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Abstract. 

The Hough Transform (HT) is a useful technique in 
image segmentation, concretely for geometrical 
primitive detection. A Convolution-Based Recursive 
Method (CBRM) is presented for generic function 
evaluation. In this approach, calculations are carried 
out by a unique parametric formula which provides all 
function points by successive iteration. The case of 
combined trigonometric functions involved in the 
calculation of the HT is analyzed under this scope. An 
architecture for reconfigurable FPGA-based 
hardware, using Distributed Arithmetic (DA) 
implements the design. It provides memory and 
hardware resource saving as well as speed 
improvements according to the experiments carried 
out with the HT. 

 
 
1. Introduction 

 
Proposed in 1962, the Hough Transform (HT) has 

become a widely used technique in image 
segmentation: plane curve detection [1], object 
recognition [2], air picture vectorization [3], 3D image 
reconstruction [4], industrial quality inspection [5], 
biomedical applications[6][7], quasar reckoning [8], 
OCR [9], etc. The HT is very suitable because of its 
robustness, although the great amount of temporary 
and spatial resources that requires has moved it away 
from real time applications. This way, the 
investigation efforts in HT have dealt with the design 
of fast algorithms and parallel or ad-hoc architectures. 
As the HT consists of function evaluation using 
arithmetic operations different algorithmic approaches 
have been developed: piece-lineal [10], combinatory 
[11], binary [12], adaptive [13] and fast [14]. There 
are also implementations of the CORDIC algorithm 
for applications that demand high speed and precision, 
such as digital signal and image processing and 
algebra [15]. However, their drawback is the lower 
degree of regularity and parallelism capabilities when 
comparing with the traditional algorithm. The 
parallelism that underlies in the traditional algorithm 
allows the implementation of architectures with shared 
or distributed memory (lineal array, mesh, hypercube 
[16] and binary tree) as well as specific HT systolic 
ones [17]. 

This paper presents the HT calculation under the 
scope of a Convolution-Based Recursive Method 
(CBRM), providing a suitable approach for the 
evaluation of the combined elementary functions 
involved, sine and cosine, together with the systematic 

operation of multiplication. Compared with other 
proposals, CBRM offers good performance in speed, 
memory requirements and trade-off between precision 
and error. The Distributed Arithmetic implementation 
provides simplicity to the circuit and also good results 
as for error and speed. 

The paper is structured in seven parts. Following 
the introduction, the CBRM fundamentals are 
presented in section 2 and its application to the 
calculation of the HT is inferred in section 3. Section 
4 presents the DA-architecture which is evaluated in 
section 5. Section 6 compares our proposal with other 
implementations. Finally, Section 7 summarizes and 
draws conclusions from this work. 
 
2. Convolution-Based Recursive Method 
(CBRM) 

 
This section introduces some fundamental 

concepts of the Convolution-Based Recursive Method 
(CBRM) and outlines its particular features. 
Mathematical demonstrations that are not under the 
scope of this paper will be omitted. 

Convolution is an operation between two functions 
that is relevant to many different applications in 
digital signal and image processing [18], control 
engineering [19], mathematical morphology [20] or 
pattern analysis [21]. All these applications share as a 
common feature the calculation of mathematical 
spatial or temporary transforms that must be carried 
out by means of convolution. Generally, convolution 
is difficult to calculate. This drawback is faced by 
substituting the initial convolution expression of the 
functions by the product of these functions which have 
been previously transformed to frequential ones. 
However, CBRM is not concerned directly with this 
well-known duality: it rather exploits the primitive 
meaning of convolution. That is, the convolution 
between two functions is a mean to evaluate one of 
them using the other one as a unit [22]. This 
fundamental idea provides a powerful basic tool for 
function evaluation purposes. Equation (1) shows the 
expansion of convolution in the case of two discrete 
functions f and g in the interval [0, +∝  ). The result 
of the operation is the function Ψ , which represents 
the evaluation of f by g (or g by f ). 
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In the case of discretized functions, a recursive 
formulation of the convolution can easily be achieved 



from (1) for function Ψ, providing a more compact 
and useful formula, see equation (2). 
 

