259 research outputs found

    VHDL-AMS modeling of an automotive vibration isolation seating system

    No full text
    This paper presents VHDL-AMS model of an automotive vibration isolation seating system with an active electromechanical actuator. Five control algorithms for the actuator are implemented and their efficiencies are investigated by subjecting the system to a number of stimuli, such as a single jolt or noisy harmonic excitations. Simulations were carried out using the SystemVision simulator and results are shown to compare the relative performance merits of the control methods

    Analytical Compact Models

    Get PDF

    Virtual Prototyping Methodology for Power Automation Cyber-Physical-Systems

    Get PDF
    In this thesis, the author proposes a circular system development model which considers all the stages in a typical development process for industrial systems. In particular, the present work shows that the use of virtual prototyping at early stages of the system development may reduce the overall design and verification effort by allowing the exploration of the complete system architecture, and uncovering integration issues early on. The modeling techniques of this research are based on VHDL-AMS, yet supporting other modeling languages such as C/C++, SPICE, and Verilog-AMS, together with integrated simulation tools. Contrasting with conventional approaches, it is shown that the proposed methodology is adapted for small-scale Cyber-Physical Systems (CPS) design and verification thanks to the modularity and scalability of the modeling approach. The proposed modeling techniques enable seamlessly the CPS design together with the implementation of their subsystems. In particular, the contribution of this work improves the virtual prototyping approach that has been successfully used during the development of smart electrical sensors and monitoring equipment for high and medium voltage applications. The design of the measurement and self-calibration circuits of a medium voltage current sensor based on the Rogowski coil transducer is presented as an example. The proposed small-scale CPS design methodology based on virtual prototyping, namely VP-based design methodology, uses important theoretical concepts from layered design, component-based design, and platform-based design. These foundations are the basis to build a modeling methodology that provides a vehicle that can be used to improve system verification towards correct-by-design systems. The main contributions of this research are: the re-definition of the system development lifecycle by using a virtual prototyping methodology; the design and implementation of a model library that maximizes the reuse of computational models and their related IP; and a set of VHDL-AMS modeling guidelines established with the purpose of improving the modularity and scalability of virtual prototypes. These elements are key for supporting the introduction of virtual prototyping into industrial companies that can thoroughly profit from this approach, but cannot commit a specific team to the creation, support, and maintenance of computational models and its dedicated infrastructure. Thanks to the progressive nature of the proposed methodology, virtual prototypes can indeed be introduced with relatively low initial effort and enhanced over time. The presented methodology and its infrastructure may grow into a bidirectional communication medium between non-expert system designers (i.e. system architects and virtual integrators) and domain specialists such as mechanical designers, power electrical designers, embedded-electronics designers, and software designers. The proposed design methodology advocates the reduction of the CPS design complexity by the implementation of a meet-in-the-middle approach for system-level modeling. In this direction, the modeling techniques introduced in this work facilitate the architectural design space exploration, critical cross-domain variable analysis (especially important in the component interfaces), and system-level optimization and verification

    Rapid Prototyping of Digital Controls for Power Electronics

    Get PDF
    The process for designing digital controls for power electronics is typically quite convoluted and affords many opportunities for errors to occur. We present here a new and complete, method for rapid prototyping of digital controls that allows rapid realization of new designs. The approach uses a collection of tools that include both software (the virtual test bed (VTB) and Matlab/Simulink) and hardware (dSpace DSP). An example application of the methodology completes the discussion

    UNIFIED MODELLING TECHNIQUE USING VHDL-AMS AND SOFTWARE COMPONENTS

    Get PDF
    International audienceThe paper deals with the dynamic modeling of mechatronic devices, which usually need detailed modeling to be described and to take into account the physical properties of the system. VHDL-AMS 1 , which is a powerful unified modeling language for mixed system, allows to describe a large range of physical systems, for their dynamic simulation. It allows to describe models of physical components and then to connect them to obtain the model of a system.. However, this language cannot support the description of some physical phenomena, such local ones, defined by numerical methods (e.g.: finite element method, special numerical integrals). When an aspect of a model cannot be described in VHDL-AMS, the paper proposes to use software components. So, the aim of the paper is to propose a generic way to extend the computation capability of VHDL-AMS, by coupling the models described in VHDL-AMS with external ones specified as software components (where VHDL-AMS fails). The approach has been applied on several applications, among them the time simulation of an electrical plunge

    On mixed abstraction, languages and simulation approach to refinement with SystemC AMS

    Get PDF
    Executable specifications and simulations arecornerstone to system design flows. Complex mixed signalembedded systems can be specified with SystemC AMSwhich supports abstraction and extensible models of computation. The language contains semantics for moduleconnections and synchronization required in analog anddigital interaction. Through the synchronization layer, user defined models of computation, solvers and simulators can be unified in the SystemC AMS simulator for achieving low level abstraction and model refinement. These improvements assist in amplifying model aspects and their contribution to the overall system behavior. This work presents cosimulating refined models with timed data flow paradigm of SystemC AMS. The methodology uses Cbased interaction between simulators. An RTL model ofdata encryption standard is demonstrated as an example.The methodology is flexible and can be applied in earlydesign decision trade off, architecture experimentation and particularly for model refinement and critical behavior analysis

