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Summary

Embedded systems play a more and more important role in our daily lives. Their
market size is about 100 times the size of the desktop market . Often these systems
must meet strict constraints regarding performance, area, cost, power consump-
tion and real-time behavior. In order to meet the design constraints of embedded
systems, it is convenient to integrate the entire system on a single chip, which is
the so-called System-on-Chip approach. The processor cores embedded may be
off-the-shelf general-purpose processor cores, Application Specific Instruction-
Set Processors (ASIPs) or Application Specific Integrated circuits (ASICs). An
ASIP is a processor that is designed to efficiently execute functions from a spe-
cific application domain.

Embedded processors have large variations in their architectures regarding
performance, area and power requirements. Especially ASIPs employ a lot of ir-
regularities in their architectures, e.g. heterogeneous register sets, a small number
of specialized registers, specialized functional units, restricted connectivity, lim-
ited addressing and highly irregular data paths. The instruction set for an ASIP is
usually highly encoded, which is designed with minimum number of encoding bits
to constrain power consumption. The use of conventional code generation tech-
niques and compilers often produces very inefficient code for these architectures.
Therefore, in order to meet the given constraints, the critical parts of programs
are written in assembly code by hand. This heavily reduces the portability and
maintainability of the generated code. Due to the increasing complexity in digital
signal processing, high-level compilation is desirable.

Code generation, the back-end of compilation, as performed in sequential
phases for general-purpose processors, is not adequate for embedded processors.
This is because decisions in one phase will affect the search space of the rest of the
phases. Consider a highly-encoded instruction set that imposes severe limits on
the amount of parallelism; on the one hand, if instruction selection is performed
prior to scheduling, the optimal schedule can easily be eliminated as a result of
the choices made during instruction selection; on the other hand, if scheduling is
performed first, the available instructions may not be able to implement the sched-
ule. Furthermore, distributed register files with limited connectivity make it more
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vi SUMMARY

difficult to meet the register file constraints. All these characteristics require a
unified code generation for efficient compilation.

In this thesis, the methodology of the Static Resource Model (SRM) is pro-
posed for modeling the highly-encoded instruction sets of embedded processors.
These constraints are combined with the resource and timing constraints in such
a way that a unified environment for constraint description is specified. The SRM
approach is applied to a reconfigurable instruction set processor. The reconfig-
urable part of this processor lies in the instruction decoder, so that the instruction
set constraints can be modeled efficiently through constructing the SRMs for the
different configurations. The SRM approach also presents an efficient solution
for the instruction set design since all the constraints originating from instruction
sets are represented as static resources, which can be used for quick evaluation
of the performance. A modification of these constraints has a direct effect on the
performance and code size.

The SRM approach is extended to cope with the limited address range (LAR)
register file architecture. In this architecture, although a functional unit is physi-
cally fully connected to a register file, it reads from and writes to only a subset of
registers in the register file, consequently reducing the number of encoding bits.
Functional units may access different subsets of a register file. These subsets may
overlap to allow the communications between those functional units. The addi-
tional range assignment phase can be alleviated by integrating the limited address
constraints with the value lifetime conflicts, resulting in a uniform conflict graph
for register allocation.



Samenvatting

Ingebedde systemen spelen een steeds belangrijkere rol in ons dagelijkes leven.
Hun afzetmarkt is pakweg honderd keer zo groot als die van desktops. Deze syste-
men dienen veelal strikte beperkingen na te leven met betrekking tot rekenkracht,
oppervlakte, kosten, energie verbruik, en tijdsgedrag. Om deze ontwerpbeperkin-
gen na te leven is het handig om het gehele systeem te integreren op een enkele
chip, de zogenaamde “system op chip” benadering. De ingebedde processors kun-
nen algemeen toepasbare processors zijn, applicatiespecifieke instructieset pro-
cessors (ASIPs), of applicatiespecifieke geı̈ntegreerde circuits (ASICs). Een ASIP
is een processor ontworpen om efficiënt functies uit te voeren uit een specifiek ap-
plicatie domein.

Ingebedde processors vertonen een grote variatie aan architecturen met be-
trekking tot vereisten omtrent rekenkracht, oppervlak en energieverbruik. Met
name ASIPs passen in hun architectuur een grote hoeveelheid irreguliere zaken
toe, zoals heterogene register sets, een klein aantal gespecialiseerde registers,
gespecialiseerde functionele eenheden, beperkte verbindingen, beperkte adresser-
ing, en zeer irreguliere data paden. De instructieset van een ASIP is gewoon-
lijk in een sterk gecodeerd formaat, ontworpen met een minimaal aantal code
bits teneinde het energieverbruik te berperken. Conventionele codegeneratie tech-
nieken en verlaters produceren veelal zeer inefficiënte code voor deze architec-
turen. Om aan de ontwerpbeperkingen to voldoen worden kritische delen van pro-
gramma’s met de hand geschreven in machine code. Dit maakt het erg lastig om
de gegenreerde code over te dragen en te onderhouden. Door de toenemende com-
plexiteit van in digitale singaalbewerking is hoogniveau verlating zeer gewenst.

Code generatie, het laatste deel van verlating zoals toegepast in sequentiële
fasen voor algemeen toepasbare processors, in niet adequaat voor ingebedde pro-
cessors. Dit komt doordat beslissingen genomen in een vroege fase, de zoekruimte
beperken voor latere fasen. Neem een sterk gecodeerde instructieset in ogen-
schouw die ernstige beperkingen oplegt aan de hoeveelheid parallellisme. Indien
aan de ene kant instructieselectie wordt uitgevoerd voorafgaand aan tijdstoeken-
ning, kan de optimale tijdstoekenning verdwenen zijn als gevolg van keuzes gema-
akt tijdens instructieselectie. Als aan de andere kant tijdstoekenning als eerst
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wordt uitgevoerd, kunnen de beschikbare instructies mogelijk niet de tijdstoeken-
ning implementeren. Bovendien maken gedistribueerde register files met beperkte
verbindingen het moeilijk te voldoen aan register file capaciteit. Al deze karakter-
istieken maken een unificatie voor code generatie nodig voor een efficiënte verlat-
ing.

In dit proefschrift wordt een methodologie voorgesteld waarbij het Statisch
Resource Model (SRM) wordt gebruikt om sterk gecodeerde instructiesets te mod-
elleren. Deze beperkingen worden gecombineerd met de resource– en tijdsbeperk-
ingen teneinde een omgeving te creëren met een unificatie voor het beschrijven
van beperkingen. De SRM benadering wordt toegepast op een herconfigureerbare
instructieset processor. Het herconfigureerbare deel van de processor is bevat in de
instructiedecoder, en wel op een dusdanige manier dat de instructieset beperkin-
gen efficiët gemodelleerd kunnen worden door het opstellen van de SRMs voor
de verscheidene configuraties. De SRM benadering vormt ook een goede oploss-
ing voor het ontwerpen van instructiesets omdat alle beperkingen voortvloeiend
uit een instrucieset worden gerepresenteerd als statische resources, die worden
aangewend om tot een snelle evaluatie te komen van de rekenkracht en de code
grootte.

De SRM benadering wordt uitgebreid teneinde om te kunnen gaan met de
beperkt adressering van register files (LAR). Hoewel in zo’n architectuur een
functionele eenheid verbonden is met de volledige register file, leest en schrift
deze eenheid effectief slechts een deel van de register file, teneinde de benodigde
code bits te reduceren. Verschillende functionele eenheden bereiken verschillende
delen van de register file. De verschillende delen kunnen echter overlappen om
communicatie te berwerkstelligen tussen de functionele eenheden. De vertaal fase
voor het toekennen van delen van register files kan worden verlicht door de adres
beperkingen samen met de leeftijdsconflicten te integreren in een uniform conflict
graaf model voor het toekennen van registers.
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Chapter 1

Introduction

1.1 Design of embedded processors

Embedded systems [25] are highly specialized, often reactive, sub-systems that
provide, unnoticed by the user, information processing and control tasks to their
embedding system. An embedded system is a computer system with hardware
(application specific integrated circuit) and software (programmable processor
and application code) specifically designed for a particular application with real-
time constraints. Examples of embedded systems include automobile engine-
control units, laser printers, electromechanical units in fax/data modems, cellular
telephones and micro ovens, etc. These systems often must meet strict constraints
regarding performance, size, cost and power consumption and real-time behavior.
Low cost is necessary for high volume production and low power consumption
is necessary for portable electronic equipments that are battery-operated. One of
the main characteristics of embedded systems is the real-time constraint, which
means that the application has to take place within a certain time that is enforced
by the environment. The software component of embedded systems is referred to
as the embedded software, and the processor on which the software is executed is
referred to as the embedded processor.

In order to meet the design constraints of embedded systems, it is convenient to
integrate the entire system on a single integrate circuit (

���
), the so-called System-

on-Chip ( ��� � ) approach. This is enabled by the current deep sub-micron pro-
cessing technology. Figure 1.1 illustrates a possible system-on-chip architecture,
which consists of a processor core, program ���
	 / ���	 , memory, application
specific circuitry and peripherals. The processor core may be an off-the-shelf
general-purpose processor core, an Application Specific Instruction-Set Proces-
sor ( ��� ��� ) or an Application Specific Integrated Circuits ( ��� ��� ). An ��� ��� is a
processor that is designed to efficiently execute functions from a specific appli-
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2 CHAPTER 1. INTRODUCTION

cation domain, while an ��� ��� is a non-programmable or a partly-programmable
integrated circuit for a single task or an application.

Pe
ri

ph
er

al
s

RAM ASIC

Processor
Core or
ASIP

Program
ROM/
RAM

Figure 1.1: A heterogeneous system-on-chip architecture

Given the System-on-Chip approach, a systematical way of implementing an
application on this system may follow the hardware-software co-design method-
ology, depicted in Figure 1.2 with several steps:

� determine those parts of the behavioral description that are to be imple-
mented in hardware, and those parts that are to be implemented in software,

� generate the custom circuitry and embedded software components using
hardware synthesis and compilation techniques, respectively,

� simulate the system in order to determine whether all constraints (e.g. cor-
rectness and timing constraints) have been satisfied. If this is the case, then
the design process ends; otherwise, determine a different hardware/software
partitioning of the behavioral description, and reiterate te design process.

Although incorporating a complete system on a single
���

may improve perfor-
mance, cost and power consumption requirements, such a high level of integration
constrains the size of the system components. As a result, both hardware and soft-
ware components should be designed with minimum size in mind. This implies
that not only the ��� ��� and embedded processor need to be designed within the
size constraints of the given

���
, but also the remainder of the system components.

This includes the program � � 	 / ���	 , which stores the application code that is
to be executed on the embedded processor. As a result, the application code size
has to be kept small. For example, for GSM Enhanced Full Rate (EFR) speech
codec being implemented in StarCore processor [67], the compiler optimized for
code size will generate 35884 bytes code. For DSP56600 [22], the code written in
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partitioning
hardware/software
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Figure 1.2: Hardware-software co-design methodology

assembly is about 25788 bytes. Reducing the code size of the application implies
the necessity of developing an efficient instruction set architecture (

� ��� ) and ef-
ficient compiler which can be tuned towards the application to optimize the code
for minimum size.

In this thesis, we aim at application specific processor cores and the corre-
sponding efficient compilation for small code size purpose on embedded systems.

1.1.1 Flexibility and efficiency of embedded programmable pro-
cessors

Programmable processors can be roughly distinguished by two categories: stand-
alone and embedded cores. General-purpose processors are usually stand-alone,
which are responsible for the whole computation and control, although some
general-purpose

� ���
s targeting small code size can also be used as embedded

cores. On the contrary, �
� � s and �� ��� s are commonly used as embedded core
components for digital signal processing and specific applications, while there
are also general-purpose �
� � s which are capable of large amount of computa-
tions, such as multimedia processors used for image and video processing. In
this thesis, we focus on the embedded programmable processors for specific ap-
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plications. The choice of a suitable processor to be integrated into an embedded
system mainly depends on the application domain. They can be classified into
three classes according to the flexibility and efficiency: general-purpose

� ���

cores, �
� � cores and �� ��� s. Roughly speaking, the more flexible a processor is,
the less efficient it is for the application. This is illustrated in Figure 1.3. In this
figure, a white ellipse symbolizes an embedded system, such as the one depicted
in Figure 1.1, with gray ellipses representing all kinds of processor cores that can
be embedded within this system. Squares correspond to the tasks or applications
to be implemented on these cores, with the size indicating the size of the target
application domain.

�������
�������
�������
�������

�������
�������
�������
�������

Programmable DSP

�����
�����
���
������

���
���

���
���
���

���
���
���

���
���
���

	�	
	�	
	�	


�


�


�


Programmable CPU

flexibility

processor core

application

efficiency

Instruction−Set Processor
Application Specific

Figure 1.3: Flexibility and efficiency of embedded processors

� General-purpose
� ���

cores. The most flexible embedded processors are
general-purpose programmable

� � �
cores, such as 	 ��� � R3000, 	 ��� �

R4000 and �� 	 . On these cores every task or application can basically be
implemented. They usually have a basic set of instructions with the same
size and the execution of instructions can be pipelined in order to achieve a
high throughput. In addition, they usually have caches that may cause cache
misses. An operating system may be present that takes run time decisions.
A typical example is the �� 	 � � � � core. The �� 	 � core architecture
is specially designed for low power consumption. It is a 32-bit processor,
although it’s instruction format can be switched between a length of 16 or
32-bit.
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� Digital signal processors (DSPs). They have been designed for arithmetic-
intensive signal processing applications. Their instruction sets are tuned
for fast execution of algorithms such as digital filtering and Fast Fourier
Transform. This is supported by special hardware, e.g. 	 � � (Multiply-
ACcumulator), address generation units and bit manipulation units. In or-
der to allow for fast signal processing, they contain a degree of instruction
level parallelism (

��� �
). In addition, they have special-purpose registers for

shorter delay and fewer encoding bits. All these characteristics make it dif-
ficult for efficient compilation.

� Application specific instruction-set processors (ASIPs). This class of pro-
cessors are domain-specific and serve only a very narrow range of appli-
cations. In order to be tuned for different applications, these processors
are parameterizable. The basic architecture template is fixed, but it can be
customized by setting a number of different parameters, such as instruc-
tion encoding, register files size, register file connectivity with functional
units, availability of special hardware components. Since these parame-
ters are orthogonal to each other, a large number of different configurations
may be available. They are also synthesizable in the sense that detailed ar-
chitecture specifications can be obtained by synthesizing the performance
requirements and resource requirements. Consequently, retargetable com-
pilers are needed for these different configurations to obtain portable code
with efficiency.

Selecting which type of processors to use depends heavily on the application
domain. In addition, in each type of processor there is also a large variation from
one architecture to another. Obviously, to obtain high performance, small code
size and low power design with reusable, portable, maintainable code, an efficient
compilation is helpful in speeding up the design period.

The instruction set is the interface between a programmer and the processor.
To obtain small code size, instruction set is usually highly encoded for embedded
processors. In the next sections, we mainly discuss the different types of instruc-
tion sets regarding to code type, encoding style and compression technique.

1.1.2 Instruction encoding in embedded processors

Embedded processors have large variations in their architecture according to the
performance, area and power requirements. Correspondingly, their instruction
sets also differ to a large extent. In this section, instruction encoding is reviewed
from two aspects: the code type of an instruction set and the instruction for-
mat. Pipelining is an implementation technique whereby multiple instructions
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are overlapped in execution; it takes advantage of parallelism that exists among
the actions needed to execute an instruction. Based on the control of operations in
the data pipeline, a distinction can be made between time-stationary coding and
data-stationary coding, depicted in Figure 1.4.

� In the case of time-stationary coding, every instruction that is part of the
processor’s instruction set controls a complete set of data pipeline stages
that each has to be executed in a single machine cycle, i.e. the data pipeline
of the processor is visible in the machine code. A single operation traversing
the data pipeline may process several of these stages. Either a programmer
or a compiler has to maintain the data pipeline and make it explicit in the
program.

� In the case of data-stationary coding, every instruction that is part of the
processor’s instruction set controls a complete sequence of operations that
have to be executed on a specific data item, i.e. the opcode, register source
and destination addresses are in the same instruction word. Once the in-
struction has been fetched from the program memory and decoded, the pro-
cessor controller hardware will make sure that each part is executed in the
correct machine cycle.
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Figure 1.4: Time stationary vs. data stationary encoding

The instruction width of time-stationary encoding is relatively large, since ev-
ery stage of a pipeline has to be explicitly expressed. In addition, it requires
hardware control to keep the consistency of the functional units and the registers
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addressed in one instruction. The advantage is that when an interrupt happens,
the results in the previous stages do not need to be saved. The data-stationary en-
coding is more concise and easy to program, and there is no need for centralized
control resource. However, it is costly for interrupts in the sense that every inter-
mediate result in the previous instruction has to be saved. This is because when
an interrupt happens for one instruction, the previous one might not be finished
yet and still be in the different stages of the pipeline.

Based on the instruction encoding format, a distinction can be made between
an orthogonal instruction format and an encoded instruction format.

� An orthogonal format consists of fixed control fields that can be set inde-
pendently from each other. Each control field usually consists of opcode
and operand fields for controlling the execution of one operation on certain
functional unit. For example, very long instruction word ( � � ���

) proces-
sors have an orthogonal instruction format, such as the one in Figure 1.5.
The instruction bits within every control field may additionally have been
encoded to reduce the field’s width.

� In the encoded format, the instruction bits used to control one operation
depend on the combinations of operations encoded in parallel with it. Not
only the opcode field, but also the operand field can be different for different
combinations. The correct interpretation can be deduced from the value of
specially designated bits in the instruction word. One example is the � �
� � -
21xx instruction set depicted in Table 1.1.

1.1.3 Code compression techniques

Encoding may limit the amount of instruction-level parallelism (
��� �

) offered by
the processor. The less restrictive an instruction set is, the more

��� �
can be ob-

tained. In image processing and multimedia applications, often a large amount
of
��� �

is required, so � � ���
architectures such as TMSC3206x [71] or Trimedia

[59] are a natural choice. In order to reduce the instruction width, some compres-
sion is performed for the instruction encoding.

Traditional � � ���
architectures use rigid instruction field and / or special pack

and unpack operations [62]. For example, in Cydra5 instruction format depicted
in Figure 1.5, the MultiOp instruction format is defined with 256 bits for encoding
totally six operations on six functional units plus an additional one to control the
Instruction Unit and other miscellaneous operations. Each of the seven slots looks
like a conventional RISC instruction. They are not equal in width. Typically one
slot consists of an opcode, two source register specifiers, one destination register
specifier and one predicate specifier. In addition, the UniOp instruction format,
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which allows only a single operation to be initiated, is defined and multiple UniOp
instructions fit into a 256 bit container. Extra bits are useful in indicating which
functional unit is being executed.

FADD
IALU

FMPY MEM1 MEM2 AADD1
AMPY

AADD2 BRANCH

UniOp UniOp UniOp UniOp UniOp UniOp

format
MultiOp

UniOp
format

256 bits

Figure 1.5: Cydra5 instruction format

In typical � � ���
architectures, each control field corresponds to a particular

functional unit. If that functional unit is idle on a particular clock cycle, a � � �
would be placed in that functional unit’s instruction slot. Unlike traditional � � ���

architectures, recent commercial � � ���
architectures allow more flexible instruc-

tion combinations to reduce the code size generated by �� � instructions while
being able to exploit

��� �
effectively [26]. For example, both ��	 ������� �	��
 �
� �

[71] and Lucent Star Core � ���� � �
� � [67] adopt a � ��� � (Various Length Ex-
ecution Set) idea to achieve high code density while minimizing cost. There are
two kinds of instruction packets in the code: fetch packet and execute packet, as
illustrated in Figure 1.6 (a) and (b). In ��	 ������� �	��
 , eight instructions are fetched
at a time, which consists of one fetch packet. Fetch packets are aligned on 256-bit
boundaries. The execution of individual instructions is partially controlled by one
bit in each instruction (bit 0). This bit determines whether this instruction executes
in parallel with the following instruction. If this bit is one, then this parallelism is
allowed. All instructions executing in parallel constitute an execute packet. In the
Lucent Star SC140 �
� � , two 	 � (most significant) bits are used for the determi-
nation of an execute packet, or a prefix is used to indicate how many instructions
constitute the execute packet. Several compression techniques [82], [48], [44]
are developed for further reducing the instruction width. In [82], a scheme for
block-based decompression in response to dynamic demands is presented. They
consider a number of compression algorithms, and conclude that a Huffman code
[40] is most effective. Liao et al. [48] develop a dictionary approach to reduce the
code size for DSPs. In [44], a binary arithmetic code driven by a Markov model
is proposed.

Speed and code size requirements for typical telecommunication and con-
sumer applications make it necessary to design efficient �� ��� s that have a rel-
atively high degree of compression. It is a challenge to design an instruction set
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Figure 1.6: Fetch packet and execute packet instruction format

for an �� ��� that can be encoded using a restricted number of instruction bits,
while still offering a sufficient degree of parallelism for critical functions in the
target applications. One typical example is to restrict the available number of reg-
isters for storing the value produced by one operation which is executed in parallel
with other operations. Figure 1.7 (a) and (b) illustrate the data path and instruction
formats of the � �
� � -21xx family from Analog Devices respectively. There are
four instruction formats, allowing for different combinations of operations being
executed in parallel. The register usage for a functional unit also depends on the
format.

The first instruction format is shown in detail in Table 1.1. Columns show dif-
ferent encoding fields in this format. As we can see, registers are roughly divided
into groups � , � , � and � . Two load operations from double memory banks�

and � can be executed in parallel with an arithmetic operation, but they can
only store the loaded values into � and � registers separately. Although there
is an ���
	 and a multiplier in the data path, there is only one arithmetic field.
The arithmetic operation reads left source operand from � or � groups, and reads
right source operand from � or � groups. It writes the destination operand to
� groups. Each group or register file contains a small number of registers. For
example, �� register file contains registers ���� and ���� .
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operation ax|mx := d ay|my := p

operation <regs> := d

operation d := <regs>

ax ay

+−
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*

+−

mrar

d memory p memory

operation

operation

<regs> := p

p := <regs>

operation

typ1
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(a) ADSP−21xx data path (b) ADSP−21xx instruction format

Figure 1.7: Data path and instruction format of ADSP-21xx

Table 1.1: Part of ADSP-21xx instructions

instruction memory operation arithmetic operation
ALU/MAC PM DM type opcode Y X

with 00:AY0 00:AX0 0:MAC ����� 00:MY0 000:MX0
DM/PM 01:AY1 01:AX1 0100: �������	� 01:MY1 001:MX1

10:MY0 10:MX0 0101: �����
��� 10:MF 010:AR
11:MY1 11:MY1 ���� 011:MR0

����
1:ALU ����� 00:AY0 000:AX0

0011: ����� 01:AY1 001:AX1
1111: �����
� ��� 10:AF 010:AR

���� ����

Another way of keeping the instruction width small is exploited in the � � � �

�
� � by using Application Specific Instruction (ASI) [83]. This architecture al-
lows efficient encodings of many operations. In this �
� � , small instruction words
(e.g. 16 bits) are used for frequently occurring combinations of operations. Up
to 256 � � ���

instructions of 96 bits in a lookup table can be triggered by the 16
bits small instruction words, as illustrated in Figure 1.8. For memory fetching,
indirect addressing can be applied to reduce the code size. When data are fetched
from memory, the traditional way is to specify a memory address of e.g. 16 bits.
A more efficient way is to store a base address of 16 bits inside the processor, and
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specify an offset of e.g. four bits in the instruction word.

mode index into ASI memory

ASI MEMORY

cond XACU YACU MPY1 BNUDSUALUsMPY0

96

8

16 bit opcode

Figure 1.8: Application Specific Instruction (ASI) in REAL processor

Different instruction encodings, especially the highly-encoded instruction for-
mat, raise the difficulty for compilers to generate efficient code for different appli-
cations. Some adaptations have to be applied to the conventional software compi-
lation process for application specific processors.

