
Università di Pisa

Dipartimento di Ingegneria dell’Informazione

Corso di Laurea Magistrale in Ingegneria Elettronica

Reconfigurable FPGA
Architecture for Computer Vision

Application in Smart Camera
Networks

Author:
Luca Maggiani

Supervisor:
Prof. Roberto Saletti

Dr. Paolo Pagano
Prof. François Berry

2

Abstract
Smart Camera Networks (SCNs) is nowadays an emerging research field which

represents the natural evolution of centralized computer vision applications to-
wards full distributed and pervasive systems. In this vision, one of the biggest
effort is in the definition of a flexible and reconfigurable SCN node architecture
able to remotely update the application parameter and the performed computer
vision application at runtime. In this respect, we present a novel SCN node ar-
chitecture based on a device in which a microcontroller manage all the network
functionality as well as the remote configuration, while an FPGA implements all
the necessary module of a full computer vision pipeline. In this work the envisioned
architecture is first detailed in general terms, then a real implementation is pre-
sented to show the feasibility and the benefits of the proposed solution. Finally,
performance evaluation results underline the potential of an hardware software
codesign approach in reaching flexibility and reduced processing time.

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor Prof.

Roberto Saletti for all I have learned from him and for his help and support during

this thesis. I would like to express my gratitude to Dr. Paolo Pagano, who gave

me the opportunity to work in collaboration with Scuola Superiore Sant’Anna. I

am also thankful to him for his constant encouragement and for giving me advices

and future research prospects. I am grateful and indebted to my co-supervisor,

Prof. François Berry, for his expert, sincere and valuable guidance extended to

me.

I take this opportunity to give my sincere thanks to all of the Networks of

Embedded System people, for their continuous assistance during the development

of the architecture prototype. In particular my appreciation to Claudio Salvadori

who has been always there to listen and give me advices. I am deeply grateful to

him for the long discussions that helped me sort out the technical details of my

work.

Finally, my sense of gratitude to one and all who, directly or indirectly, have

helped and supported me in this venture.

3

Contents

1 Introduction 9

1.1 Thesis outline . 11

2 Image processing on embedded system 13

2.1 Problems and limitations . 14

2.2 Benchmark metrics . 15

2.3 FPGA, DSP, CPU comparison . 16

2.3.1 Sobel edge detector . 16

2.3.2 Sum of Absolute Differences 17

2.4 FPGA implementation . 17

2.4.1 Sobel edge detector . 18

2.4.2 SAD algorithm . 20

2.5 CPU implementation . 20

2.5.1 Sobel edge detector . 20

2.5.2 SAD algorithm . 21

2.6 DSP implementation . 21

2.7 Results . 23

3 State-of-the-art on reconfigurable architecture 27

3.1 Reconfigurable processor . 27

3.1.1 ConvNet . 27

3.1.2 Acadia . 29

3.1.3 IMAPCAR . 30

3.1.4 SeePROC . 30

3.2 EFFEX processor . 31

3.3 Xetal Micropocessor . 32

5

4 Our architectural proposal 35

4.1 Overview . 35

4.2 CameraOneFrame . 36

4.2.1 Streaming processing . 38

4.2.2 Reconfigurable architecture 39

4.2.3 Modular architecture . 40

4.2.4 Configuration semantic . 41

4.3 Architecture Implementation . 41

4.3.1 NiosII RISC CPU . 43

4.3.2 Avalon Memory Mapped bus 44

5 Hardware Library 47

5.1 VideoSampler . 48

5.1.1 Data Register Settings . 50

5.2 RemoteImg . 50

5.2.1 Data Register Settings . 51

5.3 StreamStore . 51

5.3.1 Data Register Settings . 52

5.4 GradientHW . 53

5.4.1 Are Floating Point operations suitable for FPGAs? 54

5.4.2 Integer arithmetics . 56

5.4.3 Our proposal . 58

5.4.4 GradientHW module . 60

5.4.5 Data Register Settings . 62

5.5 HistogramHW . 64

5.5.1 Existent hardware implementations 65

5.5.2 Our proposal . 66

5.5.3 Exploiting parallelism . 67

5.5.4 Window-based histogram . 69

5.5.5 Evaluation . 73

5.5.6 Data Register Settings . 75

6 Experimentation 79

6.1 Image processing SoPC . 79

6.2 Development board . 80

6.3 Architecture evaluation . 82

6.3.1 Test cases . 82

6.3.2 Histogram of Oriented Gradients 84

6.4 FPGA-PC communication . 87

7 Conclusion 89

7.1 Future work . 90

7

8

Chapter 1

Introduction

Smart Camera Network (SCN) is nowadays an emerging research field promot-

ing the natural evolution of centralized computer vision applications towards full

distributed and pervasive systems. Differently from Wireless Sensor Networks

(WSN) which are generally supposed to perform basic sensing tasks, SCNs consist

of autonomous devices (Embedded Vision Systems), performing collaborative ap-

plications, leveraging on-board image processing algorithms optimized in respect

of the limited available resources. [1]

SCNs are therefore built around high-performance on-board computing and

communication infrastructure, combining video sensing, processing, and communi-

cations into a single embedded device, thus enabling more challenging applications

such as visual control, surveillance, and tracking.

Such vision systems are more than electronic devices, as many people perceive

it. They need advanced electronics design but also software engineering, and

proper networking service design and implementation. They are built following

design challenges of size, weight, cost, power consumption, and limited resources

in terms of computing, memory, networking capabilities. At the same time, more

and more services are required by customer specifications, so that time-to-market

is setting a major challenge for architects on the design of effective and powerful

solutions.

From the research perspective, the European academia is also committing to

accomplish a seamless integration of SCNs into the next generation networks, the

Future Internet, to match emerging societal needs. Typical scenarios for deploy-

ing traditional smart cameras are applications in well-defined environments, with

static sensor setups, as traffic surveillance, intelligent transport systems, human

action recognition.

9

Introduction CHAPTER 1

Thus, the main challenges on SCNs refer to the real-time processing constraints

(e.g. the capability to process video frame at 25-30 fps, as the human eye cut-

off frequency) set by the target application and hardware architecture. Therefore,

when considering a SCN of low-end devices, a major task is that of porting complex

PC-based computer vision algorithms to embedded devices. These tasks (run at

the logic level) should co-exist with control and configuration tasks, targeting to

fulfill flexibility and reconfigurability requirements and aimed at reducing efforts

for ordinary operation and maintenance.

The decreasing cost and increasing performance of embedded smart camera

systems makes it attractive to the above mentioned applications. The main re-

search focus is directed at designing a system with sufficient com- puting power to

execute well-known image processing algorithm in real-time. Typical scenarios for

deploying traditional smart cameras are applications in well-defined environments,

with static sensor setups, as traffic surveillance, intelligent transport systems, hu-

man action recognition [2] [3].

In this vision, we can imagine a future SCN pervasively monitoring and con-

trolling many activities in our daily life. Small and reconfigurable smart cam- eras

create a dynamic network, which can be used for a wide range of applications.

Notably in smart cities:

accident detection whenever an accident occurs, the system automatically de-

tects a threat situation and takes specific actions to provide final users by

the needed informations.

smart traffic surveillance able to regulate the amount of vehicles over a specific

road and determine the best traffic light configuration on the basis of real-

time traffic measurement.

pedestrian detection whenever a pedestrian is detected an alert is propagated

to incoming vehicles.

Similarly, we could use such a system to monitor the movements of elderly in

their homes in order to improve their quality of care [4].

Another important aspect in designing a SCN is obviously the network layer.

Since SCNs are focused for a real environment, a low power, low rate wireless

network has been deployed for distributed applications. Such a low speed medium

makes a centralised data processing infeasible [5]. Indeed the amount of local data

produced by these devices will not be handled by the wireless protocol. Smart

10

CHAPTER 1 1.1. THESIS OUTLINE

camera networks represent a particular challenge in this regard, partly because of

the amount of data produced by each camera, but also because many high level

vision algorithms require data from more than one camera.

Many distributed algorithms exist that work locally to produce results from

a collection of nodes, but as this number grows the algorithm’s performance is

quickly crippled by the resulting exponential increase in communication overhead.

In this thesis we propose and implement a new node architecture design for

a general purpose Smart Camera, and demonstrates feasibility of a configurable

hardware platform based on a FPGA device. This allows the formation of a

dynamic reconfigurable structure, in which many computer vision pipelines can

be implemented.

1.1 Thesis outline

The remainder of this document is organized as follows: in Chapter 2 we introduce

and discuss the image processing tasks on embedded platforms, and in particu-

lar on FPGA devices. In Chapter 3 we describe the state-of-the-art solutions for

reconfigurable architectures with respect to the image processing environments.

In Chapter 4 our architecture proposal is shown, starting from the hardware de-

sign and finally considering the implementation for a SCN node. In Chapter 5 a

collection of hardware modules is presented. In Chapter 6 an experimental test

run on a FPGA board and shows some results eligible to be extended to a real

environment application and finally in 7 we shortly summarize the results of this

thesis and the proposal for a possible future work.

11

1.1. THESIS OUTLINE CHAPTER 1

12

Chapter 2

Image processing on embedded

system

Smart cameras have been focused by the research community since the 1990s,

where the first embedded devices showed up in the market. The limited compu-

tational resources available in those years were limiting real deployments of this

kind of sensors. In the meantime, we have experienced a rapid growth of compu-

tational capabilities in embedded devices together with a sensitive decrease in the

unit cost. This allowed to provide concreteness to applications based on smart

cameras, thus triggering a special interest from the industry.

The specific implementation of a computer vision system is highly application

dependent. However, for many vision systems, functionality can be classified as

follows: in the first step, called image acquisition, an image (or more than one)

is captured form a external sensors or cameras. Then the low level processing

usually involves preprocessing such as noise and distortion reduction and certain

important aspects of the imagery are emphasized. Then, in the intermediate level,

the image is segmented. Typically, these segments are blobs, edges, lines, corners,

regions, etc. The segments are usually without a specific semantic, they are not

objects or physical entities but they contain spatial, geometric, angle and other

types of information. It is this intermediate information that can be analyzed to

extract features and information on the context.

Finally, the high-level processing stage generates the final results of the system,

e.g., the position of an object, the name of a person identified by a facial recognition

system, if an object has passed an optical quality inspection system, and so on.

13

2.1. PROBLEMS AND LIMITATIONS CHAPTER 2

2.1 Problems and limitations

In designing pervasive SCNs based on low-end devices(say microcontrollers), one of

the biggest efforts is the porting of complex PC-based computer vision algorithms

to embedded devices, as described in [6] where a Gaussian Mixture Model is indeed

implemented on a PIC32. Although real-time performances can be met at 25 fps

for very simple algorithms, a complex computer vision pipeline (e.g. enabling

recognition) is usually requiring more powerful hardware platforms.

In the above mentioned paper a well-known background subtraction algorithm

has been optimised to achieve real-time performance in a low-cost microcontroller,

with fixed point operation. Even though a great effort put in optimisation, a

complete image processing pipeline with real-time constrain is not feasible in such

a limited device.

Thus, the main challenges on image processing on embedded devices refer to

the high-rate processing constraints set by the target application and hardware

architecture. Therefore, when considering a SCN of low-end devices, a major task

is that of porting complex PC-based computer vision algorithms to embedded

devices. Moreover image processing routines require ad-hoc hardware solutions,

and careful power consuming evaluation, that make the hardware and software

design more complex than other PC-based solutions.

The solution for embedded computer vision application are currently separated

by different level of hardware abstraction: at low level there are the programmable

logic devices represented by the FPGAs, then the Digital Signal Processors (DSP)

which represent an ASIC-like solution and at the higher level the Mobile PC

processor. Compared to high-end DSPs, FPGAs are more expensive, the design

usually require more time and knowledge but provide a slower processing power

due to the lower clock frequency of FPGAs. Mobile PC processor are commonly

used in mobile computer, smartphone and netbook. They are meant for general

purpose application but are easily deployed for computer vision tasks, especially

14

CHAPTER 2 2.2. BENCHMARK METRICS

for the early stage of development.

Keeping in mind that a choise on a particular architecture brings different

develompent effort, there are some premises [7] that leads towards an architecture

rather than another:

• Highly repetitive processes applied to an image stream are more suitable to

be implemented in hardware

• Algorithms which are independent from applications and potential subject

of design reuse are more cost efficient to be implemented in hardware

Another important issue in the SCNs scenario is the realisation of a flexible and

reconfigurable node architecture able to update the application parameter and/or

change the target application at run-time. This aspect arise from the context

where SCNs are deployed. As mentioned in the Chapter 1 SCNs are designed to

be pervasive and represent an ubiquitous processing network composed by several

nodes. Thus, a real smart camera node has to provide a set of possible operations,

e.g. different computer vision algorithms or different communication methods,

without any human actions.

This perspective will be handled in Chapter 3 where the state of the art about

reconfigurable platform is shown. In the next section there will be an evaluation

of the previously exposed solutions, to explain how an altenative should be made

to obtain the best results, in terms of power consuming, elaboration throughput,

data latency and also accuracy [8].

2.2 Benchmark metrics

Typical image processing performance indicators are accuracy, robustness, sensi-

tivity and efficiency [7] [8]. Based on those indexes the advantages and disadvan-

tages of DSP, FPGA, CPU solutions are highlighted. Since most of the target

applications have real-time constraints, the timing performances are extremely

important to the system designer. In particular, for performance evaluation will

be considered: (i) processing time, namely the time spent for a single pixel opera-

tions, (ii) the delay between new input data and the corresponding results, called

processing latency and (iii) the resource used to achieve those performances.

Especially for FPGA comparison, the data latency has an important role to

evaluate the optimisation level of a custom hardware IP block. Indeed with the

inner parallelism that a FPGA solution provides, a single clock pixel operation is

15

2.3. FPGA, DSP, CPU COMPARISON CHAPTER 2

possible. This is feasible through a pipeline elaboration, which introduces delay

latency to the output results. The comparison below taking into account this

aspect together with the maximum clock speed achiveable.

The comparison will be performed over well-know image processing algorithms,

Sobel edge detector and SAD algorithm (Sum of Absolute Differences). The exe-

cution time per pixel is still dependent on the size of the image (in particular for

CPUs), thus all tests were done on input images with equal size for all platform.

The data results for CPU and DSP were taken from [7], while FPGA compar-

ison has significant updates from our development experience.

2.3 FPGA, DSP, CPU comparison

2.3.1 Sobel edge detector

The Sobel operator is widely used in image processing, particularly within edge

detection algorithms. It is based on convolving the image with separated filter ker-

nels in horizontal and vertical direction. Typically, the Sobel filter kernel consists

of a pair of 3x3 coefficients, reported below.

Region with high spatial frequency correspond to edges and reported in the

binarized image as high values (typically 255 for 8bits pixel).

16

CHAPTER 2 2.4. FPGA IMPLEMENTATION

A magnitude is extracted from both vertical and horizontal gradients and then

modulus are sum up to generate an index. This value is then compared with a

threshold to estimate the edge presence.

