
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Dr M. Mattavelli, président du jury
Prof. Y. Leblebici, Dr A. Vachoux, directeurs de thèse

Prof. C. Grimm, rapporteur
Dr Y. Maret, rapporteur

Prof. G. de Micheli, rapporteur

Virtual Prototyping Methodology for Power
Automation Cyber-Physical-Systems

THÈSE NO 7649 (2017)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 5 MAI 2017

À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR
LABORATOIRE DE SYSTÈMES MICROÉLECTRONIQUES

PROGRAMME DOCTORAL EN MICROSYSTÈMES ET MICROÉLECTRONIQUE

Suisse
2017

PAR

Juan Sebastian RODRIGUEZ ESTUPIÑAN

Be ashamed to die until you have

won some victory for humanity

— Horace Mann

This work is dedicated to my parents, Maria and Jairo (the roots)

and my beautiful niece Alicia (the future)

Acknowledgements

I would like to start by expressing my deepest and most sincere gratitude to my thesis co-

director Dr. Alain Vachoux for his endless support, dedicated guidance, and motivational

effort which were crucial in the toughest moments of this research. This thesis work would not

have been possible without his advice and patience. I have learned from him many valuable

hard and soft skills very useful in my career. During all these years he has been more than a

supervisor, he has been my mentor, my friend.

My most sincere gratitude to my thesis director Prof. Yusuf Leblebici for the opportunity to

conduct this research in his prestigious laboratory. Likewise, I would like to acknowledge Dr.

Christian Ohler, Dr. Andrea Andenna, and Dr. Gian-Luigi Madonna from ABB Switzerland

Ltd. for allowing me to conduct this research under a close collaboration with the Integrated

Sensor Systems group of ABB Corporate Research in Baden-Dättwil, Switzerland.

I owe a very special and deep gratitude to my thesis supervisor in ABB Dr. Yannick Maret. His

very accurate advice and feedback have been key for the success of this thesis work. I strongly

appreciate his support, dedication, and diplomacy, which were determining to culminate this

work. I cannot forget the enormous support and contribution from Dr. Joris Pascal, he was

one of the precursors of this research topic. I appreciate his guidance and positive feedback. I

would like also to express my gratefulness to Dr. Calogero Bona from ABB, his explanations

and aid were of paramount importance. Additionally, I thank all ABB engineers whom directly

or indirectly participated in my research during all these years.

I express my sincere gratitude to all the jury members of my thesis committee, in special Prof.

Giovanni de Micheli, Prof. Christoph Grimm, and Dr. Marco Mattavelli, for taking the time

to read this dissertation and evaluate my achievements. Let me thank again Prof. Christoph

Grimm for his fruitful feedback and precise critics that helped to complement and emphasize

the impact of this work.

I warmly thank all my colleagues and friends that were or are currently part of the LSM

laboratory: Clemens Nyffeler, Reza Ranjandish, Cosimo Aprile, Jury Sandrini, Kiarash Gharib-

doust, Ömer Çoğal, Behnoush Attarimashalkoubeh, Selman Ergünay, Gain Kim, Mustafa Kılıç,

Jonathan Narinx, Elmira Shahrabi, Kerem Seyid, Vladan Popovic, Sylvain Hauser, Kadir Akın,

Nikola Katic, Giulia Beanato, Alessandro Cevrero, Davide Sacchetto, Hossein Afshari, Armin

i

Acknowledgements

Tajalli, among many others. I was very lucky to have the opportunity to share with them impor-

tant academic moments and/or very special occasions that made my life happier and easier as

a doctoral student in EPFL. My gratitude goes to my friend Dr. Clemens Nyffeler, who helped

me with the German version of the Abstract of this thesis. I highly appreciate the help from

Dr. Armin Tajalli for helping me to understand and solve the stability issues presented in the

model of the 2nd order Σ∆modulator. I am very grateful to the Swiss-Italian-Belgian-Iranian

friends who made part of my lunch and coffee break crew, those were priceless moments of joy.

I also thank my Turkish office mates for the warm and cozy coffee moments and discussions.

I must thank all my friends in Switzerland and abroad who have shared with me precious

instants in this exciting journey and have been a great moral support in the toughest moments.

I would like to thank my friend Fernando Escobar Pacheco for his legal counseling and recom-

mendations. A special message of gratitude goes to Maria Isabel, who was my inspiration and

motivation.

Last but not least, I would like to thank my family, whom has never doubted on my capabilities

and has enormously supported me at all time. They have made sure of making me feel their

presence despite the distance. I owe this triumph to them: to my mother who taught me

dedication and perseverance, to my father who constantly remind me to believe in myself

(he helped me with the edition of several plots of this thesis document), to my brother who

has supported me from the distance, and to my sister who has been there to help me when

nobody else could. I thank my brother Esteban for being an inspiration with his lovely family.

Lausanne, April 21th 2017 Juan Sebastián Rodríguez Estupiñán

ii

Abstract

Constant improvements in science, technology and engineering have allowed to build pro-

gressively smarter and more complex systems which interrelates almost any technical and

scientific domain for a vast amount of industrial applications. However, the overwhelming

complexity of these systems, better known as Cyber-Physical Systems (CPS), imposes a serious

challenge for its design, optimization, testing, manufacturing, and operation. The main cause

of the complexity in CPS is the intrinsic heterogeneity of their subsystems and components,

which drives the need of analyzing cross-domain interactions among them and their environ-

ment.

Although there is a plethora of techniques and methods for CPS design and verification, the

only clear consensus to cope with the increasing complexity and heterogeneity of CPS is the

use of computational models and simulation, i.e. virtual prototyping. The main objective

of virtual prototyping is to allow the analysis of a system, or part of it, from concerned life-

cycle aspects such as the design, optimization, testing, and operation as on a real physical

prototype. Nevertheless, the lack of a well-defined and integrated design methodology and

its related techniques for multi-domain complex systems, is one of the main hurdles for an

effective utilization of virtual prototyping in the system development life-cycle. Model-based

methodologies and integrated simulation frameworks are required to ensure highly demanded

general requirements of CPS such as inherent safety and maximal reliability within a limited

developing time and reduced costs.

In this thesis, the author proposes a circular system development model (O-model) which

considers all the stages in a typical development process for industrial systems. In particu-

lar, the present work shows that the use of virtual prototyping at early stages of the system

development may reduce the overall design and verification effort by allowing the exploration

of the complete system architecture, and uncovering integration issues early on. The mo-

deling techniques of this research are based on VHDL-AMS, yet supporting other modeling

languages such as C/C++, SPICE, and Verilog-AMS, together with integrated simulation tools.

Contrasting with conventional approaches, it is shown that the proposed methodology is

adapted for small-scale CPS design and verification thanks to the modularity and scalability

of the modeling approach. The proposed modeling techniques enable seamlessly the CPS

design together with the implementation of their subsystems. In particular, the contribution

of this work improves the virtual prototyping approach that has been successfully used during

iii

Abstract

the development of smart electrical sensors and monitoring equipment for high and medium

voltage applications. The design of the measurement and self-calibration circuits of a medium

voltage current sensor based on the Rogowski coil transducer is presented as an example.

The proposed small-scale CPS design methodology based on virtual prototyping, namely

VP-based design methodology, uses important theoretical concepts from layered design,

component-based design, and platform-based design. These foundations are the basis to

build a modeling methodology that provides a vehicle that can be used to improve system ve-

rification towards correct-by-design systems. The main contributions of this research are: the

re-definition of the system development lifecycle by using a virtual prototyping methodology;

the design and implementation of a model library that maximizes the reuse of computa-

tional models and their related intellectual property (IP); and a set of VHDL-AMS modeling

guidelines established with the purpose of improving the modularity and scalability of virtual

prototypes. These elements are key for supporting the introduction of virtual prototyping

into industrial companies that can thoroughly profit from this approach, but cannot commit

a specific team to the creation, support, and maintenance of computational models and its

dedicated infrastructure. Thanks to the progressive nature of the proposed methodology,

virtual prototypes can indeed be introduced with relatively low initial effort and enhanced

over time.

The presented methodology and its infrastructure may grow into a bidirectional commu-

nication medium between non-expert system designers (i.e. system architects and virtual

integrators) and domain specialists such as mechanical designers, power electrical designers,

embedded-electronics designers, and software designers. The proper utilization of system-

level modeling and gradual model refinement implemented in a common simulation frame-

work, are among the most important concepts of the VP-based design methodology presented

in this thesis. Specifically, the proposed design methodology advocates the reduction of the

CPS design complexity by the implementation of a meet-in-the-middle approach for system-

level modeling. In this direction, the modeling techniques introduced in this work facilitate

the architectural design space exploration, critical cross-domain variable analysis (especially

important in the component interfaces), and system-level optimization and verification.

Key words: Cyber-Physical Systems, virtual prototyping, model-based design methodology,

system-level modeling and verification, model refinement, modularity and scalability of mod-

els, virtual prototypes, power and industrial automation, VHDL-AMS, system development

lifecycle, product lifecycle management, Industry 4.0

iv

Résumé

L’amélioration constante de la science, de la technologie et de l’ingénierie a permis de

construire progressivement des systèmes plus intelligents et plus complexes qui intercon-

nectent presque tous les domaines techniques et scientifiques pour une vaste gamme d’appli-

cations industrielles. Cependant, la grande complexité de ces systèmes, mieux connus sous le

nom de systèmes cyber-physiques (CPS), impose un sérieux défi pour leur conception, leur

optimisation, leur vérification, leur fabrication et leur fonctionnement. La principale cause de

la complexité dans les CPS est l’hétérogénéité intrinsèque de leurs sous-systèmes et compo-

sants, ce qui conduit à la nécessité d’analyser les interactions entre eux et leur environnement.

Bien qu’il existe une pléthore de techniques et de méthodes pour la conception et la vérifica-

tion des CPS, le seul consensus clair pour faire face à la complexité croissante et l’hétérogénéité

de CPS est l’utilisation de modèles informatiques et de la simulation, c’est-à-dire le prototy-

page virtuel. L’objectif principal du prototypage virtuel est de permettre l’analyse d’un système

ou d’une partie de celui-ci lors des différentes étapes de conception, d’optimisation, de test et

d’exploitation, de la même manière que sur un prototype physique. Néanmoins, l’absence

d’une méthodologie de conception bien définie et intégrée et de ses techniques associées pour

les systèmes complexes multi-domaines est le principal obstacle à une utilisation efficace du

prototypage virtuel dans le cycle de vie du développement de CPS. Des méthodologies basées

sur les modèles et les environnements de simulation intégrés sont nécessaires pour remplir

les exigences, telles qu’une sécurité inhérente et une fiabilité maximale, dans un temps de

développement limité et pour des coûts réduits.

Dans cette thèse, l’auteur propose un modèle circulaire de développement de systèmes appelé

O-model qui tient compte de toutes les étapes d’un processus de développement typique de

systèmes industriels. En particulier, on montre que l’utilisation du prototypage virtuel aux

premiers stades du développement du système peut réduire les efforts de la conception et de

vérification de systèmes en permettant l’exploration de l’architecture complète du système, ce

qui contribue à découvrir des problèmes d’intégration plus rapidement. Les techniques de

modélisation de cette recherche sont basées sur le langage de modélisation VHDL-AMS, mais

supportent aussi des langages tels que C/C++, SPICE et Verilog-AMS, ainsi que des outils de

simulation intégrés. Contrairement aux approches conventionnelles, il est démontré que la

méthodologie proposée est adaptée à la conception et à la vérification de CPS à petite échelle

grâce à la modularité et à l’évolutivité de l’approche de modélisation. Les techniques de mo-

v

Résumé

délisation proposées permettent de concevoir efficacement la conception de CPS ainsi que la

mise en œuvre de leurs sous-systèmes. Particulièrement, la contribution de ce travail améliore

l’approche de prototypage virtuel qui a été utilisée avec succès pour le développement de

capteurs électriques intelligents et d’équipement de surveillance pour les applications à haute

et moyenne tension. Comme exemple d’application principal, on présente la conception des

circuits de mesure et d’autocalibrage d’un capteur de courant de moyenne tension basé sur le

transducteur enroulement de Rogowski.

La méthodologie de conception de CPS à petite échelle utilise des concepts théoriques impor-

tants de la conception stratifiée, de la conception basée sur les composants, et de la conception

basée sur les plate-formes. Ces fondements sont la base pour construire une méthodologie

de modélisation qui fournit un moyen qui peut être utilisé pour améliorer la vérification de

systèmes vers les systèmes corrects par conception. Les principales contributions de cette

recherche sont : la redéfinition du cycle de vie du développement de systèmes en utilisant une

méthodologie de prototypage virtuel ; la conception et la mise en œuvre d’une bibliothèque

de modèles qui maximise la réutilisation des modèles informatiques et de leur propriété

intellectuelle connexe; et un ensemble de directrices de modélisation VHDL-AMS établies

dans le but d’améliorer la modularité et l’évolutivité des prototypes virtuels. Ces éléments

sont essentiels pour soutenir l’introduction du prototypage virtuel dans les entreprises in-

dustrielles qui désirent profiter pleinement de cette approche, mais ne peuvent engager une

équipe spécifique pour la création, le support et la maintenance de modèles informatiques et

de son infrastructure dédiée. Grâce à la nature progressive de la méthodologie proposée, les

prototypes virtuels peuvent en effet être introduits avec un effort initial relativement faible et

améliorés au fil du temps.

Dans ce contexte, la méthodologie présentée et son infrastructure peuvent se transformer en

un moyen de communication bidirectionnel entre les concepteurs de systèmes non spécia-

lisés (c’est-à-dire les architectes des systèmes et les intégrateurs virtuels) et les spécialistes

de domaines tels que les concepteurs mécaniciens, les concepteurs électriques, les concep-

teurs d’électronique embarquée et les concepteurs de logiciels. L’utilisation appropriée de

la modélisation au niveau du système et du raffinement progressif de modèles sont parmi

des concepts les plus importants de la méthodologie de conception proposée. Plus préci-

sément, on préconise la réduction de la complexité par la mise en œuvre d’une approche

de modélisation dénommée «meet-in-the-middle». Dans cette direction, les techniques de

modélisation introduites dans ce travail facilitent l’exploration de l’espace de conception

architecturale, l’analyse critique des variables inter-domaines (particulièrement importante

dans les interfaces des composants) et l’optimisation et la vérification du système.

Mots clefs : systèmes cyber-physiques, prototypage virtuel, méthodologie de conception basée

sur des modèles, modélisation et vérification au niveau du système, raffinement de modèles,

modularité et évolutivité de modèles, prototypes virtuels, automatisation industrielle et de

puissance, VHDL-AMS, gestion du cycle de vie des produits, Industrie 4.0

vi

Zusammenfassung

Durch ständige Verbesserungen in Wissenschaft, Technologie und Ingenieurwesen konnten

schrittweise intelligentere und komplexere Systeme aufgebaut werden, die nahezu alle tech-

nischen und wissenschaftlichen Bereiche für eine Vielzahl von industriellen Anwendungen

miteinander verknüpfen. Allerdings stellt die überwältigende Komplexität dieser Systeme,

besser bekannt als Cyber-Physische Systeme (CPS), eine ernsthafte Herausforderung für deren

Konstruktion, Optimierung, Prüfung, Herstellung und Betrieb dar. Die Hauptursache für die

Komplexität von CPS ist die intrinsische Heterogenität ihrer Subsysteme und Komponenten,

welche die Analyse domänenübergreifender Wechselwirkungen zwischen ihnen und ihrer

Umgebung erforderlich macht.

Obwohl es eine Fülle von Techniken und Methoden für CPS-Design und Verifikation gibt, ist

der einzige eindeutige Konsens, mit der zunehmenden Komplexität und Heterogenität von

CPS fertig zu werden, die Verwendung von Berechnungsmodellen und Simulation, genannt

virtuelles Prototyping. Das Hauptziel des virtuellen Prototyping ist es, die Analyse eines Sy-

stems oder eines Teils davon in Lebenszyklusaspekten wie Design, Optimierung, Test und

Betrieb wie auf einem realen physikalischen Prototyp zu ermöglichen. Dennoch ist das Fehlen

einer wohldefinierten und integrierten Entwurfsmethodologie und der damit verbundenen

Techniken für komplexe Systeme mit mehreren Domänen eine der wichtigsten Hürden für

eine effektive Nutzung virtueller Prototypen im Systementwicklungszyklus. Modellbasierte

Methoden und integrierte Simulations-Frameworks sind erforderlich, um dringend geforderte

allgemeine Anforderungen an CPS wie etwa inhärente Sicherheit und maximale Zuverlässig-

keit innerhalb einer begrenzten Entwicklungszeit und bei reduzierten Kosten zu gewährleisten.

In dieser Arbeit schlägt der Autor ein zirkuläres Systementwicklungsmodell vor, das alle Stadien

eines typischen Entwicklungsprozesses für industrielle Systeme berücksichtigt. Insbesondere

zeigt die vorliegende Arbeit, dass der Einsatz virtueller Prototypen in frühen Stadien der Syste-

mentwicklung den Gesamtentwurfs- und Verifikationsaufwand verringern kann, indem er

die Erforschung der kompletten Systemarchitektur ermöglicht und frühzeitig Probleme bei

der Integration aufdeckt. Die Modellierungstechniken basieren auf VHDL-AMS, unterstützen

aber kompatible Sprachen wie C/C++, SPICE und Verilog-AMS sowie integrierte Simulations-

werkzeuge. Im Gegensatz zu herkömmlichen Ansätzen wird gezeigt, dass die vorgeschlagene

Methodik aufgrund der Modularität und Skalierbarkeit des Modellierungsansatzes für die

CPS-Konstruktion und -Verifikation im kleinen Masstab geeignet ist. Die vorgeschlagenen Mo-

vii

Zusammenfassung

dellierungstechniken ermöglichen eine nahtlose Gestaltung des CPS-Designs und die Imple-

mentierung der Subsysteme. Der Beitrag dieser Arbeit verbessert insbesondere den virtuellen

Prototyping-Ansatz, der bereits erfolgreich bei der Entwicklung von intelligenten elektrischen

Sensoren und Überwachungseinrichtungen für Hoch- und Mittelspannungsanwendungen

eingesetzt wurde. Als Beispiel wird der Aufbau der Mess- und Selbstkalibrierungsschaltungen

eines Mittelspannungsstromsensors anhand des Rogowski-Spulenkörpers vorgestellt.

Die vorgeschlagene, auf dem virtuellen Prototyping basierende CPS-Designmethodik, ver-

wendet wichtige theoretische Konzepte aus Layered Design, Komponenten-basiertem Design

und plattformbasiertem Design. Diese bilden die Grundlage für eine Modellierungsmethodik

als ein Instrument mit dem die Systemverivizierung so verbessert werden kann, dass von

Design aus korrekte Systeme (correct-by-design) realisiert werden können. Die Hauptbeiträ-

ge dieser Forschung sind: die Neudefinition des Systementwicklungs-Lebenszyklus durch

eine virtuelle Prototyping-Methodik; Die Konzeption und Implementierung einer Modell-

bibliothek, die die Wiederverwendung von Berechnungsmodellen und des damit verbun-

denen intellektuellen Eigentums (intellectual property, IP) maximiert; Und eine Reihe von

VHDL-AMS-Modellierungsrichtlinien mit dem Ziel der Verbesserung der Modularität und

Skalierbarkeit von virtuellen Prototypen. Diese Elemente sind der Schlüssel, um industri-

elle Unternehmen bei der Einführung von virtuellem Prototyping zu unterstützen, die von

diesem Ansatz zwar profitieren können aber nicht die Möglichkeit haben ein eigenes Team

zur Erstellung, Unterstützung und Wartung der Berechnungsmodelle und deren dedizierter

Infrastruktur aufzustellen. Dank der progressiven Art der vorgeschlagenen Methodik können

virtuelle Prototypen tatsächlich mit relativ niedrigem Anfangsaufwand eingeführt und im

Nachhinein fortlaufend verbessert werden.

Die dargestellte Methodik und ihre Infrastruktur können zu einem bidirektionalen Kom-

munikationsmedium wachsen, anhand dessen weniger nicht-spezialisierte Systemdesigner

(d.h. Systemarchitekten und virtuelle Integratoren) mit Domänenspezialisten wie zum Bei-

spiel mechanischen Konstrukteuren, Leistungselektronik-Designern, Embedded-Elektronik-

Designern und Software-Designern zusammenwirken können. Die ordnungsgemäße Nutzung

der Modellierung auf Systemebene und die schrittweise Verfeinerung der Modelle innerhalb

eines gemeinsamen Simulationsrahmens gehören zu den wichtigsten Konzepten der VP-

basierten Design-Methodik. Insbesondere fördert die vorgeschlagene Entwurfsmethodologie

die Verringerung der CPS-Entwurfskomplexität durch die Implementierung eines meet-in-

the-middle-Ansatzes für die Systemebenenmodellierung. In dieser Richtung erleichtern die

in dieser Arbeit eingeführten Modellierungsverfahren die architektonische Entwurfsraumer-

kundung, die domänenübergreifende analyse kritischer Variablen (besonders wichtig in den

Komponentenschnittstellen) und die Optimierung und Verifikation auf Systemebene.

Stichwörter: Cyber-Physikalische Systeme, virtuelles Prototyping, modellbasierte Designme-

thodik, Modellierung und Verifikation auf Systemebene, Modellverfeinerung, Modularität und

Skalierbarkeit von Modellen, Produktlebenszyklusmanagement, Industrie 4.0

viii

Contents

Acknowledgements i

Abstract (English/Français/Deutsch) iii

Table of contents xii

List of figures xiii

List of tables xvii

Acronyms xix

Glossary xxiii

1 Introduction 1

1.1 Context and problem description . 1

1.2 Main objectives and rationale . 3

1.3 Focus and application . 4

1.4 Motivation for system-level modeling . 5

1.5 Document organization . 6

2 State of the art 9

2.1 The V-model . 9

2.2 Layered Design . 10

2.3 Component-based Design . 11

2.4 Model-based Design . 12

2.5 Modeling languages and tools . 13

2.6 Platform-based Design . 16

2.7 Contract-based Design . 17

2.8 Product lifecycle management (PLM) . 18

2.9 Industry 4.0 . 19

3 The VP-based design methodology 21

3.1 Design methodology foundations . 21

3.1.1 Layered and component-based design . 21

3.1.2 Platform-based design . 22

ix

Contents

3.1.3 System-level modeling . 24

3.2 Model refinement . 25

3.3 Design methodology elements . 28

3.4 Simulation framework . 30

3.5 The VP-Modeling Guidelines . 31

3.5.1 Mapping in configurations . 43

3.6 The VP-Model Library . 47

3.6.1 Issues and objectives . 48

3.6.2 Model metadata . 49

3.7 Conclusions . 51

4 The Rogowski coil sensor system 53

4.1 System description . 53

4.2 The electro-thermal modeling of the Rogowski coil sensor 57

4.2.1 Rogowski coil sensor system assumptions 57

4.2.2 Electrical model of the Rogowski coil . 59

4.2.3 Rogowski coil electrical model adaptation 61

4.2.4 Busbar thermal model . 63

4.2.5 Thermal coupling model . 64

4.2.6 Heat transfer modeling . 66

4.2.7 Equation-based model extraction for the Rogowski coil thermal coupling 78

4.2.8 VHDL-AMS electro-thermal Rogowski coil simulation and analysis . . . 80

4.3 The self-calibration unit of the Rogowski coil sensor 83

4.3.1 Self-calibration method . 83

4.3.2 The SCU virtual prototype . 86

4.4 The current measurement unit of the Rogowski coil sensor 104

4.4.1 Equations for the primary current estimation 105

4.4.2 The CMU virtual prototype . 107

4.5 The Virtual prototype of the Rogowski coil sensor system 126

4.6 Conclusions . 130

5 The circular system development model 133

5.1 Abstract . 133

5.2 Introduction . 134

5.3 The O-model . 135

5.3.1 System definition . 137

5.3.2 System-level design . 141

5.3.3 Subsystem-level design . 147

5.3.4 System verification . 151

5.3.5 Physical system validation . 153

5.3.6 System manufacturing . 154

5.3.7 System commissioning . 154

5.3.8 System maintenance . 154

x

Contents

5.4 Model maintenance . 155

6 Conclusions and future work 161

6.1 Future work . 164

A Appendix A - ABB Rogowski coil specifications 167

A.1 KEVCR core dimensions . 167

A.2 KEVCR parameters . 168

A.3 KEVCR datasheet . 168

A.4 KECA core dimensions . 173

A.5 KECA parameters . 174

A.6 KECA datasheet . 174

B Appendix B - Model equations 179

B.1 Equations of the Rogowski coil electrical model 179

B.2 Principles of conductor temperature determination 182

B.2.1 Heat balance . 182

B.2.2 IEEE STANDARD 738 – 2006 . 184

B.2.3 Equivalent lumped-element circuit model of a Busbar conductor 186

C Appendix C - Source code 187

C.1 Sigma-Delta ADC . 187

C.1.1 Simple 1st Order Σ∆ configuration . 189

C.1.2 Simple 2nd Order Σ∆ configuration . 190

C.1.3 Sigma-Delta modulator . 190

C.1.4 Sinc3 digital filter . 198

C.2 Instrumentation amplifier (INS_AMP) . 199

C.3 Non-ideal Operational Amplifier (OPAMP) . 200

C.4 Polynomial curve fitting algorithm script . 203

D Appendix D - Generic parameter mapping 207

E Appendix E - Parametric and statistical simulations in VHDL-AMS 211

E.1 Monte Carlo simulations . 211

E.1.1 Uniform distribution . 213

E.1.2 Normal distribution . 214

E.1.3 Piecewise linear distribution given as PDF 215

E.1.4 Bernoulli distribution . 215

E.2 Parameter sweep simulations . 216

E.3 Defining custom statistical distributions . 221

F Appendix F - VP-Model Library implementation 223

F.1 Database implementation and deployment . 223

F.1.1 VP-Model Library actors . 223

xi

Contents

F.1.2 IP security . 225

F.1.3 File repository setup . 226

F.2 VP-Model Library structure . 227

F.2.1 Model views . 228

F.2.2 Test Benches view . 239

F.2.3 Example Results and Application Notes . 243

F.2.4 Custom packages view . 244

F.3 Modeling request . 246

Bibliography 249

Curriculum Vitae 259

xii

List of Figures

1.1 V-model diagram . 2

3.1 Platform-based design diagrams. 23

3.2 VP Block Diagram . 33

3.3 Conceptual diagram of a test bench and its DUV. 34

3.4 Component declaration and instantiation code fragment example. 35

3.5 Configurations inside configurations source code examples. 36

3.6 Assertion code fragment . 38

3.7 Package and test bench code fragment . 39

3.8 big_comp parameter packages source code. 40

3.9 Pacakge from configurations code . 41

3.10 Logical component encapsulation example . 42

3.11 OpAmp example . 45

3.12 Port mapping example . 46

3.13 Port mapping configuration example . 47

4.1 Rogowski Coil Sensors . 54

4.2 Conceptual diagram of the Rogowski coil sensor system 55

4.3 SCU closed loop measurement principle . 56

4.4 Block diagram of the Electro-Thermal model of the Rogowski coil 58

4.5 Rogowski Coil symmetric 3Loops model . 59

4.6 Rogowski coil impedance experimental vs. simulation results 60

4.7 Rogowski Coil asymmetric 1Loop model . 60

4.8 RLC and RL approximated electrical models of the Rogowski coil. 61

4.9 Fraction of the VHDL-AMS code of the RogoCoil’s electrical model. 62

4.10 VHDL-AMS dynamic resistor model. 63

4.11 Equivalent lumped-element circuit model of the Rogowski coil’s thermal network 64

4.12 RC 3D Geometry . 65

4.13 Unidimensional radial heat flow . 66

4.14 Rogowski coil geometry . 69

4.15 Cross-sectional view of the 2D axisymmetric RogoCoil model geometry. 69

4.16 2D Geometry Meshing . 73

4.17 Mesh quality statistics KEVCR . 74

xiii

List of Figures

4.18 3D temperature plots of the KEVCR CHT model. 75

4.19 3D air velocity plots of the CHT model. 76

4.20 CHT and SHT transient simulation. 77

4.21 SHT static simulation . 77

4.22 Estimation of τmi n and τmax . 79

4.23 Temperature (°C) vs. Time (hours), ETRCM transient simulations. 81

4.24 ETRCM transient simulation . 82

4.25 Self-calibration method schematic and equations. 84

4.26 SCU VP architecture. 87

4.27 Bode diagrams of a 3r d order Sallen-Key active LPF. 88

4.28 RMS-to-DC functional design entity source code. 90

4.29 RMS-to-DC implicit computation architectures. 91

4.30 Modular approach for model refinement. 91

4.31 ADC functional modeling. 92

4.32 Σ∆ ADC architectures. 93

4.33 Sinc3 digital filter topology code. 94

4.34 RTL Sinc3 digital filter basic blocks. 95

4.35 Frequency response of the Sinc3 digital filter with M = 1024. 95

4.36 SCU VP modeling structure. 96

4.37 SCU VP (Ideal Autocalibration) transient simulation. 97

4.38 SCU VP (Ideal 2nd Order Σ∆ ADC) transient simulation. 98

4.39 SCU VP (Simple 1st Order Σ∆ ADC) transient simulations. 100

4.40 Impedance response simulation for the RogoCoil asymmetric 1Loop model. . . 100

4.41 SCU and RogoCoil physical prototypes. 101

4.42 KECA250B1 plots: experimental and virtual Rcoi l and Lcoi l SCU estimation as a

function of the primary current. 102

4.43 KEVCR17.5CA1 plots: experimental and virtual Rcoi l and Lcoi l SCU estimation

as a function of the primary current. 104

4.44 Rogowski coil symmetrical Thevenin equivalent circuit and its load 107

4.45 Conceptual block diagram of the CMU VP. 108

4.46 Transient response of the RogoCoil asymmetric 1Loop model. 109

4.47 CMU VP transient simulations using the reference calculation model. 110

4.48 Conceptual CMU Analog architecture. 111

4.49 Analog Integration block architecture and the opamp(simple) simple model. . 112

4.50 Differential amplifiers VHDL-AMS entity declaration. 113

4.51 Conceptual CMU Digital architecture. 114

4.52 Functional and Software model implementations of the Digital Integration block.116

4.53 Code of the Hardware model implementation of the Digital Integration block. . 117

4.54 Maximum estimated errors in the output signals of the CMU VP. 118

4.55 Analog CMU VP transient simulations at reduced ADC DNR. 119

4.56 Input and output voltages of the Analog Integration block. 119

4.57 Effect of the ADC resolution on the current estimation of the Digital CMU VP. . 120

xiv

List of Figures

4.58 Input and output signals of the Digital Integration block. 120

4.59 Analog CMU VP simulation results at two corner ADC frequencies. 121

4.60 Transient simulations at FADC = 500 Hz for all the integration methods of the

Digital CMU VP. 122

4.61 Transient simulation at FADC = 500 Hz for the Digital CMU hardware configura-

tion. 123

4.62 Transient simulations of the CMU VP showing a DC shift in the primary current

estimation. 124

4.63 Transient simulation of the Analog CMU architecture (Behavioral_refined CMU

configuration). 126

4.64 RCSS VP complete architecture block diagram. 127

4.65 High-level block diagram of the RCSS VP. 129

5.1 Circular system development model (O-model) 135

5.2 System definition diagram . 137

5.3 System-level design diagram . 142

5.4 Rogowski coil and its analog current measurement unit 146

5.5 Subsystem-level design diagram . 148

5.6 System verification stage diagram . 151

5.7 Model maintenance flow . 156

A.1 KEVCR core schematics . 167

A.2 KECA core schematics . 173

B.1 Rogowski coil technical drawing. 179

D.1 Generic mapping principles . 207

D.2 Generic mapping application example . 208

E.1 Resistive Voltage Divider . 212

E.2 test_stat architecture of the RVD Test Bench 213

E.3 Uniform Distribution RVD . 214

E.4 Normal Distribution RVD . 214

E.5 PWL-PDF Distribution RVD . 215

E.6 Bernoulli Distribution RVD . 216

E.7 Sweep function declaration for Monte Carlo Simulation 217

E.8 Sweep function declaration for standard parametric simulation 217

E.9 test_param architecture of the RVD Test Bench 218

E.10 Vout vs. R2 parameter sweep simulation . 219

E.11 NestedSweep function declaration for MC simulations 219

E.12 test_nested architecture of the RVD Test Bench 220

E.13 RVD nested sweep surface plot . 221

E.14 Exponential distribution function . 222

E.15 Exponential Distribution RVD . 222

xv

List of Figures

F.1 Relationship graph of the VP-Model Library database. 224

F.2 IWP Home Page . 225

F.3 Model_library folder . 226

F.4 Detailed view . 228

F.5 Ports portal . 232

F.6 Execution Capabilities portal . 235

F.7 Block Diagram portal . 236

F.8 VP Dependencies portal . 236

F.9 Verification portal . 237

F.10 Tool Dependencies portal . 238

F.11 References portal . 239

F.12 Test benches view . 240

F.13 SMASH portal . 242

F.14 Test bench configurations portal . 243

F.15 Custom packages view . 244

xvi

List of Tables

4.1 KEVCR global parameters. 71

4.2 Sweep parameter range. 78

4.3 Curve fitting coefficients for the KEVCR coils. 80

4.4 Self-calibration unit algorithm. 86

4.5 Text format for the input file of the transfer function multipurpose filter model. 89

4.6 Parameters of the transfer function multipurpose filter model. 89

4.7 Σ∆ ADC characteristics. 96

4.8 Summary of the Lcoi l and Rcoi l estimation errors. 99

4.9 Design Topics of system-level virtual prototyping for the CMU design. 108

4.10 Main equations of the CMU functional component models. 111

4.11 Digital integration methods of the Digital Integration model. 115

4.12 CMU VP default parameters and simulation conditions. 117

4.13 Preliminary strengths and weaknesses of the Analog and Digital CMU architec-

tures. 125

4.14 RCSS VP packages and main configurations. 129

A.1 KEVCR parameters. All the values are taken at 25 °C. 168

A.2 KECA parameters. All the values are taken at 25 °C. 174

xvii

Acronyms

0-Series zero series.

ADC analog-to-digital converter.

AMR anisotropic magneto-resistor.

AMS analog and mixed-signal.

API application programming interface.

ASIC application specific integrated circuit.

AVG Average.

CAD computer-aided design.

CAE computer-aided engineering.

CHT conjugated heat transfer.

CMRR common mode rejection ratio.

CMU current measurement unit.

CPS Cyber-Physical Systems.

CRESTF crest factor.

CT current transformer.

DDF dynamic dataflow.

DSP digital signal processor.

DUV design under verification.

EDA electronic design automation.

EMC electro-magnetic compatibility.

xix

Acronyms

EMI electro-magnetic interference.

ENOB effective number of bits.

ETRCM electro-thermal Rogowski coil model.

FDTD finite-difference time-domain.

FEA finite element analysis.

FEM finite element method.

FFT fast Fourier transform.

FIR finite-impulse response.

FIT finite integration technique.

FPGA field-programmable gate array.

FSM finite state machine.

GMI giant magneto-impedance.

GUI graphical user interface.

HPF high-pass filter.

HV high voltage.

ID identifier.

IED intelligent electronic device.

IIR infinite-impulse response.

IoT internet of things.

IP intellectual property.

IWP instant web publishing.

LPF low-pass filter.

LSB least significant bit.

MBD model-based design.

MC Monte Carlo.

xx

Acronyms

MDD model-driven design.

MoC model of computation.

MoM method of moments.

MRF model registration form.

MV medium voltage.

O-model circular system development model.

OpAmp operational amplifier.

P2P peak-to-peak.

PBD platform-based design.

PDF probability density function.

PLM product lifecycle management.

PMP primary model parameter.

PN process network.

PSRR power supply rejection ratio.

RCSS Rogowski coil sensor system.

RMS root mean square.

RogoCoil Rogowski coil.

RVD resistive voltage divider.

SCU self-calibration unit.

SDF synchronous dataflow.

SHT simplified heat transfer.

SMP secondary model parameter.

SNR signal-to-noise ratio.

TBC test bench configuration.

TLM transmission-line matrix.

xxi

Acronyms

VCS version control system.

VP virtual prototype.

VSB Voltage Sensing Block.

xxii

Glossary

abstraction level

it refers to the level of details that are used to model a particular entity or system. In other

words, the abstraction level indicates how accurate a computational mockup models the real

entity/system. Since there can be an undetermined amount of abstractions for a model, it is

unpractical to exactly distinguish between models with different abstraction levels. Instead,

this work considers 3 main level classes, from less to more refined abstractions: functional

models, behavioral models, and physical models.

back-annotation

this is the process of retrofitting some or all parameter values of a model, after their measure-

ment using the physical implementation of the system/component that is represented by

such model.

behavioral model

a medium-level abstraction that describes the functionality of a system by taking into account

some non-idealities and critical variables that affect the system behavior.

component model

it is a model of an individual well-defined entity/component that composes a system. A

component model can also be hierarchical in nature, i.e. it can be composed of other more

basic component models.

computational mockup

a digital representation of a physical entity, system, or phenomenon. It can also be a computa-

tional model that executes a certain algorithm.

conditioned model

a conditioned model must be understood as the type of model which offers a high degree of

trustfulness: it is clear and well-written, it is properly documented, it is accompanied by at

least one verification proof (e.g. a test bench) of its functionality, and possibly some behaviors

according to its refinement level.

xxiii

Glossary

Cyber-Physical Systems

a combination of software, hardware, and physical processes which together form a complex

multi-domain system with feedback loops where physical processes affect software computa-

tions and vice versa.

design space exploration

it refers to the activity of discovering and evaluating potential system architecture topologies

that can be implemented to perform certain functionality. The design space exploration

involves the exploration of different system components, the functional and performance

evaluation of the studied architectures, and the selection of the best system architecture

according to system requirements and specifications.

functional model

a high-level abstraction that mainly describes the functionality of a system.

functional space

represents the list of functionalities, specifications, requirements, conditions, and constraints

of a specific system or component.

hierarchical parameter binding

this is a VHDL-AMS modeling technique which consists on binding all the generic parameters

of the components of a hierarchical component model or VP to the highest level design entity,

normally the test bench. This is done by forming a hierarchical structure in which each

generic parameter of every component in the design is declared and bound in the subsequent

higher level design entity via generic mapping in the component instantiation. This modeling

technique is compatible with all types of simulation analysis but is only recommend for

models with a low number of generic parameters.

instant web publishing

it is a practical method to publish a database on-line using FileMaker server. This method is

compatible with the most popular web browsers in Windows, Linux, and MAC computers. All

that is required is an internet or an intranet connection to view, edit, sort, or search records in

the published database, according to the different access privileges that may have the users.

instrument transformer

they are high accuracy class electrical devices used to isolate or transform voltage or current

levels. The most common usage of instrument transformers is to operate instruments or

metering from high voltage or high current circuits, safely isolating secondary control circuitry

from the high voltages or currents. The primary winding of the transformer is connected to

the high voltage or high current circuit, and the meter or relay is connected to the secondary

circuit.

xxiv

Glossary

model characterization

the model characterization consists on modifying or including new parameters in the model

in order to correct the differences between the simulation and the experimental results.

model implementation

it is a specific way to implement the functionalities, behaviors, and interactions of a model.

From a VHDL-AMS point of view, a model implementation is a design entity (entity + architec-

ture). A model interface (an entity) can be implemented in different ways by using different

architectures.

model of computation

it is the definition of the collection of authorized operations used in computation and their

respective costs. These set of rules can be used to classify types of models. The complexity of

an algorithm in memory space and/or execution time can be measured by assuming a certain

model of computation; additionally, it is possible to analyze the computational resources

required or to discuss the limitations of algorithms or computers.

model refinement

the process of lowering the abstraction level of a model, e.g. from purely ideal model descrip-

tions down to physical and detailed descriptions that model the system/component more

accurately.

model registration form

it is a light copy of the VP-Model Library which contains few model entries as examples,

and database writing privileges for contributors. Model registration forms are used for both

submitting modeling requests and for collecting all type of modeling elements and their

respective documentation.

model scalability

the scalability of a model refers to the model capability to become more complex, either by

using the model in a larger model or by model refinement.

model signature

the signature of a model is defined by the amount and the type of parameters and ports (i.e.

input, output, or bidirectional) in a model. It is similar to the type signature of a function.

model validation

comparison of experimental results against simulation results. A model of a component

or a system is validated when the simulation results are consistent with the experimental

data. The simulation results and the experimental data do not need to exactly match for

model validation. Slight corrections can be performed to the model, this is called model

characterization.

xxv

Glossary

model verification

this is the process of establishing the correct functionality, behaviors, performance, and

reliability of a model. In other words, it is the process of confirming that the model meets the

desired specifications and requirements under a set of assumptions initially given. This can be

seen as the virtual testing of the system/component which is represented by a computational

mockup.

modeling element

a modeling element is a piece of instructions and specifications that are required to build

models and their virtual verification environments using the VHDL-AMS simulation frame-

work. The different types of modeling elements are component models, virtual prototypes, test

benches, test cases, and simulator setups.

modularity

is the property that makes possible the inclusion of new behaviors in a model by coupling

with the preexistent behaviors and functionality. A high modularity implies a minimum effort

for including new behaviors.

physical model

a low-level abstraction that describes the functionality and the behavior of a system in a very

accurate way. These type of models are the closest descriptions to the entities that are modeled.

They normally consider the intrinsic physical phenomena and the physical interactions of the

entity with the environment.

platform

in platform-based design (PBD) theory, a platform is defined as a library of components that

can be assembled to generate a design at a certain abstraction level. The designs on each

platform are represented by platform-specific design models.

primary model parameter

this is a constant parameter that is available at the interface of the model with the purpose

of modeling certain behavior and/or functionality. This type of parameter does not depend

on other internal parameters inside the model. In order to make it accessible from a top level

design unit, it must be expressed as a VHDL-AMS generic parameter in the entity declaration

of the model.

refinement level

abstraction level.

Rogowski coil

a Rogowski coil is a toroidal coil wrapped around a non-ferromagnetic core. The Rogowski coil

can be used as an electrical instrument for measuring alternating current; for that purpose, the

xxvi

Glossary

Rogowski coil is located around a primary conductor (also known as Busbar) whose current

intensity is intended to be measured. It delivers a voltage proportional to the derivative of the

measured current.

secondary model parameter

this is a parameter which its value is derived or computed from other primary or secondary

model parameters. A secondary model parameter is normally expressed as a VHDL(-AMS)

constant inside the model architecture, it is used to model particular functionalities and/or

behaviors.

simulation condition

this is a particular condition fixed by one or multiple simulator parameter values and/or

directives related to the type of simulation, the simulator integration methods, and other

related simulator settings affecting the numerical precision and accuracy of the simulation

result.

simulation framework

the set of simulation tools, modeling languages, and related infrastructure that allows to create,

manipulate, and simulate computer-based models.

simulator setup

it is a set of specifications that the simulator tool uses for executing a particular type of

simulation/s. The simulation results directly depend on these specifications, which are critical

for simulation performance and accuracy. These specifications are commonly gathered in a

simulator file (e.g. the .pat file in SMASH), some of these specifications are tool-independent,

such as the maximum time step (Hmax) for time-domain simulations and the integration

method algorithm (e.g. Trapezoidal, Backward Euler, etc.).

switchgear

a switchgear is the combination of electrical disconnect switches, fuses or circuit breakers used

to control, protect, and isolate electrical equipment. A Switchgear is used either to de-energize

equipment for maintenance or to clear faults downstream. This type of equipment is directly

linked to the reliability of the electricity supply.

technology space

a limited selection of all possible technologies that can be used for a specific application.

test bench

it is a verification model that recreates the operation conditions of a particular model that

is subject to verification, i.e. the design under verification (DUV). The test bench provides

to the DUV its inputs. It also might provide parameter values to the DUV, and/or additional

algorithms for post-processing the output signals of the DUV.

xxvii

Glossary

test case

it is the virtual verification structure that is created for the design under verification (DUV).

A test case of a DUV is composed by a particular test bench, a specific DUV - test bench cus-

tomization environment (i.e. particular parameter values and component interconnections)

organized in one or several VHDL-AMS packages and configurations, and the set of simulator

directives. A test case represents a specific testing scenario. A test case can be focused for

verifying either a component model or a particular configuration of a large and complex VP.

verification condition

specific parameter values that represent real design conditions of the system and/or its compo-

nents. Environmental and multi-domain parameters are also part of the verification conditions

when the effect of the physical phenomena is properly included in the model.

virtual prototype

a modular and hierarchical computational model that describes the functionalities and beha-

viors of a complex system including the interaction within its environment. A virtual prototype

is often composed of several component models at different abstraction levels.

virtual prototyping

it is the use of modeling and simulation techniques for the construction, verification, and

validation of VPs and all its related models. It makes use of any kind of CAD and/or CAE

software to model, simulate, analyze, and verify a system or part of it from concerned life-cycle

aspects such as design, optimization, testing, and operation as on a real physical prototype.

zero series

this is the first final system/product that is fabricated before mass production and commer-

cialization. The 0-Series is used for the final operational and environmental tests of the

system/product.

xxviii

1 Introduction

1.1 Context and problem description

Constant improvements in technology, science, and engineering have allowed building incre-

asingly smarter and complex systems in almost any technical and scientific domain. These

new type of heterogeneous systems, better known as Cyber-Physical Systems (CPS) are, by

definition, combinations of software (i.e. algorithms for control and execution), hardware

(e.g. embedded electronics, mechanical parts, sensors and actuators), and physical processes

(i.e. thermal, chemical, optical, mechanical, electrical, etc.) which together form a system

with feedback loops where physical processes affect software computations and vice versa [1].

The implicit bidirectional cyber-physical coupling must be steadfastly controlled, adjustable,

accurate, and predictable, offering exceptional opportunities for new services and applications

in our society [2]. Furthermore, CPS techniques and tools offer a tremendous opportunity

to improve classical systems such as vehicles, buildings, and airplanes, and create a new

generation of intelligent and autonomous systems. However, the increasing complexity of

the components and the use of more advanced technologies in every domain pose a major

challenge to ensure safety and reliability within a limited developing time and reduced cost

[3, 4].

In the last decade, ongoing research on CPS has been carried out for multiple industrial appli-

cations and using different approaches to cope with the design and verification of complex

systems of systems. Most of the efforts in the subject are oriented to large scale CPS, which are

those large systems in which the elements of computation, control and networking domains

(i.e. the cyber elements) are strongly interrelated with the physical processes and human inter-

action. Some of the most important examples of large CPS are: critical infrastructures such as

smart grids, smart buildings, security systems for terrorism or extreme weather conditions;

and transportation systems, such as smart vehicles and aircrafts. Additionally, CPS can also be

of smaller scale, such as robotic platforms, wearable and implantable medical sensor systems

for healthcare, and smart sensors and actuators for power applications. Nonetheless, all CPS

systems share the same challenges and problems emerging from the heterogeneity of both

1

Chapter 1. Introduction

components and interactions regardless the size of the system. The divergent intellectual

and technical traditions of the diverse engineering fields make the fast assessment of design

alternatives an outstandingly hard task [5].

Traditional system design and development approaches have been developed to deal with

complexity, such as the well-known V-model shown in Figure 1.1. The classical V-model, which

is based on early system decomposition and later construction, has been used for years in

several types of industries, from semiconductor to mechatronic design. Each subsystem is

first designed and optimized by different designers/groups or even different companies; later

the subsystems are connected together in a heuristic and ad hoc way, this is conventionally

done in CPS consortia, for example in automotive and avionics vertical supply chains [6].

The early decomposition encourages to divide the system into smaller subsystems at the

earliest stage of the design. The method to cope with the system’s complexity consists in

designing, verifying, and optimizing independently the subsystems by their respective domain

of expertise. For example, for industrial automation systems, the division is often done by areas

of expertise such as sensors and actuators, power management, analog and digital electronics,

embedded software, communication and networking, etc. Later on, the subsystems are

physically fabricated, tested, and later integrated to build the complete system, see Figure

1.1. However, as the systems are getting gradually more complex, this approach is becoming

less efficient. A very early system design partition does not contribute to the analysis and

understanding of the interactions among the subsystems of different domains; and therefore,

producing great difficulty to integrate complex parts and leading to design errors and sub-

optimal designs.

Figure 1.1: Classical V-model diagram.

Multiple non-desired iterations from the system integration stage to the former design stages

are required when design errors are detected at advanced stages. The problem can even

2

1.2. Main objectives and rationale

be worst in terms of safety and costs when the design errors are not detected in the system

testing stage, see Figure 1.1. Faulty products could be manufactured and commercialized, this

represents high financial losses for the companies.

Among the plethora of techniques and methods that can be applied to CPS design and verifica-

tion, this work is focused on the use of computational models and simulation. This approach

has been called differently in the literature: model-based design (MBD) [7], computer-aided

design (CAD) [8], model-driven design (MDD) [9], computer-automated design [10], computer-

aided engineering (CAE) [11]. We refer to this strategy as virtual prototyping or VP-based

design. The core of the issue is not exclusively about developing new tools for CPS design

and system integration, although they are key to make progress in the state of the art in CPS

design and verification, it is the comprehension of design principles, system requirements,

and capabilities of the modeling languages, what it is required to change the classical system

design methodologies and the dynamics of the system integration [6].

Classically, modeling and simulation techniques have evolved independently as they have

different specific goals for design and verification in particular domains and applications.

For example, digital hardware description modeling techniques used for application specific

integrated circuit (ASIC) design [12] are quite different than the modeling techniques used for

gas turbine design [13]. This poses a major challenge for a unified system design approach

using an integrated framework that properly addresses all the needs of the design of a complex

system including its subsystems. Consequently, a complete architectural analysis and virtual

verification of the entire system is not undertaken as it is viewed as too time-consuming

and impractical. However, since companies involve with CPS development are struggling

to guarantee safety and reliability of every time more complex multi-domain systems, it is

essential for these companies to perceive an adequate design methodology and tools on their

critical path. The design of next generation systems requires a correct understanding of the

role of high-level abstractions in the development process and the current capabilities and

limitations of simulation tools and modeling techniques [14]. The analysis, optimization,

and verification of CPS demand robust and effective virtual prototyping methodologies and

simulation tools to reduce the development time and costs and improve safety.

1.2 Main objectives and rationale

In this thesis, the author presents a conceptual system development model, called the circular

system development model (O-model), which considers all the stages of the development of

industrial CPS, and in particular, describes how to use a systematic VHDL-AMS virtual proto-

typing methodology for improving the design and verification of small-scale CPS for power

automation applications. The proposed methodology, hereafter called the VP-based design

methodology, consists of a set of modeling and operational elements that are used to allow

and improve the design space exploration of the complete system, early system integration

analysis and early error detection (especially in the component interfaces), verification and

3

Chapter 1. Introduction

optimization at the system level. It is not the same analyzing and optimizing a system as a

whole from the earliest stage of the design than interconnecting a set of individually optimized

components to compose a system at a later stage of the design.

This work describes and details two main operational elements of the VP-based design metho-

dology that are of great importance to achieve the aforementioned objectives:

The VP-Model Library: It is a centralized database for storing, documenting, maintaining,

and queering modeling elements at different abstraction levels. Its main goal is to provide an

environment for maximizing the reuse of models among system and subsystem designers.

Although the VP-Model Library supports the inclusion of models written in different languages,

its structural organization is mainly focused on supporting VHDL-AMS models.

The VP-Modeling Guidelines: They are a set of VHDL-AMS modeling recommendations

and techniques that are focused on supporting the creation of complex hierarchical models

––virtual prototypes (VPs) ––and their verification models ––test benches ––. These guidelines

are based on the application of a meet-in-the-middle approach for conducting system-level

modeling and simulation. It is shown how these guidelines improve the modularity and

scalability of the models. During this research, multiple VHDL-AMS techniques were explored

and evaluated using different design approaches which are suitable for particular design and

verification cases. However, the modeling guidelines presented in this document are only

addressed to system designers who wants to perform design space exploration and gradual

model refinement.

1.3 Focus and application

The concepts and techniques proposed in this research are focused to small-scale CPS in

the power automation sector. The interest of this work has been specially dedicated to the

design of smart electrical sensors and actuators for measuring and protection of electrical

power generation and distribution systems. Adding smart features such as self-calibration, au-

tonomous failure and wearing monitoring to these type of systems contributes to a significant

overall improvement of the energy efficiency and cost reduction in power infrastructures. The

VP-based methodology has been the result of extensive modeling and simulation activities

for industrial products and systems in the power automation sector. Specifically, the author

of this thesis has contributed in virtual prototyping of complex heterogeneous systems such

as the ablation monitoring system for high-voltage generator circuit breakers [15], electrical

voltage and current sensors based on electro-optical voltage transducers [16] and Rogowski

coil transducers [17] for medium voltage (MV) and high voltage (HV) applications.

Particularly, this thesis describes the virtual prototyping of a Rogowski coil (RogoCoil) elec-

trical sensor system for current measurement in the MV range. The main purpose of this

application example is not the sole design of the sensor system, but the identification of

the issues, challenges, and requirements of the proposed virtual prototyping approach for

4

1.4. Motivation for system-level modeling

small-scale CPS design and verification. In this way, the presented Rogowski coil (RogoCoil)

sensor system example illustrates a very refined multi-domain modeling of the RogoCoil

subsystem using combination of geometrical finite element analysis (FEA) and VHDL-AMS

models. Additionally, the design of the other parts of the system and the final VP of the

complete RogoCoil sensor system is shown to illustrate the system-level modeling that is

advocated in the proposed methodology using higher abstraction level models and gradual

model refinement. This virtual prototyping example is used to clarify concepts given in the

proposed system development stages for virtual design and verification using the O-model in

chapter 5.

1.4 Motivation for system-level modeling

In order to properly model the interactions of the system components, it is required to use

component models with correct interfaces that accurately represents the most critical variables

and behaviors among the components and their environment. However, a large number of

variables and component interconnections obstruct the design, simulation, maintenance,

and re-utilization of both simple and complex component models in a large VP. Additionally,

the computational burden of simulating large models can be very high, and consequently

time-prohibitive. This issue can be faced by rising up the abstraction level of the models; and

therefore, reducing the complexity of the whole VP. This can be very convenient at the early

stages of the design since it enables the system designers to perform functional verification at

the system level. These type of simulations are useful for two principal purposes as follows:

System design: The design of a system implies obtaining an interconnection of compo-

nents (system architecture) which performs the desired functionality under a set of constraints

and conditions. Indeed, this is defined as the design space exploration activity.

System verification: This is the process of establishing the correctness of the design. Com-

monly, verification and validation are taken as separate concepts, where verification activities

are focused to proof whether the system fulfills the given specifications (e.g. the accuracy

and precision level of a sensor), and validation activities are concentrated to corroborate that

the behavioral and other non-functional properties of the system meet the requirements and

expectations [18] (e.g. the correct operation of a sensor under a certain temperature drift

and/or electro-magnetic noise level).

Since the purpose of virtual prototyping is to verify the correctness of the functional and non-

functional aspects of the system design (i.e. the fulfillment of requirements, specifications,

and proper operation in the application context), in this work the verification concept involves

the traditional definition of both verification and validation as it is previously mentioned. In

fact, functional verification is the first type of verification that must be executed in any design

at the system level, its main objective is the proof of the concept. Afterwards, verifications

of the system performance, critical behaviors, cross-domain interactions, and more detailed

5

Chapter 1. Introduction

aspects of the design should be gradually performed until obtaining a high coverage. Indeed,

low-level model abstractions, which model the behaviors and physical interactions of the

system components, are required to obtain a complete set of specifications by performing

more detailed verification procedures to cover the critical variables in a design. Unfortunately,

modeling and verifying all the dimensions and behaviors of a complex system is an intractable

problem due to its intrinsic complexity.

In spite of the limitations that modeling and simulation techniques present for achieving

a detailed system verification of all the aspects of a design, virtual prototyping approaches

currently offer the most practical and affordable way to design and verify complex systems,

especially for companies which still relies on classical physical prototyping for the design space

exploration. This is why one of the main motivations of this research is the amelioration of

current virtual prototyping approaches using the state-of-the-art simulation frameworks for

multi-domain system design. The proposed VP-based design methodology encourage the uti-

lization of high-level functional model abstractions; and later, a progressive model refinement

for modeling and verifying the critical values of the design. This is done by implementing

well-defined verification procedures (e.g. worst-case, induced failures, statistical analysis,

etc.), based on different types of simulations, such as transient, frequency, parametric, and

Monte Carlo (MC) simulations. One of the main advantages offered by analog and mixed-

signal (AMS) description languages is the capability to use event-driven (digital) abstractions

to represent continuous-time (analog) interactions, this is especially useful to speed-up the

simulation performance in complex VPs.