1.2 Compilers for embedded processors

The software compilation process illustrated in Figure 1.9 is usually used as the
basis for the compilation for ��� ��� s. The starting point of a software compilation
process is an application program in an algorithmic specification language, usu-
ally in C. It is translated into an intermediate representation ( ��� ), by means of a
language-dependent front-end. Well known

� � s for representing an algorithm in-
clude the static single assignment form ( ��� � form) [20], and the control/data flow
graph ( ���	��
 ) [51]. The software compilation process is traditionally divided
into high-level optimization and back-end compilation. In high-level optimiza-
tion, a data-flow analysis is carried out to determine all required data dependen-
cies in the algorithm and processor-independent optimizations are performed to
reduce the number of operations, and increase the

��� �
of the description. The set

of optimization includes common subexpression elimination, dead code removal,
constant propagation and folding, etc, [3]. The back-end performs actual code
generation, which maps machine-independent IR to machine-specific assembly
instructions.

While compilers based on this flow generally generate satisfactory results for
general-purpose processors, they are insufficient for ��� ��� s and �
� � s [89]. For
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Figure 1.9: Overview of the compilation

parameterizable and synthesizable �� ��� s, the compilers have to be retargetable
to different processor configurations. The general treatment is that a processor
specification is written in a machine description language ( 	 � �

) and the pro-
cessor structure together with the instruction set architecture (

� ��� ) information,
which are extracted from the machine description file ( 	 ��� ) written in 	 � �

, are
integrated in the data base for the back-end of the compiler.

1.2.1 Code generation in compilation

Code generation usually consists of three processes: code selection, register al-
location and instruction scheduling. Each process corresponds to a � � -complete
problem [31], thus heuristics are often applied for fast compilation. In order to
further obtain run-time efficiency, they are usually performed in sequential phases
in general-purpose processors.

� Code selection. The operations in the algorithmic model are bound to reg-
ister transfers or partial instructions, supported by the target processor’s in-
struction set. Multiple operations can be mapped into one partial instruction
for optimal code size considerations. Usually tree pattern matching and dy-
namic programming are used to perform this process. Many �
� � s have a
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	 � � unit for speeding up the processing, which can be encoded in one in-
struction and executed in one clock cycle. In order to exploit this function,
the ����� has to be covered by the pattern of the 	 � � unit. An example is
illustrated in Figure 1.10.

+

+

*

+ *

+

MR = +(MR, *(X,Y))

AR = +(X,Y)

Figure 1.10: Code selection

� Scheduling. This process decides about the clock cycle assigned to an
instruction. For �
� � s, parallelism is the main concern in this process,
in which data dependencies, latency, delays, the number of resources and
pipeline effects are taken into account. Minimizing the execution time or
obtaining maximum throughput in case of loop kernels is the optimizing
objective.

� Register allocation. This process determines where the results of compu-
tations are stored, which can happen in registers or in memories. For low
power considerations, we keep the memory accesses as low as possible and
store values with non-overlapping lifetimes into one register. In case the
number of available registers is exceeded, extra instructions are used to spill
and reload values to and from memory.

With multiple functional units and more and more resources included in the
architecture, and more complicated techniques, such as clustering being applied,
additional problem, e.g. functional unit assignment, register file assignment, clus-
ter assignment, bus assignment, etc, need to be solved. Performing code gener-
ation in sequential phases with heuristics generally produces satisfactory results
for general-purpose processors, while it is frequently insufficient for embedded
processors. This is mainly due to the following reasons:
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� In most cases, fast heuristics are used for code generation. This is due to the
demand for fast compilation for general-purpose processors. Since heuris-
tics explore only a small part of the solution space of a code generation
problem, the code quality may be compromised. For embedded processors,
where the efficiency of the generated code is of major concern, possibly
slower code generation techniques capable of exploring more solutions are
a better choice.

� The decomposition of code generation into code selection, register alloca-
tion and instruction scheduling phases also affects the code quality, since
these phases are mutually dependent. Ideally, all code generation phases
therefore should be executed simultaneously in order to avoid an early deci-
sion which restricts the search space inappropriately. However, such a phase
coupling approach is difficult to implement and time-consuming as well. In
practice, most research concentrates on partially coupled code generation.

� Embedded processors often have irregular architectures, because they are
highly optimized for certain objectives. Standard code generation tech-
niques hardly take into account the special architecture features of embed-
ded processors. Therefore, a powerful machine description language which
can describe those features as well as a retargetable compiler which can deal
with the constraints arising from those features are necessary for embedded
processors.

For these reasons, integrating the phases as much as possible and building a
uniform code generation in a compiler is a high demand for application specific
processors. In addition, in order to generate reusable, maintainable and portable
code, the compiler should also be retargetable for different architecture configu-
rations.

1.2.2 Retargetability

The increasing use of software in embedded systems results in an increased flexi-
bility from a system designer’s point of view. However, different types of proces-
sor typically suffer from a lack of supporting tools. The major problem is that the
target architecture is not fixed beforehand.

Compilation tools for synthesizable ��� ��� s must be easily adaptable to dif-
ferent processor architectures. This is essential to cope with the large degree of
architecture variation. Moreover, market pressure results in increasingly shorter
time-to-market of processor architecture. In this context, retargetable compilation
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is the only solution to provide system designers with supporting tools. Retar-
getable compilers avoid the need to write different compilers for different config-
urations. In addition, they can help to determine the best configuration for given
application, which is quite useful in making hardware and software trade-offs dur-
ing system design.

Most of the target architectures are required to be optimized not only for per-
formance, but also for area and cost. Since applications written in software are
translated into processor instructions, most of the constraints arise due to encod-
ing of instructions. Such constraints are difficult to capture in both and structural
machine description languages ( 	 � �

s). In the first kind of 	 � �
, the machine

description is based on the
� ��� description, while in the second kind the machine

description is extracted from the description of the processor’s data path. Basi-
cally the constraints can be grouped into two kinds.

� Operation
��� �

constraints. These constraints describe the a set of opera-
tions that can or cannot be issued in parallel. For example, in � � ���

archi-
tectures, the issue slots constraint defines that operations in a certain issue
slot cannot be executed in parallel. In several �
� � s, only one arithmetic
operation such as add or mul can be executed in parallel with two memory
operations, although in the data path there are one functional unit ALU and
one functional unit Multiplier available in parallel.

� Operand
��� �

constraints. Those constraints describe how registers should
be assigned to operands of operations issued in parallel. These constraints
may or may not affect the data flow. For example in � �
� � -21xx family, if
two values are loaded from D memory and P memory simultaneously with
an arithmetic operation, the loaded values can only be stored at � � ( � � )
or �
� ( � � ) register files.

Besides the
��� �

constraints enforced by the 	 � �
, the architecture itself con-

tains limited resources, e.g. functional units, buses, register file ports, etc, which
will also limit the amount of

��� �
. For all the above mentioned hardware limita-

tions, a constraint-based approach seems a proper way to perform the retargetable
compilation. Using this approach, it is also convenient to make trade-offs be-
tween processor performance and flexibility of the architecture. Furthermore, this
approach can be applied efficiently for architectural design space exploration.

Nevertheless, in order to be retargetable, a compiler has to be machine inde-
pendent to a certain extent. The compiler can be adapted to a certain target ma-
chine by writing custom machine-specific components or by providing a model of
the target machine. It seems that retargetability inherently tends to compromise
code efficiency. This is due to the fact that the fewer assumptions the compiler
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can make about the target machine, the less machine-specific hardware features
can be exploited to generate efficient code.

1.2.3 Post-pass optimization

Once assembly code has been generated, a significant optimization potential is
still left, which should take into account the concrete architecture specifications,
e.g. memory architecture and address generation hardware.

� Memory access optimization. Several �
� � s, e.g. Motorola 56k, Analog
Devices 210x and ��	 � Gepard show two memory banks, which are ac-
cessible in parallel. This raises the problem of partitioning the program
variables into two groups such that potential parallelism is maximized. Tra-
ditional compilers use only one of the two banks, or leave the partition de-
cisions to the programmer by means of C language annotations. Dedicated
optimization phases [69, 56, 65] are based on pre-scheduled assembly code.
In [33], a memory-aware approach is proposed to adapt the scheduling deci-
sions to the concrete memory modules. Detailed knowledge of the memory
interface as well as fast access modes are both exploited in combination
with the processor’s pipeline timing information for scheduling.

� Address code optimization. Dedicated address generation units ( � � � s)
are used for enhancing the execution speed of embedded processors. Such
� � � s generally contain address register files and modify register files. Ef-
ficient auto-increment(decrement) address computation is supported. Ex-
ploration of auto-increment(decrement) modes depends on the layout of
variables in memory, and a large amount of techniques for address code
optimization [48, 46, 68, 79] are available, which differ in concrete � � �

configurations and optimization methods.

1.3 Reconfigurability

Reconfigurable instruction-set processors ( � � � � s) are the kind of processors that
have the capability to adapt their instructions sets to the application being ex-
ecuted through a reconfiguration in their hardware. There is a large variation
of � � � � architectures, which can be roughly classified as closely-coupled and
loosely coupled reconfiguration according to the integration degree with the pro-
grammable processors, coarse-grain and fine-grain reconfiguration according to
the granularity of the reconfiguration hardware, etc. Much literature considers
the reconfigurable hardware as being implemented on a field-programmable logic
( � � �

). In this case, granularity also refers to the size of the reconfigurable logic.
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The building blocks for fine-grained logic are gates, which are efficient for bit
manipulation operations, while coarse-grained blocks are bigger and suitable for
bit parallel operations. In this thesis we move the reconfigurable part to the in-
struction sets, while the data path is kept wide as in some � � ���

processors. The
corresponding instructions to implement certain applications on the hardware can
be stream (block) based instructions or custom instructions and the instruction en-
coding for operands can be hardwired, flexible or fixed depending on the size and
performance requirements. In this work, reconfigurability is considered from a
new perspective: there is a rich set of functional resources in the data path. The
communication network connectivity from the data path to the register files is
considered to be fixed while the instruction set is reconfigurable through a flexible
instruction decoder. In this way, instruction width can be reduced for the purpose
of small code size, while certain regularity in the instruction set and data path is
maintained for efficient compilation.

1.4 The aim of this work

In this work, we focus on the back-end of the retargetable compilation of appli-
cation specific embedded processors. Code generation is hampered by the combi-
nation of tight timing constraints imposed by signal processing applications, and
resource constraints implied by the processor architecture. Additionally, highly-
encoded instruction sets designed to have small code size imposes additional lim-
its to the parallelism. Distributed register files with limited connectivity make it
difficult to compile. Register file size requirements are of extreme importance for
a compiler since any valid schedule must fit in the available number of registers
of the target machine. If not, values have to be spilled to the background memory
and this is detrimental to the code quality, since extra load and store operations
have to be inserted. A phase-by-phase approach is obviously not ideal for efficient
code generation. All these characteristics require a unified approach. This indi-
cates that if we can build a uniform environment for modeling all the constraints,
such as instruction set, resource and register file constraints imposed by a the tar-
get processor, then we have the potential to build a unified code generation. The
static resource model ( � � 	 ) approach in this work is developed to build up such
an environment.

Figure 1.11 gives an overview of the thesis. After the front-end processing,
we obtain the immediate representation, i.e. the data flow graph. The timing and
resource constraints are extracted from the application. At the same time, the
instruction set constraints are extracted from the instruction set architecture of a
processor through constructing the � � 	 . Thus a kind of machine description lan-
guage is obtained. Together with other constraints, they form the input of FACTS,
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which is our code generation and synthesis tools based on the constraint analysis
techniques and several search strategies. Besides this application, the obtained
� � 	 can also be used for

� � � design to obtain a balance between code size and
performance by modifying the constraints iteratively. The � � 	 concept is also
applied to the limited address range architecture for the purpose of reducing the
encoding cost of operands in instructions.
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instruction set

ISA
design

generation
codeLAR

architecture

ACTSF

DFG

timing &
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Figure 1.11: Overview of the thesis

1.5 Contributions

The work in this thesis can be summarized as follows:

� The methodology of the static resource model ( � � 	 ) is proposed for mod-
eling the highly-encoded instruction sets of embedded processors. These
constraints are combined with the resource and timing constraints such that
a unified code generation approach is obtained and the phase coupling prob-
lem is overcome.

� The � � 	 approach is applied to a reconfigurable instruction set proces-
sor. The reconfigurable part is the instruction decoder. The instruction set
constraints can be modeled efficiently through constructing the ��� 	 for
different configurations.
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� The � � 	 approach also presents an efficient solution for instruction set de-
sign since all the constraints originated from instruction sets are represented
as static resources, which can be used for the fast estimation of performance.
Any modification of these resources has a direct effect on the performance
and code size.

� The ��� 	 approach is extended to cope with the limited address range
(
� �� ) register file architecture. In this architecture, although a functional

unit is physically fully connected to a register file, it reads from and writes to
only a subset of registers in a register file, consequently reducing the number
of encoding bits. Different functional units may access different subsets of
a register file, and these subsets may overlap to maintain the communication
between those functional units. The

� �� architecture may cause an addi-
tional assignment problem for values to be addressed in different ranges,
which results in the need for phase coupling. In this work, the assignment
decisions are postponed by integrating the limiting address constraints with
the value lifetime conflicts, resulting in a uniform conflict graph for register
allocation.

1.6 Thesis outline

The organization of the thesis is as follows. Chapter 2 introduces the basic defi-
nitions and concepts for the development of this work. Basic block applications
are represented as data flow graphs. Resource and timing constraints are admin-
istrated by the so-called “distance matrix”. Constraint analysis techniques are the
basis for an integrated scheduling and register binding in code generation.

Chapter 3 briefly reviews a large set of reconfigurable instruction set proces-
sors and proposes a new way of perceiving the processor reconfigurability for the
purpose of efficient compilation for these processors.

In Chapter 4 the static resource model concept is explained for an efficient
modeling of instruction set constraints based on the “convex hull” approach. These
constraints resemble resource constraints in the sense that any combination below
the upper bound is valid. Therefore constraint analysis can be adapted easily for
integrated code generation. Phase coupling of code selection, scheduling and reg-
ister binding is relieved. Another advantage of this method is that instruction set
design can be performed quickly by tuning the instruction set constraints to bal-
ance the performance and code size, which is discussed in Chapter 5.

This methodology can also be applied to the
� �� register file architectures.

Chapter 6 shows this application by modifying the associated conflict graphs by
including all the architectural restrictions, yielding a “modified” conflict graphs.
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Therefore, the traditional coloring algorithms for register allocation can be adapted
with little effort to solve the register file assignment problem.

At last, Chapter 7 concludes the contributions of this work and discusses the
future research topics.



Chapter 2

Constraint Analysis

Code generation methods for digital signal processors are increasingly hampered
by the combination of tight timing constraints imposed by signal processing ap-
plications and resource constraints implied by the processor architecture. Tradi-
tional methods often separate code generation into several phases. This results
in sub-optimality (or even infeasibility) of the generated code because it ignores
the problem of phase coupling. This increases the necessity for automated tech-
niques that can cope with different kinds of constraints during scheduling. In this
chapter, we will introduce the constraint analysis techniques which can deal with
the tight combination of timing constraints and resource constraints. By exploit-
ing the constraints to prune the schedule search space, the scheduler is prevented
from making decisions which violate those constraints.

2.1 Data flow graph

In this section, we will introduce the basic concepts shared in architectural syn-
thesis and code generation.

2.1.1 Data flow graph

In the analysis-synthesis model of a compiler, the front-end translates a source
program into an intermediate representation from which the back-end generates
the target code. Often the intermediate representation is expressed as graph model
and is partitioned into basic blocks.

A basic block is a sequence of consecutive statements in which flow of con-
trol enters at the beginning and leaves at the end without halt or possibility of
branching except at the end.

21
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Each basic block is represented by a data flow graph ( ����� ), which describes
the primitive operations performed in that block, and the dependencies between
them.

Definition 2.1 (Data flow graph) A data flow graph DFG = (V, E, W) is a di-
rected, edge-weighted graph, where

��� is the set of vertices(operations),

���������
	��� is the set of precedence edges,

������������ is the set of data precedence edges(values),

������������� is the set of sequence precedence edges, and

��������� � is the function describing the time delay associated with each
precedence edge in clock cycles.

A ��� � describes the primitive operations performed in an algorithm and the
precedence edges define a partial order on the execution of the operations. The
execution delay of an operation is the number of clock cycles needed for the com-
pletion of the operation and is captured as attribute to the precedence edges. Two
vertices (dummy operations) are always assumed to be present in the ����� : the
source and the sink. They have no execution delay, and represent the relative exe-
cution of the first operation and the last operation. Often they are not shown when
depicting a ����� . Operations can have an execution delay of multiple cycles and
can be pipelined with a data introduction interval (or restart time when the func-
tional unit is ready for reuse), which are modeled using precedence constraints
[53]. They can have multiple inputs and multiple outputs. In this case, it is as-
sumed that the target architecture provides the corresponding connection from the
functional units to the register files.

A data edge � ���� represents a value, which is produced only once and
may be consumed several times. After compilation, it has a unique lifetime and
is assigned to one storage unit. A variable is also associated with one storage
unit. It can consist of one or more values produced and consumed with non-
conflicting lifetimes. Because using values helps to reduce the complexity in the
implementation of ����� , the value approach, e.g. the single static assignment
approach is used and a value renaming or variable unfolding [43] [76] is assumed
to be performed for each variable prior to any analysis.

An example ����� is shown in Figure 2.1. In this figure, operations are � �!�#"%$'& ,( � , ( � , ( � , ( � , ( � , (*) , and �,+ (*- . The corresponding execution delay for these
operations are 0, 1, 1, 2, 1, 1, 1, 0. Data dependency edges are . , / , $ , 0 , & .
They are drawn with solid lines and are all with weight 1. Sequential edges are
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drawn with dashed lines. Weights for sequential edges are shown explicitly. For
example, ��� � �!�#"%$'&�� ( ��� � � , ��� � �!� " $'&�� ( � � � � , ��� ( � � ( � � � � , ��� ( ��� (*) � � � ,��� �,+ ( - � � �!� " $'&�� �	� � .

+ +

+

+

+

*

source

sink

a

c e

d

b

n2

n5

n0 n1

n3

n4

0 0

3

3−6

Figure 2.1: A data flow graph

2.1.2 Timing constraints

Timing constraints refers to the execution of operations in an application that must
meet requirements in terms of time, e.g. start time, total time. The task of schedul-
ing is to assign each operation � ��� a start time � � �
� . Start times are constrained
by the precedences. A precedence edge � �
��� ���� �����
	 �� states that:

� � ������ � � ������� ��� ����� ���� (2.1)

A chain of precedence edges ��� � ��� � ����� � �� with total added weights 0
is called a path, implying that � � ������ � � ������� 0 .

Definition 2.2 (Distance) The distance 0 � ����� ���� is the length of the longest path
from operation ��� to �� .

A path in the ����� thus represents a minimum timing delay between two
operations. These distances are stored in a distance matrix, which administrates
the length of the longest path between every pair of operations.

Other timing constraints can also be expressed as distances and stored in the
distance matrix.
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Latency: The number of available cycles for scheduling a ����� is defined
as the latency L. It is expressed as a sequence edge from the sink to the source
with the weight ��� . According to inequality 2.1, it is interpreted as � � � � �#" $ &����
� � �,+ (*- � ��� , which is equivalent to � � �,+ ( - ��� � � � � �#" $ &���� � . Because the source
is always scheduled in clock cycle 0, this formula implies that the sink should be
scheduled in clock cycle � or earlier. Since all other operations precede sink, it
indicates that all of them have to finish their execution within � clock cycles.

B

A
C

source

sink

−L

−II 1 −1 c −c

A

B

sourceA

B B

(a) (b) (c) (d)

Figure 2.2: Modeling a constraint on (a) the latency � (b) the initiation interval���
(c) pipelined execution and multicycle operations (d) scheduling decision

Initiation Interval: Loop pipelining or loop folding is the technique to en-
hance the performance of applications on architectures with high levels of paral-
lelism. Unlike the schedules in which one iteration of a loop is executed strictly
after the execution of the previous one, pipelined schedules overlap multiple iter-
ations. Iterations are periodically initiated with a period called initiation interval
II. If values are assigned to registers, it has to be ensured that each value belong-
ing to one iteration has to be consumed before it is overwritten by the production
of the same value in the next iteration. This means that a value cannot be alive
longer that

� �
clock cycles. Thus this constraint is modeled by a precedence edge

with weight � � � from the consumer to the producer operations of a value, which
is illustrated in Figure 2.2 (b).

Pipelined executions and multicycle operations: Pipelined executions and
multicycle operations can be modeled by introducing an operation for each stage
of the execution. Subsequent stages are linked in time using two sequence edges
as indicated in Figure 2.2 (c). For multicycle operations, � and � occupy the
same resource.
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Scheduling decision: Scheduling decisions may take different forms. A tim-
ing relation between two operations can be directly translated to a sequence edge.
When an operation � is fixed at a certain clock cycle $ , we need two sequence
edges as indicated in Figure 2.2 (d) to fix the start time of � .

2.1.3 Resource and storage constraints

Resource conflicts are modeled by introducing the concept of resources and by
defining the resource usage for each operation. In a processor architecture, a
functional resource can be used in many ways. E.g., a functional resource � ���
can execute an operation . 0 0 or a �,��/ , etc. For reasons of complexity, we do
not wish to enumerate all possible uses of a functional resource. Therefore we
consider the collection of these uses and associate with it an operation type. In
this example, operations . 0 0 and � � / are associated with the operation type .�� � .
Let � denote the set of operation types. Then the function � � � � � defined
the operation type for each operation. Each operation type is associated with a
resource type, which is characterized by a delay value, a data introduction interval
for pipelined resources and the number of instances available for each resource
type.

The delay value is the number of clock cycles that a functional resource takes
to accomplish its task. Pipelined resources are the functional resources that per-
form operations on different data sets concurrently, therefore they consume and
produce data at time intervals that are smaller than the execution delay. The data
introduction interval is the number of clock cycles that a functional resource takes
to be ready for reuse with a new set of inputs operands.

Resource constraints can be used to model more abstract constraints, like those
arising form an instruction set. Consider the case that no instruction exists for the
parallel execution of operations �
� and �� , this can be modeled by generating an
artificial resource [73] with only one instance, that is “used” by both � � and �� .
Thus the constraint analysis techniques, introduced in Section 2.3, will point out
that ��� and �� cannot be scheduled in the same clock cycle since there is only one
(artificial) resource available for executing ��� and �� each time.

Storage constraints are presented using memory types. Each memory type is
characterized in terms of its access type (random-access register file, fifo, stack,
rotating register file), the number of available units, and the number of elements
per unit in case of fifos and stacks.
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2.2 Schedule search space

In order to obtain the scheduling result for an application, it is convenient to de-
scribe the set of possible solutions, the solution space. The solution space is the
range of possible start times for each operation, which can be approximated by
the ���� � - � � � � schedule intervals of one operation based on the analysis of
precedence constraints.

Sequencing constraints are added explicitly to the ����� as precedence con-
straints, yielding a reduction in the ���� � - � � � � intervals. In this way, a more
accurate estimation of the set of feasible start times is obtained.

2.2.1 Apparent schedule space

In order to measure the effect of the additional precedence constraints on the
schedule freedom of operations, the “apparent freedom” or mobility of operations
is defined as the average difference between the � � � � and the ��� � � start times
of operations � ��� :

� � / + � + ��� � � ��� � �
�
�	��


� � � ��� � �
� � �� �
� � � � �
� � � (2.2)

Because the performance of a scheduler depends largely on the accuracy of the
����� � - � � � � interval estimation, mobility before and after the constraint analy-
sis is used as the performance measure of the analysis.

2.2.2 Distance matrix

Although the interval representation is relatively simple, it is not an entirely accu-
rate representation for ordering (precedence) information. Thus we resort to the
distance matrix.

The distance matrix captures the relative timing: the minimum and maximum
difference between the start times of each pair of operations in the data flow graph.
The distance matrix is calculated using an all-pairs longest-path algorithm, an
adaptation of the all-pairs shortest-path algorithm presented in [18].

Timing constraints can be expressed directly in the distance matrix. Resource
constraints are associated with module execution intervals. Each one is the timing
interval for certain resource to execute an operation. These execution intervals are
in fact restrictions on timing. Storage constraints are analyzed using the constraint
analysis techniques [53], and the results are expressed as precedence constraints,
which can be easily integrated with the distance matrix by updating the distances
of pairs of operations in the data flow graph: incrementing the minimum distance
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or decrementing the maximum distance between two operations. Thus the effects
of all the constraints can be stored in the distance matrix.

An obvious drawback of maintaining the distance matrix is that it is computa-
tionally expensive. However, constraint analysis results in a set of sequence edges
and since adding an extra sequence edge requires only incremental update instead
of recalculating the whole distance matrix, the run time is acceptable in practice
[75].