[ ]1 · · 0,q q qG q Iα β+Ψ = Ψ + ∈ ⊂  ℕ (2) 
 

Reciprocally, it can be demonstrated that any 
discrete recursive equation represented by a weighted 
sum of two terms like those of equation (2) can be 
transformed in two convolving discrete functions 
(namely f(q) = α q and g(q) = β Gq, if α ≠ 0. The 
equivalence between (1) and (2) provides an approach 
for discrete function evaluation suitable in many cases 
(trigonometric, hyperbolic, logarithmic, exponential, 
inverse, square-root, constant, lineal functions). 

The main features of CBRM are: 
• CBRM is not concerned with the particular 

structural characteristics of the evaluated function 
because it only uses the Ψ value computed at i 
iteration as an explicit argument which allows the 
computation of the next value at iteration i+1.  

• The algorithm runs under a unique compact 
recursive formula and suits in a great amount of 
cases. 

• The evaluation of any function Ψ  is carried out 
as a sum of two parts which have fixed 
contributions held by parameters α  and β (see 
equation 2). G is an auxiliary function whose 
value can be evaluated in the same way asΨ or 
also can be a function of Ψ  itself.  

• Parameters α, β  and function G characterize the 
function Ψ regarding to behavioural aspects and 
iteration path. Attended that CBRM runs under a 
unique formula, the combinations of α, β values 
are crucial and little changes in any of these 
values affects dramatically the overall behaviour. 
Parameter space is tightly related with 
behavioural features. 

• The initial values of Ψ and G are fixed by the user 
specifications. CBRM provides a newΨ-value per 
iteration. 

A convolution table can be built for providing the 
(α, β, G) associated to the calculation of f *g, but it 
must be noticed that in spite of the generic 
mathematical equivalence between (1) and (2), the 
computational usefulness of CBRM reduces when 
function G is not easy to carry out. 
 
3. Application of the CBRM to the HT 
calculation 
 

The geometric primitive detection using the HT 
implies three stages: image outline creation by using 
an edge detector, application of the HT to each point 
of the image and a voting process in the Hough 
domain in order to extract the geometric primitives. 
 

 
Fig. 1. HT parameters for the line detection case 
 

If the geometric primitive to be detected is a 
straight line, the HT transforms each point P(x,y) in 
the cartesian domain in a point (ρ,θ) in the Hough 
domain, and vice versa, as shown in Fig 1. So, the 
Hough domain is complete and unique for 0≤ ρ<Π 
line representation. 

The Hough domain can be interpreted as a voting 
grid. Each point in the Cartesian domain votes for a 
set of lines that intersect it and that stand for a grid 
point (ρ,θ). A local maximum point in the voting grid 
represents the best adjusted line detected. The grid 
point’s increments ∆ρ y ∆θ establish both distance and 
angular difference between lines in the Cartesian 
domain, respectively. 

The HT is a robust technique since the voting 
process is not affected by isolated noise points 
because wrong votes do not affect the local maximum. 
The HT also manages successfully line occlusion 
problems, because the distance between points is not 
relevant. 

The parametrized space is discretized in Nθ levels, 
from 0 to П and Nρ levels, from ρmin to ρmax. The HT 
calculates the ρ values for all the angles in [0,П[ and 
for every pixel in the image. The direct calculation has 
O(N2) complexity and the global amount of operations 
is N2·Nθ. If [0,П[ is considered as [0,П/2[U[П/2,П[, 
the HT for every pixel (xi,yj ) in the image can be 
written as: 
 

 

If: 
 

 

When substituting (4) in (3) we have that: 
 

 

It appears that (ρI )i and  (ρΙΙ )i can be crossed-
evaluated by applying twice the CBRM equation (2), 
using Gq=(ρI )i when evaluating ψq =(ρII )i and using 
Gq=(ρII )i when evaluating ψq =(ρI )I ,  (ρI )0 and (ρII)0 
should be initialized with the value of the coordinates 
of each pixel in the image. 
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4. DA-Architecture 
 