High-level abstractions can be a very vague term, specially when we consider a large hie-

rarchical VP whose main components can also be hierarchical models. The design of these

models is not trivial and their outcome depends on the interconnection context. High-level

abstractions are often related to the functionality of the system that is being considered in that

moment at certain level of the system architecture hierarchy. For instance, a functional model

of an Analog-to-Digital Converter (ADC) can just transform an analog quantity to a digital bit

vector signal without modeling some details such as the conversion algorithm, time-delay,

bandwidth or signal-to-noise ratio. However, if we consider a greater system such as a robot,

which can use a big amount of ADCs associated to its multiple sensors, the ADC functional

model is a very low-level abstraction that might not be suitable for functional modeling of the

complete system. In this way, high-level abstractions at system, subsystem, and component

level must be consistent with the functionality and behaviors that we pretend to model.

1.5 Document organization

This thesis document is organized in a total of six chapters and six appendices that include

supporting material to the content of the chapters. Chapter 1 explains the context, the main

issues, goals, motivations, and the application of this work. Chapter 2 makes a review of

some of the most important contributions to the state of the art in modeling and simulation

6

1.5. Document organization

methodologies for CPS design and verification. In particular, it is included the theoretical

concepts which have inspired the proposed methodology. Additionally, it is also mentioned

formal verification techniques that can be used together with the proposed methodology in a

future work. Chapter 3 describes the VP-based design methodology foundations and related

theoretical concepts. The elements of the VP-based design methodology are detailed, in

particular, the VP-Model Library, and the VP-Modeling Guidelines. Chapter 4 illustrates the Ro-

goCoil sensor system example, showing details about the electro-thermal virtual prototyping

of the RogoCoil system and the VHDL-AMS system-level modeling of the self-calibration and

current measurement units of the RogoCoil sensor system. The VP of the complete RogoCoil

sensor system is presented at the end of the chapter. Chapter 5 describes the proposed circular

system development model (O-model) making emphasis in the earliest stages of the system

development: the system definition, the system-level design, the subsystem-level design, and

the final system verification using the VP. Finally, in chapter 6 is presented a brief discussion

of the main conclusions of this work and future work.

7

2 State of the art

This chapter contains a review of the main contributions about CPS design methodologies

based on modeling and simulation. Most of the ideas contained in this chapter have been used

as inspiration for the VP-based design methodology proposed in this thesis. The final goal

is to cope with system complexity and improve the system safety and reliability. Since these

issues have been historically treated by different types of domain experts, there are a plethora

of modeling techniques, languages, and simulation tools with a large number of application

examples in many scientific and technical domains. The purpose of this literature review is

not to provide a complete historical summary of all the approaches and contributions, but

rather list the most relevant techniques and methodologies that are directly and indirectly

related to this thesis.

2.1 The V-model

The V-model is the most popular design approach that has been applied for system deve-

lopment (both hardware and software), mainly in defense and transportation industries. It

allows to conceptually deal with the complexity of the complete development process, from

the system conceptualization to the final system testing and validation, see Figure 1.1 on page

2. It was originally developed by the German company iABG1 for defense applications. This

model graphically represents, in a V-shape diagram, the system development in sequential

phases along the time. The left-hand of the V is a decomposition process in which the system

requirements and specifications are defined and the system is conceptually designed. Tradi-

tionally, the design process for complex multi-domain systems is split into several modules or

subsystems according to the application domain (i.e. electrical, mechanical, control software,

embedded electronics, etc.), this work is carried out in parallel by different teams of specia-

lists. The partitioning of the system by application domains and its natural parallelization

have been erroneously considered in the industry as an optimal design approach in which

1See: http://www.iabg.de/en/corporate-profile/

9

Chapter 2. State of the art

designers are expected to come up with physical prototypes that must be integrated with other

subsystems with zero design errors. However, the premature division of the system at the early

stages of the design implies a division of the design space; and therefore, from an epistemic

standpoint, we are limited to explore an optimal architecture of the whole system. Moreover,

there is no guarantee that the multiple cross-domain variables and interface interactions of

the subsystems are correctly taken into account when the system is built and designed in

separated parts. A priori, it is not the same to compose a system from modules which have

been optimized separately than optimize the complete architecture of the system as a unique

design.

The last part of the V-model approach, the right-hand of the V, is dedicated to the system

integration, testing, and validation. Following the hundreds of concurrent design processes

carried in parallel by multi-domain and cross-organizational design teams [19], CPS integra-

tion becomes a challenge in the industry. System safety and reliability procedures demand

rigorous and time taking testing processes to verify and validate the correct operation of the

system. Any design error detected in this phase implies a re-design and re-implementation

of the affected modules, consequently, the development time and cost can be very high. By

applying the traditional V-model approach for complex multi-domain system design and

development, the industries struggle to meet the schedule and budget [20, 21].

2.2 Layered Design

As it has been described in [19], this approach copes with the complexity by focusing on those

aspects that are pertinent to support the design activities at the corresponding abstraction

level, i.e. layered design decompose the complexity of the systems “vertically”. This approach

is especially useful when the details of the lower abstraction layers can be included when

the design is performed at a higher level of abstraction. Although the layered design is well

understood and standard in many application domains, it is essential to have clear connections

between the different abstraction layers for an effective implementation. Some of the most

popular examples are the AUTOSAR standard [22] for the automotive industry and the ARINC

standard in the avionics application domain [23].

The AUTOSAR layer structure allows the designer to completely separate the logical archi-

tecture of a specific application. For instance, a number of automotive logical functions in

areas such as powertrain, safety, multimedia/telematics, and body/comfort, can be decouple

from the specific hardware components thanks to the so-called virtual functional bus, which

allows to interconnect those functions represented as a set of components, irrespective of the

actual physical hardware, i.e. the available ECU and network topology [22]. This exemplifies

the important role of the abstraction layers: they allow designers to completely focus on the

functionality and logical operation of the application by using abstractions, while at the same

time imposing minimal (or even no) constraint on the design space of possible hardware

architectures [19].

10

2.3. Component-based Design

The problem of layered design approach remains on the dilemma of completely supporting

hardware independent abstractions, whilst at the same time requiring to perform analysis

of properties which implicitly depend on it. For example, suppose that we need to verify

the correct functionality of the system considering hardware delay times or wrong value

calculations (failure situation). Including the desired non-ideal effects or failure situations as

abstract behaviors which can be produced by using one or more sets of hardware components

and architectures can be a practical solution to this dilemma. These vertical assumptions can

be checked by contract implementation, see section 2.7.

2.3 Component-based Design

This approach aims to reduce the complexity by assembling strongly encapsulated design

entities called “components” provided with well-defined interface specifications [19], i.e.

ports and parameters. Contrarily to layered design approach, the component-based design

reduces the complexity of the system “horizontally”, this is achieved by dividing the complete

design of the system into smaller subsystems that can be connected together with the lowest

possible effort. The efficiency of the approach relies on two key features that are often mutually

exclusive, on one side it is desired to count with modular interfaces that allow connecting

multiple components together in a practical way, on the other side it is desired to maximize

the potential for re-use of any component in different deployment contexts. According to [19],

the first condition has been classically achieved by using components with “small interfaces”,

i.e. interfaces which are both small in terms of number of interface variables or ports, as well

as “logically small”, i.e. when protocols governing the invocation of component services have

compact specifications not requiring deep levels of synchronization. On the other hand, the

second condition is inherently expressible in terms of interface specifications, where re-use

can be maximized by finding the weakest assumptions on the environment enough to set the

guarantees on a given component implementation. However, we believe that component

re-usability is not only about sufficient interface specifications with the environment, we can

always make assumptions to use specific component models. The major issue for component

re-usability is the lack of mechanisms to establish a proper and pragmatical IP trustworthiness

[24], where the actual designer need to gain trust in the validity of the results given by a foreign

or native model for a specific task.

Component-based design for embedded systems and CPS faces three main challenges. Firstly,

it is required to provide rich enough interface specifications to cover all phases of the design

cycle. Classical component interface models are static entities that only receives and provides

specific information at a certain design level. Purely functional characterized components

can only be used for limited functional verification so that a complete virtual integration and

testing is hardly accomplished. Secondly, there is a natural trade-off between generality and

efficiency in component implementations. On one side we require component implementa-

tions which allow us to verify the functionalities of the system, often under normal operation

conditions, on the other side we want to verify the robustness and the safety of the system,

11

Chapter 2. State of the art

i.e to verify the functionalities under critical operation conditions. Classically, a component

implementation able to support simulations under any possible condition is not efficient,

and therefore, its utilization in a bigger complex system will be even more complicated and

restricted. Finally, if the complete system consists of a large number of components, a manual

component interconnection can be overwhelming and tedious. Automatic synthesis of system

architectures from high-level functional descriptions has been proposed for automotive CPS

[25]. Although this methodology solves the component interconnection problem in big com-

plex systems, it relies on a well-defined and reliable library of components and architectures

to support the automatic synthesis only at the functional level of abstraction. There are no

clear links between the system integrator view and the domain specialist view.

2.4 Model-based Design

Model-based design (MBD), also called model-driven design (MDD), has been generally

undertaken as a crucial strategy to cope with complex system design due to its capabilities

to support early requirement verification and virtual system integration [19]. Computer

modeling and simulation has been used for a long time in almost every scientific and technical

domain. However, its scope has been limited to conceptual verification rather than a true

design technique, perhaps with the exception of one application domain, electronic hardware

design. The first scientific report of computer-automated product design dates from 1963 [26],

who created a computer program able to determine suitable logic circuits satisfying certain

hardware constraints while at the same time evaluating the ability of the logics to perform

character recognition. Model-based approaches have been applied for years in the digital

hardware domain, where we can certainly assure that this approach has had a great success

since the introduction of automatic logic synthesis [6]. However, the same digital automation

principles cannot be applied easily to other application domains that are analogue in nature,

such as electrical or mechanical systems.

There are some methodology proposals aiming to modify the V-model approach by using MBD

to introduce different variations of the system development phases in order to support early

requirement verification and virtual system integration [21], [27]. However, the fundamental

issues related to MBD still remain a barrier for an effective methodology implementation. It

turns out that there are almost as many design languages and simulation tools as applications;

and therefore, the model compatibility issues and platform-dependencies are problems that

have been making more difficult the system integration task, especially between cross-domain

applications. Nevertheless, around the plethora of simulation frameworks (i.e. the set of

software tools, modeling languages, and methodologies), there are interesting simulation

tools and high-level modeling languages that allow performing system verification and virtual

system integration from subsystems at a particular level of abstraction, rather than “physically”

integrate the system after their implementation at the right-side of the V-model. In this way,

such virtual integration permits discovering potential integration problems early on, at the

initial phases of the design.

12

2.5. Modeling languages and tools

One of these interesting concepts for CPS design is functional modeling and verification [25].

The architectural design space exploration can be facilitated by rising the model abstractions

using very high-level functional descriptions in a “Functional Basis Language”. The idea is to

express what the system does without any details of the implementation or deep knowledge

about the architecture of the subsystems. In a functional model, specialized knowledge is

irrelevant and discouraged. The challenge of the approach is to be able to automatically select

architectures from functional descriptions, for this purpose it is required to have a reliable

and well-defined library of components and architectures previously created. For instance,

this approach would allow a software engineer, with marginal knowledge in mechanical

engineering principles, to design and engine control system. However, in order to successfully

implement this type of design methodologies in current CPS industries, it is required to

properly define the path between functional system level models with domain-specific models

which are closer to implementation and are more reliable for verification. Additionally, the

compatibility issues of modeling languages and simulation tools must be harmonized to cope

with heterogeneous system models and permit an effective virtual system integration.

2.5 Modeling languages and tools

MBD has inspired a bunch of modeling languages and software tools, they have evolved

from previous existing programming languages such as C, C++, SML, and also from hardware

description languages and circuit simulator netlist languages such as VHDL, Verilog, SPICE

among others. The current state-of-the-art of modeling languages and tools includes a rich

amount of options that have been developed by different vendors and application domains.

A good language classification review for complex heterogeneous system design for micro-

electromechanical systems (MEMS) applications is given by [21]. In this review, the author

highlights the digital modeling languages and their analog extensions such as VHDL-AMS,

Verilog-AMS [28] and SystemC-AMS [29] as the basis of complex heterogeneous system design.

Nevertheless, the main weakness of these languages is the slowness of low-level simulations.

This issue is overcome by using circuit simulators such as FAST-SPICE [30]. However, since

there is no standardized SPICE language, it is not expected a great language support from

this type of circuit simulators. We can add to this review an important simulation modeling

technique that is widely used in MEMS and other multiphysics applications, it is the Finite

Element Analysis (FEA) simulators such as COMSOL2 and ANSYS3; which can be used to

simulate complicated geometries that cannot be modeled using equation-based models based

on mixed-signal modeling languages. Co-design techniques using both approaches have

been reported in [17] for high-voltage electrical transducers, more sophisticated approaches

involving modal decomposition techniques to perform automatically lumped parameter

extraction from finite-element models are reported in [31] for MEMS applications. Commercial

software tools for system level design able to support multiple hardware description languages

2https://www.comsol.com/
3http://www.ansys.com/

13

https://www.comsol.com/
http://www.ansys.com/

Chapter 2. State of the art

and co-simulation frameworks has been gaining popularity in the industrial automation

domain [32], SMASH4 of Dolphin integration and System Vision5 of Mentor Graphics are able

to support VPs including models written in different languages such as VHDL-AMS, Verilog-

AMS, SystemVerilog and SPICE; additionally, it also support software descriptions written in C

and C++. Therefore, these are suitable tools for a broad range of applications such as MEMS,

embedded systems and small scale CPS.

On the other hand, a good summary of the modeling languages and tools used for CPS design

for mechatronics applications is given in [19]. We can mention some of the current commercial

and open modeling languages and tools such as SysML [33] and AADL [34] for system level

modeling, Catia/Dymola6 and Modelica [35] for physical system modeling, Matlab7 and

Simulink [36] for control-law design and general purpose modeling, and UML8 [37], ANSYS

Scade9 and Simplorer10 for MBD embedded software development and multi-domain system

modeling. The state-of-the-art in MBD includes automatic code-generation, simulation

coupled with requirement monitoring, co-simulation of heterogeneous models such as UML

and Matlab/Simulink, model-based analysis verification of compliance of requirements and

specification models, model-based test-generation, rapid prototyping and virtual integration.

Modeling languages play fundamental roles in MBD and virtual integration, these roles can be

divided into three categories [38]:

• Unified (or universal) modeling languages, which are general purpose languages focused on

offering designers the advantage of remaining in a single language framework, independent

of the application domain.

• Interchange languages, which permit model sharing across analysis tools (hybrid system

analysis). Interchange languages are optimized for providing specific quantitative ana-

lysis capabilities in design flows by facilitating tool integration. One can argue that the

interchangeability property of a language can be maximized if the language is made an

industrial standard. Therefore, the models will be platform-independent and several tools

can process the model for different purposes.

• Domain-specific modeling languages (DSMLs) specify a design platform, including the

concepts, relationships, and well-formedness constraints linked to the application domain

they address. They are optimized to be focused, i.e. the modeling language should offer

the simplest possible formulation that is sufficient for the modeling task.

Unfortunately, there is no single “Universal” modeling language that fills all roles. It would

4http://www.dolphin.fr/index.php/eda_solutions/products/smash/overview
5https://www.mentor.com/products/sm/system_integration_simulation_analysis/systemvision/
6http://www.3ds.com/products-services/catia/
7http://www.mathworks.com/products/matlab/
8http://www.uml.org/
9http://www.esterel-technologies.com/products/scade-suite/

10http://www.ansys.com/it-IT/Products/Systems/ANSYS-Simplorer

14

http://www.dolphin.fr/index.php/eda_solutions/products/smash/overview
https://www.mentor.com/products/sm/system_integration_simulation_analysis/systemvision/
http://www.3ds.com/products-services/catia/
http://www.mathworks.com/products/matlab/
http://www.uml.org/
http://www.esterel-technologies.com/products/scade-suite/
http://www.ansys.com/it-IT/Products/Systems/ANSYS-Simplorer

2.5. Modeling languages and tools

be very useful to count with one language that allows making both system level modeling

and domain specific modeling in an optimal way, however difficult and cost prohibitive to

achieve. Since DSMLs and tools focused on specific applications has been evolved separately,

abstraction layers and platforms have been made using different languages and tools histor-

ically. In MBD today non-functional aspects such as performance, timing, power or safety

analysis are typically addressed in dedicated specialized tools using tool-specific models, with

the entailed risk of incoherency between the corresponding models, which generally interact

[19]. One of the most popular initiatives developed to mitigate this problem is the so-called

Functional Mockup Interface (FMI) standard. The FMI is a tool independent standard for the

exchange of dynamic models and for co-simulation. The development of FMI was initiated

and organized by Daimler AG within the ITEA2 project MODELISAR. The primary goal is to

support the exchange of simulation models between suppliers and OEMs even if a large variety

of different tools are used. The FMI was developed in a close collaboration between vendors

of Modelica tools (such as AMESim, Dymola, SimulationX) and non-Modelica tools (such as

SIMPACK, Silver, Exite), as well as research institutes [39]. The goal of the Model Exchange

interface is to numerically solve a system of differential, algebraic and discrete equations to

allow discrete and continuous model co-simulation in different tools.

Another major initiative developed to counteract the incompatibility risks of using diverse

proprietary modeling tools with several DSML is metamodeling. The use of metamodels

enables to encompass multiple views of design entities, enabling co-modeling and co-analysis

of heterogeneous models. Metamodels specify the set of valid models that can be determined

with a particular modeling language and behavior in a specific domain. Metamodeling in

the semantic context is an approach to consistently abstracting away model of computation

(MoC) specificities while enhancing MoC similarities in the semantics metamodel. The results

obtained by metamodeling allow to analyze and design complex systems without abandoning

the properties of the components’ MoCs. This metamodeling notion allows to evaluate and

compare different MoCs, use mathematical frameworks to prove design properties, and en-

courage platform-based design (PBD), see section 2.6. Likewise, metamodeling forms the basis

of several actor-based design [40], [41] environments such as Ptolemy II [42] and Metropolis

[38], [43]. It is worth mentioning other relevant projects that make use of metamodeling

concepts for developing heterogeneous design frameworks such as MARTE UML11 [44] for

real-time system analysis, the SPEEDS12 project and its HRC metamodel [45] in the field

of embedded systems for avionics applications, and the CESAR project13 and its improved

common metamodel (CMM) which implements the design-by-contract paradigm enabling

modeling of complex heterogeneous systems and formal specification of requirements. This

metamodel forms an integral part of the metamodel-based interoperability concepts of the

reference technology platform developed under [46]. Similarly, the Vanderbilt university

group has evolved a simulation framework and methodology, the OpenMETA tool suite and

particularly the CyPhyML integration model language, for the Defense Advanced Research

11http://www.omg.org/omgmarte/
12http://www-verimag.imag.fr/SPEEDS.html
13http://www.cesarproject.eu/

15

http://www.omg.org/omgmarte/
http://www-verimag.imag.fr/SPEEDS.html
http://www.cesarproject.eu/

Chapter 2. State of the art

Program Agency (DARPA)’s Adaptive Vehicle Make (AVM) program. The OpenMETA tool suite

uses semantic constructs for model integration across engineering disciplines and facilitates

trade analysis across those disciplines (such as electrical, mechanical, thermal, fluid, and

cyber) [47].

2.6 Platform-based Design

PBD is a powerful concept that has been developed for decreasing the time-to-market and

manufacturing costs in the semiconductor industry. PBD has been exploited for several years

in the design of personal computers and similar electronic devices. PBD was introduced

in the late 1980s to capture a design process that could encompass horizontal and vertical

decompositions by multiple viewpoints [19], i.e. from component-based design and virtual

integration to layered and model-based design. By combining these ideas together, PBD can

support both the supply chain and the multi-layer optimization. The principles at the basis

of PBD consist of starting at the highest level of abstraction, hiding unnecessary details of

an implementation, summarizing the important parameters of the implementation in an

abstract model, limiting the design space exploration to a set of available components, and

carrying out the design as a sequence of refinement steps that go from the initial specification

towards the final implementation using platforms at various levels of abstraction [48], [49].

In PBD the design progresses in precisely defined abstraction layers. Each of those layers is

determined by a design platform. A platform is defined as a library of components that can

be assembled to generate a design at a certain level of abstraction [6]. In this sense, a design

platform represents a family of designs that satisfies a set of platform-specific constraints. The

designs on each platform are represented by platform-specific design models. A complete

design is obtained by creating platform instances via composing platform components and

by mapping the platforms in the design flow onto subsequent abstraction layers. In other

words, the PBD design methodology tries to map the system behaviors with the system

architectures by reusing all abstraction levels; so that, it is obtained a meet-in-the-middle

structured methodology that limits the design space exploration. The details and examples

of the PBD methodology can be found in [6], where the idea of using PBD to cope with the

challenges faced by the industry in heterogeneous system level design was initially proposed.

PBD offers key concepts to develop a practical design methodology for CPS design in a general

way [19]. However, it does not dictate a clear insight of how to move across platform layers

and their respective abstractions. Further research has been carried out to improve PBD by

guaranteeing a formal verification of the requirements to map functionalities with components

and architectures. This is called contract-based design.

16

2.7. Contract-based Design

2.7 Contract-based Design

The contract-based design is an emerging paradigm for the design of complex systems which

is based on the notion of components. A component is defined as a hierarchical entity that

represents a logical unit of design [19]. Components are connected together by communi-

cating and matching their values of determined ports and parameters. Each component can

have associated multiple implementations, i.e. a set of ports, internal and external parameters

(constant and variables), and a set of behaviors that implement the design unit. Likewise,

each component is associated with a contract. A contract specifies the input-output behavior

of a component by defining what the component guarantees, provided that its environment

obeys some given assumptions. The ultimate goal of the contract-based design is to allow for

compositional reasoning, stepwise refinement, and a principled reuse of components that

are already pre-designed, or designed independently [50]. A contract for a component can be

observed as a pair of assertions, which express its assumptions and guarantees.

The notion of contracts has been initially originated in the context of formal verification

theories, specifically compositional assume-guarantee reasoning [51], which has been used

for a long time, mostly for software verification in embedded systems. In a contract framework,

design and verification complexity are reduced by decomposing system-level task into more

manageable subproblems at the component level, under a set of assumptions. System proper-

ties can then be inferred or proved based on component properties [52]. Rigorous contract

theories have been developed over the years, including assume-guarantee (A/G) contracts

[53], interface theories [54], and generic construction of contracts [55]. A concrete example of

how a system architecture can be verified by means of contracts is presented in [50], where a

formal contract framework for verification based on the aforementioned works is presented.

This is one of the first attempts to implement a contract verification framework with a concrete

language and tool support for such verification. This framework exploits system architecture

and component contracts decomposition to automatically generate a set of proof obligations,

which once verified, allow concluding the correctness of the top-level system properties. The

proof system reduces the correctness of contracts refinements to entailment of temporal logic

formulas and is supported by a verification engine based on automated SMT techniques.

However, their concrete adoption in CPS design is still in its infancy, a major challenge being

the absence of a comprehensive modeling formalism for CPS, due to their complexity and

heterogeneity [19], [56].

Contracts provide formal support to the complete system design flow in a hierarchical and

modular way, combined with PBD methodology it can be used to address the complexity

and heterogeneity of CPS. The foundations of the system design flow and some specific

examples supporting the deployment of the PBD methodology with contracts is presented

in [52]. In PBD, the design process is performed as a sequence of refinement steps from

the most abstract representation of the design (top-level requirements) to its most concrete

representation (physical implementation). Contracts provide guarantees on the correctness

of each refinement step, and this becomes essential for the safety and reliability of the design.

17

Chapter 2. State of the art

It is desired to have an automatic and efficient way to prove the validity of the contracts

statements. The assume-guarantee (A/G) contract framework introduced by Benveniste et al

[53], [56], and later improvements including circular reasoning [45], introduce mathematical

formalisms which are centered around behaviors and can be implemented in any kind of

models encountered in system design. Nuzzo et al [52], proposes contracts as mechanisms to

formally prove the following three conditions:

1. Consistency: a set of requirements is consistent,

2. Compatibility: an aggregation of components is compatible.

3. Refinement by aggregation: an aggregation of components refines a specification.

However, it is still not clearly defined how to properly write down a set of all possible re-

quirements and constraints of a model in a mathematical way to define a formal contract.

Additionally, virtual verification in tools based on simulation cannot be used to formally certify

the satisfaction of a contract since the simulation cannot cover the entire state space, but

rather to monitor and detect possible violations.

2.8 Product lifecycle management (PLM)

According to Stark and associates [57]14, product lifecycle management (PLM) is the business

activity of managing, in the most effective way, a company’s products all the way across their

lifecycles; i.e. from the very first idea of a product until it is retired and disposed of. In principle,

PLM applies to any type of product and industrial sector, it not only manages a simple product

of a company, it manages all of the production processes and product portfolio of the company

in an integrated way. At the highest level, the aim of PLM is to increase the product revenues,

reduce product-related costs, maximize the value of the product portfolio, and maximize the

value of the current and future products for both customers and shareholders. Therefore,

although these issues are beyond the scope of this thesis, the PLM paradigm is directly related

to the proposed O-model presented in chapter 5; especially, those concepts associated with

the product manufacturing, commissioning, and maintenance process.

The new PLM paradigm emerged at the beginning of the 21st century, and it has been evolving

ever since, as a result of the vast scientific and technological advances in many different

domains such as Microelectronics, Nanotechnology, Software, Biotechnology, and Mecha-

tronics. Nowadays, manufacturing management is being transformed by a shift from the

mass production paradigm to a new on demand, business-oriented, formally-defined, lifecy-

cle, holistic, digital, customer-driven, and knowledge-based proactive production paradigm

[58, 57]. This is not a matter of developing new technologies, but rather how to use the availa-

ble technologies in the best way in order to capture the knowledge, to include a context into

14http://www.johnstark.com/

18

http://www.johnstark.com/

2.9. Industry 4.0

the knowledge, to share and re-use the knowledge in a smart way, and to coordinate the work

of all manufacturing stakeholders during the entire product and factory lifecycle processes.

We can briefly illustrate the two main characteristics of the PLM paradigm as follows [57]:

• In the PLM paradigm, the activities of managing the products of a company must be

defined and documented in cross-functional business processes across the product

lifecycle. In the previous management paradigm, each department of the company

defined its own activities independently from the functions of the other departments.

Frequently, these activities were not formally documented.

• In the PLM paradigm, a cross-functional product data management (PDM) system man-

ages product data across the product lifecycle. In the previous management paradigm,

each department managed its own data independently from another department. For

example, detailed information from the marketing and after-sales department were not

available for the engineering department in charge of the design.

The most significant technology innovations that are currently boosting this paradigm shift

towards more autonomous and efficient processes of the product lifecycle are the CPS, the

internet of things (IoT) [59], and the rise of big data on cloud computing [60]. These are in fact

the technology drivers of the so call Industry 4.0 revolution.

2.9 Industry 4.0

Industry 4.0 refers to the current trend of automation and data exchange towards the creation

of a “smart factory”. The previously mentioned technology drivers of the Industry 4.0 promise

a significant economic potential [61] in many applications mainly related to the development

of large CPS. Some authors refer to this new concept as the “4th industrial revolution” [62,

63]. However, albeit this term is currently a top priority for many technology companies,

research centers, and universities (mainly in the German-speaking area), a general accepted

understanding of this term does not exist [64]. This is why it becomes difficult, and sometimes

vague, to talk about the scope and characteristics that need to be implemented in a 4.0

industry.

A smart factory consists of an intelligent network of manufacturing systems equipped with

sensors, actuators, and autonomous systems (smart technologies) forming a modular struc-

ture. These CPS monitor physical processes by making a virtual copy of the physical world

(i.e. digitalizing the production chain) to take decentralized decisions faster and efficiently.

Over the IoT, the CPS network communicates and cooperates with each part of the system

and with humans in real time, both internal and cross-organizational services are offered

and used by participants of the value chain [64]. In this definition, we clearly observe the

importance of virtual prototyping far beyond the product design and verification, i.e. for

product manufacturing, operation, and maintenance.

19

3 The VP-based design methodology

The proposed system design methodology based on VHDL-AMS VPs is described and ex-

plained in this chapter. The main purpose of this methodology is to support the virtual design

and verification stages of the proposed O-model (described in chapter 5) for the development

of small-scale CPS for power applications. This chapter presents the principal theoretical

concepts and foundations of the methodology, together with the elements that compose it.

The different elements are described, making emphasis in two operational elements of the

VP-based design methodology: the VP-Model Library and the VP-Modeling Guidelines.

3.1 Design methodology foundations

The VP-based design methodology is a model-based design (MBD) methodology largely inspi-

red by most of the concepts stated by layered, component-based, and platform-based design

approaches for performing system-level modeling. This section discusses those important

concepts taken from the state of the art.

3.1.1 Layered and component-based design

The most important concepts of layered and component-based design have been taking into

account for developing the VP-based design approach. That is, the proposed methodology

follows a systematic process to allow a modular architecture exploration by interconnecting

components in the same hierarchical level (component integration), or in different hierar-

chical levels (component refinement by aggregation). Both the interface specifications and

the component implementations can evolve to support various abstraction levels in a VP,

from purely functional component abstractions to more refined physical implementations. In

particular, the VP-based design methodology proposes solutions for the first two challenges

previously mentioned in section 2.3, i.e. the need of rich interface model specifications, and

the trade-off between model accuracy and simulation efficiency.

21

Chapter 3. The VP-based design methodology

Since a component can be represented by more than one model interface with multiple

component implementations (hereafter called model implementations), it is a challenge to

guarantee the maintainability of a system-level VP over time. This issue is addressed in the

proposed methodology by two particular ways: the use of a model library infrastructure

for documenting related models (see section 3.6), and the application of model interface

mappings in configurations (see subsection 3.5.1). The VHDL-AMS modeling language allows

to define multiple model implementations (architectures) for the same component interface

(entity); however, different component interfaces require the creation of different component

models.

The proposed modeling methodology is based on indirect component instantiation via VHDL-

AMS configuration declarations. This approach maximizes the design flexibility by enabling

the designer to implement more than one design alternative in the same VP. A hierarchical VP

that represents a complete system can be simulated using several configurations that allow

selecting a list of particular model implementations, abstraction levels, and parameter values

to represent different simulation scenarios (test cases). Contrarily to traditional component-

based design [19], the VP-based methodology does not necessarily rely on “small interfaces”

and is not limited by small logic components for building complex systems. Functional system-

level modeling and gradual model refinement are used for building the system hierarchy.

As long as model interfaces are properly defined in terms of ports and parameters, and the

modeled system is properly decomposed into well-defined component models, the complexity

of the component implementation can be managed at the system-level. Similarly, the efficient

re-use of components can only be possible when the operation and simulation conditions of

the component are correctly documented and verified. The VP-based design methodology

relies on a model library to ensure the maximum re-usability of components and systems, see

section 3.6.

3.1.2 Platform-based design

The system design approach of the VP-based design methodology is based on the meet-in-the-

middle approach proposed by the PBD theory, which is a mix of the conventional top-down

and bottom-up approaches for system design. This process intends to map the functional

space (i.e. the set of constraints, requirements, and functionalities that the system must obey),

to the technology space (i.e. the available technologies that we are able to use to build the

system). By performing architectural space exploration, it is possible to find more than one

architecture that can meet the functional space conditions; therefore, the mapping process can

be seen as an optimization problem, where a set of performance metrics and quality factors are

optimized over a space constrained by both system requirements and component feasibility

constraints. Mapping is the mechanism that allows moving from a level of abstraction to a

lower one using the available components within a library [52].

This idea can be better understood in Figure 3.1, where it is graphically represented the PBD

22

3.1. Design methodology foundations

approach for the design of a MV current sensor system based on the RogoCoil technology, this

system is presented in section 4.4 on page 104. In this example, the PBD approach is illustrated

from the earliest stage of a design, i.e. from the initial problem, which consists in measuring

current in MV tension range with a particular set of requirements such as minimum accuracy

level, safety, and low-costs (functional space). On the other hand, we have a set of available

technologies that can be used for this specific problem (technology space). A decision making

process have to be performed in order to select the best option before proceeding with the

system design. The details of this process are shown in subsection 5.3.1.1 on page 138, where

RogoCoil technology shows great features and advantages for current sensor implementation.

At this stage, the functional and technology spaces have been mapped to solve the problem,

i.e. a solution has been found. However, at this platform level, the mapping only represents

an idea of how the problem can be solved. In order to truly get an implementable solution,

the same mapping process is performed progressively, with more refined platforms, until

obtaining the specifications of all the basic blocks of the system and their interconnection, i.e.

the system implementation.

Figure 3.1: PBD diagrams for the RogoCoil current sensor system example presented in section
4.4. The design flow moves from higher to lower level platforms (i.e. more refined components)
each time that the technology space is mapped to the functional space.

The functional space in the second platform includes the equation for electrical current

estimation using the RogoCoil; the current is obtained by integrating the output voltage

of the RogoCoil and multiplying by a certain factor that depends on coil characteristics,

environmental conditions, and signal conditioning. So, there are various forms to solve this

23

Chapter 3. The VP-based design methodology

equation as there are several ways to obtain and process the required values to compute

the integration. For example, the integration can be done by analog signal processing in

hardware; and later, the multiplication can be done in software by using a microcontroller

after digital conversion. Another option is to convert directly the analog output signal of

the RogoCoil and perform all the calculation in digital, this can be done by software in a

microcontroller, or by hardware in a field-programmable gate array (FPGA). Each solution

implies a particular functional algorithm that can be mapped to a specific architecture (digital

or analog architectures). We can observe that these two architectures can be considered at the

same time, but they are designed and optimized independently. This allows system designers

to evaluate diverse options and choose the best architecture taking into account the system

requirements and architecture performances.

We can observe that this process continues on lower level platform levels, by considering both

the architecture requirements and functionalities in the functional space, and the available

components that can be interconnected together to perform the desired functionality meeting

the established requirements. Contrarily to the PBD theory, the VP-based design methodology

does not treat the system design on isolated platforms. The approach proposed in this research

advocates for using, as far as possible, a unified platform (the VP-Model Library) for system

and subsystem design. This is restricted by modeling language limitations that are related

to specific modeling needs. For example, if the design requires the analysis of multiphysics

interactions in the system geometry, FEA models are more convenient than VHDL-AMS

models. Model migration techniques shall be applied in order to reduce the need of different

software platforms for subsystem-level design, a particular example is presented in section 4.2

for obtaining a VHDL-AMS model from a geometrical FEA model. The model migration task is

part of the Model maintenance process that has been proposed in order to support the virtual

prototyping activity using the VP-based Methodology, see section 5.4 on page 155.

3.1.3 System-level modeling

The author of this thesis has analyzed and extrapolated the meet-in-the-middle approach

from the PBD theory, in order to be used at any level of the system design, independently of

the tools, languages, or technologies considered. Although this approach is useful to establish

the conceptual view of an MBD methodology, it does not provide a clear procedure to map the

technology and functional spaces. This is a challenging issue due to the difficulty to generalize

a procedure that efficiently works for any type of system and requirements.

Instead, the VP-based design methodology uses the meet-in-the-middle concept to propose a

method that starts the design by functional system-level modeling; and posteriorly, applies

gradual model refinement to cover the desired verification needs. Functional system modeling

consists in providing the most basic (ideal) descriptions for verifying the most basic functions

and proof the system concept. However, the main problem is knowing how to scale up/down

the functional models in order to perform more detailed non-functional system verifications,

24

3.2. Model refinement

far beyond the apparently trivial functional models. There seems to be no compelling reason

to argue that this issue is mainly caused by the lack of modularity of the modeling approach.

The functional model-based methodology proposed by Wan et al [25], establishes the advan-

tages of rising to a very high-level the modeling abstractions of CPS in the automotive industry,

see section 2.4. One of this advantages is the possibility to propose a system architecture with-

out a specialized knowledge of all the components and subsystems of the CPS. Nevertheless,

an effective industrial implementation of this approach, specially the automatic architecture

synthesis, is only possible by counting with a reliable and well-defined model library of com-

ponents and architectures. Whereas in a functional CPS model the specialized knowledge is

irrelevant and discouraged, this knowledge is essential for building the component models

and their specific model implementations. This is why the VP-based design methodology is

focused on two main aspects of this paradigm: the implementation of a platform-independent

model library dedicated to component models and VPs, and the description of modeling tech-

niques for enhancing functional and non-functional system-level modeling by improving the

scalability of the models and exploiting their modularity.

3.2 Model refinement

The refinement level or abstraction level of a model is a critical metric that determines the

level of details, the status, and capabilities of a model to represent a real entity/system. In

other words, the abstraction level indicates how accurate the real entity/system is modeled.

Nonetheless, the main issue for precisely classifying a model according to its abstraction level

is the undetermined amount of abstractions that a model can have. For example, there are

different types of analog-to-digital converters (ADCs), e.g. direct-conversion [65], successive

approximation [66], Σ-∆ ADCs [67], among many others. Consequently, an ADC model can

be created using different representations meant to model any type of ADC or each of the

aforementioned types. However, each of these representations can be created using several

abstractions to model specific details of the functionality and the behavior of the ADC; for

instance, the ADC dynamic range, bandwidth, or signal-to-noise ratio (SNR). Each particular

abstraction leads to a specific model implementation.

Three main abstraction levels can be considered to classify component models in a non-

rigorous way:

1. Functional models: They are the models with the highest level of abstraction. They

are meant to represent the functionality of the entity/system that is modeled in an ideal

fashion. For example, a functional model of an operational amplifier (OpAmp) can consist of

a simple equation that relates the magnitude of the output voltage (Vo) with respect to the

magnitude of the input voltage (Vi) by the OpAmp’s gain (G), i.e. Vo =G ·Vi . Likewise, large

CPS can also have very high-level functional models that describe the system operation in a

simplistic and idealistic way. For instance, a functional model of a car, a train, or a plane, can

25

Chapter 3. The VP-based design methodology

be given in terms of the traveling speed, cost of the fuel, and amount of passengers that can

be transported. These component models could be convenient for building a model of the

transport infrastructure of a country for optimization purposes, but they are not very useful to

design the components by themselves.

2. Behavioral models: They are medium-level abstractions that describe the functionality

of a system by taking into account some non-idealities and critical variables that affect the

system behavior. Considering the same case of the OpAmp example, a behavioral model

abstraction can take into account non-ideal behaviors caused by the characteristics of the

elements used to build the OpAmp and their interconnection. For instance, the input and

output impedances, offset voltages, bias currents, common mode rejection ratio (CMRR),

power supply rejection ratio (PSRR), transconductance, slew rate, gain-bandwidth product,

etc. All these behaviors have the possibility to affect the model functionality according to

different simulation conditions as in a real component.

3. Physical models: They are low-level abstractions that describe the functionality and

behaviors of a system in a very accurate way, i.e. they are able to reproduce the physical

interactions very close to the interactions of the real component/system. They can consider the

intrinsic and extrinsic physical phenomena (i.e. thermal, electrical, optical, and mechanical

processes) and some multiphysics such as electro-thermal, thermo-mechanical, or electro-

optical interactions. Taking into account the OpAmp example once again, a physical model

of this device could consider the physical behavior of the transistors, the substrate of the

chip, the package of the OpAmp and the interaction with the environment. A transistor-level

model of the OpAmp can be considered a low-level physical model if the functionality and

behaviors of the device are reproduced by a physical model of the transistor, which can be

an approximation of the physical phenomena within a transistor. For example, parameters

such as the oxide thickness, the substrate doping concentrations, or the carrier mobility can

be taken into account for calculating voltages and currents by equation-based models.

From the given refinement level classification, it can be deduced that it is not possible to

define clear boundaries to include a model in one of the aforementioned abstraction levels.

For example, if we add the output voltage supply limitation to the previously described ideal

functional OpAmp model given by the equation: Vo = G ·Vi , could we classify this model

as behavioral instead as functional? The answer is no, this OpAmp model is still no refined

enough to model OpAmp behaviors that are relevant for the design of a larger system in

which the OpAmp could be used. Therefore, the abstraction level update from functional to

behavioral, or from behavioral to physical, is subjective and scarcely relevant for the virtual

design and verification process.

The important concept that this thesis considers is the model refinement process, which is

defined as the process of lowering the abstraction level of a model, e.g. from purely ideal

model descriptions down to physical and more detailed descriptions. Precisely, a gradual

model refinement process consists of incrementally adding non-idealities and behaviors to

26

3.2. Model refinement

a functional model in order to verify by simulation the effects on the desired functionality.

This process is done considering first the most critical behaviors, and subsequently the less

relevant behaviors for the design. Since the designers often do not know whether specific

non-idealities (e.g. environmental or cross-domain interactions) might significantly affect

the behavior of the model, is highly desired to refine the models to the lowest possible level.

However, the complexity of CPS and their subsystems makes inadequate to use very low-level

physical models for quantitative design. The VP-based design methodology proposes to cope

with this issue by using two approaches:

1. High-level abstractions: Cross-domain and physical interactions between components

or between the system and the environment can be modeled by high-level abstractions that

only considers the cause and the effect, an example is shown in subsection 4.2.7 on page 78 for

modeling the effect of temperature variations on the main electrical variables of a RogoCoil

sensor dynamically. Highly parameterized component models can consider the important

properties whilst modeling only a few critical variables in a low-level fashion.

2. Mixing abstraction levels in VPs: The main issue with highly refined models (low-level

abstractions) is their poor simulation performance, particularly for hierarchical system-level

models (VPs) that require to use a large amount of this component models. However, mixing

component models at different abstraction levels in the VPs can improve the simulation per-

formance. This is especially useful for system design and functional verification, where the

analysis can be focused on critical component models leaving the rest on a higher abstraction

level. In the example given in subsection 4.3.2 in page 86 for the self-calibration unit (SCU)

design of the RogoCoil sensor system, it can be observed that the VP is analyzed using some

model implementations more refined than others, e.g. the RogoCoil model and the second-

order Σ-∆ ADC model. In this way, a VP cannot be simply observed as a structural model at

certain abstraction level, it must be seen as a hierarchical model that mixes several component

models at different abstraction levels according to the verification needs. Thus, maximizing

simulation performance and overall cost/benefit ratio of modeling and simulation activities.

One of the important consequences of the gradual model refinement is the possibility to

refine a model by the simple aggregation of component models, these embedded component

models shall be initially very-high level basic models. Afterwards, the refinement of the new

hierarchical model can be done by model refinement of each component model included in the

hierarchy. For example, suppose the case of a high-level low-pass filter model implemented

by a specific transfer function. The same functionality performed by this transfer function can

be implemented by adding passive and active electrical elements, such as resistors, capacitors,

and OpAmps, forming a certain circuit topology. Thus, a more refined model is obtained. In

this case, the gradual model refinement continues with the refinement of the OpAmp model.

27

Chapter 3. The VP-based design methodology

3.3 Design methodology elements

The VP-based design methodology proposed in this work consists of a set of modeling and

operational elements. The modeling elements are pieces of instructions and specifications

that are required to build and set models and their virtual verification environments. On the

other hand, the operational elements are the tools and media used to create and manipulate

the modeling elements. The list of elements is described as follows:

Modeling elements:

1. Component model: It is a model of an individual predefined entity composing a system.

A component model can represent an entity by one or multiple model implementations, each

one at particular abstraction level. A component model can be hierarchical, i.e. constituted of

more basic (less refined) component models.

2. Virtual prototype: This is the model of the complete system that is the subject of the

design. A VP is normally a hierarchical and modular model that describes the architecture of a

complex system by a small amount of interconnected main component models. A VP is built

to model the system functionalities, behaviors, and environmental interactions; it may mix

component models with different abstraction levels.

3. Test bench: It is a verification model that recreates the operation conditions of a parti-

cular model that is subject to verification, i.e. the design under verification (DUV). The test

bench provides to the DUV its inputs. It also might provide parameter values to the DUV,

and/or additional algorithms for post-processing the output signals of the DUV.

4. Test case: It is the virtual verification structure that is created for DUV verification. A

test case of a DUV is composed by a particular test bench, a specific (DUV - test bench) cus-

tomization environment organized in one or several VHDL-AMS packages and configurations,

and the set of simulator directives related to the verification case. A test case represents a

specific testing scenario. A test case can be focused for verifying either a component model or a

particular configuration of a large and complex VP.

5. Simulator setup: It is a set of specifications that the simulator tool uses for executing a

particular type of simulation/s. The simulation results directly depend on these specifications,

which are critical for simulation performance and accuracy. These specifications are com-

monly gathered in a simulator file (e.g. the .pat file in SMASH), some of these specifications

are tool-independent, such as the maximum time step (Hmax) for time-domain simulations

and the integration method algorithm (e.g. Trapezoidal, Backward Euler, etc.).

Operational elements:

1. Simulation framework: It is a set of simulation tools, modeling languages, and related

28

3.3. Design methodology elements

infrastructure that allows to create, manipulate, and simulate the aforementioned modeling

elements. The selected simulation framework details are explained in section 3.4.

2. VP-Model Library: It is a centralized infrastructure for storing, documenting, maintain-

ing, and queering modeling elements at different abstraction levels. Its main purpose is to

provide an environment for maximizing the reuse of models, see details in section 3.6.

3. VP-Modeling Guidelines: They are a set of recommendations and techniques that are

aimed to support the creation of scalable VPs and their test cases using a modular modeling

infrastructure. These guidelines are specifically focused on ameliorating the manipulation of

large VPs in order to improve the system-level modeling in VHDL-AMS.

Considering the previously mentioned elements of the VP-based design methodology, the

important questions to answer are: how the modeling elements should be created? and how

the operational elements interact among each other to create and manipulate the modeling

elements?. In order to answer the first question, it is important mentioning that the VP-based

design methodology is mainly focused on system-level modeling, i.e. focused on hierarchical

models that are built by composition of more basic component models. Therefore, it is out

of the scope of this research to describe a detailed procedure to elaborate basic component

models. Actually, the available particular forms for creating basic component models are given

by the different types of MoCs, such as process networks (PNs), dynamic dataflow (DDF),

synchronous dataflow (SDF), continuous time, discrete events, synchronous/reactive, finite

state machines (FSMs), hybrid systems, among many others [68]. In fact, different components

and/or physical phenomena are modeled more cleanly with different MoCs because of their

relative expressiveness and efficiency [69].

In this way, the VP-Modeling Guidelines treat the issue of properly building VPs and test benches

for system-level modeling and verification. On the other hand, the matter of elaboration test

cases is directly related to the type of verifications that are desired to be executed and the

specific organization of the simulation project. Therefore, no systematic procedure can be

generalized. The particular examples of the RogoCoil sensor system virtual prototyping

presented in sections 4.3, 4.4, and 4.5 use several test cases for a predefined simulation project

organization. Regarding the simulator setups, their elaboration exclusively depends on the

capabilities offered by the simulation tool. Details and recommendations are given by each

tool vendor in their reference manuals. This is why a deep analysis on simulator setups is not

included in this work.

Finally, in order to answer the last question, we should consider the operational elements

of the proposed methodology as partially independent elements that must interact in an

effective way. In principle, any simulation framework allowing to represent the type of small-

scale CPS of our interest, could be used. However, this would imply the use of different

modeling guidelines. Although the discussed theories and concepts in the design methodology

foundations are independent of the selected simulation framework, the modeling techniques

29

Chapter 3. The VP-based design methodology

directly depend on the used modeling language and simulation tools. For instance, the

inheritance feature offered by object-oriented languages such as Modelica [35] or SystemC-

AMS [70, 71], can be very useful for efficient system-level modeling due to the ability to relate

different model interfaces with different model implementations. The implementation of this

type of features in the proposed design methodology requires a change or an update of the

modeling guidelines.

On the other hand, the proposed VP-Model Library is completely independent of the modeling

guidelines and partially independent of the simulation framework. Since a model library shall

contain the required component models to build VPs, the data structure and the presentation of

the model’s meta-information must be properly designed according to the modeling language

in which the model is written. Thus, elaborate a model library to store models written in any

language is a great challenge. The proposed VP-Model Library has been created to mainly

support VHDL-AMS models and compatible modeling languages of the selected simulation

framework. In the following three sections of this chapter, each operational element of the VP-

based design methodology is presented in more details, making emphasis on the contributions

of this work: the VP-Model Library and the VP-Modeling Guidelines.

3.4 Simulation framework

A simulation framework is here defined as the set of simulation software tools and modeling

languages that allow to create, manipulate, and simulate computational mockups. In this

section, it is explained both the selected modeling language and simulation tools used for the

proposed methodology in the specific application field.

Analog and digital electronic components are the most common subsystems in the design of

CPS for industrial and power automation applications. One of the best options for electronic

system design and modeling is VHDL-AMS, which allows both multi-domain system-level

modeling and specialized mixed-signal electronic design. VHDL-AMS is a powerful hardware

description language which supports the description of both behavior and structure. The

behavioral features of VHDL-AMS allow expressing the operation of a system at various levels

of abstraction: from highly abstract ideal models to very detailed physical models. Designers

normally proceed using a top-down methodology, first performing conceptual studies using

ideal functional models, and then continuously refining the models until the whole design

is completed in sufficient detail before physical implementation. Additionally, VHDL-AMS

enables to model other domains such as thermal, mechanical, hydraulic among other sys-

tems, by introducing static and dynamic behavioral semantics together with differential and

algebraic acausal equations [72]. Due to its multi-abstraction capabilities, VHDL-AMS can

be used throughout all the design and verification of the system development life cycle, from

architectural exploration and conceptualization, down to single component modeling [73].

The VHDL-AMS features and advantages previously mentioned, together with the strong

importance of electronics in small-scale CPS design for power automation applications, are

30

3.5. The VP-Modeling Guidelines

the main reasons to chose this language for system-level modeling and simulation. Although

the proposed VP-based design methodology relies on VHDL-AMS as the main language for

virtual integration and system simulation, the VHDL-AMS language characteristics and the

simulation tool capabilities allow us to use other programming and hardware description

languages for building more complex models by reusing available IP models. Commercial

software tools such as SMASH from Dolphin Integration, support the simulation of VHDL-AMS

hierarchical models that can integrate models written in other languages such as SystemC,

Verilog-AMS, C/C++, or SPICE. This multi-language feature is possible by using VHDL-AMS

foreign attributes, language wrappers and/or specific tool application programming interfaces

(APIs). In this way, the simulation framework capabilities permit to elaborate multi-language

VPs of complex systems using component models at different abstraction levels. For instance, a

VP could consist of equation-based mechanical models implemented in VHDL-AMS, software

algorithms implemented in C/C++, and synthesizable digital blocks written in VHDL or Verilog,

i.e. hardware and software in the loop. Additionally, VHDL-AMS offers timed semantics

that can reproduce accurate results for both analog and digital interactions, this feature is a

practical solution for dealing with the lack of timing in the core abstractions of computing that

software modules suffer [1]. FEA tools can be used separately to complement 3D geometrical

modeling needs and multiphysics interactions as is shown in section 4.2.6 on page 66.

Since the VP-based design methodology relies on the capability to simulate the complete

system using a mix of components at different refinement levels, it is highly important to

simulate using the same or compatible tools. Therefore, the chosen simulation framework

consists of electronic design automation (EDA) software tools such as SMASH or System

Vision that permit system-level simulations based on VHDL-AMS and compatible modeling

languages.

Currently, these EDA tool vendors offer the possibility to build structural models by using

tool-dependent model schematics. Although model schematics can be a very practical feature

for the visualization and elaboration of models, this jeopardizes the model sharing and its

re-utilization capabilities. Current model schematics reduce the flexibility and scope of VPs

and component models. This is why the approach proposed in this research is mainly focused

in computational mockups represented by its source code written in a standard modeling lan-

guage. Therefore, tools for bidirectional and automatic schematic-to-source-code conversion

are highly desired for working with this simulation framework and the proposed methodology.

At the moment of this research, there were no fully functional tools for this purpose.

3.5 The VP-Modeling Guidelines

The VP-Modeling Guidelines are a series of modeling recommendations and coding tech-

niques in VHDL-AMS that have been obtained from the virtual prototyping activity for power

sensors and actuators, such as the RogoCoil sensor system example presented in section 4.5.

These modeling practices foster well-organized hierarchical architectures which reduce sys-

31

Chapter 3. The VP-based design methodology

tematically the complexity in large VPs, facilitating the detection of simulation problems and

generic parameter handling. Although several VHDL-AMS forms for building and organizing

hierarchical models have been explored in this research, this document does not pretend to

be exhaustive. The modeling practices here proposed are centered on the mechanisms that

VHDL-AMS packages and configurations offer to facilitate the design space exploration and

gradual model refinement.

In order to support the meet-in-the-middle approach, one of the most important issues that

these guidelines address is about how to properly write scalable hierarchical models and

test benches for system-level verification. The scalability of a component model at certain

abstraction level must be considered in the two possible directions:

• By using the model in a larger and more complex model, i.e. a bottom-up model

scalability.

• By model refinement. This is the case of architectural refinement by aggregation of

sub-models, i.e. a top-down model scalability.

For the sake of discussion, suppose that the objective is to perform a design space exploration

of a complex hierarchical system graphically represented by the VP shown in Figure 3.2. This

is a fictitious hierarchical model that do not represent any particular system, its goal is to

show a typical component model interconnection, a system architecture topology, and its VP

modeling infrastructure. The example VP architecture is made of void component models that

do not execute any particular algorithm. They are only interconnected to mimic a real system.

The component CMP1:big_comp (green) is a structural model which is composed of com-

ponents A (red) and B (yellow). Likewise, the component CMP2:complex_comp (orange) is

a structural model which is composed of simple model components D:single_unit and

H:single_unit. The component C:small_comp (brown) is a simple model similar to the

comp model, which only reports the values of the applied generic parameters (F1, F2, and F3).

The complete VP (called vp_top) consists of the CMP1, CMP2, and C components. The vp_top
model is instantiated as the DUV in the highest level design entity called vp_top_tb(bench),

which is the test bench of the complete design. The four independent boxes at the right part

of the figure represent the VHDL-AMS packages that are used in the example VP. The four

ellipses at the bottom represent the VHDL-AMS configurations of the vp_top_tb(bench), i.e.

the set of test bench configurations (TBCs).

We can observe from the VP structure shown in Figure 3.2, that the top-level of the virtual

design is the test bench. A VHDL-AMS test bench is a design entity1 which is used to verify the

behavior of the DUV using one or more utility models. Usually, the test bench contains the

model stimuli (e.g. analog and digital sources), constant parameters of the model, and/or the

test scenario algorithm, i.e. processes, procedures, and/or functions to execute a particular

1i.e. entity + architecture

32

3.5. The VP-Modeling Guidelines

Figure 3.2: Graphical representation of the hierarchical VP model example. This is a high-level
view of a complex system, a representation of the typical component model interconnection
and the VP modeling infrastructure.

algorithm for the model verification. In this way, the test bench becomes the highest level

structure of the model2 in which the design space exploration and model verification take

place. Although the given VP example only consists of one single test bench, the DUV can be

declared and simulated in more than one test bench when multiple external conditions need

to be verified, for example when it is desired to apply different types of input sources. However,

since it is also possible to parametrize and configure multiple model implementations for

the utility models in the test bench, a single test bench is sufficient in most of the cases.

Additionally, considering that a VP is a model of the whole system including its environment,

it is not expected to have a large amount of utility component model out of the DUV. Therefore,

different testing scenarios can be simulated by a set of test cases, in which is only required

a unique a simple test bench with a set of configurations and packages that are in charge of

defining the specific model architectures and parameter values.

Following, it is described the procedure and the recommended modeling guidelines to build

the foregoing virtual structure, starting from the highest level functional abstraction:

1) Design Under Verification: Regardless the size of the model, the first condition for

creating a suitable test bench is to include (encapsulate) in a design entity the complete model

to be verified, i.e the DUV, see Figure 3.3. In this way, the main conceptual algorithm that

2without considering the VHDL-AMS configurations or simulator directives to setup parameter values.

33

Chapter 3. The VP-based design methodology

represents the functionality of the complete system can be modeled in the first functional

model implementation of the VP. The objective is to clarify the required inputs, parameters,

and the desired (ideal) output results. This model is very useful to serve as a reference for

upcoming more refined model implementations of the VP. The first functional verification

must lead to identifying the main components of the system.