2.3 Constraint analysis techniques

The basic constraint analysis techniques consists of rules that are triggered by dif-
ferent types of constraints and produces a set of sequence edges. These sequence
edges are used to prune the schedule search space to prevent the scheduler from
making wrong decisions to cause infeasible solutions.

2.3.1 Execution interval analysis

The execution interval analysis method analyzes resource constraints by examin-
ing the intervals in which operations can be executed [72] [73]. It reduces the
execution interval of an operation when observing that no resource is available for
executing that operation in the corresponding clock cycles. This is illustrated in
Figure 2.3.

A data flow graph is given in Figure 2.3 (a). The latency � is assumed to be
5 clock cycles, and one resource type ‘adder’ is available for executing all the
operations. The execution intervals are determined by the [ ����� � , � � � � ] values
as depicted in Figure 2.3 (b). They are called initial operation execution intervals
( � � � s).

From the available resources, the so-called module execution intervals ( 	 � �
s)

are calculated. Each 	 � �
represents the abstract notion that some resource has to

execute an operation.
Execution interval analysis combines the execution intervals of the operations

with resource constraints by constructing a bipartite schedule graph ( ��� � ) in the
following way: the operations and their corresponding � � � s are put on the left
side. The 	 � �

s are shown on the right side. They are always ordered according
to their start and end times. There is an edge between an � � � and a 	 � �

if the
intervals overlap, indicating that the corresponding operation can be executed in
the designated 	 � �

. In addition, this requires that all preceding operations can be
matched with the preceding 	 � �

s. The same holds for succeeding operations.
The key observation of the analysis is that for every feasible schedule, there

exists a complete matching in the bipartite schedule graph between the � � � s and
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Figure 2.3: Execution interval analysis

the 	 � �
s. That is, every � � � is matched to exactly one 	 � �

and vice versa.
This analysis uses the algorithm of [66] to identify edges that can never be part
of a complete matching, and these edges are removed from the bipartite schedule
graph. In this example, operation � can only be executed in 	 � �

[2,2]. This
adjustment corresponds to a pruning of the search space and is depicted in Figure
2.3 (f).

Execution interval analysis contains an additional analysis: to determine the
earliest possible start time of an operation, a relaxed scheduling problem involving
all its predecessors is solved to determine the lower bound of the first clock cycle.
The scheduling problem is relaxed in a sense that the precedence constraints are
essentially ignored. It is only enforced that each operation cannot start earlier
than the lower bound of its start time. Similarly, all successors of the operation
are analyzed. The predecessors and successors are determined using the distance
matrix: An operation ��� is said to precede an operation �� iff 0 � ��� � ������ �

.

2.3.2 Loop folding analysis

Basic constraint analysis essentially contains several rules [52] considering the
timing relation between conflicting operations in case of loop folding. It is based
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on the fact that two conflicting operations cannot be scheduled in the same poten-
tial. Potential is the time slot where operations in different loops are scheduled
together. The potential associated to a time

�
is
� � � 0 � � . So if two operations � �

and �� have a resource conflict and the distance between these operations would
cause them to be scheduled at the same potential, i.e. 0 � � � � ���� � � 0 � � � � , the
distance has to be increased by at least one clock cycle. This is depicted in Figure
2.4.
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Figure 2.4: Resource conflicts result in precedence edge in loops: (a) a loop kernel
with initiation interval 3, latency 6, resource conflict � and

�
, � and

�
(b) list

scheduling reports infeasibility (c) conflict between � and
�

results in sequencial
edge with weight 3+1=4 (d) conflict bwteeen � and

�
results in sequencial edge

with weight -3+1=-2 (e) the two sequential edges cause � � � increased by one

In Figure 2.4 (a), a data flow graph of five operations is given. It is assumed
that the initiation interval is 3, latency is 6. Resource � has a conflict with

�
, and

the same holds for resources � and
�

. The [ ����� � , � � � � ] interval is printed left
to each operation. In order to meet the constraint of three clock cycles on the

� �
and

six clock cycles on the latency, loop folding has to be applied. The possible result
of list scheduling is shown in Figure 2.4 (b). The left column contains the time
potential (schedule time

�
modulo � � ). The list scheduler greedily schedules � , �

and � as soon as possible, and concludes that
�

cannot be scheduled, while below
we prove that a feasible schedule exists by applying the rules of our constraint
analysis.

In Figure 2.4 (c), (d), (e) sequentially, we observe a path � � � � � � �

with a length of 3. Because 3 ���
� � � � � , we can add a sequence edge from �
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to
�

with weight 3 + 1 = 4 because of the resource conflict between � and
�

.
Similarly, there is a path

� � � � �,+ (*- � � � �#" $ & � � � � of length -3
clock cycles. Because of the resource conflict between

�
and � , this length has

to be increased to -3 + 1 = -2. The effect of combining the two analysis results
is visible in the distance matrix by computing the longest paths induced by the
individual sequence edges. As a result, the distance between � and � is updated
to 2 clock cycles, corresponding to the final feasible schedule in Figure 2.4 (f)
where � is postponed with one clock cycle.

2.3.3 Storage constraint analysis

Storage constraint analysis arises from the limited availability of storage resources.
In this section, we introduce relatively simple cases, e.g. two values have to be
assigned to the same register, illustrated in Figure 2.5. More detailed rules for stor-
age constraint analysis have been studied in [52]. When two values are assigned
to the same register, their corresponding lifetimes are forced to be serialized. In
general, this can be done in two ways: value � precedes value � or vice versa.
Sometimes there already exists a precedence between the various accesses to �
and � that excludes one of these possibilities. This can be seen from Figure 2.5.
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Figure 2.5: To solve the register conflict, � �
has to precede � �

In this situation, because there already exists a precedence � � � � �
, the

sequence edge � � � � �
is a necessary and sufficient constraint to solve the

register conflict between � and � .
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2.4 Conflict graphs and coloring

Conflict graphs are used for storage file capacity satisfaction and allocation. In
this section, we introduce the basic preliminaries and related definitions.

Definition 2.3 (Conflict Graph) A conflict graph ��� � � � � � � ��� � ��� � is an
undirected graph, where

����� is the set of vertices representing values to be allocated to a storage file,
and

������� ��� � ��� is a set of edges. There is an edge � � � � � � ��� if there is a
conflict between � and � .

The degree of a vertex is the number of edges incident to it.
A subgraph of a graph

� � is a graph of which the vertex and edge sets are
contained in the vertex and edge sets of

� � . A clique is a subset of vertices that
induces a subgraph of

� � in which those vertices are all pairwise. The clique
number � � � � � is the number of vertices of the maximum clique of the

� � .
Vertex coloring of a graph consists of assigning a color to every vertex such

that no two adjancent vertices have the same color. Exact coloring refers to the
coloring using the minimum number of colors. The chromatic number 	 � � � � is
the smallest possible number of colors required for coloring the

� � .
A color corresponds to a register binding decision. For application specific

instruction set processors, usually there is a limited connection between the func-
tional units and the storage files. So a value cannot be assigned to each register.
Consequently, not all the colors can be exploited when assigning a color to a ver-
tex in the conflict graph. We introduced the Annotated Conflict Graph ( � � � )
definition.

Definition 2.4 An Annotated Conflict Graph(ACG) is an undirected graph repre-
sented by a tuple � ��� � ��� � $�� � � , where

����� is the set of vertices,

�����
� ��� ����� is a set of edges denoting conflicts, and

� � is a set of colors.

� The mapping $ � � � � �
�

defines the “color set” for each � ��� � .
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2.5 Unified code generation

As we mentioned in Chapter 1.2.1, there are strong dependencies between the
phases of code generation of application specific processors. If a decision is made
in certain phase, consequently it has an impact on the other phases. Thus phase
coupling has to be relieved in order to obtain efficient code for these processors.
Constraint analysis has the ability of dealing with the integrated resource and tim-
ing constraints with the help of the above mentioned techniques. Furthermore, the
distance matrix provides the basis of a unified administration of the search space.
Therefore potentially constraint analysis has the ability for a unified code genera-
tion if all the architectural constraints of a processor and timing constraints of an
application can be described and combined.

2.6 Research tool FACTS

FACTS is a research tool developed to take advantage of timing and resource con-
straints to prune the schedule search space. By exploiting these constraints, the
scheduler is often prevented from making a decision that inevitably violates one
or more constraints.

The structure of FACTS consists of three layers [75], as depicted in Figure
2.6. The core layer contains the internal representation of the algorithm to be
scheduled and the scheduling search space. At the intermediate layer, the basic
constraint analysis techniques are provided. On top of that, search strategies are
implemented.

DFG
distance matrix

basic CA techniques

search strategies

latency/initiation interval minimization,
scheduling, storage assignment

latency constraint, initiation interval

constraints, precedence constraints

symmetry detection
storage constraint analysis,
execution interval analysis,

Figure 2.6: The layer structure of FACTS

At the core layer of FACTS, each basic block of the algorithm to be scheduled
is represented by a data flow graph. In addition, the schedule search space is
represented by a distance matrix. This distance matrix administrates the minimum
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and maximum difference between the start times of each pair of operations in a
����� .

The results of the constraint analysis techniques in FACTS are conceptually
expressed as additional sequence constraints in the ����� . The effects of these
results on the schedule search space are combined and computed by updating the
longest paths between each pairs of operations.

The essence of constraint analysis is that additional sequence edges are added
that are necessarily implied by the combination of other constraints. In this way,
the schedule search space is pruned to prevent the scheduler from finding infeasi-
ble solutions, without eliminating feasible solutions.

Search strategies are dealt with at the top level. The objective may be to min-
imize some criterion like the latency or the initiation interval, or to satisfy more
global constraints like a fixed capacity of a register. These constraints are global in
the sense that they have a general effect on all timing relations, without affecting
any specific timing relation.
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Chapter 3

Reconfigurable Instruction Set
Processors

3.1 Introduction

Reconfigurable processors are processors with architectures that can be reorga-
nized in different ways for different applications. The reconfigurable part can be
a coprocessor, a functional unit in the data path or an

� ��� . In most cases the re-
configurable part is mapped on re-programmable hardware logic. In this thesis,
we mainly focus on two categories: reconfigurable data path processors based on
field-programmable logic ( � � �

), and reconfigurable instruction set processors. In
the first class, hardware components, usually � � �

based on � � ��� s, are added
to the core processor and correspondingly, the instruction sets are tuned towards
this architecture adaptation. Usually there is a reconfiguration delay for the � � �

,
which has an impact on the performance by increasing the total execution delay.
In addition, it adds the necessity for hardware/software partitioning, which is not
convenient for the compiler. In the second class, the data path contains normal
units, just like � � � � processors or � � ���

processors, while the instruction set
can be tuned towards different applications through a reconfigurable instruction
decoder. It has the advantage that the reconfiguration timing overhead is kept low
and the conventional compiler techniques can still be used to generate efficient
codes for different applications.

This chapter is organized as follows: Section 3.2 discusses the related work in
the two classes of processors. In Section 3.3 the proposed architecture template is
given with the discussion on area estimation and compiler effort.

35
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3.2 Related work

In this section, we briefly review previous work on the above mentioned two cat-
egories of reconfigurable processors. A lot of research has been done on the first
type of processor, while in this thesis we focus on the second type and provide
an architecture template. The compiler adaptations, especially the phase coupling
problem of code generation for such kind of architectures is discussed in the next
chapter.

3.2.1 Coarse-grain and fine-grain reconfiguration

A useful criterion to classify reconfigurable processors is the granularity of the
�
� �

itself. Depending on the degree of reconfigurability it possesses, the �
� �

can be classified as: fine-grained �
� �

, which is configurable at the level of indi-
vidual bits, and coarse-grained �

� �
, which is configurable at the level of individ-

ual words.
One convenient way of synchronizing data communication is to embed a coarse-

grain hardware block in the data path of a processor. The instructions control the
data traffic to the hardware block via its registers. This reduces the memory space
required to buffer data traffic while waiting for the access to the bus in the co-
processor architecture.

Register Files

FSM

Inst. Reg.

btf btf btfcmult

VLIW Communication Network

Register Files

ALU ROM RFU

FSM

Micro
Code
Memory

Inst. Reg.

cmult ROM

(Reconfigurable) Coarse−Grain FU

Micro
Code
Memory

VLIW Communication Network
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Figure 3.1: A VLIW data path with a coarse-grain application-specific unit

Busa et al. [14] proposed a synthesizable � � ���
architecture with a coarse-

grain functional unit which takes the form of a � � ���
processor itself, see Figure
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3.1. A substantial speed-up can be achieved as well as a reduction in code size. In
addition, the input and output operands to and from the coarse-grain unit can be
individually controlled to obtain advantageous signal lifetimes, thereby reducing
the pressure on the data path registers.

The initial schedule of the coarse-grain �
�

will be partially taken into account
while scheduling the application. In this way, a �

�
’s internal schedule could be

considered as embedded in the application’s schedule. The example in Figure 3.2
depicts the scheduling of a coarse-grain �

�
. A small application is implemented

in the coarse-grain �
�

in order to achieve a limited instruction width. Its �����
with the I/O operations is shown in Figure 3.2 (a). The embedding processor
controls only the timing of the I/O operations. Therefore the original ����� can
be simplified to a single coarse-grain operation in Figure 3.2 (b). The flexibil-
ity available during scheduling I/O operations depends on the hold-ability of the
coarse-grain � � . If the coarse-grain � � can be held (frozen), then the I/O op-
erations can be further “stretched” away from each other, as in Figure 3.2 (c), to
provide or withdraw data in a “just in time” fashion. If the coarse-grain � � cannot
be held, the timing relations between the I/O operations are fixed, modeled by the
additional sequence edges in Figure 3.2 (d).
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Figure 3.2: An embedded coarse-grain operation

In Figure 3.3, we compare the execution length and code size for a set of
architectures with and without an application specific unit ( ��� � ). The ��� � can
be one functional unit or a set of functional units. It can also be a reconfigurable
unit ( � � - �� � ).

In the given example, we consider an application containing two critical loops.
Each loop requires a different configuration for efficient acceleration. The � � � � -
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like architecture in Figure 3.3 (a) does not provide any hardware acceleration at
all. The microcode width is very small, but the execution of both critical loops
is long, with consequently a delay in terms of performance and an expansion in
terms of code size. On the contrary, a “flat” � � ���

processor, which contains
many fine-grain �

�
s, will accelerate both loops at the cost of large instruction

width , as shown in Figure 3.3 (d). A fixed coarse-grain � � ���
processor in Figure

3.3 (b) will provide hardware support for the acceleration of one of the two loops,
while keeping the microcode width moderately small. Finally, a reconfigurable
coarse-grain � � ���

processor in Figure 3.3 (c) will accelerate both loops with
relatively small code size.

The embedded hierarchical � � ���
processor in Figure 3.3 (b) contains a local

internal microcode for the execution of the internal schedule of the coarse-grain
operation. For a typical coarse-grain operation such as an 8-point �

� � , the mi-
crocode is about 20 instructions by 25 bits. Note that the “flat” processor in Figure
3.3 (d) requires several 100 instructions by 25 bits to control the added resources.
Most of these bits represent �� � s because the added resources are only used in
the critical loops.

In case of reconfigurable coarse-grain units, the configuration latency of the
internal microcode varies from 2 to 10 cycles. The controller microcode as well
as the � � � � � � �

for the � � - ��� � have been generated using the architectural
synthesis tool A

�
RT Designer [8].

3.2.2 Closely-coupled and loosely-coupled reconfiguration

According to the integration degree of the � � �
with the programmable proces-

sor, two categories can be defined: closely-coupled reconfigurable processor or
loosely-coupled reconfigurable processor. In the closely-coupled processor, the
� � �

is integrated within the data path of the host processor and is directly con-
trolled by instructions issued in the host processor. In the loosely-coupled proces-
sor, the � � �

is integrated as a co-processor of the host and is activated by run-time
scheduling. Communication with the host is performed via the system buses.

Loosely-coupled reconfiguration

The advantage of loosely-coupled approach is that it is relatively easy to integrate
dedicated hardware in a plug-in-play like fashion. The disadvantage is that the
system bus is burdened with heavy data traffic from and to the application specific
block. This reduces the predictability and the performance of the system.

In a reconfigurable context, this block usually consists of an � � ��� . The
number of bits required to configure the block is in the order of 500k bits, and
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typically takes a few milliseconds to configure at a clock frequency of 50-100
MHz.

For example,
� � � � 	 is a fine-grained, loosely-coupled reconfigurable proces-

sor. In the
� � � � 	 -I [9] prototype, a standard programmable processor (Motorola

68010 running at 10MHz) is augmented with an �
� ��� board containing four

Xilinx 3090 devices. Both processor and �
� ��� board are connected to a 16-bit

system bus. The compiler partitions the application into software and hardware,
executed in the processor and in the �

� �
� board respectively. A list of functions
that can be implemented in hardware is prompted and it is the programmer who
makes the partition decisions. A limitation of

� � � � 	 is the communication la-
tency between processor and �

� ��� accelerator. In addition, large chunks of the
application must be mapped onto the �

� ��� , which possibly does not fit well with
the �

� �
architecture.

Closely-coupled reconfiguration

Closely-coupled approaches can be further divided into Reconfigurable Func-
tional Units ( � � � s) and Reconfigurable Data path Segments ( � �
� s) according to
the degree of integration in the data path. In the first case, an � � � is added in the
execution stage of the pipeline. In the second, more than one stage of the pipeline
can be by-passed, and the control flow diverted to the added � � �

resources.

� � � � � [81] is a fined-grained, closely-coupled � �
� processor operated at� ��� level, which supports demand-driven modifications of the instruction
set. In � � � � , the instructions are implemented as instruction modules,
which are individually configured on the partially reconfigurable � � �

re-
sources as demanded by the application program. This kind of dynamic
instruction paging removes idle instruction modules and reduces configu-
ration time considerably. In addition, the system state can be saved on the
� � �

during configuration. The ability to partially configure custom instruc-
tion modules allows � � � � to implement an important strategy–relocatable
hardware. �

� � � implements relocatable hardware in the form of a linear
hardware model, which consists of a uniform communication network and
a global controller. The global controller specifies the communication pro-
tocol, controls global resources and monitors circuit execution. The com-
munication network provides access to global resources for all instruction
modules and performs intermodule communication. It is decomposed into
fixed vertical buses for control, address and data.

The � � � � processor needs a host to manage the runtime reconfiguration
of the instruction modules. When a new module is needed, the host eval-
uates the current state of the � � �

and chooses a physical location for the
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requested module. If possible, the new module is placed in a non-occupied
position. Otherwise, a least-recently-used algorithm is applied to remove
the idle modules. The host also relocates modules at runtime.

One drawback of partially configuring the device during runtime is the over-
head caused by continually reconfiguring instruction modules. Although a
set of retargetable tools is available, no automatic hardware/software parti-
tioning and synthesis is implemented. Instruction modules are hand-crafted
and stored in a library. Because the global controller implements only sim-
ple operations, the �

� �
needs to implement most computations, even those

that could be efficiently implemented on a hard-wired � � �
. Consequently,

it cannot be optimized for a specific kind of applications.

� Garp [38], as � � � � , adopts a closely-coupled � �
� approach. It is based on
a 	 ��� � processor instead of a global controller. The loading and execution
of configurations on the reconfigurable array is under the control of a pro-
gram running on the main processor. Several instructions have been added
to the MIPS-II instruction set for this purpose.

Garp makes external storage accessible to the reconfigurable array through
the standard memory hierarchy. Distributed within the array is a cache for
recently used configurations, and programs can quickly switch between sev-
eral configurations without the cost of reloading from the memory each
time. It resembles � � � � in the way that function modules are mapped
onto the � � �

in horizontal rows and global buses are orthogonally located
through the rows. Four memory buses run vertically through the rows for
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moving the information into and out of the array. For moving data between
array blocks, orthogonal wires with various length are available. The logic
blocks in the array are configurable at the granularity of a pair of bits. This
decision is made based on the assumption that most configurations taken
up by multiple-bit operations are configured identically for each bit. In this
way, the size of configurations and timing for loading configurations are
greatly reduced, which compromises the critical computation performance
and flexibility.
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C preprocessor
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Resources

Memory

Garp
simulator
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Figure 3.5: Garp architecture and compilation

Garp utilizes traditional � � ���
compilation techniques in the context of au-

tomatic hardware/software partitioning. The partitioning strategy is that the
standard 	 ��� � data path is used for control, system interfacing and other
non-critical tasks. The � � �

array maps the relatively complex application
segments that can read and write data directly to memory, such as the en-
tire loop bodies. In addition, loop bodies mapped onto the � � �

can be
pipelined.

�
� � � � � [63] is the first to use the � � � approach. In

� � � � � , a small fined-
grained � � ��� -based � � � is inserted into the execution stage of a standard
� � � � pipeline, in parallel with the standard functional units, as shown in
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Figure 3.6 . The � � � is stateless, so that no �
� ��� state has to be saved

with a context switch. The � � � must also execute in a single clock cycle
to prevent synchronization difficulties in the pipeline. The reconfiguration
control logic, typically a finite state machine, is responsible for reading con-
figuration data from memory/bus and controlling the sequencing loading.
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system
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Figure 3.6: PRISC architecture, instruction format and compilation

To program and operate � � � , a new 32-bit instruction expfu is defined to
evaluate a boolean function with two inputs and one output, see Figure 3.6
(b). The LPnum field specifies the particular boolean function to be exe-
cuted which is extracted from the application. A 11-bit register Pnum is as-
sociated with the � � � . It contains the logic function currently programmed
into the physical � � � . If the LPnum in the instruction matches the value in
the Pnum register, the expfu instruction executes normally. Otherwise, an
exception is raised.

In the
� � � � � compilation system as depicted in Figure 3.6 (c), the appli-

cation in a
� � �

is parsed, optimized and translated into the target machine
instructions. These instructions are assembled and scheduled to produce a
binary executable. At the same time, hardware extraction through profil-
ing is performed to identify sequential instructions which could potentially
be implemented on the � � � . Logic synthesis takes the input function and
outputs a netlist of look-up tables (

� � � s). Placement and routing is run



44 CHAPTER 3. RECONFIGURABLE INSTRUCTION SET PROCESSORS

to determine if the
� � � netlist fits in the resources offered by the physi-

cal � � � . The result is fed back to the hardware extraction iteratively. In
the compiler of

� � � � � , hardware partitions are now as small as a short
sequence of instructions. Typical examples are conditional constructs and
bit-level parallelism. Only one operation at a time can be configured in
the � � � . Every time a different � � � operation is needed, the pipeline is
stalled while the � � � is reconfigured, which limits the ability to accelerate
the application’s core loops with multiple � � � operations. It also has the
limitation that only two source operands are available for � � � operation.

� Chimaera [37] uses a special approach for � � � to overcome the limitation
of reading only two operands. It’s architecture is shown in Figure 3.7. The
�
� �

has direct access to individual bits of a subset of eight registers. The
address of these registers need not to be encoded in the instruction word
because the � � �

is already hard-wired to the desired input bits during con-
figuration. This eliminates the register addressing flexibility of an individual
� � � operation.
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Figure 3.7: Chimaera architecture

The general partitioning strategy of Chimaera is similar to that of
� � � � � .

� � � operation must be executed in one cycle after being scheduled. The
� � �

architecture is stateless and is tuned to irregular bit manipulation. Chi-
maera’s � � � may contain several custom operations at a time. Similar to
� � � � , different operations occupy different rows in the � � �

array. Thus,
cross-optimization between operations during logic synthesis, placement
and routing is not possible.

� In [42], ConCISe [42] is proposed to integrate a reconfigurable hardware
acceleration unit based on

� � � � in the data path of a � � � � microproces-
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sor, as depicted in Figure 3.8. An � � � is added to the execution stage of
a standard RISC pipeline, receiving the same two source operands from the
register file as the ALU and it must be executed in a single clock cycle. Un-
like

� � � � � , more than one custom operation can be configured in the � � �

concurrently. This is obtained through compiler-time reconfiguration. All
custom operations that make up the hardware partition of any given appli-
cation are known at compiler-time, and they are all encoded together into a
single � � � configuration. Therefore, there is one � � � configuration per
application program. The corresponding instruction, the so-called program-
specific instruction (

� � � ), is encoded as a 	 ��� � register-register operation
plus a 4-bit immediate filed called �

� �
. �

� �
identifies the particular cus-

tom operation within the � � � configuration that is to be executed. This
encoding also has the limitation: only operations with two input operands
and one output operand can be accelerated by the � � � . This requirement
matches particularly well with bit-level operations in cryptology. Several
algorithms are proposed to automatically identify suitable targets for hard-
ware acceleration, resulting the speed-up of 10-60 % on the complete appli-
cation for several DSP benchmarks. The � � � has a configuration memory
in the order of 5 kbits, so reconfiguration time can be neglected.
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3.2.3 Non-FPL based reconfigurable instruction set processors

In the non- � � �
based reconfigurable instruction set processors, the instruction set

architecture can be (re)configured such that for different applications or different
segments of one application, the most suitable and code-size efficient instructions
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are used for the application(s) to be implemented on the processor. This has the
advantage that all the functional unit’s resources are fully utilized and no extra
hardware cost is added. The focus is on configuring different instruction set ar-
chitectures while still make it easy for the compilers to generate efficient code.