The application to the crossed evaluation of (ρI )i 

and (ρΙΙ )i leads to duplicate the basic architecture of 
CBRM, as shown in Figure 2, where each ρ−value 
calculation involves two multiplications and one sum. 
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Fig. 2: Functional architecture implementing the 

Hough transform calculation 
 

The proposed implementation of CBRM is based 
on DA concerned with the trade-off between time 
delay, memory and hardware resource saving. The 
main idea consists of taking the partial products of the 
multiplications performed by the functions ρI  and ρII 
and α, β,  from a look-up table (LUT) on every 
iteration. Due to the fact that α and β  remain constant 
through the whole calculation, the following values of 
(ρI )i and (ρΙΙ ) i . will access the table in order to 
provide the partial results. Figure 3 shows the 
Convolution-LUT table which provides the result 
pursued in the case of ρI  It would be a similar one for 
ρII. A n-bit length is assumed for both (ρI )i and (ρII )i  
The partial products must be added in order to 
calculate the final function value at any iteration. 
These values are feedbacked in order to access the 
LUTs for a new partial products extraction cycle. We 
assume a two’s complement number coding for partial 
products in order to allow only add operations. 
However, before any LUT access, function values 
must be recoded to the initial signed codification.  
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Fig. 3. Principle of Convolution-LUT calculation 

 

Memory size involves a limitation for the general 
case. Therefore, an operator fragmentation into blocks 
is presented handling a set of bits capable of providing 
a suitable memory addressing. 

Considering that the variables involved in the 
calculation are n-bit length and that k stands for the 
number of digits of each set, the operators are divided 
into t parts: t = n/k. This way, obtaining the partial 
results for every block from the memory should be 
required. On every memory access the operator sign is 
also pointed out. 

Convolution-LUT table memory access for each 
block is shown in Figure 4. 
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Fig. 4. Convolution-LUT partial calculation 

 

It should be pointed out that for k=1, the proposed 
architecture works in a serial way, because the 
calculation of the ρ  functions performs so many LUT 
accesses as the number of digits of the numbers. In 
this particular case, the memory structure for function 
ρI  is shown in the following table. A similar table can 
be built for (ρII )i. 
 

(ρΙI )i (ρΙ )i 
ρΙ >0 
ρΙI >0 

ρΙ  >0 
ρΙI <0 

ρΙ <0 
ρΙI  >0 

ρΙ <0 
ρΙI <0 

00 0 0 0 0 
01 β −β β −β 
10 α α −α −α 
11 α + β α − β −α + β −α − β 

 
 

Table 1. Convolution-LUT structure for k = 1 
 

The addition sequence calculation establishes 
several design possibilities. Data precision is held to 
n: 
• Implementation 1: Serial scheme for processing 

each add operands in a single iteration (see Figure 
5a). 
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Fig. 5a. Serie structure add operands 

 

• Implementation 2: Add operand reduction scheme 
into two final ones so that to perform a final 
addition. This design is similar to that used in a 
multiplier for performing partial product 
reduction (see Figure 5b). 
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Fig. 5b. Reduction structure add operands 
 

This approach provides the whole set of partial add 
operands in parallel in order to feed a reduction tree 
process. This way, in spite of a hardware complexity 
growth, a smaller operation delay is achieved. 
 
Cycle time 

The delay related to every function value 
calculation depends on the particular implementation 
developed. According to the schemes analysed 
previously, these delays could be expressed in the 
following way, respectively: 
• Implementation 1: 
       n·(Convolution-LUT + Adder)  
• Implementation 2: 
       Convolution-LUT + ReductionStructure + Adder 

So, the cycle delay depends on the particular 
implementation. 
 