2.3.2 Sum of Absolute Differences

The SAD is used to solve the correspondence problem between two image areas

by calculating matching costs for blocks of pixels. In brief, the matching process

involves computation of the similarity measure for each disparity value, followed

by an aggregation and optimization step. Two stereo vision images, left and right,

are compared using SAD algorithm to compute the dept map information. The

quality of the result depends on the SAD block size (referred in Eq.2.1 as W). The

mathematical operation is described in the equation below.

SAD(x, y) =
∑

(i,j)∈W

∣∣I(x, y)− I(x− i, y − j)∣∣ (2.1)

2.4 FPGA implementation

FPGA technology has matured considerably over the past decade and special fea-

tures and development tools have simplified the task of designing for FPGAs.

FPGAs are targeted to the embedded devices where a hardware design is able to

refine and upgrade a wide range of embedded designs with a limited development

effort [9]. The processing power of an FPGA is directly proportional to the pro-

17

2.4. FPGA IMPLEMENTATION CHAPTER 2

Figure 2.1: SAD disparity map over Tsukuba.

Figure 2.2: FPGA-based Sobel edge detector.

cessing capabilities of its logic blocks and the total number of logic blocks available

in the array. More often, most commercial FPGAs have thousands of elaboration

blocks (namely Logic Elements) which make programmable hardware a viable and

efficient solution for accelerationg complex image-processing and computer vision

applications [10] [11] [12].

Since FPGAs usually have limited on-board memory locations, optimised and

memory aware image processing algorithms have been implemented. Typical ap-

plications use various on-board RAM blocks as distributed memory for parallel

computations. Since a single RAM block has a separated control register, parallel

operation can be performed on a set of RAM cells.

2.4.1 Sobel edge detector

In Fig. 2.2 an optimised FPGA circuit for Sobel edge detector is shown. The filter

is composed by several multiplier stages (one for each Sobel kernel coefficients)

which are feeded by a Multi-Row buffer. This buffer is made by two onboard

RAM blocks, each one contains an image row. By using this buffering structure,

18

CHAPTER 2 2.4. FPGA IMPLEMENTATION

Figure 2.3: Sobel buffering schema.

Image Resolution Delay latency FPGA resource occupancy
QVGA (320x240) 4 T clk ∼ 650 bytes + 1200 LEs (8%)

Table 2.1: Sobel hardware resources.

the circuit can handle a new data every clock cycle.

Fig.2.3 shows the internal buffering structure. The 3x3 matrix is used by the

multipliers to compute the vertical and horizontal gradient values.

The above presented circuit is able to process a new input data every clock

cycle, without computation delays. Thus introduces a constant latency output

delay, defined by the pipeline nature of the architecture. The Sobel’s timing and

resource data is shown in Tab. 2.1. The percentages are referred to the Cyclone

IV FPGA which has 22000 LEs and 144 DSP modules (9x9bits).

Applying the coefficient matrix, calculation of the absolute value and the final

saturation is performed in one clock cycle. Hence, every time a new pixel is

received from data in[7:0], a Sobel-filtered pixel is generated on the output interface

signal data out[7:0], which results in a processing time for a single pixel (without

considering any latency) of t = 1
fCLK

where fCLK is the clock frequency of the

So- bel module. By using an Altera Cyclone IV EPCE22 FPGA a clock frequency

of 77,7 MHz can be achieved.

As reported by [7], the processing time can be evaluated as:

tIMG = TROW +
1

FCLK
· columns · rows (2.2)

The latency TROW between data in
[
7:0
]

and data out
[
7:0
]

is equal to the time

needed to shift in a complete row plus two additional pixels into the Sobel module.

19

2.5. CPU IMPLEMENTATION CHAPTER 2

FPGA LEs M4K blocks Fclk TLAT,IMG TLAT,LINE TSAD−block
EP2S120 75452 104 (17 %) 110 MHz 66 µ s 1,27 µ s 0,111 ns

Table 2.2: SAD algorithm resources related to the EP2C130 FPGA.

2.4.2 SAD algorithm

The SAD algoritm has been implemented by [7] for an Altera Stratix II EP2S130

using a 9x9 block size. The latency time is shown by two expression: TLAT,IMG and

TLAT,LINE. The first one is necessary on each image, while the other represents

the latency over a single row of pixels. Both values are required to evaluate the

system performance on a single disparity image. The SADs timing and resource

data is shown in Tab. 2.2 for a 800x600 pixels image, with 100 Hardware SAD

blocks.

2.5 CPU implementation

The Altera NIOSII CPU has been deployed for comparison. It is a 32-bit RISC

CPU, with Data and Instruction Cache and a single precision Floation point co-

processor. It runs at 100MHz and can achive up to 1,16 DMIPS MHz. Although

is a softcore, the fastest version has similar performance than other commercial

MCU.

2.5.1 Sobel edge detector

The Sobel filtering operation of an image requires multiple MAC operations on

every pixel with a sliding window over the image. The filter coefficients are derived

from an array which is accessed periodically. All coefficients are multiplied with

the corresponding pixel intensity value.

1

2for (i = 1 ; i<(HEIGHT∗WIDTH−1) ; i++) {
3s o b e l h o r [i] = computeSobel hor(&img [i]) ;

4s o b e l v e r [i] = computeSobel ver(&img [i]) ;

5edge [i] = thre sho ld (s o b e l h o r [i] + s o b e l v e r [i]) ;

6}

In the algorithm presented above, the functions compute Sobel hor, compute Soblel ver,

threshold are called for every pixel of the image. Both compute Soblel hor and

20

CHAPTER 2 2.6. DSP IMPLEMENTATION

NiosII CPU Operation per pixel Memory footprint (Bytes) fps

100MHz 24 (240ns) 3 · HEIGHT*WIDTH up to 12

Table 2.3: The CPU Sobel performances.

compute Soblel ver perform 8 memory read cycles for coefficients retrieving, hence

a high data bandwidth is requested.

A simple latency evaluation is reported on Eq. 2.3:

TIMG = columns · rows · 1

fCLK
· 8 · Tacc−mem + Tthresh (2.3)

where the image latency time is a linear function of the image resolution plus

a algorithmic terms for computation. This formula does not consider a possible

cache management, which could increase the memory access time. Morover care

must be taken about the edge of a frame. Min and max operations are used to

ensure that a memory address doesnt exceed the edges of a frame, thus leaving

the address range.

2.5.2 SAD algorithm

Similar results can be obtained on SAD algorithm and other low-level operations

because are based all on a convolutional arithmetic. Such repetitive tasks always

require a great memory bandwidth to store the intermediate results and multiple

clock periods for each iteration. Algorithm optimisations are available expecially

when there is not data dependency between close pixel and the elaboration can

be performed line-by-line. This is the case of SAD algorithms, where the images

displacement can be evaluated over two lines at same time.

2.6 DSP implementation

In [7] DSP device has been deployed for convolution tasks. The authors used

a Texas Instruments TMS320C6414T-1000 [13] DSP which runs with a clock of

1 GHz and provides up to 8,000 million MAC (multiply-accumulate) operations

per second. By leveraging on the parallel ALU architecture, can produce four

16-bit multiply-accumulates (MACs) per cycle for a total of 4000 million MACs

per second, or eight 8-bit MACs per cycle for a total of 8000 MMACS.

The TMS320C6414T device is based on a Very Long Instruction Word (VLIW)

architecture (called VelociTI.2) developed by Texas Instruments, that makes these

21

2.6. DSP IMPLEMENTATION CHAPTER 2

Figure 2.4: TMS320C64X architecture internal.

DSPs expecially targeted to the image processing tasks. With respect to a CPU-

based approach, a DSP offers a higher ALU parallelization, extended data cache

and vectorial instruction for heavy data processing.

By leveraging on the vectorial-based instruction, a DSP can process multiple

input data in parallel using a dedicated memory management. For instance, by

storing a multiple pixel lines into a multiport data memory, a 3x3 Sobel kernel

computation can be archived in one clock cycle. In the Fig. the TMS320C64x

architecture is shown. Rather than a General Purpose CPU (GP-CPU), this ar-

chitecture provide two parallel data paths, each with four functional units. Each

clock cycle this architecture handles up to 8 ALU operations, that result in a

speeding elaboration by a factor of eight compared to a GP-CPU.

The TMS320C64X can gain execution time performance by deploying the

VLIW operations. These operations are featured as an instruction-level-parallelism

using the parallel elaboration data paths. Software functions on DSPs typically

can have their performance improved by using specific intrinsics. Intrinsics are

built-in functions which the compiler can directly translate into an assembler code.

However, once intrinsics are used in the code it is not ANSI C-compliant anymore.

22

CHAPTER 2 2.7. RESULTS

Figure 2.5: Sobel time performances (ns/pixel) [7].

2.7 Results

In Fig. 2.5 and Fig. 2.6 the performances for CPU, DSP and FPGA are shown.

In Fig. 2.5 two implementation variants of DSP are presented. In the first one the

DSP uses the internal RAM memory while in the other uses a DMA-like controller

with an enternal memory chip. For the FPGA, performances are evaluated by a

cycle accurate simulator and Altera Quartus tool for bitstream generation and

static timing analysis.

The extreme differences between FPGA timing performances and the others

are due to the different image processing schema deployed. Indeed low-level FPGA

processing operation is done by directly receiving data form a camera. As long as

the hardware algorithm is able to cope with the data bus speed, higher processing

speed is not needed. Thus a speed up in the FPGA master clock does not make

any sense since the camera is not able to deliver the pixel data anyway.

Basically, the FPGA time processing per pixel is equal to a period of the FPGA

master clock. This constrast with the CPU implementation, where a higher clock

frequency increases both computing performance and data transfer to the memory

device.

In Fig. 2.6 the different implementations of SAD are exposed. Rather than

the Sobel case, here FPGA performs considerably better than software solution.

In this context, the low-level SAD processing operations are suited for a high

parallelism and then ideal for FPGA implementation. In particular, the 9x9 SAD

block match core is implemented as a row of one hundred cores, enabling a parallel

match comparison within an entire line.

To sum up, in Fig. 2.7 a comparison between different architectures is shown.

23

2.7. RESULTS CHAPTER 2

Figure 2.6: SAD time performances (ns/blockmatch) [7].

CPUs are generally meant for general application and indeed shown the high

degree of programmability, as long as DSPs are focused on signal processing. By

leveraging on the flexible nature of its internal architecture, the FPGA offers

a trade off between full-custom ASIC design and a general purpose approach.

Further, the FPGA low-level approach is particulary suited for image processing

deployment, where thousands of repetitive operations are requested every seconds.

In this chapter the implementation of several low-level image processing al-

gorithms were evaluated and compared. In particular, FPGA implementation

outperform the CPU-based implementations when a large number of operations

can be parallelised. As already reported by [15] and [9], the FPGA is well suited

for low-level image processing tasks. This results are the starting point for our

proposed architecture thath will be exposed on Chapter 4.

24

CHAPTER 2 2.7. RESULTS

Figure 2.7: ASIC, FPGA, DSP, CPU comparison [14].

25

2.7. RESULTS CHAPTER 2

26

Chapter 3

State-of-the-art on reconfigurable

architecture

As reported in Chapter 2, a complete computer vision pipeline is made up by a set

of operations, which are computed sequentially on the image data. Even though

the sequential nature of the computer video algorithms, the image processing phase

is not well suited for general purpose CPU.

Low-level image processing such as color transformations and filtering operates

on individual pixels in regular patterns. These low-level operations process the

complete image data at the sensors frame rate, but typically offer a high data

parallelism. On the other hand, high level image processing operates on a reduced

set of features reducing the data bandwidth but increases the complexity of the

operations significantly. This high level tasks often exibits strong data dependency

thus programmable architecture and programmable processors are deployed in the

state of the art solutions.

The rest of this Chapter will be organised as follow: at first three existing

reconfigurable solutions are presented, either based on a reconfigurable processor

architecture. Then different flexible datapath solutions will be shown, underlining

the differences with the previous solutions.

3.1 Reconfigurable processor

3.1.1 ConvNet

In [16] and [17] a configurable processor is implemented on a FPGA device. This

processor is specifically targeted towards the convolutional network, but can be

27

3.1. RECONFIGURABLE PROCESSOR CHAPTER 3

Figure 3.1: ConvNet architecture [16].

used also for other algorithms and tasks. Convolutional Networks (ConvNets) are

feed-forward architectures composed of multiple layers of convolutional filters and

non linear operations.

In Fig. 3.1 the internal architecture is shown. It embeds a 32bit RISC CPU

and a configurable structure, which is able to manage the one or more continuous

datastream. The second key component is the Vector/Stream ALU. All the basic

operations of ConvNet are implemented at the hardware level and provided as

SIMD instruction. The order between operations is managed by the softcore CPU,

which acts as an instruction scheduler.

In [17] an updated version of the architecture has been presented by the au-

thors. In Fig. 3.2 the reconfigurable neuFlow behaviour is shown. Every pro-

cessing block is feeded by a DMA, which is controlled by the softcore CPU. The

grid provides a flexible processing framework, due to the software reconfigurable

connections. Indeed, any path can be configured on the grid an each operator uses

FIFO buffers to compensate the processing speed variations between close blocks.

Both architectures have been implemented on a single Xilinx Virtex-4 FPGA

and both can be run up to 200MHz.

28

CHAPTER 3 3.1. RECONFIGURABLE PROCESSOR

Figure 3.2: Reconfigurable neuFlow architecture [17].

3.1.2 Acadia

Sarnoff Corporation has developed Acadia [18], a custom CPU targeted to video

processing tasks. The Processing Elements are connected to each other through a

Crossbar switch, which acts as a data stream controller. Using such a structure,

the processor is able to process up to 80 GOPS (Giga Operations per Second).

Acadia processor can handle correlations, motion estimation, SAD algorithms and

non-linear operation.

In Fig. 3.3 the second version of Acadia processor has been shown. Acadia II

performs real-time contrast enhancement, stabilization, multi-sensor fusion, and

tracking [19]. Equipped with ARM11, Acadia II functions as a CPU for the entire

system and provide customized processing interfaces.

Figure 3.3: Acadia II SoC.

29

3.1. RECONFIGURABLE PROCESSOR CHAPTER 3

Figure 3.4: IMAPCAR architecture.

3.1.3 IMAPCAR

NEC Electronics has developed an SIMD processor called IMAPCAR, which stands

for Integrated Memory Array Processor for CAR. This processor is designed specif-

ically to be deployed as an in-vehicle vision processors for ADAS (Advanced Driver

Assistance Systems), as described in [20]. This processor embeds 128 8-bit pro-

cessing elements and a 16-bit control processor (CP). Like the previously shown

Acadia architecture, is based on a grid of processing elements which are connected

toghether with a configurable interconnection switch.

Each processing element (PE) receives column of image or partial data and

processes them internally. The processing elements are forming a one dimension

connected linear array to execute all vector operations. The CP supervises the

whole operation while executing sequential tasks like loop control, global condi-

tions or programming of peripherals.