� Tensilica’s Xtensa [70] is a 32-bit configurable and extensible processor.
Xtensa’s processor generator provides user selectable parameters from a
wide range of configurable options. The instruction set architecture can
be configured with optional functional units, different sizes and types of
memory interface, optional debug modules and/or and user defined instruc-
tions. Using the instruction extension language ( � � � ), the designer can
create his/her own instructions and have them immediately understood by
the C/C++ compiler, debugger and instruction-set simulator. A subset of
verilog is used to describe the new function, which is built into the hard-
ware. The profiler information helps the user to identify the bottleneck of
the program, select the new configuration options or add new TIE instruc-
tions, which provides a more efficient architectural exploration.

� The � � � �
[83] architecture, as illustrated in Figure 3.9 contains a data

path with two independent 16x16 bit multipliers, four parallel 16-bit � � �
s

which can be combined into two 40-bit � � �
s (including eight overflow

bits each), and a number of parallel shifters and saturators. In addition to
the arithmetic units there are two address calculation units ( � � � s) and two
data memories. Effective processing performance can be enhanced by in-
troducing application specific execution units ( ��� � s). ��� � s are defined
by the customer and can be placed anywhere in the data path or the address
calculation units. In combination with a tuned instruction set a substan-
tial reduction in cycle count can be achieved as compared to conventional
general purpose �
� � s.

The full power of the data path is mainly used within the inner loop of a
typical application, and much less power is needed in the “administrative”
code around such loops. A distinction is made between the “standard in-
struction set” of the 16 and 32 bit opcodes, where only a limited parallelism
is possible, and “application specific instructions” ( ��� � s), which allow the
full parallelism being exploited. The ��� � concept allows up to 256 � � ���

instructions in a lookup table inside the � � � � �
� � being controlled by
96 bits. These are triggered by a special class of 16 bit instructions, stored
in the normal program memory. The �� � lookup table can be a ���	 (for
prototype chips), � � 	 , a synthesized netlist or a combination of them. The
� � � �

instruction set is very efficient with regard to code size, but the ir-
regular instruction set and the data path are not convenient compiler targets.
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3.3 Proposed architecture

The � � � �
architecture, treated in the previous section, exploits, among others,

the fact that different parts of the application require different amounts of paral-
lelism. In the more control dominated (sequential) parts, the instruction set is not
burdened with the control of the complete parallelism offered by the data path,
thereby saving program memory. The performance on the inner DSP loops is
obtained at the cost of wide instructions ( �� � s). In this section, we will refine
this idea by introducing a reconfigurable instruction decoder and a method for
run-time configuring the instruction set based on the performance required in-
dividually in each of the inner �
� � loops [54]. Furthermore, by an appropriate
modeling of the resulting instruction set, the approach is supported by any conven-
tional resource-constrained (e.g. list) scheduling in order to exploit the parallelism
offered by the instruction set.

Figure 3.10 and Figure 3.11 depict the relevant data path elements and the in-
struction decoder respectively. The communication and the register infrastructure
is not shown since they are beyond the scope of this discussion. The purpose of the
instruction decoder is to efficiently control the (possibly large) number of func-
tional units in the data path. An instruction word consists of a header followed by
a number of issue slots, e.g. IS1, IS2, ... in Figure 3.10. One issue slot controls the
execution of an operation on a functional unit. The header bits control the demul-
tiplexers at each of the issue slots, so they determine which exact functional unit is
controlled by a certain issue slot. Issue slot + is connected (via the demultiplexer)
to a limited cluster � � � of functional units in order to restrain the area and delay
complexity and to maintain scalability of the architecture. Two or more clusters
may overlap to ensure sufficient flexibility in configuring the instruction set. In the
example architecture in Figure 3.10, each issue slot is connected to 8 functional
units. The demultiplexer accounts for 200 gates. In order to restrict the number
of header bits, the control of the demultiplexer associated with slot + is limited to
a subset � � �  of the available functional units in � � � . This subset is determined
by the configuration of the instruction decoder, and is a way of tuning the instruc-
tion set to the application. In the example architecture in Figure 3.10, each issue
slot controls, depending on the configuration, any 4 out of the 8 functional units
connected to the issue slot. In the example instruction decoder in Figure 3.11, the
second stage decoder (60 gates) holds this configuration and expands the (4x) 2
bits from the first decode stage to the (4x) 3 bits to control the demultiplexer. The
first decode stage generates these (4x) 2 bits from the 5 header bits in the example,
according to the reconfiguration look-up table. In the example, this look-up table
has a cost of about 600 gates. Each decode stage corresponds to a pipeline stage.
The first and most complex decode stage is optional to allow trade-off between
the instruction width and the decoding delay.
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Chapter 4

Static Resource Models of
Instruction Sets

4.1 Introduction

The combined issues of performance requirements for meeting real-time con-
straints on the one hand, and code size requirements on the other hand, have
caused the instruction sets to be highly encoded and to exhibit an irregular struc-
ture. The main issue introduced by an irregular instruction set is the issue of phase
coupling: on one hand, if instruction selection is performed prior to scheduling,
the optimal schedule can easily be eliminated as a result of the choices. On the
other hand, if scheduling is performed first, the available instructions may not
be able to implement the schedule. Traditional methods perform these tasks in
different phases, thereby yielding inferior schedules.

In this chapter, we present a new approach that eliminates the need for ex-
plicit instruction selection by transferring the constraints from the instruction set
to static resource constraints. All resulting schedules are then guaranteed to cor-
respond to a valid implementation.

The outline of this chapter is as follows. Section 4.2 discusses the related work
in instruction selection and phase coupling in code generation. Section 4.3 gives
the definition of static resource model and the related preliminaries of convex hull
and Section 4.4 presents the problem statement and our approach. In Section
4.5 we show the construction of the static resource model for both orthogonal
instruction sets and more general cases. Section 4.6 presents the experimental
results for a variety of instruction set architectures.
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4.2 Related work

Related work in code selection and phase coupling varies a lot and depends heav-
ily on the target architecture. Many code selection approaches for application
specific processors originate from code selection for general purpose processors.
Phase coupling problem for these processors is focused for generating efficient
code. Section 4.2.1 reviews tree covering techniques exploited in general purpose
processors and the adaptations for �
� ��� and ��� ����� . Section 4.2.2 discusses the
phase coupling in code generation for these processors and Section 4.2.3 reviews
the approaches for solving the phase coupling problem statically.

4.2.1 Tree covering techniques for instruction selection

The phase of instruction selection has received a lot of attention in the software
compiler community. During instruction selection, the operations in the algorith-
mic model are bound to register transfers or partial instructions, supported by the
target processor’s instruction set. Traditional compilers use the template pattern
base to represent the target processor, which essentially enumerates the differ-
ent partial instructions available in the instruction set. Each partial instruction is
represented as a pattern, usually a data flow tree ( ��� � ), which is expressed by
means of the intermediate representation (

� � ) of the algorithm. In this pattern,
nodes correspond to variables, constants, and operations, while edges denote data
dependencies. It has been shown that instruction selection is an � � -complete
problem for

� � s that take the form of a directed acyclic graph [31]. However,
optimal vertical code can be generated in polynomial time, when the following
conditions are satisfied:

1. the intermediate representation of the algorithm is an expression tree;

2. the template pattern base is restricted to contain only tree patterns, i.e. it
can be represented as a regular tree grammar ( � � 
 );

3. the processor has a homogeneous register structure, in which all the registers
are interchangeable.

Several code-selector generators are based on a stepwise partitioning of the
instruction selection problem, using dynamic programming. It is assumed that
conditions 1) and 2) are satisfied. Tree pattern matching is done in a bottom-up
transversal of the subject tree in [2]. For each node, the method computes the min-
imal cost to cover the subtrees rooted at that node. During the top-down transver-
sal of the subject tree, the tree cover is finally found, by determining the minimum
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cost at the tree’s root node. A number of tools are available for automatic genera-
tion of tree pattern matchers from instruction set grammar specifications, such as
Twig [1], Beg [24], Iburg [29] and Olive [1]. Since several �
� � s have special reg-
isters which are used for certain functional units, dynamic programming is also
extended to target heterogeneous register structures.

�
�
�

[27] is based on the
hardware description language � 	 �

and the machine specification is transformed
to an Iburg specification. In [7], the data flow graphs ( ����� s) are pruned to be-
come data flow trees ( ��� � s), which satisfy the � � � criterion and code selectors
are generated by the code selector generator Olive.

4.2.2 Phase coupling in code generation

Besides instruction selection, the task of machine code generation comprises reg-
ister allocation and instruction scheduling. Traditionally, these phases, each of
which is an NP-hard optimization problem in itself, are solved sequentially and
heuristically. However, there is a cyclic dependence, since each of the three phases
may impose possibly unnecessary and obstructive restrictions on the remaining
ones. All these are phase coupling problems in embedded code generation. Early
techniques of data routing incorporate register allocation for distributed register
files and instruction scheduling [64, 36, 78].

In [6], the tree pattern matching technique has been coupled with register al-
location and scheduling for a family of �
� � s from Texas Instruments. Later,
additional heuristics for handling data flow graphs ( ����� s) are presented in [7], in
which the ��� � s are pruned to become ��� � s in order to provide faster instruction
selection. An improved method without pruning based on simulated annealing
has been described in [45]. Mutation scheduling [55] is another approach to con-
sidering phase coupling, where algebraic transformations are exploited in order
to explore alternative instruction set mappings. A constraint logic programming
technique for �
� � s with irregular architectures has been presented in [12]. In that
approach, all binding decisions are delayed until they are really required, which
yields a maximum degree of freedom in code generation. However, this is at the
expense of high compilation time.

Another approach for instruction selection is based on constructing graphs
which include the complete information of the architecture. In CHESS [77], the
target processor is described in the � 	 �

language[27] and is translated into an
Instruction-Set-Graph (

� � � ), which models connectivity, encoding restrictions
and structural hazards. Instruction selection covers the control-data flow graph
with partial instructions (bundles) by searching valid paths in the

� � � . All these
methods add a complex step to the compiler chain and eliminate potentially inter-
esting solutions from the schedule and register binding search spaces.

Exact approaches for code generation are described in the form of constraints
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(generally linear equations and inequalities). The complete solution space is ex-
plored while all constraints are considered simultaneously, leading to a complete
phase integration. The approach in [47] performed instruction scheduling based
on Integer Programming (

���
) approach. Code selection and register allocation

are performed in advance, based on Iburg generated code selectors. Scheduling
is delayed. Complete integration is given in [80, 32]. Wilson’s approach [80]
leads to very large runtime due to large

���
models. The approach of Gebotys

describes constraints based on Horn clauses [32]. This can be mapped to Linear
Programming (

� �
) problems. However, only restricted classes of architectures

can be handled efficiently by these approaches. Architectures comprising hetero-
geneous register files typically lead to an explosion of generated models. In [35],
a covering approach for ����� s for finding minimum set of ( � � ���

) instructions is
specified. The approach is based on binate covering. Detailed register allocation
is performed in a post processing phase.

4.2.3 Solving phase coupling problem statically

A completely different approach to tackle the code generation problem is to ex-
ploit the instruction set constraints statically. State diagrams or Finite State Au-
tomata ( � ��� ) are used to represent the set of all legal instruction schedules for
a processor [11, 58]. They provide the advantage of space and time efficiency.
However, they are not amenable to certain advanced scheduling techniques, such
as iterative modulo scheduling [60] and mutation scheduling [55]. The concept
of reservation tables is used to detect conflicts for scheduling. Examples of com-
pilers that adopt this approach include the Multiflow Trace Scheduling Compiler
[49] and the Trimaran (Elcor) Compiler [34]. Eisenbeis [23] formalized the con-
flicts among functional units within one issue slot by using reservation tables for
� � ���

architectures, such as the Trimedia processor. Timmer et al. [73] discuss
the modeling of instruction set constraints together with resource constraints for
instruction scheduling, but the assumption that all the instruction set constraints
can be transferred to resource constraints targets mostly instruction sets with a
structure associated with so called Issue-Slot machines. The virtue of these or-
thogonal instruction sets, like those of the � � ���

paradigm [61], is that they al-
low to a large extent the modeling of the instruction set constraints by means of
a model like [23, 73], or a static resource model. These models offer the sched-
uler more opportunity to satisfy the timing and resource constraints than with the
use of an explicit instruction selection step. The scheduler rather than the instruc-
tion selector is considered the designated place for handling these constraints.
The disadvantage of the orthogonal processors (especially � � ���

processors) is
the inherent problem of code size due to their associated large instruction word
widths.
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One of the code generation approaches based on constraint analysis is mo-
tivated by the fact that the irregularity of the architectures of ��� ��� s and �
� � s
and the timing objectives of certain tasks to be implemented on those processors
can be represented as constraints and phase coupling can be performed by pruning
the search space defined by those constrains. In this way, wrong decisions are pre-
vented by checking whether it leads to collisions of the constraints. In [53], data
flows are expressed as precedence constraints. Latencies and initiation intervals
are transferred to timing constraints. Register files are constrained by their ca-
pacities, and functional resources are associated with operation types. Constraint
analysis is the kernel idea to combine all those constraints. Resource constraints
are translated into precedence constraints. Thus when one decision is made, its
impact on the whole search space can be assessed.

The focus of this chapter is on replacing the instruction set constraints of
highly encoded instruction sets by a static resource model, allowing the use of
code size efficient processors in combination with efficient compilation tools. Our
static resource model is not restricted to issue slot tables with fixed bit-width for
each issue slot, thus it can deal with more flexible encodings. In addition, the pro-
cedure of constructing a static resource model also provides useful information
for instruction set design.

4.3 Definitions

In this section, we introduce the preliminaries in the computational geometry field
and the basic concept of the static resource model.

An instruction is a multi-set of operations which can be executed in atomically.
For an operation ��� in an instruction

�
, we denote the number of times that it

appears in
�

as ��� � ��� � . If for two instructions
���

and
���

, �	��
 � ��� � is always at most
equal to ���� � ��� � for each operation ��� , we say that instruction

���
is contained in

instruction
���

. For a set of instructions, if instruction
�

always contains the other
instructions, then we say

�
is the maximum instruction. In this thesis, we consider

instruction sets (
� � ) where for each instruction all contained instructions are also

in
� � . We call these instruction sets prefix closed.
Our approach is motivated by the observation that both resource constraints

and instruction set constraints can be expressed as inequalities. For example, if an
architecture contains two �
��	 s and each ���
	 can be used as an adder or a sub-
tractor, then the resource constraints can be expressed as the following inequality:
� � � � � � � � . Any schedule satisfying at any time the above inequality indi-
cates a valid resource usage. Similarly, if an instruction set contains instructions� . 0 0 � . 0 0�� , � . 0 0 � �,��/�� and

� �,��/�� �,� /�� , the operation usage can be expressed as an
inequality: � � . 0 0 � ��� � �,� /�� � � , assuming any subinstruction is also a valid
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instruction.
In a processor architecture, a functional resource can be used in different ways.

E.g., a functional resource ���
	 can execute an operation add or a subtract, etc.
For reasons of complexity, we do not wish to enumerate all possible uses of a
functional resource in an instruction set. Therefore, we associate multiple opera-
tions using the same functional resource with one operation type. We denote the
set of operation types with � . Operation types are used consistently in the whole
thesis.

Definition 4.1 (Static Resource Model) A Static Resource Model ( � � � ) is de-
fined by:

� a set of resources R,

� a set of operation types T,

� the number of instances of each resource " � � , denoted by #r, and

� a function that associates each operation type with a multiset of resources
in � that it needs

In general, operation types are associated with axes in a multi-dimensional
space �

�
, where 0 is the dimension corresponding to the number of operation

types, and instructions can be geometrically represented as points in this opera-
tion type space. An example is depicted in Figure 4.1 (b). Figure 4.1 (a) gives
an instruction set

� � using three operation types. Only the maximum instruc-
tions are listed in

� � ; instructions that are contained in other instructions are not
explicitly represented. We will do so throughout this thesis. Since the instruc-
tion set uses three operation types, the operation type space is 3-dimensional.
As mentioned, all instructions correspond to points in this space. Instruction��� � � . 0 0 � . 0 0 � � � � � ��� +�� � � , for example, is drawn as point � � with coordinate
values

��� � . 0 0 � , � � � � � � � and
��� � ��� +�� � � . Because we assume prefix closedness of

instruction set, the instruction set corresponds to a well-defined, closed subspace
of the operation type space. It is our aim to capture this subspace spanned by the
instructions via inequalities. Inequality � � � � � � � � � ��� +�� � � � � , for example,
is one of the inequalities needed to capture this subspace. Inequalities can sub-
sequently be translated to virtual resources. Some of the inequalities are directly
related to functional resource constraints. Others result in additional restrictions
on parallelism. In this thesis, we call the latter one “extra virtual resources”. In
general, deriving the inequalities and the resulting virtual resources for an instruc-
tion set can be perceived as a convex hull problem [10] [57]. Here we give some
preliminaries of the convex hull problem.
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Figure 4.1: Instructions expressed as points in the operation type space

Definition 4.2 Given a set � ����� � � ��� � ����� � � ��� , where � � � �
� � � ��+ � - ,

�
is called an affine combination of � if

�
can be expressed as a linear combination

of � :

�� �
��
�
	 ��� �

�� ��� � � � �
�
� � � + � - . ( 0

��
�	 ��� �

� �
(4.1)

A convex combination of � is an affine combination such that each � � is non-
negative. A proper convex combination is one where each � � is positive.

Definition 4.3 A subset � of a 0 -dimensional space �
�

is called a convex set if
and only if every convex combination of points in � is also in � . The convex hull
of the set of points in � , denoted as conv(X), is the set of all convex combinations
of � ; it is the smallest convex set containing � .

Consider again Figure 4.1. The set of points bounded by the planes � � � � � ,
. 0 0 � � , ��� +�� � � � and the other planes depicted constitute the convex hull of
the original instruction set

� � . That is, it is the smallest convex set containing all
the instructions. (Recall that all subinstructions of the listed instructions are also
included in this instruction set.) Above, it has already been explained that the
depicted subspace corresponds to the instruction set. Thus, in this example, the
convex hull of all instructions captures precisely all the instructions in the instruc-
tion set. Moreover, it does not contain a combination of operation types that is
not a valid instruction. This property turns out to be crucial in translating instruc-
tion set constraints to resource constraints. Later in this chapter, an example is
given showing that not all instruction sets have the property that they are precisely
captured by their convex hull.



58 CHAPTER 4. STATIC RESOURCE MODELS OF INSTRUCTION SETS

As the example discussed so far already suggests, a convex set can be de-
scribed by means of its boundary. In general, a convex set is determined by a set of
halfspaces. A halfspace is the set of all points below or above some plane. A halfs-
pace can be seen as a constraint on the elements of the set being described and it is
defined via an inequality. Such an inequality describes part of the boundary of the
convex set. Consider the example of Figure 4.1 again. The halfspace containing
all points below the plane through points � ) , � � , � � � and � � � corresponds to in-
equality � � � � � ��� � � ��� +�� � � � � . A convex set can be seen as an intersection of a
set of halfspaces. The convex set in the example of Figure 4.1 is the intersection of
nine halfspaces, namely � � . 0 0 ��� � , � � � � � ��� � , � � ��� +�� � ��� � , � � . 0 0 ��� � ,
� � � � � ��� � , � � ��� +�� � ��� � , � � . 0 0 � � � � � � � ��� � , � � � � � � � � � ��� +�� � � � � ,
and � � . 0 0 � � � � � � � � � � � ��� +�� � ��� �

. The nine inequalities define the bound-
ary of the convex set, and thus of the convex hull of the given instruction set.
An interesting observation is that any set defined as the intersection of a set of
halfspaces is necessarily convex.

Given a set of halfspaces � , halfspace � � � is non-redundant if there
is some point included in every halfsapce in ��� � � � but not included in � .
Thus, a non-redundant halfspace really restricts the convex set. The notion of
non-redundancy is useful in determining the minimal set of inequalities describ-
ing the convex set � . The minimal halfspace representation of the convex hull of
some set � is denoted by � � � � .

It is also possible to describe a convex hull via its extreme points. The convex
hull in Figure 4.1, for example, can be described via the set � � � � � ��� � � � � ,
� � � � � � � � � � , ����� , � ��� � � � � � � ��� � . Given a convex set � , a point in � is an
extreme point if and only if it is not a p "%���#&," convex combination of any two
points in � . The notation � � � � denotes the vertex description of the convex hull
of some set � , consisting the set of extreme points.

There are two closely related computational problems concerning the two de-
scriptions of the convex hull of a set � :

� The vertex enumeration problem is to compute � � � � from � � � � .
� The convex hull problem is to compute � � � � from � � � � .
In code generation for ��� ��� s and �
� � s, deriving virtual resources from a

given instruction set can be perceived as a variant of the convex hull problem,
since the instructions form the vertex description and the virtual resources form
the non-redundant halfspace description. On the other hand, in the instruction set
design space exploration, one can optimize the instruction set by modifying the
� � 	 to meet the real-time constraints, and subsequently calculating the corre-
sponding instructions. This can be perceived as a variant of the vertex enumera-
tion problem.
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The precise complexity of the two problems is an interesting problem. The
two problems are dual and are therefore of the same complexity. Two excellent
references on the complexity of convex-hull related problems are [30, 10]. Re-
call that 0 is the dimension of the space in which we are operating; let ( be the
number of inequalities in case of the vertex enumeration problem and the num-
ber of vertices in case of the convex hull problem. It is known that the problems
are efficiently solvable ( � � ( � ��� ( � ) for 0 � � � � � � . For the general case, there is
an algorithm of optimal worst-case complexity � � (�� ��� ��� � [17]. Thus, one could
say that for fixed dimension 0 , the complexity is polynomial. However, for high
dimensions, the degree of the polynomial tends to become large. In our applica-
tions, the dimension of the operation type space may become quite large, although
it remains to be seen how large it will be in practical examples. Fortunately, in
practice hardly any input to any of the two above problems ever causes the worst-
case complexity. The average complexity is usually much better [21]. The precise
performance depends on the particular implementation of the algorithms. For a
comparison of algorithms, the interested reader is referred to [10].

4.4 Problem statement and approach

In this section, we generalize the problem of constructing the � � 	 for a given
instruction set and present the convex hull approach for this problem.

Problem Definition 4.1 The general problem of instruction selection with � � �
can be defined as mapping a given instruction set to an � � � such that any sched-
ule for a �	��
 satisfying the resource constraints posed by the � � � corresponds
to a valid instruction selection.

inequalitiesequal ?
Y N

initial

new

instruction set
adaptation

resources
virtual

constraint
analysis

instruction set
operation−type

instruction set

profiling

Figure 4.2: Overview of the approach
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We propose a solution strategy depicted in Figure 4.2 based on expressing the
instruction set constraints as inequalities, like � � . 0 0 � ��� � �,� /�� � � in the ex-
ample in Section 4.3. We start from an initial instruction set

� � . It is followed
by a step called operation-type profiling, which calculates the number of times
operation types as well as their combinations appear in an instruction set. In this
way we enumerate all the potential extreme points of the instruction set in the
operation type space. We then search for an � � 	 by computing the convex hull,
i.e., the smallest convex set containing all the instructions in

� � . With the resulting
inequalities, we can obtain a new instruction set � � � by enumerating all the in-
structions allowed under those inequalities. The equivalence of the instruction set
constraints and the ��� 	 is verified by comparing the new instruction set � � � to
the initial instruction set

� � . The � � 	 itself is derived directly from the inequal-
ities, but is only accurate if the aforementioned test turns out positive. If � � �
contains combinations of operation types that do not correspond to an original
instruction in

� � , then the constraints obtained from the ��� 	 are not sufficiently
tight. Since the convex hull is the smallest convex set containing all the original
instructions, it even follows that it is impossible to capture the instruction set con-
straints via virtual resource constraints. The procedure is illustrated in Figure 4.2.
In case the � � 	 is not accurate, it can be profitable to adapt the instruction set
that it fits the � � 	 , because then all the advantages of the � � 	 approach can be
exploited.