5. Evaluation of the proposed architecture 

 
In this section, we present area costs and execution 

time estimates of the architecture proposed in the 
previous section. The power consumption of the 
circuit is not important for this research and is 
therefore not dealt with in this paper. It will be studied 
in depth in the case that it should be implemented in a 
chip. 
A. Area estimations 

The model we use for the area estimations is taken 
from [23], [24] and [25]. The used unit is the size of a 
complex gate τa, since the area of the LUTs and other 
components are easily expressed in this unit. 
• Convolution-LUT: Data storage imposes severe 

restrictions on k block size. As we can see in table 
2, the area cost increases exponentially with the k 
value. Therefore, we have to achieve a balance 
between the memory required and the complexity 
of the circuit. The model assumes a 40 τa/Kbit 
rate for tables addressed by words of up to 6-bits 
long, a 35 τa/Kbit rate for 7-11 input bit tables, a 
30 τa/Kbit rate for 12-13 input bit tables and 25 
τa/Kbit one for 14-15 input bit tables. Following 

table shows the cost in terms of τa and bytes for 
the most common sizes and wordlength. 

 

LUT memory requirements n k 
Bytes Complex gates 

1 32 B 10 τa 
2 128 B 40 τa 
4 2 KB 560 τa 

16 

8 512 KB 102400 τa 
1 64 B 20 τa 
2 256 B 80 τa 
4 4 KB 1120 τa 

32 

8 1 MB 204800 τa 
 

Table 2. LUT memory requirements 
 

• Adder: A n-bit adder requires n τa. [25] 
• Reduction structure: A 3:2 counter uses 2 τa, and 

a 4:2 counter uses 4 τa. 
As shown in the previous tables, the main 

contributions to the area of the architecture come from 
the convolution-LUT. With the previous area cost for 
each component the total area for design alternatives 
can be calculated. 
B. Delay estimations 

Let τt be the delay of a complex gate, such as one 
full-adder. The delay estimations have been performed 
making the following assumptions: 
• Convolution-LUT: According to [23], [24] 

analysis1 we assume a delay of about TLUT = 3τt 
for 7 input bit tables, TLUT = 3.5τt for 8 input bit 
tables, TLUT = 5τt for 12-13 input tables and TLUT 
= 7.0τt for 16-18 input bit tables. 

• Adder: The delay of the n-bit adder is τt log n 
• Reduction structure: This module has a delay of 2 

τt for 3:2 counter stage and 3·τt for 4:2 counter. 
 
6. Comparison with other proposals 

 
Two architectures of fast HT based on CORDIC 

are considered for comparison with CBRM 
calculation: a pipelined reconfigurable implementation 
[26] and a parallel one [27]. Area and delay are 
considered in these comparisons. Error is treated only 
in the first proposal. 
 
6.1. CBRM versus pipelined CORDIC. 

 
In the first proposal [26], a HT using 16-bit fixed-

point arithmetic, 12-iteration CORDIC is implemented 
using a Xilinx XS4010XL-PC84 FPGA for fast 
prototyping. An FPGA is a reconfigurable logic 
device consisting of a two dimensional array of RAM-
based programmable cells known as Configurable 
Logic Blocks (CLBs). Each CLB consists of a number 
of function generators implemented as memory LUTs, 

                                                 
1 Implementation using a family of standard gates from the 
AMS 0.35 µm CMOS library 



storage elements to latch generator results, as well as 
imputs and outputs. In addition, dedicated carry logic 
circuitry is available in the CLB’s function generators 
for the fast generation of carry and borrow arithmetic 
logic to increase the efficiency of adders, subtracters, 
accumulators, comparators and counters. 
Programmable routing resources (channels) provide 
interconnections between the inputs and outputs of 
configurable elements within an FPGA to appropriate 
networks. The functionality of each circuit block can 
be customized via configuration bit-stream.  

The Xilinx XS4010XL-PC84 FPGA is a medium 
capacity device, capable of running at moderate 
speeds. It has 400 CLBs arranged into 20·20 array, 
which is equivalent to approximately 10000 gates. 

The HT using pipelined CORDIC with serial scale 
factor compensation uses 83% or 333 CLBs out of 
400 of the XS4010XL FPGA. This implementation 
can be clocked at more than 40 MHz with a 
computational complexity of O(N2) for a N·N image. 
At this frequency, a 128·128 binary image with 128 
discrete angles (∆θ  = 1.40625º) takes 0.0262 seconds 
to transform one image.  