The processor is connected to two SSRAMs which contain program memory,

data memory for the control processor and external memory to save images. As

reported by [21], the IMAPCAR is capable to perform 100 GOPS (8bit equivalent)

with only two watts of power.

3.1.4 SeePROC

The SeePROC architecture has been proposed by [14] in 2012 and represents one

of the most recent reconfigurable solution in the SCN scenario. Actually is not

a real processor, but works as a co-processor environment devoted to the image

processing tasks.

In Fig. 3.5 the internal of SeePROC architecture is shown. The internal struc-

ture is divided in two functional blocks: SeePROC Decoder and SeePROC DPR.

30

CHAPTER 3 3.2. EFFEX PROCESSOR

Figure 3.5: SeePROC architecture.

The SeePROC Decoder is made up by a RISC processor and some custom logic

for external interface while SeePROC DPR is dedicated to stream processing.

The SeePROC DPR is composed by several elaboration modules and some

interconnection switch, which are controlled by the SeePROC Decoder. The con-

figurable datapath controller, represented in Fig. 3.6, contains a configurable ALU,

called ALUM (Matricial ALU). Each ALUM block can handle two data stream and

is connected to a interconnection multiplxer, as happens on ConvNet processor.

In other word, SeePROC DPR acts as a SeePROC Decoder coprocessor, tak-

ing the heavy image processing operations out of the sequential execution. In-

deed, given a defined computer vision algorithm, the SeePROC Decoder decodes

the instruction and configures the interconnection. A custom language has been

developed to control the machine and process the datastream.

3.2 EFFEX processor

With support from the National Science Foundation and the Gigascale Systems

Research Center in [22] a new multicore video processor has been developed in

2011. This processor, called EFFEX, is specifically designed to increase the speed

31

3.3. XETAL MICROPOCESSOR CHAPTER 3

Figure 3.6: SeePROC DPR internal.

of feature-extraction algoritms.

The EFFEX CPU usesa a programmable architecture able to handle different

image processing algorithms, such as Scale Invariant Feature Transform (SIFT),

Histogram of Oriented Gradients (HOG) and other convolutional operations.

With respect to the previously shown architecture, EFFEX processor has been

thought with specific power supply constraints. The simulation results shows

that can outperform GPU and CPU solutions by a factor of two while presents a

considerable increasing in performance in terms of fps [22].

3.3 Xetal Micropocessor

Xetal Micropocessor has been developed by NXP (former Philips Semiconductor)

since 2001 [23]. The version run at 18MHz with 320 Processing Elements (PEs)

and 16 line memories. Since each of the PEs can perform one operation per clock

cycle the performance results of 5.7 GOPS. As a result, combined with a CMOS

image sensor at QVGA resolution running at 15 frames per second the Xetal 1

could essentially perform 5000 operations per pixel with a low power consumption

(about 2 Watt). In more recent years, newer version of Xetal has been presented.

In [24] the Xetal-II processor is presented and is compared to the previous version.

The new version is capable of 107 GOPS at 84MHz, with 10Mbit of on board

memory, 27 billions of MAC units and a power consumption above 600mW. This

processor can be used for high speed image processing using a dedicated languages,

which is an extended C (XTC). One of the major extensions is the introduction

of a vector data type (vint) to represent the 320-element wide memory in the

Processing Element array. It is worth to mention the last version of Xetal, called

Xetal-Pro [25], which supports ultrawide supply voltage scaling to optimise the

32

CHAPTER 3 3.3. XETAL MICROPOCESSOR

Figure 3.7: Xetal-II architecture.

Figure 3.8: Xetal Processing Elements line.

33

3.3. XETAL MICROPOCESSOR CHAPTER 3

power consumption. Wide voltage variation reflect a decrease in performance due

to the limited operative frequency near to subthreshold voltage, thus the authors

have specifically designed a massive parallelism to mitigate the voltage limitation

drawbacks.

34

Chapter 4

Our architectural proposal

This Chapter presents the proposed modular reconfigurable architecture, called

CameraOneFrame. CameraOneFrame is a data-path based flexible architecture

for signal processing. It is composed by a set of hardware modules that process

the data and a configurable path controller, which defines the connection through

the elaboration blocks.

4.1 Overview

The main idea is based on the model based design assumption, where processing

tasks are executed as a sequential flow of operations. If a target application can

be divided in a defined number of elaboration steps, the proposed architecture is

well-suited to give an optimised solution.

In a SCN context, imagine that a CMOS camera is connected as an input

video peripheral. This device usually works at high frame rate, above 25 fps with

a defined resolution. The amount of datas to be processed is directly dependent on

the video bus throughput, i.e. at 25 fps, 320x240 pixels, YUV422 format brought

up to 4 Megabytes per second. Moreover, due to the limited resources available,

usually an embedded system can not save a whole frame in the on-board memory.

As a result, embedded video processing tasks (with high speed channel and

time constraints) require a higly optimised architecture, capable to process datas

at the maximum speed allowable by device technology.

Dedicated hardware solution provides best results compared to the general

purpose design, such as commercial microcontroller. Hardware design exploits

the the image processing tasks taking advantages of parallel computation and

dedicated data structures. Despite a general purpose approach, which is designed

35

4.2. CAMERAONEFRAME CHAPTER 4

Figure 4.1: Camera OneFrame architecture.

for multiple applications, a custom hardware design is thought to be optimised

and dedicated to a specific operation.

To overcome the above presented drawbacks, CameraOneFrame architecture

separates the elaboration chain from the interconnection controller. The former

has strict timing constraints and is eligible for a custom hardware design, while the

latter keeps a simple structure allowing a software reconfiguration. The paradigm

that permits to implement these features is called hardware software codesign, and

represents the state-of-the-art of the FPGA programming. This method merges

the flexibility of software programming with the parallel computation allowed by

hardware modules.

4.2 CameraOneFrame

The proposed FPGA architecture called Camera OneFrame, is shown in Fig-

ure 4.1. It permits to create a full reconfigurable pipeline in a SCN node. The

whole architecture is designed focusing on interconnection modules, called RouteM-

atrix, and functional blocks, called Elab. The former realises the connections be-

tween the functional blocks, while the latter implement basic computer vision

algorithms that can be part of a specific elaboration pipeline tunable at run-time.

In the left side of the figure four video input ports, labeled as VideoStream

are shown. This architecture allows to have a multi-camera video inputs that

can be parallel processed as a continuous pixel flow. The data flow, composed by

one or more video streams, is captured and then processed by successive steps,

represented by Elab blocks.

36

CHAPTER 4 4.2. CAMERAONEFRAME

Figure 4.2: RouteMatrix internal architecture.

RouteMatrix module

RouteMatrix is the core of the CameraOneFrame architecture: it is the connec-

tion point between hardware configuration and software programming. The logic

behind our approach can be seen as a 3D-multiplexer, having a N ∈ N inputs

and M ∈ N outputs (Figure 4.2), and configured by a N ×M matrix through a

dedicated bus (the red lines in Figure 4.2).

In this way, the RouteMatrix internal logic guarantees that each output is con-

nected to a selected m-th input vector (with m ∈ [1,M]), to avoid data collision.

On the other side every input vector can be connected to several outputs, in order

to generate two or more twin sub-pipelines from the same source.

More in details, the RouteMatrix module permits to:

• define the routing path of a data stream (Figure 4.5a);

• handle the execution of parallel pipelines with different data sources (Fig-

ure 4.5b);

• split a data stream in two or more pipelines (Figure 4.5c).

Elab module

In this work we define an hardware block as the implementation of a certain

computer vision algorithm in any HDL languages (e.g., Verilog, VHDL, CAPH

[27] [28]). Every block requires at least one input and one output with the related

data-valid signals, notificationing valid output data towards following blocks.

The data-valid signals are necessary for enabling the streaming paradigm: in

this direction the proposed architecture does not require to specify any data latency

37

4.2. CAMERAONEFRAME CHAPTER 4

Figure 4.3: Elab block external architecture.

and processing time.

Therefore, the overall latency can be computed as a cumulative sum of the

delay cycles inserted by the activated elaboration blocks. By controlling the path

at runtime, we can predict the data latency of a selected application, taking into

account the overhead introduced by the RouteMatrix modules.

Despite a software oriented solution, which does not allow a precise delay

evaluation, due to the cache miss parameter, memory accesses and interrupts

that may stop the exectution, this solution provide a deterministic delay latency

extimation.

In Chaper 5 a set of elaboration modules are shown as a part of a Hardware

Library tool.

4.2.1 Streaming processing

As pointed out by the previous section, in embedded devices we have to cope with

limited hardware resources, such as RAM and processing capabilities and low clock

speed. The problem arises when a high speed dataflow has to be processed with

real-time constraints, i.e. object recognition and tracking. Embedded devices

usually lack of enough memory to store a single frame, thus rapid processing tasks

are needed.

In this context, a hardware architecture can provide an optimised solution and

process the datas directly as they appear to the input. This is the concept above

the so-called Streaming processing, which is typically deployed into FPGA modules

[29]. CameraOneFrame implements an extreme streaming approach, where every

stages and every hardware modules are built to process the informations as a

continuous flow.

In order to explain the internal behaviour, in Fig. 4.4 an example is shown.

Every elaboration block represents a separated sequential logic clock domain and

behave as a registered pipeline stage. Thus the architecture provides the maximum

allowable clock speed regarding to the selected silicon technology, reducing as

38

CHAPTER 4 4.2. CAMERAONEFRAME

Figure 4.4: Streaming elaboration example.

(a) Single pipeline. (b) Parallel pipelines.

(c) Pipeline splitting.

Figure 4.5: Data path reconfigurations.

possible the critical path between close sequential logic module.

4.2.2 Reconfigurable architecture

Reconfigurable solutions are usually addressed by software oriented approaches.

In such a vision it is straightforward to modify both configuration parameters and

applications at run-time, at the cost of avoiding possible low-level optimizations.

Instead, the use of a pure based hardware approach results in the realization

of static and monolithic hardware pipelines optimized only for a single applica-

tion. To overcome the above depicted limitations, while keeping the possibility

of dynamic configuration, in this work we present a mixed solution, which takes

advantages from hardware optimisation and still considers a software-based con-

figuration. Through RouteMatrix configuration the data path can be created at

run-time. As run-time we mean during the operating phase of the system, i.e.

after an event or during a communication from another node.

immagine da slide prima presentazione (o da articolo icdsc) esempio di ricon-

figurazione, considerazioni su redirezione dei dati, funzionamento del data valid e

39

4.2. CAMERAONEFRAME CHAPTER 4

prospettive di inserimento dei segnali di end frame, start frame

4.2.3 Modular architecture

Having a modular architecture allows design engineers to reuse previously de-

veloped and tested IP blocks, without any further modification. Thus, an opti-

mised hardware module can be used on a wide range of applications and could

be easily shared for community development. Moreover, the hardware abstraction

performed by the architecture allows the instantiation of some Library modules

without any electronic and design skills. This is important to define a general

architecture, to be used as a pervasive, where also a not expert personnel have

access to the system design.

Despite the fact that lower knowledge are requested, an optimised solution is

guaranteed by the accurate design of the hardware IP blocks. In other words,

how is a module instantiated does not interfere with the optimisation grade of the

overall elaboration pipeline but depends only on the involved HDL design.

The described internal FPGA structure can be expanded as a function of a set

of possible applications. Indeed, the number of input and output ports, even the

number of elaboration steps can be abstracted as parameters and then configured

during the hardware compilation. This allows to modify the number of the par-

allel data flow, the amount of pipeline steps, or the elaboration blocks, without

modifying the HDL instances, but easily inserting them as a new Elab instance

using for example a graphic interface tool.

Each functional block performs an associated algorithm, implemented by a

hardware module available into a Hardware Library tool (see Chapter 5). This

library contains a certain amount of functional blocks, defined using HDL, and

then collected into a package made available as high level resource. After the

instantiation phase, the system is ready to be compiled and programmed in the

FPGA as a bitstream.

Afterwards, though the FPGA bitstream is statically programmed, the system

still keeps the flexibility through the software configuration of blocks and connec-

tions. This aspect assures and guarantees a dynamic and adaptive system while

realising an optimised solution eventually after software re-configuration.

The proposed internal FPGA architecture introduces two degrees of freedom:

(i) it is possible to grab the requested functional operation from a library, without

any knowledge of HDL languages as it was in a model-based unit, and (ii) it

is possible to configure the system at run-time to perform new pipelines with the

40

CHAPTER 4 4.3. ARCHITECTURE IMPLEMENTATION

already installed hardware modules configured and connected through the software

interface.

4.2.4 Configuration semantic

The captured flow has not an associated semantic, so that an user interacting with

a configuration manager can select and compose the appropriate modules suited

to the desired application.

The software controls the datastream redirection and the parameter update

without any specific instruction. As a consequence, every RouteMatrix instances

can be addressed using the build-in instruction (load and store assempbly instruc-

tion and the corresponding C wrapper).

Thus, given a generic architecture, composed by a various number of elabora-

tion blocks and RouteMatrix modules, we will be able to develop a hybrid system,

able to configure itself during start-up phase.

4.3 Architecture Implementation

All the developed hardware library functions are compliant with the Qsys tool

provided by Altera as a part of the Quartus II software edition [30]. Qsys abstracts

every HDL module as a functional entity into a graphical interface, thus helping in

instantiating the blocks inside the proposed architecture. In Figure 4.6 the design

flow for a generic computer vision application is shown using the Qsys tool: (i)

the application is chosen (ii) and divided into functional elements; then (iii) the

concrete HDL blocks are instantiated using the above mentioned tool, and finally

(iv) the code is compiled into a bitstream.

To complain with the above mentioned behaviour, a Softcore CPU has been

programmed in the FPGA. The CPU has the role of datapath configurator and

manages the communication to the network layer. Adopting a softcore CPU brings

to us some advantages rather than deploying an external microcontroller, for in-

tance:

Single chip solution A Softcore CPU is well suited for cost effective, integrated

embedded system because it reaches the highest integration possible. Even

though Softcores are not optimised for processing as ASIC solutions, here

we use the CPU only for controlling purposes, with limited requirements on

41

4.3. ARCHITECTURE IMPLEMENTATION CHAPTER 4

Figure 4.6: CameraOneFrame design flow.

the computational resources. Indeed, we can deploy even a small CPU, able

to perform simple operation and reduce the area as possible.

Direct addressing As pointed out previously, custom hardware peripherals can

be addressed by the CPU data bus, assuring a complete control of the sys-

tem. Importance has to be paid to the hardware design, in order to exploit

the requested functionality with a focus on ”what can be configured at run-

time?”, ” how can i design a hardware IP in a more general way?”.

Reduced latency time The internal bus works on the maximum clock speed

allowable by the FPGA technology, without delays due to the I/O blocks.

As a result, most of the communication are executed on a one-cycle clock

period.

Extreme system integration The complete system, composed by the Cam-

eraOneFrame architecture and the CPU, represents a System on a Pro-

grammable Chip (SoPC) which does not require any other external com-

ponents, at least for a minimal working solution.