4.5 Construction of the static resource model

In this section, we first illustrate the advantage of the ��� 	 approach in code
generation with a small ����� . It is especially suitable for a resource-constrained
scheduler. We compare the scheduling result with list scheduling and constraint
analysis for this ����� . The construction of the � � 	 for orthogonal instruction
sets is provided in Section 4.5.3 and the construction for general instruction sets
is discussed in Section 4.5.4 and 4.5.5.

4.5.1 Advantage of the static resource model

As we mentioned before, code generation for �� ��� cores makes it necessary to
recognize valid instructions in the ����� . This is usually performed by covering
the ����� with patterns, representing valid processor instructions, such as depicted
on the left hand side of Figure 4.3.

The main issue introduced by the highly encoded instruction set is the issue
of phase coupling: on one hand, if instruction selection is performed prior to
scheduling, the optimal schedule can easily be missed as the result of the choices
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Figure 4.3: Instruction selection prior to scheduling may yield inferior results

made during instruction selection. On the other hand, if scheduling is performed
first, the available instructions may not be able to meet the scheduling constraints.
Traditional methods perform the tasks in different phases, thereby yielding infe-
rior schedules. This is depicted in Figure 4.3. The ����� in Figure 4.3 (a) has
been covered with machine instructions, shown in Figure 4.3 (b). The associated
schedule (6 clock cycles) for this selection of instructions is given in Figure 4.3
(c). It is suboptimal because the covering decisions can not take into account
which instruction is more critical for the application.

SA = {shl, add}

MS = {mul, shl}

LM = {ld, mul}

add −> SA

shl −> MS, SA

mul −> LM, MS

ld −> LM

with virtual resources

(b) operations are associated

(a) virtual resources

LM
MS
SA

n0n1

2

3

4

5

1

t

(d) scheduling result for the transformed DFG

SA
LM
MS

n2 n3

SA LMn5 n6

SALM
MS

n4 n7

SA n8

n4 LM
MS

no

n1 n2 n3

n5 n6

n7

n8

LM

MS
SA

LM
MS

SA

SA LM

SA

SA

(c) transformed DFG

Figure 4.4: With a static resource model optimal results can be obtained



62 CHAPTER 4. STATIC RESOURCE MODELS OF INSTRUCTION SETS

The merit of the � � 	 of instruction sets is that by transferring the instruc-
tion set constraints to static resource constraints, explicit instruction selection is
avoided and the scheduler has the opportunity to generate an improved schedules
in terms of timing and register requirements.

We illustrate our procedure in Figure 4.4. Our initial instruction set is
�
� 0 � ��� � � ,�

� 0 � . 0 0 � , � � � � � . 0 0�� . There is no instruction available to execute operations � 0 and� � � together in the same cycle. This conflict can be modeled as a virtual resource
� � in Figure 4.4 (a) and operations � 0 and � � � will both compete for this virtual
resource. Similarly, � � and � � capture the conflicts implied by the missing in-
structions. The number of instances of each virtual resource is one. In addition,
each operation uses the virtual resources that it is associated with. For example,� � � uses the virtual resources � � and � � . The relationship between operations
and virtual resources is shown in Figure 4.4 (b). By relating the operations in
the original ����� to the virtual resources, a transformed ����� is obtained, shown
in Figure 4.4 (c). By applying the resulting ��� 	 of the instruction set to a re-
source constrained scheduler, we obtain an optimal schedule of 5 clock cycles, as
depicted in Figure 4.4 (d).

4.5.2 List scheduling and constraint analysis

The resource-constrained scheduling problem is known to be intractable. There-
fore, heuristic algorithms have been searched and used. One of the most popular
algorithms is list scheduling algorithm.

In list scheduling algorithm, given time step � , candidate operations are those
whose predecessors have already been scheduled in time steps

� ��� � , so that
the corresponding operations are completed at step � . The unfinished operations
are those that started at earlier cycles and whose execution is not finished at step
� . A � " + �!" + ��� � + � � of the operations is used in choosing among the candidate
operations, based on some heuristic urgency measure. A common priority list is
to label the vertexes with weights of their longest path to the sink and to rank them
in decreasing order. The most urgent operations are scheduled first.

However, this simple priority rule focuses only on the delays and doesn’t con-
sider the resource constraints. For large examples and complex resource con-
straints, this rule might be deceptive. Because virtual resources are used to repre-
sent instruction set constraints and normally there are more virtual resources than
functional resources, this chance is even higher. For example, in Figure 4.4 (c),
in the first clock cycle, the candidate operations for scheduling are ( � , ( � and( � . Since the � � � � value of ( � is smaller than that of ( � , the traditional list
scheduling would select node ( � after scheduling ( � and would yield a schedul-
ing result of 6 clock cycles. Notice that ( � uses more virtual resources that ( � . A
better schedule can be obtained by switching the priority to resource usages and
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selecting node ( � . In general it will be very difficult to determine the appropriate
priorities.
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−5
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011

Figure 4.5: Constraint analysis for the transformed DFG

Constraint analysis can better deal with the combination of data dependencies
and resource constraints as introduced in Chapter 2. The schedule search space is
represented by the distance matrix. Timing constraints can be expressed directly
in the distance matrix. Resource constraints are expressed as execution intervals
and they are translated into restrictions on timing. Since all the constraints, i.e.
data dependencies and resource constraints are stored in distance matrix and are
governed by certain rules, the implication of any decision will penetrate through
the whole search space. The scheduling decisions are depicted in Figure 4.5, to
be explained below.

Recall the rule in Section 2.3.2: If two operations have a resource conflict
and the distance between them causes them to be scheduled into the same clock
cycle, then the distance has to be increased by at least one clock cycle. This rule is
applied to the transformed ����� consistently and an optimal schedule is promised.
As we can see, nodes ( � and ( � have a resource conflict regarding virtual resource
� � . The distance from ( � to ( � calculated through path 1 in Figure 4.5 equals
0. Therefore a sequential edge with weight 1 is added from ( � to ( � . For the
same reason, the sequential edge from ( � to ( � is added after calculating path 2.
This sequential edge will cause the distance from ( � to ( � to be increased to 0 by
following path 3. Thus a sequential edge with weight 1 is added from ( � to ( � .
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Similarly, a sequential edge is added from ( � to (*) with yielding of path 4. This
affects path 5 and results in the sequential edge from node ( � to node ( � , which
will further affect path 6 and a sequential edge is added from node ( � to node ( � .
Finally the schedule is fixed.

4.5.3 Static resource model for orthogonal instruction sets

In Sections 4.4 and 4.5, we presented an approach for deriving an � � 	 for a given
instruction set by making use of inequalities. The basic idea is to generalize the
maximum usage of operation types in an instruction set by representing it as a set
of inequalities, and then transforming these inequalities into an ��� 	 . The desired
set of inequalities is derived from operation-type profiling. In this section, we
show the usage of this approach for orthogonal instruction sets. An orthogonal
instruction contains multiple slots for encoding multiple operations. Each slot
usually encodes one operation, and the execution of the operation does not depend
on the encoding of other slots. An example instruction set ����� is depicted in Figure
4.6 (a). The operation-type profiling is represented in the table in Figure 4.6 (b).
In the table, rows correspond to the individual instructions listed in Figure 4.6 (a),
and columns correspond to (combinations of) operation types. The numbers in
the table indicate how many times an operation type (combination of operation
types) is present in an instruction. For example, the operation type add, occurs
twice in instruction (1), and the operation types shift and mul together occur three
times in instruction (3). By looking at the largest frequency within each column,
the inequalities in Figure 4.6 (c) are derived. Each inequality corresponds to one
column. In general, for each combination of operation types � � � ��� � ��� ����� ����� � ,
we have one inequality:

� � ��� � ��� ����� � � � ������� � 	 ���� �����
� �
�
	 � ����

� � ��� ��� (4.2)

where � � ��� � � is the number of times an operation type appears in an instruc-
tion.

Based on the computation of the operation-type profiling, the instruction set
constraints have been replaced by a set of inequalities. This set often contains
redundancy, in the sense defined in Section 4.3; in the example of Figure 4.6 (c),
inequality (5) can be removed because it is implied by inequality (7). Removing
inequalities is advantageous because the complexity of the derived � � 	 is deter-
mined by the number of inequalities. From the remaining inequalities the � � 	 is
derived, shown in Figure 4.6 (d). For example, inequality (6) is translated to the
virtual resource � � � � � � � + � � � , which is abbreviated as � � , with three instances
available. For reasons of convenience, we represent a virtual resource by combin-
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(1) N(add) <= 2

(2) N(mul) <= 2

(3) N(shift) <= 2

(5) N(add)+N(shift) <= 4

(6) N(mul) + N(shift) <= 3

(4) N(add) + N(mul) <= 3

(7) N(add) + N(mul) + N(shift) <= 4

(1) [add, add, mul, shift]

(2) [add, add, shift, shift]

(3) [add, mul, mul, shift]

(4) [add, mul, shift, shift]

(a) instruction set IS (b) operation−type profiling

(c) inequalities

Figure 4.6: Example of an orthogonal instruction set with its SRM

ing the first letters of all those operation types which compose it. An operation
type “uses” all the resources from the � � 	 that it is contained in, e.g., . 0 0 uses � ,

� � and � � � at the same time. Note that virtual resource � corresponds to the
real functional resource implementing the . 0 0 operation, while virtual resources

� � and � � � have functionalities similar to functional resources but are not real
functional resources, explaining the term “virtual resource”.

The complexity of the proposed algorithm to compute an ��� 	 for a given in-
struction set is � � ��� ��� � , where � is the set of operation types introduced in Section
4.3.

A weakness of this method is that it does not always give an ��� 	 , even if an
instruction set has one. Furthermore, a resulting � � 	 often has redundancies, as
the above example illustrates. These redundancies are difficult to remove. The
method is also not well suited for handling complex encodings. Figure 4.7 shows
an example where methods from literature [23] and the one above fail to express
instruction set restrictions in an � � 	 -like manner. The difficulty is introduced by
the wordlength constraints on instructions. There are three adders and two mul-
tipliers in the data path. Each . 0 0 is encoded with 8 bits and each � � � with 10
bits. The total wordlength for an instruction is limited to 24 bits, thus all the possi-
ble combinations of operation types are:

� . 0 0 � . 0 0 � . 0 0�� , � � � � � . 0 0 � , � � � � � � � � � .
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The method above will produce the inequalities in Figure 4.7 (b). It contains one
redundant inequality: inequality (1). Furthermore inequality (3) allows the com-
binations of operation types such as

� . 0 0 � � � � � � � � � and
� . 0 0 � . 0 0 � � � � � , which

are in fact not valid because of the instruction encoding constraints. In contrast,
the method explained below generates the inequalities for the instruction set in
Figure 4.7 (c), which correctly models the instruction encoding limitation. Using
this new inequality the instruction set is verified to have an � � 	 .

* 10 bits+ 8 bits

[add, add, add]

[mul, mul]

[mul, add]

(2) N(mul) <= 2

(1) N(add) <= 3

(3) 2 N(add) + 3 N(mul) <= 6

(2) N(mul) <= 2

(1) N(add) <= 3

(3) N(add) + N(mul) <= 3

(a) an instruction set (b) the incorrect inequalities (c) the correct inequalities

Figure 4.7: Example of an non-orthogonal instruction set and the SRM

In the next subsection, we provide a general approach for the construction of
� � 	 s that improves the method of [86]. It solves all the mentioned problems and
it gives a valid � � 	 for the instruction set in Figure 4.7 (a).

4.5.4 Static resource model in the general case

In order to find a method that produces a valid � � 	 for a broader class of instruc-
tion sets, we observe the following restriction on equation 4.2 in the approach in
Section 4.5.3: The inequalities do not have weights on the left hand side for each
operation type. Assume � � � in Figure 4.8 (a) is the full instruction set of a certain
� � ���

architecture, while ����� in Figure 4.8 (b) is a similar but smaller instruction
set. Note that instruction set � � � is the one of Figure 4.6. The previous elementary
method will generate the same � � 	 for the two instruction sets. Because � ��� is
smaller than � � � , this ��� 	 is not accurate for ����� . However, by adding inequality
(6’) to the set of inequalities in Figure 4.8 (d), we solve the problem posed in the
previous subsection: Instruction set � ��� now has a valid � � 	 , different from the
� � 	 corresponding to ��� � .

If the operation types are associated with the axes in a multi-dimensional space
and the instructions are represented as points in this operation type space geomet-
rically, then the inequalities derived for the instruction set can be perceived as
boundaries enclosing those points and the problem is transformed into a convex
hull problem.
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The instruction sets � � � and � � � and their convex hulls are illustrated in Fig-
ure 4.8 (a) and (b). In Figure 4.8 (c), we obtain the same set of inequalities as
in Figure 4.6, which in Figure 4.8 (e) leads to the same � � 	 as in Figure 4.6.
Notice that the algorithms used in computational geometry tools, e.g. the cdd [16]
package, already omit the redundant inequality (5) in Figure 4.6 (c). Because the
last instruction in � � � is not valid for � ��� , points � � � and � � � are not present in
Figure 4.8 (b), and the convex hull and the set of inequalities in Figure 4.8 (d) are
slightly different from � � � . Notice that inequality (6’), � � � � � ��� � � � ��� +�� � ��� �

,
is generated automatically with a factor greater than one for � � ��� +�� � � . Because
of this weight, inequality (3) becomes redundant, which means virtual resource �
is not required any more. Also notice that for the same reason, the ��� +�� � operation
uses virtual resource � � twice as is reflected in the � � 	 of Figure 4.8 (f).

The general problem of constructing the � � 	 for an instruction set
� � can be

formalized as follows: given a set of points (instructions) in the 0 -dimensional
operation type space, determine the convex hull � ����� � � ��� expressed as a set of �
linear inequalities. This yields the form:

$ � ( � � � � � � � �� �
� �� �

�
/�� (4.3)

where 0 � �
�

�
, � � � ��� �

and
�
/ � � �

.
It remains to determine how to precisely compute (4.3) for a given

� � . The
basic idea is to use a standard convex hull algorithm applied to the extreme points
in the

� � . Note that we could simply apply such an algorithm to the entire in-
struction set without influencing the result. However, recall from Section 4.3 that
the complexity of the convex hull problem depends on the number of points ( in
the set of which the convex hull needs to be computed. Thus, the convex hull
computation can be sped up by minimizing the input to the algorithm. Because
we assume prefix closedness of instruction sets, any subinstruction is also a valid
instruction. Although a subinstruction is not explicitly listed in the given example
instruction sets, it is quite possible that it is an extreme point of a convex hull.
For example, the four largest instructions in ��� � can be drawn as points � � , � 	 , � �
and � � � in Figure 4.8 (a). These four points are not sufficient to build � ����� � ������� .
Point � � , for example, represents a subinstruction

� . 0 0 � . 0 0�� , which is obviously
an extreme point for this convex hull. In order to construct the complete convex
hull, we have to find all the extreme points in the space, which is as complex as
the convex hull problem itself. A compromise between using the entire instruc-
tion set or only its extreme points for the convex hull computation follows from
the following observation. As we can see in the example, extreme point � � with
coordinates � � � ��� � � is the projection of point � 	 with coordinates � � � ��� ��� on the
plane 
��� ��� � � . Any point between them has no contribution to the convex hull,
meaning it is redundant. From this intuition, we can simply calculate the points
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Figure 4.8: SRMs created from convex hulls for ��� � and � � �
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projected from the maximum instructions onto the planes with dimensions 0 � �
,

0 � � , ����� , 1 obtained by assuming 1, 2, ����� , 0 � �
coordinates to be zero re-

spectively. The complexity of this projection in the worst case is � � - � 	 � , where- is the number of maximal instructions and � is the number of operation types
appearing maximally in one such maximal instruction. Of course, this approach
might still result in quite a number of non-extreme points. However, we do not
think that this will cause any problems in the convex hull computations. If nec-
essary, the input to the convex hull computation may be further reduced using the
techniques explained in [30].

4.5.5 Deriving resources

So far, we have explained by means of examples how instruction set constraints
can be captured in an � � 	 based on an approach computing the convex hull of
the instruction set. In this subsection, we give a theorem formulating a necessary
and sufficient condition for verifying whether an instruction set has an � � 	 . The
argument showing that the condition is sufficient includes a transformation from
the inequalities describing the convex hull of the instruction set to an � � 	 . The
basic idea of the theorem is that the convex hull of an instruction set defines a new
instruction set consisting of all the integer points in the convex hull. If this new
instruction set is equal to the original instruction set, then the convex hull provides
the basis for an � � 	 of the original instruction set because it captures precisely
all the instruction set constraints. If the new instruction set contains integer points
that are not valid instructions in the original set, then the convex hull does not
provide an appropriate � � 	 because the constraints are not sufficiently tight.

Theorem 4.1 Let � � be an instruction set. If � ��� is the set of all the integer
points contained in � ����� � � � � , then � � has an � � � iff � � � equals ��� .

We prove the sufficiency of the condition in this theorem by giving the follow-
ing � � 	 . Recall Definition 4.1 introducing the notion of an ��� 	 and equation
(4.3) that describes the convex hull of an instruction set in terms of inequalities.
We need to define three aspects:

� the set of virtual resources � of the � � 	 contains all the sets of operation
types corresponding to an inequality in the convex hull description of (4.3);

� each operation type needs � instances of all the virtual resources that it is
contained in, where � is the weight of the operation type in the inequality
in (4.3) corresponding to the virtual resource;

� the number of instances of a resource equals the bound in the corresponding
inequality in (4.3).
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To clarify this construction, consider the example instruction set � ��� of Figure
4.8 (b). Figure 4.8 (d) gives the inequalities describing the convex hull of � � � .
The convex hull consists of five inequalities, which means that the derived ��� 	
has five virtual resources. Inequality (4), for example, corresponds to virtual re-
source � . 0 0 � � � � � , as before abbreviated ��� . Inequalities (1), (2), (6 � ) and (7)
correspond to virtual resources � , � , � � and �
� � , respectively. The number
of instances of resource ��� is determined by the right hand side of inequality
(4), being 3. The other four resources have 2, 2, 4 and 4 instances, respectively.
Finally, operation type � ��� uses one ��� resource, because 1 is the weight of
� ��� in inequality (4); it further uses one � resource, one � � resource and one
��� � resource. Operation type �

� �
uses one � , one �
� and one �
� � resource;


��� ��� uses two � � resources and one �
� � resource. Figure 4.8 (f) summarizes
the � � 	 .

It still needs to be shown that the condition in the theorem that � � � equals
� � is

sufficient to guarantee that the � � 	 defined above is an appropriate representation
of the instruction set constraints of

� � . The construction of the � � 	 guarantees
that a schedule of all the operations in a ����� constrained by the � � 	 satisfies
all the inequalities describing the convex hull of

� � . Recall that � � � contains
exactly all the integer points satisfying these inequalities. Thus, if � � � equals� � , the inequalities only allow valid instructions which means that any schedule
constrained via the above � � 	 satisfies all instruction set constraints. Thus,

� �
has an � � 	 , namely the one provided above.

As an example consider again instruction set ����� of Figure 4.8 (b). The in-
equalities in Figure 4.8 (d) precisely capture all these instructions, i.e., they do
not allow any integer solutions that are not instructions in � ��� . Thus, we conclude
that � � � has an � � 	 . Figure 4.8 (f) provides an ��� 	 , which is constructed as
explained above.

The necessity of the condition that � � � equals
� � in the above theorem im-

mediately follows from the following fact: The convex hull of a set of points is
the smallest convex set containing all these points (Definition 4). In other words,
� � � is the smallest set of integer points containing all the instructions in

� � that
can be described by inequalities of the form given in (4.3). Thus, if � � � contains
a point that is not an element of

� � , then it is impossible to describe
� � via such

inequalities. Since there is a one-to-one correspondence between inequalities and
� � 	 s,

� � cannot have an ��� 	 .
To illustrate that there are instruction sets without an ��� 	 , consider the ex-

ample in Figure 4.9. It gives an instruction set, the inequalities describing its con-
vex hull, and the � � 	 that can be derived from these inequalities following the
above construction. The inequalities allow instructions

� . 0 0 � . 0 0 � . 0 0 � �,� /�� �,��/�� ,� . 0 0 � . 0 0 � . 0 0 � $ � � � , � . 0 0 � �,� /�� �,� /�� $ � � � , � . 0 0 � . 0 0 � �,� /�� $ � � � , � . 0 0 � $ � ��� $ � � �
plus all their subinstructions. Thus, unfortunately, the inequalities allow instruc-
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Figure 4.9: An instruction set having no SRM

tion
� . 0 0 � . 0 0 � � � /�� $ � � � that is not part of the initial instruction set; it is depicted

as point p9 in Figure 4.9 (a). As a result of the above theorem, we may conclude
that the initial instruction set has no � � 	 . Point p9 is part of the plane through
points p2, p6, p7 and p8. Thus, it is straightforward to verify that we cannot
tighten the corresponding constraint expressed by inequality (4) in such a way
that it excludes point p9 but none of the other points that do correspond to valid
instructions. Although this is a negative result, it provides us useful information
for instruction set design. If we could extend the initial instruction set with in-
struction

� . 0 0 � . 0 0 � � � /�� $ � � � , the resulting instruction set is guaranteed to have
an � � 	 , which implies all the advantages discussed in this chapter.

Note that for certain important classes of instruction sets, it is always possible
to derive an � � 	 using our method. One such class is the class of � � ���

instruc-
tion sets, which serve as the interface for � � ���

architectures that are used quite
often in media processing. As a final remark, our method is a generalization of
the methods presented in [23], [73], and [84].

4.6 Experimental results

In this section, we provide several experiments on constructing � � 	 s for instruc-
tion sets and applying � � 	 s to constraint analysis. The construction of the � � 	
and the application of the � � 	 to constraint analysis are automated. The first
and second example show that our method can deal with complex instructions in
�
� � s and ��� ��� s. The third experiment proves that the ��� 	 approach can be
used to evaluate the restrictiveness of an instruction set. This provides quite use-
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ful information for instruction set design. Loop folding can be applied efficiently
with the � � 	 approach, which is exemplified by the fourth example. Finally,
the � � 	 s for the reconfigurable instruction set architecture proposed in Chapter
3 can be obtained and tuned efficiently, which will yield a fast method for archi-
tecture exploration. All the experiments are performed on Pentium IV processor
running at 1.6 GHz.

4.6.1 Complex instructions in DSPs and ASIPs

Often in an instruction set for a � � ���
architecture, operation types are repre-

sented by a reservation table and are constrained by issue slots. In this case, ap-
proaches in [23] and [73] can translate the issue slot constraints to static resource
constraints. However, the instruction sets of �
� � s or ��� ��� s are designed with
many irregularities. For instance, the basic instructions for the ��	 � ����� � � ) are
provided in Table 4.1. Complex instructions

�
� � � �#. $�� , � � � � � �#. $�� , � � � � .�� . $�� are

also introduced to exploit the limited parallelism in the data path. Such complex
instruction constraints cannot be expressed as a reservation table, because not all
the combinations of the operation types are valid, e.g.,

� � � � � .��#. $�� is not a valid
complex instruction. Our methods are not hampered by those irregularities.

Table 4.1: Basic instructions in the ��	 � � � ��� � � ) processor

instruction implementation
LT T register := memory value

MPY P register := T register * memory value
PAC ACCU := P register

APAC ACCU := ACCU + P register
SACL memory cell := ACCU

The ��	 � ����� � � ) processor architecture is depicted in Figure 4.10 and all
the instructions of ��	 � ��� � � � ) are shown in Figure 4.11 (a). This instruction
set can be proved to have an � � 	 and it is shown in Figure 4.11 (b). We have
implemented

� � �
� � benchmarks [74] on the ��	 � ��� � � � ) processor and the
result is given in Table 4.2.