Figure 3.3: Conceptual diagram of a test bench and its DUV. The internal model implementa-
tions and the parameters of the DUV are defined from packages and configurations.

2) VP hierarchical construction: The main conceptual architecture of the whole system

shall be created by modeling the functional behavior of the main components of the system.

The main components of the VP example shown in Figure 3.2, are the CMP1, CMP2, and C
components. Therefore, there is no need to initially think about lower level component models

like the comp or single_unit models. These models are gradually aggregated after successful

VP verification at the current refinement level. The recommended way to build the VP hierarchy

is by component declaration, component instantiation, and configuration declarations, as

it is done in the code of the VP example shown in Figure 3.4. In this case, the components

small_comp, complex_comp, and big_comp are declared and instantiated in the architecture

vp_structural of the vp_top entity, see Figure 3.4(a). This design entity is the DUV that is

also declared and instantiated as a component in vp_top_tb, see Figure 3.4(b). Finally, one

or more configurations (a TBC in this case) shall be used for binding the components to the

desired design entities as it is shown in the Test_func TBC shown in Figure 3.4(c).

It is not recommended to use VHDL-AMS direct instantiation for structural models since this

is less flexible and restrictive than the component declaration method. Likewise, designers

should not rely on the default configuration mechanism3, which is highly error prone.

3At compilation time, when a component declaration exactly match with an entity declaration previously

34

3.5. The VP-Modeling Guidelines

(a)

(b) (c)

Figure 3.4: Component declaration and instantiation code fragment example (the three dots
(...) means omitted code). (a) vp_top hierarchical design entity code fragment. (b) vp_top_tb
test bench code fragment. (c) Test_func TBC and smallcomp_pkg package code.

3) VP modeling infrastructure: The refinement process of a hierarchical component model,

can result in a significant amount of sub-components and architectures that belong to parti-

cular main component models in the VP. Therefore, the most practical way to deal with such

model structure that will be gradually becoming more complex is to define model configura-

compiled, it is not necessary to specify the binding between such component and its entity in the configuration of
that structural model. In this case, the configuration is binding by default the component with the corresponding
entity by using its more recently analyzed architecture.

35

Chapter 3. The VP-based design methodology

tions for the top-level entities that contain a large number of components, i.e. the test bench,

the DUV, and some big main component models.

(a)

(b) (c)

Figure 3.5: Example of the use of main component configurations inside of a higher level
configuration (the three dots (...) means omitted code). (a) Large TBC before using configu-
rations inside configurations technique. (b) Compact TBC after using configurations inside
configurations technique. (c) Configuration for the big_comp main component model.

In principle, the complete design could be managed using a single top-level configuration, the

test bench configuration (TBC). However, as the VP is becoming bigger and more complex,

the TBC will turn clumsy and difficult to manage. This is why the recommended approach

is to use a TBC to manage the first high-level VP implementations and progressively transfer

the configuration code to a DUV configuration or to a lower level configuration of main

component model. Hence, specific configurations of any component model used in the VP can

be called from the highest level configurations, i.e. from TBCs or DUV configurations. One

file per configuration declaration is highly recommended for representing different test cases.

These files must be logically organized together with the source code of the complete design.

Consider the source code examples in Figure 3.5. Figure 3.5(a) shows how initially looks the

TBC termed Test_set1_bigcomp_func, observe that the component big_comp of the DUV

is bound to a hierarchical design entity that possesses more component models which need to

be bound using a configuration. This TBC can be simplified as is shown in Figure 3.5(b) by

using a separate configuration for the big_comp component, see Figure 3.5(c).

36

3.5. The VP-Modeling Guidelines

On the other hand, it is not recommended to rely on configuration specifications4 since the

goal of this guideline is to be able to build modular models, i.e. without the need to edit the

concerned component model architectures. In order to improve the bottom-up scalability of

the VP, the complete set TBCs must be converted in DUV configurations. Consequently, the

DUV can be used as a component of a larger model and all its test cases previously created can

be called from a higher level configuration to create new test cases.

4) Parameter organization and classification: In general, the parameters of a model can

be classified into two types: primary and secondary parameters. A primary model parameter

(PMP) is a constant parameter that does not depend on other internal or external parameters.

It is available at the interface of the model with the purpose of modeling certain behavior

and/or functionality. In order to make a PMP accessible from a top-level design unit, it must

be expressed as a VHDL-AMS generic parameter in the entity declaration of the model. On

the other hand, a secondary model parameter (SMP) is a parameter whose value is derived or

computed from other primary or secondary model parameters. An SMP is normally expressed

as a VHDL-AMS constant inside the model architecture, but can also be computed externally

in test benches or in packages and transmitted to the model by its generic parameters as it is

done for the PMPs. An SMP is also used to model particular functionalities and/or behaviors.

There are many ways to organize the parameters of the model as PMPs or SMPs. For instance,

in a top-down design of an analog filter, we could consider PMPs to define specifications

(i.e. what to achieve?), e.g. the gain and the bandwidth of the filter. Likewise, we could use

SMPs to define the implementation information (i.e. how to meet the specifications?), e.g. the

resistance and capacitance values of a specific implementation of the filter. Contrarily, in a

bottom-up design of the same filter, the PMPs might be the resistance and capacitance values,

and the SMPs could be the gain and bandwidth of the filter. In any case, the PMPs and SMPs

definition depends on the purpose of the design.

5) Parameter value verification: It is a good practice to use VHDL-AMS assertions for

verifying the correctness of the generic and constant parameter values. This practice enhances

the reliability and robustness of the models. The VHDL-AMS assert statement can be used as

a concurrent statement in entity or architecture declarations, or as a sequential statement in

processes, functions, and procedures. The VHDL-AMS report and severity clauses5 are also

used together with the assert statement. If the severity clause is omitted, the default level

depends on the simulator settings. It is recommended to use error or failure severity levels

for verifying generic and constant parameter values since the simulation stops immediately

after the assertion evaluation6, allowing the user of the model to quickly notice the problem

without waiting for the simulation result analysis. If the report message is omitted, a default

message is displayed, but it is not recommended to rely on default output messages as they

can be difficult to understand in a model with many verifications done by assertions. In order

4In this less flexible VHDL-AMS approach, the components are configured within the architecture that instances
them, rather than using a separate configuration declaration design unit.

5The report clause can be used as an independent sequential statement in processes, functions, and procedures.
6This feature depends on how the simulator is configured.

37

Chapter 3. The VP-based design methodology

to illustrate the generic parameter verification, consider the example shown in Figure 3.6.

We can observe that the comp model has two architectures: behavioral and functional. In

lines 20 and 28, it is shown that an assertion is used to verify a particular value that the generic

parameter P3 must have in each architecture. Similarly, in line 13 on the same figure, an

assertion is included in the comp model entity declaration to verify that the generic parameter

P1 is lower than 100.0. This verification is always done disregarding the selected model

implementation of comp.

Figure 3.6: Example code: Assertions for verifying parameter values.

6) Parameter grouping in packages and usage: As the VP grows in size and complexity

the number of parameters gathered by the DUV can be very large. This is why is recommended

to create a VHDL-AMS package for grouping all the PMPs declarations of each main compo-

nent (or subsystem) in the VP. In this way, it is easier to manage properly organized parameters

from individual files.

In fact, there are different forms to use those packages in a VP. The recommended approach

considers the two following cases that might be applied one after the other as the complexity

of the VP grows:

6.1) From the test bench: The packages can be called from the test bench by using the use
clause at the beginning of the test bench architecture declaration when the VP presents

the following conditions7:

• Each generic parameter of every component in the design is declared and bound in

the subsequent higher level design entity via generic mapping in the component

instantiation until reaching the test bench. This approach is known as hierarchical

parameter binding.

• There are no parameters in any package that exclusively belong to a particular

architecture or a verification scenario (test case).

• The number of packages and test cases is low.

For example, in Figure 3.7 we can observe that all the generic parameters of the complex_-
comp and the small_comp components of the example VP are declared in two different

7Typically for early high-level VPs that contain relatively small amount of generic parameters per component
model

38

3.5. The VP-Modeling Guidelines

packages, see Figure 3.7(a) (each package must be declared in an individual file). These

packages are used on the test bench, see lines 6 and 7 of the code in Figure 3.7(b). Since

VHDL-AMS allows to overwrite the value of a parameter declared in a package in the

architecture in which the package is being used (in this case the test bench), the PMP

values set in the packages can be re-assigned in the test bench. Figure 3.7(b) shows that

only the parameters P1_D_CMP2_VP and F3_C_VP are overwritten in the test bench, see

lines 16 and 20 of the code shown in Figure 3.7(b). All the other numerical values of the

constant parameters are given from their respective packages.

Figure 3.7: Example code: (a) complexcomp_pkg and smallcomp_pkg packages. (b) Utiliza-
tion of parameter packages in the test bench.

The parameter overwriting technique can be very useful for performing statistical and

parametric simulations using the proposed approach explained in Appendix E. Note

that in order to correctly overwrite a constant parameter, the constant declaration in the

test bench must have the same name than its corresponding constant declared in the

package.

6.2) From configurations: When the complexity of the VP increases either by the inter-

connection of more component models or by model refinement, it is not recommended to

use the conventional hierarchical parameter binding approach since the manipulation

of the hierarchical chain of generic parameters and ports becomes unmanageable. The

hierarchical parameter binding approach is also not recommended when a component

model use parameters values that are particular to a specific architecture or to a specific

test case. For example, the electrical model of the RogoCoil transducer described in sec-

tion 4.2.2 can be used to represent multiple RogoCoil transducer types that use particular

dimensions and electrical specifications values, see appendices A.2 and A.5. These set of

PMPs values are organized in different packages that can be selected according to the

configuration specified in particular test cases.

The recommended approach consists in using generic parameter mapping of the com-

39

Chapter 3. The VP-based design methodology

ponents from configurations, this is done in order to set the generic parameter values of

the entities bound to the components. Contrarily to the hierarchical parameter binding

approach, the generic parameter mapping from configurations does not require to use

generic parameters in component declarations. Consequently, setting the parameter

packages from configurations is the technique that gives more flexibility and scalability

in complex designs than any other VHDL-AMS approach. A large number of components

and generic parameters can be handled from packages and set by the proposed confi-

gurations, i.e. the TBCs, the DUV configurations, or any other subsystem configuration.

In order to illustrate this approach let us consider the two sets of big_comp packages

shown in Figure 3.8.

(a) bigcomp_set1_pkg (b) bigcomp_set2_pkg

Figure 3.8: big_comp parameter packages of the hierarchical VP example.

Figure 3.9 shows the two example configurations for the big_comp entity. The packages

bigcomp_set1_pkg and bigcomp_set2_pkg are made visible by the use clause, see line

2 in both Figures 3.9(a) and 3.9(b). Therefore, the parameters P1_X, P2_X, P1_Y and P2_Y
declared inside the packages are visible by the configuration.

In this way, a large number of parameters can be easily switched by using particular

configurations. Using component declarations without generic parameter declarations

can be adopted at any point of the VP design. This is why if an initial hierarchical

parameter binding VP structure is in place, the parameter management can be easily

migrated to configurations without any particular change. The parameter mapping in

configurations has the priority over the parameter mapping in the component instances,

see the details in subsection 3.5.1. In fact, a VP parameter management using a mix

of both approaches can be implemented when the VP is built from the bottom-up, i.e.

using packages for the main components of the VP (subsystems) which might be built by

hierarchical parameter binding, then assigning these packages directly from the TBCs or

DUV configurations. So that, there is no need to declare generic parameters either for

the components of the DUV or for the DUV component in the test bench. An example of

this modeling approach is shown in section 4.4 for the current measurement unit (CMU)

40

3.5. The VP-Modeling Guidelines

Figure 3.9: Example code: Configurations of the big_comp entity.

of the RogoCoil sensor system.

It is, however, important to foresee early in advance an adequate organization of the VP

and its test bench for managing different test cases in a practical way. It is not practical

to elaborate a modeling infrastructure with a large number of configuration units to set

individual design entities and their parameters. A proper identification of the subsystems

is key for the functional system-level modeling and gradual model refinement approach.

Finally, note that components without generic parameters are not suitable for parametric

and statistical analysis (e.g. Monte-Carlo simulations) since a VHDL-AMS configura-

tion only allows to bind parameters but does not provide any mechanism for supplying

different parameter values in simulation. Although these types of simulations can be

done in components without generic parameters by implementing the statistical and

parametric packages (see Appendix E) inside the component architectures, this alterna-

tive just translates the complexity of the parameter management from the highest level

to lower levels in the hierarchy. Therefore, it is up to the model designer to choose the

best modeling approach according to the verification needs and the expected size of the

complete design.

7) Logical component encapsulation: One of the main challenges of a VHDL-AMS mo-

deling approach for complex system design, is to cope with large structural models in which

many components can be instantiated at the same level. It does not matter at which level of

the hierarchy the models are instantiated, a hierarchical model is not easy to manipulate if the

component interconnection is managed by a huge amount of lines of code. This problem can

be mitigated by using a graphical software tool which allows seeing a schematic view of the

model. However, at the time that this research has been done, there is no commercial tool to

properly use schematics for VHDL-AMS models8 and at the same time take the advantage of

the flexibility that VHDL-AMS configurations provide for complex VP modeling.

8System Vision from Mentor Graphics and SLED from Dolphin Integration, are software tools that allow building
schematics for multi-domain complex systems based on VHDL-AMS and Spice models. However, none of those
tools properly support the use of VHDL-AMS configurations.

41

Chapter 3. The VP-based design methodology

Alternatively, it is recommended to minimize the number of components per architecture at

any level by forcing a logical grouping (encapsulation) of a set of components inside other

structural design entities that must be contained inside the original structural architecture.

In order to illustrate this modeling guideline, suppose that we are designing a model that

contains five main components, as it is shown in Figure 3.10(a). We can reduce the number

of components of the DUV to only 2 main components by encapsulating the initial five

components in two groups. Suppose that the components A, B, and C are part of the analog

front-end of the system, and the components D and H are digital processing units of the

system. Therefore, it makes sense to create two new structural components CMP1 and CMP2
as it is shown in Figure 3.10(b). This logical division can be applied in any of the structural

architectures of the design. If the VP is being refined (i.e. a top-down design approach), it is

easy and natural to make these divisions. However, a logical component encapsulation is less

evident when the system is designed from the bottom-up.

(a) (b)

Figure 3.10: Logical component encapsulation example. (a) Flat structural model. (b) Logically
encapsulated structural model.

Highly encapsulated VPs and component models bring important advantages for hierarchical

model elaboration and utilization; it is important to highlight the following advantages:

• The interconnection of the components can be manipulated easily by dealing with

smaller structural architectures.

• It is easier to understand how to add or suppress components in the design since specific

locations in the hierarchy can be found more easily. The modularity of the DUV is

improved.

• This technique facilitates the design space exploration and verification of large VPs since

different component interconnections can be simulated by simply selecting different

model implementations from the main configurations of the design, i.e. from the TBCs

or the DUV configurations.

Nevertheless, it is not recommended to apply the logical component encapsulation, and

later a hierarchical parameter binding. The additional hierarchical levels created in a highly

42

3.5. The VP-Modeling Guidelines

encapsulated model makes more difficult to make parameter binding from the top to the

bottom architectures.

3.5.1 Mapping in configurations

The use of VHDL-AMS configuration design units to structure and organize large and complex

VPs and their test cases, demands a deep understanding of the operation principle and the

modeling and simulation capabilities of the language. The discussion presented in this

subsection is centered on the idea of decreasing the complexity and increasing the efficiency

of model interfaces dedicated to CPS design and verification. A VHDL-AMS model interface

consists of a set of ports and parameters. This research does not pretend to explain the

details of the VHDL-AMS configurations per se. Instead, it gives key modeling rules for using

configurations, and it reports VHDL-AMS operation principles of port and parameter mapping

that were not reported in the literature at the moment of this research. The principles were

deduced by studying different configuration cases that the language and the simulation

framework allow building, but they are not conventionally used.

By definition, a configuration is a VHDL-AMS design unit that defines how component ins-

tances in a given block are bound to design entities. The configurations describe how the

model implementations are used in the system architecture represented by a VP and its test

bench to form a complete design. It is important to highlight the design flexibility offered

by configurations, which is essential to cope with complex designs with a large number of

components.

As it is mentioned in the VP hierarchical construction guideline (modeling guideline 2) in

section 3.5, it is not recommended to rely on default configurations, i.e. a default model

interface mapping when the component and its bound entity have exactly the same model

signature. A clear component binding to the corresponding entity must be always defined in a

configuration using at least the following VHDL-AMS instruction:

use entity work.entity_name(architecture_name);

where entity_name is the name of the entity to be bound, and architecture_name is the

name of the desired architecture of such design entity. Therefore, the component name and

the entity name do not necessarily need to be the same as we should always indicate the

binding in the configuration. However, it is important to know how the VHDL-AMS interface

binding (mapping) works. In configurations, the VHDL-AMS interface mapping mechanism

between components and entities obeys the following principles:

I) If there is a name match between a parameter/port in the component declaration and

the used entity, VHDL-AMS binds by default those parameters/ports.

43

Chapter 3. The VP-based design methodology

II) A generic/port mapping in a configuration is a direct access to the parameters/ports

of a component so that it nullify the generic/port mapping done in the component

instantiation.

Appendix D illustrate these principles for generic parameter mapping considering models

built using a hierarchical parameter binding. In the following subsection, it is presented

a more interesting alternative case that illustrates the mapping in configuration principles

and the definition of specific case rules. These rules can be used together with the modeling

approach suggested by the VP-Modeling Guidelines, but also supports VPs built by hierarchical

parameter binding.

3.5.1.1 Port mapping

One of the advantages of using component instances in structural architectures is to be

able to simulate different model implementations of the same subsystem/device without the

additional effort to modify the component interconnection and/or the test bench. In this way,

the typical case for a component instance is to explore different architectures of the same

component, which has a fixed interconnection determined in the structural architecture. By

rule of thumb, when different models of the same device are being designed, the same entity

and different architectures should be used if the model implementations have the same model

signature. Otherwise, the different models of the device must use different entities9.

In the majority of the cases, the ports of the component are often the same among the possible

design entities that can be bound in configurations. Therefore, only one entity is sufficient.

However, can the designers use a single component declaration to include in a hierarchical

model different model implementations of the same device with more than one entity? The

traditional approach implies that this is not possible since different components instantiated

in different structural architectures are used for this purpose. However, the author of this thesis

has established a method to systematically use a single component declaration to instantiate

not only different architectures but also different entities.

This case can occur in particular modeling scenarios, typically when a model refinement is

done progressively over time. The type of the ports may change or more ports may be added to

the model. For instance, when the values given by generic parameters need to be transformed

in variable quantities as input ports. Let us consider a practical example of an OpAmp. Figure

3.11(a) shows a simple implementation of an OpAmp in which the positive VSP and negative

VSN supply voltages are given as generic parameters in the entity. On the other hand, in Figure

3.11(b), the negative and positive supply voltages are not given anymore as generic parameter

constants, but instead, they are determined by the dynamic terminal ports tip and tim. In

the opamp_term(gain_refined) design entity, the positive and negative supply voltages are

now given by the quantities vip and vim respectively.

9This rule is consistent with the VP-Model Library structural organization.

44

3.5. The VP-Modeling Guidelines

(a) OPAMP gain architecture (b) OPAMP gain_refined architecture

Figure 3.11: Model refinement example, the OpAmp positive and negative supply voltage is
given as (a) generic parameters or as (b) terminal ports.

As it is observed in this example, a component can be declared to instantiate both opamp_gen
and opamp_term entities and their architectures. In general, the component declaration must

comply with the following rules:

1. Do not declare generic parameters for the components unless the model is built using

hierarchical parameter binding. In the latter case, the generic parameters of the related

component must be declared equal to the union of all generic parameters of all related

entities. In this case, all the parameters that could be unused in any component instance

must have default parameter values in the component declaration.

2. The ports of the component must be equal to the union of all ports of all related entities.

3. All the input ports that could be unused in any component instance must have default

values in the component declaration.

4. The unused ports in any component instance can be bound by using the keyword open,

or they can be simply omitted. Likewise, it is recommended to use default values for the

related signals or quantities of unused output ports.

In order to illustrate in a general fashion the rules mentioned above, let us consider the non-

specific example shown in Figure 3.12. Suppose that modelX and modelY shown in Figure

3.12(b) and 3.12(c) respectively, are two different models of the same device with different

amount and types of generic parameters and ports. Suppose that we want to use a single

45

Chapter 3. The VP-based design methodology

component to instantiate both modelX and modelY entities, the component (any_unit) is

declared in the big_structural architecture of the complex_comp entity that belongs to the

example VP previously introduced, see line 3 in Figure 3.12(a). This component has been

created following the aforementioned rules.

Figure 3.12: (a) big_structural architecture of the complex_comp entity. (b) modelX entity
declaration. (c) modelY entity declaration.

Since it is required to bind the real generic parameters P1_D, P2_D, and P1_H of the complex_-
comp entity with the generic parameters L1 and L2 of modelX, and the parameter L1 of modelY
respectively, the component any_unit declares the union of all generic parameters of the

modelX and modelY. If it is desired to set the generic parameters of the bound entity via generic

mapping in a configuration, there is no need to define generic parameters in the component

declaration. The parameter L1_XY of the any_unit component is the only one instantiated

in both instances X and Y of any_unit, see lines 20 and 28 in Figure 3.12(a). For all the other

parameters, it is mandatory to fix a default generic parameter in the component declaration10.

The values of the generic parameters are finally set in the complex_other_mix configuration

shown in Figure 3.13.

Likewise, the declared ports of the any_unit component are equal to the union of all ports

10Since the name of the component does not match with any of the bound entities, the default parameter values
must be declared in the component declaration; otherwise, the default parameter values can be declared in the
entity declaration.

46

3.6. The VP-Model Library

Figure 3.13: Configuration of the complex_comp entity.

of modelX and modelY entities. modelX has two inputs and one output port, whereas modelY
has one input and two output ports, see Figures 3.12(b) and 3.12(c). In Figure 3.12(a), we can

observe that the port inputB_X does not need to be used in the component Y instantiation,

see line 30. Therefore, this port can be omitted in the port mapping, or equivalently, this port

can be bound by using the keyword open. Finally, in line 25, we can see that the output port

outputB_Y is not used in the component X instance. Since the result signal, which is the one

associated with the outputB_Y port, is used for the signal assignment shown in line 34, the

result signal has a default value in its declaration as is shown in line 15. This is mandatory in

the case that only modelX is instantiated.

To conclude, it can be observed the definitive generic and port mapping of the any_unit
component instances in the configuration shown in Figure 3.13. In lines 5, 6, and 14 we

observe that those generic parameters are bound to the respective generic parameters of the

component; and therefore, the hierarchical binding is conserved. All the other parameters are

numerically set in this configuration as it can be seen in lines 7 and 15. The port mapping is

done straightforward; the respective ports of the bound entities are bound to the respective

ports of the any_unit component.

3.6 The VP-Model Library

This section describes the objectives, the concepts, and the issues behind the classification

and organization of model meta-information (or metadata). The ideas presented in this

section represent the foundations of the proposed library of models of the VP-based modeling

methodology, namely the VP-Model Library. The development, deployment, and structure

of the VP-Model Library is presented in details in Appendix F. It is strongly advised to the

reader to check this Appendix after reading this section, especially the VP-Model Library

structure in Appendix F.2, which gives a complete explanation of what is the type of model

47

Chapter 3. The VP-based design methodology

meta-information stored and displayed by the VP-Model Library developed in this research.

As it has been previously mentioned, the VP-Model Library is a centralized database for storing,

documenting, maintaining, and querying modeling elements at different abstraction levels. Its

main goal is to provide an environment for maximizing the reuse of models among system

and subsystem designers. Although the VP-Model Library supports the inclusion of models

written in different languages, its structural organization is principally focused on supporting

VHDL-AMS models. This structure facilitates the system design knowledge preservation and

transfer by providing a method to store, document and share the IP related to the virtual

prototyping activity. The proposed model library is mainly focused on supporting models for

electrical power applications and embedded electronic design.

3.6.1 Issues and objectives

The ability to maximize the reuse of local or foreign IP is crucial to speed up the design and

verification processes of CPS in any domain. Reducing time and costs in system development

are the main advantages of the IP reuse when it is done in an effective way. This IP is represen-

ted here by computational mockups and their related verification models. Despite the benefits

of the approach, there are several issues which currently complicate this process:

• Unawareness of existing models and their applications.

• Insufficient knowledge of modeling languages and simulation tools.

• Difficult model adoption due to the lack of proper documentation of the existing models.

• Lack of confidence for existent models. It is especially critical with foreign and complex

designs.

• There are no tools for carrying out extensive and precise queries for existing models.

• Most of the model implementations elaborated for particular designs are application

specific, which cannot be used directly for general purpose applications.

The VP-Model Library offers a solution to some of the problems mentioned above, particularly

it provides an environment to find well-documented models and verification examples. This

is a library that provides a clear view of the models, in addition to examples of their utilization

in larger hierarchical models, and robust verification procedures implemented in test benches.

The VP-Model Library contributes to facilitate the understanding of foreign models and

increase the model trustworthiness that is required to maximize the reuse of models.

Although there are tool-specific library managers provided by different companies such as

Cadence, Mentor Graphics, or Dolphin Integration, these cannot cope properly with the

management of the models out of the software tool and they not offer an adequate solution

48

3.6. The VP-Model Library

for a sufficient comprehension of the models, their interrelations, and their usage, especially

for complex designs.

The VP-Model Library is mainly dedicated to facilitating the design space exploration activity

and gradual model refinement for system-level design. For this purpose, the models need to

be well-documented and properly organized to support fast model queries. The user interface

must be friendly and easy to understand. Additionally, the models contained in the library

must be presented using an adequate summary to quickly perceive how the model is built and

how it can be used.

In order to properly judge if a model is suitable for a specific design, the information of the

model structure and its functionality must be clear. Likewise, since it is not always possible to

count with tool-independent models, the VP-Model Library shall provide clear information

about the tools that the models are expected to be compatible with. Moreover, the VP-Model

Library must allow to categorize and link models sharing detailed criteria. In this way, the

selection process among several potential models becomes more complete, and the choice of

the best candidate becomes easier. The models stored in the library must be properly related

to their verification models and files (i.e. test benches and test cases).

The VP-Model Library shall only provide conditioned models. These models can be described

at different abstraction levels, and they can be used as references and/or building blocks of

new designs. The criteria of VHDL-AMS conditioned models is given as follows:

• The source code is clear, well-written, and organized, the different design units can be

easily identified.

• The model ports and parameters are correctly described and documented.

• All the functionalities and behaviors that are modeled in the model implementations are

clearly described and documented.

• It is provided at least one test bench for verifying the different functionalities and be-

haviors that are modeled. The validity range of the variables and parameters of the

model must be identified as better as possible; effective test benches/test cases are vital

to achieving this purpose, they must be properly documented.

• The simulator setups are correctly described and documented. Although this is not

mandatory for simple models, it is desirable to describe simulator setup limitations if

they have been identified in the verification procedure of complex models.

3.6.2 Model metadata

A computational mockup can be implemented in different ways according to its construction:

for instance, it can be implemented in terms of a source code written in a determined model-

ing language, or by graphical representations such as schematic diagrams (e.g. RTL, Gate-level

49

Chapter 3. The VP-based design methodology

models) or by 2D/3D CAD geometrical models. Nonetheless, disregarding the type of compu-

tational mockup construction, the model by itself give few and ineffective information about

the model scope, its semantics, its functionalities, and behaviors. Only model experts could

extract some important information hidden in a model by only looking its source code or

schematics. This becomes an impossible task the more complex and larger the model is. This

is why the model meta-information or metadata come to be highly desired for effective model

re-utilization.

One of the main issues for administrating model metadata is the lack of a consistent and

proper definition of the information that must be included for a correct description of the

model. In addition, the incapability to embed the model metadata within the model makes

the issue more problematic. Some software tools such as COMSOL or LabVIEW for modeling

and system design, offer a text field to freely add the description of the model. However, this

is not much more different than adding comments to a source code in order to provide a

description and explanation of the model. These strategies are not good enough to clearly

understand important details of the model as the model complexity grows.

Previous attempts to classify the model metadata are reported in [24, 74], where two categories

are defined: the structural meta-information, which describes how the model is built ; and

the semantical meta-information, which describe how the model can be used. The proposed

structure of the VP-Model Library has been designed in order to answer these two questions.

However, trying to classify important model meta-information such as the description of

the port interface, the software tool compatibility, or the types of supported simulations,

in structural or semantic meta-information does not bring any benefit to the design of a

model library, instead, it creates confusion. For instance, the refinement levels proposed

by the SAE J2546 standard [75] mixes several concepts such as different model interfaces,

simulation types, non-ideal behaviors, and model capabilities; making this classification

rather fuzzy and unpractical. Moreover, most of the important meta-information of a model

have characteristics that can be classified in both structural and semantical kinds. For example,

the verification meta-information of a test bench model can provide information about both

how the model is built and how it can be used. By logical sequence, the model user first

should understand how the model is built and how it computes the desired functionality

and behaviors; afterwards, the user should analyze how the model can be implemented for a

specific application.

Contrarily, the VP-Model Library has been focused on gathering all the essential aspects

that are required to clearly and accurately describe a component model or a VP of any size

and at any refinement level. The VP-Model Library is organized in three main database views

(metadata interfaces): the Model, the Test Bench, and the Custom Package views, the detailed

description of the database views is presented in Appendix F.2. The database views group the

metadata of each model entry and their relationships with other model entries, with their

verification models (test benches), and with other model dependencies, e.g. custom packages

and configurations.

50

3.7. Conclusions

The VP-Model Library contains component models from very basic building blocks to more

complex hierarchical system models, i.e. VPs. Each model entry in the library can have

one or more model implementations at different refinement levels. This is true always that

the model interface remains identical, i.e. if the port interface is different between two

model implementations, this requires two different model entries in the library, even if these

implementations model the same device/system. Additionally, each model entry can be linked

to one or more test benches entries and/or Custom packages. Although a test bench can be

composed of several models, it is normally designed to test only one specific model (the DUV).

3.7 Conclusions

The main theoretical premise behind VP-based design advocates that its continuous execution

improves the design and verification of small-scale CPS by a sustained system-level modeling

boosted by model reuse. This is why this work proposes mechanisms for the improvement of

these two concepts. On the one hand, the VP-Modeling Guidelines facilitate the system-level

modeling in VHDL-AMS and compatible languages. On the other hand, the VP-Model Library

provides a way to maximize the reuse of models making the virtual prototyping task easier

and faster.

The VP-based design methodology is based on a meet-in-the-middle approach for the execu-

tion of system-level modeling and verification. This approach is the basis of the functional

system-level modeling and a gradual model refinement promoted in this work. In particular,

the VP-Model Guidelines are focused on improving both the modularity and the scalability of

VPs and their component models. The proper use of VHDL-AMS packages and configurations

allow to improve the flexibility in VPs and to reduce the complexity in the manipulation and

interconnection of models with large interfaces and parameters.

The ability to store, document, maintain, and query models in an effective way are the main

features that the VP-Model Library must attain in order to maximize the reuse of models. It is

important to clarify that most of the times, the models (their functions and algorithms), are

designed for application specific purposes rather than general purpose applications. The most

effective models for simulation are build based on a priori knowledge of their applications.

Therefore, a complete and direct re-usability of models cannot be always 100% guaranteed.

However, it is possible to reuse most of the IP (i.e. complete or partial models and functions)

that has been previously designed for distinct applications. The VP-Model Library is proposed

as a critical part of the VP-based design methodology, it defines a specific model metadata

structure and library functionalities that contribute to achieving the desired model re-usability.

51

4 The Rogowski coil sensor system

The fundamental application project that has been treated during this doctoral research is

presented in this chapter. The main goal of this work has been the identification of the issues,

challenges, requirements, and opportunities of the VP-based design methodology. Especially,

the connection between two co-related parts of the system design, i.e. high-level design

space exploration at the system level and detailed low-level modeling of critical cross-domain

interactions at the component level.

This chapter starts by describing the RogoCoil transducer and the conceptual overview of

the complete RogoCoil sensor system that requires being designed. Later on, is presented a

multi-domain (electro-thermal) virtual prototyping analysis for detailed subsystem design

and verification of the RogoCoil sensor using 3D geometrical FEA and VHDL-AMS. Finally,

the functional system level modeling and gradual model refinement concepts are used in the

construction of the VP of the complete system and the VPs of the main signal processing

subsystems, i.e. the self-calibration unit (SCU) and the current measurement unit (CMU).

Although the RogoCoil sensor system has not been designed using the VP-based design

methodology from the beginning, most of the VHDL-AMS modeling techniques proposed in

the VP-Modeling Guidelines are illustrated in the presented examples.

4.1 System description

A RogoCoil transducer is a toroidal coil wrapped around an air (non-ferromagnetic) core. The

RogoCoil can be used as an electrical instrument for measuring alternating current; for that

purpose, the RogoCoil is located around a primary conductor (also known as Busbar) whose

current intensity is intended to be measured, see Figure 4.1(a). It the delivers a voltage (Vout)

53

Chapter 4. The Rogowski coil sensor system

proportional to the derivative of the AC primary current (Ipr) as follows:

Vout = M · d Ipr

d t
(4.1)

where M is mutual inductance of the RogoCoil.

(a) Rogowski coil current transducer (b) MV Rogowski coil current sensors

Figure 4.1: (a) A Rogowski coil transducer around a primary conductor. (b) Indoor RogoCoil
current sensors for MV applications (ABB portfolio).

This type of sensor has many advantages and features which make it very attractive for alter-

nating current measurement. The main RogoCoil advantages are listed as follows [76, 77]:

• High linearity and large dynamic range thanks to its non-ferromagnetic core.

• Effective galvanic isolation from high current and tensions (safety).

• Large overload withstand without damage.

• Current measurement in a wide range without saturation.

• Easy to use and easy to install.

• Low cost.

• Wide bandwidth, in a range from 0.1 Hz to 1 GHz.

• Excellent transient response.

• No power consumption from the main circuit.

54

4.1. System description

The main problem of the RogoCoil sensor is its accuracy, which depends on multiple factors

such as manufacturing tolerances, the sensor position with respect to the primary conductor,

temperature drifts and the degradation of the sensor by aging. Therefore, methods to improve

the accuracy of this sensor are highly desired. During this research, different self-calibration

[78] techniques have been explored based on the RogoCoil electrical properties such as its

resistance and inductance [79]. An estimation of the winding resistance (Rcoi l) and inductance

(Lcoi l), allows to continuously estimate the RogoCoil sensitivity (S) which is directly related to

its mutual inductance (M).

The conceptual overview of the complete RogoCoil sensor system is presented in Figure

4.2, which is a high-level representation of the complete system and the main signals at the

subsystem interfaces. As it can be observed, the RogoCoil sensor system consists of 3 principal

subsystems: the RogoCoil, the SCU, and the CMU. The RogoCoil receives a MV current signal

(around 50 A to 8 kA) in the primary and produces a low voltage (tens of mV) analog signal

which is processed by the electronics of the sensor system, called the intelligent electronic

device (IED). And adequate signal processing algorithm executed by a hardware/software

implementation in the IED, must improve the accuracy of commercial RogoCoils of the ABB

portfolio, see some commercial product datasheet in Appendices A.3 and A.6 on pages 168

and 174 respectively.

Figure 4.2: Conceptual diagram of the Rogowski coil sensor system. The different signal
domains are: MV electrical signal (green), temperature signal (red), analog electronic signal
(black), digital electronic signal (blue).

Whereas the CMU continuously measures the primary current (Ipr (t)) from the output voltage

of the RogoCoil, the SCU continuously calculates and communicates to the CMU the RogoCoil

correction factor (C F) that is required for the primary current measurement. Therefore, the

C F is not anymore a fixed value measured once in the factory and typed in the IED during

installation. It becomes a dynamic value that can change during the system operation by

55

Chapter 4. The Rogowski coil sensor system

temperature drifts, mechanical stress, or aging.

In this way, the accuracy of the current measurement mainly depends on the accuracy of the

C F estimation. It is important to note that the signals of the analog and digital electronics shall

also be corrected in terms of gain errors, ensuring an entire instrumentation chain amplitude

accuracy. The phase error is known to be in the case of the RogoCoil negligible as long as the

passive components (i.e. resistors and capacitors) connected to the sensor are constant [80].

Indeed, the RogoCoil itself can be considered as a perfect derivation device in the frequency

domain used for electrical measurement in power systems (50Hz - 1kHz) [77].

An important feature of this system is the signal exchange between the IED and the RogoCoil

sensor is bidirectional, i.e. the SCU is not only passively reading the rated signal delivered by

the sensor, but also it generates a reference (calibration) signal and sends it to the sensor. The

SCU analyzes the response in order to determine the necessary electrical quantities (sensor’s

inductance and winding resistance), see Figure 4.3.

Figure 4.3: SCU closed loop measurement principle [80].

Some of the benefits of using embedded electronics to build smart self-calibrating RogoCoil

sensors for MV power applications are listed as follows [80]:

No in-factory calibration: Once a RogoCoil is plugged to the IED, the SCU can calculate

automatically the correction factor that is currently calculated manually and written in ABB’s

RogoCoil current sensors after its fabrication.

Shortening lead time of switchgears: A lead time reduction of switchgears is possible with

self-calibration since it allows to reach the same accuracy class (IEC 60044-8 class 0.5) with

all types of current sensors. The change of rated current (e.g. 80A, 250A, 500A, 1600A) does

not affect the accuracy using a IED with a SCU since it will simply adapt its input gain stage

without affecting the accuracy performance.

56

4.2. The electro-thermal modeling of the Rogowski coil sensor

Cheap material and components: An automatic calculation of the correction factor allows

to lower manufacturing costs of RogoCoils by using cheap commercial electronic components

for the IED instrumentation. The poor accuracy (tolerance and drifts) is compensated by

self-calibration.

Simple installation: That is, plug and play.

Maintenance free: No external calibration is needed neither during installation nor during

lifetime (>20 years).

Service: The direct estimation of the coil inductance and coil resistance allows to calculate

directly the coil temperature, this could be used to deliver data for installation diagnosis.

Accuracy improvement: The SCU allows us to guarantee the accuracy class over the full

temperature range and during the entire lifetime of the sensor and its analog instrumentation

electronics.

4.2 The electro-thermal modeling of the Rogowski coil sensor

As it was previously mentioned, one of the main factors that can cause variations in the

accuracy of the sensor is the temperature of the RogoCoil, which mostly depends on the

principal heat sources of the system, i.e. the room temperature and the Busbar self-heating.

This is why we are interested in modeling the thermal and electrical effects concurrently. This

section describes the theoretical assumptions and approximations done for modeling the

electrical and thermal behaviors of the RogoCoil. Indeed, these multi-domain behaviors form

an unidirectional coupling in which the thermal interactions affect the electrical variables of

the system. It is shown in this section, how each of the 3 main parts of the RogoCoil sensor can

be modeled independently and how they can be put together to build a system in a modular

way. The analysis is focused on the heat transfer FEA modeling and the subsequent equation-

based model extraction to implement a highly parametrized electro-thermal model of the

RogoCoil in VHDL-AMS.

4.2.1 Rogowski coil sensor system assumptions

In order to model properly the thermal behavior of the RogoCoil sensor system, it is required

to adequately describe the heat transfer physics of the coil and its surroundings. For that

purpose, the following basic assumptions are defined in order to support the selection of the

physics that rule the system behavior:

• The RogoCoil sensor system consists of a cylindrical primary conductor (Busbar) and a

RogoCoil protected by a thick layer of epoxy material that is separated from the Busbar

by few millimeters.

57

Chapter 4. The Rogowski coil sensor system

• The RogoCoil is designed for indoor applications. Therefore, the heat transfer of the

RogoCoil with the surroundings is mainly caused by natural convection, i.e. there are

no air flow sources around the RogoCoil system.

• The complete RogoCoil sensor system is contained in an air box at atmospheric pressure,

in which no other heat sources are present.

Changing those basic assumptions will lead into changing either, some parameter values (case

1) or, defining a new physics for the system behavior (case 2). The first case is trivial, no major

changes to the model are required; for example, the situation of inserting a heat source at a

certain region of the RogoCoil sensor system surroundings. The second case is a bit more

complex; for instance, the situation of inserting an air cooling system will require using forced

convection physics (air velocity different than zero) instead of natural convection.

Taking into account the aforementioned basic assumptions, the electro-thermal model of the

RogoCoil sensor system can be modeled by 3 parts as shown in Figure 4.4: the symmetric

3Loops-2Layers electrical model of the RogoCoil explained in subsection 4.2.2, the thermal

model of the Busbar explained in subsection 4.2.4, and the thermal coupling between the

Busbar and the RogoCoil explained in subsection 4.2.5. Both the Busbar thermal model and

the thermal coupling model form the Thermal Network of the RogoCoil.

Figure 4.4: Block diagram of the electro-thermal Rogowski coil model (ETRCM). The model is
an abstraction of the RogoCoil electrical behavior and the thermal behavior represented by
the thermal network modules.

58

4.2. The electro-thermal modeling of the Rogowski coil sensor

4.2.2 Electrical model of the Rogowski coil

The most abstract functional model of the RogoCoil, given by Equation 4.1, relates the output

voltage of the transducer with the input current in the primary. This model could be adequate

for functional verifications in a VP of a large system. However, it does not provide relevant

information for the design of the SCU and the RogoCoil transducer itself. This is why it has

been studied a series of lumped-element circuit models of the RogoCoil based in previous

studies [81, 79, 82], to obtain the critical electrical variables for the sensor system design. The

most refined RogoCoil model that was obtained in this research, called the symmetric 3Loops

model, is shown in Figure 4.5. This is a parametric lumped-element electrical model with a

distributed architecture developed in [79] and characterized in [82], see Figure 4.5.

Figure 4.5: RogoCoil symmetric 3Loops model.

The RogoCoil symmetric 3Loops model consists of a simple resistance at the primary which

simulates the Busbar conductor, and elementary RLC circuit distributed cells in the secondary.

The symmetric 3Loops model is an approximation of the model presented in [81], where each

RLC cell represents a loop of the RogoCoil. The value of the passive circuit elements of each

cell determines a resonance frequency as shown in Figure 4.6. Consequently, the 3Loops

model is only a valid approximation until the third resonance frequency as shown in Figure

4.6(b).

The values of the passive and active elements of the circuit are calculated in terms of geome-

trical and material PMPs particular to each type of RogoCoil. Additionally, it turns out that

the KEVCR and KECA coils evaluated in this work are double winded. Therefore, the final

refinement of the presented symmetric 3Loops model is called the symmetric 3Loops-2Layers

59

Chapter 4. The Rogowski coil sensor system

10
2

10
3

10
4

10
5

10
6

10
7

10
8

20

30

40

50

60

70

80

90

C
oi

l I
m

pe
da

nc
e

(d
B

)

Frequency (Hz)

(a) Experimental: KEVCR impedance (b) Simulation: KEVCR impedance

Figure 4.6: RogoCoil impedance experimental vs. simulation results: (a) Impedance measure-
ments using an Agilent 4395A network analyzer for 10 samples of the KEVCR coil type, see
Appendix A.3. (b) Frequency-domain simulation of the 3Loops-2Layers model and the Ideal
RL model (i.e. a resistor in series with and inductor) of the RogoCoil.

model, which has exactly the same circuit topology presented in Figure 4.5, but the equations

to calculate the circuit elements are corrected by considering the mechanical and magnetic

effects of the double layer. The analysis and the equations are presented in Appendix B.1.

Before being used for simulation, the symmetric 3Loops-2Layers model has been characterized

according to the measurements of impedance obtained with an impedance analyzer, see the

example in Figure 4.6(a). This study only considers two type of RogoCoil cores, see the KEVCR

and KECA coil parameters in Appendices A.2 and A.5 on pages 168 and 174 respectively. The

model is valid for few tens of kHz. However, for the self-calibration algorithm explained in

section 4.3, we are only interested in operating below the first resonance frequency.

Figure 4.7: RogoCoil asymmetric 1Loop model.

We can observe from the secondary of the 3Loops circuit model, that this model can be

simplified by only considering one RLC cell as it is shown in Figure 4.7. In this case, the

60

4.2. The electro-thermal modeling of the Rogowski coil sensor

asymmetric 1Loop model only is valid until the first resonance frequency. Moreover, we can

further simplify this model considering the RogoCoil impedance behavior shown in Figure

4.6(b), where below the first resonance frequency, the RogoCoil can be approximated by a

simple RLC or RL circuit. In fact, disregarding the primary Busbar, a RogoCoil can be seen

as a simple inductor with a determined internal resistance and equivalent capacitance, see

Figure 4.8(a). Considering that the equivalent capacitance is very low, at frequencies far below

the first resonance frequency, the RogoCoil behaves as an ideal RL circuit, see Figure 4.8(b).

The ideal RL approximation is taken into account for obtaining the self-calibration method

presented in section 4.3.1.

(a) Simple RLC circuit model. (b) Ideal RL circuit model.

Figure 4.8: RogoCoil approximated electrical models for frequencies far below the first reso-
nance frequency.

4.2.3 Rogowski coil electrical model adaptation

As it can be observed in the equations presented in Appendix B.1, all the electrical variables

of the symmetric 3Loops-2Layers RogoCoil model (i.e. the coil resistance, inductance, and

capacitance), depend on the coil temperature. However, in previous studies of the KEVCR and

KECA coils [79, 82], the temperature and the coil electrical variables have been considered

static parameters in the RogoCoil model. This means that the temperature, the coil resistance

(Rcoi l), and the coil inductance (Lcoi l) are fixed values in transient simulations. The author of

this research has built a VHDL-AMS electrical model of the RogoCoil which supports electrical

element circuit variables that depend on temperature changes dynamically. Thus, the model

can simulate how the main electrical variables (i.e. the equivalent internal resistance and

inductance) of the RogoCoil change according to temperature variations over the time. As it

can be observed in the symmetrical 3Loops-2Layers model equations B.5 and B.7a on page

181, both M and Cl are depending on the temperature. Likewise, Rcoi l and Lcoi l are also

temperature-dependent variables which are calculated dynamically by functions that depend

on the temperature of the coil (Tcoi l), see the source code fraction for the calculation of Rcoi l

in Figure 4.9 as example.

61

Chapter 4. The Rogowski coil sensor system

Figure 4.9: Fraction of the VHDL-AMS code of the RogoCoil’s electrical model. LW is the wire
length in meters, R_LIN is the wire resistance per meter, TCR is the temperature coefficient of
resistance of the wire and T0_K is the reference temperature in Kelvin.

Figure 4.4 shows the proposed RogoCoil model adaptation, called the electro-thermal Ro-

gowski coil model (ETRCM). The electrical primary input ports of the RogoCoil (InP and

InM) are modeled by two electrical terminals connected by a resistor of 1Ω. In this way, the

magnitude of the current through the Busbar (Ipr) can be controlled by a simple AC voltage

source. By magnetic induction, Ipr causes an AC voltage of the same frequency but only of few

tens of mili-Volts between the electrical output of the RogoCoil (OutP and OutM). Additionally,

Ipr , which is used to calculate the Joule heating of the Busbar, is injected to the thermal model

of the Busbar by using an output quantity port, see the line 9 in Figure 4.9.

The coil resistance, the mutual inductance, and the winding capacitance of the coil are tempe-

rature dependent as it can be observed in Equations B.4, B.5, and B.7a respectively. Typically,

the temperature, like other cross-domain variables, is included in electrical circuit models as

a constant parameter. However, this approach is not convenient for modeling properly the

multiphysics interaction between electrical and thermal quantities. The author of this research

propose to use VHDL-AMS quantities for both thermal and electrical variables; consequently,

the model allows to estimate dynamically the effect of the temperature into the RogoCoil

internal impedances and the coil mutual inductance.

One can consider two different options in VHDL-AMS for including dynamic effects of the

temperature in the electrical model of the RogoCoil as follows:

Conservative: This option consists in using thermal terminals. The VHDL-AMS terminals

62

4.2. The electro-thermal modeling of the Rogowski coil sensor

guarantee the energy conservation in its related quantities. Therefore, a bidirectional coupling

between the electrical and thermal quantities can be simulated. However, we do not need

to consider the RogoCoil self-heating, since the current inside the RogoCoil winding is low

enough, in the order of few mA.

Acausal: This option consists in including the temperature using an input quantity port

as is shown in the code shown in Figure 4.9. In this way, the temperature of the RogoCoil is

calculated in the thermal network and simply passed to the electrical model of the RogoCoil

in order to calculate the aforementioned temperature dependent electrical variables.

Figure 4.9 shows how Rcoi l is calculated through the function Rout, which changes with the

temperature given by the quantity port Temp. Likewise, the dynamic value of the internal

lumped impedances can be transferred via quantity ports; a VHDL-AMS code example is given

for a simple resistor model shown in Figure 4.10.

Figure 4.10: VHDL-AMS dynamic resistor model.

4.2.4 Busbar thermal model

Calculating the temperature of a power conductor has been reported in detail in the literature,

see [83] and [84]. The temperature of the conductor (T) can be obtained by the conductor’s

heat balance differential equation as follows:

mc ·Cp · dT

d t
=Q J +QM −QR −QC (4.2)

where mc is the conductor’s mass per unit length, Cp is the specific heat capacity at constant

pressure, Q J is the Joule heating, QM is the heat generated by magnetic losses (i.e. skin and

spiral effects), QR and QC are the energy loss by radiation and convection respectively.

The Busbar thermal model can be specified by means of an equivalent lumped-element

circuit analogy or by using directly the differential equations in the model. As the VHDL-AMS

language allows to directly express the equations in the model, is highly recommended to use

the equation-based approach. The equivalent lumped-element circuit approach introduces

unnecessary circuit bias which might lead to inaccuracies in simulation. The approximation

63

Chapter 4. The Rogowski coil sensor system

proposed by the IEEE Standard 738-2006 [84] is here used to implement the thermal model of

the Busbar. The detailed physical conditions, assumptions, and the resulted expressions used

in Equation 4.2 are given in Appendix B.2.

4.2.5 Thermal coupling model

This model describes the thermal coupling between the Busbar and the RogoCoil, i.e. it

represents the heat transfer from the Busbar surface to the environment passing through the

RogoCoil geometry. Therefore, the effective temperature of the RogoCoil (Tcoi l), is calculated

by the thermal coupling model considering only the two principal heat sources, i.e. the Busbar

temperature (Tbus) and the room temperature (Tr oom). This problem is classically simplified

by considering the thermal coupling as a thermal circuit with 2 thermal resistors connected in

series: the first thermal resistor (RC Rc) symbolizes the thermal resistance between the Busbar

and the RogoCoil; the second thermal resistor (RRc A) symbolizes the thermal resistance

between the RogoCoil and the ambient, see Figure 4.11.

Figure 4.11: Equivalent lumped-element circuit model of the RogoCoil’s thermal network. The
expressions for the elements of the equivalent Busbar thermal circuit are given in Appendix
B.2.3 on page 186.

By specifically defining Tcoi l as the temperature of the RogoCoil core, RC Rc represents all

the thermal resistances generated by the layers from the Busbar surface and the coil’s core.

Likewise, RRc A represents all the thermal resistances of the layers from the coil’s core to the

environment. Under this approach, Tcoi l can be determined as follows:

Tcoi l =
RC Rc ·Tr oom +RRc A ·Tbus

RC Rc +RRc A
= ϕR ·Tr oom +Tbus

ϕR +1
(4.3)

64

4.2. The electro-thermal modeling of the Rogowski coil sensor

where ϕR is the ratio between the thermal resistances RC Rc /RRc A . The temperature can be

given in (oC) or in (K) and the thermal resistance in (oC/W) or in (K/W) accordingly.

The problem of the simplification shown in Equation 4.3 lies in the difficulty to calculate

accurately the values of the two considered thermal resistances. In fact, is not required to

calculate each thermal resistance independently, but the ratio between them is the important

value. However, this simplification does not help to determine such ratio. The challenge

at this point is to be able to obtain a parametric expression for the thermal coupling, i.e. a

Tcoi l equation as a function of Tbus , Tr oom , and other geometric and material parameters

of the RogoCoil. One of the main problems for obtaining a direct parametric equation for

the RogoCoil temperature relies on the geometry of the system. The heat transfer equations

need to be solved in 3 dimensions according to the RogoCoil sensor system geometry, both in

steady-state and in time-domain.

Figure 4.12: Basic 3D geometry of the RogoCoil sensor system. Here is shown the cylindrical
Busbar conductor and the toroidal RogoCoil around the Busbar. The RogoCoil core is protected
by an epoxy layer here shown in red.

Figure 4.12 shows the basic 3D geometry of the RogoCoil sensor system. Modeling this problem

directly in VHDL-AMS is very complicated and unpractical due to the complicated geometry

of the system. However, approximations can be done in order to achieve this purpose. One of

these approximations consists in reducing the whole system to a one-dimensional heat flow

radial system, which is explained in [85]. In this case, is required to assume that heat flux is

only present in the radial direction, see Figure 4.13.

The issues with the radial unidimensional reduction are basically two: Firstly, in order to have

a heat flux only available in the radial direction, is required that the length L is much greater

than the larger radius r4, see Figure 4.13. This means that the height of the RogoCoil (both

core and exterior) must be much greater than the radius of the coil, which is not the case for

both KEVCR and KECA coils. This approximation is only valid for the Busbar. Secondly, the

approximation only takes into account static equations for heat transfer by conduction in

solids, yet it is neither considering time dependency nor heat transfer by convection. Natural

65

Chapter 4. The Rogowski coil sensor system

Figure 4.13: Unidimensional heat flow through multiple cylindrical sections with the electrical
circuit analogy. Where q is the heat flux, k is the material thermal conductance and L is the
length of the cylinder. The image is taken from [85].

convection is important in air gaps, the larger the gap, the faster the temperature decrease. We

are specially interested in observing the thermal effect of the air gap between the Busbar and

the RogoCoil epoxy surface (Ag ap).

Considering the limitations of the lumped-element thermal circuit and the unidimensional

radial heat flow approximations, the author of this thesis has used a more accurate modeling

approach to model the heat transfer of the RogoCoil sensor using a different simulation

framework: a geometrical 3D model implemented in FEA software, COMSOL Multiphysics®.

Heat transfer problems among other multiphysics interactions related to energy and mass

transfer are commonly modeled and solved using FEA software. In this study, FEA modeling is

used for two purposes: Firstly, to obtain a parametric equation-based model of the thermal

coupling block that can be implemented in VHDL-AMS. Secondly, to serve as a validation

reference for the complete VHDL-AMS electro-thermal model of the RogoCoil sensor. This

is especially important since accurate measurements of Tcoi l are complicated to obtain by

experimental measurements.

4.2.6 Heat transfer modeling

Building a geometrical heat transfer FEA model in commercial software tools such as COMSOL

Multiphysics®requires several steps. First, define the proper outer boundary of the system.

Second, choose the correct physics. Third, build the geometry. Fourth, define and assign

materials and other parameters. Fifth, define initial values, domain, and internal boundary

conditions. And finally, mesh the geometry. Finally, the model can be simulated and analyzed.

By following these steps, the heat transfer model of the RogoCoil is here explained.

66

4.2. The electro-thermal modeling of the Rogowski coil sensor

4.2.6.1 Outer boundary conditions

The first question to answer before starting to build this type of models is: where is the outer

boundary of the system? At some distance, is needed to consider our thermal system closed.

In general, the description of the system must be chosen in such a way that it resolves the fine

structure of the model only to the degree of interest. Therefore, as is mentioned in section

4.2.1, is assumed that the RogoCoil sensor is contained in an air box at atmospheric pressure.

The three fundamental boundary conditions to take into account at this level are:

1. Prescribed Temperature (Dirichlet condition):

T = T0 (4.4)

In this condition, the temperature of the boundary wall (T) is fixed at certain constant

value T0.

2. Prescribed Normal Flux (Neumann condition):

n ·q = q0 (4.5)

In this condition, the heat flux (q) is normal at the boundary and is fixed at certain

constant value q0.

3. Mix of both Temperature and Normal Flux (Robin-Cauchy condition):

n ·q = h(Text −T) (4.6)

where n ·q is the heat flux normal at the boundary wall, h is the heat transfer coefficient

and Text is the external temperature.

