77 research outputs found

    Dynamically reconfigurable architecture for embedded computer vision systems

    Get PDF
    The objective of this research work is to design, develop and implement a new architecture which integrates on the same chip all the processing levels of a complete Computer Vision system, so that the execution is efficient without compromising the power consumption while keeping a reduced cost. For this purpose, an analysis and classification of different mathematical operations and algorithms commonly used in Computer Vision are carried out, as well as a in-depth review of the image processing capabilities of current-generation hardware devices. This permits to determine the requirements and the key aspects for an efficient architecture. A representative set of algorithms is employed as benchmark to evaluate the proposed architecture, which is implemented on an FPGA-based system-on-chip. Finally, the prototype is compared to other related approaches in order to determine its advantages and weaknesses

    An automated OpenCL FPGA compilation framework targeting a configurable, VLIW chip multiprocessor

    Get PDF
    Modern system-on-chips augment their baseline CPU with coprocessors and accelerators to increase overall computational capacity and power efficiency, and thus have evolved into heterogeneous systems. Several languages have been developed to enable this paradigm shift, including CUDA and OpenCL. This thesis discusses a unified compilation environment to enable heterogeneous system design through the use of OpenCL and a customised VLIW chip multiprocessor (CMP) architecture, known as the LE1. An LLVM compilation framework was researched and a prototype developed to enable the execution of OpenCL applications on the LE1 CPU. The framework fully automates the compilation flow and supports work-item coalescing to better utilise the CPU cores and alleviate the effects of thread divergence. This thesis discusses in detail both the software stack and target hardware architecture and evaluates the scalability of the proposed framework on a highly precise cycle-accurate simulator. This is achieved through the execution of 12 benchmarks across 240 different machine configurations, as well as further results utilising an incomplete development branch of the compiler. It is shown that the problems generally scale well with the LE1 architecture, up to eight cores, when the memory system becomes a serious bottleneck. Results demonstrate superlinear performance on certain benchmarks (x9 for the bitonic sort benchmark with 8 dual-issue cores) with further improvements from compiler optimisations (x14 for bitonic with the same configuration

    Efficient Hardware Architectures for Accelerating Deep Neural Networks: Survey

    Get PDF
    In the modern-day era of technology, a paradigm shift has been witnessed in the areas involving applications of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL). Specifically, Deep Neural Networks (DNNs) have emerged as a popular field of interest in most AI applications such as computer vision, image and video processing, robotics, etc. In the context of developed digital technologies and the availability of authentic data and data handling infrastructure, DNNs have been a credible choice for solving more complex real-life problems. The performance and accuracy of a DNN is a way better than human intelligence in certain situations. However, it is noteworthy that the DNN is computationally too cumbersome in terms of the resources and time to handle these computations. Furthermore, general-purpose architectures like CPUs have issues in handling such computationally intensive algorithms. Therefore, a lot of interest and efforts have been invested by the research fraternity in specialized hardware architectures such as Graphics Processing Unit (GPU), Field Programmable Gate Array (FPGA), Application Specific Integrated Circuit (ASIC), and Coarse Grained Reconfigurable Array (CGRA) in the context of effective implementation of computationally intensive algorithms. This paper brings forward the various research works carried out on the development and deployment of DNNs using the aforementioned specialized hardware architectures and embedded AI accelerators. The review discusses the detailed description of the specialized hardware-based accelerators used in the training and/or inference of DNN. A comparative study based on factors like power, area, and throughput, is also made on the various accelerators discussed. Finally, future research and development directions are discussed, such as future trends in DNN implementation on specialized hardware accelerators. This review article is intended to serve as a guide for hardware architectures for accelerating and improving the effectiveness of deep learning research.publishedVersio

    Static resource models for code generation of embedded processors

    Get PDF
    xii+129hlm.;24c

    Reconfigurable FPGA Architecture for Computer Vision Applications in Smart Camera Networks