42

CHAPTER 4 4.3. ARCHITECTURE IMPLEMENTATION

Figure 4.7: NiosII RISC CPU

4.3.1 NiosII RISC CPU

With this respect, in the development phase it has been deployed the Altera Nios

II Softcore CPU, which is a part of the Altera Embedded Design Suite (EDS).

Nios II is a 32-bit RISC embedded-processor architecture designed specifically

for the Altera family of FPGAs. Nios II is suitable for a wider range of embed-

ded computing applications, from DSP to system-control. Nios II is implemented

entirely in the programmable logic and memory blocks of Altera FPGAs. The soft-

core nature of the Nios II processor lets the system designer specify and generate

a custom Nios II core, tailored for his or her specific application requirements.

System designers can extend the Nios II’s basic functionality by adding a pre-

defined memory management unit, or defining custom instructions and custom

peripherals.

For performance-critical systems that spend most CPU cycles executing a spe-

cific section of code, a user-defined peripheral can potentially offload part or all

of the execution of a software-algorithm to user-defined hardware logic, improving

power-efficiency or application throughput.

Nios II is offered in 3 different configurations: Nios II/f (fast), Nios II/s (stan-

dard), and Nios II/e (economy).

economy 600 LE (3%), 0,15 DMIPS/MHz, royalty-free

standard 1300 LE, 5-stage pipeline, 0,74 DMIPS/MHz

fast 1800 LE, 6-stage pipeline, 1,16 DMIPS/MHz, MMU

The envisioned softcore application does not require high computational power,

whereas a limited resource occupation is well-regarded. Indeed, as CameraOne-

Frame controller we deploy the smaller version, the NiosII/economy. The Nios

43

4.3. ARCHITECTURE IMPLEMENTATION CHAPTER 4

II/e core is designed for smallest possible logic utilization of FPGAs. It is capable

of 0,15 DMIPS/MHz and does not require any royalties for a commercial version

(it also be incorporated in the flash bootloader which is launched at power up).

4.3.2 Avalon Memory Mapped bus

The NIOS II Softcore implement an Altera royalty-free data bus, called Avalon

Memory Mapped [31] (or Avalon-MM) which is capable to address a custom FPGA

hardware IP as a memory location. This abstraction is usually deployed in the

microcontroller system, where the external interfaces (such as UART, SPI, I2C,

etc.) are addressable through the standard load ldw and store stw assempler

instructions. In the programmable logic, this concept extends the hardware blocks

integration and provides a reliable and flexible way to a parametric configuration.

Indeed, every elaboration block can be mapped on the Avalon-MM bus to be

addressed from the NIOSII as a standard memory location.

Figure 4.8: Altera Avalon Memory Mapped bus.

All in all, this main feature allow us to: (i) set up the block interconnection

at run-time and (ii) control the elab- oration parameters for every block inserted

into the elaboration pipeline.

In Fig. 4.8 a schematic view of a possible addressing schema is shown, along

with some custom peripheral. The addressing index has been fixed during the

instantiation phase and then fired into the FPGA bitstream during programming.

Every hardware module which has an Avalon-MM port could be configured at

runtime as requested by the application. Indeed, during the operating time of the

smart camera, could be necessary a pipeline change. With CameraOneFrame we

can figure different updating methods:

Authonomous setup This is the first scenario, when the smart camera decides

44

CHAPTER 4 4.3. ARCHITECTURE IMPLEMENTATION

alone to request a hardware reconfiguration to adapt itself to a enviromental

change or after a certain event (i.e. wheather and lights conditions or a

detected event). The software application defines which are the thresholds

or the behaviour behind this kind of setup.

Coordinator request In this situation, the device is connected to a star-topology

SCN, where a central node controls the overall configuration. Through a de-

fined communication protocol (an exanple is shown in Sec. 4.2.4), it would

be possible to deploy a centralised SCN. Moreover a reconfiguration request

could be requested by the user, for example as video surveillance system.

Distributed network request Distributed processing needs also a distributed

configuration. In this case, the recognition of certain features could trigger

some involved nodes to request a recalibration through the network. In this

case we do not have a central node but a distributed decision layer, made

up by a set of cameras.

45

4.3. ARCHITECTURE IMPLEMENTATION CHAPTER 4

46

Chapter 5

Hardware Library

The CameraOneFrame architecture has been designed to extend the flexibility

of an optimised hardware design. Given a set of image processing hardware

blocks, namely hardware IPs, CameraOneFrame creates a functional computer

vision pipeline by configurable interconnections to fit the target application.

As introduced in Chapter 4, CameraOneFrame architecture offers intercon-

nection and configuration facilities to the processing IPs, but does not provides

them. Indeed, the available hardware IPs are provided in a Hardware Library tool

released with CameraOneFrame architecture.

The aim of the Hardware Library is to collect every hardware modules designed

for CameraOneFrame and make them available for future reuse. Hardware IPs

reuse is a key factor of CameraOneFrame, because:

Reduced development time deploying already tested hardware blocks drasti-

cally reduce the development time.

Easy to use Even a complex hardware IP can be instantiated easily in the pipeline.

Digital and hardware design skills are requested during the circuit design

only.

Simple interface the designer should follow the few design guidelines shown in

Sec. 4.2.

Bug-free IP The more will be the users, the sooner bugs will be discovered and

corrected.

These Hardware Library intances can be developed with any available Hard-

ware Description Languages (HDLs), e.i. Verilog or VHDL for low level design or

other model-based languages such as CAPH or CAL. High level approaches are

47

5.1. VIDEOSAMPLER CHAPTER 5

still supported, e.g. Matlab and Simulink, but they are disincouraged due to the

reduced optimisation degrees that an automated HDL generation provides. Once

the module interfaces is fully defined, the internal structure is hidden to the ar-

chitecture level. As a consequence, even different programming languages can be

deployed in the same application, ensuring the maximum flexibility.

In the rest of this Chapter, some developped hardware modules are shown.

They are specifically designed to reach great time perfromance compared to soft-

ware solutions. Each IP block will be presented as a result of a optimisation work

for a specific task and then evaluated towards a software reference.

Figure 5.1: Hardware Library tool.

5.1 VideoSampler

Figure 5.2: VideoSampler module.

The VideoSampler module is an interface towards an external CMOS camera

and manages the video stream synchronization. VideoSampler takes as input the

synchronization signals, namely HREF (Horizontal Reference), VSYNC (frame

synchronization), PCLK (Pixel CloCK) and generates one or more stream data

flow for the CameraOneFrame architecture.

48

CHAPTER 5 5.1. VIDEOSAMPLER

In Fig.5.3 the internal structure is shown. In the upper side the sampling mod-

ule performs the clock domain conversion between PCLK and system clock. This

operation is performed by deploying a dual clock FIFO (made by 512 locations)

which acts as a buffer between different data speed. Then in the right three signal

are connected to output: pixel data, data valid intensity and data valid intensity.

Pixel data keeps the actual value of the pixel, referred to the system clock, while

the data intensity signals are meant to separate color and intensity values if a

YUV-YCbCr format is used. For instance, a interlaced YUV422 format can be

trated as a double data stream: one contains the color informations while the other

luminance levels. This de-interlacing behaviour can be activated or configured by

software application. Moreover VideoSampler provides hardware RGB to YUV

conversion, for both RGB444 and RGB565 format.

Figure 5.3: VideoSampler module.

The lower side of Fig.5.3 represents the Avalon Memory Mapped interface. By

accessing the configuration register with a SoftCore CPU is possible to:

• Control the YUV-RGB conversion.

• Handle the deinterlacing machine.

• Trigger the acquisition to the next VSYNC pulse.

• Detect which is the captured frame resolution and perform an autoconfigu-

ration.

• Control the strean flow by checking the number of captured pixels, the

amount of line in a frame and the input frame rate.

49

5.2. REMOTEIMG CHAPTER 5

The maximum pixel clock speed (PCLK) allowable depends on the FPGA

technology deployed. Using an Altera Cyclone IV EP4CE22 FPGA the maxi-

mum pixel clock frequency is up to 100MHz. Hence about 50fps of a VGA frame

(640x480 pixels) in the YUV422 format can be captured by VideoSampler without

any external buffering system.

5.1.1 Data Register Settings

Tab. 5.1 shows the register map for the VideoSampler core. Device drivers control

and communicate with the core through the memory-mapped registers.

Table 5.1: VideoSampler Register map.

Offset Name R/W Descriptions of Bits

0x00 Status Control RW RGBYUV EN
[
3
]

COUT
[
2
]
, YOUT

[
1
]

, ON
[
0
]

0x01 HREF count RW HREF pulse counter
[
31:0

]
0x02 PCLKonHREF RW Pixels in a line

[
31:0

]
0x03 VSYNC period RW Frame rate

[
31:0

]
0x04 BufOvf RW Buffer overflow

[
31:0

]
By controlling the BufOvf bit the system can assure a correct data acquisition,

excluding overwriting problem inside the above presented dual clock FIFO. The

other registers may be used to detect the image resolution automatically after a

single test frame has been captured.

5.2 RemoteImg

The RemoteImg module performs the image data acquisition through a standard

UART link. It can be used as a video stream source in parallel with VideoSampler.

Therefore it is very useful during the development and during dataset training,

where the image datas are sent by the user. The host system can be a PC, which

runs a simple sender application or another device (also another smart camera).

In this latest case, another external peripheral acts as a data source, sending raw

image data or even precomputed complex features enabling a data fusion through

different smart camera instance.

An internal view of the RemoteImg module is shown in Fig. 5.4.

Internally this module performs the host clock sincronization and samples the

input data according to the selected baudrate, which is configurable through a

dedicated register.

50

CHAPTER 5 5.3. STREAMSTORE

Figure 5.4: RemoteImg module.

5.2.1 Data Register Settings

Tab. 5.2 shows the register map for the RemoteImg core. Device drivers control

and communicate with the core through the memory-mapped registers.

Table 5.2: RemoteImg Register map.

Offset Name R/W Descriptions of Bits

0x00 Status Control RW RX ERR
[
1
]

, ON
[
0
]

0x01 BaudRate RW Baudrate configuration
[
31:0

]

5.3 StreamStore

The StreamStore module is the stream sink after the capturing and elaboration

stages. Here the datastream (that, we would remind, could be also a generic data

input, such as audio or generic data) is converted and then transferred to a memory

addressable locations. Once transferred into memory locations, the data can be

accessed by the SoftCore CPU and used for other computer vision application and

high level data aggregation. The sink operation uses a FIFO buffer to handle the

different memory timing access and burst mode configuration.

The StreamStore module works like a Direct Memory Access (DMA) controller.

By giving the initial storage address and the number of the location that will be

used, the StreamStore capture the data stream and convoys it to the memory.

51

5.3. STREAMSTORE CHAPTER 5

Figure 5.5: StreamStore module.

The destination locations will be then overwritten and at the end, the core

assign an ”operation completed“ flag. In future releases this bit will be mapped as

interrupt trigger for a dedicated Interrupt Service Routine (ISR). By controlling

the FIXLOCATION bit, the user can interface the StreamStore directly to another

Avalon Memory Mapped peripheral, for instance a LCD controller or a data link

cable, which are able to handle the data flow directly on a single addess.

It is important to underline that a generic elaboration pipeline usually exploit

image processing operation by reducing the amount of data from the source to

the sink. This is due to the context-based informations that are extracted each

stage and provided as input to the following blocks. By image understanding we

can reduce the amount of data from the high bandwidth requested at input to the

memory interface at the output. As a result, even a multicycles Synchronous Dy-

namic RAM (SDRAM) can be deployed as a storage sink, with better performance

on intergration and cost rather than a complete static memory.

5.3.1 Data Register Settings

Tab. 5.3 shows the register map for the StreamStore core. Device drivers control

and communicate with the core through the memory-mapped registers.

52

CHAPTER 5 5.4. GRADIENTHW

Table 5.3: StreamStore Register map.

Offset Name R/W Descriptions of Bits

0x00 Status Control RW FIXLOCATION
[
1
]

, ON
[
0
]

0x01 WRITEBASE RW Initial base address
[
31:0

]
0x02 WRITELENGHT RW Number of locations

[
31:0

]
5.4 GradientHW

Edge extraction is a typical task performed in hardware due to the simple oper-

ation repeated continuously every pixel. In the spatial domain, an edge become

a high frequency components inside a defined pixel area. Thus an edge can be

revealed with an thresholding of the local spatial gradient magnitude, taking into

account the pixel luminance values. This is a very commmon operation in image

processing because represents the first elaboration step of a complex computer

vision algorithm. Therefore is important to realise such low-level operation as an

efficient solution, in order to speed up the entire pipeline.

As a mathematical point of view, the gradient extraction can be explained

considering the luminance spatial variation in over a crown of close pixels. The

gradient is a vector defined by:

∇I =

[
∂I

∂x
,
∂I

∂y

]
(5.1)

where I represents the luminance computed as a derivative over x − axis and

y − axis.

Figure 5.6: Pixel space.

In the pixel space (see Fig. 5.6), each derivative is computed as a Newton’s

difference quotient. Every pixel has an associated gradient vector, with rectangular

component Ix and Iy, each one calculated with a convolutional mask over three

53

5.4. GRADIENTHW CHAPTER 5

oriented pixel.

∂I

∂x
≡ I
(
x+ 1, y

)
− I
(
x− 1, y

)
(5.2)

∂I

∂y
≡ I
(
x, y + 1

)
− I
(
x, y − 1

)
(5.3)

where I means luminance at (x, y). Then magnitude m and direction Θ of the

computed gradients are computed by

m =
√
I2x + I2y (5.4)

and

Θ = arctan
(Iy
Ix

)
(5.5)

respectively.

In Fig. 5.7 the gradient computation dataflow is shown. Magnitude and angle

are computed by a square root and arctangent operation which are computed with

iterative methods and floating point arithmetic.

Figure 5.7: Polar space transformation.

5.4.1 Are Floating Point operations suitable for FPGAs?

These operations are not an issue on modern CPUs, which more often have a

floating point coprocessor, but still represent a critical problem in embedded de-

vices. As things stand today, floating point arithmetic is avoided in microcontroller

because fixed point arithmetic provides better performances, although a lower ac-

curacy.

Even though a floating point arithmetic can be deployed (with a significa-

tive decrease in time performances) in microcontroller, hardware design does not

54

CHAPTER 5 5.4. GRADIENTHW

consider at all this possibility. Indeed, in hardware we have access directly to the

natural numbers with two’s complement maths and adding some tricks to the frac-

tional representation while the IEEE754 arithmetic needs a dedicated hardware

IP and specific FSM to manage the exception routines.

As reported by Altera in [32], a single Floating Point (FP) core in an FPGA

can achieve great performance even in a rather small FPGA. Of course, this is

not representative of any real-world application, where many such cores are used

in parallel. Routing multiple 64-bit data paths while completely filling an FPGA

with FP cores is a challenge, usually resulting in unused logic in the device and a

decrease in clock speed for some of the FP functions.

Figure 5.8: Altera Stratix II DSP block.