The selected boundary condition for the RogoCoil sensor model is the Robin-Cauchy condition

due to it represents a mix of the two first conditions. In this way, Equation 4.6 is used with

h = 15
(W

m2K

)
, this is a typical value of the heat transfer coefficient for free convection in air.

4.2.6.2 Physics

The next step consists in determining the type of heat transfer processes which appear in the

RogoCoil sensor and its environment. The heat transfer processes are classified in conduction,

convection, radiation, advection, phase change, and multiphysics [86]. Taking into account

the modeling assumptions, the dominant heat transfer processes are conduction in solids (for

the RogoCoil and the Busbar) and free natural convection in the surrounding air. Hence, a

complete thermal model of the RogoCoil sensor includes the following equations:

67

Chapter 4. The Rogowski coil sensor system

• Heat transfer equation in solids:

ρCp
∂T

∂t
+ρCp u ·∇T =∇T · (k∇T)+Q (4.7)

• Heat convection-diffusion equation:

ρCp
∂T

∂t
−∇T · (k∇T) =Q −ρCp u∇T (4.8)

• Navier-Stokes for free convection - Non-Isothermal flow (It contains the fully compress-

ible formulation of the continuity and momentum equations):

∂ρ

∂t
+∇· (ρu) = 0 (4.9a)

ρ
∂u

∂t
+ρu ·∇u =∇·

[
−pI+µ(∇u+ (∇u)T)− 2

3
µ(∇u)I

]
+∆ρ(T)g (4.9b)

where ρ is the fluid density (kg/m3), Cp is the specific heat capacity at constant pressure

(J/(kg·K)), T is the absolute temperature (K), u is the velocity vector (m/s), k is the thermal

conductivity (W/(m·K)), µ is the dynamic viscosity (Pa·s), g is the gravity force (m/s2) and Q

contains all the heat sources (W/m3) other than viscous heating. A conjugated heat transfer

(CHT) model solves the system through a bidirectional coupling of equations 4.8, 4.9a, and

4.9b. This model can only be solved as time-dependent model since there is no steady-state

due to the air flow is continuously fluctuating around the RogoCoil and the Busbar, as the

Navier-Stokes equation dictates. However, by ignoring the natural convection flow, i.e. zero

air velocity (u = 0), the system can be solved by steady-state simulations only using the

convection-diffusion equation for modeling the heat transfer in the air. This approximation is

called the simplified heat transfer (SHT) model.

4.2.6.3 Geometry

The next step consists in creating the geometry of the system. The high symmetry of the

geometry and the heat transfer process (i.e. in a radial direction from the Busbar), allow us to

simplify the geometry of the model as is shown in Figure 4.14(a). Consequently, the number of

elements is reduced and the performance of the simulation is improved. By revolving the 2D

axisymmetric geometry around its symmetry axis (leftmost vertical line), the 3D geometry of

the RogoCoil shown in Figure 4.12 on page 65 is reconstructed.

In a more detailed view around the RogoCoil core, we can observe how the RogoCoil sensor is

wired in Figure 4.14(b). The RogoCoil has a double winding of copper wire which is insulated

by a thin coating of resin. In Figure 4.15 it can be observed how the double winding of copper

wire is approximated. Instead of recreating geometrically the real winding around the RogoCoil

core, the wire and its surroundings are modeled as layers. The author of this thesis has made 2

layers of copper with a thickness equal to the copper wire diameter (dwi r e). Despite the fact

68

4.2. The electro-thermal modeling of the Rogowski coil sensor

(a) (b)

Figure 4.14: (a) 2D Axisymmetric geometry of the RogoCoil sensor system (cross-sectional
view zoom). (b) Cross-sectional view of the physical Rogowski coil winding (not scaled).

that the thin resin coating of the copper wire does not appear in this geometry approximation,

its effect is properly considered by using a boundary condition at the double layer interfaces

called ‘thin thermally resistive layer’, more details are given in section 4.2.6.5 on page 71.

Figure 4.15: Cross-sectional view of the 2D axisymmetric RogoCoil model geometry, zoom of
the core region in Figure 4.14(a).

4.2.6.4 Materials and Parameters

The constant parameter values and the equations used for the material definition in the heat

transfer model are taken from COMSOL material browser and from standard material libraries

such as [87]. A total of 6 materials are used to build the model, their principal properties are

described as follows:

69

Chapter 4. The Rogowski coil sensor system

1. Air:1 This is the material applied to the surroundings of the RogoCoil sensor system as is

shown in Figure 4.14(a).

• Ratio of specific heats (γ): γ= 1.4

• Dynamic viscosity (µ): µ[Pa · s] =−8.38∗10−7 +8.357∗10−8 ∗T −7.694∗10−11 ∗
T 2 +4.64∗10−14 ∗T 3 −1.06585∗10−17 ∗T 4

• Heat Capacity at constant pressure (Cp): Cp [J
kg ·K] = 1047.6−0.37∗T +9.45∗10−4∗

T 2 −6.024∗10−7 ∗T 3 +1.286∗10−10 ∗T 4

• Density (ρ): ρ[kg
m3] = p ∗0.02897/(8.314∗T)

• Thermal conductivity (k): k[W
m·K] =−0.00227583+1.15∗10−4∗T −7.9∗10−8∗T 2+

4.117∗10−11 ∗T 3 −7.4∗10−15 ∗T 4

2. Aluminum: This is the material selected for the Busbar conductor.

• Density (ρ): ρ[kg
m3] = 2700

• Thermal conductivity (k): k[W
m·K] = 160

• Heat Capacity at constant pressure (Cp): Cp [J
kg ·K] = 900

3. Alumina, alpha Al2O3 99.5%: This is the material used in the non-ferromagnetic RC

core.

• Density (ρ): ρ[kg
m3] = 3900

• Thermal conductivity (k): k[W
m·K] = 30

• Heat Capacity at constant pressure (Cp): Cp [J
kg ·K] = 880

4. Copper: This is the material used in the wire layers around the RogoCoil core.

• Density (ρ): ρ[kg
m3] = 8700

• Thermal conductivity (k): k[W
m·K] = 400

• Heat Capacity at constant pressure (Cp): Cp [J
kg ·K] = 385

5. Wire resin: This is the material used at the boundaries of the wire layers around the

RogoCoil core.

• Thermal conductivity (k): k[W
m·K] = 0.45

6. Epoxy cure resin: This is the material used as insulator around the RC.

• Density (ρ): ρ[kg
m3] = 0.00133

• Thermal conductivity (k): k[W
m·K] = 0.541

• Heat Capacity at constant pressure (Cp): Cp [J
kg ·K] = 1315

1In the equations T is the absolute temperature and p is the atmospheric pressure. All the numbers in the
equations have been approximated

70

4.2. The electro-thermal modeling of the Rogowski coil sensor

Table 4.1 show the geometrical and material parameters used in the 3D heat transfer model

for the KEVCR coil. It is important to mention that all the parameters which are represented

by constant values can be swept in order to study the effect of different values in Tcoi l . This

study only considers different scenarios for Tbus, Troom, and Agap variations.

Name Value/Expression Description
D1 0.1[m] Primary conductor (Busbar) diameter
L1 1[m] Primary conductor length
D 204.9[mm] Outer core diameter
d 191.9[mm] Inner core diameter

h_core 16[mm] Core height
R 3[mm] Core curvature

dsc 0.52[mm] Distance from shield to core
Wcore (D-d)/2 [m] Core width
Ccore d/2+Wcore/2 [m] Core center
Repoxy 45[mm] Radious of the Coil epoxy
Agap (49.2-Repoxy)[mm] Air gap between the Busbar and the RC external layer
dwire 0.224[mm] Copper wire diameter
Tbus 100[oC] Temperature of the Busbar surface
Troom 25[oC] Room temperature

h_thermal 15[W/(m2 ·K)] Convective heat transfer coefficient
dcoat (dsc/2-dwire)/2 Effective thickness of the wire coating
F_fact 1.908 Filling factor of the winding

Table 4.1: KEVCR global parameters.

4.2.6.5 Domain and internal boundary conditions

The next step for setting up the 3D heat transfer model of the RogoCoil sensor consists in the

proper application of the heat transfer equations to the different domains and boundaries in

the geometry. It is also required to set up initial values and check any other default properties.

First of all, it must be assigned the correct physics (i.e. the heat transfer equations for fluids

and solids) to the different domains in the system. Secondly, the initial conditions are:

• Velocity of the air = 0 [m/s] in any direction.

• Pressure = 1 [atm].

• Initial temperature = Troom in every domain.

As it was mentioned previously on page 67, the Robin-Cauchy condition (Equation 4.6) is

used as the outer boundary condition. Thermal insulation is the condition at the upper

and lower boundaries of the Busbar, i.e. −n · (−k∇T) = 0; the left boundary of the Busbar

uses the condition called Axial Symmetry; whilst the right boundary of the Busbar, which

71

Chapter 4. The Rogowski coil sensor system

represents the Busbar interface with the air, uses a constant value as boundary condition by

using the Tbus parameter. Although the Joule heating effect can also be modeled in the 3D

heat transfer FEA model, there is no need to include this effect for obtaining the equation-

based thermal coupling model in VHDL-AMS. The Joule heating will be considered in the

complete electro-thermal model as is described in section 4.2.4 on page 63.

The final temperature and the time response of the RogoCoil sensor are the variables of interest

in the two versions of the 3D heat transfer model, i.e. the CHT and the SHT models. Both

Tbus and Troom are swept from -5[oC] to 200[oC] and from -10[oC] to 85[oC] respectively,

for steady-state and time-dependent simulations. Moreover, only for the CHT model, the

boundary condition around the air boundaries is ‘No Slip’, which means that the velocity of

the air is zero at the boundaries.

An important boundary condition to establish is the thin thermally resistive layer condition at

the double layer interfaces, which is used to model the effect of the resin coating of the copper

wire. In general terms, the thickness (ds) and thermal conductivity (ks) of a resistive material

located at the boundary are used to define the thermal resistance (Rs) as follows:

Rs = ds

ks
(4.10)

Likewise, the heat flux across this thin thermally resistive layer is defined by:

−nd · (−kd∇Td) =−ks
Tu −Td

ds
(4.11a)

−nu · (−ku∇Tu) =−ks
Td −Tu

ds
(4.11b)

where the u and d subscripts refer to the upside and the downside of the boundary, respec-

tively.

Therefore, the thermal resistance at the external boundaries of the double layer of copper is

given by Equation 4.10, where ds is equal to dcoat given in Table 4.1, and ks is the thermal

conductivity of the insulating resin coat. Similarly, the internal boundary of the double layer

also uses the thin thermally resistive layer condition. However, the thickness of this layer

(dcoat_i nt) is not exactly two times dcoat, since the second winding of copper wire is not

perfectly aligned above the first winding, see Figure 4.14(b). Therefore, dcoat_i nt is defined as

(F f act ·dcoat), where F f act is the filling factor of the double winding, see Table 4.1. By using

this modeling approach is easier to generate a high-quality mesh and to avoid typical FEA

model problems when trying to mesh a geometry with relatively very small distances.

72

4.2. The electro-thermal modeling of the Rogowski coil sensor

4.2.6.6 Meshing

The last step before simulation is the geometry meshing. Figure 4.16 shows the geometry

meshing for both the CHT and the SHT models. Although the geometry of the CHT model is

exactly the same as the SHT model, the meshing result is different in both models. Both heat

transfer models are meshed using a physics-controlled mesh approach, which means that

the internal meshing algorithm of the simulation tool puts more effort in the meshing process

at the boundaries where different physics are interacting. As is explained in section 4.2.6.2, the

CHT model, the Equations 4.7, 4.8, 4.9a, and 4.9b are taken into account to solve the system, i.e.

there is a bidirectional multiphysics coupling between the heat convection-diffusion equation

and the Navier-Stokes for free convection equation. On the other hand, the SHT model only

considers the Equations 4.7 and 4.8, which means that it does not consider the air flow caused

by the Busbar heat transfer to the air.

(a) CHT model meshing. (b) SHT model meshing.

Figure 4.16: 2D Axisymmetric Geometry Meshing. The element quality is represented from 0
(blue) to 1 (red) in the color scale. (a) conjugated heat transfer (CHT) model. (b) simplified
heat transfer (SHT) model.

Consequently, the CHT model has quadrilateral elements at the air boundaries while the

SHT model does not, see Figure 4.17. This condition makes the CHT model meshing more

element-populated than the SHT model meshing.

Figure 4.17 shows statistical information about the mesh element quality for both models.

The CHT model meshing uses a total of 8344 elements choosing a Fine mesh size2, whilst

the simpler heat transfer model meshing has a total of 4943 elements choosing a Finer mesh

size. So, the difference in the number of elements does not lie in the element size but in the

meshing sequence type.

2The mesh size specifies how the predefined mesh algorithm generates meshes. Fine and Finer are just two
of the predefined mesh sizes in COMSOL. If the physics interface is the controlling interface for the mesh, these
settings are used when automatically generating the mesh each time it is solved.

73

Chapter 4. The Rogowski coil sensor system

Figure 4.17: Mesh quality statistics of the KEVCR model. (a) CHT model. (b) SHT model.

Figure 4.17 displays a histogram plot of the mesh element quality for all element types in

the entire geometry. The x-axis represents the element quality, and the y-axis represents the

number of elements of similar quality. The absolute value of the mesh element quality is

always between 0 and 1, where 0 represents a degenerated element and 1 represents the best

possible element. An element is considered of good quality when all its edges have the same

length, this is why the quadrilateral elements in the CHT model meshing are of less quality

than the triangular elements. In general, the higher the element quality the lower the effort for

the solver in simulation and the better the accuracy of the model results. Both models have a

high average element quality, which suggests a reliable model for simulation.

4.2.6.7 FEA simulation results

For the sake of simplicity, the results presented in this section are only performed for the

KEVCR coil. Same conclusions are obtained using the parameter values of the KECA coil. In

order to simulate the thermal behavior of the RogoCoil sensor without taking into account

electrical influences, the temperature of the Busbar is here assumed as a constant value. The

initial analysis considered is the dynamic heat transfer behavior and the final steady-state

74

4.2. The electro-thermal modeling of the Rogowski coil sensor

temperature of the RogoCoil sensor using the most refined model, i.e. the CHT model.

(a) 10 minutes. (b) 30 minutes.

(c) 1 hour. (d) 3 hours.

Figure 4.18: Time-domain simulation: 3D temperature plots of the KEVCR CHT model. Condi-
tions: Tbus = 100oC , Troom = 25oC and Agap = 4.2mm.

The CHT model considers both energy and mass transfer (i.e heat and air flow) in the RogoCoil

system. Figure 4.18 shows a series of 3D plots taken at different system times. It can be

observed the evolution of the temperature gradient around the Busbar and the RogoCoil. At

10 minutes, see Figure 4.18(a), is shown how the RogoCoil obstructs a uniform temperature

increasing in the surrounding air caused by the heat transfer from the hotter Busbar to the

colder environment. In Figure 4.18(d) the temperature gradient is practically in steady-state.

Although the temperature gradient takes a little longer than 3 hours to be stable, the air flow

around the Busbar is always fluctuating due to the energy transfer by natural convection,

similar to a boiling water system.

75

Chapter 4. The Rogowski coil sensor system

Figure 4.19 also shows 4 instances of the air velocity magnitude around the RogoCoil sensor

system at different system times. The velocity of the air around the Busbar is higher near to

the hottest air regions and is decreasing with the time. After a couple of hours is observed

that the high-velocity spots start to decrease approaching to a more uniform air velocity

distribution. However, the air flow is constantly fluctuating around the Busbar and never

arriving at a steady-state. In Figure 4.19(d), it can be observed small turbulent regions at the

air box boundaries. Although the air flow is considered as laminar flow in this simulation, the

system can be turbulent in nature. However, a turbulent air flow is out of the scope of interest

due to the real system is supposed to be closed inside a substation.

(a) 2 minutes. (b) 30 minutes.

(c) 2 hours. (d) 3 hours.

Figure 4.19: Time-domain simulation: 3D air velocity plots of the CHT model. Conditions:

Tbus = 100oC , Troom = 25oC and Agap = 4.2mm.

76

4.2. The electro-thermal modeling of the Rogowski coil sensor

As the temperature gradient reaches the stability, we are motivated to simplify the model by

ignoring the air velocity field, i.e. by using the SHT model. In Figure 4.20 we can observe a

transient simulation of both the CHT and SHT models. At steady-state, the difference between

the temperature predictions of the two models is in the order of tens of mili-Celsius as it can be

observed in Figure 4.20(b). Since there is no energy lost by the air movement in the SHT model,

Tcoi l is a little higher, the temperature response is a bit faster and slightly under-damped than

the CHT model. However, the temperature settling time in both models is about the same.

(a) (b)

Figure 4.20: Tcoi l (°C) vs. Time (hours), CHT and SHT transient simulation. Tbus = 100 °C,
Tr oom = 25 °C, Ag ap = 4.2mm.

(a) (b)

Figure 4.21: Temperature (°C) vs. Distance (m). SHT static simulation throughout the cutline
shown in Figure 4.14(a) on page 69. (a) Entire region. (b) Zoom in the RogoCoil region.

In order to explain how and where Tcoi l is defined, let us consider Figure 4.21. This is a steady-

state simulation of the SHT model in which is plotted the temperature throughout a cutline

from the Busbar surface (distance = 0 m) to the extreme of the air box that contains the system.

The cutline is taken at the RogoCoil geometrical center as is shown in Figure 4.14(a) on page

69. The distances a, b, c and d in Figure 4.21 correspond to the highlighted distances in Figure

77

Chapter 4. The Rogowski coil sensor system

4.14(a). It can be observed that the temperature decrement is significantly faster in the air

region than inside the RogoCoil, i.e. the region between a and b. In a closer look in Figure

4.21(b), we can see that the temperature remains practically constant throughout the RogoCoil

core, i.e. the region between c and d. Actually, the temperature inside the RogoCoil core

also decreases with the distance to the Busbar surface. However, the temperature difference

between the inner and the outer extreme of the RogoCoil core is less than few tens of mili-°C.

Therefore, Tcoi l can be safely defined as the temperature at any point inside c and d.

4.2.7 Equation-based model extraction for the Rogowski coil thermal coupling

From the transient behavior of both CHT and SHT models, the time-dependent equation of

Tcoi l can be estimated as follows:

Tcoi l (t) = T0 + (TSS −T0)
(
1−e−

t+∆t
τ

)
(4.12)

where T0 is the effective initial temperature of the RogoCoil, which in our case is equal to Troom
plus an additional temperature (TI N I), which can be used to chose the initial temperature

of the RogoCoil. This is useful to simulate the system starting from a specific steady-state

condition. TSS is the final steady-state temperature of the RogoCoil, and τ is the time constant

of the thermal behavior of the RogoCoil sensor system. If the user wants to simulate the system

from a specific steady-state condition, the initial temperatures for Tbus, Tcoil, and Troom
must be defined accordingly, in such case ∆t must be greater than 5τ, otherwise ∆t = 0. A

boolean parameter (SSC) has been created for selecting the appropriate time constant.

The SHT model can be used for static parametric simulations to obtain TSS at different tem-

perature and geometrical conditions. Afterwards, a polynomial curve fitting algorithm is

performed to obtain the parameters of Equation 4.12, see Appendix C.4 on page 203.

Name Min Max Step
Tbus -5 oC 200 oC 5 oC

Troom -10 oC 90 oC 5 oC
Agap 0 mm 5.2 mm 0.2 & 1 mm

Table 4.2: Sweep parameter range.

Considering Tbus, Troom, and Agap as the parameters of interest, both TSS and τ in Equation

4.12 are variables which depend on these 3 parameters. However, τ can only be obtained by

time-dependent simulations, which makes its estimation by parametric simulation highly

time-consuming and impractical. This is why a worst case scenario has been studied to

estimate the maximum and minimum τ of the system within the parameter range.

For a constant Agap value, it can be observed that the RogoCoil system arrives faster to the

78

4.2. The electro-thermal modeling of the Rogowski coil sensor

Figure 4.22: SHT model simulation: RogoCoil temperature (Tcoil) [oC] vs. Time [min].
Conditions: Agap = 2.2 mm . τ value: (a) τmax = 36.778 mi n. (b) τmi n = 26.896 mi n.

steady-state condition when the maximum values of Tbus and Troom in the temperature range

are used. Conversely, the RogoCoil system presents its slowest response when the lowest Tbus
and Troom values are used3, see Figure 4.22. Consequently, we have performed a curve fitting

of the equation 4.12 using the extreme hot (Tbus = 200oC , Troom = 90oC) and cold (Tbus =

0oC , Troom = −10oC) conditions in the Agap parameter range. Similarly, an equation for τ can

also be acquired by polynomial curve fitting. However, τ can only be obtained by transient

simulations. Consequently, its estimation by parametric simulation is highly time-consuming

and impractical. A good approximation for the time behavior of the thermal coupling model

can be made by considering an average (x = avg) or a worst case scenario, i.e. to simulate the

maximum (x = max) and minimum (x = min) τx of the system within the sweep parameter

range shown in Table 4.2. After a series of simulations, it has been observed that τ is highly

dependent on Ag ap and slightly dependent on Tbus and Tr oom . Thus, the temperature of the

RogoCoil is better described as follows:

Tcoi l (t ,Tbus ,Tr oom , Ag ap) = T0(Tr oom)+(TSS(Tbus ,Tr oom , Ag ap)−T0(Tr oom))
(
1−e

− t
τx (Ag ap)

)
(4.13)

3This behavior can be understood considering that the temperature is the kinetic energy of the molecules. This
is consistent for a constant thermal conductivity of the material in the temperature range of Tbus and Troom.

79

Chapter 4. The Rogowski coil sensor system

where:

T0(Tr oom) = Tr oom +TI N I (4.14a)

τx (Ag ap) = S1 · A3
g ap +S2 · A2

g ap +S3 · Ag ap +S4 (4.14b)

TSS(Tbus ,Tr oom , Ag ap) = P0 +P1 ·Tbus +P2 ·Tr oom +P3 · Ag ap (4.14c)

where Pi and S j are the curve fitting coefficients which depend on the RogoCoil coil used, see

the values obtained for the KEVCR coil in Table 4.3.

S1 S2 S3 S4

τmin 0.1005 -1.083 5.306 14.48
τmax 0.2655 -2.864 12.72 20.61
τavg 0.183 -1.973 9.011 17.55

P0 P1 P2 P3

TSS 3.49 0.84 0.15 -1.51e3

Table 4.3: Curve fitting coefficients for the KEVCR coils.

4.2.8 VHDL-AMS electro-thermal Rogowski coil simulation and analysis

By parametric static and transient simulations of the geometrical SHT model, we can get an

equation-based model of the thermal coupling by using the equations previously described in

subsection 4.2.7. Afterwards, the ETRCM shown in Figure 4.4 on page 58 can be completed

in VHDL-AMS. It is worth mentioning that this model only fits a particular selection of RC

dimensions and materials.

The first step consists in simulating the ETRCM model using the same conditions as the SHT

model, see Figure 4.23(a). We can observe a similar response in terms of settling time and

final temperature as in Figure 4.20. This validation can also be done for different parameters

in the range given in Table 4.2. In a second step, it is simulated the ETRCM using the IEEE

Standard model of the Busbar [84], see Fig. 4.23(b). In this simulation, we assume the same

initial temperature for the complete system (25 °C). We can observe how the Busbar increases

its temperature thanks to an AC input current; likewise, the RC sensor follows this temperature

increment with a lower speed than the Busbar. This can be intuitively understood as the heat

transfer goes from the Busbar to the RC sensor.

Finally, we are interested in simulating critical Tr oom variations in the RC sensor system. Fig.

4.24 shows how the key thermal and electrical variables of the system react to a strong Tr oom

fluctuation, an exponential heating up and cooling down between 25 and 80 °C. The initial

condition for this simulation is the operational steady-state temperature of the RC sensor

system shown in Fig. 4.23(b). This is a very fast but feasible temperature profile. The heating

80

4.2. The electro-thermal modeling of the Rogowski coil sensor

(a)

(b)

Figure 4.23: Temperature (°C) vs. Time (hours), ETRCM transient simulations. Ag ap = 4.2 mm,
Tr oom = 25 °C, τav g = 34.14 min. (a) At Constant Tbus . (b) Using the Standard Busbar model:
Input current of 2 k Apeak @ 50 Hz.

up process takes more than 30 minutes to achieve the maximum temperature. The cooling

down process takes less than 50 minutes to come back to the initial temperature since the

falling time constant (γ f) is half of the rising time constant (γr). We can see how Tbus and

Tcoi l are affected by the Tr oom fluctuation, the thermal inertia of the Busbar and the RC are

clearly evident from the different marginal changes in their temperature profile with respect

to Tr oom . We observe slower temperature changes in both the Busbar and the RC, and a small

delay for the maximum Tbus compared to the maximum Tr oom , i.e. around 41.66 minutes.

Fig. 4.24 also shows the effect of the Tr oom fluctuation in the RC resistance (Rcoi l) and the RC

inductance (Lcoi l). The code shown in Figures 4.9 and 4.10 in subsection 4.2.3, explain how

the temperature effect on Rcoi l is modeled. Similarly, the temperature dependence of Lcoi l

is modeled from the same idea but using a different temperature coefficient. Consequently,

both electrical variables have the same waveform as Tcoi l .

In order to quantify the effect of the Tr oom variation on the electrical variables, we can define

the relative variable change as follows:

∆M = (Mmax −Mmi n)

Mmi n
∗100 (4.15)

81

Chapter 4. The Rogowski coil sensor system

where M is the specific electrical variable. In Fig. 4.24, the relative Rcoi l change (∆Rcoi l) is

about 14%, whereas the relative Lcoi l change (∆Lcoi l) is only about 0.0992%. This significant

difference is mainly due to we have used in simulation a temperature coefficient of inductance

(TCL) two orders of magnitude lower than the temperature coefficient of resistance of copper

(TCR = 0.0039 K −1).

Figure 4.24: ETRCM transient simulation. Vertical axes: Temperature (upper graph), Induc-
tance (middle graph), Resistance (bottom graph). Exponential time constants for Tr oom :
γr = 500 sec (rising), γ f = 1000 sec (falling). Initial temperature condition: Tbus = 105.9 °C,
Tcoi l = 88.9 °C and Tr oom = 25 °C.

This type of simulation can be used to test the system under different room temperature

conditions. Although the ETRCM can give results for divergent Tr oom profiles, is important

to consider realistic fluctuations in terms of variation speed and waveform. This is espe-

cially important to validate this model by using experimental measurements. Moreover,

non-commercial RogoCoil applications, in which very low temperatures might appear in the

system (such as in [88]), could benefit from this co-design methodology between VHDL-AMS

and FEA. However, is important to know the validity range of the thermal and electrical models.

Further modifications to the physics and other assumptions in the model can be done for

studies under extreme temperature conditions.

82

4.3. The self-calibration unit of the Rogowski coil sensor

4.3 The self-calibration unit of the Rogowski coil sensor

As it is explained in section 4.1, the main task of the self-calibration unit (SCU) is to calculate

autonomously and continuously the RogoCoil correction factor (C F) that is required for the

primary current calculation performed by the CMU, see section 4.4. During this research,

multiple VPs were implemented to study the different self-calibration techniques. In particular,

this section describes one of the self-calibration methods that has been proposed by ABB as a

result of the ongoing research on the RogoCoil transducer.

Although the design approach applied for the SCU did not follow the recommended meet-

in-the-middle approach from the earlier stage of the design, its VP and their component

models have been designed using the VHDL-AMS techniques described in section 3.5. In fact,

the virtual prototyping of the SCU has been key to decide the most convenient VHDL-AMS

modeling approach and the recommended VP modeling structure that are generalized in the

VP-Modeling Guidelines. The SCU VP presented in subsection 4.3.2 follows a hierarchical

model structure using VHDL-AMS packages and configurations, which facilitates the gradual

model refinement process. The presented simulations show a simple functional verification

analysis of the SCU estimation accuracy for Lcoi l and Rcoi l values. Additionally, a comparison

between experimental and simulation results for a particular test case is also included in this

section.

4.3.1 Self-calibration method

For the sake of simplicity, the self-calibration method assumes that the RogoCoil acts as a

resistor (Rcoi l) connected in series with an inductor (Lcoi l) as we can observe in Figure 4.8(b)

on page 61. This approximation is valid when the calibration signal, which is injected to

the RogoCoil secondary outputs, is sufficiently below the first resonance frequency of the

RogoCoil. In fact, we can neglect the effect of parasitic capacitances (i.e. cable, inter-loop

capacitances, etc.) at low frequencies.

As is conceptually shown in Figure 4.3 on page 56, the self-calibration method uses a closed-

loop configuration in which a high-frequency calibration signal is generated in the IED and

injected to the RogoCoil secondary ports. The self-calibration method consists in the direct

estimation of the RogoCoil sensor impedance by measuring its winding resistance (Rcoi l)

as well as its inductance (Lcoi l). A low voltage AC signal with a predetermined frequency

and amplitude is applied to one of the RogoCoil terminals through a calibration resistor

(RC AL), that is connected in series, a second calibration resistor is used to connect the other

RogoCoil terminal to ground, as is depicted in Figure 4.25(a). Only 2 voltage measurements

(VC AL −Vout and Vout) at 2 different frequencies are required for the impedance estimation;

the phase information is conserved. In fact, since VC AL is an input whose value can be known

a priori, only the measurement of Vout should be performed. However, this would require the

implementation of an AC voltage source highly accurate in both its root mean square (RMS)

voltage and frequency, which require the use of more expensive electronics. Therefore, in

83

Chapter 4. The Rogowski coil sensor system

order to relax the calibration source implementation, it was chosen to include VC AL voltage

in the measurement and ensure an accurate frequency calibration source using commercial

electronic components.

(a) (b)

Figure 4.25: (a) Analog signal processing scheme to estimate the resistance and the inductance
of RogoCoil sensors. (b) Equations for calculating the RogoCoil inductance Lcoi l by measuring
two different voltages at frequencies F1 and F2.

In the schematic shown in Figure 4.25(a), we can observe that the current i flowing through

the two calibration resistors RC AL and through the RogoCoil sensor can be measured using

the two voltages VC AL and Vout as Equation I establishes, see Figure 4.25(b). It is important to

note that thanks to a relatively high RC AL ohmic value (10 kΩ) and low sensor output voltage

levels (150 mV at rated current for both KEVCR and KECA sensors), the power dissipation in

RC AL is negligible and will not introduce any significant resistor drift. Even in the case of peak

values in the primary current, the sensor output can be controlled by using protection diodes.

The maximal power dissipation in the calibration resistors must be less than 1 W. Although

this verification can be performed using virtual prototyping, these details are not taking into

account since they are not critical for the system operation.

It turns out that the RogoCoil sensitivity depends directly on the Lcoi l value, therefore the

goal of the SCU is to calculate as accurate as possible Lcoi l using Equation V in Figure 4.25(b),

where zi is the RogoCoil impedance at frequency Fi and ωi = 2πFi . The frequency of the

calibration signal must change from a high value (F1) to a lower value (F2). In order to calculate

Rcoi l , which is used to calculate the measurement gain in the CMU, see section 4.4.1 on page

105, we can perform the measurement at DC (i.e. F2 = 0). In this case z2 = Rcoi l .

84

4.3. The self-calibration unit of the Rogowski coil sensor

In previous IED designs that do not contain a SCU, the equivalent input resistance of the IED

was chosen in the MΩ range, i.e. much higher than Rcoi l [80]. This decision was taken in

order to make the measurement insensitive to changes in Rcoi l due to temperature drifts or

manufacturing tolerances. In this case, since Rcoi l is measured, it is possible to compensate the

voltage loss incurred by the voltage divider circuit in Figure 4.25(a). Likewise, RC AL cannot be

chosen in the MΩ range because it would bring the calibration signal to a low amplitude level

that makes its accurate measurement more difficult using standard commercial electronic

components. A low RogoCoil output voltage (Vout) would require very long averaging time

when it is sampled with a typical 16 effective number of bits (ENOB) Σ∆ ADC.

The calibration frequency is chosen depending on the RogoCoil sensor properties. We will

obtain better results when this calibration frequency is low. i.e. where the impedance of the

sensor is mainly resistive. On the contrary, this calibration frequency shall not be too high

where the impedance of the sensor is strongly capacitive, see Figure 4.6 on page 60. The

calibration resistance (RC AL = 10 kΩ) and the calibration high frequency (F1 = 3 kHz) were

chosen by Pascal et al [80] considering different assumptions and facts tested in a physical

prototype, called the ‘concept demonstrator’.

On one hand, at 3 kHz the influence of parasitic capacitances (cable, inter-loop, etc.) are

negligible. On the other hand, this frequency allows to obtain an RL impedance value high

enough to measure the output voltage of the RC sensor Vout with the selected RC AL value,

see Figure 4.25(a). An exception to this choice is made for the sensor types which exhibit

a Rcoi l smaller than 400 Ω4, in these cases, the selected calibration frequency is 20 kHz in

order to obtain a higher Vout signal that is attenuated by the small Rcoi l value. However, the

simulations performed using a more refined (1Loop) RogoCoil model shown subsection 4.3.2.2

on page 101, demonstrate the closer the calibration signal to the first resonance frequency, the

lower the estimation accuracy of the Lcoi l .

Regarding the selection of RC AL , a value of 10 kΩ is unique for the entire RogoCoil sensor

portfolio that must be supported by this self-calibration method, where the Rcoi l values range

from 90Ω to 5kΩ. The author of this thesis has found in simulation a fundamental limitation

of the self-calibration method related to the RogoCoil sensors that present a high winding

resistance value (Rcoi l ≈ 5kΩ) and low inductance value (Lcoi l ≈ 0.2 mH), i.e. the KEVCD B

family sensors.

Observing the RogoCoil sensor as a simple RL circuit in series, the RogoCoil output voltage

Vout is composed by the voltage drop in Rcoi l and the voltage drop in Lcoi l . Smaller impedance

values will induce greater estimation errors of both Rcoi l and Lcoi l since RC AL and the ampli-

fication gain of the signal conditioning are fixed values. Now, let us consider the case when

only one of the RogoCoil impedance values is small, let us suppose a small Rcoi l value, i.e.

Rcoi l ¿ jωLcoi l . In this case, Vout is mainly caused by Lcoi l contribution, therefore, Lcoi l esti-

mation will be more accurate than Rcoi l due to noise and ADC resolution limitations. However,

4This is the case for both KEVCR and KECA sensors of the ABB portfolio.

85

Chapter 4. The Rogowski coil sensor system

this does not represent a big issue. In fact, by using Rcoi l = 0, Lcoi l = 100 mH in simulation,

the estimation of both values is accurate. On the other hand, the situation is totally different

when Lcoi l is small, i.e. Rcoi l À jωLcoi l . In this case, the contribution to the Vout signal is

mainly caused by Rcoi l . Therefore, z1 (taken at frequency F1) will be closer to z2 (taken in

DC). Simulating with Rcoi l = 10k and Lcoi l = 1 mH, the calculation fails since the estimated

value of z1 is almost the same than z2. Consequently, simulating with a higher value of Rcoi l

produce z1 = z2; and therefore, Lcoi l = 0, i.e. an error of 100% simulating using the Ideal RL

approximation of the RogoCoil.

The algorithm presented in Table 4.4 shows the main tasks that the SCU must execute when

running continuously. It is important mentioning that the Rcoi l and Lcoi l calculation is

directly used to recognize the type of RogoCoil sensor that is connected to the IED. Since

the difference among the impedance values of different type of sensors is large enough, the

RogoCoil identification task carried out by the SCU is not critical. Therefore, it has been

excluded from the self-calibration algorithm used for the VP implementation, see Table 4.4.

While calibration is active loop
* Measure VC AL −Vout at frequency F2

* Measure Vout at frequency F2

* Calculate Rcoi l = z2 (only if F2 = 0)
* Measure VC AL −Vout at frequency F1

* Measure Vout at frequency F1

* Calculate the impedance z1

* Calculate Lcoi l

* Calculate the correction factor (CF)
* Send the CF to the measurement circuit (MEAS)

End loop

Table 4.4: Self-calibration unit algorithm.

4.3.2 The SCU virtual prototype

The VP architecture shown in Figure 4.26 depicts the implementation of the SCU algorithm

shown in Table 4.4. Since the C F estimation is only relevant for the current estimation carried

out by the CMU, and it directly depends on Lcoi l and Rcoi l values, the C F calculation is not

taken into account in this VP example. Instead, this VP focuses on the modeling and functional

verification of the Lcoi l and Rcoi l estimation accuracy subject to component model refinement

under specific simulation conditions.

Figure 4.26 is an example of a mapping process between the technology space, represented

by a set of standard hardware/software blocks including analog and digital components, and

86

4.3. The self-calibration unit of the Rogowski coil sensor

Figure 4.26: SCU architecture interconnected with the RogoCoil electrical model. This
subsystem-level VP implements the algorithm presented in Table 4.4. The C F calculation is
not taken into account in this VP example.

the functional space, represented by the particular SCU algorithm. We can observe that the

secondary of the RogoCoil (OutP and OutN ports) are connected to the calibration resistors as

is explained in Figure 4.25(a) on page 84. The Voltage Sensing Block (VSB) represents the

circuitry responsible for measuring the voltages Vout_r c =Vout p−Voutm and Vdi f f =Vcal−Vout

as the SCU algorithm requires. Figure 4.25(a) shows a particular implementation of the VSB;

however, this block can be implemented in multiple forms executing the same functionality.

This is why the VSB is treated in the VP as a generic component model that can be later refined

using different model implementations.

Vdi f f and Vout_r c signals are connected to a 2-to-1 multiplexer controlled by the digital signal

Channel_mux. The SCU signal conditioning chain is formed by two circuit paths that are

selected according to the calibration frequency that is being applied. When the high frequency

F1 is applied, the VSB output voltage signals are passing through the path formed by the nodes

N1, N2, N3 and N4. It means that the signal is treated by a high-pass filter (HPF) that removes

the DC component of the signals and an RMS-to-DC converter to get the desired RMS voltage

values to use them in the equations shown in Figure 4.25(b). On the other hand, when it is

applied a DC calibration voltage (F2 = 0), the measured voltage is bypassed from node N1 to N4
by the 2-to-1 multiplexer controlled by the digital signal DC_mux. Finally, the analog signal is

converted to digital by the ADC as it is shown in the Figure. The low-pass filter (LPF) between

node N4 and N5 is an anti-aliasing filter that eliminates undesired high-frequency components

87

Chapter 4. The Rogowski coil sensor system

caused by the multiplexing and other possible noise sources.

Digital Control Block is responsible for sending the control signals to the multiplexers,

and the DC and frequency values of to the calibration voltage source. The Digital Control
Block can be easily implemented in a microcontroller or in an FPGA. The model implemen-

tation used in the SCU VP is a non-synthesizable FSM that executes the SCU algorithm by

measuring each of the required voltages in a different state and controlling the state transitions

according to the expected delays of the components of the analog signal processing chain.

It is important mentioning that both Vdi f f and Vout_r c signals will have a 50 Hz component

when a current is applied to the primary. Consequently, it is required to filter this component

before the analog-to-digital conversion. We have considered the three following options to

implement such filter:

1. By decreasing the cutoff frequency and/or increasing the filter order of the LPF located

before the ADC.

2. By implementing a digital LPF after analog-to-digital conversion.

3. By using a Σ∆ ADC architecture topology that uses a proper decimation filter.

Figure 4.27: Bode diagrams, step response, and equivalent block diagram of a 3r d order
Sallen-Key active LPF topology, where: fc1=5.47 Hz, fc2=5.22 Hz, ζ=0.485.

The first option implies the elaboration of a more expensive and high order filter. The current

anti-aliasing analog LPF can be easily implemented by an RC filter. A cheap analog filter

88

4.3. The self-calibration unit of the Rogowski coil sensor

capable to attenuate the 50 Hz component can also be implemented, for example using a 3r d

order Sallen-Key active LPF we can get an attenuation of about 60 dB at 50 Hz, see Figure 4.27.

However, this filter has a very slow time response, we can observe a settling time of about 500

ms in it step response plot. The filter time response issue can be solved by increasing the filter

order. This can be done in a more practical way considering the second option, i.e. using a

high order digital filter. For instance, implementing a high-order finite-impulse response (FIR)

filter in software or in hardware. All these options were explored using the VP. Lastly, the third

option, which is the most practical option for the physical implementation has been chosen

for modeling, i.e. using the digital decimation filter of a Σ∆ ADC architecture.

Following, three main SCU VP component models and their model implementations are descri-

bed in more detail.

• Transfer function multipurpose filter: This model allows to simulate any type of analog

filter by using its transfer function representation. The model needs as input the numerator

and denominator coefficients of the filter’s transfer function. The coefficients can be stored in

any external text file using the format shown in Table 4.5. The model can use multiple filter

descriptions appended in the same text file.

1 Filter <#>. <Filter_Type > filter. Cutoff freq = <#>. Order = <N>.
2 H(s) = A(s)/B(s) = {a(1)s^N+a(2)s^(N-1) +...+a(N+1)} / {b(1)s^N+b(2)s^(

N-1) +...+b(N+1)}:
3 <N>
4 <a(1) a(2) ... a(N) a(N+1)>
5 <b(1) b(2) ... b(N) b(N+1)>

Table 4.5: Text format for the input file of the transfer function multipurpose filter model.

A filter description consists of 5 lines separated by an initial dashed line: The first text line

indicates the filter number (FNUM parameter) (starting at 0); the type of the filter: low-pass,

high-pass, band-pass or stop-band; the cutoff frequency and the order of the filter. The second

text line shows how the coefficients are interpreted for elaborating the transfer function. The

third text line is the filter order. The fourth text line contains the coefficients of the numerator,

and the fifth text line contains the coefficients of the denominator of the transfer function.

Name Type Description
FNUM Natural Filter number in the list
GAIN Real Filter gain

OUT_OFFSET Voltage Output offset voltage
FILE_ADD String Address of the filter list text file.

Table 4.6: Parameters of the transfer function multipurpose filter model.

The high-level model implementation of the filter uses a local VHDL-AMS procedure and a

89

Chapter 4. The Rogowski coil sensor system

function for reading the coefficients and the order of the filter indicated by the FNUM parameter.

The text file can be stored in any folder. A full or relative text file path can be given in the

FILE_ADD parameter. The filter is implemented using the VHDL-AMS ’LTF attribute.

• RMS-to-DC converter: As its name suggest, this is a model of a component that calcu-

lates the RMS value of the analog input signal and returns this value as a DC output voltage

signal. This model should operate in a wide range of input frequencies, sufficient to cover DC

and high-frequency calibration signals (20 kHz or higher). Additionally, the conversion should

work for different types of waveforms not limited to sine waves. Three model implementations

were obtained as a result of gradual model refinement. The first model implementation, shown

in Figure 4.28, samples the input signal at a clock frequency given by the FSAMPLE PMP and

stores the samples in an internal buffer of size NSAMPLES. The RMS value is calculated by using

the formula:
√

x2
1 +x2

2 +·· ·+x2
n , where n is the internal buffer size and xi is the ith sample.

This model implementation suffers from an inherent latency time window given by: tl t w = n
fs

,

where fs is the sampling frequency.

Figure 4.28: RMS-to-DC converter VHDL-AMS source code: functional model implementation.

Some analog RMS calculation techniques have been evaluated in order to refine the RMS-

to-DC converter model. The chosen method was the implicit RMS computation, which

uses a multiplier and a feedback loop to perform the square root function implicitly, see

Figure 4.29(a). The signal averaging is done by an LPF at the output of the circuit. A high-

level equation-based model which implement the architecture shown in Figure 4.29(a) was

implemented as a second RMS-to-DC model implementation. Some advantages of the implicit

RMS computation over other methods are fewer components, greater dynamic range, and

generally lower cost [89].

A further model refinement can be observed in Figure 4.29(b), which is the topology used by

the commercial low-cost RMS-to-DC converter used in the concept demonstrator prototype

[90]. It basically consists of a 2nd order Σ∆modulator that acts as the divider, and an LPF to

90

4.3. The self-calibration unit of the Rogowski coil sensor

(a) (b)

Figure 4.29: RMS-to-DC implicit computation architectures: (a) Conceptual architecture of an
RMS-to-DC Converter with Implicit Computation. (b) Topology of the LTC1967 RMS-to-DC
converter. The images are taken from [90].

perform the averaging of the RMS function. Additional non-ideal behaviors can be included

in the RMS-to-DC converter model using the approach shown in Figure 4.30, where the non-

linearity effect and voltage offsets are modeled by including input and output stages. These

effects can be modeled at both high and low abstraction levels.

Figure 4.30: Modular approach for model refinement: modeling non-ideal behaviors in the
RMS-to-DC converter; where Vi o f is the input offset voltage, N Li is the input non-linearity,
Voo f is the output offset voltage, and N Lo is the output non-linearity.

• Analog-to-Digital converter: The first model implementation to consider is a functional

ideal abstraction which encodes the analog input voltage using an unsigned binary representa-

tion given by the expression: Bi ncode = Vi n−VLOW
VH IG H−VLOW

· (2N B −1
)
; where N B is the bit resolution,

Vi n is the analog input voltage, VLOW and VH IG H are the lowest and highest input voltage

respectively, see Figure 4.31(a).

As it was previously described, we are interested in refining the ADC model by implementing a

Σ∆ ADC architecture. In fact, this type of ADC is one of the best solutions for analog-to-digital

conversion of DC and low-frequency signals thanks to the elimination of most of the high-

frequency noise by the anti-aliasing and decimation LPFs. Figure 4.32 shows the architectures

of the first and second order Σ∆ ADC model implementations. The Σ∆modulator, which is the

principal component of this ADC, uses a signal oversampling technique to convert the mean

of the analog input voltage into the mean of an analog pulse frequency. The result is a stream

of digital pulses coming out from the quantizer (1bit ADC operating at a high-frequency

clock). By dividing the pulse count during a known interval, we can obtain an accurate

digital representation of the mean analog voltage during such interval. This functionality is

implemented by the feedback loop shown in the 1st order Σ∆modulator in Figure 4.32(a). A

91

Chapter 4. The Rogowski coil sensor system

(a) (b)

Figure 4.31: ADC functional modeling: (a) VHDL-AMS code of the ADC functional ideal model
implementation. NB is the bit resolution, VLOW and VHIGH are the lowest and highest input
voltage of the ADC respectively. (b) Full-scale coding representation graph using a 3bits
resolution ADC, V f s =VHIGH-VLOW.

way to increase the ADC resolution [91], i.e. the effective number of bits (ENOB) of the Σ∆

modulator, is to use a higher-order loop filter by adding another integrator and feedback path

as is shown in Figure 4.32(b). However, the stability a Σ∆modulator becomes a more critical

when a higher order is implemented. The second order Σ∆modulator coefficients used in this

work, which are PMPs of the Adder component model described in Appendix C.1.3.4, have

been set using the criteria described in [92].

All the model implementations of the components of the Σ∆modulator, given in Appendix

C.1.3, are functional model abstractions that reproduce the desired behavior of the compo-

nents for the correct operation of the modulator. These models can be gradually refined by

component aggregation, or by including non-idealities caused by the internal sub-components

such as resistors, capacitors, and OpAmps. However, this approach will make the ADC model

too complex for simulation at the system level using the SCU VP. Instead, the signal distortions

and non-linearity effects caused by the non-idealities of the modulator components can be

modeled with input and output circuit stages, similar as it was done with the RMS-to-DC

converter, see Figure 4.30. In this way, the Σ∆ modulator model will be less complex; and

therefore, it will have a better simulation performance for system-level verification.

In order to retrieve the mean voltage data from the digital signal stream at the modulator’s

output, it is used a SincK filter of third order, which is in charge of reducing the signal’s

sampling rate (decimating), and averaging the signal (low-pass filtering) in order to remove

all the high-frequency components (e.g. quantization noise, aliases). The total quantization

92

4.3. The self-calibration unit of the Rogowski coil sensor

(a)

(b)

Figure 4.32: First and second order Σ∆ ADC architectures. See the complete source code in
Appendix C.1.

energy is very high in the signal coming from the Σ∆modulator, because the number of bits

per sample is extremely low. It is designated to the decimator to filter undesirable noise in

the spectrum over the Nyquist band so that the noise is not aliased into the baseband by the

decimation process. At it is presented in [93], one of the most popular filter architectures for

Σ∆ conversion entails the combination of a SincK filter and a FIR or infinite-impulse response

(IIR) digital LPF. The ADC model only includes the model implementation of the SincK filter;

an additional filtering stage, which can be implemented in software using a programmable

digital signal processor (DSP) or a microcontroller, it is left to the block that receives the output

signal of the ADC.

A Sinc filter is an idealized filter that removes all frequency components above a given cutoff

frequency, without affecting lower frequencies, and has linear phase response. The filter’s

impulse response is a Sinc function in the time domain, and its frequency response is a

rectangular function [94]. Being K the filter order, the SincK filter transfer function is given as

follows [93]:

Hz =
(

1

M
· 1− z−M

1− z−1

)K

(4.16)

where M is the decimation ratio of the down-sampling process, which is an integer or rational

factor5. The hardware implementation of this type of filters is very easy since they do not

5M > 1 is used for decimation, whereas M < 1 is used for interpolation. Decimation factors are normally a

93

Chapter 4. The Rogowski coil sensor system

Figure 4.33: Sinc3 digital filter topology. The integrators operate at the modulator sampling
frequency fS , whereas the differentiators operate at the low clock frequency fS/M . The image
is taken from [93].

require the use of digital multipliers. They can be more effectively implemented by cascading

K stages of integrators followed by K stages of cascaded differentiators as it is shown in Figure

4.33. The order K of the SincK filter shall be at least 1 plus the order of the Σ∆modulator (D) in

order to prevent excessive aliasing of the out-of-band noise from the modulator from entering

the base-band (i.e. K ≥ 1+D). Since the maximum Σ∆modulator order in the ADC model is

2, K is fixed at 3 for both first and second order Σ∆ ADC as is shown in Figure 4.32. Similarly,

the output bit vector size from the SincK filter is larger than the input by a factor V , which is a

function of M and K as follows:

V = K · log2(M) (4.17)

By including an additional filter order, V is increased by l og2(M). For example, if the input is

1 bit, the output from a Sinc filter (M = 128) will be increased by a 7-bit word. A second-order

filter (Sinc2) will add another 7 bits, i.e. its output will be 15-bit and so on. It means that the

internal bus of the SincK filter, the integrators, and the differentiators, require a bus width that

is one bit wider than the filter’s DC gain given by GDC = M K [93].

Figure 4.34 shows the RTL model implementations of the single integrator and differentiator

blocks of the Sinc3 filter. Any SincK filter can be built by cascading these basic blocks. The

complete Sinc3 filter model is given in Appendix C.1.4, which is a fully synthesizable VHDL

model. Considering that the ADC should only operate for converting DC analog signals, the

oversampling frequency value is not so important. However, the Σ∆ ADC precision is directly

proportional to M , since the greater the M the greater the ENOB. Ideally, the Σ∆modulator

signal-to-noise ratio (SNR) and the ENOB are obtained by the following Equations [93, 95]:

SN Ri deal = 6.02 ·N +1.76−20 · log

(
πD

p
2 ·D +1

)
+ (20 ·D +10) · log (M) (4.18a)

E NOBi deal =
SN Ri deal −1.76

6.02
(4.18b)

power of 2 numbers due to the easiness of digital implementation.

94

4.3. The self-calibration unit of the Rogowski coil sensor

(a) Integrator RTL model. (b) Differentiator RTL model.

Figure 4.34: RTL model implementations of the single integrator and differentiator blocks of
the Sinc3 digital filter. Where MCLK is the Σ∆modulator clock and M is the decimation ratio.
The images are taken from [93].

where N is the quantizer bit resolution. Therefore, in order to use a high decimation ratio with

a feasible bit vector size V and a reasonable cutoff frequency for the decimation filter, the

modulator frequency must be selected in the order of kHz. Table 4.7 shows the results for the

first and second order modulators and the Sinc3 filter.

Since one of the filter’s requirements is to eliminate the 50 Hz signal component caused by

the primary current, the output data rate of the Σ∆ ADC (given by fS/M) can be set as low as

possible, or preferably, it can be used to place a particular notch frequency in the digital filter

frequency response using Equation 4.16, see Figures 4.35.

(a) (b)

Figure 4.35: Frequency response of the Sinc3 digital filter with M = 1024. (a) fS = 22 kHz,
fcuto f f = 5.6 Hz. (b) fS = 11 kHz, fcuto f f = 2.9 Hz.

95

Chapter 4. The Rogowski coil sensor system

1st Order Σ∆modulator 2nd Order Σ∆modulator Sinc3 filter
Decimation Ratio (M) SNR ENOB SNR ENOB GDC BusW

(dB) (bits) (dB) (bits) (bits) (bits)
4 20.67 3.1 24.99 3.9 6 7

16 38.73 6.1 55.09 8.9 12 13
64 56.79 9.1 85.19 13.9 18 19

256 74.85 12.1 115.30 18.9 24 25
1024 92.92 15.1 145.40 23.9 30 31

Table 4.7: Σ∆ characteristics for different decimation ratios. Where SNR and ENOB are the
theoretical quantities given by Equations 4.18; GDC is the DC gain of the Sinc3 filter given in
bits; and BusW is the size of the output bus vector of the Sinc3 filter given by BusW = 1+V .

4.3.2.1 Functional verification analysis

This subsection presents a simple analysis of the SCU functionality with different model

implementations at particular refinement levels. The SCU VP modeling infrastructure can

be observed in Figure 4.36. This is a hierarchical VHDL-AMS VP built by using a mix of the

modeling techniques given in section 3.5. This VP uses 6 main parameter packages that

are set from the test bench, and 4 TBCs for setting 4 test cases. The RogoCoil model can be

Figure 4.36: SCU VP modeling structure. It contains 2 different packages for the RogoCoil
model and 1 package for each main component model. The PMPs of the other components of
the DUV are given in the DUV_package and from the test bench. The VP uses 4 principal TBCs.

instantiated with one of the two available RogoCoil parameter packages, i.e. the KEVCR_-

96

4.3. The self-calibration unit of the Rogowski coil sensor

Package or the KECA_Package. The Voltage Sensing Block, the RMS-to-DC converter,

and the ADC models have their own parameter packages. The PMPs of the other components

of the DUV are declared in the DUV_package or in the test bench.

Figure 4.37: SCU VP (Ideal Autocalibration) transient simulation. Verification conditions:
Rcoi l = 80Ω; Lcoi l = 4.3 mH; sinusoidal calibration signal with: VDC = 1 V, VAMP = 500 mV,
F1 = 20 kHz. Simulation conditions: simulation tool = SMASH 6.4; integration method =
Backward-Euler; time simulated = 2.5 s; maximum time step: Hmax = 1 µs. The digital signals
Z2COIL and LCOIL are the estimated Rcoi l and Lcoi l respectively.

The Ideal Autocalibration TBC is used to perform the first simulation shown in Figure 4.37. This

figure shows the most germane analog and digital signals of the SCU VP for one self-calibration

loop. The Rcoi l and Lcoi l estimation are performed after Vdi f f and Vout_r c voltages are mea-

sured at two different frequencies (F1 and F2) and stored in the registers VDIFF_F2_REG,

VOUTRC_F2_REG, VDIFF_F1_REG, and VOUTRC_F1_REG, in the same order as is shown in the

figure. The names of the signals correspond to the node name shown in Figure 4.26. In this

verification case, no primary current is taken into account; therefore, the RogoCoil model

implementation used is the ideal_RL model presented in Figure 4.8(b) on page 61. All the

97

Chapter 4. The Rogowski coil sensor system

other component models are also the highest level abstractions of each component. Only the

most relevant verification and simulation conditions are mentioned in the figure caption. It

is important mentioning that all the simulations presented in this subsection are performed

using a constant control clock frequency and temperature values, i.e. FC T RL = 4 kHz and T =
25 °C respectively. Likewise, the Backward-Euler method is the used simulator integration

method, since it permits a good simulation accuracy. This method is used in spite of the

default trapezoidal method, which generates small oscillations in the RMS-to-DC conversion

affecting significantly the accuracy of the result.