    Get PDF
    Smart Camera Networks (SCNs) is nowadays an emerging research field which represents the natural evolution of centralized computer vision applications towards full distributed and pervasive systems. In this vision, one of the biggest effort is in the definition of a flexible and reconfigurable SCN node architecture able to remotely update the application parameter and the performed computer vision application at run­time. In this respect, we present a novel SCN node architecture based on a device in which a microcontroller manage all the network functionality as well as the remote configuration, while an FPGA implements all the necessary module of a full computer vision pipeline. In this work the envisioned architecture is first detailed in general terms, then a real implementation is presented to show the feasibility and the benefits of the proposed solution. Finally, performance evaluation results underline the potential of an hardware software codesign approach in reaching flexibility and reduced processing time

    H-SIMD machine : configurable parallel computing for data-intensive applications

    Get PDF
    This dissertation presents a hierarchical single-instruction multiple-data (H-SLMD) configurable computing architecture to facilitate the efficient execution of data-intensive applications on field-programmable gate arrays (FPGAs). H-SIMD targets data-intensive applications for FPGA-based system designs. The H-SIMD machine is associated with a hierarchical instruction set architecture (HISA) which is developed for each application. The main objectives of this work are to facilitate ease of program development and high performance through ease of scheduling operations and overlapping communications with computations. The H-SIMD machine is composed of the host, FPGA and nano-processor layers. They execute host SIMD instructions (HSIs), FPGA SIMD instructions (FSIs) and nano-processor instructions (NPLs), respectively. A distinction between communication and computation instructions is intended for all the HISA layers. The H-SIMD machine also employs a memory switching scheme to bridge the omnipresent large bandwidth gaps in configurable systems. To showcase the proposed high-performance approach, the conditions to fully overlap communications with computations are investigated for important applications. The building blocks in the H-SLMD machine, such as high-performance and area-efficient register files, are presented in detail. The H-SLMD machine hierarchy is implemented on a host Dell workstation and the Annapolis Wildstar II FPGA board. Significant speedups have been achieved for matrix multiplication (MM), 2-dimensional discrete cosine transform (2D DCT) and 2-dimensional fast Fourier transform (2D FFT) which are used widely in science and engineering. In another FPGA-based programming paradigm, a high-level language (here ANSI C) can be used to program the FPGAs in a mode similar to that of the H-SIMD machine in terms of trying to minimize the effect of overheads. More specifically, a multi-threaded overlapping scheme is proposed to reduce as much as possible, or even completely hide, runtime FPGA reconfiguration overheads. Nevertheless, although the HLL-enabled reconfigurable machine allows software developers to customize FPGA functions easily, special architecture techniques are needed to achieve high-performance without significant penalty on area and clock frequency. Two important high-performance applications, matrix multiplication and image edge detection, are tested on the SRC-6 reconfigurable machine. The implemented algorithms are able to exploit the available data parallelism with independent functional units and application-specific cache support. Relevant performance and design tradeoffs are analyzed

    Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks

    Get PDF
    Deep convolutional neural networks (CNNs) are widely used in modern AI systems for their superior accuracy but at the cost of high computational complexity. The complexity comes from the need to simultaneously process hundreds of filters and channels in the high-dimensional convolutions, which involve a significant amount of data movement. Although highly-parallel compute paradigms, such as SIMD/SIMT, effectively address the computation requirement to achieve high throughput, energy consumption still remains high as data movement can be more expensive than computation. Accordingly, finding a dataflow that supports parallel processing with minimal data movement cost is crucial to achieving energy-efficient CNN processing without compromising accuracy. In this paper, we present a novel dataflow, called row-stationary (RS), that minimizes data movement energy consumption on a spatial architecture. This is realized by exploiting local data reuse of filter weights and feature map pixels, i.e., activations, in the high-dimensional convolutions, and minimizing data movement of partial sum accumulations. Unlike dataflows used in existing designs, which only reduce certain types of data movement, the proposed RS dataflow can adapt to different CNN shape configurations and reduces all types of data movement through maximally utilizing the processing engine (PE) local storage, direct inter-PE communication and spatial parallelism. To evaluate the energy efficiency of the different dataflows, we propose an analysis framework that compares energy cost under the same hardware area and processing parallelism constraints. Experiments using the CNN configurations of AlexNet show that the proposed RS dataflow is more energy efficient than existing dataflows in both convolutional (1.4x to 2.5x) and fully-connected layers (at least 1.3x for batch size larger than 16). The RS dataflow has also been demonstrated on a fabricated chip, which verifies our energy analysis
    corecore