Since typical math operations are composed by several concurrent tasks, all

operands are require to complete at the same time, these parallelized operation

will occour at the slowest clock speed of all the FP functions on the FPGA.

The following consideration are usually accepted as typical “constrained per-

formance” prediction in a real-case FP core usage:

• Estimated 15 percent logic unusable (due to datapath routing, routing con-

straints, etc.)

• Estimated 33 percent decrease in FP function clock speed

• Extra 24,000 ALUTs for local SRAM memory controller and processor in-

terface

In the following Tab. 5.4 the FPGA resource occupancy are shown. While FP mul-

tiplication uses rather small resources in terms of ALUT, the adder drawn about

1700 ALUTs, which are about 10 % of a small FPGA. Those results considers only

the simpliest FP operation, while division and square root are not considered.

With those assumptions, only one or two FP core will fit in the considered

low-cost platform and the clock speed will drop from 100MHz to a 47MHz.

55

5.4. GRADIENTHW CHAPTER 5

a Synthesis Multipliers ALUTs Latency

Multiplier Logic + Multiplier 9 900 13

Adder Logic 0 1721 17

Table 5.4: FP Core Resource Utilization.

Another challenge in using all the FP cores that fit in the FPGA is feeding

them all with data on every clock cycle. When dealing with double-precision

64-bit data, and parallelizing many FP arithmetic cores, wide internal memory

interfaces are needed. Again we need an internal machine that controls the data

stream inside the FPGA [33].

For example, [34] presents an implementation of a IEEE754-compliant FP co-

processor using a high-end fpga chip, the Virtex II distributed by Xilinx. The

module provides a data valid every clock cycle, with a latency of 4 cycle and

implements most of the operations required by the floating point maths (add,

sub, mul, compare, divide, round) but is not suitable for a streaming processing

application due to the FSM that controls the core behaviour.

5.4.2 Integer arithmetics

The previous section shows that a FP core is not suitable for the parallelization

requested from the gradient extraction purpose. Moreover, the above outlined

method of angle calculation is only suitable for processor implementation, but not

for FPGA implementation because calculating the tan−1 function and division (in

5.5) are very expensive to implement on FPGA.

Even though there are many hardware friendly approximation algorithms avail-

able [35], they are generally iterative algorithms, which slows down the overall

systems speed.

For these reasons, gradient computation is usually implemented using fixed

point arithmetic on FPGA. Integer hardware gradient extraction is well-known

in literature, as described in [35], [36], [37], [38], [39] and [40]. Those solutions

present a fully custom and dedicated hardware for spatial gradient extraction.

To the best of our knowledge three methods are avaiable for image gradient

computation with integer arithmetic: (i) memory-based, (ii) pre-calculated table

and (iii) custom logic design.

A common approach that has been employed is using look up tables (LUTs).

This methodology uses directly a pre-loaded LUT which contains all the possible

56

CHAPTER 5 5.4. GRADIENTHW

values, taking into account the input data width. However, using LUTs will require

large amount of memory space, which eventually will increase systems cost and

will introduce several data latency cycles.

As reported in [35], [36] and [38], a pre-calculated table provides a cheaper

(in terms of hardware usage level) alternative. They directly quantize the pixels

angular value from its corresponding gradients.

Figure 5.9: Gradient approximation [36].

For example, a pixel at location P (x, y) belongs to a quantized direction (see

Fig. 5.9) when its angle is in the range (from Eq. 5.5):

tanΘi <
Iy
Ix
< tanΘi+1 (5.6)

Division operation is prohibitive in term of hardware cost, it can be eliminated

by multiplying both side to Ix:

Ix · tanΘi < Iy < Ix · tanΘi+1 (5.7)

By this equation, Θi and Θi+1 corresponding to two gradient direction shown

in Fig. 5.9.

For example, a pixel at location P (x, y) belongs to direction 2 (see Fig. 5.9

when its angle is in the range: 22.5◦ < Θ < 67.5◦ or 0.4142 < tan(Θ) < 2.4142.

This is equivalent to the condition 0.4142 < Iy
Ix
< 2.412.

Finally, the square root operation is implemented by using a look-up-table.

This kind of simplification is often adopted for hardware design of embedded sys-

tems. To avoid fractional computation, Eq. 5.7 can be approximated by multiply-

ing both side by a scaling factor, arbitrarily chosen to be 1024 in [36].

This methods provides a reliable solution to the gradient extraction routine

but in our opinion, lacks of flexibility and requires a high memory footprint to

store the square root values, expecially if high accuracy has been demanded.

In the next Section, will be exposed our algorithm proposal to compute the

image gradient as well as a comparison versus the floating point implementation.

57

5.4. GRADIENTHW CHAPTER 5

5.4.3 Our proposal

We propose a different gradient extraction technique, which provides a flexible

solution with respect to the already existent works. Rather than the previously

mentioned solutions, GradientHW can:

• Implement a general image preprocessing step, which can be configured to

be a gradient extraction or a filtering operation or both toghether.

• Provide a configurable accuracy.

• Work at the FPGA operating frequency due to a fully pipelined architecture.

As proposed by [38], the corner domain is sampled inN bins, called Θk. The an-

gle resolution is then 2π
N

. Each slice identify a versor, called îk (shown in Fig. 5.10,

in red).

Figure 5.10: Corner domain sampling (N = 8).

Each versor îk can be defined as:

îk = x̂cosΘk + ŷsinΘk (5.8)

The next step considers the Eq. 5.1, where we can imagine the ∇I operator

decomposed by its components over the vector îk.

∂I

∂îk
= ∇I · îk (5.9)

Eq. 5.9 reveals the gradient component extraction by using a dot product re-

peated N times.

Then substituting at Eq. 5.9 the previously shown Eq. 5.1, 5.8 we obtain:

∂I

∂îk
=

[
∂I

∂x

∂I

∂y

]
·

[
cosΘk

sinΘk

]
(5.10)

And then

58

CHAPTER 5 5.4. GRADIENTHW

∂I

∂îk
=

∂I

∂x
cosΘk +

∂I

∂y
sinΘk (5.11)

Finally, using the Eq. 5.2 and Eq. 5.3, we obtain

∂I

∂îk
= cosθ

[
I(x+ 1, y)− I(x− 1, y)

]
+ sinθ

[
I(x, y + 1)− I(x, y − 1)

]
(5.12)

In Eq. 5.12 we ended up with an algebric expression which represents the

gradient component over the îk vector. This step has to be repeated for each one

of the N versors which divided the angle space.

In Fig. 5.11 the magnitude comparation over the set of versor is shown. The

comparation is based on a pipeline bisection procedure and then the result is given,

with magnitude and prevalent angle direction.

Figure 5.11: Prevalent component searching (N = 8).

The outputs contain the magnitude and angle of the pixel spatial gradient,

with a resolution of 2π
N

.

The above mentioned methodology exploit a flexible and configurable solution

to the image gradient extraction and more in general to the image pre-processing.

Indeed the number of versors N and the number of comparation stages are defined

before syntesis, in order to satisfy accuracy and latency specifications.

In the next section the hardware implementation will be exposed, focusing to

the HDL porting of the Eq. 5.12 presened before.

59

5.4. GRADIENTHW CHAPTER 5

0 sinΘk 0

−cosΘk 0 cosΘk

0 −sinΘk 0

Table 5.5: Gradient convolutional kernel.

5.4.4 GradientHW module

As a part of the Hardware Library, GradientHW is fully CameraOneFrame ar-

chitecture compliant.

In Fig. 5.12 the external features of the GradientHW module are shown. The

module has an input port for video stream and two output ports, for prevalent

magnitude and angle respectively. It is made up by two different section: a pro-

cessing area and a control machine. The former processes the data stream while

the latter takes charge of controlling the pipeline, the parameters and the interface

to the Avalon Memory Mapped bus.

Figure 5.12: GradientHW module.

GradientHW implements the above presented algorithm and is designed to

provide output data valid every clock cycle.

It is important to underline that this algorithm is suitable only for hardware

implementation, because of the massive parallelism usage. Even though it can be

simulated in software, that solution has not any sense in a real-application.

Indeed the module is made up by several hardware blocks which implement

the Eq. 5.12 as a parallel operation. Thus creating as many blocks as N value,

the components extraction can be completed in one clock period.

The operation is performed by using 4-DSP 9x9bits modules each versor. These

60

CHAPTER 5 5.4. GRADIENTHW

DSP blocks are available in the Altera Cyclone/Arria/Stratix series FPGA and

they are composed by hardware multipliers which provide a one cycle latency to

output. Nowdays tens of DSP modules are embedded into the FPGA silicon thus

a resolution above N = 8 is allowable even in a rather small FPGA.

In the Tab. 5.5 the convolutional matrix coefficients are shown. To avoid

fractional arithmetic, each cosine function has been pre-multiplied by an arbitrary

factor equal to 256. The results are then represented by two’s complement over 9

bits. These coefficients will be configurable through dedicated registers, in order

to extend the module functionality.

In Fig. 5.13 the parallel matrix computation is shown.

Figure 5.13: Compoment extraction.

Once the gradient components are computed, the next step is the comparation

between them. An inner view of the comparation module is show in Fig. 5.14.

Figure 5.14: Internal compare unit (N = 8).

Each comp2 stage performs an arithmetic comparison of two magnitude inputs

(by deploying a subtraction operation) in one clock cycle. The entire pipeline is

composed by a variable number of comp2 stages, depending on the N value.

61

5.4. GRADIENTHW CHAPTER 5

Finally we obtain the gradient magnitude and angle over a single pixel. This

value is compared to a configurable threshold that acts as a low magnitude filter

and then sent to the output.

In addition to the previously exposed features, in the last version of Gradien-

tHW a multiscale region thresholding has been inserted. By defining an area of

pixels, called Region of Interest above the whole frame, we can insert a double

thresholds, one for the gradient computed inside and one for the outside. Once a

focal area has been selected, the GradientHW module can reduce the edge false

positive by image segmentation. This tecnique has been inserted expecially for

high frame video streams, where close frames are often correlated to each other.

5.4.5 Data Register Settings

Programmers using the IOWR, IORD instrcutions can access the GradientHW

core directly via its registers. In future a HAL device driver will handle this con-

trols. In general, the register map is useful to programmers writing a device driver

for the core. It is worth to underline that every modification of these registers take

place in the next clock cycle after the operation, thus the reconfiguration takes

two clock cycles to be handled.

Tab. 5.9 shows the register map for the GradientHW core. Device drivers

control and communicate with the core through the memory-mapped registers.

Table 5.6: GradientHW Register map.

Offset Name R/W Descriptions of Bits

0x00 Status Control RW ROIEN
[
2
]
, BIN

[
1
]

, ON
[
0
]

0x01 ThresholdIN RW Threshold inside ROI
[
31:0

]
0x02 ThresholdOUT RW Threshold outside ROI

[
31:0

]
0x03 ROI START RW RoiSTART

[
31:0

]
0x04 ROI END RW RoiEND

[
31:0

]
62

CHAPTER 5 5.4. GRADIENTHW

Status Control Register

The Status Control Register (SCR) consists of individual bits that indicate con-

ditions inside the GradientHW controller. The SCR can be read at any time.

Reading the SCR does not change its value. The SCR bits are shown in Tab. 5.7.

Table 5.7: Status Control Register Bit.

Bit Name R/W Description

0 ON RW If the ON bit is 1, the GradientHW core cap-
tures new input datas. otherwise, the core
performs an internal reset and does not gen-
erate any output. Default 0.

1 BIN RW If the BIN bit is 1, after the comparison with
the threshold the magnitude output data will
be binarized, 255 if is bigger, 0 otherwise.
If the BIN bit is 0, compare stage does not
modify the magnitude. Default is 0.

2 ROIEN RW If the ROIEN bit is 1, multithreshold gradi-
ent is enabled. Otherwise only ThresholdIN
will be considered. Default is 0.

ThesholdIN Register

The ThesholdIN Register (TIR) specifies the threshold considered inside the ROI.

If ROIEN bit is disabled, TIR is considered only. Default value is 35.

ThesholdOUT Register

The ThesholdIN Register (TOR) specifies the threshold considered outside the

ROI. If ROIEN bit is disabled, TOR is not considered. Default value is 35.

ROI START

The ROI START Register specifies the start pixel of the ROI. It is computed

following the raster scan method. First pixel is located in the top left corner.

Default value is 0.

ROI END

The ROI END Register specifies the last pixel of the ROI. It represents the bottom

right corner of the ROI. Default value is 0.

63

5.5. HISTOGRAMHW CHAPTER 5

5.5 HistogramHW

Real-time histogram computation is used in a wide variety of applications, such

as for image enhancement in photography and imaging, in speech recognition and

audio systems, in tracking and surveillance and for biomedical applications such

as DNA sequencing.

The histogram computation is a rather simple operation but induces a strong

data dependence. In general, a simple histogram computation can be represented

as depicted in Fig. 5.15.

Figure 5.15: Histogram computation overview.

Most often, histogram analysis is performed serially in software written for

embedded processors using a memory array. For parallel computation, access to

the memory array creates read and write conflicts when two or more data items

access to the same bin.

In general, the main challenge for a parallel histogram using a memory array

is to handle updates to a particular bin count when at least two data items map

to the same bin. Memory accesses collisions represent a upper bound limit in

the real-time performance of parallel histogram computation. Since a bin is being

updated the actual value may not be stable for at least 2 clock cycles. If the next

data belongs to the same bin, there we will have a conflict (see Fig. 5.16).

Figure 5.16: Histogram bins management.

To avoid data conflic a memory management system is needed even though it

64

CHAPTER 5 5.5. HISTOGRAMHW

will penalize the elaboration performance. Therefore a great effort has been put

on redesigning algorithm for parallel computation.

In the next Section the state-of-the-art solutions on histogram parallel com-

putation are shown. Then we will propose, implement and evaluate our parallel

solution against the previously existent.

5.5.1 Existent hardware implementations

Real-time histogram computation has been extensively applied on signal process-

ing and analysis in digital devices, for instance digital camera, video surveillance

and mobile processing.

At the first glance the histogram calculation module is regarded as composed

of memory blocks and incremental logic as it is shown on Fig. 5.15. In this picture

a schematic view illustrates the main issues of a histogram computation module:

(i) addressing management through input data, (ii) incremental step and (iii) his-

togram updating. Unfortunately, as it is the memory block limits the calculation

speed as the memory output data is one clock cycle delayed with respect to the

address bus (as a synchronous memory read operation). Therefore the evaluation

of a single input pixel involves two clock cycles.

In order to speed up the above presented circuit to an evaluation per clock

cycle, a dual port RAM solution has been presented in [42] and [43]. Dual port

memory arrays are the common solution due to functional histogram behaviour.

For example, the atomic operation to update a bin count is split into a read step

and a modify-write step.

The data items are read into one port at one speed into a portion of a memory

array while the modify-write works on a second port at twice the speed into a

second portion of the same memory array. However, such systems can only achieve

a speedup factor of up to two [44]. Similar approaches have been proposed for low

speed data throughput, by [43]. This solution rely on the different clock speed

between data input and FPGA system clock. While the single input period is

substantially bigger than clock period (double or more), all the histogram opera-

tions have sufficient time to be executed. Therefore memory conflicts are avoided.