We can observe in Figure 4.37 that there is no error in the Rcoi l estimation (∆E_Rcoi l = 0),

but the error in the Lcoi l estimation is around 0.86% (∆E_Lcoi l = 0.86%). The time taken for

performing the simulation shown in Figure 4.37 is about 1 min 17 s using a PC with a CPU Intel

i7-3770 @ 3.4 GHz and 16 GB RAM6. Reducing the maximum simulation time step by a half

(i.e. Hmax = 0.5 µs), makes the simulation time increase almost twice (2 min 6 s), but the error

of the Lcoi l estimation is also reduced by twice (∆E_Lcoi l = 0.45%) approximately. Not always

the maximum time step will affect proportionally the simulation time and the accuracy of the

result, it strongly depends on the particular refinement levels of the component models. Using a

Hmax = 10 ns,∆E_Lcoi l is reduced almost to zero, but the simulation time is increased to about

32 min for one self-calibration loop, which takes about 1.05 s for the Ideal Autocalibration
configuration. Therefore, is key to find a good trade-off between the simulation time and the

desired simulation accuracy of the VP using the highest abstraction level components. This

initial ideal simulation case can be used to set a reference to help the comparison of different

results obtained by performing a gradual model refinement process in future simulations.

Figure 4.38: SCU VP (Ideal 2nd Order Σ∆ ADC) transient simulation. Verification conditions:
Rcoi l = 479.15Ω; Lcoi l = 26.15 mH; ADC relevant parameters: VREF = 1 V, VDELT A = 4 V, FS = 22
kHz, M = 1024; sinusoidal calibration signal with: VDC = 1 V, VAMP = 500 mV, F1 = 20 kHz.
Simulation conditions: simulation tool = SMASH 6.4; integration method = Backward-Euler;
maximum time step: Hmax = 0.5 µs.

6The same computer has been used for all the simulations presented in this thesis.

98

4.3. The self-calibration unit of the Rogowski coil sensor

For the next simulation, see Figure 4.38, the ideal ADC model is replaced by a more refined

model implementation, the 2nd Order Σ∆ ADC model. The first two calibration results are

shown in the figure. In this case, we obtain a small increase in the Lcoi l estimation error

(∆E_Lcoi l = 0.743%), but also a smaller increase in the Rcoi l estimation error (∆E_Rcoi l =
4.9×10−3%), which is caused by small numerical fluctuations of the Σ∆modulation and the

subsequent decimation down sampling. By simulating with a lower calibration frequency

(F1 = 3 kHz), there is a significant decrease in ∆E_Lcoi l and almost no change in ∆E_Rcoi l ,

see Table 4.8. Since the ADC receives a DC value, the estimation error difference between

the high and low calibration frequencies is caused by the RMS-to-DC converter functional

model shown in Figure 4.28. Since the sampling frequency is a constant value (FSAMPLE =

100 kHz), the RMS to DC conversion is more accurate for a calibration signal at 3 kHz than

at 20 kHz. This difference is reduced by using the RMS-to-DC implicit computation model

implementation shown in Figure 4.29(a). Similarly, this SCU VP configuration was simulated

with the 1st Order Σ∆ ADC model implementation; no significant differences were obtained.

Since the 2nd OrderΣ∆ ADC model is slightly more complex than the 1st OrderΣ∆ ADC model,

the latter model can be used to obtain a better simulation performance when applying a

gradual model refinement in other component models of the VP.

F1 Ideal Autocalibration Ideal 2nd Order Σ∆ Simple 1st Order Σ∆ ADC
(kHz) ∆E_Lcoil ∆E_Rcoil ∆E_Lcoil(avg) ∆E_Rcoil(avg) ∆E_Lcoil(avg) ∆E_Rcoil(avg)

3 0.44% 0 0.462% 4.4e-3% 0.487% 0.094%
20 0.45% 0 0.743% 4.9e-3% 3.12% 0.094%

Table 4.8: Summary of the Lcoi l and Rcoi l estimation errors at two calibration signal fre-
quencies (F1) for three different TBCs. Simulation conditions: simulation tool = SMASH 6.4;
integration method = Backward-Euler; maximum time step: Hmax = 0.5 µs. The average (avg)
was taken for 10 consecutive estimated values.

Finally, the last TBC to analyze is the Simple 1st Order Σ∆ ADC. This configuration uses the

RMS-to-DC implicit computation and the 1st Order Σ∆ ADC model implementations. In this

analysis, we are interested in simulating the SCU system with a primary input current (Ipr).

For this purpose, the RogoCoil asymmetric 1Loop model presented in Figure 4.7 on page

60 is used. Figure 4.39 shows the estimations for 2 self-calibration loops at two calibration

signal frequencies. The average estimation errors for Lcoi l and Rcoi l are shown in Table 4.8. In

this case, there is a significant increment in the Rcoi l estimation error (∆E_Rcoi l = 0.094 %),

which is caused by the presence of the 50 Hz signal component in the RMS-to-DC conversion

algorithm and the subsequent Σ∆ modulation. Since ∆E_Rcoi l is still very small, we can

conclude that the digital low-pass Sinc3 filter attenuates successfully the 50 Hz signal for this

particular test case.

On the other hand, considering the Lcoi l estimation error at F1 = 3 kHz (∆E_Lcoi l = 0.487

%), the increase is not significant in comparison to the result of the previous configuration.

However, at F1 = 20 kHz, the Lcoi l estimation error rocketed up (∆E_Lcoi l = 3.12 %), the

reason can be observed in Figure 4.40. The approximation made for the self-calibration

method requires that the calibration signal uses a frequency far below the first resonance

99

Chapter 4. The Rogowski coil sensor system

(a) F1 = 3 kHz

(b) F1 = 20 kHz

Figure 4.39: SCU VP (Simple 1st Order Σ∆ ADC) transient simulations. Verification conditions:
RogoCoil core = KEVCR; primary AC current: Ipr = 10 Apeak , Fpr = 50 Hz; ADC relevant
parameters: VREF = 1 V, VDELT A = 4 V, FS = 22 kHz, M = 1024; sinusoidal calibration signal with:
VDC = 1 V, VAMP = 500 mV. Simulation conditions: simulation tool = SMASH 6.4; integration
method = Backward-Euler; maximum time step: Hmax = 0.5 µs.

Figure 4.40: Impedance (dB) vs. Frequency (Hz). Impedance response simulation for the
RogoCoil asymmetric 1Loop model implementation. The primary of the RogoCoil model is
short-circuited for this simulation.

frequency of the RogoCoil. We can observe that the first resonance frequency is near to 40

kHz; so that, a calibration signal at 20 kHz produces a Lcoi l estimation error that is out of the

system specifications for RogoCoils with resonance frequencies of 40 kHz or below. Since Lcoi l

100

4.3. The self-calibration unit of the Rogowski coil sensor

is proportional to the correction factor estimation, see subsection 4.4.1 on page 105, ∆E_Lcoi l

affects directly the accuracy of the primary current measurement, which is required to meet

class 0.5 (IEC 60044-8 Standard [96]).

4.3.2.2 Simulation and experimental results

Previous virtual and experimental studies of the RogoCoil SCU [80, 82] did not verify the

behavior of the SCU when a primary current is applied. This is an essential verification

procedure for testing the SCU operation under normal and critical conditions. This is why the

availability of VPs allowing to make this type of verifications before physical prototyping offers

great benefits for an efficient system design.

With the intention of validating the SCU VP, a comparison between simulation and experimen-

tal results using the physical prototype and the setup shown in Figure 4.41 was carried out by

the author of this research. A series of Rcoi l and Lcoi l estimations of the SCU were measured on

three batch samples for two RogoCoil core types, see Figure 4.41(b). Since the primary current

generator available for the experiment can only produce a 50 Hz AC current up to 11 Apeak

per wire (18 wires per cable) without saturation7, 5-6 loops of the primary cable were used to

emulate a Busbar as is shown in the experimental setup of Figure 4.41(b). The measurements

(a) (b)

Figure 4.41: (a) SCU electronics physical prototype (red) connected with an RJ45 cable to a
RogoCoil (blue). (b) KEVCR17.5CA1 and KECA250B1 ABB RogoCoils. In this experimental
setup 5-6 loops of cable (18 wires per cable) are used to generate the equivalent magnetic field
of a primary AC current up to 1.17 kApeak at 50 Hz. Three batch samples per RogoCoil core
type were used for the experimental measurements.

for 6 consecutive self-calibration cycles were taken for each AC primary current step sweeping

from 0 to 1.17 kApeak at 50 Hz. The temperature of the primary cable rises considerably at

high current; so that, the Rcoi l and Lcoi l measurements for larger self-calibration consecu-

tive cycles cannot be taken without affecting the RogoCoil inner temperature. Although the

thermal network model of the RogoCoil can be used to model this experimental scenario,

the electro-thermal model of the RogoCoil also needs to be validated separately. In this case,

7At saturation, the AC current lose its sinusoidal waveform and becomes heavily distorted.

101

Chapter 4. The Rogowski coil sensor system

the system was periodically cold down between current measurements to avoid temperature

influence on the electrical variables of the RogoCoil. The complete set of measurements were

carried out in two days. On the other hand, the SCU VP were used to reproduce the same

experimental verification scenario. The custom VHDL-AMS parametric package presented in

Appendix E.2 was used to make the primary current sweep. The complete set of simulations

were performed in about 4 hours with a maximum time step of 0.5 µs in an Intel i7-3770 CPU

@ 3.4 GHz 16 GB RAM.

Figure 4.42 shows the plots of the Rcoi l and Lcoi l estimated values as a function of Ipr using

the KECA250B1 core type. The Simple 1st Order Σ∆ ADC TBC, previously presented in subsec-

tion 4.3.2.1, was used for comparison between the virtual and experimental results. We can

observe in Figure 4.42(a) that Rcoi l remains stable until a current amplitude of about 720 A,

afterwards Rcoi l decreases proportionally to Ipr . Although the same behavior is not observed

in simulation, it can be noticed a slight fluctuation on the Rcoi l estimation after the same

Ipr amplitude in simulation. This observation is consistent with a significant increment in

(a) (b)

(c) (d)

Figure 4.42: KECA250B1 plots: experimental and virtual Rcoi l and Lcoi l SCU estimation as a
function of the primary current amplitude (Ipr). (a) Rcoi l average estimated value. (b) Maxi-
mum Rcoi l relative error (∆E_Rcoi l (max)). (c) Lcoi l average estimated value. (d) Maximum
Lcoi l relative error (∆E_Lcoi l (max)).

102

4.3. The self-calibration unit of the Rogowski coil sensor

∆E_Rcoi l (max) also after the same Ipr amplitude in Figure 4.42(b). In fact, the minimum esti-

mated Rcoi l values in simulation follow the same trend as the experimental values. However,

the SCU VP also calculate increased Rcoi l values at high primary current; and therefore, since

the plotted Rcoi l values in Figure 4.42(a) are average values Rcoi l seems to remain stable. The

exact reason for the unexpected Rcoi l decrease in the experimental results is unknown, further

analysis is required with both virtual and physical prototypes. A proportional small increment

of both ∆E_Rcoi l (max) and ∆E_Lcoi l (max) is expected as a function of Ipr , this is caused by

the 50 Hz signal component that is attenuated by the low-pass filtering in the ADC. The high

Rcoi l and Lcoi l estimation values obtained in simulation suggest that a stronger 50 Hz signal

attenuation and a better ADC accuracy is needed. Indeed, the physical prototype uses a 2nd

Order Σ∆ ADC architecture with an additional LPF in the signal conditioning chain, this is

why higher relative maximum errors are obtained in simulation.

Regarding the Lcoi l estimation shown in Figure 4.42(c), we can see that there is no significant

difference between the experimental and the simulation values. The only exception is observed

in the RogoCoil sample with reference 1VLT5413000456, which presents a higher average Lcoi l

value. This is a manufacturing RogoCoil error of this particular coil sample, which presents a

Lcoi l around 23% higher than the nominal value. On the other hand, the experimental results

for ∆E_Lcoi l (max) do not unveil any clear trend as is shown in Figure 4.42(d). Contrarily, the

simulation results show a linear increment of ∆E_Lcoi l (max) as a function of Ipr .

Figure 4.43 presents the same plots of the Rcoi l and Lcoi l estimated values as a function of Ipr

using the KEVCR17.5CA1 core type. In this case, we do not observe any significant influence of

Ipr in the Rcoi l estimation, see Figure 4.43(a). On the other hand, despite the apparent stability

of the Lcoi l estimation in both experimental and simulation cases, the experimental results

show a noteworthy difference between the measurements with a certain primary current value

and without a primary current, see Figure 4.43(c). Unfortunately, this estimation ‘jump’ is not

observed in simulation; so that, the SCU VP is limited in its capability for helping to understand

this particular behavior. The estimated Rcoi l value in simulation is around 9% lower than the

experimental measurements, whereas the estimated Lcoi l value in simulation is around 32%

lower. This kind of preliminary differences are normal between experimental and simulation

results, they can be easily corrected by a model characterization process. These simulation

results can fit the experimental measurements by a minimal modification of the material or

geometrical parameter values of the RogoCoil core, for instance, a small increment of the

resistivity of the coil cable or varying few hundreds of micrometer the core curvature. The

characterized Rcoi l and Lcoi l values must be typical, lying inside the manufacturing tolerance

range for this type of RogoCoil core, as it was done with the KECA250B1 core. Considering the

maximum relative estimation errors in Figures 4.43(b) and 4.43(d), it is observed that both

experimental and simulation results are much more similar and stable than in the KECA250B1

case. This allows to conclude that the KECA250B1 has some physical and/or geometrical

condition that is not considered in the RogoCoil model; therefore, the RogoCoil behavior

cannot be predicted accurately.

103

Chapter 4. The Rogowski coil sensor system

(a) (b)

(c) (d)

Figure 4.43: KEVCR17.5CA1 plots: experimental and virtual Rcoi l and Lcoi l SCU estimation as
a function of the primary current amplitude (Ipr). (a) Rcoi l average estimated value. (b) Maxi-
mum Rcoi l relative error (∆E_Rcoi l (max)). (c) Lcoi l average estimated value. (d) Maximum
Lcoi l relative error (∆E_Lcoi l (max)).

4.4 The current measurement unit of the Rogowski coil sensor

After the RogoCoil transducer, the current measurement unit (CMU) is indeed the most

important part of the RogoCoil sensor system. As it can be observed in Figure 4.2 on page

55, the CMU continuously measures the primary current (Ipr) from the output voltage of

the RogoCoil. Originally, the CMU can measure the primary current without using the SCU.

In this case, the calibration factor (C F) is a fixed value measured once during the RogoCoil

fabrication and typed in the IED during installation. However, since the C F can change during

the system operation by temperature drifts, mechanical stress, or aging, the continuous C F

calculation made by the SCU improves the accuracy of the Ipr measurement over the entire

lifetime of the system.

The first following subsection (4.4.1) details the equations of the primary current estimation

which are used for the implementation of the complete VP of the RogoCoil sensor system,

presented in section 4.5. Here, it is explained the actual value received by the CMU from the

104

4.4. The current measurement unit of the Rogowski coil sensor

SCU and how it is related to the estimated Lcoi l and Rcoi l values. The last subsection (4.4.2)

presents a virtual prototyping example of the design of the CMU without considering the

SCU implementation in the sensor system. This particular study case was made in order to

illustrate the application of the meet-in-the-middle approach for system-level modeling at the

former stage of the design, i.e. when the concept has not been previously analyzed. This study

shows a simplified example of design space exploration and gradual model refinement using

a VP built following the VP-Modeling Guidelines presented in section 3.5. The fast virtual

assessment of two design options represented by two different architectures can be attained

using this VP.

4.4.1 Equations for the primary current estimation

As it has been previously mentioned, the main function of the SCU is to compute the RogoCoil

correction factor (C F) and transmit it to the CMU. Indeed, the C F is the gain that the CMU

requires to calculate accurately the current on the RogoCoil primary. However, the effect of the

signal conditioning gain directly affects the primary current estimation, and therefore must be

included in the C F calculation. For this purpose, consider the self-calibration configuration

shown in Figure 4.25(a) on page 84.

The output voltage of the RogoCoil sensor Vout is defined as follows:

Vout =G ·M · d Ipr

d t
(4.19)

where G is the signal conditioning gain, M is the mutual inductance of the RC, and Ipr is

the primary current. The mutual inductance M is directly related to the RogoCoil sensor

sensitivity S as follows:

M = Lcoi l

N
= S

2πFpr
(4.20)

where N is the number of loops of the RogoCoil and Fpr is the frequency of the primary current

(50 Hz / 60 Hz in power applications). Using equations 4.19 and 4.20, we can obtain the Ipr as

follows:

Ipr (t) = 1

G ·M

∫
Vout (t)d t = 2πFpr

G ·S

∫
Vout (t)d t = N

G ·Lcoi l

∫
Vout (t)d t (4.21)

105

Chapter 4. The Rogowski coil sensor system

On the other hand, the C F is defined by the following equation:

C F = S

Sth
= 2πFpr ·Lcoi l

N ·Sth
(4.22)

where Sth is the experimental sensitivity of the RogoCoil which is defined by: Sth =Usr /Ipr n ,

where Usr is the output rated voltage of the RC (e.g. 150 mV for the KECA250B1 coil) and Ipr n

is the primary rated current of the RC (e.g. 250 A for the KECA250B1 coil).

The C F value is normally measured and written in RogoCoil after fabrication using Equation

4.22, which determines how C F is related to S. However, the electrical abstractions used for

modeling the RogoCoil, do not take into account the experimental RogoCoil sensitivity effect.

Therefore, Sth = 1 and we can use directly the expression in function of Lcoi l and N in order to

calculate Ipr , see Equation 4.21.

In this way, the only remaining term to define is the gain of the signal conditioning chain (G).

If the RogoCoil is directly connected to the CMU, without implementing the self-calibration

circuit described in Figure 4.25(a), G will be composed exclusively by the gain of the signal

conditioning of the CMU components, i.e. analog amplifiers, integrators, filters, etc. This is

the case for the virtual prototyping example presented in subsection 4.4.2. However, for the

complete RogoCoil self-calibrated sensor system, G can be defined by the product of two parts

of the signal conditioning chain (G =G1 ·G2). These parts are described as follows:

1. Attenuation of the calibration resistors: Since the calibration resistance value RC AL

(10 kΩ) is much smaller than the standard input impedance of the previous IED versions

(around 2 MΩ), the RogoCoil rated signal will then suffer from an attenuation that must be

compensated. The RogoCoil can be represented as a floating differential voltage source with

an internal Rcoi l output resistor as depicted in Figure 4.44. Therefore, the attenuation of the

calibration resistors (G1) is given as follows:

G1 = RC AL

RC AL +Rcoi l /2
(4.23)

2. Front-end analog gain: The two voltage drops in the order of mili-Volts (VC AL −Vout

and Vout), shown in Figure 4.25(a) on page 84, can be measured by analog amplifiers using

a determined gain (G2). In order to simplify the calculations done in the complete VP of the

RogoCoil sensor system, Vout is measured with a unitary gain, i.e. G2 = 1. Different G2 values

can be easily included in the Voltage Sensing Block model of the SCU, see Figure 4.26 on

page 87. In this case, the correction factor calculated by the digital control unit in the SCU

must be modified accordingly.

106

4.4. The current measurement unit of the Rogowski coil sensor

Figure 4.44: Rogowski coil symmetrical Thevenin equivalent circuit and its load.

Considering Equation 4.21 and G = G1, the corrected correction factor (C Fc), which is the

actual value calculated by the SCU and transmitted to the CMU, is given by the following

expression:

C Fc = N

G ·Lcoi l
= N (Rcoi l /2+RC AL)

RC AL ·Lcoi l
(4.24)

C Fc takes into account both the RogoCoil sensitivity and the attenuation of the calibration

signal conditioning. Therefore, the primary current equation can be re-written as follows:

Ipr (t) =C Fc

∫
Vout (t)d t = N (Rcoi l /2+RC AL)

RC AL ·Lcoi l

∫
Vout (t)d t (4.25)

4.4.2 The CMU virtual prototype

Table 4.9 unveils some of the most relevant design enquiries that have arisen during the CMU

design at the former design stage. Specifically, this virtual prototyping analysis provides a fast

assessment focused on the first 5 design topics. It is assumed that some component models,

such as the RogoCoil, the ADC, and the OpAmp models, are previously available. In this initial

virtual assessment, the goal is not to achieve a detailed design of the system, it is rather to

explore and compare two different architectures for accurate primary current estimation.

Early error detection and the quantification of some critical behavioral effects are the most

important results obtained during this study.

The CMU VP presented in this subsection only takes into account the RogoCoil and the

CMU subsystems as is shown in Figure 4.45. This is a simple high-level block diagram of

the RogoCoil and the CMU interconnection. The DUV is declared in the test bench called

107

Chapter 4. The Rogowski coil sensor system

Design topic Design enquiry
Functional verification Does the current measurement equation/algorithm work?

Design space exploration
Analog or Digital current calculation approach? / Software

or Hardware solution? / What integration method?

Performance estimation
Does the CMU proposed design meet the requirements?

(Accuracy and current measurement range)

Identification of critical
design parameters

RogoCoil voltage measurement gain; ADC frequency,
resolution, dynamic range, etc; digital processing clock

frequency.

Early design error detection
Does the current calculation depend on the input signal

initial condition (Phase)?
Evaluation of key

non-idealities of the system
components

Important design variables and parameters that put at risk
the correct operation of the system: e.g. offset voltages,

bandwidth, tolerances, noise, etc.

Functional safety
Verification of critical operation/environmental conditions

and/or hardware failures: e.g. harmonics in the primary
current, temperature fluctuations, current breakdowns, etc.

Table 4.9: Design topics of system-level virtual prototyping for the CMU design. The CMU
VP is used to solve these type of design enquiries classified in general design topics normally
treated in this order.

RC_MEAS_TB, which provides the primary current (Ipr) and a reset signal for the CMU. As

it has been described in section 4.4.1, the output voltage of the RogoCoil is described by

Equation 4.19. Knowing that the coil mutual inductance (M) is directly proportional to Lcoi l

and inversely proportional to the number of coil turns (N), see Equation 4.20, the CMU must

calculate continuously Ipr (t) by implementing the Equation 4.21. This is called the reference

calculation and is given by the output digital signal: Ibus_ideal = N
G·Lcoi l

∫
Vout (t)d t , where

Figure 4.45: Conceptual block diagram of the CMU VP. The DUV is declared in the test bench
called RC_MEAS_TB, which provides the primary current Ipr and a reset signal for the CMU.

108

4.4. The current measurement unit of the Rogowski coil sensor

N is a known PMP and Lcoi l is also assumed a known value. Note that no calibration circuit is

connected to the RogoCoil secondary output terminals; therefore, G only depends on the gain

for the RogoCoil output voltage (Vout) given in the CMU.

Assuming that the RogoCoil is an available component model, any of the RogoCoil model im-

plementations previously described can be used. A pertinent model for starting the functional

verification may be a high-level functional RogoCoil model which implements Equation 4.1

on page 54; however, we can directly use the available RogoCoil asymmetric 1Loop model

presented in Figure 4.7 on page 60, see its typical transient response in Figure 4.46. Since this

model calculates its impedance value from the geometrical and material parameters according

to the specific RogoCoil core, the Lcoi l value used in the CMU is given by the RogoCoil model

using a quantity port as is depicted in Figure 4.45.

Figure 4.46: Transient response of the RogoCoil asymmetric 1Loop model. RogoCoil core =
KEVCR (see the PMPs in Table A.1). Ipr = 250 Apeak @ 50 Hz. Vout is a perfect derivate of the
input primary current waveform of about 75 mVpeak at the same frequency.

During the first analysis, an initial functional verification, the simulator setup parameters

are fixed in order to get a good simulation performance with a proper model estimation

accuracy over the variable that we want to verify, in this case, the measured primary current.

The estimation accuracy is defined by simulating the CMU VP with the reference calculation

model, where the output signal Ibus_ideal should be exactly equal to the Ipr input signal (i.e.

a successful functional verification result). Figure 4.47(a) shows an observable error between

Ibus_ideal and Ipr , which can be quantified using different criteria such as the Average (AVG),

RMS, peak-to-peak (P2P), or crest factor (CRESTF) errors for sinusoidal signals. Since these

estimation errors are much higher for the KECA core than for the KEVCR core under the same

simulation conditions, we can conclude that the KECA parameters are not fine tuned for the

RogoCoil asymmetric 1Loop model with this specific verification and simulation conditions.

Considering that this type of simulation errors are always present disregarding the model used

(systematic errors), the initial reference calculation model becomes useful for making relative

109

Chapter 4. The Rogowski coil sensor system

(a) KECA (b) KEVCR

Figure 4.47: CMU VP transient simulations using the reference calculation model (Zoom). AC
input signal: Ipr = 250 Apeak @ 50 Hz. The output (Ibus_ideal) looks exactly the same as Ipr

in Figure 4.46 without zoom.

comparisons of the detriment in the model estimation accuracy caused by model refinement,

changes in verification conditions, and changes in simulation conditions. In fact, since system

designers are mainly interested in errors caused by changes in the verification conditions, it is

necessary to check that the error caused by a certain simulation condition remain constant for

a proper quantitative comparison under different verification conditions.

Let us continue with the design space exploration study. As it was presented in Figure 3.1

on page 23, there are two potential architectures that are considered for implementing the

desired functionality given by the Ibus_ideal expression: the Analog CMU and the Digital

CMU architectures.

4.4.2.1 The Analog CMU architecture

The Analog CMU architecture shown in Figure 4.48 consist of four main blocks: an initial

amplification stage implemented by an instrumentation amplifier (INS_AMP), an Analog
Integration block, an ADC, and a final Digital Calculation block that multiplies the

digital signal (previously integrated in the analog domain) by the correction factor (C F),

defined only for the analysis of the CMU VP as C F = N
G·Lcoi l

. In this way, the Ibus_calc output

signal represents the measured primary current. Note that the Reference Calculation
block, which is not part of the CMU system architecture is included in the same model

implementation to obtain in parallel the Ibus_ideal signal for comparison purposes.

Figure 4.48 shows the different model implementations that are available for each component

model, they all include one basic functional model abstraction and at least one more refined

model implementation that allows evaluating critical behaviors of the system. For example,

the ADC model can be configured using one of the three model implementations previously

explained in section 4.3.2, i.e. the functional ideal ADC model shown in Figure 4.31 on

110

4.4. The current measurement unit of the Rogowski coil sensor

Figure 4.48: Conceptual CMU Analog architecture. The Reference Calculation block is not
part of the real system architecture. The red arrows indicate the available model implementa-
tions for each component model.

page 92, and the first and second order Σ∆ ADC model implementations shown in Figure

4.32 and detailed in Appendix C.1. Following the meet-in-the-middle approach, the virtual

analysis implies a gradual refinement of the CMU VP in order to identify the effect of critical

design parameters in the accuracy of the primary current estimation. This is achieved by

verifying the correct functionality and performance of the CMU in simulation. Thus, some

basic configurations8 using specific combinations of the available model implementations are

presented as follows. The goal is not to explain every possible VP configuration, it is rather to

show how to perform a quick system-level analysis using the proposed VP-based methodology.

1. Ideal CMU configuration: This configuration sets the most basic functional model im-

plementations for each component model. Table 4.10 shows the main equations of those

functional component models: where GAIN_VRC is the gain of the INS_AMP component, vo

Component model Main equation
INS_AMP vo == GAIN_VRC * vi;

Analog Integration Vout == GAIN_INTEG * Vin’integ;
Digital Calculation Ibus_calc <= N/(GAIN_INS*Lcoil) * ADCout;

Table 4.10: Main equations of the CMU functional component models. The ideal ADC model
shown in Figure 4.31 is used in the ideal CMU configuration together with these models.

and vi are the output and input voltage of the INS_AMP amplifier respectively; GAIN_INTEG

8The name used for a particular configuration is merely indicative. Unfortunately, it cannot fully indicate the
complete set of implemented design entities in a large hierarchical model, the name would be too large.

111

Chapter 4. The Rogowski coil sensor system

is the gain of the Analog Integration block, Vout and Vin are the output and input voltage

of the Analog Integration block respectively; ADCout is the digital output value9 of the ADC,

GAIN_INS is the total gain of the instrumentation chain circuitry (in this case GAIN_INS =
GAIN_VRC * GAIN_INTEG).

2. Behavioral CMU configuration: Only the Analog Integration block is refined in this

configuration. All the other component models use the same functional model implemen-

tations of the Ideal CMU configuration. Figure 4.49 exhibits the Analog Integration block

architecture, which is the well-known inverting OpAmp integrator circuit using a resistor (R)

and a capacitor (C) in the feedback loop. The output voltage of this integrator (Vi nteg) is given

as follows:

Vi nteg = −1

R ·C ·
∫

Vi nd t (4.26)

where Vi n is the input voltage of the integrator. Since R and C particular values are not impor-

tant for the integration functionality, they are defined as SMPs depending on the GAIN_INTEG
PMP, see modeling guideline number 4 presented in section 3.5.

Figure 4.49: Analog Integration block architecture and the opamp(simple) simple model.

Likewise, the OpAmp simple model implementation shown in Figure 4.49, models the OpAmp

as a voltage dependent current source with finite gain, input resistance, and output resistance.

9This is a real number that has been converted from the standard logic vector output of the ADC.

112

4.4. The current measurement unit of the Rogowski coil sensor

This model is adequate to be implemented in feedback loops but does not model the OpAmp

voltage saturation determined by the supply voltages.

3. Behavioral_refined CMU configuration: In this configuration, the interest is focused

on verifying the effect of some of the most important non-ideal behaviors of the differential

amplifiers, i.e. in the INS_AMP and the OPAMP component models. Figure 4.50 shows the generic

parameters of the more refined model implementation for these components. The INS_AMP
model considers non-ideal behaviors like saturation voltages, input and output offset voltages,

and the effect caused by temperature drifts in the offset voltages and the input resistance,

see Figure 4.50(a). On the other hand, a more refined OpAmp model implementation (de-

nominated opamp(nonideal)), considers non-ideal effects commonly given in datasheets of

(a) INS_AMP

(b) OPAMP

Figure 4.50: Differential amplifiers VHDL-AMS entity declaration. The list of generic pa-
rameters show the behaviors included in the most refined model implementation of these
component models. See the complete design entities code in Appendices C.2 and C.3. The
default parameter values are typical in commercial amplifiers.

113

Chapter 4. The Rogowski coil sensor system

commercial components such as gain-bandwidth product, slew-rate, common mode rejection

ratio, power supply rejection ratio, among others, see Figure 4.50(b).

Similarly, other CMU configurations can be considered to identify critical design parameters

of the system components by simulating with more refined model implementations for the

ADC and the Digital Calculation block. Note that is not necessary to refine at the same time the

ADC and the Digital Calculation models for studying the critical behaviors of the differential

amplifiers in the first components of the instrumentation chain. Likewise, if we would like

to improve the simulation performance for studying non-ideal behaviors in the ADC or the

Digital Calculation models, we can use the functional models of the INS_AMP and the Analog

Integration block.

4.4.2.2 The Digital CMU architecture

Continuing with the design space exploration of the CMU, the other considered approach for

measuring the primary current is to convert to digital the output voltage of the instrumentation

amplifier. Consequently, the integration and the multiplication by the C F is performed in the

digital domain, see the conceptual architecture for this case in Figure 4.51.

Figure 4.51: Conceptual CMU Digital architecture. The Reference Calculation block is not
part of the real system architecture. The red arrows indicate the available model implementa-
tions for each component model.

The considered model implementations for the INS_AMP and the ADC components are the

same as the Analog CMU architecture. For the digital CMU analysis and comparison with

the Analog counterpart, there were considered three CMU configurations, each one setting a

particular model implementation of the Digital Integration block together with the functional

114

4.4. The current measurement unit of the Rogowski coil sensor

models of the INS_AMP and the ADC components. These CMU configurations are described

as follows:

1. Functional CMU configuration: This configuration uses the functional model imple-

mentation of the Digital Integration block, which implements in VHDL-AMS an algorithm that

can integrate the input digital signal using the three different methods as it can be observed

in Table 4.11. Here we observe the approximation taken in each method for the continuous

Laplace transfer function (1/s) as a function of the sample time T and the discrete z-domain

variable. The resultant difference equation for each method is also given.

Integration method Equation

Forward Euler (FE)
1

s
≈ T

z −1
⇒ y(n) = y(n −1)+K ·T ·u(n −1)

Backward Euler (BE)
1

s
≈ T · z

z −1
⇒ y(n) = y(n −1)+K ·T ·u(n)

Trapezoidal (TRAP)
1

s
≈ T

2
· z +1

z −1
⇒ y(n) = y(n−1)+K

T

2
[u(n)+u(n −1)]

Table 4.11: Digital integration methods of the Digital Integration model. The functional and
the software model implementations of this block use these integration methods, where u is
the input, y is the output, K is the integrator gain value, and T is the sample time.

2. Software CMU configuration: This configuration uses the software model implemen-

tation of the Digital Integration block. This implements the same algorithm of the functional

model implementation but in C++. Figure 4.52(a) shows the VHDL-AMS process used to imple-

ment the integration methods of the functional architecture of the Digital Integration block.

Likewise, Figure 4.52(b) shows the C++ functions used to implement the same integration

methods in the software architecture of the Digital Integration block. In this case, the FOREIGN
attribute allows calling C/C++ functions in VHDL-AMS. The C++ function ‘Integration’ is

called from a VHDL-AMS process as follows:

1 INTEGRAL : Process(ADCout_real)
2 begin
3 y_out <= FOREIGN_Integration(ADCout_real , ADCout_realnm1 , y_out , TSMP ,

K, METHOD);
4 end process;

115

Chapter 4. The Rogowski coil sensor system

where ADCout_real is the ADC output at time t , the ADCout_realnm1 is the ADC output at

time t −1, y_out is the output of the integrator, TSMP is the sample time, K is the gain value,

and METHOD is the integration method (‘FE’, ‘BE’, or ‘TRAP’).

(a) VHDL-AMS (b) C++

Figure 4.52: Source code fragment of the functional and software model implementations
of the Digital Integration block. (a) VHDL-AMS process, part of the functional architecture.
(b) C++ functions, part of the software architecture.

Although the software is not a refinement of the functional model implementation, they

were used to compare simulation accuracy and performance in the study presented in subsec-

tion 4.4.2.3. This simple example demonstrates the versatility of the VHDL-AMS approach

and the potential to integrate hardware and software abstractions in the same model.

3. Hardware CMU configuration: This configuration uses a more refined model imple-

mentation of the Digital Integration block, a first order IIR digital integrator described by the

forward rectangular discrete transfer function shown in Equation 4.27.

y(n) = y(n −1)+T ·u(n −1) ⇒ H(z) = T

(
z−1

1− z−1

)
(4.27)

Figure 4.53 exhibits a fraction of the VHDL-AMS code used to implement the forward rectan-

gular discrete transfer function. In fact, this is an implementation of the FE method described

in Table 4.11. This model implementation can be refined by making it fully synthesizable in

VHDL. In that case, the algorithm will only use standard logic vectors, accumulators (registers)

and a multiplier. For a first analysis and comparison of the different integration methods, the

VHDL-AMS Hardware model abstraction is sufficient.

116

4.4. The current measurement unit of the Rogowski coil sensor

Figure 4.53: Code fragment of the Hardware model implementation of the Digital Integration
block. This is the VHDL-AMS implementation of Equation 4.27.

4.4.2.3 Comparative study: Analog vs. Digital

Following the design topics mentioned in Table 4.9 on page 108, this study consists of evalua-

ting the effect of some of the PMPs from the main components of the CMU. This is carried

out by comparing the important waveform properties between the Ibus_calc and the Ibus_-
ideal signals for all the presented configurations of both the Analog and Digital architectures

of the CMU. The idea is to find critical PMPs values of the main components. This is done

by assigning relaxed PMPs values that can easily perform the required functionality in the

ideal CMU configuration, where the ADC resolution (N B), ADC clock frequency (FADC), ADC

Full-scale voltage (V f s), INS_AMP gain (G I N S_AMP), and integrator gain (G I N T EG) are among

the important parameters to take into account for a reliable current estimation. Table 4.12

shows the default simulation conditions and parameter values for the seed test case, which is

a stable set of PMPs values and simulator settings that are chosen as the starting point after

functional verification simulations.

Primary parameters Simulation conditions
RogoCoil core = KEVCR.

Ipr =250 A @ 50 Hz, θ =0°. Transient Simulation from 0 to 200 ms.
FADC =500 kHz. Minimum time step: Hmi n =1 fs.

N B=19 bits. Maximum time step: Hmax =2 us.
V f s =0.8 V [-0.4, 0.4]. Integration method = Trapezoidal.

G I N S_AMP = 5. Post-processing MEAS directive from 10 ms
G I N T EG =−2. to 190 ms: (AVG, RMS, MIN, MAX, P2P, CRESTF).

Reset time = 10 ms.

Table 4.12: CMU VP default PMPs and simulation conditions. The most critical parameters
for the current estimation are the N B and FADC . The comparative study presented in this
subsection is focused on the variation of these parameters. Simulation tool: SMASH 6.5.

Once the reset signal (Rst) is deactivated at 10 ms, the SMASH post-processing .MEAS directive

starts to calculate the average (AVG) value, the root mean square (RMS) value, the minimum

117

Chapter 4. The Rogowski coil sensor system

Figure 4.54: Maximum estimated errors between the Ibus_calc and the Ibus_ideal output
signals of the CMU VP using the default conditions shown in Table 4.12; where AE_AVG is
the absolute error of the average value, Pr_AMP is the amplitude of the primary, and RE_...
stands for the relative error of the respective value. All the maximum errors are produced by
the configurations of the Digital CMU architecture.

(MIN) value, the maximum (MAX) value, the peak-to-peak (P2P) value, and the crest factor

(CRESTF) of the output signals of the CMU. During the comparative study, changing the PMPs

values by using different configurations allow us to observe their effect on the estimated

Ibus_calc. Figure 4.54 shows the default maximum error values (after simulating all the

considered CMU configurations), which are calculated using the main quantitative output

waveform characteristics of the CMU given by the .MEAS directive. All the maximum errors

are produced by the configurations of the digital CMU architecture. However, it is required a

deeper understanding of the factors that affect the current estimation in each architecture

in order to obtain strong evidence for conclusions. This is why the analysis starts by varying

some critical parameters in both the Analog and Digital CMU architectures.

Figure 4.55 exhibits the effect of decreasing the ADC dynamic range (DNR), i.e low N B . The

Analog CMU VP is simulated by using N B = 12 bits, see Figure 4.55(a), where the quantization

noise of the ADC is observed but the CMU current estimation works as is expected. On the

other hand, the current estimation fails at a reduced ADC precision of N B = 8 bits as it is

shown in Figure 4.55(b). Strangely, there are only 2 values in the whole current range.

The reason for not being able to reconstruct the current at 8 bits is understood observing

the output voltage of the Analog Integration block (Vout_INT), see Figure 4.56. A reduced

N B causes a least significant bit (LSB) of 3.125 mV; so that, the ADC can only distinguish 2

different values for an input signal of 4.8 mVp2p . Although G I N T EG is by default -2, the analog

sinusoidal signal integration suffers an intrinsic attenuation proportional to 2π fpr . Therefore,

limited ADC resolution issues can be solved by increasing the integrator gain or reducing the

full-scale voltage of the ADC.

Performing the same analysis with the Digital CMU architecture produces different results. In

118

4.4. The current measurement unit of the Rogowski coil sensor

(a) NB=12 Bits / DNR = 72 dB

(b) NB=8 Bits / DNR = 48 dB

Resolution (NB) 12 bits 8 bits
RE_RMS (%) 0.43 9.89
RE_P2P (%) 2.07 34.43

RE_CRESTF (%) 1.62 27.24

Figure 4.55: Analog CMU VP transient simulations at reduced ADC dynamic range (DNR).
These results are valid for all the Analog CMU configurations. A comparison between the most
important relative errors can be observed in the included table.

Figure 4.56: Input (Vin_INT) and output (Vout_INT) voltages of the Analog Integration block.
The analog sinusoidal signal integration suffers an intrinsic attenuation proportional to 2π fpr .

119

Chapter 4. The Rogowski coil sensor system

fact, using N B = 12 bits the obtained current estimation is a highly attenuated and distorted

signal, see Figure 4.57(a). The situation is even worst at N B = 8 bits. Comparing to the

simulation result using the default N B = 19 bits, see Figure 4.57(b), we observe a successful

primary current estimation with no apparent issues. However, a zoom around 48.34 ms allows

to see that these signals are not exactly equal; consequently, we can conclude that the signal

distortion caused by the ADC resolution is always present. The relative errors for these two

cases are shown in Figure 4.57

(a) NB=12 Bits / DNR = 72 dB (b) NB=19 Bits / DNR = 114 dB

Resolution (NB) 19 bits 12 bits
RE_RMS (%) 0.63 49.28
RE_P2P (%) 0.31 41.96

RE_CRESTF (%) 0.32 14.43

Figure 4.57: Effect of the ADC resolution on the current estimation of the Digital CMU VP
architecture (functional and software configurations). The current estimation of the Digital
CMU architecture is more sensitive to lower values of N B than its Analog counterpart.

We can further analyze the origin of the signal attenuation and distortion by observing the

input (ADCout) and the integration result (Yout) signals of the Digital Integration block, see

Figure 4.58. Albeit there is no particular difference in the ADCout signal for N B = 19 or N B = 12

bits, a lower ADC resolution causes that the digital integration algorithm (in all 3 methods)

Figure 4.58: Input (ADCout) and output (Yout) signals of the Digital Integration block. The
analog sinusoidal signal integration suffers an intrinsic attenuation proportional to 2π fpr .

120

4.4. The current measurement unit of the Rogowski coil sensor

presents a significant distortion near zero and a lower amplitude (about 2.4 mV for the correct

Yout signal in this specific verification case). Consequently, the RMS, P2P, and CRESTF relative

errors are largely affected.

Following the comparative architecture study of the CMU, we can make a corner case analysis

using the ADC clock frequency (FADC). In fact, the default value has been set at a very high

frequency; thus, we are now interested in observing the effect of a low FADC in the current esti-

mation. Considering the Analog CMU architecture, a large quantization noise in Ibus_calc
is observed at FADC =500 Hz, see Figure 4.59(a). However, none of the quantitative error es-

timators evidences the bad situation. In fact, AE_AVG/Pr_AMP and RE_RMS are the greatest

obtained errors with a value around 0.17%, which is lower than the errors obtained for the

digital CMU configurations with the default PMPs values, see Figure 4.54. However, comparing

to the errors obtained at FADC =500 kHz, AE_AVG/Pr_AMP, RE_RMS and RE_CRESTF are 3 orders

of magnitude greater for the low-frequency case. This is mainly caused due to the quantization

noise directly affects the symmetry of the signal after the reset signal is activated, i.e. at 10 ms.

Therefore, the average and RMS measured values are greatly affected. A fast Fourier transform

(FFT) analysis will give more detailed information about the quantization noise in Ibus_calc.

(a)

(b)

Figure 4.59: Analog CMU VP simulation results at two corner ADC frequencies. These results
are valid for all the Analog CMU configurations. (a) Transient simulation at FADC = 500 Hz. (b)
Bar diagram of the relative errors of the CMU output signals at two corner ADC frequencies.

On the other hand, Figure 4.60 presents the effect of the low FADC value on the functional
and software CMU configurations of the Digital architecture for all the considered integra-

121

Chapter 4. The Rogowski coil sensor system

(a) Functional CMU configuration

(b) Software CMU configuration

Figure 4.60: Transient simulations at FADC = 500 Hz for all the integration methods of the
Digital CMU VP. It can be observed that the Ibus_calc signal suffers a DC estimation error
that is approximately equal in magnitude for both the functional and software CMU confi-
gurations. The RE_P2P for all cases is 3.285%.

122

4.4. The current measurement unit of the Rogowski coil sensor

tion methods. We observe that in addition to the quantization error, the estimated current

has a DC component that is positive for the functional CMU configuration in Figure 4.60(a),

and negative for the software CMU configuration in Figure 4.60(b). By performing these simu-

lations with higher values of FADC we can observe that the DC error is inversely proportional

to the quantization error. For ADC frequencies higher than 30 kHz the DC error is practically

imperceptible.

The positive or negative DC error difference between the two Digital CMU configurations

is a matter of algorithm implementation that is not relevant for the analysis. In fact, it can

be observed in the simulations shown in Figure 4.60 that the DC error looks like constant.

So, the important question is what is the origin of such DC shift?. In order to determine the

reasons, let us consider the same simulation using the Hardware CMU configuration shown

in Figure 4.61. It can be observed that in this case there is no DC error, only the quantization

error equivalent to the FE integration method as expected. Further simulation analysis with

different Ipr initial conditions and reset times10 allowed, on the one hand, to find the cause

of the DC shift and, on the other hand, to detect a design error that was initially ignored and

has to be corrected in both the Analog and Digital architectures. The evaluation of different

architectures and implementation algorithms in the same VP is quite useful to understand

unexpected results and discover design errors early in advance.

Figure 4.61: Transient simulation at FADC = 500 Hz for the Digital CMU VP architecture
(Hardware CMU configuration).

As it is shown in Figure 4.62(a), the DC error amplitude of the Ibus_calc signal varies with the

Reset signal deactivation time for the functional and software CMU configurations of the

Digital architecture. Contrarily, the equations of the Digital Integration block in the hardware

CMU configuration are active from time 0 in simulation, instead of right after the Reset signal

deactivation, as it must be if the block is made synthesizable. Similarly, the Analog Integration

block in the Analog CMU architecture is active from time 0 in simulation. In these two later

cases, no Ibus_calc DC error depending on the Reset signal deactivation time is observed.

On the other hand, Figure 4.62(b) reveals an Ibus_calc DC error in the Analog CMU ar-

chitecture when the Ipr signal has an initial phase (θ =70°= 7π
18 rad) where the magnitude of

the primary current is different than zero, i.e. θ = nπ ∀ n = 0,1,2, ... This error can also be

obtained using the hardware CMU configuration of the Digital CMU architecture. Thus, it can

10The simulations were performed using all the presented CMU configurations.

123

Chapter 4. The Rogowski coil sensor system

(a) θ =0°, Reset time = 4 ms. (b) θ =70°, Reset time = 6 ms.

Figure 4.62: CMU VP transient simulations showing a DC shift in the primary current esti-
mation. Table 4.12 shows the default simulation conditions. (a) Digital CMU architecture
(functional and software CMU configurations). (b) Analog CMU architecture (all configu-
rations).

be deduced that the DC error is caused by the delay of the input signal on the integration block.

We can see in the simulations shown in Figure 4.60 that the ADC at low frequency causes an

Ibus_calc estimation delay larger than 2 ms. If this delay matches to the time in which the

primary signal is zero, there is no DC error in Ibus_calc.

In order to understand the design issue that causes the DC error on the Ibus_calc signal, we

need to re-examine the mathematical expressions used for the primary current estimation.

The Equation 4.21 on page 105 tell us that Ipr can be obtained by integrating the output

voltage of the RogoCoil (Vout). However, this is a truncated integral from time 0 to time t ,

instead of an indefinite integral as it was initially assumed. Therefore, the correct expression is

as follows:

Ipr (t) = N

G ·Lcoi l

∫ t

0
Vout (τ)dτ=C F

∫ t

0
Vout (τ)dτ (4.28)

Considering Equation 4.19 on page 105, and assuming a sinusoidal primary current of ampli-

tude A and phase θ, the resulted Vout waveform is the following:

Ipr (t) = A sin(ωt +θ) ⇒ (4.29a)

Vout (t) =G ·M · d Ipr

d t
=G ·M · Aωcos(ωt +θ) (4.29b)

Vout (t) = B cos(ωt +θ) (4.29c)

By using Equation 4.29c in Equation 4.28, the estimated Ipr waveform is obtained as follows:

Ipr (t) =C F
∫ t

0
B cos(ωτ+θ)dτ (4.30a)

Ipr (t) =C F · B

ω
sin(ωτ+θ)|t0 = A · N

Lcoi l
·M [sin(ωt +θ)− sin(θ)] (4.30b)

Ipr (t) = A sin(ωt +θ)− A sin(θ) (4.30c)

124

4.4. The current measurement unit of the Rogowski coil sensor

Thus, the term A sin(θ) in Equation 4.30c evidences the DC error on the Ibus_calc signal that

we have been observing. This error is proportional to the amplitude of the primary current

and occurs when sin(θ) is different than zero, i.e. θ = nπ ∀ n = 0,1,2, ... A delay in the input

signal of the integration block is equivalent to have a sinusoidal input signal with a certain

phase θ. This issue can be solved by different forms depending on the CMU architecture. For

example, an HPF can be implemented after the Analog Integration block in order to remove

any DC component caused by θ in the Analog CMU architecture. On the other hand, in the

Digital CMU architecture, the effective Reset (or Enable) signal can be triggered by a Vout zero

crossing detector. In this case, the CMU ensures that the digital integration algorithm will start

when sin(θ) is zero. Nonetheless, both CMU architectures can use the A sin(θ) term on the

Ibus_calc signal to calculate the initial phase of the primary current on a three-phase system,

this could be useful when unbalanced loads cause line currents with a phase angle different

than 120°. In this case, the DC error must be removed by digital processing after calculating its

maximum and minimum values.

The conclusions of the simulation results performed so far are listed in Table 4.13, where most

of the points indicate that the Analog CMU architecture seems to have an advantage over

the Digital solution. Of course, a complete comparative study must evaluate more critical

parameters of the main components of the system using more refined behavioral models.

Although high-level functional models are useful for obtaining initial insights of the design

space exploration assessment, these models cannot be used for a final system verification

due to they do not take into account some non-idealities of the components that can be

critical for the correct operation of the system. For example, if we only consider the first

two Analog CMU configurations for executing further verification of the system behavior, we

are omitting a critical non-ideality of the differential amplifiers, which will become a design

error if it is not properly addressed. Figure 4.63 shows that an output offset voltage of just

1 µV (which is actually too optimistic for current commercial components), produces a DC

voltage at the output of the Analog Integration block (Vout_INT signal) of about -100 mV

(without considering the offset voltage of the OpAmp). This cause a huge DC error on the

Ibus_calc signal after the Digital Calculation block is activated at 10 ms. Consequently,

Analog Digital
, Better accuracy at default

parameter values. / Lower accuracy at default parameter values.

, Low RE_P2P at low ADC
frequency (0.003%)

/ High RE_P2P at low ADC frequency (3.285%)

, Better accuracy at low ADC
resolution (12 bits).

/ Huge signal distortion at low ADC resolution (12
bits). The accuracy cannot be improved by the

integrator gain.
/ Initial phase detection implies

additional circuitry.
, The initial phase detection can be handled

entirely in Digital, no additional circuitry is required.

Table 4.13: Preliminary strengths and weaknesses of the Analog and Digital CMU architectures.

125

Chapter 4. The Rogowski coil sensor system

the implementation of an HPF (analog or digital) for the Analog CMU architecture becomes

mandatory. On the other hand, the Digital CMU architecture is not affected by the INS_AMP
output offset voltage value in this verification case, since the ADC resolution (0.8V /219 =
1.526µV) is greater than the offset voltage. Consequently, the Digital CMU architecture brings

certain advantages for the possible analog signal deviations and noise despite its apparent

lower accuracy in comparison to the Analog CMU architecture.

Figure 4.63: Transient simulation of the Analog CMU architecture (Behavioral_refined CMU
configuration). INS_AMP output offset voltage equal to 1 µV.

In order to continue with a further CMU verification analysis, i.e. towards the design enquiries

related to the functional safety topic mentioned in Table 4.9 on page 108, a more refined model

implementation of the ADC (e.g. the Σ∆ ADC topology) is recommended to be included in

a CMU configuration, together with the implementation of the solution for the initial phase

issue.

4.5 The Virtual prototype of the Rogowski coil sensor system

During the three previous sections of this chapter, we have observed how the virtual pro-

totyping activity is conducted on the three main subsystems of the RogoCoil sensor system

introduced in Figure 4.2 on page 55. The apparent higher tractability of a system by a sepa-

rate analysis of its subsystems makes the design prone to multiple issues such as interface

design errors, increased complexity for the virtual analysis, and sub-optimal system design.

This is why the virtual design and verification approach proposed in chapter 5 encourage an

initial virtual analysis of the complete system before dividing the system into smaller parts

for a more detailed analysis. The VP-based design methodology plays an important role in

this initial system-level analysis. Despite the RogoCoil main subsystems were analyzed and

designed individually, this section exemplifies how the modeling techniques advocated by the

VP-Modeling Guidelines helps to improve a large VP of a complete system. This is essential for

system-level modeling of CPS.

The natural elaboration of the complete Rogowski coil sensor system (RCSS) VP starts by

including the models previously developed for each subsystem, for instance, including the

126

4.5. The Virtual prototype of the Rogowski coil sensor system

Figure 4.64: RCSS VP complete architecture block diagram. This is a large hierarchical VP in
terms of component parameters and interconnections. The execution capabilities of the RCSS
VP are mainly transient and parametrical simulations.

CMU model in the SCU VP described in Figure 4.26 on page 87. The complete system shown

in Figure 4.64 reveals in detail how the CMU shall be connected to the components of the SCU.

The SCU Control, which is in charge of the Rcoi l and Lcoi l estimation, calculates the correction

factor CFc according to Equation 4.24 explained in subsection 4.4.1. The Ibus_ideal output

signal of the CMU is calculated by a reference calculation block which uses directly the Rcoi l

and Lcoi l values given by the RogoCoil model to obtain the primary current as it is shown

in Equation 4.25 on page 107. On the other hand, the Ibus_calc signal is the result of the

implementation of the same equation but using the estimated CFc from the SCU. In this case,

the output voltage of the RogoCoil (Vout_r c =Vout p−Voutm) is measured by the Voltage Sensing

Block and transferred to both the SCU and the CMU as it is shown in Figure 4.64. Despite the

straightforward construction of the RCSS VP using the available component models, there are

two principal issues for its elaboration:

1. The Vout_r c contains a high-frequency and a DC signal components produced by a

periodical application of the calibration signal for the self-calibration method. Conse-

quently, the CMU VP design carried out in subsection 4.4.2 cannot be directly applied

since it was designed without considering the calibration circuit.

2. The large number of generic parameters and model implementations of the compo-

nent models make difficult the elaboration and the manipulation of the complete VP

modeling infrastructure.

127

Chapter 4. The Rogowski coil sensor system

The first issue is a direct result of a separated subsystem design at the early stages of the

development. This is a very common problem in CPS design which is not always easy to

solve. In this case, both the DC and the high-frequency components can be easily filtered

in the CMU by including a band-pass filter in the signal processing chain before the Vout_r c

integration. We can also remove the calibration signal effect in Vout_r c by removing the high

and low-frequency signal components separately. The low-pass filtering can be performed by

a proper selection of an anti-aliasing filter and a decimation factor in a Σ∆ ADC architecture

as it is explained in subsection 4.3.2; so that, it is only required to include and additional

digital or analog HPF before the signal integration. This supplementary requirement will make

obsolete the initial phase detection mechanism proposed in the individual analysis of the

CMU in presented subsection 4.4.2.3. This is why a former virtual analysis of the complete

system becomes handy and very convenient. The RCSS VP can perfectly address verification

studies for checking the compatibility of different subsystems; therefore, the modularity of the

VP and its component models is an important quality that must be exploited. However, the

modularity of the models goes far beyond to the capability of connecting other blocks in a

signal processing chain in the same domain, it is also related to the capability of introducing

additional modules for verifying complementary behaviors and interactions such as cross-

domain interactions, power consumption, and safety indicators among others. The presented

electro-thermal RogoCoil modeling is an example of how to exploit such modularity using

a VHDL-AMS approach. The thermal network modules can be added or omitted from the

RogoCoil electrical model in a large VP according to the verification needs.

The second issue is one of the main limitations of virtual prototyping for CPS in any application

field. In particular, the construction of large VHDL-AMS test benches and multiple test cases

for design space exploration and critical parameter verification becomes unpractical for the

construction from the bottom-up of VPs of this size. At this point of the system design,

the VHDL-AMS modeling techniques recommended in the VP-Modeling Guidelines can be

used in order to obtain a VP that possesses both high-level functional models for their main

components and the lower level model implementations of their subcomponents that have

been currently modeled by the system designer, or are available in the VP-Model Library.

In this way, the VP-Modeling Guidelines allows reducing the complexity of the RCSS VP by

obtaining a well-organized modeling infrastructure that facilitates the management of generic

parameters, model implementations, and gradual model refinement.