The second column shows the number of operations in each application. When
complex instructions are not provided, no instruction-level parallelism (

��� �
) can

be exploited. The scheduling result should be that the number of cycles equals
the number of operations in each application. The “integer

� �
” column shows the

number of instructions when
��� �

is exploited with complex instructions, which is
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Figure 4.10: TMS320C25 architecture

#SLM = 1, #SMP = 1, #SPA = 1 #SLMPA = 2

sacl −> SLM, SMP, SPA, SLMPA

apac −> SPA, SLMPA

pac −> SMP, SPA, SLMPA

mpy −> SLM, SMP, SLMPA

lt −> SLM, SLMPA

[lt]
[mpy]
[pac]

[sacl]
[apac]

[lt, pac]
[lt, apac]
[mpy, apac]

(a) (complex) instructions (b) SRM for this instruction set

Figure 4.11: TMS320C25 instructions and the corresponding SRM
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usually based on integer linear programming, an approach well-known to be time-
consuming. For the benchmarks in Table 4.2 the execution time for scheduling
with the “integer

� �
” method is in the order of seconds. Column “ � � 	 ” reports

the number of instructions by constructing the � � 	 first and applying the � � 	
in our resource-constraint-based scheduler FACTS. Since the number of complex
instructions is quite small, the runtime of constructing the � � 	 can be ignored.
The time reported is the time required to obtain a schedule. As we can see in all
examples, the ��� 	 approach can generate very compact code equivalent to the
optimal results in less than one second, which is very efficient. The � � 	 needs to
be constructed only once for an architecture and can be used for any application.
Moreover, the scheduling complexity is still linear with the number of nodes in
the application, since the function between operation types and virtual resources
is linear.

Table 4.2: Scheduling result of UTDSP benchmarks on TMS320C25 processor

benchmark
� � �

integer LP [47] SRM
cycle cycle t(ms)

fft 24 20 20 920
fir filter 5 5 5 10
iir filter 17 14 14 350
lattice filter 14 11 11 60
lms fir filter 7 6 6 10

Another popular �
� � is the Analog Devices’ � �
� � series. The Analog De-
vices’ � �
� � -21xx �
� � contains parallel data paths of �
�
	 , Multiplier / Ac-
cumulator and dual memory banks as depicted in Figure 4.12 (a). Because of the
code size consideration, a highly encoded instruction format with maximal 24 bits
is defined, which is depicted in Figure 4.12 (b).

In this encoding, parallelism in the data path is highly restricted. Since only
one arithmetic operation is allowed in each instruction, we group the operations
. � � , � � � and � . $ into one operation type . " + � � . As we can see, two loads can be
executed in parallel with one arithmetic operation, but they are limited to access-
ing dual memory banks

�
and � simultaneously and the loaded values can only

reside in � and � register group. We distinguish the dual memory loads from the
general load/store operation type and they are denoted as 0�� 0 and � � 0 respectively.
The other load/store operation type which can be executed in parallel with one
arithmetic operation type is denoted as � 0 � � and it can access any of the registers
in � , � or � group. The generated � � 	 is illustrated in Figure 4.12 (c).
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Figure 4.12: Data path and instruction format of ADSP-21xx

Table 4.3: Scheduling of dspstone benchmarks on ADSP-21xx

benchmark bash [12] ours
cycle t(s) cycle t(s)

complex multiply 6 1.11 6 0.01
complex update 9 1.76 9 0.03
iir filter 12 1.15 12 0.07
dot product 4 0.91 4 0.01
lattice filter 18 6.53 18 0.12

Using the corresponding � � 	 , we perform scheduling on a set of dspstone
benchmarks and compare the results with the work from [12], which is shown in
table 4.3. As we can see, we obtain the same scheduling results for all the bench-
marks as in the work of [12] but with much less time. This is mainly because
constraint analysis works faster than general schedulers. In addition, the � � 	 in
this example is quite small after grouping of some operations into operation types.
Mapping the operations in the ����� to the virtual resources will not increase the
runtime too much. The advantage of this approach is that once the � � 	 is built,
it is recognized as a set of resource constraints and all the constraints are perma-
nently satisfied during scheduling; thus we solve the phase coupling problem.
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4.6.2 Evaluating the restrictiveness of an instruction set

One of the merits of the � � 	 approach is that by performing instruction schedul-
ing for applications with different � � 	 s, one can directly see from the results how
restrictive an

� � is. The experiments below perform the scheduling and register
binding for benchmarks with the two instruction sets ��� � and � � � in Section Fig-
ure 4.8. Assume that the hardware resources are �
��	 , � 	 � and � � ��� � , each
with two instances available. Each resource has a delay of one clock cycle. Table
4.4 lists the results for ‘fdct’, ‘idct’, ‘ar’ for �� filter and ‘wdf’ for fifth-order
digital elliptical wave filter. The second and third column show the latency and
register requirements in each benchmark (one register file for allocating all the
values) assuming that all the given functional resources can be used freely in par-
allel. The fourth and fifth column give the result for � � � and the sixth and seventh
column for ����� . #in is the number of inequalities of the � � 	 , which corresponds
to the number of (virtual) resources.

Table 4.4: Scheduling and register binding results for two instructions

FS ��� � � � �
L RF � ���� � � ���� � ���� � � ����

fdct 13 12 16 12 21 14
idct 14 11 15 11 20 12
ar 10 6 11 7 14 8
wdlf 16 7 16 7 19 11
#in 3 6 4

From this table we can see that both the latency and register requirements,
when the functional resources can be used freely, are minimum for all the ex-
amples. Although using the same resources, � ��� is obviously more restrictive
than ��� � , since all the scheduling results are increased quite substantially. Regis-
ter requirements are also increased because when some operations are postponed
during scheduling in order to meet the instruction set constraints, the values they
consume have to be stored in registers for a longer time, which increases the reg-
ister pressure.

4.6.3 Loop folding with the SRM approach

� � ���
instruction sets have an � � 	 because of their orthogonal instruction for-

mat, such as the ��	 � ����� �	� � 
 architecture. The
�	� � 
 has two identical data

paths with four issue slots each. Each data path has 16 32-bit registers. Table 4.5
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shows part of the instructions supported by ��	 � � ��� �	� � 
 . � , � ,
�

and � refer
to four issue slots in one data path. Each issue slot contains one or more functional
units. They are listed in the first column. In an integer adder functional unit, arith-
metic operation . 0 0 , �,� / , as well as comparison greater than $ � � � � , comparison
less than $ � � � � can be executed. Data which are moved from one data path to
another are supported by � � � operation. Explanation for other operations can be
found in [71].

Table 4.5: TMS320C62x instruction set

L S D M
Integer adder add add add

sub sub sub
mov mov mov

cmpgt
cmplt

Logic and and
or or
not not

Shift shl
shr

Load/Store ld
st

Multiplier mpy

Using the convex hull approach, virtual resources can be created for this in-
struction set. We will show that the � � 	 s can be applied to software pipelining
easily, since they only provide static boundaries without modifying the scheduling
and register binding algorithms themselves. Table 4.6 shows the scheduling and
register binding results for dspstone benchmarks and table 4.7 shows these results
for � � 	 channel and speech codec algorithms. In Table 4.7, ‘convolution’ and
‘viterbi’ are the two basic blocks in the channel codec. ‘weight’ and ‘inverse’ are
two basic blocks for regular pulse excitation encoding, and‘reflect’ is the basic
block for linear predictive coding in speech codec.

In Table 4.6 and Table 4.7,
� � �

is the number of operations in each application.� �
is the minimal initiation interval calculated using our research tool FACTS with

the � � 	 obtained for the ��	 ������� �	� � 
 as input. The tool starts from an initial
initiation interval yielding a feasible solution. By reducing the initial value and
analyzing the feasibility iteratively, it finally obtains the minimum one. Column
	 � � gives the initiation interval estimate using virtual resources, which is based
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Table 4.6: Scheduling and register binding results for dspstone benchmarks

benchmark
� � �

II MII RF t(ms)
complex update 16 9 8 5 20
convolution 5 2 2 4 10
dot product 8 8 5 3 10
matrix 1x3 27 12 12 7 330
real update 6 6 4 2 10

the similar method of resource-constrained minimum initiation interval estimate.
This method is going to be explained in detail in Chapter 5 in this thesis. � �
reports the register requirements under

� �
. The last column gives the total runtime

including scheduling and register binding. The results show that our tool FACTS

can work with � � 	 s and obtain good results for software pipelining applied to
industrial algorithms in acceptable run times. The runtime for “viterbi” is large
compared to the others because FACTS is not optimized for handling large appli-
cations with many operations in the ��� � using more than one virtual resource.
These results indicate that the estimation method in Chapter 5 is quite accurate
and could therefore be used for quick architectural exploration.

Table 4.7: Scheduling and register binding results for GSM speech algorithms

benchmark
� � �

II MII RF t(ms)
invers 6 2 2 5 10
convol 14 5 5 8 20
reflect 19 7 7 6 170
weight 39 11 11 7 640
viterbi 55 19 19 10 15570

4.6.4 Reconfigurable instruction set processor architecture

In Chapter 3 we proposed a data path for a reconfigurable instruction set proces-
sor architecture with the corresponding instruction decoder. In this chapter, we
can see immediately the advantage of this architecture since the � � 	 s for differ-
ent instruction set configurations can be obtained efficiently through the approach
discussed in this chapter. We illustrate the application of � � 	 to this architec-
ture in the following example. Figure 4.13 originates from Figure 3.10. Some
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modifications are applied. The number of functional units is reduced to half for
reasons of convenience. The detailed connections from the instruction decoder to
the functional units are shown. The type of a functional unit can be selected from
the following set: �
��	 , � 	 � , � � � and � � � � .

FU8FU7FU6FU5FU4FU3FU2

IS1 IS2 IS3 IS4

12 12 12 12

ALU MUL SFT LDST ALU MUL SFT LDST

CTRL[0:1]

2
DMUX1

CTRL[2:3]

2
DMUX2

2
DMUX3

2

CTRL[4:5] CTRL[6:7]
DMUX4

FU1

Figure 4.13: Proposed data path

Each demultiplexer is connected to a set of four functional units and at most
2 bits are needed to control the selection of a functional unit. In the case of full
control, i.e. the demultiplexer selects all the functional units which are connected
to it, we group all the functional units for each issue slot and represent them in a
table, see Table 4.8.

Table 4.8: Issue slot table of reconfigurable instruction set with full control

������� � ������� � ���	����
 ��������

ALU MUL LDST ALU
MUL SFT ALU SFT
LDST ALU MUL SFT
MUL LDST SFT LDST

In order to reduce the instruction width, the control of each demultiplexer does
not fully cover the set of functional units. We assume two configurations: the de-
multiplexer selects the first two functional units of each set and the demultiplexer
selects the second two functional units of each set. We call the two cases “upper
half” and “lower half” respectively. For example, ��� 	 � � selects either � 	 �
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or � 	�� in “upper half” configuration. It selects either � 	�� or � 	�� in “lower
half” configuration. The obtained � � 	 s for “full”, “upper half” and “lower half”
configurations are given in Table 4.9. In this table, � � . � , � � � � , � � � � , or � � ���
represent the number of addition/subtraction, multiplication, load/store or shift
operations, which can be implemented on functional unit �
�
	 , � 	 � , � � � � or
� � � respectively.

Table 4.9: SRMs of full and half control reconfigurable instruction sets

$'� ( ��+ � �#" . � + � ( � � �
full N(a) � 2

N(m) � 2
N(l) � 2
N(s) � 2

N(a) + N(m) + N(l) + N(s) � 4
upper half N(l) � 1

N(s) � 2
N(m) � 1

N(a) + N(l) � 2
N(a) + N(l) + N(s) � 3

lower half N(a) � 2
N(l) � 1
N(s) � 1

N(a) + N(m) + N(l) + N(s) � 4

The scheduling results of the three configurations on several benchmarks are
shown in Table 4.10.

From this table, we can conclude that in general fully controlled reconfigurable
instruction set results in a smaller number of “extra virtual resources” (virtual re-
sources exclude functional resources), which is time efficient for scheduling and
register binding. Although it results in fast schedules for all the benchmarks, it
needs more bits to encode for each instruction, thus results in somewhat larger
code size. On the other hand, a half controlled reconfigurable instruction set pro-
duces more extra virtual resources than full controlled configuration, which will
result in possibly longer schedule length and cost more run time for scheduling
and register binding. Since code size depends on both the instruction width and
code length, we cannot give direct conclusion on the impact on the code size,
although we can already see that half of the examples have the same schedule
lengths for the three configurations. We estimate the code size based on the fol-
lowing assumption of the instruction format: assuming that in each issue slot there
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Table 4.10: Schedule length(cyc), code size(cs) and run time(t) for benchmarks
on “full”, “upper half” and “lower half” configurations

benchmark full upper half lower half
cyc cs t(ms) cyc cs t(ms) cyc cs t(ms)

complex
multiply 6 384 30 6 360 20 6 360 20
complex
update 7 448 40 7 420 70 7 420 50

dot
product 5 320 10 5 300 10 5 300 10
matrix 8 512 230 9 540 230 9 540 250

fft 10 640 70 10 600 100 10 600 60
iir 5 320 30 5 300 40 5 300 30

invers 7 448 0 7 420 0 7 420 0
convolu-

tion 5 320 10 7 420 50 5 300 40
reflect 13 832 80 13 780 120 13 780 80
weight
filter 18 1152 540 18 1080 790 18 1080 550

viterbi 12 768 680 16 960 1250 12 720 720

are three operand fields, two source operands and one destination operand. Each
operand field is encoded with 3 bits. The opcode field is encoded with 5 bits.
Depending on the configuration, one or two bits is used for the selection of the de-
multiplexer. From the reported code size, we can see that in most of the examples
code size is reduced in “upper half” and “lower half” configurations. It seems that
in this architecture the “lower half” configuration is slightly better than the “upper
half” configuration. Therefore we conclude that by carefully configuring the data
path and the instruction decoder, we can possibly gain both in performance and in
code size of a set of applications. This architecture template provides an efficient
solution to balance between the code size and processor performance. The ��� 	
can be efficiently used to assess the of control bits and connection on code size
and execution speed.
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4.7 Conclusions and discussions

In this chapter, we provide the method of static resource models for modeling
instruction set constraints. The phase coupling problem of instruction selection
and other code generation phases is relieved by modeling the instruction set con-
straints and integrate them with the resource constraints. This allows an efficient
compilation for certain irregularities in the instruction set and the data path, which
is important for retargetability. The main advantages of the � � 	 approach are the
following:

� Run time. The ��� 	 of a processor’s instruction set architecture has to be
computed only once. On the other hand, instruction selection has to be
performed for each basic block of the application. Consistency checking
[39] has to be performed for each operation in the basic block.

� Schedule freedom. The scheduler is not restricted by a specific instruction
selection phase and therefore has more opportunity to minimize the register
requirements.

� Handling of pipelined schedules. The scheduler also has the opportunity
to produce loop-pipelined schedules (also called loop folding or software
pipelining). In the �
� � world this is a must to exploit the instruction-level
parallelism.

� Any resource-constrained scheduler can be used without much adaptation.

Furthermore, the ��� 	 approach can be adapted for reconfigurable data path
and instruction set design easily since the design details are transferred to a set of
constraints which are visible and easily tunable by the designer.

The disadvantage is that the approach might be time-consuming for very irreg-
ular architectures since those architectures will yield large sets of virtual resource
constraints.



Chapter 5

Instruction Set Design with the SRM
Approach

5.1 Introduction

�� ��� s offer the possibility to exploit the characteristics of the application (-domain)
and thus gain considerable savings in silicon area, power consumption, and code
size. There are roughly three ways to tune an ��� ��� core to an application:

� By synthesizing an infrastructure of communication (busses) and storage
(registers) which is just sufficient for the application.

� By hardware acceleration [70]. The data path is upscaled by functional units
that perform course grain functions typical for the application. An example
is a butterfly unit in an � � � processor.

� By minimizing the width of the instructions required to control a given data
path [83]. One way is to encode frequently occurring (sequences of) op-
erations with short instruction words. Another possibility is to limit the
number of instructions by restricting the combinations of operations that
the data path can execute in parallel.

These ways can also be combined. Hardware acceleration potentially offers
the largest benefits on all accounts, especially for applications that contain much
regularity. It is also the most complex method for the designer because it re-
quires changes in the communication and storage hardware and the design of the
dedicated functional units every time a new application is embraced. The above
mentioned ways all have the same severe drawback: They imply the necessity
to “recognize” in the application those instructions to be supported in the tuned
instruction set.

83
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As we mentioned in the previous chapter, the � � 	 approach can be twisted
to obtain “minimal” instruction sets by restricting the set of combinations of op-
erations that the data path can execute in parallel. Instruction sets can be modeled
in terms of virtual resources, easily interpreted by classic schedulers accounting
for resource constraints. This yields an alternative machine model with virtual
resources, which allows efficient resource constrained compilation with well un-
derstood and widely available compilation tools, rather than the poorly performing
compilers based on instruction selection.

default
processor
architecture

performance
analysis feasible?

resources
additional
allocating bottleneck

identification

stop
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application

Figure 5.1: Design flow of ASICs

The ��� 	 approach also enables instruction set design (-space exploration)
with an equally well-understood and proved method used in the High-Level Syn-
thesis (

� � � ) of �� ��� s [8] for a long time. This method, illustrated in Figure
5.1, analyzes the time critical loops for shortages of processor resources required
to obtain the target schedule throughput. These shortages can be identified by
scheduling the loop and examining the load diagrams of the functional resources.
The load on critical resources is then relieved by allocating additional resources.
The potential use of this method for instruction set design is based on the obser-
vation that both real functional resources and virtual resources can be allocated
when considering the � � 	 model of an instruction set. The addition of virtual
resources results in an extension of the instruction set. We presume therefore
that the � � 	 view on an instruction set allows instruction set design in terms of
allocating resources just sufficient to efficiently execute the critical loops.

This chapter discusses the instruction set design problem by applying the ��� 	
approach proposed in previous chapter. Section 5.2 presents the problem defini-
tion and the approach. Section 5.3 discusses performance analysis and bottleneck
identification. Modification of the identified � � 	 bottleneck is discussed in Sec-
tion 5.4 and a case study is given in Section 5.5.
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5.2 Problem definition and approach

Usually the instruction set design process is performed independently from the
compiler. Thus it could happen that although a good processor architecture is
generated, it can not produce the desired performance for applications even if a
lot of effort is put on generating an efficient compiler. It is a challenge to de-
sign an instruction set for an �� ��� that can be encoded using a restricted number
of instruction bits, while still offering a sufficient degree of parallelism for criti-
cal functions in the target application. We consider the following instruction set
design problem.

Problem Definition 5.1 Given a set of time critical loop kernels with the cor-
responding throughput constraints and a target instruction width for the �	� ��� ,
design an instruction set and the corresponding � � � such that the throughput
constraints can be satisfied.

Noticing the similarity between the functional resources and the virtual re-
sources, we propose an optimization flow similar to the flow in Figure 5.1 for
allocating functional resources in high-level synthesis.

feasible?

bottleneck
identification

stopprocessor
architecture

modification

default IS & performance &
wordlength
analysis Y

N

IS & SRM

application

Figure 5.2: Design flow of instruction set for ASIPs

In this optimization flow, we start with a default instruction set and proces-
sor architecture. Subsequently, the performance on the critical loops is analyzed,
which is explained in more detail in the next section. If the performance is insuf-
ficient, we look for the responsible (virtual) resources in a step called bottleneck
identification. The � � 	 is subsequently modified by allocating additional in-
stances of these virtual resources. The essential difference between Figure 5.2 and
the method of the high-level synthesis flow in Figure 5.1 is that we also consider
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the instruction width as a criterion in the design process to evaluate the modifica-
tions applied to the ��� 	 .

5.3 Performance and bottleneck analysis

Similar to the high-level synthesis approach, performance analysis can be done
either fast or accurate. An accurate analysis is obtained by actually scheduling the
critical loops and examining the load diagrams. A load diagram is a diagram to
record the resource usages with respect to value lifetimes and program counter.
These load diagrams enable the designer to identify critical resources. A load dia-
gram example is shown in Figure 5.3. In this figure, the bottom x-axis corresponds
to the program counter, the top x-axis corresponds to the potential. Potential is es-
pecially useful for loops. Operations in different loop iterations can be allocated
in the same time slot and this time slot is annotated with potential. The column
axis shows the available resources. Potential with negative number is the initiation
section. Potential between dashed line and dotted line is loop prologue. Potential
within dotted lines is loop kernel and potential after dotted line is epilogue. This
figure shows that quite often the resources are heavily used in loop kernels. Al-
ternatively, the performance of the critical loops can be estimated in a fast way
by considering a well-known lower bound based on available (virtual) processor
resources, which is explained next.
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Figure 5.3: A load diagram

When applying software pipelining techniques to loop kernels, the initiation
interval (II) is an important criterion for measuring the performance. An

� �
is

the period between the start times of the execution of two successive loop-body
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iterations. The minimum initiation interval (MII) is the lower bound of the
� �

. The
	 � � can be determined either by a critical resource that is fully utilized, i.e. the
resource-constrained MII (ResMII), or a critical chain of dependencies running
through the loop iterations, i.e. recurrence-constrained MII (RecMII). Since we
assume that recurrence DFGs are all transformed into non-recurrence DFGs in our
application, we only focus the first one. The ��� � 	 � � is derived by calculating, in
total, the usage requirements for each resource imposed by one iteration of the
loop.

Suppose a loop containing 14 . 0 0 operations is mapped on a data path con-
taining three adders and each adder takes one clock cycle to execute. Then we
need at least

� � �
�� � ) clock cycles to execute the loop iteratively. By executing
this calculation for every available resource and finding the maximum one, we ob-
tain the lower bound ��� � 	 � � on the initiation interval

� �
of a pipelined schedule

of the loop. The general experience is that this bound is very tight [60]. The lower
bound indicates the critical functional resource in the data path. This lower bound
estimate can therefore be used for bottleneck identification.

In case of instruction set constraints and the corresponding � � 	 , virtual re-
sources must be taken into account for the performance estimation. The ��� � 	 � �
estimation is no longer obtained by simply totaling the resource usages for each
resource because some operations are mapped to more than one instance of a vir-
tual resource. Thus the ��� � 	 � � estimation has to be modified to account for the
multiple usage of virtual resources [85]. Suppose a virtual resource "� with � " 
instances available, and "  is used by a set of operation types � ��� ��� + � � � ����� � ( � .
Also assuming that in the ����� the number of operations using operation type ��� �
is ( � , then ��� � 	 � � is computed as:

��� � 	 � ���
	�� � 	 ����� � � ��� ��
	 � .����  ( �
� "  � (5.1)

where � is the set of virtual resources and . ���  is the + -th element in the � -th
row corresponding to virtual resource "� in the matrix � in equation 4.3 and � "�
is actually the � th element in vector

�
/ .

For example, for the instruction set in Figure 4.8 (b), inequality (6’) in Figure
4.8 (d) indicates that the ��� +�� � operation uses two instances of the resource � � ,
of which four are available. For a ��� � in Figure 5.4, the number of operations(�� � � , ( � ��� , ( ��� ����� using operation types . 0 0 , � � � and ��� + � � are 2, 6 and 4 respec-
tively. Assume functional resources . 0 0 &," , � � � � + � � + &," and ��� +�� � &," are available,
each with two instances. Thus the estimated lower bound for the initiation interval
with respect to the functional resource constraints can be calculated as follows.
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��� � 	 � ����� � � . � � � (�� � �
� . 0 0 &,"

� � � ( � ���
� � � � � + � � + &,"

� � � ( � � �����
� ��� +�� � &,"

� � (5.2)
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Figure 5.4: An example DFG for MII estimation

While the ����� in Figure 5.4 is executed by instruction set � ��� , the minimum
initiation interval should be modified by the instruction set constraints, i.e. the
constraints from virtual resources � , � , � � , � � , � � � obtained from 4.8 (f).
The modified ��� � 	 � � �
	�� is shown in 5.3 in details.

��� � 	 � ���
	�� � � . � � � ( � � �� �
� � � ( � ���

� �
� � � ( � � � � ( � ���

� � �
� � � ( � � � � ��� ( � � �����

� � �
� �

� ( � � � � ( � ��� � ( ��� � � �
� � � �

� � (5.3)

� � . � � � �� � �
� �
�
� � � � �

�

�
� � �

� � ��� �� � � � � �
� � �
� � �

� �

This estimation yields the new value of the initiation interval which is one
clock cycle longer than the original one based on the functional resources. This
lower bound is very tight; we can apply the loop folding technique directly by first
mapping the operations to the virtual resources in Figure 4.8 (f). Figure 5.5 shows
the optimal scheduling result and the virtual resource usages in the loop kernel.