Besides this architecture is based on the low input throughput compared to the

system clock. Even if could work with low frame rate, is not suitable expecially

for high resolution data streams. The condition between clock speed set an upper

bound on the input data throughput.

Recently, new parallel histogram architectures have been proposed [45], [46]

65

5.5. HISTOGRAMHW CHAPTER 5

and [47]. These works develop circuits for the computation of histograms using

generic parallel architectures that process up to four data items at a time without

involving memory arrays. The architectures are arranged as a linear array of cells

where computation proceeds in a pipelined fashion. This has the advantage that

it will keep more than one cell active per unit of time; having only one cell active

at a time is the main drawback of the traditional histogram using an array of

counters. Once all the data items are consumed and the histogram is computed,

the final bin counts are read one bin at a time from one end of the array also in a

pipelined fashion [45]. In this circuit two or four input data items per clock cycle

are processed in parallel by the array, resulting in speedup factors of two or four

respectively when compared to processing one input data item per clock cycle.

This new solution overcome the previously mentioned approaches. It has been

implemented in modest hardware and can achieve real-time histogram computa-

tion when streaming high resolution images at 30 frames per second. However still

represents a dedicated solution and is designed to process already available datas.

5.5.2 Our proposal

Our proposed implementation is based on the streaming fashion. Since storing a

whole frame rate is not feasible for mid-range FPGA, the operation has to be done

directly on the input pixel. Streaming histrogram computation has been exploited

by a parallel processing and great effort has been put to accomplish a seamless

integration in the CameraOneFrame architecture.

As pointed out by [41], parallel histogram computation requires a complete

algorithm redesign. In this context, our work removes the memory access conflicts

from the main histogram computation leading to more flexible and efficient ways

to exploit parallelism. This opens up the possibility for better performances with

respect to the state-of-the-art solutions and a configurable behaviour for a wide

range of applications.

In Fig. 5.17 the external features of the HistogramHW module are shown.

The module has an input port for data stream and an outport port for histogram

storing. As the previously presented GradientHW, HistogramHW presents two dif-

ferent section, the top one is dedicated to histogram processing, while the bottom

one represents the interface towards the Avalon Memory Mapped bus.

66

CHAPTER 5 5.5. HISTOGRAMHW

Figure 5.17: HistogramHW overview.

5.5.3 Exploiting parallelism

The proposed mechanism can be used to perform a generic histogram while reading

image data directly from an external source for real-time application.

This module is designed to:

• calculate window-based histogram for real-time

• allow a parameter configuration

• process data directly when it is captured

• be fully compliant with CameraOneFrame architecture

• minimize the output data latency

Based on memory array design fashion [43], is built around the RAMsubcell,

which is a dual port memory and represents the core of the circuit. The RAMsub-

cell provides the functionality exposed on Fig. 5.15. More in detail, RAMsubcell

uses the data input as memory address (called rdaddress input in the picture be-

low), while considers another input as incremental value, that could be 1 or an

arbitrary value (the reason will be explained in Chapter 6).

The memory array could be configured based on the requested bin resolution,

bin widths and window dimension. When a pixel comes to the input port, a data

valid signal will be asserted and the internal FSM begin a new elabration cycle. An

67

5.5. HISTOGRAMHW CHAPTER 5

Figure 5.18: RAMsubcell module.

elaboration phase is composed by four states, each one last a clock cycle: READ,

LOAD, ADD, WRITE. These states control the read-modify-write operation and

guarantee a complete registered design, in order to speed up as much as possible

the clock speed.

Figure 5.19: RAMsubcell FSM.

This circuit offers a reliable solution to the read-modify-write operation but

does not resolve the memory access conflict problems and moreover takes four clock

cycles to process a single pixel. As it is this circuit does not provides the requested

atomic read-modify-write operation. Since a single histogram computation takes

that time a real-time elaboration is not feasible in FPGA.

In Fig. 5.20 the pixel flow is shown. The RAMsubcell that is processing the

first pixel does not capture a new data until the previous cycle is completed thus

the represented behaviour is not feasible with a single RAMsubcell module.

The picture suggest a different approach: since the RAMsubcell is locked for

four cycles, we can imagine an architecture composed by four instances of RAM-

subcell, where each one takes care of one pixel at time. This structure has been

called Histogram cell. The results is the follow: RAMsubcell first instance takes

pixel 1, second instance pixel 2, and so on. Then after the WRITE phase the first

RAMsubcell becomes available again and takes pixel 5. This sequential operation

68

CHAPTER 5 5.5. HISTOGRAMHW

Figure 5.20: Streaming pixel flow.

is repeated over the whole frame.

Figure 5.21: Histogram cell overview.

As described in the previous paragraph, this simple architecture can handle

new input data every clock period and then processes directly a video stream while

reading image data directly from an external source. When the frame has been

completely acquired, the histogram bins are sent to the output. Every RAMsubcell

bin contains a quarter part of the histogram, thus a data aggregation operation is

performed before the storing phase.

As a result, RAMcell module provides a full-scale image histogram by process-

ing a pixel per clock cycle. By controlling the memory locations of RAMsubcell,

the system can handle different images resolution and different histogram bin res-

olution.

For instance, a 320x240 image resolution, with 256 bins (8-bit grayscale pixel)

and 32bit width bins takes 256x16bitx4 = 2048 Bytes and about 100 LE on a Altera

Cyclone IV EP4CE22 FPGA. Integrated in the CameraOneFrame architecture,

this module can handle a real-time frame rate while introduces a latency of only

ten clock cycles due to the module design.

5.5.4 Window-based histogram

A more complex behaviour of HistogramHW module is represented by the window-

based operations. As introduced before, histograms are deployed as analysis

69

5.5. HISTOGRAMHW CHAPTER 5

tool between consecutive frame to detect luminance or colors variations. His-

tograms are being deployed also for change detection algorithms expecially for

video-surveillance applications [48].

Histogram based change detection algorithms have been used for years even

with limited resources devices. They can analyse two or more consecutive frame

and predict whereas a scene change has happened. This behaviour becomes ex-

tremely useful in video-surveillance scenarios, where a significant scene variation

could trigger a video acquisition rather than a pre-allarm notification.

In more recent years, histogram analysis have been deployed also for comparing

images based on their content or features [49] [50]. There a global histogram

computation is useless, while it has been preferred a region histogram extraction.

A region, often called window, is detailed by its shape and the amount of pixel

contained.

Region based methods are better than local methods at capturing pixel inter-

relations. Region based histograms provide a rich estimate of a regions intensity

distribution and then advantageous for features detection [51] or local background

change [50]. Moreover can be deployed to provide an optimal color equalization

for High Dynamic Range images, where a region based analysis gives better results

[41].

Figure 5.22: Cell-based image.

Computing a cell-based histogram is similar to the previous shown method

but require a considerably amount of data memory. This is due to the fine-grain

histogram computed over a single cell. For instance with a cell of 8x8 pixels over

a QVGA images we get:

1200 windows · 256 bins · 32 bit
bin
· 4 ≈ 4,9 MByte

That is far to big even for high-end FPGA!

70

CHAPTER 5 5.5. HISTOGRAMHW

Our window-based approach

We propose an extended feature of the previously presented circuit which is capa-

ble to handle configurable histogram cell with limited memory requirements and

minimum output latency. In our work, a cell has a configurable size. As a result

4x4, 5x5, 6x6 and 8x8 pixels cells are available for histogram calculation. Every cell

histogram has an indipendent memory location and it is processed indipendently.

The structure of a cell histogram circuit is quite the same explained in the

Section before. It uses a RAMsubcell module, along with a more complex FSM

that controls the memory addressing method. Indeed histograms of close cells are

stored as a sequential locations in the memory array.

Figure 5.23: Cell-based Histogram computation.

They are computed during the acquisition phase an kept until the operation

on the current cell is completed. In Fig. 5.23 the cell histogram computation is

shown. The circuit keeps on memory only the active row of cell and process the

incoming pixel addressing the correct memory location.

Since all of the CellHist block are instances of RAMsubcell a continuous data

stream is handled. Memory conflicts are managed by the internal architecture

thus, once again, the circuit works on a single clock period per pixel.

Fig. 5.23 introduces some configuration parameters:

IMAGE WIDTH the horizontal width per units of pixels. In case of QVGA

images, IMAGE WIDTH is 320.

71

5.5. HISTOGRAMHW CHAPTER 5

CELL WIDTH the pixel size of the cell. At the moment, only square shapes

are considered. In Fig. 5.23 CELL WIDTH is 5.

The considered row cell is composed by the cells which are being updated

by new pixel values. The row cell width is correlated to the CELL WIDTH

and IMAGE WIDTH parameters. For instance, with CELL WIDTH and IM-

AGE WIDTH respectively equal to 5 and 320, the ROW WIDTH becomes 320·5 =

1600 pixels. These parameters are important to setting up the HistogramHW

module and to understand how the hardware configuration works.

Once the last pixel on the active cell row is processed (namely the 1599-th pixel

considering the previous example) the memory allocated histograms are ready to

be serially sent to output.

This operation called ”store phase“ is managed by the internal HistogramHW

FSM. Unfortunately incoming pixels are still captured whereas during ”store

phase“ the memory is unavailable. This drawback has been resolved using a

shadow memory structure, which takes new data while the other one is sending

out the results (see Fig. 5.24).

Figure 5.24: Shadow memory handling.

While HistROW A is capturing the input stream, the other set called HistROW B,

is sending out the bin values. A brief explanation of the STORE FSM operations

follows:

• controls the stream redirection to the histogram modules

• generates the memory address for read operations

• clears the previously read location (for a new acquitistion cycle)

• handles the RAMsubcell pipeline

72

CHAPTER 5 5.5. HISTOGRAMHW

Once the store phase has been completed, the HistRow involved is paused

waiting for a new active status.

Figure 5.25: HistogramHW functional simulation.

in Fig. 5.25 the communication burst during the store phase are shown. The

data valid out signal is asserted when a histogram row is being sent to the output.

This hardware architecture has been designed to hide the internal circuits to

the output in order to be easlily implemented as a single entity in the CameraOne-

Frame architecture. Every parameters are available to the CPU as configurable

resources, changeable at run time.

5.5.5 Evaluation

Since the architecture has been designed for wide range application, global and

window based histograms are exploited by the same hardware module, through

software parameters setup. Indeed the global based histogram can be seen as a

full scale image window.

The HistogramHW module has been tested on a cycle accurate Verilog simu-

lator and then implemented on a low cost FPGA. The test has been performed

with a QVGA video stream, at 24fps.

Before reporting any results, some clarifications are needed:

• HistogramHW is designed for low-cost FPGA devices where limited amount

of RAM is implemented. As a result, many intances can be implemented

even on a rather small FPGA

• all of the time constraints are respected up to 100MHz clock frequency

73

5.5. HISTOGRAMHW CHAPTER 5

Available bins Delay latecy FPGA resource occupancy

4x4 8, 16 1280 T clk ∼ 16kB + 850 LE

5x5 8, 16 1600 T clk ∼ 16kB + 850 LE

6x6 8, 16 1920 T clk ∼ 16kB + 850 LE

8x8 8, 16, 32, 64 1 2560 T clk ∼ 16kB + 850 LE

full frame 16, 32, ..., 256 1 76800 T clk ∼ 16kB + 850 LE

Table 5.8: Performance results on QVGA resolution.

• resource occupancy and delay latency performances are measured with the

Altera Design Tools and verified for Altera FPGA only.

• delay latecy cycles are computed assuming that a countinuos video stream

is captured.

In Tab. 5.8 the preliminary performance results are shown. In particular in the

second column are presented the available bin resolutions for a certain cell width.

Since store phase is performed while the other shadow memory is capturing new

input data, it is straightforward to notice that both phases should last the same

time. Since active phase can not be bounded (it depends on the input stream),

we must assure that the other one completes before that.

Figure 5.26: Bins and window size relation.

This condition becomes a restriction in the number of bins avalilable with

respect to a defined window size. As a result, we obtain an inverse proportional

relationship between the window size and the amount of bins. A simple numeric

example explain this behaviour: using a 5x5 cells we get 25 incoming pixels and

16 available bins. Since the number of bins is lower than the amount of pixels

considered, the store phase last less than the active phase. Differently, using a

1not tested yet

74

CHAPTER 5 5.5. HISTOGRAMHW

32 bins resolution, the circuit is not able to handle the stream and data will be

corrupted.

Figure 5.27: HistogramHW overview.

5.5.6 Data Register Settings

Programmers using the IOWR, IORD instrcutions can access the HistogramHW

core directly via its registers. In future a HAL device driver will handle this con-

trols. In general, the register map is useful to programmers writing a device driver

for the core. It is worth to underline that every modification of these registers take

place in the next clock cycle after the operation, thus the reconfiguration takes

two clock cycles to be handled.

Tab. 5.9 shows the register map for the HistogramHW core. Device drivers

control and communicate with the core through the memory-mapped registers.

Table 5.9: HistogramHW Register map.

Offset Name R/W Descriptions of Bits

0x00 Status Control RW CountPixel
[
31:16

]
, AddrMgt

[
1
]

, ON
[
0
]

0x01 CellControl RW CellInRow
[
23:16

]
, CellWidth

[
15:0

]
0x02 PixelControl RW PixelCellRow

[
31:0

]
0x03 StoreControl RW AddressGenerator

[
31:0

]
75

5.5. HISTOGRAMHW CHAPTER 5

Status Control Register

The Status Control Register (SCR) consists of individual bits and group bits that

indicate conditions inside the HistogramHW controller. The SCR can be read at

any time. Reading the SCR does not change its value. The SCR bits are shown

in Tab. 5.10.

Table 5.10: Status Control Register Bit.

Bit Name R/W Description

0 ON RW If the ON bit is 1, the HistogramHW core
captures new input datas. otherwise, the
core performs an internal reset and does not
generate any output. Default 0.

1 AddrMgt RW If the AddrMgt bit is 1, the input datas are
treated as address and the histogram incre-
mental step becomes 1. Otherwise data are
treated as intremental step. Default 0.

31:16 CountPixel RW CountPixel keeps the count of the captured
pixel in the last active operation (until ON
is active).

Cell Control Register

The Cell Control Register (see Tab. 5.11) specifies the number cells and their

dimensions. The CellWidth register is specified in pixels while CellInRow per unit

of cell. With AddrMgt bit manages the histogram incremental values.

Table 5.11: Cell Control Register Bit.

Bit Name R/W Description

15:0 CellWidth RW In CellWidth the cell size (per unit of pixel)
are kept. Note that this configucration can
be modified only when ON bit is low. Default
8.

23:16 AddrMgt RW If the AddrMgt bit is 1, the input datas are
treated as address and the histogram incre-
mental step becomes 1. Otherwise data are
treated as intremental step. Default 0.