    Electro-thermal virtual prototyping of a Rogowski Coil sensor system

    Get PDF
    An electro-thermal model of a Rogowski Coil sensor system is here described. A co-design methodology between VHDL-AMS and Finite Element Analysis (FEA) has been used for modeling the entire system. The proposed modeling strategy uses geometrical FEA to complete a time-dependent parametrical heat transfer model, which can be implemented in VHDL-AMS or in any other similar hardware description language. This is especially useful for performing simulations with the embedded signal processing electronics of the sensor. Important geometrical, environmental and inner material properties of the Rogowski Coil sensor system, which are difficult, or even impossible to simulate dynamically in a classical lumped-element model, are taken into account indirectly in the proposed model. This allows to study the cross-domain effects in the complete system

    Modeling and simulation of magnetic components in electric circuits

    No full text
    This thesis demonstrates how by using a variety of model constructions and parameter extraction techniques, a range of magnetic component models can be developed for a wide range of application areas, with different levels of accuracy appropriate for the simulation required. Novel parameter extraction and model optimization methods are developed, including the innovative use of Genetic Algorithms and Metrics, to ensure the accuracy of the material models used. Multiple domain modeling, including the magnetic, thermal and magnetic aspects are applied in integrated simulations to ensure correct and complete dynamic behaviour under a range of environmental conditions. Improvements to the original Jiles-Atherton theory to more accurately model loop closure and dynamic thermal behaviour are proposed, developed and tested against measured results. Magnetic Component modeling techniques are reviewed and applied in practical examples to evaluate the effectiveness of lumped models, 1D and 2D Finite Element Analysis models and coupling Finite Element Analysis with Circuit Simulation. An original approach, linking SPICE with a Finite Element Analysis solver is presented and evaluated. Practical test cases illustrate the effectiveness of the models used in a variety of contexts. A Passive Fault Current Limiter (FCL) was investigated using a saturable inductor with a magnet offset, and the comparison between measured and simulated results allows accurate prediction of the behaviour of the device. A series of broadband hybrid transformers for ADSL were built, tested, modeled and simulated. Results show clearly how the Total Harmonic Distortion (THD), Inter Modulation Distortion (IMD) and Insertion Loss (IL) can be accurately predicted using simulation.A new implementation of ADSL transformers using a planar magnetic structure is presented, with results presented that compare favourably with current wire wound techniques. The inclusion of transformer models in complete ADSL hybrid simulations demonstrate the effectiveness of the models in the context of a complete electrical system in predicting the overall circuit performance

    Design of electronic systems for automotive sensor conditioning

    Get PDF
    This thesis deals with the development of sensor systems for automotive, mainly targeting the exploitation of the new generation of Micro Electro-Mechanical Sensors (MEMS), which achieve a dramatic reduction of area and power consumption but at the same time require more complexity in the sensor conditioning interface. Several issues concerning the development of automotive ASICs are presented, together with an overview of automotive electronics market and its main sensor applications. The state of the art for sensor interfaces design (the generic sensor interface concept), consists in sharing the same electronics among similar sensor applications, thus saving cost and time-to-market but also implementing a sub-optimal system with area and power overheads. A Platform Based Design methodology is proposed to overcome the limitations of generic sensor interfaces, by keeping the platform generality at the highest design layers and pursuing the maximum optimization and performances in the platform customization for a specific sensor. A complete design flow is presented (up to the ASIC implementation for gyro sensor conditioning), together with examples regarding IP development for reuse and low power optimization of third party designs. A further evolution of Platform Based Design has been achieved by means of implementation into silicon of the ISIF (Intelligent Sensor InterFace) platform. ISIF is a highly programmable mixed-signal chip which allows a substantial reduction of design space exploration time, as it can implement in a short time a wide class of sensor conditioning architectures. Thus it lets the designers evaluate directly on silicon the impact of different architectural choices, as well as perform feasibility studies, sensor evaluations and accurate estimation of the resulting dedicated ASIC performances. Several case studies regarding fast prototyping possibilities with ISIF are presented: a magneto-resistive position sensor, a biosensor (which produces pA currents in presence of surface chemical reactions) and two capacitive inertial sensors, a gyro and a low-g YZ accelerometer. The accelerometer interface has also been implemented in miniboards of about 3 cm2 (with ISIF and sensor dies bonded together) and a series of automatic trimming and characterization procedures have been developed in order to evaluate sensor and interface behaviour over the automotive temperature range, providing a valuable feedback for the implementation of a dedicated accelerometer interface
    • 

    corecore