5.3. PERFORMANCE AND BOTTLENECK ANALYSIS 89

MSM AMSAMAMSMSMSA AM AMSMSM AMSAM

MSM AMSAM MSM AMSAM A AM AMS AMSMSMS

AMSMSMS MSM AMSAM

MSM AMSAM AMSMSMS*

*

#A = , #M = 2, #AM = 3, #MS = 4, #AMS = 4

(c) virtual resource usage at loop kernel

potential

(a) static resource model

loop body

+ *

+

*

*

**

+ *

+

*

*

**

>>

>>

>>

>>

>>

>>

>>

>>

(b) scheduling result with loop folding

Figure 5.5: Scheduling result for a loop kernel and the virtual resource usage



90CHAPTER 5. INSTRUCTION SET DESIGN WITH THE SRM APPROACH

Like in the bottleneck analysis of high-level synthesis of �� ��� s in Figure 5.1,
the bottleneck of performance now can be identified from the updated lower bound
estimation and can be relieved by allocating additional (virtual) resources. In ad-
dition to the allocation of additional resources, in our instruction set design flow
we also have the possibility to decrease the resource usage of a critical resource
in order to relieve the bottleneck. Therefore it is more convenient to consider the
inequalities, because they describe both the resource availability and for each op-
eration type, and the usage of that resource. The way that we relieve the bottleneck
is explained in the following section.

5.4 Modification of the SRM

Consider again the example of Figure 5.4. In the previous section, virtual resource
� � has been identified as the bottleneck since it is the largest value in the ��� � 	 � �
estimation. Recall that each coefficient on the right hand side of an inequality is
the number of instances of a virtual resource. Each left hand side coefficient of an
operation type reflects the usage of the corresponding virtual resource. Thus the
larger the coefficient, the more virtual resources will be used by the considered
operation type. We take into account two possibilities to modify the � � 	 given
in Figure 4.8 (f). Consider inequality � � � � in Figure 4.8 (d).

� One possibility is to increase the number of instances (i.e., the right hand
side of the inequality) of virtual resource � � . This change means that pos-
sibly more parallel operations are allowed to be exploited under the relaxed
constraints; it might result in an increase of the total instruction width.

� A second possibility is to decrease the largest use (the 
��� ��� operation) of the
resource � � . We consider the largest use because it has the largest impact
on the ��� � 	 � � lower bound. Also this change might result in an increase
of the total instruction width; it allows a better balancing of the different
operations within the possibly new instruction width constraints because it
tends to equalize the weights in the left hand side of an inequality.

These two possibilities to adapt an instruction set by modifying its � � 	
are generally applicable. The idea is always to first identify the critical virtual
resources causing a performance bottleneck and then to relieve the bottleneck
through the proposed techniques. In case there is more than one bottleneck, we
provide the following heuristics for the bottleneck selection.

� Select the virtual resource implying a smaller initiation interval after ap-
plying the modification mentioned above since it effectively improves the
performance.
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� In case the bottlenecks result in the same performance after the modifica-
tion, select the virtual resource causing a smaller instruction width increase.

Since modifying the left hand side coefficients of an inequality does not nec-
essarily increase the instruction width, we prefer performing this modification
strategy first. Furthermore, since the larger the coefficients, the more virtual re-
sources an operation type will use, we prefer starting with a larger coefficient and
hope to obtain a more balanced resource usage with regard to other resources after
modification.

An example in Table 5.1 illustrates the design process. In this example we
consider a loop with 9 � � � operations and 6 �

� �
operations. The initial instruction

set and the corresponding inequalities are shown in Figure 4.7. Notice that the
operation type . 0 0 and � � � are encoded with 8 bits and 10 bits respectively, and
the total instruction width is restricted to 28 bits. The performance requirement of
the loop under consideration is given as � � ��) .

Table 5.1: Modification of the SRM

initial design right-side adjust left-side adjust
second coef first coef

inequality 2N(add)+3N(mul) 2N(add)+3N(mul) 2N(add)+2N(mul) 0.5N(add)+3N(mul)
�

6
�

8
�

6
�

6
SRM A 3 3 3 3

M 2 2 2 2
AM 6 8 6 6

resource add A, 2 AM A, 2 AM A, 2 AM A, 0.5 AM
usage mul M, 3 AM M, 3 AM M, 2 AM A, 3 AM

IS [add, add, add] [add, add, add] [add, add, add] [add, add, add, mul]
[add, mul] [add, add, mul] [add, add, mul] [mul, mul]
[mul, mul] [add, mul, mul] [add, mul, mul]

MII 7 5 5 5
wordlength 24 bits 28 bits 28 bits 34 bits

In Table 5.1, the second column corresponds to the initial design depicted in
Figure 4.7 (c). The virtual resource � � associated with the third inequality is
identified as the bottleneck, which bounds

� �
to 7. In the third column, we eval-

uate the decision to modify the right hand side of the bottleneck by increasing
the instances to 8. As a result of this modification,

� �
is now bounded to 5. New

instructions
� . 0 0 � . 0 0 � � � � � and

� . 0 0 � � � � � � � � � are added to the instruction set,
thereby increasing the instruction width to 28 bits. In the fourth and fifth columns
we evaluate the decision to modify the left hand side coefficients. The fourth col-
umn modifies the bottleneck by decreasing the larger coefficient. The lower bound
on the

� �
is now 5 and the instruction width increases to 28 bits. The fifth column

reduces the smaller coefficient. It also meets the performance requirements, while
the code size in increased to 34 bits. From this example, we see that although
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the inequalities are different, the design in the third and fourth column both meet
the performance requirements and code size reqquirements. We consider a more
elaborate example in the next section.

5.5 Case study

In this section, we demonstrate the practical applicability of our instruction set
design flow.

[add, mul, mul]

[add, sub, sub, mul]

[add, add, sub, load]

[add, add, sub, mul]

[add, add, add, mul]

[add, add, add, sub, sub]

Figure 5.6: An example instruction set

Table 5.2: The corresponding SRM of the instruction set in Figure 5.6

inequality SRM � MII
1 N(a) + N(l) � 3 AL 3 5
2 N(s) + N(l) � 2 SL 2 5
3 N(m) + 2N(l) � 2 ML 2 8
4 N(s) + 2N(m) + 3N(l) � 4 SML 4 8
5 N(a) + 2N(m) + 3N(l) � 5 AML 5 7
6 N(a) + N(s) + 2N(m) + 2N(l) � 5 ASML 5 7

For the instructions given in Figure 5.6 the corresponding � � 	 in Table 5.2
can be obtained using the approach in Section 5.3. We use the fast method for
performance evaluation explained in Section 5.3 rather than performing detailed
scheduling. Since the topology of the ����� of the loop is irrelevant for this anal-
ysis, we list only the number of operations and their resource usages. We assume
the loop contains 9 . 0 0 operations, 3 �,� / operations, 4 � � � operations and 6 � � . 0
operations; . 0 0 and �,� / are encoded with 8 bits each, � � � and � � . 0 with 16 bits.
For reasons of convenience, we abbreviate . 0 0 , �,� / , � � � and � � . 0 as . , � , � and
� . The instruction width is given to be constrained to 40 bits. The fourth column
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gives the number of instances of each virtual resource and the fifth column lists
the estimated initiation interval contribution according to equation 5.1 for each
virtual resource. Assuming the required overall

� �
is 6, this design is far below the

performance requirements.

Table 5.3: Modification for candidates (3) and (4)

new inequality MII extra instructions wordlength
3L4L N(m) + N(l) � 2 5 [m,l] 40

N(s) + 2N(m) + 2N(l) � 4 6
3R4R N(m) + 2N(l) � 3 6 [m,l] 40

N(s) + 2N(m) + 3N(l) � 5 6 [s,m,m]
3L4R N(m) + N(l) � 2 5 [m,l] 40

N(s) + 2N(m) + 3N(l) � 5 6 [s,m,m]
3R4L N(m) + 2N(l) � 3 6 [m,l] 40

N(s) + 2N(m) + 2N(l) � 4 6

Table 5.3 shows the different results by applying the modification methods in
Section 5.3 to the bottleneck candidates (3) and (4). The first column refers to the
design decision under evaluation. For example, ‘ � ��� � ’ represents the decision to
modify the left hand side of inequality (3) and the right hand side of inequality
(4). The second column presents the modified inequalities. The third column
estimates the

� �
according to the new � � 	 . Because of the modification, the

resource constraints are relieved, and subsequently more instructions are allowed.
The fourth column gives the new instructions besides those already provided in
Figure 5.6. The fifth column calculates the wordlength with the new instruction
set.

From Table 5.3 we can see that all designs sufficiently reduce the bottleneck.
We choose the design of row three for next iteration for modifying the virtual
resources because it gives the best combination of performance improvement and
extra instructions. The next identified bottlenecks are virtual resources (5) and (6)
in Table 5.2 because their

� �
- estimate is 7, which is still greater than the required.

The same procedure is repeated and shown in Table 5.4. From this figure, we can
see that the second and third design exceed the wordlength limitation and have
to be omitted. The first and fourth design meet both the timing and code size
constraints and are acceptable.

This example shows that the ��� 	 approach provides a good basis for tuning
performance and code size for the purpose of instruction set design. This adminis-
trative approach is quite efficient for current embedded processor design because
without looking at the detailed encoding and without performing exact scheduling
for the applications the designer can already assess which adjustment should be
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Table 5.4: Modification for candidates (5) and (6)

inequality MII extra instructions wordlength
5L6L N(a) + 2N(m) + 2N(l) � 5 6 [s,m,m] 40

N(a) + N(s) + 2N(m) + N(l) � 5 6 [a,m,l]
5R6R [a,m,l]

N(a) + 2N(m) + 3N(l) � 6 6 [a,s,m,m] 48
N(a) + N(s) + 2N(m) + 2N(l) � 6 6 [a,a,m,m]

[a,a,s,s,m]
[a,a,a,s,m]

5L6R [a,m,l]
N(a) + 2N(m) + 2N(l) � 5 6 [a,s,m,m] 48

N(a) + N(s) + 2N(m) + 2N(l) � 6 6 [a,a,s,s,m] ]
[a,a,a,s,m]

5R6L N(a) + 2N(m) + 3N(l) � 6 6 [s,m,m] 40
N(a) + N(s) + 2N(m) + N(l) � 6 6 [a,m,l]

made.

5.6 Conclusions and Discussions

In this chapter, we propose a methodology for designing the instruction sets for
��� ��� s to meet the performance requirements as well as the code size constraints.
This is performed iteratively by tunning the instruction set constraints which are
represented as inequalities obtained from the � � 	 approach. For applying this
method efficiently, we perform a fast performance estimation for loop kernels by
calculating the minimum initiation interval based on virtual resources. From the
estimation the bottlenecks to performance are identified and are relieved either
by increasing the amount of virtual resources, or by reducing the virtual resource
usage of operation types. Subsequently, new instructions are obtained and code
size is evaluated for the new instruction set. Several heuristics are given for how to
tune the instruction set constraints represented as inequalities. Further discussion
and improvement includes:

� Tuning the instruction set using the two heuristics in Section 5.4 might re-
sult in different inequalities but the same new instruction set. This is under-
standable since instructions are integer points in the operation type space.

� In Section 5.4, for most of the implementation, the modification of the in-
struction set constraints and coefficients are all based on integer numbers
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and the step for tuning is set to one. This is not necessarily a constraint, al-
though it remains to see in practice how small a step can be for an efficient
design for large applications.

� The approach always takes the larger coefficient on the left hand of an in-
equality for modification. This is based on the performance improvement
criteria. Performance estimation is always performed before code size eval-
uation. This is because our main goal is to meet the performance require-
ments. It is possible to tuning all the coefficients at the same time, although
it will be very difficult to predicate the influence on the performance from
all the modifications.

� Since there are multiple points (new instructions) in the space that might
be included in the new instruction set, it is more efficient to analyze those
points first and include the best one for the balance of performance and code
size, and then tuning the inequality. Although this is more efficient for small
examples, for larger instruction set with many operation types, the task to
analyze which point is a good candidate for balancing the performance and
code size is very complicated.

� In this chapter, we calculate the code size constraints based on the worst-
case code size for all the instructions. This is reasonable for small ��� ��� s
and �
� � s which usually contain several functional units, since those func-
tional units are almost always been fully exploited by the instructions. For
larger processors, such as � � ���

type, this is very inaccurate, since � � � s
appear quite often in the instructions. In fact many code compression tech-
niques are developed for those �� � s to reduce the code size.
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Chapter 6

Limited Address Range
Architecture

6.1 Introduction

Conventional general purpose � � ���
architectures usually exhibit one central reg-

ister file as the storage unit. While this is convenient for compilation, the use of
one central register file contributes to a large operand encoding field, subsequently
large code size and high power consumption in the ���
	 / � ��	 which stores the
application code. In addition, a large register file typically increases the number of
register file read/write ports needed and leads to complex wiring, which results in
high power consumption. The increases in wiring also affect cycle time and cause
long execution delay. New designs usually partition the architecture into clusters.
Each cluster contains several functional units and a local register file [15] [41].
The code size is reduced with a large amount. However, the communication of
values among different clusters has to be supported by extra hardware, including
buses, and probably separate copy operations have to be inserted [28] [45]. The
latter complicates the design of a compiler and is not coherent with the small code
size purpose.

Code size in �
� � s and �� ��� s is small compared to general purpose � � ���

architectures. This is obtained by introducing irregular data paths and connec-
tions, as well as highly encoded instruction sets. Not only the number of parallel
operations can be restricted by the encoding, but also the available number of reg-
isters for storing a value can be constrained to a small number. Often each read
or write port of a functional unit is connected to a small register file with only a
few registers, and it is the task of compilers to move data among those different
register files.

In this chapter, we generalize the idea of limiting the amount of registers to

97
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be accessed by a functional unit to certain ranges and propose the so-called lim-
ited address range (

� �� ) architecture [87]. Since encoding operands is costly in
instructions, which is directly related to the number of registers, we restrict the
encoding range to a subset in a register file. Instead of treating the subsets as
independent register files, we allow overlap among different ranges. Communica-
tion between functional units can be put into the commonly addressable registers.
This will reduce the communication cost significantly. However, it will introduce
a new phase called address range assignment. In order to overcome the phase cou-
pling between address range assignment and other tasks in code generation, the
address range constraints are integrated with timing, resource and register file con-
straints. Efficient search space pruning techniques are used to prevent decisions
that inevitably lead to violations with those constraints.

Figure 6.1 shows an example of the
� �� architecture. In this figure, register

files � � has 14 registers and is grouped into two sets � � and � � , each contains
8 registers. Functional units � 	 � and � 	 � read and write values within range
� � , and functional units � 	�� and � 	�� read and write values within range � � .
Ranges � � and � � share registers " � and "�� . Values produced by � 	 � or � 	 � and
consumed by � 	�� or � 	�� can be stored in " � or " � , and vice versa. No extra
hardware is needed and no extra move operations have to be inserted unless the
number of overlapping registers is not large enough. Assume that an opcode is
encoded with 5 bits. An instruction with three operands will cost 17 bits for the
central register file architecture. Alternatively, it will cost 14 bits for the

� ��
architecture. Thus the saving of the encoding is 17.65%.

r1 r2 RF

S
1S 2

FU1 FU2 FU3 FU4

Figure 6.1: Limited address range architecture

In Chapter 4 we have developed the ��� 	 approach for modeling the instruc-
tion set constraints and combine them with resource and timing constraints in an
application. In this chapter, we extend this concept for the

� � � architecture.
Each range is viewed as a virtual register file and the number of registers in this
range is identical to the virtual resource constraint. All those virtual register file
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constraints are integrated into a uniform conflict graph and conventional coloring
algorithm can be used for register allocation.

The outline of this chapter is as follows. Section 6.2 discusses the related
work. Section 6.3 presents the problem statement and approach. Section 6.4
discusses the conflict graph construction and annotated conflict graph analysis.
Experimental results are given in Section 6.6 and code size and performance are
compared for different architectures.

6.2 Related work

Although a lot of work has been done on reducing the code size in � � ���
archi-

tectures by partitioning the data path into clusters with local registers, little work
has been done on using global registers for the communication among clusters.
	 ��� � , a scalable microprocessor from � � � [50], is one of them. In 	 ��� � ,
multiple processors reside on a single chip. Each processor contains many pro-
cessor units and each processor unit usually contains four functional units. Each
functional unit is self-contained and has a local register file, local wiring, local
control (e.g. instruction decode logic) and state information. Functional units
share global registers in a processor unit. Local registers which are specific to a
functional unit are not accessible to other functional units. Register file size is
variable and implementation specific. It can vary from 32 to 512. Assuming there
are 64 global registers. Assume also there are 64 local registers for each func-
tional unit. The total number of registers is

��� � � � � � � ����� , while the number
of registers available for a functional unit is

��� � ��� � � � 	 . Thus the addressing
cost for each operand field is reduced from 9 bits to 7 bits.

In addition to the encoding reduction, the number of read/write ports is greatly
reduced. This is depicted in Figure 6.2 (b). In Figure 6.2 (a) a general � � ���

architecture with a central register file is depicted. For the central register file,
consider three read operands and one write operand (3R+1W) are involved for en-
coding each functional unit, totally 16 read/write ports are needed for the register
file. The 	 ��� � architecture is logically represented in Figure 6.2 (b). For each
functional unit, besides accessing its local register file with three read ports and
one write port, it can also be accessed by the other three functional units through
a global register file. Therefore, seven ports, i.e. three read and four write ports
(three from other functional units) for each register file is required and the number
is greatly reduced compared to 16 ports for the central register file. Since the area
of a register file is proportional to the square of the number of ports, this results in
a smaller total register file area. It also enables easier register file fabrication, and
reduces cycle time delays.

The 	 ��� � architecture does not require much modification in the conven-
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(a) general VLIW architecture
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Figure 6.2: General VLIW architecture and MAJC architecture

tional compiler, since the number of registers in the global register file is normally
enough for the communication among functional units. In addition, the functional
units and general purpose register files in the 	 ��� � architecture are data type
agnostic. This provides more registers for applications that involve dedicated data
type processing and significantly improves the performance. Further, it provides
the compiler with the flexibility to allocate any type of data to any register.

In Cydra 5 [62], the context register matrix, which is a matrix of certain
amount of registers, is provided to dynamically allocate iterations of loops at run-
time. Each iteration is allocated in an iteration frame. Since the number of regis-
ters in the context register matrix is finite, the iteration frames for past iterations
must be deallocated at the same rate as the new frames. This is necessary for loop
variants. However, for loop invariants, which are only used but never computed,
this will cause them to be overwritten unless they are copied in each iteration. To
avoid those copies, General Purpose Register file (GPR) is provided with global
registers to all the iterations. In a single cycle, it can be read by any number
of functional unit input ports, but can be written only by one output port of the
functional units.

6.3 Problem statement and approach

In this section we define the scheduling and register binding problem for the
� � �

architecture. We decompose the problem and construct a block diagram of the
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global approach. Our problem statement is as follows.

schedule
yes

no

yes no

analysis
constraint

serialization
lifetime

analysis
ACG

SCG

WCCG

identification
bottleneck

ub <= C(RF)

lb <= C(RF)

Figure 6.3: Global approach for LAR architecture

Problem Definition 6.1 Given a �	��
 , resource constraints, a latency � , an ini-
tiation interval � � , a register file � � with its capacity � � � � � , this register file
can be subdivided into address ranges and functional units can access different
ranges of the register file, find an assignment of values to registers and a schedule
such that all the timing constraints � and � � , resource constraints and address
range constraints are satisfied.

The global approach is based on the work in [4] with some additions and
is depicted in Figure 6.3. As in [4], it is decomposed into several steps since
decisions affect the search space in both the scheduling domain and the register
allocation domain. Here an additional step called ACG analysis is inserted and
will be explained later in Section 6.5.3. The central part, the constraint analysis,
generates additional precedence constraints that are implied by the combination
of all the timing and resource constraints. These additional precedences refine the
distance matrix (Section 2.2.2), thus providing a more accurate estimate of the set
of feasible start times. It will guide the decisions made in the scheduler and often
prevent it from making decisions leading to infeasibility.

After constraint analysis, the worst case or upper bound ub is computed for all
the values being assigned into register file � � . It corresponds to the requirement
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of registers in the worst case when scheduling is roughly performed without notic-
ing the register file constraints. The upper bound is obtained by exact coloring the
worst-case conflict graph (

� ��� � ) (Section 6.4). If it is larger than � � � � � , some
potential conflicts violating the register file capacity constraint have to be solved
by reducing the schedule freedom.

Lower bound is used to deduce the feasibility of a schedule with the regis-
ter file capacity constraints and address range constraints. A lower bound lb is
determined by coloring the strong conflict graph � � � (Section 6.4) and is com-
pared with the capacity � � � � � . If it is larger than the capacity of the register file
� � , then an infeasible case is determined. Upper bound and lower bound give
a general overview of the � � ability for a certain application, while the detailed
register allocation has to be worked out.

In order to model that certain values can reside in a limited address range � �
of a register file, we propose the step ACG analysis. Assuming there are � ranges
for � � . Each range with � � registers can be viewed as a virtual register file � � ���
conceptually, with its capacity equal to the number of registers in ��� . Therefore
we can write as follows:

� � � � � ��� � � � � � � + � � ��� ����� � (6.1)

The capacity of � � equals to the number of registers in the union of � � . We
denote the union as � .

� � � � � � � 	 ��
	 � � � � � � � � (6.2)

Therefore, together with � � � � � , multiple � � � � ����� s need to be satisfied. To
avoid an extra phase of address range assignment, i.e. to assign each value to a
virtual register file, register allocation is still performed on the uniform � � . Vir-
tual register file constraints are translated into label set constraints in the conflict
graph. We perform this by annotating each value with a label set which contains
all the registers in which it can be assigned. By refining the conflict graph with all
the label sets, the annotated conflict graph ( � � � ) therefore contains all the limited
address range constraints. Thus it can be used for coloring just as conventional
register allocation.

After � � � analysis, pairs of values that may potentially be stored in the same
register file have to be identified in order to reduce the maximum number of con-
flicts, i.e. bottleneck identification. Since the pairs of values are potentially con-
flicting, i.e. they have weak conflicts, the bottleneck identification is performed
on the

� ��� � . Several heuristics based on saturation number and degree number
are discussed in [4] in order to select the most critical conflicts. This identification
decision will cause values with weak conflicts to be allocated in the same register.
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Lifetime serialization will try to meet the constraints by serializing the poten-
tial overlapping lifetimes. This is performed by adding sequence edges between
the identified pairs of values [4]. Heuristics are also provided in sacrificing min-
imum distances in order to keep as much schedule freedom as possible. The
constraint analysis calculates the effect of serialization on the schedule freedom
of all the operations. This will make sure that decisions causing infeasibility are
avoided.

The upper bound and lower bound calculation, � � � analysis, bottleneck iden-
tification, lifetime serialization and constraint analysis are performed alternatively
until the capacity constraint matches the register file requirements.

6.4 Constructing a conflict graph

Often the assignment of an operation to a clock cycle (the “ultimate” scheduling
decision) is delayed until all the resource and timing constraints are satisfied. This
idea of lifetime conflict becomes unclear if the lifetimes are not fixed yet. In
order to represent all the potential conflicts, three situations are classified in [4] as
follows.

� strong conflict: values � and � have strong conflict if their lifetimes overlap
for sure. There is overlap between � and � iff the production of value � is
before the consumption of value � and the production of value � is before
the consumption of value � .

� no conflict: values � and � have no conflict if their lifetimes can never
overlap. There is no overlap between � and � iff the consumption of value �

is before the production of value � or the consumption of value � is before
the production of value � .

� weak conflict: values � and � have weak conflict if neither of the above
conditions holds.

Two different conflict graphs are used in this approach, The first is the worst-
case conflict graph (

� ��� � ) which represents the worst case when all the poten-
tial conflicts become strong conflicts in the worst case. This graph contains all the
weak conflicts and strong conflicts. Examples of

� ��� � are depicted in Figure
6.4 (b) for a ����� in Figure 6.4 (a). In Figure 6.4 (b), a solid edge represents a
strong conflict, and a dashed edge represents a weak conflict. For example, values
. and / have a strong conflict for sure since they are consumed by the same oper-
ation. Values . and & have a weak conflict because their relationship depends on
the scheduling decisions.
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Figure 6.4: A DFG with its WCCG and SCG

Coloring the graph results the chromatic number of 4, while by accumulating
all the registers in the existing register files we obtain the number of 2. Therefore
some lifetime serialization has to be performed. The best case or strong conflict
graph ( � � � ) represents the case when values have strong conflicts. This is de-
picted in Figure 6.4 (c) and its chromatic number is 2, which means at least two
registers are needed for this application.