We can start by applying a logical component encapsulation (VP-Modeling Guideline 7) as

is shown in Figure 4.65. This is a hierarchical VP composed by only four main blocks in-

terconnected by analog (conservative) signals, digital (discrete-event) signals, and abstract

(signal-flow) variables11, see the signal classification associated with the ports of the com-

ponent models in Appendix F.2.1.2. Subsequently, the DUV, which is conformed by these

four blocks, is included in a test bench that provides the primary current. The RCSS VP mo-

11The abstract variables do not model real information flow from the physical system. They are used to exchange
information between the models only for analysis purposes, such as the comparison between the result of the
system and a reference value.

128

4.5. The Virtual prototype of the Rogowski coil sensor system

Figure 4.65: High-level block diagram of the RCSS VP after a logical encapsulation of the
component models of the complete system given in Figure 4.64. The front-end analog circuit
block contains the following subcomponents previously included in the SCU: the calibration
resistances (RC AL), the calibration voltage source (VC AL), and the Voltage Sensing Block. The
signal interconnection color code stands for: MV analog signals (green), low voltage analog
signals (black), digital signals (blue), thermal signals (red), abstract variables (magenta).

deling infrastructure has been built following the VP-Modeling Guideline 6.2; it consists of

six parameter packages set from the RCSS VP top-level configurations as is shown in Table

Package Description Components Config

KEVCR_pkg
KEVCR geometric, material, and

characterization parameters
Rogowski coil DUV

KECA_pkg
KECA geometric, material, and

characterization parameters
Rogowski coil DUV

Front-end
Circuit_pkg

Component parameters of the
Front-end analog circuit

Voltage Sensing Block,
Calibration source,

Calibration resistors
DUV

SCU_pkg SCU PMPs and share functions
Filters, Multiplexers,

RMS-to-DC converter,
ADC, digital control block

SCU

CMU_pkg CMU PMPs and share functions
INS_AMP, ADC,
Digital/Analog

Integration block
CMU

RCSS_TB_pkg

External DUV verification
parameters: primary signal,

harmonics, temperature conditions,
Start/Stop control signals

Primary current source,
Temperature source, etc.

TBC

Table 4.14: RCSS VP packages and main configurations (Config) of the VHDL-AMS modeling
infrastructure. The SCU and CMU configurations are called from the DUV configurations,
which in turn are called from the TBCs.

129

Chapter 4. The Rogowski coil sensor system

4.14. Individual configurations are used for setting the component models and the parameter

packages of the SCU and the CMU. Likewise, these configurations are called from the DUV

configurations, which are in charge of setting the parameter package that defines the type

of RogoCoil used in simulation (KEVCR or KECA coils), and the parameter package of the

Front-end analog circuit components. Finally, the highest level TBCs call the DUV configura-

tions and set test bench utility component models and their parameters for defining the DUV

stimuli. The primary current and/or temperature signals can be easily defined in the RCSS

VP test bench by equations. More complicated behaviors for specific verification cases are

recommended to be modeled in individual design entities and instantiated in the test bench.

Each particular configuration combination together with their simulator setup forms a test

case.

The restructured RCSS VP is now a simplified hierarchical version of the VP depicted in

Figure 4.64 and is ready for gradual model refinement and virtual verification at the system

level such as the analysis presented in subsection 4.4.2.3. The effective execution of virtual

verification studies such as the ones shown in Table 4.9 on page 108, strongly depends on the

VP manipulation capability offered by the VP modeling infrastructure.

4.6 Conclusions

The virtual prototyping studies presented in this chapter using the RogoCoil sensor system

as the main example, illustrate the challenges, requirements, and potential of the VP-based

methodology. Although the detailed subsystem and component modeling is essential for

understanding the system interactions and behaviors, the complete system design can benefit

from virtual prototyping at the system level. This work exemplifies how the VP-based metho-

dology elements improve the modularity and scalability of VPs and their component models,

which is key for successful virtual prototyping at the system level. Likewise, the gradual model

refinement concept is illustrated as an essential process for design space exploration and

system verification.

Each of the modeling and simulation studies presented through the sections of this chapter

infers particular conclusions for the RogoCoil sensor system design.

Electro-thermal modeling of the RogoCoil: It is shown how to exploit the multi-domain

capabilities of VHDL-AMS together with geometrical FEA to create high-level parametric

abstractions. The proposed electro-thermal model can estimate dynamically the internal

temperature of the coil and its dependency on geometrical, electrical and thermal parameters

of the system. Furthermore, the model is able to simulate electrical variable fluctuations

caused by room temperature drifts. This is very important for a better understanding of the

implication of the temperature effects in the signal processing electronics of the sensor.

The SCU: The SCU VP allows to observe the limitation of the SCU approximation for

obtaining an acceptable Lcoi l estimation accuracy using a calibration frequency closer to

130

4.6. Conclusions

the first resonance frequency. Moreover, this VP has proven to be effective for detecting and

understanding an important limitation for estimating Lcoi l for coils with a high Rcoi l value

and low Lcoi l value. This situation was initially thought that can be solved by a large RogoCoil

output voltage amplification. However, as is shown in subsection 4.3.1, it is demonstrated

that this limitation cannot be corrected by signal amplification due to is not possible to

amplify only the voltage drop caused by Lcoi l . As long as Rcoi l is big, this issue cannot be

corrected by reducing RC AL value neither. This issue was later confirmed by experimental

measurements with one of the ABB RogoCoil types (the KEVCD B family sensors) that present

this characteristic, i.e. Rcoi l ≈ 5 kΩ and Lcoi l ≈ 0.2 mH.

The CMU: Contrarily to the SCU VP, the CMU VP was elaborated following the VP-Modeling

Guidelines and reusing important component models previously designed for the SCU. A sig-

nificant reduction of the modeling effort and the improvement of the VP manipulation were

observed. The CMU VP shows a particular case of design space exploration by using a single

test bench and several test cases built with a hierarchical structure using configurations. This

example illustrates how to create a virtual environment to make system-level functional veri-

fication, performance estimation, and critical design parameters identification. One of the

benefits of the approach is observed in the detection of a design error caused by the initial

condition of the input signal. Although it is not presented in the given example, the VP-based

methodology suggests that the CMU VP can be used for more detailed system verification

studies by refining the component model in a gradual and modular way.

The RogoCoil sensor system: Particular integration and modeling issues of the RCSS are

presented and briefly discussed. The VP-Modeling Guidelines are used to obtain an improved

VP of the complete system which facilitates its maintenance and manipulation. Some of the

benefits of the VP modularity and limitations of the VP bottom-up scalability are discussed.

131

5 The circular system development
model

In this chapter, the author of this thesis proposes the circular system development model

(O-model), which uses some concepts of classical software and hardware development models

such as the Waterfall and the V-model [97]. The development of the Rogowski coil sensor

system introduced in chapter 4 is presented here in order to illustrate this approach. Addition-

ally, it is explained where and how the proposed VP-based design methodology presented in

chapter 3 can be applied in the system development lifecycle.

5.1 Abstract

The permanent increasing on the complexity of new multi-domain systems of systems (CPS)

makes technology-leader companies struggle to guarantee general requirements of their

products such as high precision, high reliability, intrinsic safety, low product development

costs, and low power consumption among others. To comply with a list of mutually exclusive

requirements is necessary to update/re-define classical methods and approaches for system

development.

This chapter describes the O-model, which implements the VP-based design methodology as

the vehicle to perform design space exploration and system verification at the former stages

of the design. Although the O-model can be applied in general to CPS development of any

scale, the simulation framework and proposed modeling techniques are focused on the design

of small-scale CPS in the power automation domain, such as smart electrical sensors and

circuit breakers for high and medium voltage applications. The Rogowski coil sensor system

presented, modeled, and simulated in chapter 4, is used as the specific example to illustrate

the virtual prototyping tasks of the O-model. Therefore, in spite of the fact that the O-model

considers all the stages of an industrial system development life-cycle, this research is only

focused on the first stages of the system development process, i.e. the design and verification

stages. The utilization of virtual prototyping at the early stages of the system development

contributes to the reduction of the design and verification effort by allowing architectural

133

Chapter 5. The circular system development model

design space exploration, early error detection, and complete system optimization.

5.2 Introduction

In order to overcome the issues presented by the traditional system design and development

approaches such as the V-model, shown in Figure 1.1 on page 2, it is proposed the O-model,

which uses the VP-based design methodology as the backbone of the approach. The VP-based

design methodology can be used to reduce the design and verification effort by allowing

‘virtual integration’ and ‘virtual testing’, especially at the earlier stages of the design. The

idea is to include a system-level design procedure for exploring and analyzing the complete

system architecture before separating the design and verification in subsystems. The virtual

integration feature is achieved by functional system-level modeling and simulation, which

allows performing architectural design space exploration and complete system optimization.

It is not the same to optimize a system as a whole than optimize individually the components

of the system. The virtual testing feature is possible by functional verification of VPs and model

refinement techniques.

Ideally, iterative modeling and simulation should be applied until obtaining complete and

clear specifications of each component of the system. However, there are several limitations

that make very difficult or almost impossible to model and simulate all the behaviors and

interactions of the components of a CPS. Firstly, there is no universal simulation framework ca-

pable of addressing all the specific system design needs for any application [38]. Secondly, very

refined and large VPs have poor simulation performance, making its simulation not feasible in

a reasonable time. Finally, a significant modeling effort and domain expertise are required for

modeling detailed subsystems and components. Therefore, the virtual prototyping activity is

also divided into three stages. In the first stage a VHDL-AMS simulation framework is used

for system-level design; in the second stage other domain-specific simulation frameworks

and/or physical prototyping can be used for detailed subsystem design; lastly, a virtual system

integration and verification stage is proposed before the elaboration of the zero series (0-Series)

system.

One of the most important concepts for a successful implementation of the VP-based design

methodology in any industrial design flow is the capability to reuse component models or

complete VPs for the design of new systems and products. Therefore, the virtual prototyping

activity proposed in the O-model relies on a rich library of models that can provide reliable and

fully documented models. Thus, this work also describes the required tasks and outcome of a

model maintenance process which allows reaching this goal using the proposed operational

elements of the VP-based design methodology. The final objective of the approach is to

decrease product development time and costs.

134

5.3. The O-model

5.3 The O-model

The O-model consist of 8 main stages for the product development lifecycle, which are de-

picted in the diagram shown in Figure 5.1. The diagram shows the relationship between

contiguous stages which are connected in order. The complete lifecycle of any complex sys-

tem that is developed, installed, and made operative is shown in the O-model diagram; it starts

in the system definition stage and finishes in the system maintenance stage. All the informa-

tion obtained from a system previously developed can be used in a next system development

lifecycle for an updated version of the current system or a completely new system. Although

computer-based models can be used at any stage of the development process, it is shown in

Figure 5.1 where the virtual prototyping activity is more useful in the system lifecycle. VPs are

very useful at the early design and verification stages, even though they can also support the

system development after physical prototype fabrication or product manufacturing processes.

Figure 5.1: Circular system development model (O-model).

A common mistake is to consider the system design as a linear process with a predefined series

of steps. This perception oversimplifies the system development and hides the complexity of

the design. It is important clarifying that particular issues presented at any stage could make

necessary to come back to any previous stage in order to correct the issues. These iterations

are only shown between the first contiguous stages in Figure 5.1 since the goal of the proposed

approach is to only get iterations between the stages directly related with virtual prototyping

as early as possible in the development process.

135

Chapter 5. The circular system development model

At early stages of the design of complex systems, it is common that the problems with one

stage are never solved completely during that stage, and in fact, many problems regarding a

particular stage arise after the stage is signed off. The most typical examples are the design

issues that are only discovered after the firsts physical prototypes are fabricated and tested.

Wrong assumptions, unknown component interactions, and incomplete system specifications

are among the most frequent reasons to find design errors in the initial physical prototypes of a

complex system. On the other hand, adequate model abstractions and well-designed test cases

can help to foresee issues before a physical elaboration of the system and their subsystems.

The three later stages shown in the O-model diagram: system manufacturing, system co-

mmissioning, and system maintenance, have been classically not considered in traditional

product design models such as the V-model, see Figure 1.1 on page 2. Although scientific

and technological improvements directly related to the tasks included in these stages are not

addressed this research, the main goals and outputs of these stages are of great importance

for the development lifecycle of a system seen as a product. Consequently, the concepts and

recommendations given by the product lifecycle management (PLM) study are complemen-

tary. As it is described in section 2.8 on page 18, PLM claims to take care of the management

of the product from its inception until its disposal. In this context, the proposed O-model is a

realization of the ideas promoted in PLM.

PLM considers five phases for the product lifecycle [57]: imagination, definition, realization,

support/utilization, retire/disposal. However, this is a very simplistic view of the complete

lifecycle that does not consider the intrinsic iterations between these main phases. Other

similar linear stages from different points of view have been also considered for the product

lifecycle; for instance, from the market-oriented point of view, from the manufacturing point

of view, or from the environmental point of view. The O-model is one of the first attempts,

from the product design point of view, to have a detailed unified product lifecycle. In line with

the PLM paradigm, cross-functional effective methods and good documentation exchange,

among the O-model stages and their internal processes, shall be encouraged in order to

facilitate the development of the product and stimulate the incremental innovation of the

product.

The different inputs, outputs, and main tasks of each stage of the O-model have been studied

and identified; however, this work only details the first stages of the system development,

i.e. the stages included in the virtual prototyping phase. Even though it is not explicitly

mentioned either in the explanation or in the diagrams of this section, before passing from

any development stage to the next one, is required to make a proper documentation of

the activities and results obtained in that specific development stage. Clear and organized

documentation is key for the success of the complete development process.

136

5.3. The O-model

5.3.1 System definition

Every system development cycle starts by a process called system definition, which consists of

the first analysis of the problem that requires a solution or a new idea with a potential market

opportunity, i.e. a product that can be commercialized. Disregarding of the type of innovation

that could arise, i.e. disruptive or incremental innovation, it is assumed that the considered

solution involves the development of a small-scale CPS for power automation applications.

Figure 5.2 shows the principal input data of this process, they are explained as follows:

• The problem definition requires a clear information of the issue that needs to be solved,

the description of the environment and the conditions. A well-defined problem contains

the essential actions and functionalities that the required system must perform.

• A market analysis is a quantitative and qualitative assessment of the potential market

in which the system will be commercialized [98]. It looks into the size of the market

both in volume and in value, the various customer segments and buying patterns, the

competitors, and the economic environment in terms of barriers to entry and regulation.

• At this level, all the available technologies that are related to the central functionality

of the system should be considered. Commonly, in the development of new systems,

we must consider emergent technologies that offer new solutions and/or advantages

against conventional technologies. A comparison matrix between the main advantages

and disadvantages of all possible technology solutions must be given. Since most of this

information might be unclear or incomplete, we can let this analysis to be performed in

the next stages of the development process in order to choose the best option.

Figure 5.2: System definition diagram. The dotted arrows indicate data flow (input and output
data). The solid arrows indicate process transitions.

137

Chapter 5. The circular system development model

• The requirements of the system ought to be understood as the set of qualitative condi-

tions that the system must comply in order to be accepted. The most common general

requirements for industrial CPS design are:

– Low costs.

– Low power consumption.

– High functional reliability.

– High precision.

– Intrinsic safety.

– Long operation life.

– Strong electro-magnetic compatibility (EMC).

– Industrial temperature range.

Typically, the more general requirements, the larger the design effort and the stronger

the required know-how within a company. Some combinations of general requirements

––which are mutually exclusive ––drastically increase the design effort; for instance, low

cost and high reliability, or low power consumption and high precision.

Likewise, the information obtained in the commissioning or maintenance stages of a previous

system development lifecycle can be used as an input to the system definition process. In

this stage, the objective is to evaluate all the input data to generate the ideas for solving the

required problem. The sought solution implies the development of a system able to execute

the required functionalities under a set of requirements and constraints.

The output of the system definition is a set of system specifications and functionalities as we

can observe in Figure 5.2. The system specifications at this level are the result of a preliminary

analysis of the algorithm and/or the identification of the main subsystems, probably a first

idea of the system architecture and its potential to solve the system requirements. However,

since the functionality and behaviors have not been explored and verified, the set of sys-

tem specifications are not well-defined at this stage, i.e. there might be unclear or missing

specifications.

5.3.1.1 The RogoCoil sensor system example

Problem definition: In the last years, the increasing emergence of decentralized power

supply leads to a destabilization of the power grid network, producing undesired grid losses,

and difficulting the handling of power quality. This issue can be addressed by monitoring

and controlling the network conditions on relevant points in the MV grid. This raises the

need of developing smart voltage and current sensors able to provide a high measurement

accuracy (i.e. accuracy class 0.5 or better [99]), remote signal controlling and monitoring,

simple installation in substations, and reduced costs.

138

5.3. The O-model

Available technologies There are a wide range of technologies for DC and AC current mea-

surement [77]: Hall sensors [100], anisotropic magneto-resistor (AMR) current sensors [101],

current shunt ammeter [102], current comparators [103], CMOS current sensor [104], magneto-

optical current sensor [105], SQUID current sensors [106], giant magneto-impedance (GMI)

current sensors [107], current transformers (CTs) [77], and RogoCoil transducers [76]. Taking

into account the characteristics of the application field, electrical MV power grid, we must only

consider AC current sensor technologies which offers the best advantages for measurements

at low frequencies (i.e 50/60 Hz) in the range of tens to kiloamps. Therefore, we shall only

consider for our technology space CTs, RogoCoils, and magneto-optical current sensors.

Magneto-optical current sensors are based on the Faraday effect [108], either in bulk material

or in an optical fiber. The Magneto-optical point sensors use a piece of glass or a crystal rod

placed in the neighborhood of the electrical conductor. These devices are robust, cheap, and

sensitive. They belong to the class of ‘extrinsic fiber sensors’, i.e. sensors which use optical

fibers for transmission, not for sensing [109]. On the other hand, in intrinsic fiber sensors,

the magneto-optical material encloses the electrical conductor, and thus these sensors are

not sensitive to external currents and magnetic fields [77]. Back light propagation is used in

magneto-optical sensors to compensate birefringence. In this approach, the light wave is

reflected on the far end and its polarization state is rotated by 90°. Then, it is coupled back

into the fiber [110]. A sensor of this type, made of low-birefringent flint fiber with a very low

photoelastic constant, has been reported to achieve 0.1% accuracy class around 1 kA [111].

Magneto-optical current sensors have several advantages which are very attractive for power

distribution applications [77]:

• Effective isolation from high potentials.

• Immunity against electromagnetic interferences.

• High dynamic range, no saturation effects.

• High bandwidth.

• Compact and lightweight design.

These features offer a significant cost reduction in comparison to conventional HV CTs. How-

ever, since the Faraday effect for most materials is extremely small, the magnetic field strength

must be considerably high to be detectable. Therefore, magneto-optical current sensors are

ideally suited for HV applications rather than MV applications.

The standard technology that has been used during decades for electrical measuring and

protection in MV and HV applications, is the current transformer (CT) technology. The CT

is a type of instrument transformer that is designed to produce an alternating current in its

secondary winding which is proportional to the current being measured in its primary. Unlike

139

Chapter 5. The circular system development model

a conventional voltage transformer, the CT consists of only one or very few turns at its primary

winding. This primary winding can be of either a single flat turn, a coil of heavy duty wire

wrapped around the core or just a conductor or busbar placed through a central hole. The

secondary winding instead, has a larger number of turns wounded on a laminated core of

ferromagnetic material. This core has a large cross-sectional area so that the magnetic flux

density created is low using much smaller cross-sectional area wire for the turns, it depends

upon how much the current must be reduced, independent of the connected load. There are

three basic types of CTs as follows [112]:

Wound The CT primary winding is physically connected in series with the conductor that

carries the measured current flowing in the circuit. The magnitude of the secondary current is

dependent on the turns ratio of the transformer.

Toroidal This type does not contain a primary winding. Instead, the line that carries

the current flowing in the network is threaded through a window or hole in the toroidal

transformer.

Bar This type of CTs uses the actual cable or busbar of the main circuit as the primary

winding, which is equivalent to a single turn. They are fully insulated from the high operating

voltage of the system and are usually bolted to the current carrying device.

CTs are very popular devices, they are very simple and robust, they do not require external

power, they have high galvanic insulation, they are cheap and they have long lifetime [77].

However, CTs must be periodically calibrated.

On the other hand, as it is presented in section 4.1, the RogoCoil current transducer, which

possesses all the previously mentioned benefits of the CTs, is a slightly different device than

toroidal CTs. The main difference is that the RogoCoil does not have a ferromagnetic core;

and therefore, this type of sensor has many advantages over conventional CTs [76, 113]: it

has excellent linearity and an extremely large dynamic range thanks to its air-core, it is open-

ended, easy to install in substation and overhead conductors, and much more economic than

standard CTs.

Requirements The required smart current sensor for MV applications must comply with

the following general requirements:

• Low materials and manufacturing costs.

• High functional reliability for measurement purposes; even for use in harsh environ-

mental conditions such as temperature drifts, condensation, EMC.

• Intrinsic safety, i.e. isolated from the main circuit electrically.

140

5.3. The O-model

• Long operational life.

Additionally, some of the specific requirements of the sensor are:

• No in-factory calibration.

• Simple installation in indoor locations and in original substation equipment.

• Cost-effective retrofitting in old substation facilities.

• Intelligent electronic device (IED) support for all the RogoCoils of the ABB’s portfolio.

• Plug-and-play automatic RogoCoil transducer detection.

System specifications and functionalities Taking into account the previously mentioned

facts of each input of the system definition stage, the RogoCoil current transducer gathers the

best characteristics and advantages for the system implementation. In this way, considering

the state-of-the-art achievements using RogoCoil for AC current sensing [76, 114, 115], the

RogoCoil current sensor system should comply with the following specifications:

• Accuracy class 0.1% over AC currents from 10 A to 10 kA at 50/60 Hz.

• Implemented with commercial, low-cost electronic components.

• Accuracy class guarantee in a temperature range from -5 °C to 40 °C.

• Sensor lifetime (> 20 years), electronics (> 10 years).

5.3.2 System-level design

The system-level design stage allows an early exploration of the system architecture and its

functionality so that it allows to clarify the system specifications considering a limited set

of available technologies (technology space). This is possible by system-level modeling and

simulation using the proposed VP-based design methodology and the selected VHDL-AMS

simulation framework, see chapter 3. In this way, the system-level design stage avoids an early

division of the design process of the complete system; therefore, it opens the possibility to

study different system architectures, to understand critical variables and interactions between

the main subsystems1 of the design, and to optimize the complete system as a whole.

Figure 5.3 shows the inputs, outputs, and main processes executed at this stage. The main ac-

tivity in the system-level design stage is to identify, define, interconnect, and analyze the main

1A subsystem must be understood as an aggregation of components. A complete system is often composed of
two or more subsystems.

141

Chapter 5. The circular system development model

Figure 5.3: System-level design diagram. The dashed arrow indicate a modeling request to an
external process.

subsystems and some components of the design by building an adequate system architecture.

This process is called design space exploration (Architecture design & exploration process in

Figure 5.3). The result of this process is a virtual prototype (VP), i.e. a model of the complete

system. The theoretical concepts behind this design process are inspired in PBD theory, where

we try to match the functional space with the technology space. The functional space repre-

sents the list of functionalities, specifications, requirements, conditions, and constraints of the

system; this is the information that we obtain from the system definition stage. On the other

hand, the technology space is a selection of all possible technologies that can be used to build

the system and its subsystems. If low cost is an important general requirement for the system,

some expensive existing technologies, which might be used to build the system, would not

be considered in the technology space. Contrarily, new technologies in development, which

could be subject to investigation in the current design project or in a parallel project, can be

considered in the technology space.

To illustrate a typical example of architecture design and technology selection, let us suppose

that we need to implement the signal processing algorithm that performs the integral of an

analog signal as it is done in section 4.4 on page 104 for the current measurement unit of a

RogoCoil sensor. We have considered the following three possible solutions:

142

5.3. The O-model

1. using passive and active lumped element circuit components such as resistors, capaci-

tors, and operational amplifiers (analog implementation);

2. using an ADC and an FPGA (digital hardware implementation);

3. using a microcontroller (digital software implementation).

All the previous options use different type of technologies (components) to implement the

same functionality, but with different performances, accuracy, and precision. By effectuating

system-level modeling and simulation, we can compare the three different architectures and

verify if they meet the system specifications. Although we can get more than one implemen-

tation that meets the system specifications, it is very useful to run a verification procedure

able to find out an adequate implementation based on the simulation results. Likewise, it

is possible to explore the effect of different parameters of the system, as it was done in the

virtual prototyping example shown in section 4.4.2.

The suggested approach for performing the architecture design and exploration by using

virtual prototyping, is a meet-in-the-middle approach, i.e. a gradual modeling of the system

architecture from the highest level of abstraction to lower levels supported by a library of

components, namely VP-Model Library, see Figure 5.3. The VP-Model Library is an on-

line database which can provide component models at different abstraction levels, see its

implementation in Appendix F. In a meet-in-the-middle approach, the designer tries to find

an appropriate architecture with its main subsystem specifications that match the functional

space with the technology space. In other words, the goal is to study the best architectures

that meet the requested functionalities and system specifications by using a selection of the

available components (technologies).

The VP-Model Library database allows the system designers to query modeling elements that

can be used to build the desired system architecture faster than building it from scratch, see

section 3.6. The fact of reusing models, test benches, and other modeling elements, reduces

the overall design and modeling effort and helps to speed-up the design process. In order to

explain this concept easily, it is here assumed that we count with a reliable and rich library of

models, which provides well-documented and trusted models. In fact, this is one of the most

important goals of the VP-Model Library in the long term.

As is shown in Figure 5.3, the architecture design and exploration is followed by the model

verification process, in which the goal is to verify the modeled functionalities and behaviors

of the system by simulating its VP. It is important to mention that the models provided by

the VP-Model Library have been previously verified independently. Therefore, the designers

count with the verification models (e.g. test benches, configurations, packages) that permit

to check the component models separated from the VP. One of the important verification

tasks is to create the required verification models for simulating the VP. According to the VP

characteristics and the simulation needs, a VP and its verification models can support different

types of simulations (e.g. time-domain, frequency-domain, parametric, etc.) and verification

143

Chapter 5. The circular system development model

techniques (statistical, worst-case simulations, functional coverage, etc.). Although several

types of model implementations could be required to achieve different simulation objectives,

at the system-level design stage, it is crucial to verify the correct functionality and the perfor-

mance of the complete system architecture. The modeling and simulation of the RogoCoil VP

presented in chapter 4, show examples of different model implementations for parametric and

worst-case simulations in time-domain.

The system’s architecture design and verification is an iterative process that can iterate multiple

times before obtaining the required information to pass into the next stage of the system

development flow, i.e. the subsystem-level design. The decision rhombus called ‘DR1’ in Figure

5.3 shows two paths for the system design flow. Path number 1 represents an iteration of the

architecture design and exploration process after its verification. Path number 2 represents the

finalization of the system-level design stage. The two possible scenarios after VP verification

are:

1. Incorrect or unexpected verification results: they could suggest an erroneous archi-

tecture or the use of an incorrect component model for the specific application. In a new

experimental VP environment, a component model could work in conditions out of its range of

operation. These type of issues are easy to identify in simulation, especially when comparing

the simulation results of the component models alone and connected within the system ar-

chitecture. In any case, architecture redesign and verification are required until it is obtained

satisfactory simulation results.

2. Correct verification results: positive verification results suggest that the functionali-

ties, algorithms, and the modeled interactions and behaviors are correct under the set of

assumptions and conditions given in simulation. However, this not necessarily means that

the design is finished and complete. In fact, the first verification tasks are done for high-level

functional models that do not take into account most of the non-idealities of the real subsys-

tems and components. Therefore, design iterations are needed in order to verify the VP each

time with more refined component models or more refined architectures.

VP verification results could also make necessary to change the system specifications initially

defined in the system specification stage, see functional space in Figure 5.3. For example,

suppose that after an iterative architectural exploration and a worst-case verification analysis

of the RogoCoil current sensor VP, the best results showed that the studied self-calibration

architecture only meets an accuracy of 0.1% in a current range from 100 A to 5 kA by using

low-cost electronic components. In spite of this limitation, the system could still be used

for measurement applications within a smaller current range. On the other hand, the self-

calibration architecture can still be used for measurement purposes out of this current range

as long as it improves or equals the accuracy obtained with other methods or technologies,

normally within 0.5% accuracy class. In both cases, the design process should continue with

slightly changed system specifications.

144

5.3. The O-model

An iterative model refinement is a key concept for the system-level design. This is supported by

the VP-Model Library, which contains model implementations at different abstraction levels.

Each model implementation has the function of modeling the functionalities and behaviors

of a certain device/component/subsystem considering a particular set of ports, variables,

parameters, and algorithms. The refinement and verification process in a VP shall be done

one component at a time, i.e. a more refined model implementation is verified independently,

later on, it is integrated into the VP, and the VP verification is re-executed. A good indicator of

the detriment of the of simulation performance in a large VP can be obtained by component

refinement and gradual integration into the VP, i.e. a component model at a time. One of

the main functions of the VP-Model Library is to minimize the modeling effort by providing

properly verified models with its respective test benches and documentation.

Nonetheless, what if the VP-Model Library does not contain a required model or a more refined

model implementation? In this case, the system designer must create the required model

according to the design needs. This is a necessary task that non-expert system designers could

perform when high-level functional models are needed. However, modeling and verifying

subsystems and components are not trivial tasks at lower levels, especially when refined

behavioral or physical models are required. The elaboration of refined component models

and their verification requires both domain-specific knowledge of the modeled subsystem/-

component and modeling expertise. Therefore, a model request (see dashed arrow in Figure

5.3) from the architecture design process to an external Model maintenance process can be

done if a required model is not available in the VP-Model Library. The Model maintenance

is an independent process which can run in parallel with the system development flow. The

main objective of the Model maintenance process is to create, verify, and update the modeling

elements of the VP-Model Library, see section 5.4.

Even if correct verification results are achieved, we can see that model refinement and verifica-

tion iterations are encouraged in this approach. So, the challenging question is: for how long

must we continue performing this iterative process? Well, there is no specific rule allowing

to know when to stop doing model refinement. In principle, system designers are limited by

the refinement level of the models available in the VP-Model Library. However, it is not the

purpose in the system-level design stage, to model every single component of the system in

detail. Only the most critical design variables and the main interactions between subsystems

must be modeled at this stage. Highly refined models of complex systems present several

complications for modeling and simulation. Therefore, system designers must balance the VP

size and the refinement level of the VP models. The VP of the RogoCoil current sensor system

introduced in chapter 4 presents clear examples of gradual model refinement for system-level

simulation, from high-level functional models to behavioral component models. Adequate

models for system-level simulation include the critical behaviors and non-idealities that de-

termine the accuracy of the sensor; from slightly refined models such as the output voltage

deviation errors of the voltage sensing block, until more accurate models such as or the 2nd

order Σ∆ ADC.

145

Chapter 5. The circular system development model

The main outputs of a successful system-level design stage are the following:

System architecture: a clear system architecture must be defined and selected after the

architectural exploration and verification. If multiple architectural solutions were considered

at the beginning of the stage, the architectural exploration and verification must perform a

comparative study that shows the best architecture for the design, see the RogoCoil current

measurement unit example in section 4.4 on page 104. Although the models that represent

physical interconnections and interactions between subsystems and components could be

implemented in an abstract fashion in the VP, the technologies used for the main subsystems

and some of its components must be properly identified as a result of the design exploration.

For example, let us consider the analog architecture of the current measurement unit shown in

Figure 5.4. The main unit blocks that compose the system are presented as high-level abstrac-

tions that model the specific functionalities that are required. However, this representation of

the system architecture is consistent with the different components that can be used to realize

the physical system. For instance, the Analog Integration block can be realized using active

and passive lumped element circuit components such as OpAmps, resistors, and capacitors;

the Digital Calculation block can be realized by using an FPGA or a microprocessor. More

refined model implementations of these subsystems are done in the subsystem-level design

stage, in which is obtained the netlist and further details about the specific components that

are going to be used to realize the system. In this way, the VP will represent more accurately

the real system. Likewise, it is easier to model the effect of cross-domain variables such as the

temperature or mechanical interactions. In the example shown in Figure 5.4, we can observe

that the effect of the room temperature (T 0) is only taken into account in the RogoCoil sensor

block. This is correct if the electronics of the current measurement unit is thermally isolated

from the RogoCoil sensor, and/or the cross-temperature dependence of the electrical variables

in the current measurement unit is not significant compared to the RogoCoil sensor. In this

case, the RogoCoil thermal model can be implemented inside the RogoCoil subsystem block.

Contrarily, if all the subsystems and components can be affected by the room temperature

or by thermal interactions between the system components, a good modeling option is to

use a separate ‘system thermal network’ abstract model, which represents the critical heat

transfer interactions separated from the electrical variables of the system as it is done in the

electro-thermal model of the RogoCoil sensor system shown in section 4.2.

Figure 5.4: Block diagram example of the Rogowski coil and its analog current measurement
unit architecture.

146

5.3. The O-model

Subsystem specifications: an important part of the system architecture definition, is the

proper identification of the principal subsystems and the critical variables of the design, the

interactions between the subsystem interfaces, and the main subsystem specifications in

terms of the modeled and simulated critical variables. Therefore, the architecture exploration

and verification process must yield a clarified view of the system specifications obtained in

the system definition stage. Since the main subsystems have been identified, the system

specifications and functionalities must be distributed along the subsystems of the design. As a

result, we can obtain the list of subsystem specifications for each subsystem. Considering the

RogoCoil sensor system example developed in chapter 4, suppose that the result of the virtual

system-level exploration clarifies and verifies that the general system architecture shown

in Figure 4.65 on page 129, as equal as the SCU architecture shown in Figure 4.26 on page

87. Additionally, the analysis performed for the two different architectural implementations

(analog and digital) of the current measurement unit, see section 4.4, give us structured

arguments to prefer the analog implementation shown in Figure 5.4. The modeled system and

subsystem architectures meets the system specifications (modified during the system-level

design), and defines the most important subsystem specifications as follows:

• The calibration resistor values and tolerances

• The calibration signal amplitude, DC, and frequency values.

• HPF and LPF main cutoff frequencies, settling time, stop-band attenuation and band-

pass gain.

• RMS-to-DC converter time delay, bandwidth, accuracy, and non-linearity.

• ADC architecture type, resolution, precision, dynamic range, SNR, ENOB, etc.

• The clock frequency of the self-calibration control.

• Main specifications of the components of the CMU such as the ADC, filters and analog

integration architecture/method (analog or digital).

5.3.3 Subsystem-level design

The O-model approach proposes an initial system-level design stage for architectural explo-

ration at reduced complexity, followed by a subsystem-level design stage in which the main

goal is to let expert designers complete the design of each subsystem and its components

in a parallel way. The specifications of the subsystems and their components are not well-

defined in the system-level design stage. Therefore, the design of the subsystems and its

related components must be completed by using the tools and techniques that are optimized

for specific-domain design. Although the VHDL-AMS simulation framework and compati-

ble modeling languages can be used to model and simulate multi-domain interactions by

equation-base models with conservative or acausal port interfaces, detailed interactions, and

behaviors in mechanical, thermal, optical, or electro-magnetic domains cannot be directly

modeled by the selected VHDL-AMS simulation framework for the system-level design.

147

Chapter 5. The circular system development model

Figure 5.5 shows the general design flow that shall be performed by each principal subsys-

tem independently. Each subsystem-level design procedure receives the output data of the

system-level design stage, i.e. an incomplete set of subsystem specifications and its main

functionalities (subsystem functional space), and the information about where and how the

subsystem is going to be used as part of a defined system architecture. The main critical

variables, a basic subsystem architecture, and some specific behaviors of the subsystem

components are commonly modeled in the system-level design stage.

Figure 5.5: Subsystem-level design diagram. The dashed arrow indicate a modeling request to
an external process.

As it is shown in Figure 5.5, two additional inputs are considered: the technology space of

the components of the subsystem, and the specific knowledge and tools that are applied in

a particular domain. For example, methods and tools that are used for geometrical modeling

and simulation of mechanical, thermal, optical, and multi-physics effects; particular design

methods and application tools that are used for electro-magnetic interference (EMI) protection

of embedded electronics and the EMC for equipment operating in industrial environments; or

particular methods and software tools that are used for analog electronics design and digital

148

5.3. The O-model

electronics design and synthesis [116, 117].

Since simulation tools, modeling languages, and modeling techniques have evolved inde-

pendently, specific subsystem design needs are better addressed by particular simulation

frameworks and techniques that have been optimized for specific applications. For example,

mechanical interactions in actuators and sensors can be modeled by finite element method

(FEM) models, which can describe physical and geometrical interactions that cannot be di-

rectly described in equation-based models in VHDL-AMS. Likewise, the analysis and control

of conducted and radiated emissions from electrical and electronics systems are carried out by

electro-magnetic models and specific software tools [118]. These tools combine several types

of solvers (e.g. time-domain, frequency-domain, integral equation, multilayer) that are based

on different methods such as transmission-line matrix (TLM), finite integration technique

(FIT), finite-difference time-domain (FDTD), method of moments (MoM), among others [119].

These methods are chosen according to the type of problem that is treated, e.g. cross-talk

calculations, printed circuit boards, EMI problems, packaging problems, etc.

Similarly, the VHDL-AMS simulation framework has evolved from hardware description lan-

guages for digital electronic design, such as VHDL and Verilog, and integrates the functionali-

ties of analog circuit simulator such as SPICE. Therefore, this simulation framework is adequate

for most of the details of subsystem-level design in analog/digital electronics and electrical

power circuits. For example, detailed transistor-level and lumped-element circuit models for

performing time and frequency domain simulations can be described and simulated using

the VHDL-AMS simulation framework.

The subsystem-level design can also be described as an iterative process which involves design

exploration, verification, and model refinement for all subsystem domains, see Figure 5.5. The

design exploration can also consider architectural evaluation of the subsystem. Nevertheless,

for a detailed component modeling, this step mainly consist on the exploration of behavioral

and physical models. The following cases can arise after model verification, see the decision

rhombus DR2 in Figure 5.5:

Path 1: The verification results with detailed models could reveal issues caused by differ-

ent reasons, e.g. wrong assumptions for the component abstractions, component behaviors

and/or interactions that were not considered in the system-level design. In this case, the

subsystem specifications might require a modification. However, a change in the subsystem

specifications could affect the way in which the subsystem interacts with the other compo-

nents of the system; and therefore, a system-level redesign could be necessary.

Path 2: Correct or incorrect/unexpected verification results might need model refinement

or model correction respectively. In both cases, another design iteration is required. Since

other simulation frameworks can be used, the model refinement/correction process is an

internal process carried by the designers of the subsystem. However, for the final system

verification stage, it is required that some of the additional behaviors and interactions modeled

149

Chapter 5. The circular system development model

and analyzed in the subsystem-level stage can be added to the component model used in the

system-level VP. Therefore, a modeling request to the model maintenance process can be

made in order to include those behaviors in a model implementation stored in the VP-Model

Library, see details in Appendix F.3. Although this process is very useful to improve the quality

and autonomy of the component models and the richness of the VP-Model Library, migrating

all the additional behaviors modeled in the subsystem-level design stage is not always possible

and practical.

Path 3: Considering that not all the component behaviors and interactions can be properly

and/or practically modeled and simulated within a reasonable effort, there are cases in which

it is more practical to elaborate a physical prototype and take experimental measurements

than creating an accurate virtual prototype. For example, in the work reported in [79], and

later improved in [82], different types of distributed lumped-element electrical models of

the RogoCoil were compared and characterized with experimental measurements for time

and frequency domain simulations. Despite they are very detailed parameterized models

that take into account physical and geometrical parameters of the RogoCoil, they only can

reproduce the real RogoCoil behavior approximately. Similar results are reported in [81, 120].

At this point, the effort to improve the modeling results are too high. Instead, experimental

measurements on the physical device can be used to characterize the RogoCoil models in

order to minimize the differences between the experimental measurements and simulation

results. Under this philosophy, virtual and physical prototyping can be used as complementary

techniques rather than competing approaches. Elaborating a small physical prototype for

studying a subsystem or a part of it, could be faster and less complex than creating a detailed

model. So that, the measurements on the physical prototype can be used to understand,

verify, and directly clarify the specifications of the subsystem and its components. Moreover,

these measurements and additional testing performed with the physical prototype can also

be used to create, correct, validate, and refine subsystem models. This is why in Figure 5.5,

we can see that the results of the physical prototyping process can be used for an additional

subsystem design and verification iteration when a virtual prototyping activity has been

previously done, or they can go directly to the output of the subsystem-level design stage when

the component specifications and subsystem architecture are clear enough. Nonetheless, the

experimental results obtained from physical prototype testing can be used to model additional

behaviors and interactions that are not included in the most refined model implementation

used in the system-level VP. Therefore, in a similar way to the modeling request done in the

model refinement/correction process in path 2, a modeling request to the external model

maintenance process is highly desirable in this case. This is very useful for the final system

verification stage, and in general, for future re-utilization of the models of the library.

Path 4: This path represents the finalization of the subsystem-level design stage. As it can

be observed in Figure 5.5, satisfactory verification results can be obtained from the virtual

iterative verification process, from measurements taken in a required physical testing process

(physical prototyping), or from both sides. In this case, the combination of these results shall

clarify all the subsystem specifications in terms of a distributed set of component specifica-

150

5.3. The O-model

tions. It means, that the output of this stage is a set of realistic component specifications that

are described together with the subsystem architecture, i.e. the detailed list of components

and their specific interconnection (subsystem implementation). For example, transistor-level

schematics, circuit netlist, embedded C/C++ code, synthesized VHDL code, among other

detailed outputs.

5.3.4 System verification

The system verification stage is the final verification of the complete design before building the

first physical prototype of the complete system. This stage gathers all the information coming

from the previous system and the subsystem-level design stages, see Figure 5.6. The main

goals in this stage are: firstly, elaborate a final VP of the complete system including well-refined

parameterized models of the subsystems and its components; and secondly, perform the last

set of system verification tasks using the final VP.

Figure 5.6: System verification stage diagram.

The inputs of this stage are shown in Figure 5.6: the VP-Model Library with updated model

implementations; clarified specifications of the system, subsystem, and components; and the

selected system and subsystem architectures represented by the system VP and its related

modeling elements. The virtual system integration process complements and finishes the

151

Chapter 5. The circular system development model

meet-in-the-middle design approach started by the architecture design and exploration at the

beginning of the virtual design process. Whereas at the system-level design stage the overall

approach looks like top-down, i.e. from high to low level abstractions, the design approach

in the system verification stage is more bottom-up like. New validated and parameterized

component models available in the VP-Model Library, shall be the result of modeling requests

done in the subsystem-level design stage to the external Model maintenance process. These

new model implementations are abstractions that could model all, or at least, the most relevant

component functionalities, non-ideal behaviors, and physical interactions to be simulated

in the system VP. The VHDL-AMS electro-thermal model of the RogoCoil sensor system

presented in section 4.2 on page 57, is an specific example of a refined model implementation

that has been updated in the VP-Model Library after a detailed study that would normally

carried out on a subsystem-level design stage.

Ideally, if all modeling requests done in the previous stages are updated in the VP-Model

Library properly satisfying the modeling needs, the system integration should be a fast process

since the designers count with a previously created VP and updated component models in

the library. At this point, the system integration tasks are highly dependent on the Model

maintenance tasks. The system integration could make new modeling requests to the Model

maintenance process. The system integration process only finishes when all the modeling

requests have been satisfied and the new models are integrated into the VP.

The Final system verification process consists of creating the test benches, packages, confi-

gurations, and additional modeling elements to define the final test cases that will verify the

system design. At this stage, additional verification procedures should be implemented in

order to test the new behaviors that have been included in the component models of the VP.

Adequate system verification procedures will allow clarifying the multi-domain interactions at

the component models interfaces and the effect of the most critical environmental variables.

The decision rhombus DR3 in Figure 5.6 shows two possible paths after the final system

verification. If the verification results reveal issues among the interactions of the components,

or if the system specifications cannot be met by using the final VP configuration(s), all the

issues need to be solved before proceeding into the next development stage. The verification

results must show useful information to detect the origin of the problem. Returning to the

previous design stages might be necessary. On the other hand, successful verification results

will show that the achieved system implementation (i.e. a fully determined set of components

and their interconnection) meets the system specifications and no issues are found after

performing different verification procedures. The more rigorous and complete are the system

verification procedures, the lower the probability of getting a design issue in the physical

elaboration of the system. The final VP and their verification models can be submitted to the

Model maintenance procedure to be stored in the VP-Model Library.

152

5.3. The O-model

5.3.5 Physical system validation

This stage comprises the physical fabrication, integration, and testing of the system. The

information resulted from the three previous virtual prototyping stages shall give sufficient

and precise information to fabricate and integrate the physical system. At this stage, the

system can be integrated by following the sequence proposed in the right part of the V-model

(i.e. the construction part), see Figure 1.1 on page 2. It means that the subsystems must be

fabricated and tested separately; afterwards, all the parts must be integrated until obtaining

the complete system. Finally, several tests shall be performed in order to determine that the

system meets correctly all the requirements, specifications, and functionalities.

The three stages of the virtual prototyping phase contribute to the reduction of the number of

physical prototypes that are commonly required when the design and verification tasks are

done using a classical approach, i.e. using a ‘paper-driven’ design [20] and physical exploration.

Although physical prototype testing could start in the subsystem-level design stage, the idea in

the physical system validation stage is to fully complete this task by fabricating and integrating

a physical prototype of the complete system. The unique way to validate the correctness

of the results given by the VP and its component models is to verify the designed behaviors

and functionalities building the physical system. According to the size and complexity of the

system, the physical validation must be performed initially to the subsystems, later on, the

most critical subsystem interconnections (e.g. sensor and front-end electronics), and finally

to the complete system.

Additional work towards the design of the final physical prototype, namely the 0-Series product,

involves tasks such as the packaging of the system, communication protocols, the physical

appearance, the hardware and software user interfaces, among others. In fact, the 0-Series

product is more than a simple prototype, is the first final system that is fabricated before

mass production and commercialization. The 0-Series is used for the final operational and

environmental tests of the system. Those tests are of vital importance to the complete system

validation. Some 0-Series system validation might involve the following tests:

• Functional system testing at normal operation conditions.

• Functional system testing at critical operation conditions (i.e. at operational limits and

out of range).

• System performance testing. This involves the test of the main system specifications,

especially the specifications that makes the product attractive, such as the response

speed, accuracy, linearity, and robustness.

• Environmental testing such as EMC, temperature, noise, humidity, radioactivity, or

other harsh conditions.

• Safety tests, this evaluates the behavior of the system during probable dangerous sce-

narios such as very high tensions, fire, or short circuit.

153

Chapter 5. The circular system development model

Failing to pass the complete set of testings would require coming back to previous design

stages to solve the issue(s) according to the origin of the nature of the failure(s). The theoretical

premise under discussion is that the proposed O-model, together with the VP-based design

methodology, reduce the probability of presenting design errors at the physical validation

stage, especially in the 0-Series validation tests. This is true, if and only if the VP and its

component models are correct abstractions of the real system and components under real

conditions. Unfortunately, proving this hypothesis is out of the scope of this thesis. This will

require the implementation of this methodology within a company, and to apply it to several

development projects. This process could take several years.

5.3.6 System manufacturing

The manufacturing stage consists of the mass/unitary fabrication of the product that will be

commercialized. At this stage, all the safety verifications and correct functional validation

of the 0-Series system have been done successfully. Additionally, the final system packaging,

hardware and software user interfaces, user manual, system datasheet, among other final sys-

tem terminations must be concluded at this stage. According to the physical system validation

results, the final product might differ from the 0-Series system if additional corrections are

required.

The manufacturing process can be done by the same company that has designed the product

or can be outsourced to one or more companies. Supply chain management, vertical and

horizontal integration strategies and theories can be used for optimizing (at an operational

level), not only the manufacturing process but also the design of complex systems. This is

possible by correctly identifying the companies’ know-how and organizing the supply chain

structure. This is clearly out of the scope of this research.

5.3.7 System commissioning

In this phase, the product is installed and brought into working condition in the client’s loca-

tion. The person/teams executing the commissioning task must make the product/system

fully or partially operational according to the client needs in a specific location. The commi-

ssioning can be done completely by the client, by the manufacturer company, by a third-party

company (distributor), or by a mix of the aforementioned.

5.3.8 System maintenance

The maintenance stage consists of the complete or partial revision of the system/product in

order to preserve it and guarantees its correct operability. Typical maintenance procedures are

carried out periodically by the client, by the manufacturer company (contracted service), by a

third-party company (distributor), or by a mix of the aforementioned. However, in the design

of power system products, it is highly desired to minimize the human intervention in order to

154

5.4. Model maintenance

reduce operational costs. Therefore, the power systems are designed to operate for decades.

Since the system is made of several types of components that can have different operational

lifetimes, it is a common task in the system maintenance stage to replace certain components

of the system. For example, standard electronic components based on CMOS technology have

an operational lifetime of about 10 years [121], whereas instrument transformers, RogoCoils,

or similar electrical devices can have an operational lifetime of more than 30-50 years [122].

Therefore, small redesigns may be required when a component that needs to be replaced is not

produced anymore. The availability of VPs and its related verification models would be very

useful to make these small redesigns and other bug fixing tasks in the system maintenance

stage.

The information obtained from the commissioning and maintenance activities has a high

commercial importance for the company and also a great technical and scientific importance

for developing new products/systems. This information can be used in the next system

definition life cycle and be used as a source of sustainable innovation for the products of

the company. For instance, suppose the case of a client who wants to acquire a specific

product (e.g. a system for electrical monitoring or protection) to be used in a specific location

with non-conventional conditions. In the commissioning/maintenance stage, the engineers

observe that the product present an undesirable behavior. Further analysis would show that

the reason is caused by subtle environmental conditions which were not taken into account

for the product design, these will change the system requirements and specifications for a new

product and could also lead to research in new technologies.

5.4 Model maintenance

One of the essential requirements of the proposed virtual prototyping based approach em-

ployed in the design and verification stages of the O-model, is the availability of good quality,

clear, and updated component models, VPs, test benches, test cases, and their related docu-

mentation. This implies a strong modeling and simulation activity using the VHDL-AMS

simulation framework. Virtual prototyping is a key and useful mechanism for the system

development flow, but is not the final goal of the development life-cycle. This is why this

research proposes an external process outside of the system development flow, that can be

used to support the design and verification stages of the O-model.

The model maintenance is an independent process, that can run in between development

life-cycles or in parallel with the design and verification stages of the O-model. The main

purpose of the model maintenance is to create, verify, and update the modeling elements of

the VP-Model Library. Figure 5.7 shows the five different scenarios that generate inputs to the

model maintenance process. They are explained as follows:

System-level design request: As it has been described previously in section 5.3.2, the

architecture design and exploration process in the system-level design stage might need a

155

Chapter 5. The circular system development model

Figure 5.7: Model maintenance flow. The flow goes from the bottom to the upper part.

specific model implementation that is not yet available in the VP-Model Library. This is the

typical case when a more refined model implementation of a component model is required for

the iterative design and verification procedure. In this case, if the elaboration of the model

implementation requires a specific level of domain expertise that the system designer does not

have, and/or a significant degree of modeling effort, a modeling request can be submitted to

the model maintenance process. The modeling request consists of the detailed explanation of

the interface ports, parameters, behaviors, and functionalities that are required in the solicited

model implementation. For that purpose, the system designer must provide this information

using a model registration form (MRF), see details and examples in Appendix F.3 on page 246.

Subsystem-level design requests: The path 2 and 3 in Figure 5.5 described in section

5.3.3, explain two different cases in which a modeling request can be generated from the

subsystem-level design stage. The first case is when virtual verification is used (path 2), in

this case, the result of the model refinement/correction process in the subsystem-level design

stage could be used to implement a more refined model implementation using the VHDL-AMS

simulation framework. The electro-thermal model of the RogoCoil sensor system explained in

section 4.2 on page 57, is a specific example of this case; where a 3D geometrical FEM model

of the RogoCoil sensor system made in COMSOL Multiphysics®, is used to simulate the heat

transfer in the RogoCoil system, and later on, for obtaining an equation-based electro-thermal

model of the RogoCoil sensor system in VHDL-AMS, see section 4.2.7 on page 78. On the other

hand, when physical testing is used (path 3), the experimental measurements obtained with

the physical prototype can also be used to implement a more refined model implementation

156

5.4. Model maintenance

using the VHDL-AMS simulation framework. For example, the experimental measurements

taken for several RogoCoil samples reported in [79], were used to characterize the VHDL-

AMS asymmetric and symmetric electrical models of the RogoCoil by including correction

coefficients for the RogoCoil parasitic capacitances, inductances, and resistances in each loop.

External model sources: Since the model maintenance is an independent process, the

modeling and simulation activity does not necessarily come from a modeling request from the

O-model design and verification stages. External model sources can also be used to include

models in the VP-Model Library, for instance, there are available electrical power systems

libraries created in both VHDL-AMS [123] and Modelica [124]. In the first case, the request

can go directly to the verification process, in the latter case, it is required to execute a Model

Migration process to obtain the equivalent VHDL-AMS models.

System verification request: As it is explained in section 5.3.4, the virtual system integra-

tion subprocess carried out before the final system verification, see Figure 5.6, can only finish

when all the modeling requests made in previous stages have been satisfied and the new

models are available in the VP-Model Library. Additionally, the system integration subprocess

might produce new modeling request in case of issues in the system integration tasks. Since

both the model maintenance process and the system verification stage use the same simu-

lation framework, these issues can be handled by the model correction subprocess, or they

can be processed directly by the verification subprocess, see Figure 5.7. On the other hand, at

the end of the system verification stage, the final VP and its related test case models can be

submitted to be included in the VP-Model Library. In this case, the information goes directly

to the verification subprocess in order to have a second instant checking of the complete

simulation project by external designers.

Physical system validation request: In principle, the physical testing and the virtual veri-

fication procedures must be as similar as possible in order to compare directly the experimen-

tal data with the simulation results. The ultimate status of the component models stored in

the VP-Model Library is the validated status, i.e. when a physical prototype has been built to

reproduce the results predicted by the model verification, see section 4.3.2.2 on page 101. The

final goal of the VP-Model Library is to provide parameterized model abstractions properly

validated with physical measurements, this increases the truthfulness of the models stored

in the library. Since VPs are approximations of the real systems and its components, it is not

expected that the simulation results and the experimental measurements perfectly match

each other. Contrarily, in a successful model validation, it is sufficient if the simulation results

follow the same trend of the experimental measurements with a constant error over the whole

operational range and with the same system conditions. In other words, the model must

be accurate but not necessarily precise. Model precision can be later corrected by a model

characterization subprocess.

According to the type of the modeling request at the input of the model maintenance process,

one of the following modeling subprocesses is executed:

157

Chapter 5. The circular system development model

Model migration: When the input consists of one or several computational mockups ela-

borated in a different simulation framework which is not directly compatible with the selected

VHDL-AMS simulation framework, it is required to translate the model semantics from the

original modeling language and/or specific software tool to VHDL-AMS, i.e. migrate the model

from one platform to the other. For example, there is a large collection of free and commercial

libraries written in Modelica (https://www.modelica.org/libraries) that can be used for power

systems [124] among many other applications. The IP contained in these libraries can be

directly migrated to VHDL-AMS. Although the model exchange between Modelica and VHDL-

AMS is possible in almost all cases, a straightforward code-based transformation could not

deliver the expected quality in some cases. Principles for model transformation between these

two languages are given in [125]; likewise, techniques for automatic generation of models in

VHDL-AMS and Modelica for power system applications have been subject of investigation in

recent years [126].

Model elaboration: This process starts after a model elaboration request come from the

system-level design stage. In this case, it is required to elaborate a new model that implements

specific behaviors and/or interactions that have not been modeled yet, i.e. there is no previous

related model available.

Model characterization: This process starts when a model characterization request ap-

pears typically after physical testing in the subsystem-level design stage or in the physical

system validation. The model characterization consists in modifying or including new pa-

rameters in the model in order to correct the differences between the simulation and the

experimental results. Although the characterization of a model can only consist of model

back-annotation, it is important clarifying that a model characterization request shall be done

only when new parameters must be included or when the effects of such parameters need

to be modified according to the experimental results. If only the values of the parameters

are needed to be updated, this back-annotation process can be done directly by the system

designers.