According to the evaluation model presented in 
section 5 and the characteristics of the Xilinx XC4000 
FPGA devices, the following comparison between 
CBRM and pipelined CORDIC can be drawn, 
attended that a CLB consists of one LUT-3, two LUT-
4 and 2 latches. Data precision is 16 bits and reduction 
structure chosen is 3:2. 

 

Pip.CORDIC Nº CLBs =333 Complex gates 

LUT-3 1·333=333 333·23·24·40 τa / Kbit 
=1665 τa 

LUT-4 2·333=666 2·333·24·24·40 τa / Kbit 
=6660-τa  

Latches 2·333=666 2·333·0.5·24·τa 
 =5328 τa 

Overall  13653 τa 
 
 

Tabla 3. Area estimates for pipelined CORDIC 
 
 

CBRM Implementation 1 Implementation 2 
k=1 10 τa +16·1·τa = 26 τa 10 τa +2 τa + 16·1τa = 28 τa 
k=2 40 τa +8·2·τa = 56 τa 40 τa + 2 τa + 8·2τa = 58 τa 
k=4 560 τa +4·4τa =576 τa 560 τa +2 τa + 4·4τa = 578 τa 

k=8 102400 τa +2·8·τa = 
102416 τa 

102400 τa +2 τa + 2·8τa = 
102418 τa 

 
 

Table 4. Area estimates for CBRM 
 

CBRM occupies an area increasing with the block 
length k, but its implementations are better than the 
pipelined CORDIC ones up to k=8, as shown in 
Tables 3 and 4. 

For delay estimation, the HT calculation by CBRM 
involves 64·128·128 iterations and each iteration has 
16/k cycles. Assuming that τt ≈ 1 ns in the 
XS4010XL-PC84 FPGA. 
 
 

CBRM Implementation 1 Implementation 2 

k=1 16·64·128·128·(3τt +τt lg 16) 
=117,440 ms 

16·64·128·128·(3τt+2τt)+τt lg 16
=83,886 ms 

k=2 8·64·128·128·(3τt +τt lg 8 ) 
=50,332ms 

8·64·128·128·(3τt +2τt)+τt lg 8 

=41,943 ms 

k=4 4·64·128·128·(3.5τt +τt lg 4 ) 
=23,069 ms 

4·64·128·128·(3.5τt + 2τt)+ τt lg 
4 =23,068 ms 

k=8 2·64.128·128·(5τt +τt lg 2 ) 
=12,583 ms 

2·64·128·128·(5τt +2τt)+ τt lg 2  
=14,680 ms 

 

Table 5. Delay estimates for CBRM 
 

Table 5 shows that delays are better for 
implementation 2 of CBRM than for implementation1 
up to k=4. For k=4 and k=8 both CBRM 
implementations have better results than pipelined 
CORDIC (0.0262 s). 

In the pipelined CORDIC implementation, the 
global error (E =2N · 2-(n-1/2) + 2-M · n.) falls with the 
number of bits of the fractional part M and grows with 
the number of iterations, n, when n>16. According to 
[26], the absolute error for N=128 is 0.135, for 16 bits 
data (with 8 fractional) and 12 iterations. It is the same 
than 6 erroneous fractional bits in the result. That 
represents an approximate relative error of 2-5=3%. In 
this paper, the complete error results for CBRM are 
not presented. Table 6 only summarizes absolute error 
results for some ∆θ values versus the number of 
calculated points. Data precision is 32 bits.   
 

Number of calculated points (I)  
I= 12 I= 36 

∆θ =  π/4 rad 3.52 10-6  9.41 10-6  
∆θ =  π/72 rad 1.17·10-5 6.17·10-5 
∆θ =  π/360 rad 5.92·10-5 9.51·10-5 

 

Table 6. Error estimates for CBRM 
 

It can be noticed that CBRM results seem to be 
better than pipelined CORDIC ones for similar ∆θ 
values (∆θ  = 1.40625º lays between  π/72 rad and 
π/360 rad), although it is not an easy comparison 
because of the precision of data, 16 bits for CORDIC, 
32 for CBRM. We can also observe that CBRM error 
increases with the number of calculated points. So, in 
this case it would be necessary to implement with a 
parallel CBRM in order to hold the error. 
 