31:16 CellInRow RW Through CellInRow the user can configure
the cell contained in a frame row (e.g. QVGA
resolution, 8x8 cell gives CellInRow equal to
40). Defult 40.

76

CHAPTER 5 5.5. HISTOGRAMHW

Pixel Control Register

The Pixel Control Register (PCR) specifies the amount of pixels expected by the

HistogramHW module inside a row of cells, minus 1. This value is useful to control

the machine status and it is used only during the active phase. The PCR is wide

enough to manage high resolution images. The default value is 2559 (QVGA

frame, with 8x8 pixels cell).

Store Control Register

The STore Control Register (STCR) specifies the whole amount of bins to be

tranferred during the ”store phase“, minus 1. This value is the combination of:

number of bins per cell and the number of cells in a single row. The default value

is 639 (QVGA frame, 8x8 pixels cell).

77

5.5. HISTOGRAMHW CHAPTER 5

78

Chapter 6

Experimentation

In this chapter a working prototype for the CameraOneFrame architecture is pre-

sented. The implementation follows the design principles described in the Chap-

ter 4. In order to evaluate the performances of CameraOneFrame architecture

and validate the proposed methodology, a functional simulation and a prototype

platform will be presented.

In Sec. 6.1 the System on a Programmable Chip (SoPC) subsystem is exposed

while Sec. 6.2 will expose the development boards used for evaluation and testing.

Finally, in Sec. 6.3, some different algorithm implementation are shown along with

timing and resource occupation performances.

6.1 Image processing SoPC

As described in Chapter 3, the CameraOneFrame architecture permits to have

a greater flexibility with respect to a pure hardware based solution. This is a

consequence of using an embedded softcore CPU, which handles the connection

and the reconfiguration abstraction. In this first design step, we would create the

connection between the peripherals and the CPU core.

Once an Elab block has been designed, a new Qsys component has to be

created. A Qsys component is created directly from the HDL code and becomes a

model for multiple instances of the same hardware IP. By using the Qsys builder

tool, the designer works on a hardware abstraction level, where a specific instance

is addressable as a memory mapped location.

In Fig. 6.1 the implemented SoPC circuit is shown. In red the Avalon-MM

bus is shown, while the arrows in black represents a unique address location,

available on the NiosII Data Bus. In the image, special consideration is given to

79

6.2. DEVELOPMENT BOARD CHAPTER 6

Figure 6.1: SoPC overview.

the NiosII environment, showing some hardware instances offered by Altera with

the QuartusII release. Basically an OpenCores I2C module is deployed to manage

the camera configuration bus, a memory controller for SDRAM management and

a JtagUART for debugging purposes.

The CameraOneFrame instances internally is composed as described in Chap-

ter 3. Here a certain number of RouteMatrix and Elab block instances realise the

desired configurable computer vision pipeline. In Tab. 6.1 the resource occupancy

of a single Hardware Library instancy is shown.

Considering the limited data bandwidth requested to the CPU, the smaller

NiosII instance has been deployed. Indeed, the economy version provides the

necessary computational power while occupies only 600 Logic Elements and is

provided by Altera with a royalty-free license.

6.2 Development board

The considered development board are principally two: the low-cost Terasic DE0-

nano board and the DreamCAM designed by the University of Clermont Ferrand.

Table 6.1: Hardware library occupancy.

Logic RAM footprint DSP

elements (Bytes) (9x9 bit)

VideoSampler 200 (0,9%) 512 0

RemoteImage 200 (0,9%) 1 0

GradientHW 1200 (5,4%) 640 32

HistogramHW 850 (4,0%) 16384 0

RouteMatrix (x1) 400 (1,8%) 40 0

80

CHAPTER 6 6.2. DEVELOPMENT BOARD

This two solutions represents different target application: the former is a extremely

low cost solution with a limited hardware resource, ideal for simple and pervasive

scenarios. The latter represents a high end product, where resources and memory

are comparable with the newest state of the art devices.

The Terasic DE0-nano board embeds an Altera Cyclone IV FPGA, with 22000

Logic Elements (LE), 600 Kbits of on-board memory and 144 9x9 bits DSP mod-

ules. In such board we deploy a 1.3MP Omnivision CMOS Camera (OV9650)

connected through the header connections.

In Fig. 6.2 the above presented solution is shown. The communication with

PC is managed by the USB cable, which is used also for FPGA programming and

NiosII software download.

Figure 6.2: DE0-nano with OV9650 board.

The DreamCam platform is equipped by a 1.3 Mega pixels active-pixel digital

image sensor from E2V, supporting sub-sampling/binning and multi Region of

Interests (ROIs). The FPGA is a Cyclone-III EP3C120 FPGA manufactured

by Altera. This FPGA is connected to 6x1MBytes of SRAM memory blocks

wherein each 1MB memory block has a private data and address buses. The

board also embeds a CMOS sensor and a communication controller layer for USB

Figure 6.3: DreamCAM3 layers.

81

6.3. ARCHITECTURE EVALUATION CHAPTER 6

or Giga-Ethernet interface. To assure future board extension, the designer places

an expansion slot on top of each PCB, able to accomodate a potential new design.

Figure 6.4: The DreamCAM3 board.

6.3 Architecture evaluation

In this section we propose a suite of test cases aimed at validating all the claims

described in the previous sections by using the modules presented in Chapter 5.

6.3.1 Test cases

More in detail, in the test cases (shown in Figure 6.5) the following modules

have been instantiated: two VideoSampler, three GradientHW, a HistogramHW,

three RouteMatrix instances and finally a NiosII SoftCore. In this scenario the

proposed architecture permits to generate several combinations of the considered

blocks, thus performing a set of applications fitting inside a rather small FPGA

size.

In fact, considering the occupancy data reported in Tab. 6.1, and considering

the additional resource overhead due to the NIOSII SoftCore and the Avalon-MM

bus, the whole bitstream occupies only 31% of the LE, the 38% of on-chip memory

and the 51% of the 9x9 DSP modules.

The all possible cases of the test suite are reported in Figure 6.5, where it

is shown that the proposed architecture can: (i) handle a single pipeline (Fig-

ure 6.5a), (ii) handle two parallel pipelines using two cameras (Figure 6.5b) and

(iii) split a data stream to follow two pipelines (Fig. 6.5c).

In order to evaluate the output latency of each pipeline, the time latency of

each architecture block is shown in Table 6.2 in terms of FPGA clock cycles.

82

CHAPTER 6 6.3. ARCHITECTURE EVALUATION

(a) Test 1: handling a single pipeline.

(b) Test 2: handling two pipelines.

(c) Test 3: split a data stream to follow two pipelines.

Figure 6.5: Test cases.

These values measure the amount of clock cycles needed by data to flow inside

each block, considering that they are implemented according to the streaming

paradigm, without buffering a whole image.

Table 6.2: Hardware module processing latency.

Latency

(clock cycles)

VideoSampler 0

RemoteImage 0

GradientHW 2

HistogramHW 2560

RouteMatrix 1

As reported in the table above, every module has a constant data delay, as a

consequence of the hardware realisation based on the HDL description. More in

detail, the VideoSampler and RemoteImage modules do not introduce any latency

time, because they do not perform any elaboration, but only manage clock speed

conversions. The GradientHW, instead, introduces a latency time 2 clock cycles.

The most effective latency values are related to the HistogramHW module, that

introduces a latency dependent on image size and cell size: in the contingent case,

83

6.3. ARCHITECTURE EVALUATION CHAPTER 6

using 8x8 pixels cells and Q-VGA images, it is of 2560 clock cycles. Regarding

the last implemented block, RouteMatrix, it introduces a latency of 1 clock cycle

only.

The overall system performance in time delay can be evaluated as a sum of

the latency of the module inserted into a specific pipeline plus the one introduced

by the architecture structure elements (namely the RouteMatrix), as shown in the

following equation:

Ltotal =
N−1∑
i=0

LBi +M · LRM (6.1)

where LBi is the latency of the i-th elaboration block, LRM the latency of RouteM-

atrix, M the number of RouteMatrix iterations, and N the depth of the considered

pipeline.

The latency time value in number of clock cycles can be easily converted in

time delay by defining the oscillation frequency of the FPGA master clock. In

our design, all the system runs at a frequency of 50MHz, thus the values of Ta-

ble 6.2 can be expressed as delay time by multiplying them for the inverse of the

clock frequency (in this case 40ns). Table 6.3 shows the delays for all the test

cases depicted in Figure 6.5. For all the performed experiments the latency in

terms of clock cycles and delay time is evaluated following the rule described in

Equation 6.1.

6.3.2 Histogram of Oriented Gradients

The above presented test case has been deployed to exploit the Histogram of

Oriented Gradients algorithm (HOG) on FPGA. This algorithms, proposed by

Dalal in [52] is particulary suited for pedestrian and vehicle detection. In [52]

the authors propose a new feature extraction methods able to reduce the spatial

complexity to a set of aggregated data. These results are sent to a classification

machine (Support Vector Machine or a Neural Network) able to detect specific set

Table 6.3: Tests case results.

Latency (clock cycles) Time (µs)

Out0 Out1 Out0 Out1

Test 1 2565 - 102,600 -

Test 2 2565 9 102,600 0,360

Test 3 2565 9 102,600 0,360

84

CHAPTER 6 6.3. ARCHITECTURE EVALUATION

of features after a specific training phase.

The HOG algorithm pipeline is shown in Fig.6.6.

Figure 6.6: The HOG pipeline.

The HOG algorithm is similar to that of edge orientation histograms and scale-

invariant feature transform (SIFT) descriptors, but differs in that it is computed

on a dense grid of uniformly spaced cells and uses overlapping local contrast nor-

malization for improved accuracy. The implementation of these descriptors can

be achieved by dividing the image into small connected regions, called cells, and

for each cell compiling a histogram of gradient directions for the pixels within the

cell.

The combination of these histograms then represents the descriptor. For im-

proved accuracy, the local histograms can be normalized by calculating a measure

of the intensity across a larger region of the image, called a block, and then using

this value to normalize all cells within the block.

This normalization results in better invariance to changes in illumination or

shadowing [53].

Figure 6.7: The HOG logic operation.

In the latest years, hardware implementations of HOG algorithm have been

presented by [35], [38], [39]. In the above mentioned papers, the authors demon-

states once more that FPGA is suitable for image vision processing. In particular,

in [35] a real-time a simplified HOG extraction technique is deployed for road sig-

nal detection. In [38] and [39] an updated version has been presented, where a

85

6.3. ARCHITECTURE EVALUATION CHAPTER 6

custom hardware processing has been designed. Finally in [40] the latest hard-

ware HOG implementation is shown. In this work, the authors presents optimised

version of HOG extraction, based on a multistage pipeline elaboration.

Our HOG implementation represents a follow up of [39], where each elabora-

tion step is performed by a single stage pipeline. By using the above mentioned

elaboration blocks (as shown in Chapter 5), we implement a hardware-friendly

version of the HOG algorithm. Indeed by using a VideoSampler, GradientHW,

HistogramHW, StreamStore the histogram extraction has been exploited.

In Fig. 6.8 the HOG data flow modeling has been presented. Note that any

RouteMatrix instances are used because the application could not require them.

In this case, the pipeline becomes fixed once the bitstream is programmed but is

still configurable by using the Avalon-MM interfaces of every hardware IP.

Figure 6.8: The CameraOneFrame HOG implementation.

In Fig. 6.9 the results of this elaboration pipeline are reported. In particular,

Fig. 6.9a is the original 320x240 (QVGA) frame captured from the OV9650 CMOS

camera and Fig. 6.9b shows the results of a 8x8 pixels cell histogram.

By considering Tab. 6.1, the occupation results are contained and well-suited

for the low-cost DE0-nano deployement. Considering the processing time perfor-

mance, this hardware solution could handle up to 30fps at VGA resolution. In

Fig. 6.10 a different implementation is presented. In this case we deploy two in-

stances of RouteMatrix in order to extend the system configurability. Although

the little resource overhead, using RouteMatrix the datapath can be redirected

during the elaboration to provide intermediate results or parallel data flows.

In this latest case, a new source has been inserted. The RemoteImg can be

connected to the HOG elaboration pipeline by a software configuration of the first

RouteMatrix instance. This architectural solution can:

• acquire a frame from a CMOS camera or from a serial connection

86

CHAPTER 6 6.4. FPGA-PC COMMUNICATION

(a) Original image.

(b) Histogram of Oriented
Gradients results.

Figure 6.9: HOG output example.

• provide an original image as result

• provide a gradient image

• provide a histogram image

• provide a histogram of gradient image (by using the feedback loop)

• provide at the same time: original, gradient and histogram of gradient image.

These results are given in parallel to the output.

6.4 FPGA-PC communication

The simple PC-NiosII interface used for development is based on the Altera Jta-

gAtlantic driver released in the Quartus II software tool. The connection is man-

aged as a serial communication throught the JtagUART peripheral. The Softcore

CPU wait commands on the UART link and once received, configure the internal

architecture and enable the acquisition.

The GUI interface has been coded in C with GTK graphic libraries. In Fig.6.11

the simple interface is shown. By a simple click on the button, it is possible to

configure the internal architecture of the FPGA and obtain the requested result.

The output results is then sent back from the FPGA to the PC. Considering the

87

6.4. FPGA-PC COMMUNICATION CHAPTER 6

Figure 6.10: CameraOneFrame intermediate results.

Figure 6.11: Debug GUI.

limited bandwidth of the JTAG connection, a real-time frame updating is not

feasible.

88

Chapter 7

Conclusion

In this master thesis a new architecture for supporting FPGA applications applied

to the Smart Camera Network has been presented. Issues related to hardware and

software processing have been discussed together with the benets of relying on

hardware based image processing design.

In particular we present an innovative architecture concept for a smart camera

network node. By leveraging the hardware software codesign, we propose a SCN

node composed by a reconfigurable FPGA architecture. This architecture is tar-

geted to a wide range of image processing applications, where real-time and low

cost specifications require a dedicated system.

Concerning the FPGA architecture, the dynamic reconfiguration is managed

by an internal Softcore CPU which acts as a data path controller. This architecture

represents a flexible and reconfigurable solution into a static FPGA bitstream.

The flexibility and the reconfigurability is enabled to provide the possibility of

composing computer vision pipelines at run-time, by routing data to certain elab-

oration blocks. Moreover, in the proposed design the computer vision algorithms

are realized with modules of an HDL library, thus helping programmers in the

development of IoT based applications leveraging computer vision capabilities.

In this work the proposed architecture is first presented by detailing the internal

reconfigurable architecture. Then, a real implementation on FPGA devices is

discussed in respect to a possible application. Finally, performance evaluation

results are presented in terms of latency time and FPGA occupancy.

Results show that the high level abstraction realised by the architecture does

not decrease the elaboration performance, indeed shows a constant output latency

and an optimized solution, compared to a pure-software application.

89

7.1. FUTURE WORK CHAPTER 7

7.1 Future work

The preliminary results obtained in this thesis are rather satisfying; although

the few blocks available at the moment in the Hardware Library, some simple

applications are already feasible.