Model refinement: A model refinement process starts after the request is submitted at the

system design level stage. The model refinement process shall yield a more precise and realistic

model implementation taking into account the less refined model implementations that are

available in the VP-Model Library. The examples about how to perform a gradual model

refinement from ideal functional models towards behavioral models are given in subsections

4.3.2 and 4.4.2. These models can continuously be refined until getting closer to physical

implementation.

Model correction: This process starts after a model correction request is generated from

the system design level stage or from the system verification stage. This case can happen

when a model obtained from the VP-Model Library is not behaving as it is expected, or when

its simulation cannot be achieved when the model is integrated into a VP. This problem can

appear in the architectural exploration subprocess at the system-level design stage, or in the

virtual system integration subprocess in the system verification stage. This sort of problems

158

https://www.modelica.org/libraries

5.4. Model maintenance

might be caused by trivial reasons such as software tool version incompatibility, or by more

awkward reasons such as solver limitations. Since all the candidate models must be properly

verified before inclusion to the library, it is expected that most of the model correction requests

are caused by simulation errors. However, since component models from the library can be

used in different conditions and model architectures, design errors are also expected. This is

why is very important to submit the model correction request together with the complete VP

and all its verification models.

The output of all the previously described process must be a VHDL-AMS. If the model is a

hierarchical VP, it must be built following the VP-Modeling Guidelines given in section 3.5. As

it is shown in Figure 5.7, all the modeling subprocesses converge in the verification subprocess

in Figure 5.7. The verification implies the elaboration of the required test benches and test

cases. In addition to verifying the correct functionality of the model, one of the main goals of a

verification procedure is to determine the operational performance and the validity range of

the model under verification, i.e. the minimum and maximum values of the model parameters,

inputs, and outputs in which a correct response is guaranteed. However, similarly to testing

procedures in physical devices, verifying all the degrees of freedom of a component model is

not possible in a reasonable time [127].

After the verification process there are two possibilities, see decision rhombus DR4 in Figure

5.7. If the model does not comply with the required functionalities and performances, a model

correction process is needed until obtaining the desired results, see path 1. Otherwise, we

can proceed to the model conditioning and documentation process, see path 2. This process

consists in preparing the previously verified model, with all its related verification models,

to be included in the VP-Model Library. This preparation consist on the two following main

tasks:

Conditioning: it consists of organizing, commenting, and writing in a clear fashion the

source code of the models so that it can be easily understood by system designers. The

models must be written following the modeling guidelines defined in the VP-based design

methodology given in section 3.3 on page 28.

Documentation: The documentation should contain all the details about the theoretical

concepts used for modeling the functionalities and behaviors described in the component

model. Commonly, the model documentation requires the elaboration of block diagrams,

state diagrams, schematics, or any other type of graphical representation that explains the

model. The VP-Model Library consists of three main database views which contain a rich

selection of data fields that have been properly categorized for a complete documentation

of component models, VPs, test benches and custom packages, see section F.2 on page 227.

The minimum information that a verified model documentation must contain is: a proper

description of the model, the explanation of how is performed and what is the scope of the

verification procedure, and the explanation of the organization of the verification model, i.e.

test benches and test cases.

159

Chapter 5. The circular system development model

Finally, the Library Population and Update takes place after the model conditioning and

documentation process is completed. The Library Population and Update is a task that only

can be done by library administrators, see Appendix F.1.1. Since the simulation tools used

in the selected simulation framework are being updated periodically, the models stored in

the library need to be also checked periodically in new simulation tool versions. Otherwise,

the correct operation of the models cannot be guaranteed in the long term. This periodical

process is represented by the arrow from the Library Update to the Verification subprocess,

see Figure 5.7. Additional details about the VP-Model Library, and how must be populated

and updated are given in Appendix F.

To conclude, it is worth mentioning that the model maintenance process provides support for

the virtual prototyping activity associated with the system development flow in the proposed

O-model. This is crucial for the correct operation of the design and verification stages.

160

6 Conclusions and future work

The virtual prototyping results and data obtained during this research are evidence suggesting

that the early system design and verification powered by the VP-based design methodology

may contribute to reduce the development cost and speed up the development process of

small-scale CPS for power and industrial applications. The specific way that the VP-based

design methodology contributes to attaining this goal is by allowing the creation of modular

high-level abstractions of complete systems (namely virtual prototypes); so that, the overall

design and verification complexity are reduced. This is possible by applying a meet-in-the-

middle approach for system-level modeling and gradual model refinement. Specifically, this

work proposes mechanisms to enhance component models, VPs, and their verification models

by improving their modularity and scalability, which are the key features that allow coping

with complexity in virtual designs.

An important and challenging problem that has been considered in this work, is the question

of how to implement the proposed VP-based design methodology in current industrial com-

panies that can benefit from this approach, but cannot commit a specific team to the creation,

support, and maintenance of computational models and its dedicated infrastructure. The

proposed O-model provides a solution to this question by giving a detailed procedure that use

the VP-based design methodology to include virtual system-level design and virtual system

verification stages in the system development flow. The success of the proposed approach

depends on the following main factors:

1. Pragmatic and versatile virtual prototyping : The experience collected during this ap-

plied research work, mainly focused on commercial industrial applications, allows to conclude

that the virtual prototyping activity effort shall be minimum compared to the physical system

design and verification effort. In other words, building and manipulating VPs must be an easy

process, disregarding the level of reliability and robustness that we can achieve with a model.

Failing to accomplish this condition might reduce the interest of companies in adopting

virtual prototyping for CPS design, especially those companies that do not possess dedicated

161

Chapter 6. Conclusions and future work

teams/specialists working on virtual environments and/or simulation tools. The VP-Modeling

Guidelines have been conceived not only with the intention of improving the modularity and

the scalability of the models, but also to ease the manipulation and maintenance of large

VHDL-AMS designs.

Similarly, the ability of the selected simulation framework to integrate other standard modeling

and hardware description languages also play a pivotal role at the inception of new virtual

prototyping methodologies. Particular cultures and practices adopted by system design

engineers and domain experts are difficult to change within a company. Moreover, the multi-

domain nature of the CPS design makes necessary to use more than one modeling language for

optimal modeling and simulation. This is why new virtual prototyping methodologies should

support multi-language model implementations. The author of this thesis has successfully

implemented SPICE, VERILOG-A, and C++ component models in VHDL-AMS hierarchical

models. In spite of the fact that multi-language models were not properly supported by the

commercial simulation tools of the selected simulation framework at the time of this research.

This problematic has been well-understood by tool vendors; so that, an improvement of the

support of multi-language models has been observed and is expected to growth in the future.

2. Rich model library: An important factor that reduces the modeling effort for system

designers is to count with a rich library of models that can provide reliable and fully documen-

ted modeling elements. Only by complying with this condition the reuse of models among

system and subsystem designers can be maximized. However, this is a demanding task that

requires permanent execution together with the system development flow. This is why this

work proposes to guarantee the availability of good quality and updated conditioned models by

implementing a Model maintenance process independently from the development processes.

Notwithstanding, it is important to mention that an independent Model maintenance process

does not necessarily mean that these tasks must be executed by an external team/company.

Since it is highly desirable to count with VPs and component models, both properly verified

and validated against experimental measurements, virtual prototyping is complementary

to physical prototyping and their activities must be coupled efficiently within the company.

Performing the Model maintenance processes utterly apart from the system development

model is highly inefficient, reduces the verification effectiveness of component models, and

makes the final system verification difficult and prone to errors. The proposed subsystem-level

design flow is a general solution to this problematic. Specific solutions depend on particular

physical prototyping and integration tasks executed in the company.

3. Model and simulation stability: The experience gathered during this work evidences

that one of the main issues that hamper the use of VPs, especially by non-experienced users, is

the stability of the models and their simulation results. The lack of stability is here categorized

according to the origin as follows:

• Convergence issues: There are several factors that can make models not converge in

both initial (quiescent) or subsequent (time/frequency) simulation stages. The simu-

lation tools rarely offer hints of the non-convergence reason. The great dilemma is

162

understanding whether the issue is caused by an inappropriate model construction, by

wrong simulation settings, or by a mix of both. For instance, the insufficient number

of time steps, or computing variables with a difference of several orders of magnitude,

are among the main causes of non-convergence in transient simulations. Convergence

problems are common in the process of building VPs, they may occur by interconnecting

component models that have been verified and are operating correctly alone, but not

together. The gradual modeling and verification approach advocated by the VP-based

design methodology helps to cope with this type of troubles. Furthermore, the conver-

gence issues become more problematic when are caused by simulation tool updates.This

is an obstacle to the Model maintenance process that makes more difficult the reuse

of models. Consequently, it is required further research on systematic convergence

checking procedures for model maintenance.

• Model configuration: It has been observed numerical instability in VP simulations

caused by the use of different configurations, as it is shown in subsection 4.4.2.3. Al-

though these numerical fluctuations are normally very small, they can affect significantly

the accuracy of the result when the estimated value is also small. Even though numerical

errors can be corrected via simulator settings, e.g. by using a fixed time step instead of a

variable time step in transient simulations, VP designers and users need to be aware of

this type of issues, particularly when they are caused by default simulator settings.

This is why the VP-Model Library includes data fields to properly include and document

simulator setups details and limitations. This type of model meta-information is not

normally considered in available model libraries. This practice improves the model

trustworthiness and helps to the model maintenance, especially when new versions

of the simulation tool are used. Unfortunately, few simulator setup specifications are

tool independent. Some of them are used by default in the simulation tool, and their

manipulation requires tool expertise and simulation experience. Consequently, it is not

rare that the same model produces different results when it is simulated by different

simulation tools.

4. Verification capability: Taking into account that the final purpose of virtual prototy-

ping is to run verification1 tasks for the complete system and its components, the benefit of

virtual prototyping can be measured by the ratio between its verification capability and the

modeling effort. It is desired to obtain VPs and component models with low modeling effort

and high verification capability. The verification capability is composed of two aspects: the

verification coverage and the potential of performing different types of verifications. The first

is related to the extent to which the obtained simulation results confirm the initial hypothesis

in a specific type of verification, for example, functional verification. The second is related

to the capability to test multiple behaviors of the system and its components, and diverse

interactions of the components of the system among them and their environment.

It is well-known that numeric simulation, the type of simulations supported by the models of

1Remember that by verification, this work considers what is normally corroborated by both verification and
validation procedures, i.e. functional and non-functional aspects of the design.

163

Chapter 6. Conclusions and future work

this research, cannot supply a high verification coverage due to the exponential amount of

computations that are required to test all the possible states and inputs that a system/compo-

nent may have. Even for small components of low/medium complexity might be impossible

to obtain a high coverage in a reasonable time. Formal and semi-formal verification methods,

which are still in its ‘early dawning’, such as contract-based design [56] or symbolic simulation

[128], propose solutions to increase the verification coverage using mathematical proofs in

computational models.

On the other hand, considering that the VP-based design methodology is limited by the capa-

bilities of the selected simulation framework for performing numeric simulation, this research

only addresses the capability of the models to execute multiple types of verifications in a

structured and progressive way. Certainly, by enhancing the modularity and scalability of VPs

and their component models, it is possible to execute a gradual verification process which is

particularly useful for the system design at the early stages of the system development. The

selected VHDL-AMS simulation framework supports continuous-time (analog), discrete-event

(digital), and mixed-signal model abstractions to execute different types of simulations such

as operating point, time-domain, frequency-domain, parametric and statistical simulations.

These features together with the proposed modeling approach, allow conducting multiple

analysis and verification tasks such as functional verification, design space exploration, perfor-

mance estimation, identification of critical design parameters, evaluation of key non-idealities,

functional safety, among others.

6.1 Future work

This work can be broadened in many different directions according to industrial and academic

interests. The author of this thesis proposes the following directions:

Last stages of the system development life-cycle: The O-model processes after the Phy-

sical system validation need to be formalized in order to obtain a complete circular system

development model. This research must contemplate the concepts coming from PLM and

Industry 4.0 initiatives. Specifically, the utilization of virtual prototyping for manufacturing

and commercialization to potential customers. Although the VPs created for manufacturing,

marketing, and design/verification are in principle different in purpose and nature, it is highly

interesting to investigate possible relationships for unification.

In order to use a high-level VP abstraction for these purposes, the VP must be implemented in

different simulation frameworks using appropriate ontologies in a strong graphical interface.

Thus, non-expert users shall be able to manipulate the system architecture to get and display

useful information.

Automatic reduction of 3D geometrical FEA models: The heat transfer modeling and ana-

lysis of the RogoCoil sensor, presented in section 4.2.6, allow us to see the high modeling effort

and expertise that is required for obtaining simple equation-based models that can be imple-

164

6.1. Future work

mented in VHDL-AMS. Fostering this type of modeling techniques within a team of system

designers, not experts in multiphysics FEA modeling, will require a more practical approach.

Model reduction strategies [129] claim to make possible the obtention of computationally

cheaper algorithms that however still accurately capture the most important features of the

phenomena being modeled. It is interesting to explore these techniques in order to achieve a

general automatic reduction of 3D geometrical FEA models. This would benefit enormously

the VP-based design methodology, and in general, the CPS modeling and verification.

Model reduction strategies can be classified according to two main approaches: "reduce-

then-model" and "discretize-then-reduce" [130]: “In the former approach the continuous

equations representing the underlying physics are first reduced, e.g. by symmetry assump-

tions that allow us to consider 1D or 2D equations instead of the full 3D equations, before a

computational model is derived. In the latter approach, a computational model is obtained

by discretizing the continuous equations and only then a reduced model is sought. Some

subtopics include spatial dimensionality reduction and multi-scale modeling frameworks

in the "reduce-then-model" category; state space and parameter space reduction ––with a

special accent on reduced basis and proper orthogonal decomposition––in the "discretize-

then-reduce" category ”.

Informal contract verification framework: Since VPs and their component models are

hierarchically organized to represent the system at different levels of abstraction, the proposed

modeling methodology is compatible to the organization of the assume-guarantee (A/G)

contract framework [53, 56]. At each level of abstraction, the component has a set of behaviors,

requirements, and restrictions (complementary viewpoints) associated with different design

concerns (e.g. safety, performance, reliability). They clearly can be expressed by different

formalism and analyzed by different tools. The proposal consists in developing a systematic

approach to include a priori known complementary viewpoints into the component models us-

ing any of the simulation framework modeling languages; so that, the verification capabilities

can be improved by quantifying those design aspects by simulation. This idea is inspired by

the analysis presented in [52], where it is stated that most of the requirements and constraints

written as contracts for CPS design, even the most complex operations and relations (e.g. on

temporal logic and hybrid automata contracts) can be reduced to basic verification tasks. As

long as we can quantify those contracts, they can be gradually included in a VP.

165

A Appendix A - ABB Rogowski coil
specifications

A.1 KEVCR core dimensions

(a) (b)

Figure A.1: KEVCR core schematics: (a) KEVCR core complete cross section. (b) KEVCR core
detailed cross section.

167

Appendix A. Appendix A - ABB Rogowski coil specifications

A.2 KEVCR parameters

Name Value/Expression Description

D1 0.1[m] Primary conductor (busbar) diameter

D 204.9[mm] Outer core diameter

d 191.9[mm] Inner core diameter

h 16[mm] Core height

R 3[mm] Core curvature

N 4460 Number of loops

W f f 1.908 Filling factor

epsr 4.8 Relative dielectric permittivity of the core

TCepsr 0.022[1/K] Temperature coefficient of EPSR

dwi r e 0.224[mm] Copper wire diameter

dr esi n 0.255[mm] Cooper and resin diameter

dsc 0.52[mm] Distance from shield to core

Rl 0.4338[Ω/m] Linear coil resistance

Ca 380[pF] Output capacitance (including cable)

dR1 0.33 Loop coefficient

dR2 0.33 Loop coefficient

dL1 0.18 Loop coefficient

dL2 0.45 Loop coefficient

dC s1 0.6 Loop coefficient

dC s2 0.15 Loop coefficient

dC p1 0.33 Loop coefficient

dC p2 0.33 Loop coefficient

Table A.1: KEVCR parameters. All the values are taken at 25 °C.

A.3 KEVCR datasheet

168

Sensor principles
 A new solution for measuring currents needed for protection

and monitoring in medium voltage power systems, is sensor.

Sensors based on alternative principles have been introduced

as successors to instrument transformers in order to obtain

the size reduction, performance improvement, and better

standardization. These principles are far from new, but not

until now, with the introduction of versatile electronic relays, it

has been possible to make use of the sensors advantageous

properties.

Current sensor
 The measurement of currents in KEVCR sensors is based on

the Rogowski coil principle. A Rogowski coil is a toroidal coil

without an iron core placed around the primary conductor in

the same way as the secondary winding in a current trans-

former. However, the output signal from a Rogowski coil is not

a current, but a voltage:

Highest voltage for equipment, U
m

kV 24

Rated continuous thermal current, I
cth

 A AC2 - 1250

OC2 - 630

Rated transformation ratio, K
ra
 250 A / 0.15 V at 50 Hz

250 A / 0.18 V at 60 Hz

Accuracy class 1/5P30

Length of cable m 1.6

 KEVCR 24 AC2, 24 OC2

Indoor current sensor

Medium Voltage Product

In all cases, a signal repro-

ducing the actual primary

current waveform is ob-

tained by integration of the

transmitted signal.

Protection and control IEDs
(Intelligent Electronic Devices)
 The functions of a traditional relay, as well as new additional

functions, are included in a protection and control IED. The

information transmitted from the sensors to the IED is, dur-

ing fault conditions, more accurate than the corresponding

secondary information from an instrument transformer, hence

giving the possibility for a versatile relay function. However,

the IED must be able to operate at a sensor’s low input

signal level with sufficient accuracy, and the signal from the

Rogowski coil must be integrated. Modern IEDs (e.g. ABB’s

Feeder terminals in the RE-series) are designed for sensor

use, and they are also equipped with built-in integrators for

Rogowski coil sensor inputs.

Sensor application
 The sensor is suitable for the application with Circuit Breaker

and Relay as integrated solution.

A.3. KEVCR datasheet

169

2 Technical data | KEVCR 24 AC2, 24 OC2

Differences between Sensor and Instrument Transformer
 There are noticeable differences between Sensors and tradi-

tional Instrument Transformers:

Linearity
Due to the absence of ferromagnetic core the sensor is linear

up to the highest currents. Measurement and protection can

be realized with one single secondary winding with double rat-

ings. In addition, one single standard sensor can be used for

a range of rating currents.

Rated
current

Ip (log)

ε

Current
transformer

Accuracy limits

Current
sensor

For this sensor type, the variation of amplitude error under

constant ambient temperature and same application within

current range from 5% Ipr (12.5 A) up to 30*Ipr (7500 A) is

smaller then 0.2% , that more than fulfils the accuracy class

requirements within its whole range.

Example : Rated current 250 A accuracy class 1 + protection

purposes up to 7500 A accuracy class 5P30. The accuracy limits

are according to the picture bellow.

Compactness
 As sensing elements are noticeably small, and the same ele-

ments are used for both measurement and protection, the

current sensors can be easily integrated into other equipment.

Correction factor
 The amplitude error of a current sensor is in practice constant

and independent of the primary current. Hence, it can be

corrected in the IED by using a correction factor, measured

separately for every sensor.

Secondary cables
 The accuracy classes of the sensor are given at the ends of

its secondary cables. The cables are intended to be connect-

ed directly to the IED, and subsequently no burden calculation

for the secondary wiring is needed. Therefore, every sensor is

accuracy tested when equipped with its own cable.

Appendix A. Appendix A - ABB Rogowski coil specifications

170

KEVCR 24 AC2, 24 OC2 | Technical data 3

Standard
IEC 60044-8 (2002-07)

Instrument transformers

Part 8: Electronic current transformers

Technical parameters of Current Sensor
type KEVCR 24 _C2
 Current Sensor type KEVCR 24 _C2 : Rogowski coil + 1.6 m

cable

Highest voltage for equipment and test voltages
 • Highest voltage for equipment, U

m
: 24 kV

• Power frequency voltage withstand test

on primary terminals : 50 kV

• Power frequency voltage withstand test

on secondary terminals : 0.5 kV

• Impulse voltage withstand test

on secondary terminals : 1 kV

Current sensor, rated values
• Rated frequency, f

r
: 50/60 Hz

• Rated accuracy: class 1/5P30

• Rated burden, R
br
: > 4 MΩ

• Rated continuous thermal current, I
cth

: 630 A type OC2

 1250 A type AC2

• Rated short-time thermal current, I
th
: 21 kA, 3s

• Rated dynamic current, I
dyn

: 63 kA

• Rated primary current, I
pr
: 250 A

• Rated transformation, K
ra
: 250 A/0.150 V at 50 Hz

 250 A/0.180 V at 60 Hz

Temperature category
• Operation: -5°C / + 40°C

• Transport and storage: -40°C / + 70°C

Protection and control IEDs
Sensor could be connected to a protection and control

IED-unit from ABB:

• IED types: RE_601

Cable
• Connector: RJ 45 shielded

• Length: 1.6 m

Technical data

Dimensions and weight
• outline drawing number: type OC2 1VL5300617R0101

 type AC2 1VL5300617R0102

• Weight: type OC2 5.7 kg

 type AC2 6.7 kg

Ordering data
• KEVCR 24 AC2: 1VL5400050V0101

• KEVCR 24 OC2: 1VL5400051V0101

A.3. KEVCR datasheet

171

1
V

L
C

0
0

0
5

8
5

-R
e
v.

-,
 e

n
 2

0
0

9
.0

4
.1

7

http://www.abb.com

KEVCR 24
Outline drawing number : OC2 - 1VL5300617R0101

 AC2 - 1VL5300617R0102

Weigth : OC2 - 5.7 kg

 AC2 - 6.7 kg

Cable length : 1.6 m

ABB s.r.o.
Videnska 117

619 00 Brno, Czech republic

E-mail: info.ejf@cz.abb.com

Phone.: +420 547 152 602

 +420 547 152 604

 +420 547 152 631

Fax: +420 547 152 626

The data and ilustrations in this catalogue are not binding. We reserve the right

to make changes of the content, in the course of technical development of the

product.

Appendix A. Appendix A - ABB Rogowski coil specifications

172

A.4. KECA core dimensions

A.4 KECA core dimensions

(a) (b)

Figure A.2: KECA core schematics: (a) KECA core complete cross section. (b) KECA core
detailed cross section.

173

Appendix A. Appendix A - ABB Rogowski coil specifications

A.5 KECA parameters

Name Value/Expression Description

D1 0.06[m] Primary conductor (busbar) diameter

D 135.1[mm] Outer core diameter

d 122.1[mm] Inner core diameter

h 16.9[mm] Core height

R 2.5[mm] Core curvature

N 5440 Number of loops

W f f 1.908 Filling factor

epsr 4.8 Relative dielectric permittivity of the core

TCepsr 0.022[1/K] Temperature coefficient of EPSR

dwi r e 0.112[mm] Copper wire diameter

dr esi n 0.135[mm] Cooper and resin diameter

dsc 0.278[mm] Distance from shield to core

Rl 1.735 [Ω/m] Linear coil resistance

Ca 380[pF] Output capacitance (including cable)

dR1 0.33 Loop coefficient

dR2 0.33 Loop coefficient

dL1 0.2 Loop coefficient

dL2 0.45 Loop coefficient

dC s1 0.45 Loop coefficient

dC s2 0.2 Loop coefficient

dC p1 0.33 Loop coefficient

dC p2 0.33 Loop coefficient

Table A.2: KECA parameters. All the values are taken at 25 °C.

A.6 KECA datasheet

174

Saturation level

Primary current

Secondary
output

10A 100A 1000A 10 000A

ABB sensor

Standard CT

Sensor principles

KECA 250 B1
Indoor current sensor

Medium Voltage Product

Electronic Instrument Transformers (Sensors) offer an alterna-
tive way of making the current and voltage measurements
needed for the protection and monitoring of medium voltage
power systems. Sensors based on alternative principles have
been introduced as successors to conventional instrument
transformers in order to significantly reduce size, increase
safety, and to provide greater rating standardization and a
wider functionality range. These well known principles can
only be fully utilized in combination with versatile electronic
relays.

Sensor characteristics
Construction of ABB’s current sensors is done without the
use of a ferromagnetic core.
This fact results in several important benefits for the user and
the application. The main benefit is that the behavior of the
sensor is not influenced by non-linearity and width of hystere-
sis curve, which results in a highly accurate and linear
response over a wide dynamic range of measured quantities.

A linear and highly accurate sensor characteristic in the full
operating range enables the combination of metering and
protection classes in one winding.
With KECA 250 B1 sensor measuring class 0.5 is reached for
continuous current measurement in the extended accuracy
range from 5% of the rated primary current Ipr not only up to
120% of Ipr (as being common for conventional current
transformers), but even up to the rated continuous thermal
current Icth. For dynamic current measurement (protection
purposes) the ABB sensor KECA 250 B1 fulfills requirements
of protection class 5P up to an impressive value reaching
the rated short-time thermal current Ith. That provides the
possibility to designate the corresponding accuracy class as
5P125, proving excellent linearity and accuracy
measurements.

Sensor Parameters Unit Value

Highest voltage for equipment, Um kV 0.72

Rated power frequency withstand voltage kV 3

Rated primary current, Ipr A 250

Rated continuous thermal current, Icth A 2000

Rated transformation ratio, Kra 250 A /
for current measurement 150 mV at 50 Hz
 180 mV at 60 Hz

Current accuracy class 0.5/5P125

Length of cable m 5.0

Parameters for Application Unit Value

Rated primary current of application A up to 2000

-

-

A.6. KECA datasheet

175

© ABB Group
August 1, 2011 | Slide 1

Continuous Dynamic

5%
Ip

Ipr Kpcr*Ipr=Icth Kalf*Ipr=Ith

[%]

+5%

+0.5%

-5%

-0.5%
12.5A 250A 2000A 31.5kA

Accuracy class 0.5

Accuracy class 5P125

Current sensor
Current measurement in KECA 250 B1 sensors is based on
the Rogowski coil principle. A Rogowski coil is a toroidal coil,
without an iron core, placed around the primary conductor in
the same way as the secondary winding in a current transfor-
mer. However, the output signal from a Rogowski coil is not a
current, but a voltage:

In all cases, a signal that represents the actual primary current
waveform is easily obtained by integrating the transmitted
output signal.

Protection and control IEDs (Intelligent Electronic Devices)
Protection and control IEDs incorporate the functions of a
traditional relay, as well as allow new additional functions. The
information transmitted from the sensors to the IED is very
accurate, providing the possibility of versatile relay
functionality.
However, the IED must be able to operate with sufficient
accuracy at a sensor’s low input signal level, and the signal
from the Rogowski coil must be integrated. Modern IEDs
(such as ABB’s 601 series relays) are designed for such
sensor use, and they are also equipped with built-in
integrators for Rogowski coil sensor inputs.
Modern digital apparatuses (microprocessor based relays)
allow protection and measurement functions to be combined.
They fully support current sensing realized by the single
sensor with double the accuracy class designation (e.g.:
current sensing with combined accuracy class 0.5/5P125).

Sensor applications
The current sensor type KECA 250 B1 is intended for use in
current measurement in low voltage or medium voltage
switchgear.
In case of medium voltage switchgear the current sensor
should be installed over a bushing insulator, insulated cable or
any other type of insulated conductor.

Differences between Sensors and Instrument Transformers
There are some noticeable differences between Sensors and
conventional Instrument Transformers:

Linearity
Due to the absence of a ferromagnetic core the sensor has a
linear response over a very wide primary current range, far
exceeding the typical CT range. Thus, current sensing for
both measurement and protection purposes could be realized
with single secondary winding with a double rating.
In addition, one standard sensor can be used for a broad
range of rated currents and is also capable of precisely
transferring signals containing frequencies different from rated
ones.
For this type of sensor, the variation of amplitude and phase
error or composite error in a current range from 5% of rated
primary current I

pr up to the rated short-time thermal current Ith
is within the limits specified by IEC 60044-8.

Example of current measurement range with rated current
250 A and accuracy class 0.5/5P125:
Metering accuracy class 0.5 is, according to the IEC 60044-8
standard, guaranteed from 5% of Ipr up to Kpcr x Ipr where Kpcr
is rated extended primary current factor and Ipr is rated
primary current. Factor Kpcr is in the case of conventional CTs
usually just 1.2, but in the case of the KECA 250 B1 sensor
the Kpcr factor is several times higher and equals 8.
Protection accuracy 5P125 is guaranteed, for the advanced
KECA 250 B1 sensor, from the current equal to Kpcr x Ipr up to
the current corresponding to Kalf x Ipr value, where Kalf is,
according to IEC 60044-8, the accuracy limit factor. For this
type of sensor the value of Kpcr x Ipr is equal to the rated
continuous thermal current Icth (2000 A) and the value of
Kalf x Ipr is equal to the rated short-time thermal current
Ith (31.5 kA).
The accuracy limits are described on the graph below.

u (t) = Ms dt

di (t)p

 IP

US sU

 IP

US

pI

2

Appendix A. Appendix A - ABB Rogowski coil specifications

176

Example of a sensor label

Secondary cables
The sensor is equipped with a cable for connection with
the IED. The cable connector is type RJ-45. The sensor
accuracy classes are verified up to the RJ-45 connector,
i.e. considering also its secondary cable. This cable is
intended to be connected directly to the IED, and
subsequently neither burden calculation nor secondary
wiring is needed. Every sensor is therefore accuracy
tested when equipped with its own cable and connector.

Connector RJ-45

Example: Direct connection of connectors between the
sensor and new IED family

Standards

Standards
Current sensors: IEC 60044-8 (2002-07)
Instrument transformers –
Part 8: Electronic current transformers

Compactness
Since the sensing elements are particularly small, and the
same elements are used for both measurement and
protection, the current sensors can be easily integrated into
other equipment.

Rated parameters
Because the sensors are highly linear within a very wide range
of currents, the same single sensor can be used for the
various rated currents associated with each specific
application up to the specified maximum voltage for
equipment. There is no need to specify other parameters such
as burden, safety factor, etc. since they are standard over the
defined range. To achieve the correct function of the
protection and control IED, the selected rated current, as well
as the rated transformation ratio, must be properly set into the
IED.

Energy savings concept
As there is no iron core, no necessity for high burden values
and thus a possibility for low current losses and only one
secondary winding needed, KECA 250 B1 sensors exhibit
extremely low energy consumption that is just a fraction of
that transferred to heat in conventional CTs. This fact
contributes to huge energy savings during its entire operating
life, supporting the world-wide effort to reduce energy
consumption.

Correction factors
The amplitude and phase error of a current sensor is, in
practice, constant and independent of the primary current.
Due to this fact it is an inherent and constant property of each
sensor and it is not considered as unpredictable and
influenced error. Hence, it can be easily corrected in the IED
by using appropriate correction factors, stated separately for
every sensor.
Values of the correction factors for the amplitude and phase
error of a current sensor are mentioned on the sensor label
(for more information please refer to Instructions for installati-
on, use and maintenance) and should be uploaded without
any modification into the IED before the sensors are put into
operation (please check available correction in the IED
manual). To achieve required accuracy classes it is recom-
mended to use all correction factors (Cfs): amplitude
correction factor (aI) and phase error correction factor (pI) of a
current sensor.

3

© ABB Group
August 1, 2011 | Slide 2

A.6. KECA datasheet

177

Highest voltage for equipment and test voltages
• Highest voltage for equipment, Um: 0.72 kV
• Power frequency voltage withstand test
 on primary terminals: 3 kV

Current sensor, rated values
• Rated primary current, Ipr: 250 A
• Rated transformation ratio, Kra: 250 A/0.150 V at 50 Hz
 250 A/0.180 V at 60 Hz
• Rated secondary output, Usr: 3 mV/Hz
 i.e. 150 mV at 50 Hz
 or 180 mV at 60 Hz
• Rated continuous thermal current, Icth: 2000 A
• Rated short-time thermal current, Ith: 31.5 kA/3 s
• Rated dynamic current, Idyn: 100 kA
• Rated frequency, fr: 50/60 Hz
• Rated extended primary current
 factor, Kpcr: 8
• Accuracy limit factor, Kalf: 125
• Accuracy class: 0.5/5P125
• Rated burden, Rbr: 10 MΩ

Temperature category
• Operation: - 5°C / + 40°C
• Transport and storage: -40°C / + 70°C

Cable
• Length: 5.0 m
• Connector: RJ-45 (CAT-6)

Ordering data
• KECA 250 B1 1VL5400052V0101

Dimensions and weight
• Outline drawing number: 1VL5300632R0101
• Weight: 1 kg

1V
LC

00
05

84
 -

 R
ev

.2
,

en
,

20
11

.0
8

ABB s.r.o.

PPMV Brno

Videnska 117

619 00 Brno, Czech Republic

Tel.: +420 547 152 082

Fax: +420 547 152 626

+420 547 152 602

E-mail: info.ejf@cz.abb.com

www.abb.com

The data and ilustrations in this catalogue are not
binding. We reserve the right to make changes of the
content, in the course of technical development of the
product.

Appendix A. Appendix A - ABB Rogowski coil specifications

178

B Appendix B - Model equations

B.1 Equations of the Rogowski coil electrical model

This section details the equations of the symmetric 3Loops-2Layers electrical model of the

RogoCoil. Given the circuit model shown in Figure 4.5 on page 59, and the RogoCoil PMPs

shown in Tables A.1 or A.2 in Appendix A, the values of the passive and active elements of

the circuit are calculated using the equations here described. Let us consider the frontal and

cross-sectional views of the RogoCoil as shown in Figure B.1.

Figure B.1: Rogowski coil technical drawing (not to scale), frontal and cross-sectional views,
zoom on winding. D represents the outer coil diameter, d the inner coil diameter, and h the
coil height.

179

Appendix B. Appendix B - Model equations

The geometrical PMPs D, d, and h require slight corrections caused by mechanical and mag-

netic effects provoked by the thickness of the winding and the shapes delimited by the cooper

cable. The corrections are shown as follows:

Mechanical corrections:

De f = D +2 ·dr esi n (B.1a)

de f = d −2 ·dr esi n (B.1b)

he f = h +2 ·dr esi n (B.1c)

Magnetic corrections:

De f f = D +dr esi n (B.2a)

de f f = d −dr esi n (B.2b)

he f f = h +dr esi n (B.2c)

The SMPs defined in Equations B.1 and B.2 are used for the definition of the following geome-

trical SMPs:

A = he f f ·
(

De f f −de f f

2

)
+ (De f f −de f f)2 ·

(
π−4

16

)
(B.3a)

lc =π ·
(

D +d

2

)
(B.3b)

ll = 2 ·he f + (De f −de f)+ (2π−8) ·R (B.3c)

lw = ll ·N + (De f −de f) (B.3d)

where A is the coil area, lc is the coil length, ll is the length of one loop of the coil, R is the core

curvature, lw is the wire length, and N is the total number of loops of the coil. It is important

mentioning that the KEVCR and KECA coils are double winded, meaning that the return wire

(whose length is included in the term ll ·N), is also looped around the core. In this way, the

coil resistance Rcoi l and the coil mutual inductance M are defined in terms of the geometrical

180

B.1. Equations of the Rogowski coil electrical model

and material parameters of the coil winding by Equations B.4 and B.5 respectively.

Rcoi l = lw ·Rl · (1+TCR · (Tcoi l −T0)) (B.4)

M = (1−TCL(Tcoi l −T0)) · µ0N

2π

[
(he f −2R)Ln

(
De f

de f

)
+2R ·Ln

(
De f −2R

de f +2R

)

+πDe f +de f

2
−

(
π+2arcsin

(
R

R − De f

2

))√
De f

2

(
De f

2
−2R

)

−
π+2arcsin

 R

R + de f

2

√
de f

2

(
de f

2
+2R

)]
(B.5)

Equation B.4 shows that Rcoi l is directly proportional to the wire length lw , the linear wire

resistance Rl , and the temperature coefficient of resistance of the cooper wire TCR . In this

Equation Tcoi l represents the temperature of the coil and T0 its reference temperature (25 °C).

In Equation B.5 we can recognize the magnetic constant µ0 and the temperature coefficient of

inductance TCL which is used to model the change of the coil inductance based on a linear

thermal expansion of the material. The logarithmic and hyperbolic terms correspond to the

oval shape of the coil loops and the wire geometry. Consequently, the coil inductance is given

by Equation B.6 as follows:

Lcoi l = N ·M (B.6)

Likewise, the parasitic capacitances of the electrical model are also given in terms of geometri-

181

Appendix B. Appendix B - Model equations

cal and material parameters as follows:

Cl =
2πε0epsr · lc

Ln

(√ (
D−d

2 +2dwi r e
)
(h+2dwi r e)(

D−d
2

)
h

) · (1−TCepr s · (Tcoi l −T0))

+ 2πε0lc

Ln

(√ (
D−d

2 +2(dwi r e+dr esi n)
)
(h+2(dwi r e+dr esi n))(

D−d
2 +2dwi r e

)
(h+2dwi r e)

) (B.7a)

Cl oop = 2πε0ll

Ln

(
lc

N
2 dwi r e

+
√(

lc
N
2 dwi r e

)2

−1

) (B.7b)

Csh = 2πε0lc

Ln

(√ (
D−d

2 +2dsc
)
(h+2dsc)(

D−d
2 +2(dwi r e+dr esi n)

)
(h+2(dwi r e+dr esi n))

) (B.7c)

Cp = 4π ·ε0 ·he f

Ln
(

2·de f

D1

) (B.7d)

Cs =Cl +Csh (B.7e)

where Cl is the winding capacitance, Cloop is the single loop capacitance, Csh is the shielding

capacitance, Cp is the primary capacitance, and Cs is the secondary capacitance of the coil.

Finally, is important to mention that the corrective terms and the parasitic coefficients (dR , dL,

dC p, and dC s) of the model, are characterization values obtained for fitting the experimental

impedance measurements of the KEVCR and KECA coils, see the respective values in Tables

A.1 and A.2 on pages 168 and 174 respectively.

B.2 Principles of conductor temperature determination

B.2.1 Heat balance

The conductor temperature is based on the heat balance at the conductor [83], which is

influenced by:

• Joule heat Q J , due to the current.

• Solar radiation QS

• Magnetic Losses QM

• Energy Loss by convection QC

• Energy Loss by radiation QR

182

B.2. Principles of conductor temperature determination

From these values, the heat balance is described by:

mc ·Cp · dT

d t
=Q J +QS +QM −QR −QC (B.8)

where mc is the conductor’s mass per unit length, Cp is the specific heat capacity of the

conductor at constant pressure, and T is the conductor’s temperature. The components Q J

and QM , which are function of the current, can be expressed as follows:

Q J +QM = I 2 ·RAC (T) (B.9)

where I is the effective current in the conductor (in Amperes) and RAC (T) is the AC resistance

at temperature T in Ω/m. The AC resistance increases as a result of the skin and spiral

effects. The skin effect occurs due to the higher inductance of the internal layers of wires

in the conductor, causing a larger internal current flux density. As the voltage drop in all

wires is the same, a larger portion of the current flows through the outer conductor layers

causing an increase of the effective resistance. On the other hand, the spiral effect significantly

influences composite conductors with odd number of layers, in particular where there is only

one aluminum layer. RAC (T) is calculated as follows:

RAC (T) =
RDC (T) ·

(
1+ χ4

3

)
for χ≤ 1

RDC (T) · (0.25+χ+ 3
64

)
for χ≥ 1

(B.10)

with χ being the parameter related with the skin and spiral effects as follows:

χ= 0.5r
√
π · f ·κ ·µ0 ·µr (B.11)

where r is the conductor radius in mm, f the frequency in Hz, κ the conductivity in m/Ω·mm2,

µ0 is the vacuum permeability constant and µr the relative permeability of the material. The

DC resistance RDC (T) depends on the conductor temperature according to:

RDC (T) = R20 · [1+α · (T −20)] (B.12)

where R20 is the DC resistance at 20 °C inΩ/m and α is the temperature coefficient of resis-

tance.

The solar radiation thermal contribution is here discarded due to the RogoCoil sensor is

designed for indoor applications, i.e. QS = 0.

The following equation is taken for the energy loss by radiation:

QR = ks ·ke ·D ·π(
T 4 −T 4

r oom

)
[W /m] (B.13)

where D is the conductor diameter, Tr oom is the room temperature, ks is the Stefan-Boltzmann

constant (5.67e-8 W/m2K 4) and ke is the emission coefficient.

183

Appendix B. Appendix B - Model equations

The energy loss by convection can be calculated from:

QC =π ·λ ·Nu · (T −Tr oom) [W /m] (B.14)

where λ is the thermal conductivity of air in W/(K ·m) and Nu is the Nusselt number, which

depends on Reynolds number (Re) using the following approximation:

Nu ∼= 0.65 ·Re0.2 +0.23 ·Re0.61 (B.15a)

Re =V ·D · γ
η

(B.15b)

where V is the wind velocity in m/s, γ is the specific mass of air in kg/m3, and η is the dynamic

viscosity in N · s/m2. All these values are dependent on temperature and air pressure. At sea

level, the following equations were obtained by curve fitting on experimental data [83]:

λ= 7.327 ·10−5 ·Tr oom +0.02428[W /(K ·m)] (B.16a)

γ= 354.7

Tr oom +274.5

[
kg /m3] (B.16b)

η= 4.7 ·10−4 ·Tr oom +0.175
[
(N · s)/m2] (B.16c)

The previously mentioned parameters can also be replaced by other conservative or extreme

values according to known conditions. However, the described deterministic approach usually

leads to conservative values for the current carrying capacity (also called Ampacity), since

conditions having low probability of occurrence are assumed as acting simultaneously. Mea-

surements of the conductor temperatures have systematically shown lower temperatures in

steady-state than the ones determined by this deterministic approach [83]. Nevertheless, the

model can be corrected by including a correction factor in the Joule heating calculation, see

Equation B.9.

B.2.2 IEEE STANDARD 738 – 2006

In this revision all environmental and parameter conditions were extensively revised. This

model is basically a simplified version obtained from many other methods such as the previ-

ously presented in Appendix B.2.1. All of them based in the same principle, the heat balance

equation. Accurate results can be obtained by this model always than the real conditions are

closer to the assumed ones. The temperature of a power conductor is continuously varying

in response to changes in electrical current and environmental conditions. In this standard,

however, environment parameters (wind speed, room temperature, etc.) are assumed to

remain constant.

A step transition of the electrical current will produce an exponential transient temperature

change in the conductor. Immediately prior to the current step change (t = 0−), the conductor

is assumed to be in thermal equilibrium (dT
d t = 0), i.e. the sum of heat generation by Ohmic

184

B.2. Principles of conductor temperature determination

losses and solar heating equals the heat loss by convection and radiation. Immediately

after the current step change (t = 0+), the conductor temperature is unchanged (as are the

conductor resistance and the heat loss rate due to convection and radiation), but the rate of

heat generation due to Ohmic losses has increased. Therefore, at time t = 0+, the temperature

of the conductor begins to increase at a rate given by the heat balance equation B.8.

After a period of time, the increased conductor temperature yields higher heat losses due

to convection, radiation, and somewhat higher Ohmic heat generation due to the increased

conductor resistance. The conductor temperature continues increasing with time, but does so

at a lower rate until achieving its final steady-state temperature. The accuracy in the iterative

transient calculation requires a simulation time step sufficiently small with respect to the

thermal time constant. It is always prudent to rerun the calculation with a smaller time step to

check whether the calculated values change [84].

Contrarily to the expressions given in Appendix B.2.1, this standard use the following heuristic

expressions which leads to more accurate simulation results. The Radiated heat loss is defined

by:

QR = 0.0178 ·D ·ε
((

T +273.15

100

)4

−
(

Tr oom +273.15

100

)4)
[W /m] (B.17)

where D is the conductor diameter in mm, ε is the emissivity coefficient (0.23 to 0.91), and T

and Tr oom are given in °C. With zero wind speed, as we can suppose for indoor applications,

natural convection occurs. The energy loss by convection is calculated as follows:

QC = 0.0205 ·ρ0.5
f ·D0.75 · (T −Tr oom)1.25 [W /m] (B.18)

where ρ f is the air density in kg/m3. As it is mentioned in [84], it has been argued that at

low wind speeds, the convection cooling rate should be calculated by using a vector sum of

the wind speed and a natural wind speed. However, it is recommended that only the larger

of the forced and natural convection heat loss rates be used at low wind speeds instead of

their vector sum as this is conservative. For indoor applications, we do not need to taken into

account the forced convention in the thermal conductor model since there is no significant

wind flow forcing the thermal convection.

Finally, the Joule heating thermal contribution in Equation B.8 is depending on the conductor

electrical resistance. The electrical resistance of a bare stranded conductor varies with fre-

quency, average current density and temperature. However, it also strongly depends of the

conductor construction. This is why, the best tabulated values of electrical resistance for using

in our model are the ones given by the conductor manufacturer under standard conditions.

This values should include the frequency-dependent skin effect and other magnetic effects

affecting the conductor. In this standard, electrical resistance RAC (T) is calculated solely

as a function of the conductor temperature; however, the resistance values entered may be

function of frequency and current density. The conductor resistance at any other temperature

185

Appendix B. Appendix B - Model equations

T , is found by linear interpolation according to Equation B.19.

RAC (T) =
(

R(Thi g h)−R(Tl ow)

Thi g h −Tlow

)
· (T −Tlow)+R(Tl ow) [Ω/m] (B.19)

where R(Thi g h) and R(Tlow) are the electrical resistances at high and low temperature respec-

tively, usually Tlow = 25 °Cand Thi g h = 75 °C. This method of resistance calculation allows to

calculate the high and low temperatures resistance values by whatever means is appropriate.

The error obtained by Equation B.19 between Thi g h and Tlow is negligible. For higher tempe-

ratures, although the resistance calculation could be non-conservative for rating calculations,

the resistance error will be low enough to be used, always that the conductor operates under

its maximum operational temperature.

B.2.3 Equivalent lumped-element circuit model of a Busbar conductor

Following the equations and nomenclature given in Appendices B.2.1 and B.2.2, the expressi-

ons for the lumped elements of the equivalent Busbar thermal circuit are given as follows:

Utr (t) = I 2(t) ·RAC +QS (B.20a)

Ctr (t) = mc ·Cp (B.20b)

Rtr (t) = Tbus(t)−Tr oom(t)

QC +QR
(B.20c)

186

C Appendix C - Source code

C.1 Sigma-Delta ADC

1 Library IEEE;
2 use IEEE.electrical_systems.all;
3 use IEEE.std_logic_1164.all;
4 use IEEE.math_real.all;
5 use IEEE.numeric_std.all;
6 Entity ADC is
7 generic(
8 -- Ideal Architecture:
9 VLOW : voltage := -1.0; -- Low threshold voltage [V]

10 VHIGH : voltage := 1.0; -- High threshold voltage [V]
11 NB : positive := 12; -- ADC Bit resolution (ideal) /

Bus Width (Sigma -Delta)
12 -- Delta -Sigma:
13 MFCLK : real := 1.0e5; --[Hz] Sampling frequency of the

ADC(Modulator)
14 M_DSIG : positive := 32; --[] Decimation Ratio;
15 K1_ADD1 : real := 1.0; --[] First Adder Gain Factor
16 K2_ADD1 : real := -1.0; --[] First Adder Gain Factor
17 GINT_INT1 : real := 1.0; --[] First Integrator Gain
18 K1_ADD2 : real := 1.0; --[] Second Adder Gain Factor
19 K2_ADD2 : real := -1.0; --[] Second Adder Gain Factor
20 GINT_INT2 : real := 1.0; --[] Second Integrator Gain
21 TR_QUANT : real := 0.0; --[Sec] Output transition (rise/

fall) time of the Quantizer
22 VREF_DSIG : voltage := 0.0); --[V] Reference voltage
23 port(terminal Input : electrical;
24 signal Enable , Clk : in std_logic;
25 signal Output : out std_logic_vector(NB -1 downto 0));
26 Begin
27 assert VLOW <= VHIGH report "VHIGH must be greater than VLOW" severity

error;

187

Appendix C. Appendix C - Source code

28 assert VREF_DSIG <= VHIGH report "VHIGH must be greater than VREF_DSIG"
severity error;

29 assert VLOW <= VREF_DSIG report "VREF_DSIG must be greater than VLOW"
severity error;

30 End entity ADC;
31

32 Architecture Sigma_Delta of ADC is
33 constant DELTA_DSIG : voltage := VHIGH - VLOW; --[V] Quantizer step
34 component Delta_Sigma_Mod is
35 generic (MFCLK : real;
36 K1_ADD1 : real;
37 K2_ADD1 : real;
38 GINT_INT1 : real;
39 K1_ADD2 : real;
40 K2_ADD2 : real;
41 GINT_INT2 : real;
42 TR_QUANT : real;
43 VREF : voltage;
44 DELTA : voltage);
45 port (signal Enable , MClk : in std_logic;
46 signal Sout : inout std_logic;
47 terminal Tin , Tout : electrical);
48 end component Delta_Sigma_Mod;
49 component Sinc3 is
50 generic (N : positive);
51 port(RESN , MOUT , MCLK , CNR : in std_logic;
52 CN5 : out std_logic_vector(N-1 downto 0));
53 end component Sinc3;
54 signal DSIG_Sout : std_logic;
55 signal DClk : std_logic := ’0’; -- Decimator clock
56 signal cnt : integer := 0;
57 terminal Tdsout : electrical;
58 Begin
59 DSMOD: Delta_Sigma_Mod
60 generic map (MFCLK => MFCLK ,
61 K1_ADD1 => K1_ADD1 ,
62 K2_ADD1 => K2_ADD1 ,
63 GINT_INT1 => GINT_INT1 ,
64 K1_ADD2 => K1_ADD2 ,
65 K2_ADD2 => K2_ADD2 ,
66 GINT_INT2 => GINT_INT2 ,
67 TR_QUANT => TR_QUANT ,
68 VREF => VREF_DSIG ,
69 DELTA => DELTA_DSIG)
70 port map (Enable => Enable ,
71 MClk => Clk ,
72 Sout => DSIG_Sout ,
73 Tin => Input ,
74 Tout => Tdsout);
75 FILTER: Sinc3
76 generic map (N => NB)
77 port map (RESN => Enable ,

188

C.1. Sigma-Delta ADC

78 MOUT => DSIG_Sout ,
79 MCLK => Clk ,
80 CNR => DClk ,
81 CN5 => Output);
82 -- Decimator Clock:
83 Process(Clk , Enable)
84 begin
85 if Enable = ’0’ then
86 cnt <= 0;
87 DClk <= ’0’;
88 else
89 if cnt = M_DSIG - 1 then
90 cnt <= 0;
91 DClk <= not DClk;
92 else
93 cnt <= cnt + 1;
94 end if;
95 end if;
96 end process;
97 -- Parameter display:
98 process
99 begin

100 report LF & "---------------------------------" &
101 LF & " ADC" &
102 LF & "---------------------------------" &
103 LF &" "&
104 LF & "### VLOW" & " = " & real ’image(VLOW) & " " & "V" &
105 LF & "### VHIGH" & " = " & real ’image(VHIGH) & " " & "V" &
106 LF & "### NB" & " = " & integer ’image(NB) &
107 LF & "### MFCLK" & " = " & real ’image(MFCLK) & " " & "Hz" &
108 LF & "### M_DSIG" & " = " & integer ’image(M_DSIG) &
109 LF & "---------------------------------";
110 wait;
111 end process;
112 End architecture Sigma_Delta;

C.1.1 Simple 1st Order Σ∆ configuration

1 Library IEEE;
2 use WORK.all;
3 Configuration Simple_1stOrderSDADC of ADC is
4 for Sigma_Delta
5 for all: Delta_Sigma_Mod
6 use entity work.Delta_Sigma_Mod(struct_first_order);
7 for struct_first_order
8 for all: adder
9 use entity work.adder(simple);

10 end for;
11 for all: Integrator

189

Appendix C. Appendix C - Source code

12 use entity work.Integrator(ideal_discrete_time);
13 end for;
14 for all: Quantizer_behav
15 use entity work.Quantizer_behav(ideal);
16 end for;
17 for all: DAC_behav
18 use entity work.DAC_behav(ideal);
19 end for;
20 end for;
21 end for;
22 end for;
23 End Simple_1stOrderSDADC;

C.1.2 Simple 2nd Order Σ∆ configuration

1 Library IEEE;
2 use WORK.all;
3 Configuration Simple_2ndOrderSDADC of ADC is
4 for Sigma_Delta
5 for all: Delta_Sigma_Mod
6 use entity work.Delta_Sigma_Mod(struct_second_order);
7 for struct_second_order
8 for all: adder
9 use entity work.adder(simple);

10 end for;
11 for all: Integrator
12 use entity work.Integrator(ideal_discrete_time);
13 end for;
14 for all: Quantizer_behav
15 use entity work.Quantizer_behav(ideal);
16 end for;
17 for all: DAC_behav
18 use entity work.DAC_behav(ideal);
19 end for;
20 end for;
21 end for;
22 end for;
23 End Simple_2ndOrderSDADC;

C.1.3 Sigma-Delta modulator

C.1.3.1 First Order modulator

1 Library IEEE;
2 use IEEE.electrical_systems.all;
3 use IEEE.std_logic_1164.all;

190

C.1. Sigma-Delta ADC

4 use work.all;
5 Entity Delta_Sigma_Mod is
6 generic (MFCLK : real := 1.0e5; --[Hz] Sampling frequency of

the Modulator
7 K1_ADD1 : real := 1.0; --[] First Adder Gain Factor
8 K2_ADD1 : real := -1.0; --[] First Adder Gain Factor
9 GINT_INT1 : real := 1.0; --[] First Integrator Gain

10 K1_ADD2 : real := 1.0; --[] Second Adder Gain Factor
11 K2_ADD2 : real := -1.0; --[] Second Adder Gain Factor
12 GINT_INT2 : real := 1.0; --[] Second Integrator Gain
13 TR_QUANT : real := 0.0; --[Sec] Output transition (

rise/fall) time of the Quantizer
14 VREF : voltage := 0.0; --[V] Reference voltage
15 DELTA : voltage := 5.0); --[V] Quantizer step
16 port (signal Enable , MClk : in std_logic;
17 signal Sout : inout std_logic;
18 terminal Tin , Tout : electrical);
19 End entity Delta_Sigma_Mod;
20

21 Architecture struct_first_order of Delta_Sigma_Mod is
22 Component adder is
23 generic (K1 : real;
24 K2 : real);
25 port (terminal inp1 : electrical;
26 terminal inp2 : electrical;
27 terminal aout : electrical);
28 End component adder;
29 Component Integrator is
30 generic (GINT : real;
31 VINIT : voltage;
32 FSMP : real);
33 port (signal Enable : in std_logic;
34 terminal Tin , Tout : electrical);
35 End component Integrator;
36 Component Quantizer_behav is
37 generic (TR : real;
38 VREF : voltage;
39 DELTA : voltage);
40 port (signal Enable , Clk : in std_logic;
41 signal Sout : out std_logic;
42 terminal Tin , Tout : electrical);
43 End component Quantizer_behav;
44 Component DAC_behav is
45 generic (VREF : voltage;
46 DELTA : voltage);
47 port (signal Enable , Sin : in std_logic;
48 terminal Tout : electrical);
49 End component DAC_behav;
50 terminal Tfeed , T1, T2 : electrical;
51 Begin
52 ADD: adder
53 generic map (K1 => K1_ADD1 ,

191

Appendix C. Appendix C - Source code

54 K2 => K2_ADD1)
55 port map (inp1 => Tin ,
56 inp2 => Tfeed ,
57 aout => T1);
58 INT: Integrator
59 generic map (GINT => GINT_INT1 ,
60 VINIT => VREF ,
61 FSMP => MFCLK)
62 port map (Enable => Enable ,
63 Tin => T1,
64 Tout => T2);
65 QUANT: Quantizer_behav
66 generic map (TR => TR_QUANT ,
67 VREF => VREF ,
68 DELTA => DELTA)
69 port map (Enable => Enable ,
70 Clk => MClk ,
71 Sout => Sout ,
72 Tin => T2 ,
73 Tout => Tout);
74 DAC: DAC_behav
75 generic map (VREF => VREF ,
76 DELTA => DELTA)
77 port map (Enable => Enable ,
78 Sin => Sout ,
79 Tout => Tfeed);
80 -- Parameter display:
81 process
82 begin
83 report LF & "---------------------------------" &
84 LF & "First Order Sigma -Delta Modulator" &
85 LF & "---------------------------------" &
86 LF &" "&
87 LF & "### MFCLK" & " = " & real ’image(MFCLK) & " " & "Hz" &
88 LF & "### K1_ADD1" & " = " & real ’image(K1_ADD1) &
89 LF & "### K2_ADD1" & " = " & real ’image(K2_ADD1) &
90 LF & "### GINT_INT1" & " = " & real ’image(GINT_INT1) &
91 LF & "### TR_QUANT" & " = " & real ’image(TR_QUANT) & " " & "Sec" &
92 LF & "### VREF" & " = " & real ’image(VREF) & " " & "V" &
93 LF & "### DELTA" & " = " & real ’image(DELTA) & " " & "V" &
94 LF & "---------------------------------";
95 wait;
96 end process;
97 End struct_first_order;