6.2. Parallel CBRM versus parallel CORDIC. 

 
The second proposal [27] considers a parallel 

implementation of the CORDIC algorithm in order to 
calculate the HT. The computation of the HT of an 
N·N image with single CORDIC processor requires 
N3/2 cycles, assuming that in each evaluation two 
values for parameter ρ are obtained. The computation 
time can be reduced by means of parallelism. Three 
possible approaches are considered, namely 
parallelization of the pixels in the image, of the angle 
θ, or both simultaneously. The latter requires N3/2 
CORDIC processors, one processor per pixel per 
angle; the evaluation of the transform takes only the 
time of one CORDIC operation (n cycles for radix 2, 
n/2 + n/4 cycles for mixed radix 2-4 and n/2 for radix 



4, n is the data precision) but the hardware is 
considerably increased. Also conflicts occur in 
votation process because the results obtained by the 
processors with the same angle θ can vote over the 
same element of the Hough space. The introduction of 
parallelism only in the pixels requires N2 processors, 
one for each pixel. The number of CORDIC 
operations is N/2 + latency which depend on radix. 
There are also conflicts in the votation. A solution that 
does not produce voting conflicts is the parallelization 
of the angles. In this case a processor per angle is 
needed in which all the pixels of the image are 
procesed sequentially. The total number of processors 
is N/2 and the number of cycles for the evaluation of 
the transform is N2 + latency and one pixel is 
processed in each cycle. 

The implementation considered in [27] uses a 12-
bits-precision CORDIC processor with 10 stages (6 
are the standard iteration-stages, 1 for the 
compensation of the scaling factor and 3 for 
performing the scaling). Each stage consists of two 
registers, two multiplexers and two adders/subtracters. 
The standard stage needs 24 bits for each angle in the 
ROM. 

To transform a 128·128 image with 128 rotation 
angles, in the case of angle paralellization, 64 
processors are needed and 128·128 cycles are 
performed. The area of the n-bit register can be 
estimated as 0.5n·τa. The area of the multiplexers 
depends on the number of input vectors v and on their 
wordlength n. The associated area is about 0.25·v ·n·τa. 
The whole area estimates is shown in Table 6: 

 

Parallel CORDIC Quant. Complex gates 
Registers 20·64 20·64·0.5·12 τa = 7880·τa 
Multiplexers 20·64 20·64·0.25·2·12 τa = 7880·τa 
Adders/subtracters 20·64 20·64·12·τa = 15760 τa 
LUT tables 64·24bits 64·24·40 τa /Kbit= 60 τa 
Overall - 31580τa 

 

Table 6. Area estimates for parallel CORDIC 
 

Delay estimates must consider 0.5τt for the 
multiplexers and 1τt for the registers. Assuming 
τt=1ns: 

 

Parallel CORDIC Quant. Complex gates 
Registers 10 128·128·10·1τt =0,164 ms 
Multiplexers 10 128·128·10·0.5 τt ·= 0,082 ms 
Adders/subtracters 10 128·128·10·lg 12 τt ≈ 0,573 ms 
LUT tables 64 64·3 τt = 192 ns 
Overall - 0.819 ms 

 

Table 7. Delay estimates for parallel CORDIC 
 

CBRM parallelization consists in performing the 
calculation with m CBRMs and each of them is 
charged of N2/m pixels. So, delay and area are to be 
modified by a factor m. Tables 8 and 9 show area and 
delay estimates for parallel CBRM, in the case of a 
128·128 image, with 12 bits data precision. It can be 
noticed that factor m doesn’t affect the memory 
estimates because a single multiaccessed memory is 
used. 