6.5 Annotated conflict graph analysis

The conflict graph constructed in the previous section has been used for conven-
tional register allocation. In this section, it is modified with annotations and the
annotated conflict graph ( � � � ) is proposed for register allocation with address
range limitations.

6.5.1 Limitations on the conventional conflict graphs

Graph coloring is frequently used for register allocation in general-purpose and
embedded processors. The general approach is to analyze the lifetimes of values
in an application and assign values having a lifetime conflict with different colors,
thus into different registers.

Using the exact graph coloring algorithm in [19], one color is assigned to
each node in the conflict graph respecting to the lifetime conflicts. There is no
restriction on which exact color to use until all the colors are used up for the
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maximum clique. When a value is limited to certain address range, it implies that
it can only be assigned with limited colors in the conflict graph. Therefore the
original graph has to be adapted to these constraints.
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Figure 6.5: A scheduled DFG, the conflict graph and the labeled conflict graph

The following example illustrates this limitation. For simplicity, we assume
that the scheduling has been performed and the scheduled ����� is presented in
Figure 6.5 (a). The corresponding conflict graph is constructed in Figure 6.5 (b)
according to the lifetime analysis. By coloring this conflict graph, we obtain that
maximally three colors (registers) are needed for allocating all the values. We
know, for example, value . cannot be put into the same register as value / , but
there is no limitation on which concrete register value . can reside. All the possi-
ble allocation results are shown in Figure 6.5 (c), (d), (e), (f), (g) and (h). Assume
that an

� � � architecture is employed with three registers; further assume that
values . and $ can only be stored in register 1 or 2, and values / and 0 can only
be stored in register 2 or 3. For each value we collect all the labels of the possible
registers in which it can reside and assign a label set to the corresponding node.
Therefore, label set � � � � � is associated with node . and $ , and label set � � � � � is
associated with node / and 0 . The annotated conflict graph (ACG) is constructed
as in Figure 6.5 (i). For this simple example, we can see immediately that only
one allocation result is possible and it is given in Figure 6.5 (j).
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6.5.2 Limitations on the multiple register file approach

As we mentioned before, each address range is now modeled as a virtual register
file, with the capacity equal to the number of registers in the range. The gen-
eral problem in Section 6.3 is transferred to the scheduling and register allocation
problem with multiple register files. Traditionally an additional register file as-
signment phase has to be performed for assigning a value to certain register file.
In [5], graph coloring is used heavily for register file capacity satisfaction and
register allocation. Previous work [4] extended this approach to multiple register
files, in which the author assumes that register file assignment is performed in
advance. However, it is either hard to make this decision during scheduling or
making assignment decisions in early stage will cause non-optimal scheduling.
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Figure 6.6: A scheduled DFG and the conflict graphs for multiple register files

An example is illustrated in Figure 6.6. Assuming values produced by func-
tional unit � 	 � can only be stored in register file � � � and values produced by
functional unit �
�
	 can be stored in either � � � or � � � . Also assume that
� � � � ��� � � and � � � � �
� � �

. For the scheduled ����� in Figure 6.6 (a), if
initial assignment makes the decision that value & is stored in � � � and value $ is
stored in � � � , then by coloring the conflict graphs in Figure 6.6 (b), we obtain the
result that � � � needs three registers and � � � needs one register; this is infeasible,
since the capacity of � � � is exceeded. However, if initially & is assigned in � � �
and $ in � � � , then by coloring the conflict graphs in Figure 6.6 (c) both register
file capacities are satisfied and a feasible schedule is obtained.

This example shows that multiple register file assignment as a separate phase
is obstacle to an optimal scheduling and register binding. The decision of which
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register file to use has to be postponed and integrated with scheduling and register
binding decisions.

6.5.3 ACG analysis

In the conflict graph, a node represents a value associated with a data edge in the
����� , and an edge between two nodes represents a lifetime conflict between the
two values. In the labeled conflict graph, for a certain value � , its label set � �

includes all the - subsets of registers that it can be allocated in.

� � � 	 ��
	 � � � (6.3)

The use of label set implies that it cannot be allocated into those registers
which are not in this label set, or it has a conflict with those registers. The labeled
conflict graph is enhanced by including all these conflicts and finally the � � �
is constructed. Before doing this, we include a set of dummy nodes � � �� � �
� ��������� � � � � in the � � � , each one representing a register in the � � . There is a
strong conflict between each pair of the dummy nodes since different registers
are physically independent. In addition to those dummy nodes, there is a strong
conflict between a node � and a register �� if the label set � � does not include the
label of register �  . Assuming that the set of strong conflicts in a conflict graph
for a node � is represented as � $ � . We formalize annotated conflicts as follows.

� $ � � � $ � 	 � $ � � � � +�� � ��� � � (6.4)
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Figure 6.7: ACG analysis

The � � � for the ����� in Figure 6.4 (a) is presented in Figure 6.7. In this
figure, four dummy nodes representing all the registers in � � are included in the
� � � . They form a clique since each pair has a strong conflict. Assume that



108 CHAPTER 6. LIMITED ADDRESS RANGE ARCHITECTURE

register file � � is encoded into four subsets � � , � � , � 
 and � � , which contains
registers � " � � "�� � " � � , � " � � " � � , � "�� � " � � and � " � � "�� � " � � respectively. Also as-
sume that values . , / , $ , 0 , & and � can be allocated in the subsets � � , � � , � 
 ,
� � , � � and � 
 separately, then the label set for each value can be included in the
� � � . Moreover, the � � � is enriched by analyzing the conflicts between the
nodes representing the values and the dummy nodes representing the registers ac-
cording to equation 6.4. For example, there is a strong conflict between . and " �
since � � does not contain register " � . Subsequently coloring algorithms can be
applied directly to the final � � � . This fits in well the trajectory of our global ap-
proach, since extra register file assignment phase is relieved and a uniform space
for conflicts is maintained.

6.6 Experimental results

This section provides several experimental results by applying the � � 	 method-
ology to the � � � architecture. Based on the � � 	 concept, multiple ranges of a
register file are modeled as virtual register files and alternative assignment choices
for different address range are transferred as conflicts during graph coloring. Sec-
tion 6.6.1 presents the results on limited read address range (

� ��� � ) architec-
ture with local reading and global writing, and compares them with the clustered
architecture. Section 6.6.2 gives the result on different

� � � architectures and
shows the reduction on instruction encoding. Architecture design exploration is
discussed in 6.6.3.

6.6.1 LRAR architecture

In this section, we show several experiments on a specific kind of
� �� architec-

ture, the so-called
� � �� architecture, which is depicted in Figure 6.8.

In this architecture, reading values is limited to local registers as in clustered
architectures, while writing is not limited in such a way that values can be written
into any of the existing registers. The results of a two-range

� ��� � architecture
are compared to that of a two-way clustered architecture. Architectures are de-
fined by several parameters, i.e.,

�
� �

�
is the number of functional units per type.

We assume that functional unit types are �
��	 and multiplier. The ����� is con-
strained by latency � and initiation interval � � . In Table 6.1, column 2 gives the
minimum number of registers in each register file for the clustered architecture
and column 5 gives the minimum number of registers in each range for the

� ��� �
architecture. Column 3 and 6 report the execution time and column 4 and 7 show
the mobility reduction. The mobility in a ����� is defined as the average difference
between the � � � � and the ���� � start times of operations.
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Figure 6.8: LRAR architecture

Table 6.1: LRAR architecture vs. clustered architecture
�����

� ��� � � ��� � � clustered LRAR	
T(s) mob

	
T(s) mob
��� � � � 
�� ��� 7,5 0.34 25.19 � 3.60 7,4 0.96 25.19 � 3.50
��� � � � � � ��� 7,6 1.18 12.38 � 1.81 6,5 0.95 12.38 � 2.10
��� � � � � � ��� 6,4 0.08 2.90 � 0.21 4,4 0.36 2.90 � 0.43

������
���� � � ��� ��� 10,6 0.56 14.36 � 3.75 6,6 1.75 14.36 � 1.64
������
���� � � ��� ��� 9,6 0.54 6.11 � 0.71 7,5 1.06 6.10 � 0.82
������
���� � � ��� ��� 12,6 0.18 2.43 � 0.63 6,6 0.68 2.43 � 0.29
�
 � � � � 
 ��� 4,1 0.09 3.17 � 0.73 4,1 0.06 3.17 � 1.77
�
 � � � � 
 � � 4,6 0.24 2.30 � 0.00 5,4 6.23 2.30 � 0.00
�
 � � � � � ��� 4,2 0.08 2.17 � 1.23 4,2 0.08 1.27 � 1.70
�
 � � � � � � 
 6,6 0.22 1.20 � 0.23 6,6 2.41 2.30 � 0.03� 
�
 � � � 
�� ��� 5,4 2.43 13.87 � 1.25 5,5 0.78 13.87 � 5.71� 
�
 � � � 
�� � � � 5,5 4.06 13.90 � 1.23 4,4 2.32 13.88 � 1.26� 
�
 � � � � 
 ��� 4,4 3.40 6.34 � 0.82 5,4 0.55 6.34 � 1.58

The results show that by modifying the architecture slightly and only allowing
a wider address range for writing, the total number of registers can be reduced
in general. This is because in the

� ��� � architecture, alternative choices exist
for writing a value. If writing a value exceeds a particular range from where the
value is read, it can be refined such that the value is written into another range.
Thus the two ranges can be balanced and the total number of registers may be
reduced. Notice that in our implementation the decision is made within a uniform
search space instead of a step-wised refinement. In general the mobilities before
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serialization for each benchmark are the same for the two architectures, except for
� ��� � � � � � ��� ��� , � � � � � � � � and  � � � � ��� � ��� . This is because during implementation we
added some dummy nodes for constructing the � � � , which changed the original
��� � slightly. In some cases the register requirement is increased instead, such
as in  � � � � ��� ��� . It can be explained as follows: since we use the � � 	 approach,
all the values are bound into one big register file, which results in a large graph
for coloring. Because heuristics are used for graph coloring and serialization, it is
possible that serialization will select the weak conflict which is not a bottleneck
and consequently results in a larger register file requirement.

6.6.2 Encoding reduction in LAR architecture

For an
� �� architecture, the encoding can be reduced compared to a central reg-

ister file architecture. This is because only necessary bits are used for the operand
field. We perform the experiments on several benchmarks and compare the en-
coding requirements between a two-range

� � � architecture and a central register
file architecture. In Table 6.2, column 2 and 3 report the number of registers and
encoding bits for the central register file architecture. Column 6 and 7 report the
number of registers in each limited address range � � and � � . Column 4 reports the
total number of registers needed and column 5 reports the number of overlapping
registers. Column 8 and 9 shows the encoding for the

� �� architecture and in
percentage compared to the central register file architecture.

For most of the benchmarks the code size is reduced and the maximum reduc-
tion is 17.65%. For � ��� � � � � � ��� , even if the total number of registers is increased
by one, the total encoding cost is still reduced by 17.65%. For some other bench-
marks, e.g. � ��� � � � � � ��	 , the

� �� architecture doesn’t help in reducing the code
size. The reason is that since there are a lot of swapping of values between the
two ranges, the amount of operations that write to and read from different address
ranges is large. Therefore the number of commonly addressable registers has to
be kept large enough.

In order to improve the encoding reduction, one possible solution is to have
more ranges and reduce the number of registers in each range. Table 6.3 shows
the results for a four-range

� �� architecture. In this table, we further divide each
address range in the previous architecture as two subsets . and � . Moreover,
a certain overlap is kept for these two ranges. In order to always guarantee a
communication, each pair of the four ranges has overlapping.

As we can see, the code size is further reduced and the reduction increases
from 17.65% to 21.01% for � � � � � � ��
 and from 17.65% to 23.82% for  � � � � � ��� .
This reduction is not obvious as we further partition the address ranges. The is
because we always have to keep the number of overlapping registers large enough
for communication. When

� � � � is very small, the overlapping part almost covers
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Table 6.2: Central register file vs. LAR architecture 1

�����
� ��� � � � central LAR %	

enc
	

enc� � � � � � � � � � � � � � �


��� � � � 
�� 11 714 11 8 11 8 666 93.27
11 9 11 9 714 100.00
11 10 11 10 714 100.00
��� � � � � � 9 714 9 8 9 8 588 82.35
��� � � � � � 9 714 8 7 8 7 588 82.35
8 6 8 6 588 82.35

������
���� � � ��� 12 952 12 9 10 11 952 100.00
12 9 11 10 952 100.00
12 8 10 10 952 100.00
12 8 12 9 952 100.00
13 8 11 10 952 100.00

������
���� � � ��� 11 952 12 4 8 8 784 82.35
11 4 7 8 784 82.35� �  � � � ��� 9 680 9 5 8 6 560 82.35
9 6 8 7 560 82.35
9 7 8 8 560 82.35

Table 6.3: Central register file vs LAR architecture 2

�����
� ��� � � � central LAR %	

enc
	

enc� � � � � � � � � � � � � � �

a m a m
��� � � � � � 9 714 9 3 6 5 6 5 588 82.35
9 3 6 4 6 5 564 78.99
��� � � � � � 9 714 9 2 5 4 6 4 588 82.35

������
���� � � ��� 11 952 12 4 8 6 8 6 784 82.35
12 2 8 4 9 4 805 84.56

������
���� � � ��� 11 952 12 4 8 4 8 4 718 75.42� �  � � � ��� 9 680 10 3 7 5 6 4 536 78.82
10 3 6 4 7 5 542 79.71
10 3 7 4 6 4 518 76.18

the entire range, which will not improve the encoding reduction any more. From
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Table 6.3, we can also see that in some cases, e.g. for � � � � � � ��
 , even with the
same total amount of registers, the address ranges can be tuned such that smaller
code size can be obtained. Thus our approach can be applied to the design space
exploration.

6.6.3 Design space exploration

Since the � � 	 concept is used for the
� � � architecture, it can be easily applied

to the design space exploration, as the methodology proposed in Chapter 5. The
most obvious way is to keep the total number of registers unchanged and tune
the address ranges, i.e. the capacity constraints for virtual register files. By per-
forming scheduling and register binding, all the possible architectures satisfying
timing and resource constraints can be obtained, from which the most efficient
design can be selected. For reasons of convenience, we compare the experimental
results between

� ��� � architecture and two-way clustered architecture. Table 6.4
and 6.5 show the different

� ��� � architectures for � � � � and � ��� � � � benchmarks
and Table 6.6 shows the loop folding results for � � and  � � loop kernels.

Table 6.4: LRAR architectures for fdct benchmark
� � �

� ��� � � � clustered LRAR %	
T(s) mob

	
T(s) mob
��� � � � 
�� 7,5 0.34 25.19 � 3.60 7,4 0.96 25.19 � 3.50 91.84

6,5 0.95 25.19 � 3.50 100.00
5,6 1.00 25.19 � 3.50 100.00
4,7 0.95 25.19 � 3.50 86.73
��� � � � � � 7,6 1.18 12.38 � 1.81 6,5 0.95 12.38 � 2.10 100.00
7,4 0.96 12.38 � 2.10 91.84
8,3 0.95 12.38 � 2.10 91.84
��� �� � � � 6,4 0.08 2.90 � 0.21 4,4 0.36 2.90 � 0.43 85.56

4,6 0.12 2.90 � 0.00 5,3 0.35 2.90 � 0.43 105.88

As we can see, for � � � � � � � � there are two possible clustered architectures which
all satisfy the timing and resource constraints. For the other benchmarks, there
is only one possible clustered architecture. On the contrary, there are multiple
� � �� architectures with the same total number of registers which satisfy all the
constraints. From them, the best design can be selected. For example, for � � � � � � ��� ,
four possible

� � �� architectures are allowed. The last architecture obtains the
smallest code size; therefore it can be selected as the best design.
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Table 6.5: LRAR architectures for loef31 benchmark
�����

� ��� � � � clustered LRAR %	
T(s) mob

	
T(s) mob

������
���� � � ��� 10,6 0.56 14.36 � 3.75 6,6 1.75 14.36 � 1.64 87.77
7,5 1.70 14.36 � 1.64 87.77
8,4 1.71 14.36 � 1.64 81.19
4,8 1.69 14.36 � 1.64 75.55

������
���� � � ��� 9,6 0.54 6.11 � 0.71 7,5 1.06 6.10 � 0.82 87.77
������
���� � � ��� 12,6 0.18 2.43 � 0.63 6,6 0.68 2.43 � 0.29 87.77

7,5 0.67 2.43 � 0.29 87.77
8,3 0.67 2.43 � 0.29 81.19

Table 6.6: Loop folding results for fft and ifft kernels

�����
� ��� � � ��� � � clustered LRAR %	

T(s) mob
	

T(s) mob
�
 � � � � 
 � � 4,6 0.24 2.30 � 0.00 5,4 6.23 2.30 � 0.00 100.00
4,5 6.17 2.30 � 0.00 100.00
3,6 6.18 2.30 � 0.00 100.00
�
 � � � � � � 
 6,6 0.22 1.20 � 0.23 6,6 2.41 2.30 � 0.03 100.00
7,5 2.40 2.30 � 0.03 100.00
5,7 2.37 2.30 � 0.03 100.00� 
�
 � � � 
�� � � � 5,5 4.06 13.90 � 1.23 4,4 2.32 13.88 � 1.26 77.50
5,3 2.33 13.88 � 1.26 91.43
3,5 2.33 13.88 � 1.26 86.07

6.7 Conclusions and discussions

In this chapter, we propose a new type of architecture and encoding style for re-
ducing the code size of embedded processors. The corresponding compilation
techniques for register binding and scheduling for this architecture is also pre-
sented. The advantage is that by reducing addresses to a certain range of a register
file, only necessary encoding bits are used in the instruction sets. In addition, we
allow certain overlap between different ranges. Therefore swapping values be-
tween ranges are retained in the overlapping addresses and no extra hardware as
well as no extra move operations are necessary. In order to support this architec-
ture with efficient code generation, we apply the ��� 	 concept to the architecture.
The basic idea is that each range can be viewed as a virtual register file and the
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capacity constraint has to be satisfied. To avoid an additional range assignment
phase, register allocation is still performed on the central register file, while each
value is associated with a label set. A label set contains all the possible registers in
which the value can be assigned. Thus any non-existent assignment is transferred
into conflicts when constructing the conflict graph. During register allocation, the
address range constraints are automatically satisfied. The advantage of this ap-
proach is that scheduling and register allocation is performed on a uniform search
space and it is blind to any range assignment decision. Another advantage is that
it can be used easily for design space exploration, since only address ranges need
to be modified. It can also be extended to model the network connectivities in the
not-fully connected clustered architectures with several limitations.

One disadvantage is that the annotated conflict graph becomes very large for
large benchmarks, which gives a heavy burden on the graph coloring of the worst-
case conflict graph that is frequently used in the register allocation. Another dis-
advantage is that new instructions have to be introduced. The code size reduction
is limited since the number of overlapping registers always has to be kept large
enough. Once this number is not enough, extra move operations are still needed.
In this thesis, we assume that source and destination operands always access the
same range. In fact, architectures can be designed with more flexibility, such as
source and destination operands access different overlapping ranges. Although
our approach solved the phase coupling problem of address range assignment, we
still assume that the operation assignment [13], i.e. the assignment of operations
to functional units, is performed separately. In practice, it is desirable to combine
the operation assignment with this approach.
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Conclusions and Future Work

This thesis presents a methodology for building a unified code generation of ap-
plication specific embedded processors. Embedded processors are often required
to be optimized not only for performance, but also for code size, area and cost.
Applications written in high level languages are transferred into assembly lan-
guage through processor instructions, and most of the constraints arise due to the
encoding of instructions. Such constraints are very difficult to capture. In this
thesis, we propose the static resource model ( � � 	 ) approach for modeling the
constraints from those highly-encoded instruction sets and integrate them with
the timing constraints from the signal processing application and resource con-
straints from the processor architecture. Constraint analysis techniques are the
basis for administrating the search space with those integrated constraints. By
focusing on the reduced search space, wrong decisions causing infeasibility are
prevented. Similarly, it can also be applied to capturing the constraints from the
limited address range (

� �� ) architectures. The ��� 	 approach is used for the
reconfigurable processor design since different instruction set configurations can
be easily represented as static resources. It can be easily applied to design space
exploration since constraints obtained through this modeling reflect directly the
architecture specifications and are tunable by the designer.

The contribution of this work can be summarized as follows:

� A methodology of ��� 	 is proposed for modeling the highly encoded in-
struction sets of application specific embedded processors. These constraints
are combined with the resource constraints and timing constraints such that
a unified code generation approach is obtained.

� Reconfigurable instruction set processors are looked at from a new angle.
The reconfigurable part is moved from the data path to the instruction de-
coder. A new type of reconfigurable instruction decoder architecture tem-
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plate is proposed, which can utilize the � � 	 concept directly and promise
efficient code generation.

� The � � 	 approach also presents an efficient solution for instruction set de-
sign since all the constraints from instruction sets are represented as static
resources, which can be use for fast estimation of performance. The instruc-
tion set can be tuned to obtain a better performance by modifying the static
resources.

� This approach is also applied to the
� �� register file architecture. In this

architecture, the encoding of the operand field is limited to a certain range
of a register file for the purpose of code size reduction. While it raises the
problem of range assignment, the assignment decisions can be postponed by
integrating the limited address range constraints with resource and timing
constraints, resulting in a uniform search space.

The � � 	 is used heavily in this work for modeling the instruction set con-
straints and the constraints in the

� � � architecture. The main advantages of this
approach can be summarized as follows: in the first place, it is quite efficient with
regards to the runtime of a compiler, since the � � 	 of a processor’s instruction
set needs to be computed only once and any resource-constrained scheduler can
be applied without much adaptation. Secondly, the scheduler is not restricted by a
specific code selection phase. Therefore it has more opportunity to minimize the
register requirements. Thirdly, it can be used for fast estimation of performance of
loop kernels. The scheduler also has the opportunity to produce optimal schedules
for pipelined loops, which is very important for �
� � applications.

The � � 	 approach can also be extended for modeling the connectivity con-
straints, such as buses and read/write ports. The disadvantage of this approach is
that in case there are many irregularities in the architecture, the amount of virtual
resources will become very large, which is an obstacle to the efficiency of the
runtime of the compiler.

Another disadvantage is that it only captures the constraints on parallelism.
It assumes there is no distinction between resources with the same type. For ex-
ample, it assumes that functional resources which can execute the same type of
operations are the same. In reality this is not always true. Although the

� ��
architecture can be used to capture the connectivity constraints to certain degree,
it still doesn’t solve the problem. Operations have to be assigned to functional
resources with respect to connection constraints, as well as timing and resource
constraints, and operation assignment has been studied in [13]. If operation as-
signment is performed separately from the instruction selection, then the phase
coupling problem still exists. It is desirable that operation assignment can be in-
tegrated with this model while the efficiency of this approach is still preserved.
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Future research includes:

� Investigate the integration of operation assignment with the � � 	 approach
for code generation such that the connectivity constraints, instruction set
constraints as well as timing and resource constraints can be integrated in
the uniform search space.

� Modeling more versatile instruction set constraints, such as � � 	 � instruc-
tions in many processors, superops in Trimedia ��	 � and some coarse grain
instructions in reconfigurable processors.

� Improve the constraint analysis techniques such that it can deal with large
amount of constraints efficiently.

� Automating the instruction set design and test for large instruction sets and
for large amount of benchmarks.

� Investigate more versatile
� �� architectures. In case that values can be

assigned into more than one range, it is desirable that the address range
assignment phase can be integrated with the current annotated conflict graph
approach.

� In case functional unit read/write ports and register file read/write ports have
to be included, the modeling becomes more complicated and study how
much we can still gain from this approach.

For large applications containing conditional constructs and nested loops, ba-
sic blocks are too limited and the whole control-data flow graph has to be consid-
ered. Although if-conversion [88] is exploited to combine several basic blocks into
one big block in case of conditional constructs, more elaborate approaches such
as code motion need to be investigated. Moreover, a powerful machine descrip-
tion language needs to be exploited for a retargetable compilation for embedded
processors.
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