices is 
not very high (up to 50 MHz), by choosing them we aim 
to establish a homogeneous basis for comparing the 
addition algorithms and draw conclusions from this 
comparison. Using one of these devices, the simulation 
and testing of the proposed design have been carried out 
with definition and simulation free software Xilinx 
WebPack 3.2XEn found at http://www.xilinx.com. 
     On the development platform, the architecture 
proposed in VHDL code and that of other known 
architectures, has been developed and the results 
obtained by the software itself on the execution times 
have been compared. 
 
 