 

Parallel 
CBRM 

Impl.1 
Complex gates 

Impl.2 
Complex gates 

k=1 
7,5 τa +(12·1·τa)m 7,5 τa +(2 τa + 12·1τa)m  

= 7,5 τa +(14τa)m 
k=2 

15 τa +(6·2·τa)m 15 τa + (2 τa + 6·2τa)m 
= 15 τa + (14 τa )m 

k=4 
105 τa +(4·3τa)m 105 τa +(2 τa + 4·3τa)m  

=105 τa +(14 τa)m 
k=8 

102400 τa +(3·4·τa)m 102400 τa +(2 τa + 3·4τa)m 
=102400 τa +(14 τa)m 

 

Table 8. Area estimates for parallel CBRM 
 

CBRM Implementation 1 Implementation 2 

k=1 (12·64·128·128·(3τt +τt lg 12))/m 
=81,789 ms/m 

(12·64·128·128·(3τt +2τt) +τt 
lg 12 )/m=62,914 ms/m 

k=2 (6·64·128·128·(3τt +τt lg 6))/m 
=34,603 ms/m 

(6·64·128·128·(3τt +2τt)+τt lg 
6)/m=31,457 ms/m 

k=4 (3·64·128·128·(3.5τt +τt lg 3))/m 
=15,729 ms/m 

(3·64·128·128·(3.5τt + 2τt)+ 
τt lg 3)/m =17,301 ms/m 

k=8 (2·64.128·128·(5τt +τt lg 2))/m 
=12,583 ms/m 

(2·64·128·128·(5τt +2τt)+ τt 
lg 2)/m =14,680 ms/m 

Table 9. Delay estimates for parallel CBRM 
 

It appears that in order to reach the same delay 
than parallel CORDIC, namely 0,819 ms, parallel 
CBRM needs different m values. Table 10 shows the 
area estimates corresponding to these m values. 

 
Parallel 
CBRM 

Impl.1 
Complex gates 

Impl.2 
Complex gates 

k=1 m = 100 
1207,5τa 

m = 75 
1057,5τa 

k=2 m = 43 
531τa 

m = 39 
561τa 

k=4 m = 19 
333τa 

m = 21 
399τa 

k=8 m = 16 
102592τa 

m = 18 
102652τa 

Table 10.Area estimates for parallel CBRM when 
delay is 0,819 ms 

 
For the same time delay (0,819 ms) parallel CBRM 

needs less area up to k = 4 than parallel CORDIC, as 
shown in Tables 6 and 10. If comparing the delay and 
area for the same number of processors, namely m=64, 
the obtained results for implementation1 of CBRM 
are: k=1 area=775,5 τa delay=1,278 ms; k=2 area=783 
τa delay =0,540 ms; k=4 area=873 τa delay =0,246 ms; 
k=8 area=103168 τa delay =0,197 ms. We can observe 
that for k=2 and k=4, performances are better for both 
delay and area results in the case of parallel CBRM; 
however, for k=1 CBRM provides less area but longer 
delay and for k=8 more area and shorter delay. 

The referred work [27] does not provide data on 
the error performed by the implementation presented. 
It suits to mention in all cases that the implementation 
of the CBRM can achieve even more speed when 
proposing four functions ρΙ(k) ρΙΙ(k) ρΙΙΙ(k) ρΙV(k): the 
angle to rotate would be the half, and, for the same 
increment, the number of iterations would be divided 
by two. This improvement would provide additional 
time-saving by means of duplicating the hardware 
used. 

 



7. Conclusions 
 
A function evaluation method that provides 

calculation improvements for the HT has been 
presented (CBRM). It outlines the interest of 
convolution as a powerful tool that increases 
computational capabilities, essentially when applied to 
massive calculations. The evaluation of the HT has 
been carried out with a DA-based architecture which 
can be serial or by k-blocks, in order to provide 
computational improvements. Compared with other 
well-known proposals, namely pipelined and parallel 
CORDIC, it has been confirmed that the CBRM 
provides memory and hardware resource saving as 
well as speed improvements according to the 
experiments carried out with the HT. These 
encouraging partial conclusions make quite reasonable 
to study in depth the capabilities of convolution to 
provide a more complete set of recursive evaluating 
patterns in order to extend the CBRM. 
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