In the near future effort will be directed to an extension of the Hardware

Library, providing solution and hardware design to other image processing appli-

cations. Further, new updated version of the already available hardware module

will be presented. In this respect the work will be directed to assure the maximum

reconfiguration from a custom hardware IP.

With respect to the Smart Camera environment, in the future we envision a

FPGA based Smart Camera where the Softcore CPU is able to manage both the

architecture and a network stack. This scenario is the first step towards a real SCN

deployment and leveraging on a distributed processing network able to exchange

information or aggregated datas.

90

Bibliography

[1] B. Rinner, T. Winkler, W. Schriebl, M. Quaritsch, and W. Wolf. The evolu-

tion from single to pervasive smart cameras. In Distributed Smart Cameras,

2008. ICDSC 2008. Second ACM/IEEE International Conference on, pages

1–10, 2008.

[2] F. Qureshi and D. Terzopoulos. Smart camera networks in virtual reality.

Proceedings of the IEEE, pages 1640–1656, 2008.

[3] Thomas Winkler and Bernhard Rinner. Pervasive smart camera networks ex-

ploiting heterogeneous wireless channels. In Proceedings of the 2009 IEEE In-

ternational Conference on Pervasive Computing and Communications, PER-

COM ’09, pages 1–4. IEEE Computer Society, 2009.

[4] iMinds. Little sister project. URL http://www.iminds.be/en/research/

overview-projects/p/detail/littlesister.

[5] Stephan Hengstler and Hamid Aghajan. A smart camera mote architecture

for distributed intelligent surveillance. In In ACM SenSys Workshop on Dis-

tributed Smart Cameras (DSC, 2006.

[6] Claudio Salvadori, Dimitrios Makris, Matteo Petracca, Jesus Martinez del

Rincon, and Sergio Velastin. Gaussian mixture background modelling opti-

misation for micro-controllers. pages 241–251, 2012.

[7] Sek Chai Branislav Kisaanin, Shuvra S. Bhattacharya. Embedded Computer

Vision. Springer, 2008.

[8] Martin Masek Michael Wirth, Matteo Fraschini and Michel Bruynooghe. Per-

formance evaluation in image processing. EURASIP on Applied Signal Pro-

cessing, pages 1–3, 2006.

91

http://www.iminds.be/en/research/overview-projects/p/detail/littlesister
http://www.iminds.be/en/research/overview-projects/p/detail/littlesister

BIBLIOGRAPHY BIBLIOGRAPHY

[9] W.J. MacLean. An evaluation of the suitability of fpgas for embedded vision

systems. In Computer Vision and Pattern Recognition - Workshops, 2005.

CVPR Workshops. IEEE Computer Society Conference on, 2005.

[10] M. Birem and F. Berry. Fpga-based real time extraction of visual features.

In Circuits and Systems (ISCAS), 2012 IEEE International Symposium on,

pages 3053–3056, 2012.

[11] Nasser Kehtarnavaz Kui Liu. Real-time robust vision-based hand gesture

recognition using stereo images. Journal of Real-Time Image Processing,

pages 1–9, 2013.

[12] Fabio Dias, Franois Berry, Jocelyn Srot, and Franois Marmoiton. A con-

figurable window-based processing element for image processing on smart

cameras. In MVA, pages 276–280, 2007.

[13] Texas Instruments Incorporated. TMS320C6414T, TMS320C6415T,

TMS320C6416T Fixed-Point Digital Signal Processors.

http://focus.ti.com/lit/ds/sprs226l/sprs226l.pdf, 2008.

[14] Nicolas Roudel. SeePROC : Un modle de processeur chemin de donnes re-

configurable pour le traitement dimages embarqu. PhD thesis, Universit Blaise

Pascal - Clermont-Ferrand, 2008.

[15] Ben Cope. Implementation of 2d convolution on fpgas, gpus and a cpu. Tech-

nical report, Department of Electrical and Electronic Engineering, Imperial

College London, 2005.

[16] C. Farabet, C. Poulet, and Y. LeCun. An fpga-based stream processor for

embedded real-time vision with convolutional networks. In Computer Vision

Workshops (ICCV Workshops), 2009 IEEE 12th International Conference

on, pages 878–885, 2009.

[17] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. LeCun.

Neuflow: A runtime reconfigurable dataflow processor for vision. In Computer

Vision and Pattern Recognition Workshops (CVPRW), 2011 IEEE Computer

Society Conference on, pages 109–116, 2011.

[18] G. Van der Wal, M. Hansen, and M. Piacentino. The acadia vision processor.

In Computer Architectures for Machine Perception, 2000. Proceedings. Fifth

IEEE International Workshop on, pages 31–40, 2000.

92

BIBLIOGRAPHY BIBLIOGRAPHY

[19] Gooitzen S. van der Wal. Technical overview of the sarnoff acadia ii vision

processor, 2010.

[20] S. Kyo and S. Okazaki. In-vehicle vision processors for driver assistance

systems. In Design Automation Conference, 2008. ASPDAC 2008. Asia and

South Pacific, pages 383–388, 2008.

[21] S. Kyo, S. Okazaki, T. Koga, and F. Hidano. A 100 gops in-vehicle vision

processor for pre-crash safety systems based on a ring connected 128 4-way

vliw processing elements. In VLSI Circuits, 2008 IEEE Symposium on, pages

28–29, 2008.

[22] J. Clemons, A. Jones, R. Perricone, S. Savarese, and T. Austin. Effex: An

embedded processor for computer vision based feature extraction. In Design

Automation Conference (DAC), 2011 48th ACM/EDAC/IEEE, pages 1020–

1025, 2011.

[23] R.P. Kleihorst, A.A. Abbo, A. Van Der Avoird, M. J R Op De Beeck, L. Sevat,

P. Wielage, R. Van Veen, and H. van Herten. Xetal: a low-power high-

performance smart camera processor. In Circuits and Systems, 2001. ISCAS

2001. The 2001 IEEE International Symposium on, volume 5, pages 215–218

vol. 5, 2001.

[24] A. Abbo, R. Kleihorst, V. Choudhary, L. Sevat, P. Wielage, S. Mouy, and

M. Heijligers. Xetal-ii: A 107 gops, 600mw massively-parallel processor for

video scene analysis. In Solid-State Circuits Conference, 2007. ISSCC 2007.

Digest of Technical Papers. IEEE International, pages 270–602, 2007.

[25] Yu Pu, Yifan He, Zhenyu Ye, S.M. Londono, A.A. Abbo, R. Kleihorst, and

H. Corporaal. From xetal-ii to xetal-pro: On the road toward an ultralow-

energy and high-throughput simd processor. Circuits and Systems for Video

Technology, IEEE Transactions on, pages 472–484, 2011.

[26] M. Boschetti, I. Silva, and S. Bampi. A run-time reconfigurable datapath

architecture for image processing applications. In Design, Automation and

Test in Europe Conference and Exhibition, 2004. Proceedings, pages 242–247,

2004.

[27] Jocelyn Serot, Francois Berry, and Sameer Ahmed. Implementing stream-

processing applications on fpgas: A dsl-based approach. In Proceedings of

93

BIBLIOGRAPHY BIBLIOGRAPHY

the 2011 21st International Conference on Field Programmable Logic and

Applications, FPL ’11, pages 130–137. IEEE Computer Society, 2011.

[28] Jocelyn Serot, Francois Berry, and Sameer Ahmed. Caph: A language for

implementing stream-processing applications on fpgas. Embedded Systems

Design with FPGAs, pages 201–224, 2013.

[29] Tam Phuong Cao, Darrell M. Elton, and Guang Deng. Fast buffering for

fpga implementation of vision-based object recognition systems. J. Real-Time

Image Processing, pages 173–183, 2012.

[30] Altera. Quartus II Software. http://www.altera.com/products/

software/quartus-ii/about/qts-performance-productivity.html, 2012.

[31] Avalon Interface Specifications, 2013. URL http://www.altera.com/

literature/manual/mnl_avalon_spec.pdf.

[32] Altera Corporation. Designing and using fpgas for double-precision floating-

point math. URL http://www.altera.com/literature/wp/wp-01028.pdf.

[33] Chun Hok Ho, Chi Wai Yu, P. Leong, W. Luk, and S. J E Wilton. Floating-

point fpga: Architecture and modeling. Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, 17(12):1709–1718, 2009.

[34] Rudolf Usselmann. Floating point unit. URL http://opencores.org/

project,fpu.

[35] Tam Phuong Cao and Guang Deng. Real-time vision-based stop sign detection

system on fpga. In Digital Image Computing: Techniques and Applications

(DICTA), 2008, pages 465–471, 2008.

[36] R. Kadota, H. Sugano, M. Hiromoto, H. Ochi, R. Miyamoto, and Y. Naka-

mura. Hardware architecture for hog feature extraction. In Intelligent Infor-

mation Hiding and Multimedia Signal Processing, 2009. IIH-MSP ’09. Fifth

International Conference on, pages 1330–1333, 2009.

[37] S. Schlotterbeck S. Bauer, U. Brunsmann. Fpga implementation of a hog-

based pedestrian recognition system. In MPC Workshop, IEEE Solid-State

Circuit Society German Section, 2009.

[38] K. Negi, K. Dohi, Y. Shibata, and K. Oguri. Deep pipelined one-chip fpga

implementation of a real-time image-based human detection algorithm. In

94

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/wp/wp-01028.pdf
http://opencores.org/project,fpu
http://opencores.org/project,fpu

BIBLIOGRAPHY BIBLIOGRAPHY

Field-Programmable Technology (FPT), 2011 International Conference on,

pages 1–8, 2011.

[39] Kosuke Mizuno, Yosuke Terachi, Kenta Takagi, Shintaro Izumi, Hiroshi

Kawaguchi, and Masahiko Yoshimoto. Architectural study of hog feature

extraction processor for real-time object detection. In SiPS, pages 197–202.

IEEE, 2012.

[40] Seung Eun Lee, Kyungwon Min, and Taeweon Suh. Accelerating histograms

of oriented gradients descriptor extraction for pedestrian recognition. Com-

puters and Electrical Engineering, pages 1043 – 1048, 2013.

[41] B. Guthier, S. Kopf, M. Wichtlhuber, and W. Effelsberg. Parallel algorithms

for histogram-based image registration. In Systems, Signals and Image Pro-

cessing (IWSSIP), 2012 19th International Conference on, pages 172–175,

2012.

[42] Edgard Garcia. Implementing a histogram for image processing applications.

URL http://www.hunteng.co.uk/pdfs/tech/xcell38_46.pdf.

[43] E. Jamro, M. Wielgosz, and K. Wiatr. Fpga implementaton of strongly par-

allel histogram equalization. In Design and Diagnostics of Electronic Circuits

and Systems, 2007. DDECS ’07. IEEE, pages 1–6, 2007.

[44] A. Shahbahrami, J.Y. Hur, B.H.H. Juurlink, and S. Wong. Fpga implemen-

tation of parallel histogram computation. In Proc. 2nd HiPEAC Workshop

on Reconfigurable Computing, pages 63–72, Gteborg, Sweden, 2008.

[45] J. Cadenas, R.S. Sherratt, and P. Huerta. Parallel pipelined histogram archi-

tectures. Electronics Letters, 47(20):1118–1120, 2011.

[46] G.M. Megson, J.O. Cadenas, R.S. Sherratt, P. Huerta, and W.C. Kao. A

parallel quantum histogram architecture. Circuits and Systems II: Express

Briefs, IEEE Transactions on, 60(7):437–441, 2013.

[47] Q. Gan, J.M.P. Langlois, and Y. Savaria. Parallel array histogram architecture

for embedded implementations. Electronics Letters, 49(2):99–101, 2013.

[48] Haitao Jiang, Abdelsalam Helal, Ahmed K. Elmagarmid, and Anupam Joshi.

Scene change detection techniques for video database systems. Multimedia

Syst., 6(3), 1998.

95

http://www.hunteng.co.uk/pdfs/tech/xcell38_46.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[49] Greg Pass and Ramin Zabih. Comparing images using joint histograms. Mul-

timedia Syst., 7(3):234–240, 1999.

[50] Haibin Ling and K. Okada. Diffusion distance for histogram comparison.

In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society

Conference on, volume 1, pages 246–253, 2006.

[51] Robert E. Broadhurst, Joshua Stough, Stephen M. Pizer, and Edward L.

Chaney. Histogram statistics of local model-relative image regions. In Pro-

ceedings of the First international conference on Deep Structure, Singularities,

and Computer Vision, DSSCV’05, pages 72–83, 2005.

[52] N. Dalal and B. Triggs. Histograms of oriented gradients for human detec-

tion. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE

Computer Society Conference on, volume 1, pages 886–893, 2005.

[53] T. Gandhi and M.M. Trivedi. Pedestrian protection systems: Issues, survey,

and challenges. Intelligent Transportation Systems, IEEE Transactions on,

pages 413–430, 2007.

96

	1 Introduction
	1.1 Thesis outline

	2 Image processing on embedded system
	2.1 Problems and limitations
	2.2 Benchmark metrics
	2.3 FPGA, DSP, CPU comparison
	2.3.1 Sobel edge detector
	2.3.2 Sum of Absolute Differences

	2.4 FPGA implementation
	2.4.1 Sobel edge detector
	2.4.2 SAD algorithm

	2.5 CPU implementation
	2.5.1 Sobel edge detector
	2.5.2 SAD algorithm

	2.6 DSP implementation
	2.7 Results

	3 State-of-the-art on reconfigurable architecture
	3.1 Reconfigurable processor
	3.1.1 ConvNet
	3.1.2 Acadia
	3.1.3 IMAPCAR
	3.1.4 SeePROC

	3.2 EFFEX processor
	3.3 Xetal Micropocessor

	4 Our architectural proposal
	4.1 Overview
	4.2 CameraOneFrame
	4.2.1 Streaming processing
	4.2.2 Reconfigurable architecture
	4.2.3 Modular architecture
	4.2.4 Configuration semantic

	4.3 Architecture Implementation
	4.3.1 NiosII RISC CPU
	4.3.2 Avalon Memory Mapped bus

	5 Hardware Library
	5.1 VideoSampler
	5.1.1 Data Register Settings

	5.2 RemoteImg
	5.2.1 Data Register Settings

	5.3 StreamStore
	5.3.1 Data Register Settings

	5.4 GradientHW
	5.4.1 Are Floating Point operations suitable for FPGAs?
	5.4.2 Integer arithmetics
	5.4.3 Our proposal
	5.4.4 GradientHW module
	5.4.5 Data Register Settings

	5.5 HistogramHW
	5.5.1 Existent hardware implementations
	5.5.2 Our proposal
	5.5.3 Exploiting parallelism
	5.5.4 Window-based histogram
	5.5.5 Evaluation
	5.5.6 Data Register Settings

	6 Experimentation
	6.1 Image processing SoPC
	6.2 Development board
	6.3 Architecture evaluation
	6.3.1 Test cases
	6.3.2 Histogram of Oriented Gradients

	6.4 FPGA-PC communication

	7 Conclusion
	7.1 Future work