C.1.3.2 Second Order modulator

1 Library IEEE;
2 use IEEE.electrical_systems.all;

192

C.1. Sigma-Delta ADC

3 use IEEE.std_logic_1164.all;
4 use work.all;
5 Entity Delta_Sigma_Mod is
6 generic (MFCLK : real := 1.0e5; --[Hz] Sampling frequency of

the Modulator
7 K1_ADD1 : real := 1.0; --[] First Adder Gain Factor
8 K2_ADD1 : real := -1.0; --[] First Adder Gain Factor
9 GINT_INT1 : real := 1.0; --[] First Integrator Gain

10 K1_ADD2 : real := 1.0; --[] Second Adder Gain Factor
11 K2_ADD2 : real := -1.0; --[] Second Adder Gain Factor
12 GINT_INT2 : real := 1.0; --[] Second Integrator Gain
13 TR_QUANT : real := 0.0; --[Sec] Output transition (rise

/fall) time of the Quantizer
14 VREF : voltage := 0.0; --[V] Reference voltage
15 DELTA : voltage := 5.0 --[V] Quantizer step
16);
17 port (signal Enable , MClk : in std_logic;
18 signal Sout : inout std_logic;
19 terminal Tin , Tout : electrical);
20 End entity Delta_Sigma_Mod;
21

22 Architecture struct_second_order of Delta_Sigma_Mod is
23 Component adder is
24 generic (K1 : real;
25 K2 : real);
26 port (terminal inp1 : electrical;
27 terminal inp2 : electrical;
28 terminal aout : electrical);
29 End component adder;
30 Component Integrator is
31 generic (GINT : real;
32 VINIT : voltage;
33 FSMP : real);
34 port (signal Enable : in std_logic;
35 terminal Tin , Tout : electrical);
36 End component Integrator;
37 Component Quantizer_behav is
38 generic (TR : real;
39 VREF : voltage;
40 DELTA : voltage);
41 port (signal Enable , Clk : in std_logic;
42 signal Sout : out std_logic;
43 terminal Tin , Tout : electrical);
44 End component Quantizer_behav;
45 Component DAC_behav is
46 generic (VREF : voltage;
47 DELTA : voltage);
48 port (signal Enable , Sin : in std_logic;
49 terminal Tout : electrical);
50 End component DAC_behav;
51 terminal Tfeed , T1, T2 , T3, T4 : electrical;
52 Begin

193

Appendix C. Appendix C - Source code

53 ADD1: adder
54 generic map (K1 => K1_ADD1 ,
55 K2 => K2_ADD1)
56 port map (inp1 => Tin ,
57 inp2 => Tfeed ,
58 aout => T1);
59 INT1: Integrator
60 generic map (GINT => GINT_INT1 ,
61 VINIT => VREF ,
62 FSMP => MFCLK)
63 port map (Enable => Enable ,
64 Tin => T1,
65 Tout => T2);
66 ADD2: adder
67 generic map (K1 => K1_ADD2 ,
68 K2 => K2_ADD2)
69 port map (inp1 => T2 ,
70 inp2 => Tfeed ,
71 aout => T3);
72 INT2: Integrator
73 generic map (GINT => GINT_INT2 ,
74 VINIT => VREF ,
75 FSMP => MFCLK)
76 port map (Enable => Enable ,
77 Tin => T3,
78 Tout => T4);
79 QUANT: Quantizer_behav
80 generic map (TR => TR_QUANT ,
81 VREF => VREF ,
82 DELTA => DELTA)
83 port map (Enable => Enable ,
84 Clk => MClk ,
85 Sout => Sout ,
86 Tin => T4 ,
87 Tout => Tout);
88 DAC: DAC_behav
89 generic map (VREF => VREF ,
90 DELTA => DELTA)
91 port map (Enable => Enable ,
92 Sin => Sout ,
93 Tout => Tfeed);
94 -- Parameter display:
95 process
96 begin
97 report LF & "---------------------------------" &
98 LF & "Second Order Sigma -Delta Modulator" &
99 LF & "---------------------------------" &

100 LF &" "&
101 LF & "### MFCLK" & " = " & real ’image(MFCLK) & " " & "Hz" &
102 LF & "### K1_ADD1" & " = " & real ’image(K1_ADD1) &
103 LF & "### K2_ADD1" & " = " & real ’image(K2_ADD1) &
104 LF & "### GINT_INT1" & " = " & real ’image(GINT_INT1) &

194

C.1. Sigma-Delta ADC

105 LF & "### K1_ADD2" & " = " & real ’image(K1_ADD2) &
106 LF & "### K2_ADD2" & " = " & real ’image(K2_ADD2) &
107 LF & "### GINT_INT2" & " = " & real ’image(GINT_INT2) &
108 LF & "### TR_QUANT" & " = " & real ’image(TR_QUANT) & " " & "Sec" &
109 LF & "### VREF" & " = " & real ’image(VREF) & " " & "V" &
110 LF & "### DELTA" & " = " & real ’image(DELTA) & " " & "V" &
111 LF & "---------------------------------";
112 wait;
113 end process;
114 End struct_second_order;

C.1.3.3 Integrator

1 Library IEEE;
2 use IEEE.electrical_systems.all;
3 use IEEE.std_logic_1164.all;
4 use IEEE.math_real.all;
5 Entity Integrator is
6 generic (GINT : real := 1.0; --[] Integrator gain
7 VINIT : voltage := 0.0; --[V] Initial output voltage. Make

it equal to VREF for Delta -Sigma correct initial/disable state
8 FSMP : real := 1.0); -- [Hz] Sample frequency
9 port (signal Enable : in std_logic;

10 terminal Tin , Tout : electrical);
11 End entity Integrator;
12

13 Architecture ideal_discrete_time of Integrator is
14 quantity Vin across Tin;
15 quantity Vout across Iout through Tout;
16 quantity vin_sampled : real; -- discrete sample of input quantity
17 quantity vin_zm1 , vout_zm1 : real; -- z^-1
18 constant TSMP : real := 1.0/ FSMP; -- Sample period
19 constant N0 : real := 0.0; -- Z0 numerator coefficient
20 constant N1 : real := 1.0; -- Z^-1 numerator coefficient
21 constant D0 : real := 1.0; -- Z0 denominator coefficient
22 constant D1 : real := -1.0; -- Z^-1 denominator coefficient
23 Begin
24 if domain = quiescent_domain or Enable = ’0’ use
25 Vout == VINIT;
26 vin_sampled == 0.0;
27 vin_zm1 == 0.0;
28 vout_zm1 == 0.0;
29 else
30 vin_sampled == Vin ’zoh(TSMP);
31 vin_zm1 == vin_sampled ’delayed(TSMP);
32 vout_zm1 == Vout ’delayed(TSMP);
33 Vout == vin_sampled*N0/D0 + N1*vin_zm1/D0 - D1*vout_zm1/D0;
34 end use;
35 break on Enable;

195

Appendix C. Appendix C - Source code

36 End architecture ideal_discrete_time;

C.1.3.4 Adder

1 Library IEEE;
2 use IEEE.electrical_systems.all;
3 Entity adder is
4 generic (K1 : real := 1.0; -- First input gain factor
5 K2 : real := 1.0); -- Second input gain factor
6 port (terminal inp1 : electrical; -- First Input
7 terminal inp2 : electrical; -- Second Input
8 terminal aout : electrical); -- Output
9 End entity adder;

10

11 Architecture simple of adder is
12 quantity vout across iout through aout;
13 quantity v1 across inp1;
14 quantity v2 across inp2;
15 Begin
16 vout == K1* v1 + K2* v2;
17 End simple;

C.1.3.5 Quantizer

1 Library IEEE;
2 use IEEE.electrical_systems.all;
3 use IEEE.std_logic_1164.all;
4 Entity Quantizer_behav is
5 generic (TR : real := 0.0; --[Sec] Output transition (rise/

fall) time
6 VREF : voltage := 2.5; --[V] Reference voltage
7 DELTA : voltage := 5.0); --[V] Quantizer step
8 port (signal Enable , Clk : in std_logic;
9 signal Sout : out std_logic;

10 terminal Tin , Tout : electrical);
11 begin
12 assert DELTA >= 0.0
13 report "Quantizer step must be positive" severity error;
14 End entity Quantizer_behav;
15

16 Architecture ideal of Quantizer_behav is
17 quantity vin across Tin;
18 quantity vout across iout through Tout;
19 signal level : real := VREF; -- Quantizer output
20 Begin
21 process(Clk)

196

C.1. Sigma-Delta ADC

22 begin
23 if Enable = ’0’ then
24 Sout <= ’Z’;
25 level <= VREF;
26 elsif rising_edge(Clk) then
27 if vin >= VREF then
28 Sout <= ’1’;
29 level <= VREF + DELTA /2.0;
30 else
31 Sout <= ’0’;
32 level <= VREF - DELTA /2.0;
33 end if;
34 end if;
35 end process;
36 vout == level ’ramp(TR);
37 end ideal;

C.1.3.6 single-bit DAC

1 Library IEEE;
2 use IEEE.electrical_systems.all;
3 use IEEE.std_logic_1164.all;
4 Entity DAC_behav is
5 generic (VREF : voltage := 2.5; --[V] Reference voltage
6 DELTA : voltage := 5.0); --[V] Quantizer step
7

8 port (signal Enable , Sin : in std_logic;
9 terminal Tout : electrical);

10 begin
11 assert DELTA >= 0.0 report "Quantizer step must be positive" severity

error;
12 End entity DAC_behav;
13

14 Architecture ideal of DAC_behav is
15 quantity vout across iout through Tout;
16 constant VHIGH : real := VREF + DELTA /2.0;
17 constant VLOW : real := VREF - DELTA /2.0;
18 Begin
19 if Enable = ’0’ use
20 vout == VREF;
21 elsif Sin = ’1’ use
22 vout == VHIGH;
23 else
24 vout == VLOW;
25 end use;
26 break on Enable , Sin;
27 end ideal;

197

Appendix C. Appendix C - Source code

C.1.4 Sinc3 digital filter

1 library IEEE;
2 use IEEE.std_logic_1164.all;
3 use IEEE.std_logic_unsigned.all;
4

5 Entity Sinc3 is
6 generic (N : positive);
7 port(RESN , MOUT , MCLK , CNR : in std_logic;
8 CN5 : out std_logic_vector(N-1 downto 0));
9 End Sinc3;

10

11 Architecture RTL of Sinc3 is
12 signal DN0 , DN1 , DN3 , DN5 : std_logic_vector(N-1 downto 0);
13 signal CN1 , CN2 , CN3 , CN4 : std_logic_vector(N-1 downto 0);
14 signal DELTA1 : std_logic_vector(N-1 downto 0);
15 Begin
16 process(MCLK , RESn)
17 begin
18 if RESn = ’0’ then
19 DELTA1 <= (others => ’0’);
20 elsif MCLK ’event and MCLK = ’1’ then
21 if MOUT = ’1’ then
22 DELTA1 <= DELTA1 + 1;
23 end if;
24 end if;
25 end process;
26 process(RESN , MCLK)
27 begin
28 if RESN = ’0’ then
29 CN1 <= (others => ’0’);
30 CN2 <= (others => ’0’);
31 elsif MCLK ’event and MCLK = ’1’ then
32 CN1 <= CN1 + DELTA1;
33 CN2 <= CN2 + CN1;
34 end if;
35 end process;
36 process(RESN , CNR)
37 begin
38 if RESN = ’0’ then
39 DN0 <= (others => ’0’);
40 DN1 <= (others => ’0’);
41 DN3 <= (others => ’0’);
42 DN5 <= (others => ’0’);
43 elsif CNR ’event and CNR = ’1’ then
44 DN0 <= CN2;
45 DN1 <= DN0;
46 DN3 <= CN3;
47 DN5 <= CN4;
48 end if;
49 end process;

198

C.2. Instrumentation amplifier (INS_AMP)

50 CN3 <= DN0 - DN1;
51 CN4 <= CN3 - DN3;
52 CN5 <= CN4 - DN5;
53 end RTL;

C.2 Instrumentation amplifier (INS_AMP)

1 library ieee;
2 use ieee.electrical_systems.all;
3

4 entity instrumentation_amp is
5 generic (
6 NOM_GAIN : real := 10.0e3; -- Nominal Instrumentation Amplifier Gain
7 IN_VOFF_TYP : voltage := 5.0e-6; -- Typical input voltage offset @ 25℃[V]
8 MAX_IN_VOFF_OVER : voltage := 45.0e-6; -- Maximum input voltage offset

overtemperature [V]
9 OUT_VOFF_TYP : voltage := 100.0e-6; -- Typical output voltage offset @

25℃[V]
10 MAX_OUT_VOFF_OVER : voltage := 0.45e-3; -- Maximum output voltage offset

overtemperature [V]
11 IN_VOFFSET_TC : real := 0.3e-6; -- Average input offset TC [V/℃]
12 OUT_VOFFSET_TC : real := 5.0e-6; -- Average output offset TC [V/℃]
13 GAIN_DRIFT : real := -50.0; -- [ppm/℃]
14 RG_DRIFT : real := -10.0; -- [ppm/℃]
15 TEMP : real := 25.0; -- [℃]
16 NOM_TEMP : real := 25.0; -- [℃]
17 VSP : voltage := 5.0; -- positive supply voltage [V]
18 VSN : voltage := -5.0); -- negative supply voltage [V]
19 port (terminal tip , tim , tout , tref : electrical);
20 end entity instrumentation_amp;
21

22 architecture gain of instrumentation_amp is
23

24 function offset_voltage(VOFF_TYP:real; VOFF_OVER:real; TC:real; TEMP:
real; NOM_TEMP:real) return real is

25 --––-
26 --calculate the equivalent offset voltage at current temperature in [V]
27 --the voltage offset cannot be greater than VOFF_OVER
28 --––-
29 variable VOFF_cal : real := 0.0;
30 begin
31 VOFF_cal := VOFF_TYP + TC*(TEMP - NOM_TEMP);
32 if VOFF_cal < 0.0 then
33 if abs(VOFF_cal) > VOFF_OVER then
34 return -VOFF_OVER;
35 else
36 return VOFF_cal;
37 end if;
38 else
39 if VOFF_cal > VOFF_OVER then

199

Appendix C. Appendix C - Source code

40 return VOFF_OVER;
41 else
42 return VOFF_cal;
43 end if;
44 end if;
45 end function offset_voltage;
46

47 constant GAIN : real := NOM_GAIN *(1.0+(GAIN_DRIFT + RG_DRIFT)/1.0e6*(
TEMP - NOM_TEMP));

48 constant VOSI : real := offset_voltage(IN_VOFF_TYP , MAX_IN_VOFF_OVER ,
IN_VOFFSET_TC , TEMP , NOM_TEMP);

49 constant VOSO : real := offset_voltage(OUT_VOFF_TYP ,
MAX_OUT_VOFF_OVER , OUT_VOFFSET_TC , TEMP , NOM_TEMP);

50 constant VOFF_RTI : voltage := VOSI + VOSO/GAIN;
51 quantity vi across tip to tim;
52 quantity vo across io through tout to tref;
53 quantity vgain : voltage;
54 quantity vin : voltage;
55

56 begin
57

58 vin == vi + VOFF_RTI;
59

60 if vin ’above(VSP/GAIN) use
61 vgain == VSP;
62 elsif not vin ’above(VSN/GAIN) use
63 vgain == VSN;
64 else
65 vgain == GAIN*vin;
66 end use;
67 break on vin ’above(VSP/GAIN), vin ’above(VSN/GAIN);
68

69 vo == vgain;
70

71 end architecture gain;

C.3 Non-ideal Operational Amplifier (OPAMP)

1 library ieee;
2 use ieee.math_real.all;
3 use ieee.electrical_systems.all;
4

5 entity opamp is
6 generic (
7 TEMP : real := 25.0; -- Environment temperature [℃]
8 TEMP_NOM : real := 25.0; -- Nominal temperature [℃]
9 VSP : voltage := 10.0; -- Positive supply voltage [V]

10 VSN : voltage := -10.0; -- Negative supply voltage [V]
11 ADOLDC : real := 100.0; -- DC differential open loop gain [dB]

200

C.3. Non-ideal Operational Amplifier (OPAMP)

12 GBW : real := 1.0e6; -- gain-bandwidth product [Hz]
13 SR : real := 1.0; -- slew rate [V/us]
14 VIOFS_NOM : voltage := 0.0; -- Input offset voltage at nominal

temperature [V]
15 VIOFS_MAX : voltage := 0.0; -- Maximum input offset voltage [V]
16 VIOFS_DRIFT : real := 0.0; -- Input offset voltage drift [uV/℃]
17 IIB : current := 0.1e-12; -- input bias current [A]
18 CMRR : real := 120.0; -- common mode rejection ratio [dB]
19 PSRR : real := 120.0; -- power supply rejection ratio [dB]
20 CID : capacitance := 0.0; -- differential input capacitance [F]
21 RID : resistance := 1.0e12; -- differential input resistance [Ohm]
22 IOMAX : current := 2.0e-5; -- maximum output current [A]
23 ROUT : resistance := 50.0; -- output resistance [Ohm]
24 VSOFS : voltage := 0.0; -- supply offset voltage [V]
25 DEBUG : boolean := false); -- dump parameter values
26 port (
27 terminal tip : electrical; -- non-inverting input
28 terminal tim : electrical; -- inverting input
29 terminal tout : electrical); -- single-ended output
30 end entity opamp;
31

32 architecture nonideal of opamp is
33

34 function offset_voltage(VOFF_NOM:real; VOFF_MAX:real; TC:real; TEMP:
real; TEMP_NOM:real) return real is

35 --–––
36 --calculate the equivalent offset voltage at the current temperature in [V]
37 --the voltage offset cannot be greater than VOFF_MAX
38 --–––
39 variable VOFF_cal : real := 0.0;
40 begin
41 VOFF_cal := VOFF_NOM + TC*1.0e-6*(TEMP - TEMP_NOM);
42 if VOFF_cal > VOFF_MAX then
43 return VOFF_MAX;
44 elsif VOFF_cal < -VOFF_MAX then
45 return -VOFF_MAX;
46 else
47 return VOFF_cal;
48 end if;
49 end function offset_voltage;
50

51 -- Internal parameters:
52 constant VIOFS : real := offset_voltage(VIOFS_NOM , VIOFS_MAX ,
53 VIOFS_DRIFT , TEMP , TEMP_NOM); -- Effective input offset voltage [V]
54 constant ADOLDCL : real := 10.0**(ADOLDC /20.0); -- differential open loop

gain [V/V]
55 constant ACML : real := ADOLDCL /(10.0**(CMRR /20.0)); -- common mode

gain [V/V]
56 constant APS : real := ADOLDCL /(10.0**(PSRR /20.0)); -- Power Supply

Voltage gain for both positive and negative power supplies: APS = Add = Ass [V/V]
57 constant FP : real := GBW/ADOLDCL; -- dominant pole frequency [Hz]
58 constant WP : real := MATH_2_PI*FP; -- dominant pole frequency [rad/s]

201

Appendix C. Appendix C - Source code

59 constant CP : capacitance := IOMAX /(1.0e6*SR); -- dominant pole
capacitance [F]

60 constant RP : resistance := 1.0/(WP*CP); -- dominant pole resistance [Ohm]
61 constant GM0 : real := ADOLDCL/RP; -- transconductance [S]
62 constant VILIMP : voltage := VIOFS + IOMAX/GM0; -- positive slew rate

limit voltage [V]
63 constant VILIMM : voltage := VIOFS - IOMAX/GM0; -- negative slew rate

limit voltage [V]
64

65 -- Terminals and branch quantities:
66 quantity vip across -- positive terminal voltage
67 iibp through -- positive input bias current
68 tip; -- to electrical’reference
69

70 quantity vim across -- negative terminal voltage
71 iibm through -- negative input bias current
72 tim; -- to electrical’reference
73

74 quantity vid across -- input differential voltage
75 icid , -- differential input capacitance current
76 irid through -- differential input resistance current
77 tip to tim;
78

79 terminal np : electrical; -- internal stage node
80

81 quantity vg across -- amplified voltage
82 ig , -- transconductance current
83 ip , -- filtered current
84 ilim through -- limitation current
85 np; -- to electrical’reference
86

87 quantity vout across -- single-ended output voltage
88 iout through -- output current
89 tout; -- to electrical’reference
90

91 -- Free quantities:
92 quantity vide : voltage; -- effective inout differential voltage
93 quantity vicm : voltage; -- common mode input voltage
94 quantity igcm : current; -- common mode transconductance current
95 quantity igpps : current; -- positive power supply transconductance current
96 quantity ignps : current; -- negative power supply transconductance current
97 quantity vosatp : voltage; -- positive output voltage limit
98 quantity vosatm : voltage; -- negative output voltage limit
99

100 begin
101

102 -- Input stage:
103 vicm == (vip + vim)/2.0;
104 vide == vid + VIOFS;
105 iibp == IIB /2.0;
106 iibm == IIB /2.0;
107 icid == CID*vide ’dot;
108 irid == vide/RID;

202

C.4. Polynomial curve fitting algorithm script

109

110 -- Transconductance, slew rate and compensation stage:
111 igcm == (ACML/RP)*vicm;
112 igpps == (APS/RP)*VSP;
113 ignps == (APS/RP)*VSN;
114 if vide ’above(VILIMP) use
115 ig == -IOMAX;
116 elsif not vide ’above(VILIMM) use
117 ig == IOMAX;
118 else
119 ig == -(GM0*vide + igcm + igpps + ignps);
120 end use;
121 break on vide ’above(VILIMP), vide ’above(VILIMM);
122

123 -- Frequency-domain behavior:
124 if domain = quiescent_domain use
125 -- initial conditions for quantities:
126 vg == ADOLDCL*vide;
127 else
128 ip == CP*vg ’dot + vg/RP;
129 end use;
130

131 -- Output stage and limitation:
132 vout == vg + ROUT*iout;
133 vosatp == VSP - VSOFS;
134 vosatm == VSN + VSOFS;
135 if vout ’above(vosatp) use
136 ilim == GM0*(vout - vosatp);
137 elsif not vout ’above(vosatm) use
138 ilim == GM0*(vout - vosatm);
139 else
140 ilim == 0.0;
141 end use;
142 break on vout ’above(vosatp), vout ’above(vosatm);
143

144 end architecture nonideal;

C.4 Polynomial curve fitting algorithm script

This algorithm has been written in Matlab for multivariable polynomial curve fitting of the

TSS parameter in Equation 4.13 on page 79. In order to speed up the simulation time, the

static parametric FEA simulation is performed by only sweeping Troom and Tbus parameters.

Therefore, for a correct use of this algorithm it is required to have the Troom and Tbus vectors

as it is indicated in Table 4.2 together with the TSS (Tcoil) vector result from COMSOL for

each value of the Agap parameter in the range, as it is also described in Table 4.2 on page 78.

203

Appendix C. Appendix C - Source code

1 vect1 = ones (840 ,1);
2 % Param_Matrix Headers = [Repoxy , Troom , Tbus , Tcoil]
3 Param_Matrix = [44e-3*vect1 , Troom , Tbus , Tcoil_Re44K; 45e-3*vect1 , Troom

, Tbus ,
4 Tcoil_Re45K; 46e-3*vect1 , Troom , Tbus , Tcoil_Re46K; 47e-3*vect1 , Troom ,

Tbus ,
5 Tcoil_Re47K; 48e-3*vect1 , Troom , Tbus , Tcoil_Re48K; 49e-3*vect1 , Troom ,

Tbus ,
6 Tcoil_Re49K; 50e-3*vect1 , Troom , Tbus , Tcoil_Re50K];
7

8 % Kelvin to Celcius scaling
9 Troom_C = Param_Matrix (:,2) - 273.15;

10 Tbus_C = Param_Matrix (:,3) - 273.15;
11 Tss_C = Param_Matrix (:,4) - 273.15;
12 Agap = 49.2e-3 - Param_Matrix (:,1);
13

14 for i = 1:size(Agap ,1)
15 if Agap(i) < 0
16 Agap(i) = 0;
17 end
18 end
19

20 % Decrease the data space
21 Tbus_imp = 0;
22 Troom_imp = 0;
23 Tss_imp = 0;
24 Agap_imp = 0;
25 j=1;
26

27 for i = 1:size(Tss_C ,1)
28 if Tbus_C(i) >= Troom_C(i)
29 Tbus_imp(j) = Tbus_C(i);
30 Troom_imp(j) = Troom_C(i);
31 Tss_imp(j) = Tss_C(i);
32 Agap_imp(j) = Agap(i);
33 j=j+1;
34 end
35 end
36

37 Tbus_imp = Tbus_imp ’;
38 Troom_imp = Troom_imp ’;
39 Tss_imp = Tss_imp ’;
40 Agap_imp = Agap_imp ’;
41

42 % Curve fitting by optimization rutine:
43 [coeff , model] = fitcurvepoly(Tbus_imp , Troom_imp , Agap_imp , Tss_imp);
44 [sse , FittedCurve] = model(coeff);
45 Rsquare = 1 - sse/(sum((Tss_imp -mean(Tss_imp)).^2));
46

47 Tss_fit = coeff (1) + coeff (2)*Tbus_imp + coeff (3)*Troom_imp + coeff (4)*
Agap_imp;

The fitcurvepoly function uses the fminsearch optimization rutine of Matlab as follows:

1 function [estimates , model] = fitcurvepoly(x1 , x2, x3, y)
2 % Call fminsearch with a random starting point.
3 start_point = rand(1, 4);
4 model = @poly111;
5 estimates = fminsearch(model , start_point);
6 % poly111 accepts curve parameters as inputs , and outputs sse ,

204

C.4. Polynomial curve fitting algorithm script

7 % the sum of squares error for P0 + P1*x1 + P2*x2 + P3*x3 - y,
8 % and the FittedCurve. FMINSEARCH only needs sse , but we want
9 % to plot the FittedCurve at the end.

10 function [sse , FittedCurve] = poly111(params)
11 P0 = params (1);
12 P1 = params (2);
13 P2 = params (3);
14 P3 = params (4);
15 FittedCurve = P0 + P1*x1 + P2*x2 + P3*x3;
16 ErrorVector = FittedCurve - y;
17 sse = sum(ErrorVector .^ 2);
18 end
19 end

205

D Appendix D - Generic parameter
mapping

In order to exemplify how the principles for mapping in configurations operate, see subsection
3.5.1, let us consider Figure D.1(b), where the component small_comp is declared and instan-
tiated inside the vp_structural architecture of vp_top. The signature of this component
corresponds with the small_comp entity declaration shown in Figure D.1(a) with the excep-
tion of the first generic parameter: R1 for the component, F1 for the entity. The small_comp
component binding with the corresponding entity is done in the configuration shown in
Figure D.1(c). As the principle (I) indicates, the parameters F2 and F3 of the component are
bound by default with the corresponding parameters in the entity due to their names are equal.
However, there is no default binding for the first generic parameter since the names in the
entity and in the component are different. A compilation error will be generated if no generic
mapping is given in such case. A typical error by trying to solve this problem is defining a
generic mapping only for the parameter that needs to be bound as is shown in Figure D.1(c).
In this case, there are no compilation errors and designers can erroneously think that the
parameter is correctly bound as it is intended, i.e. to set the values of the parameters F1_C,
F2_C and F3_C as is indicated in the component instantiation in Figure D.1(b).

Figure D.1: Generic parameter mapping in configurations. This code is based on the example
VP given in Figure 3.2 on page 33.

As principle II states, the generic mapping done in the component instantiation is overwritten
and only the bindings indicated in the generic mapping in the configuration will be valid.
Consequently, any hierarchical chain of the component is broken. In this case, the generic
parameter F1 of the entity is bound to the generic parameter R1 of the component which
in turn is bound to the parameter F1_C in the component declaration. On the other hand,
since there are no generic mappings for the parameters F2 and F3 in the configuration, those

207

Appendix D. Appendix D - Generic parameter mapping

parameters will have the default value given in the entity declaration, i.e. 2.0 and 3.0 respec-
tively. If the parameters did not have a default value in the entity declaration, an error would
arise at compilation time. Taking into account the principle II, defining default values in the
component declaration, i.e. for the parameters F2 and F3 in Figure D.1(b), does not have any
effect as long as a generic mapping of the component from a configuration exists1.

From the VHDL-AMS binding mechanism highlighted in principle II, a modeling solution can
be derived for setting the value of few generic parameters via configuration, in a structural
model that has been built by using a hierarchical parameter binding approach. Let us consider
the example VP configurations shown in Figure D.2.

Figure D.2: Generic parameter mapping in configurations, application example.

Suppose that it is only required to set the values of the parameters F1 and F3 of the small_comp
component to 0.01 and -1.114 respectively. These parameters can be set from the TBC by
the two options shown in Figure D.2(a) and D.2(b). Observe that both examples produce
exactly the same result in the small_comp component. However, the code of the first example
(D.2(a)) is larger than the second example (D.2(b)) due to is mandatory to specify the generic
mapping of all parameters of the design entity bound to the component in the configuration.
Otherwise, the hierarchical bound is broken and the parameters without generic mapping will
use the default parameters of the entity. This little code size difference is trivial in this example
but can be significant in a real application with much more parameters and hierarchical levels.
Consequently, in order to have more compact configurations with less code, it is recommended
to make the generic mapping in configurations at the lowest level of the hierarchy in the VP.
In fact, as long as configurations are used for setting the generic parameters of the DUV, the
hierarchical parameter binding of the model can be ignored.

VHDL-AMS modeling language allows to set the values of the generic parameters of the
complete design from the configurations by using the following options:

1. Numeric values.

2. Constant declared in packages.

1i.e. the default values will never be used and/or compilation errors cannot be solved.

208

3. Constant declared in the architecture of the top design entity of the configuration.

4. Binding to the generic parameters of the component.

The first option is clear and straightforward. For the second option, the unique condition is
that the package which contains the constant is made visible in the configuration by using the
use clause.

The third option refers to the fact that only the constants declared at the highest level architec-
ture seen by the configuration can be used in such configuration. However, these constants
can only be used in the components declared at the highest level architecture seen by the
configuration. Using again the example shown in Figure D.2, the aforementioned restriction
means that the constants declared in the test bench architecture (named bench) can only be
used to set the values of the generic parameters of the DUV component via configurations; so
that, the numeric values in F1_C and F3_C can be replaced for constants declared in the test
bench in Figure D.2(a). Conversely, the test bench variables cannot be used in the case shown in
Figure D.2(b) since the component small_comp is out of the scope of the configuration. At the
time of this research, it has been found that this VHDL-AMS mechanism is not well supported
by the tools of the simulation framework. ModelSim from Mentor Graphics supports this
mechanism but SMASH (6.5) does not. Taking into account that this mechanism is not clearly
supported by tools and the scope of the test bench constants is limited for hierarchical models,
this option is not recommended.

Finally, the fourth option is related to the typical case of binding the generic parameters of the
entity to the generic parameter of the component. In this way, the value of the generic parame-
ter will be determined by the generic mapping in the component instantiation. Consequently,
this option is useful when it is desired to set the generic parameter values by hierarchical
parameter binding. If default parameter binding in configurations is desired, the names of
the generic parameters of the component declaration must be the same than the correspond-
ing parameter names of the entity that is bound, otherwise, the syntax to follow for generic
parameter binding is as follows:

use entity work.entity_name(architecture_name)
generic map (P_name_entity => P_name_component,

...);

where P_name_entity is the parameter name in the entity and P_name_component is the
corresponding parameter name in the component.

209

E Appendix E - Parametric and
statistical simulations in VHDL-AMS

For the design of complex heterogeneous systems, it is often desired to study the effect of
parameter variations on the behavior of components and complete systems. Parametric and
statistical simulations, such as MC simulations, are normally used to analyze the performance
and reliability of those components and systems. These type of simulations become very useful
to estimate results and trends when they cannot be obtained by using deterministic formulas.
Furthermore, applying distribution functions on the parameters of simulation models helps
to determine where design on process optimizations become necessary to get the system
behavior in an acceptable range. The ability to simulate tolerances and process variations
of the system components allows performing statistical studies for system verification and
validation.

Commonly, the mechanisms to perform parametric and statistical simulations are highly
dependent on the simulator tool. In this appendix, by using a simple example, we present how
to make standard Monte Carlo and parameter sweep simulations by using a tool independent
VHDL-AMS approach. This is possible by using the SAE J2748 statistical packages [131] and a
custom Parametric & Statistical package developed by the author of this thesis; this package
allows to make parametric sweep simulations and defining new statistical distributions based
on the SAE statistical packages.

The SAE packages support the statistical modeling of design parameters subject to tolerances
for models described using the VHDL-AMS language. The impact of tolerances in a design
that uses the SAE packages can be analyzed by a MC simulation, which consists of multiple
simulation runs of the design, each run with a different set of parameter values according to
their statistical distributions. The MC simulation yields an estimate of the behavior of the
design subject to parameter variations. Additionally, the packages can be used to perform
worst case analysis of a design, i.e. an analysis that shows if the system performance remains
in a specified range even in presence of uncertainties [18].

An interesting application example of the SAE J2748 statistical packages can be found in [132],
where the variance-reducing Monte Carlo method is presented as a technique to reduce the
simulation runs of the standard MC method when small probabilities have to be determined.

E.1 Monte Carlo simulations

In order to illustrate the usage of some important statistical functions of the SAE J2748 pack-
ages, let us consider a simple resistive voltage divider (RVD) example, see Figure E.1. The

211

Appendix E. Appendix E - Parametric and statistical simulations in VHDL-AMS

RVD is fed with a DC voltage of 10 V and uses two resistors with a nominal resistance of 1
kΩ. Thus, the output voltage Vout is equal to 5 V if there is no fluctuation in the circuit. Now,
suppose that we want to simulate the resistance tolerance effect into the output voltage. For
that purpose, we perform an Operating Point MC simulation consisting of 500 runs. In order
to simplify our analysis, we only include the tolerance effect in R2, R1 takes the nominal value
in all simulations.

Figure E.1: Block diagram of the Resistive Voltage divider test bench.

The DUV is a structural architecture which consists of two instantiations of an ideal resistor
component. The most important part of the test bench code is shown in Figure E.2. We can
observe in lines 2, 3, and 4 how the STATISTICS and STATISTIC_CONTROL packages of the
SAE J2748 are used. As it is explained in [131] (chapter 4), the SAE functions can be used to
assign statistical distributions to constants inside a model or outside of a model, i.e. by using
a generic map instantiation. In order to get a maximum flexibility for the manipulation of the
models, as a general rule, we recommend setting the statistical distributions outside of the
models, i.e. from the test bench or from the main packages of the design as is explained in the
modeling guidelines, section 3.3.

Defining the statistical distributions inside the models works for a few number of parameters,
but may become unmanageable for models with many parameters. Moreover, to simulate the
design with different distributions would require manipulating the architectures of the design
in a more complicated way. Therefore, the SAE package must be used at the top level design
unit, as it is shown in Figure E.2.

Let us concentrate our attention on the code shown from line 25 to 28 in Figure E.2. In order
to set the nominal value to the resistor R1, it is enough to write the numerical value in line 25
as it is done for the constant R1_NOM in line 14. However, we can also write as follows:

constant R1_RAND : resistance := VHDL_UTILITY.STATISTICS.UNIFORM(R1_NOM,
TOL, STAT_NOMINAL);

212

E.1. Monte Carlo simulations

Figure E.2: test_stat architecture of the RVD Test Bench.

where the first argument R1_NOM is the nominal resistance value, the second argument TOL is
the tolerance value, and the third argument is a STAT_CONTROL deferred constant value, see the
complete definition in [131]. There are 3 possible values for this argument: if the constant has a
value of STAT_NOMINAL, all regular distribution functions (in this case the UNIFORM function)
will return nominal values. If the constant has a value of STAT_STATISTICAL, the distribution
functions will return statistical values. If the constant has a value of STAT_INTEGRATED, the
simulator will control whether nominal or statistical values will be returned by the distribution
functions. In the specific case of the SMASH 6.5 simulator, the STATISTIC_CONTROL package
is only partially integrated; therefore, the STAT_INTEGRATED value must not be used. The
default value is STAT_NOMINAL.

In this example, we are using the UNIFORM distribution function of the SAE package, nonethe-
less, we can use any of the functions of the SAE package. As long as this argument is set to the
value STAT_NOMINAL, the value of R1_RAND will be the value of R1_NOM, i.e. 1 kΩ. Since it is
easy to switch between nominal and random values for the constant parameters, it is a good
practice to set all the potential statistical parameters of the design in this way from the test
bench. Finally, random values for the resistor R2 are assigned by setting a distribution function
at the constant R2_RAND in lines 27-28 of Figure E.2. Some illustrative examples are given in
the following sub-sections.

E.1.1 Uniform distribution

constant R2_RAND : resistance := VHDL_UTILITY.STATISTICS.UNIFORM(R2_NOM, TOL,
STAT_STATISTICAL);

If R2_RAND is defined as it is specified above, the R2 resistor value will be uniformly distributed
between 900Ω and 1100Ω (i.e. 1 kΩ±10%) given the TOL value declared at line 18 in Figure
E.2. We can observe in Figure E.3 that the histograms of both the R2 resistor value and the
Vout voltage denote approximately a uniform distribution after 500 runs of MC simulation.
The higher the number of runs the closer is the histogram graph to a uniform distribution1.

1The same affirmation is true for all the probability distributions presented in this appendix.

213

Appendix E. Appendix E - Parametric and statistical simulations in VHDL-AMS

(a) (b)

Figure E.3: Uniform distribution histograms. (a) R2 resistor value. (b) RVD output voltage.

E.1.2 Normal distribution

constant R2_RAND : resistance := VHDL_UTILITY.STATISTICS.NORMAL(R2_NOM, TOL,
False, NSTD, STAT_STATISTICAL);

By using the definition above for setting the value of R2_RAND constant, the R2 resistor value
will be normally distributed with a mean equal to the nominal value (µ= 1000) and a standard
deviation equal to: R2_NOM * TOL/NSTD (σ= 50.0). This normal distribution is not truncated
at maximum and minimum values, which are given by the NSTD parameter. NSTD defines how
many standard deviations are between minimum and nominal value, and between nominal
and maximum value. Figures E.4(a) and E.4(b) demonstrate that both R2 and Vout values are
normally distributed as it is defined in the R2_RAND constant declaration.

(a) (b)

Figure E.4: Normal distribution histograms. (a) R2 resistor value. (b) RVD output voltage.

214

E.1. Monte Carlo simulations

E.1.3 Piecewise linear distribution given as PDF

constant R2_RAND : resistance := VHDL_UTILITY.STATISTICS.PWL_PDF(R2_NOM, TOL,
((-1.0,0.8),(0.0,0.01),(1.0,2.9)), STAT_STATISTICAL);

Some statistical processes might not behave as a standard probability density function (PDF)
with a specific equation. If we can observe experimentally the statistical behavior of a random
variable, we can use a piecewise linear distribution to approximate the behavior of the random
variable. The SAE package offers two useful ways to define a distribution, the piecewise linear
distribution given as a cumulative density function (PWL_CDF) or a piecewise linear distribution
given as a PDF (PWL_PDF), see the R2_RAND declaration above. In this example, the parameters
R2_NOM and TOL are defined with the same tolerance range as in the previous examples (1
kΩ±10%). Additionally, it is required to add a real (x,y) pair table, which the abscissa values (x)
must be defined on a normalized scale, where -1, 0, 1 correspond respectively to the minimum,
nominal, and maximum values. The ordinate values (y) are weight coefficients (greater than
zero) proportional to the PDF value of the abscissa points. Figure E.5 shows the respective
results for the R2 and Vout distributions.

(a) (b)

Figure E.5: Histograms of the Piecewise linear distribution given as PDF. (a) R2 resistor value.
(b) RVD output voltage.

E.1.4 Bernoulli distribution

constant R2_RAND : resistance := VHDL_UTILITY.STATISTICS.BERNOULLI(R2_NOM,
MIN_R2, MAX_R2, PMAX_R2, STAT_STATISTICAL);

An interesting random variable case that the SAE package allows easily simulating is the
Bernoulli distribution, which is a discrete distribution that has two possible outputs, one
with probability P, and the other with probability 1-P. The R2_RAND declaration above allows
simulating the resistor value R2 from two possible values: MIN_R2 and MAX_R2. The probability
of returning the value MAX_R2 is PMAX_R2, whereas the probability of returning MIN_R2 is 1 -
PMAX_R2. Given the values of MIN_R2, MAX_R2, and PMAX_R2 in lines 20, 21, and 22 respectively
in Figure E.2 on page 213, the MC simulation result is given in Figure E.6.

215

Appendix E. Appendix E - Parametric and statistical simulations in VHDL-AMS

(a) (b)

Figure E.6: Bernoulli distribution histograms. (a) R2 resistor value. (b) RVD output voltage.

Although the Bernoulli distribution is not an adequate PDF for modeling resistor values, it
is very useful for modeling the random behavior of boolean parameters. Likewise, the SAE
package offers additional discrete distribution functions such as the DISCRETE_CDF and the
DISCRETE_PDF, see more details in [131].

E.2 Parameter sweep simulations

Another type of simulations that are often exclusively dependent on the simulator features
are the parametric simulations. Graphical and code-based simulator tools from the main
vendors such as Dolphin Integration, Mentor Graphics, and Cadence, allow VHDL-AMS imple-
mentations, but they do not use the same mechanism to define parameters for implementing
parametric simulations. This is one of the main issues to implement platform-independent
models able to be simulated in any software simulator.

The author of this thesis has developed a platform-independent VHDL-AMS-based mecha-
nism to execute single and multiple parameter sweep simulations using the same approach
of the SAE packages. It is important mentioning that the simulator must offer the possibi-
lity to run multiple simulations of the standard simulation types, i.e. operating point (DC),
time-domain (transient), and frequency-domain (AC) simulations. In general, the simulators
offer two ways to perform multiple simulations: using a MC command (e.g. .MC in SMASH)
for running MC simulations or using a parametric sweep command (e.g. .STEP in SMASH)
for running parameter sweep simulations. Our approach works with the two options with
some restrictions and specifications that are detailed in this appendix. For this purpose, the
custom package PARAMETRIC_STATISTICAL_PKG has been created to group the parameter
sweep functions and other custom statistical distributions based on the SAE packages [131].

Figure E.7 shows the declaration of the impure function Sweep, which is meant to be used with
the MC command of the simulator. This function assigns a parameter value starting from the
minimum (min_val) until the maximum (max_val) argument by increasing the amount given
by the step argument. The function receives a string argument param_name to distinguish
among two or more parameters that can be swept at the same time. The Sweep function has
been implemented by using an external text file for reading and storing the parameter value

216

E.2. Parameter sweep simulations

of the next simulation run; it employs one file per each parameter swept. The function uses
the STAT_CONTROL deferred constant from the STATISTICS_CONTROL package to control the
initialization of the parameter file2. The simulator always performs the first simulation using
the STAT_NOMINAL value, in which is created the corresponding parameter file and returns the
min_val for the first simulation.

Figure E.7: Sweep function declaration to be used with MC simulations.

Similarly, by using function overloading, the Sweep function can also be used with the standard
parametric sweep command provided in all simulators. In Figure E.8 we can observe that this
function requires the same arguments that the Sweep function for MC simulations with the
exception of the mode argument. Since the mode argument can be omitted in the instantiation
of the Sweep function for MC simulations, the order of the arguments is different in the Sweep
function for standard parametric simulations with the purpose of making a stronger difference
between both functions. The difference relies on the fact that the Sweep function for standard
parametric simulations requires the parameter name (param_name) as the first argument,
whereas the same argument for the Sweep function for MC simulations is given in fourth
place.

Figure E.8: Sweep function declaration for standard parametric simulations.

The Sweep function for standard parametric simulations does not need to use any function
from the SAE package and it is completely independent of the simulator. However, the price to
pay for tool non-dependency is a relative smaller simulation efficiency in comparison to the
previous Sweep function and to the own mechanism of the simulator to perform parametric
simulations. This is mainly caused by the additional burden to open files to write and read
control variables and parameter values. Before using the Sweep function for standard paramet-
ric simulations, the user must make an external initialization of the control file (First_run.dat).
This text file contains just 2 lines of data: the first line holds a boolean value (TRUE or FALSE)
of the variable in charged of making the initialization of the parameter file and setting the
min_val as the first value for simulation; the second line holds an integer number which speci-
fies the number of parameters to be swept by one or more Sweep function calls. It is important
clarifying that one Sweep function call only sweeps one parameter. For multiple-parameter
sweeping more calls to this function must be done from the test bench or any other design
entity in which the PARAMETRIC_STATISTICAL_PKG package is used.

In order to better explain the operation of the aforementioned Sweep functions, let us use the

2In line 5 of Figure E.7, the STAT_MODE constant contains the current value of the STATISTICS_CONTROL
constant.

217

Appendix E. Appendix E - Parametric and statistical simulations in VHDL-AMS

same example previously introduced in section E.1, the RVD test bench, see Figure E.1 on
page 212.

Figure E.9: test_param architecture of the RVD Test Bench.

Let us consider the test bench code shown in Figure E.9, the custom parametric and statistical
package is included in line 9. In this case, we want to keep constant the R1 resistance value as
is shown in line 18 whilst sweeping the R2 resistance value from 50Ω to 2000Ω in steps of 50
Ω. For this purpose, the R2_PARAM constant highlighted in line 20 must be declared as follows:

For MC simulations:

constant R2_PARAM : resistance := WORK.PARAMETRIC_STATISTICAL_PKG.Sweep(50.0,
2.0e3, 50.0, "R2");

For standard parametric simulations:

constant R2_PARAM : resistance := WORK.PARAMETRIC_STATISTICAL_PKG.Sweep("R2",
50.0, 2.0e3, 50.0);

The result for both cases is the same, see Figure E.10. In order to sweep the R2 resistance
over the complete range, it is required to run 40 operating point simulations. For the MC
simulations case, the first simulation is always using the nominal value, i.e. min_val.

Therefore, the number of MC simulations to indicate in the simulator is always equal to the
maximum number of requested simulations (in the case of sweeping additional parameters
at the same time) minus one, in our case 39. If more simulations are run than the required,
the initial value of the parameter will be again set, and therefore, the sweep will be executed
cyclically. For the standard parametric simulations case, there is no need to calculate the
required number of simulations to execute due to the minimum, maximum, and step values
of the parametric simulation can be directly indicated in the simulator graphical interface
(or using a directive). It is only required to indicate in the simulator the same values of the
parameter to be swept with the largest amount of requested simulations. Similarly to the MC
simulation case, the parameter sweep will be executed cyclically if the number of requested
simulations are exceeded for the indicated range.

218

E.2. Parameter sweep simulations

Figure E.10: RVD output voltage (Vout) vs. R2 resistor value. Operating point parametric
sweep simulation result.

Although the previously defined Sweep functions allow multiple parameter sweeps, it can be
easily noticed that these functions do not support nested parameter sweeping. The nested
parameter sweeping requires the simulation every single possible value of one parameter
with every single possible value of other parameters that are being swept. The algorithm is
implemented in the NestedSweep function included in the PARAMETRIC_STATISTICAL_PKG
package, see the function declaration in Figure E.11.

Figure E.11: NestedSweep function declaration for MC simulations.

The NestedSweep function receives as arguments the min_val, max_val, and step real vec-
tors. The min_val vector contains all the minimum (initial) values of the arguments to be
swept, the max_val vector contains all the maximum (stop) values of the arguments to be
swept, and the step vector contains all the step values of the arguments to be swept. The order
of the real parameter values in these vectors must correspond to the order of the parameters
entered in the param_name vector, which is a string vector that contains the names of the
parameters to be swept. Since the elements of a composite type must be constrained in VHDL,
the size of the subtype STRING must be constrained. STRING is an array of characters in VHDL;
therefore, the string vector is defined as follows:

type STRING_VECTOR is array (NATURAL range <>) of STRING(1 to 3);

Consequently, the parameter names must be exactly of 3 characters. Additionally, the function

219

Appendix E. Appendix E - Parametric and statistical simulations in VHDL-AMS

creates a text control file (called NestedCounter.dat), which contains the number of simulati-
ons to perform for each parameter, they are stored as integer numbers in the file, one number
per line. The number of MC simulations to run can be easily calculated by multiplying all the
numbers of the NestedCounter.dat file minus one: (C1*C2*...Cn - 1) where Ci is the integer
value in each row of the NestedCounter.dat file.

In order to explain how to use the NestedSweep function, let us consider the same RVD
example on Figure E.1 on page 212. In this case, we want to perform a nested sweep simulation
on R1 and R2 resistance values. R1 will be swept from 1 kΩ to 3 kΩ in steps of 200Ω, whilst
R2 will be swept from 500 Ω to 3.5 kΩ in steps of 500 Ω. The test bench code shown in
Figure E.12 contains the constant declarations of the arguments required by the NestedSweep
function in this example: the string vector PARAM_NESTED and the 3 real vectors MINV_NESTED,
MAXV_NESTED, and STEP_NESTED, see lines 18 to 21.

Figure E.12: test_nested architecture of the RVD Test Bench.

The NestedSweep function returns a real vector which contains the swept values of the para-
meters given by the PARAM_NESTED vector in the same order. The declaration of the constant
which contains those values (PARAM_VAL) is highlighted in line 22, the NestedSweep function
must be used in this line as follows:

constant PARAM_VAL : real_vector :=
WORK.PARAMETRIC_STATISTICAL_PKG.NestedSweep(MINV_NESTED, MAXV_NESTED,

STEP_NESTED, PARAM_NESTED);

Lines 23 and 24 show how the swept of R1 and R2 resistances can be obtained from the
PARAM_VAL vector. It is worth mentioning that these vector constants can be directly used
in the generic map of the RVD component or in any other instruction, without creating the
additional constants R1_PARAM and R2_PARAM. These constants are used only for illustrative
purpose.

Finally, the integer values contained in the NestedCounter.dat file are 11 and 7, meaning that
the amount of required MC simulation runs is 76. After post-processing, the simulation results
can be observed in the surface plot shown in Figure E.13.

220

E.3. Defining custom statistical distributions

Figure E.13: Surface plot of the output voltage Vout and the swept values R1 and R2 in the RVD
circuit example. Operating point nested parametric sweep simulation result.

E.3 Defining custom statistical distributions

One of the most useful features of the SAE packages is the option to define new statistical
distributions by using the standard distribution functions as building blocks. The standard
distribution functions return a random value on a normalized scale according to the statistical
distribution implemented by the function. The SAE J27748 provides 8 standard distribution
functions, they are fully described in [131].

The user custom statistical distributions should not be added to the SAE packages, the
PARAMETRIC_STATISTICAL_PKG package has been created for this purpose. In Figure E.14 we
observe an example of how an exponential distribution function can be created. The MEAN
value of the distribution is returned if the MODE flag is set to return a nominal value by the
deferred control constant STAT_NOMINAL. The implementation of the exponential function
uses the standard distribution function STD_UNIFORM from the STATISTICS package.

Using the RVD circuit example used for the regular distribution functions of the SAE package,
under the same conditions provided in the test bench code in Figure E.2 on page 213, the
MC simulation results for R2 resistor value and the Vout RVD output voltage are depicted in
Figure E.15. The random variable R2_RAND which is used to call the EXPONENTIAL function is
declared as follows:

constant R2_RAND : resistance :=
WORK.PARAMETRIC_STATISTICAL_PKG.EXPONENTIAL(R2_NOM);

In this case, we can observe clearly that Vout does not present the same exponential behavior
as R2. New statistical distributions can be defined by the combination of several types of basic
statistical distributions and the interaction of additional variables in the system.

221

Appendix E. Appendix E - Parametric and statistical simulations in VHDL-AMS

Figure E.14: Exponential distribution function. Custom statistical distribution.

(a) (b)

Figure E.15: Exponential distribution histograms. (a) R2 resistor value. (b) RVD output voltage.

222

F Appendix F - VP-Model Library
implementation

This appendix describes the implementation, deployment, and the detailed infrastructure of
the proposed VP-Model Library database.

F.1 Database implementation and deployment

The prototype of the VP-Model Library has been created in a commercial database software
(Filemaker Pro 121) to demonstrate, explain, and investigate the library scope, benefits, and
limitations. One of the main challenges for the implementation of the VP-Model Library is the
construction of a rather complex relational database, see Figure F.1. The VP-Model Library
database consists of a set of tables that are dedicated to storing model metadata according to
the structure shown in Figure F.1. Each table uses an identifier (ID) record that allows to create
equality (=) or Cartesian product (X) relationships for correct navigation and data displaying
functionality. The related data among two or more tables is displayed through scroll-down
window portals and select buttons in the database views, see section F.2.

The prototype of the VP-Model Library has been deployed on a single Windows machine using
Filemaker Server 12 so that the access to the database and its file repository is on-line by
using any Internet browser. Therefore, the VP-Model Library is independent of any simulation
framework software.

Filemaker Server allows administrating the database remotely by using a simple graphical user
interface (GUI). The method to publish the database on-line is called instant web publishing
(IWP), which allow to publish several databases using the same database homepage, see Figure
F.2 on page 225. Full access database administrators have their own password-protected
account which allows them to enable/disable and update database files from any computer.

F.1.1 VP-Model Library actors

The VP-Model Library need to be used and manipulated by three main actors in order to
support the VP-based design methodology implementation for CPS development, presented
in chapter 5 on page 133. Therefore, three fundamental types of privilege sets are available in
the VP-Model Library. Each privilege set is defined by a set of permissions that can be used to
create password protected access accounts to the VP-Model Library. The three main actors
and their privilege sets are described as follows:

1http://www.filemaker.com/

223

http://www.filemaker.com/

Appendix F. Appendix F - VP-Model Library implementation

Figure F.1: Relationship graph of the VP-Model Library database. Each table of the database is
represented by a different color; duplicated tables share the same color.

Administrators: The administrators are responsible for the VP-Model Library operation,
update, and maintenance. This applies not only to the database files but also for the file
repository structure and its content. Only the administrators can modify the library con-
tent. Therefore, administrators possess a full-access privilege set, meaning that they have
unrestricted access to any content in the database. Two types of administrators can be dis-
tinguished: infrastructure administrators, which are responsible for the library structural
maintenance and design; and the content administrators, which are responsible for populat-
ing and maintaining the library content as is explained in section 5.4 on page 155.

Contributors: A contributor is a person (active system or subsystem-level designer) who
elaborates, verifies, documents, and/or requests VHDL-AMS modeling elements at any ab-
straction level. In order to avoid misuse of the library services and errors in the data entry, the
contributors cannot modify directly the VP-Model Library database, they have the same access
privileges than VP-Model Library users. Instead, the contributors send their model contribu-
tions and/or model requests by using an MRF. An MRF is a light copy of the VP-Model Library

224

F.1. Database implementation and deployment

which contains few model entries as examples, and database write privileges for contributors,
i.e. contributors can include new model entries with their related metadata using an MRF
dedicated for each contributor, see Figure F.2. MRFs are used for both submitting modeling
requests and for collecting all type of modeling elements and their respective documentation.

Figure F.2: Instant Web Publishing home page.

Users: A VP-Model Library user has read-only access privileges to the database and its file
repository. The users can browse, query, sort records, and download model documentation
from the VP-Model Library views. Users cannot create, modify or delete any information in the
database. They only have permissions to modify certain fields used for navigation purposes.

F.1.2 IP security

The VP-Model Library database offers the capability to reuse and share models and their
related IP not only among internal company designers and managers but also outside the
company. This is why IP protection is a fundamental requirement for the library utilization.

VP-Model Library administrators can create new privilege sets based on the three main types
given in the previous subsection. Different access accounts, always password protected, can
be created by modifying their privilege sets. For example, suppose that the company has two
types of users of the VP-Model Library: external and internal users. The internal users have
read access to all the models contained in the library. But, suppose that the company wants to
limit the access to some models of the library to external users. In this case, a new account
can be created which uses a modified privilege set based on the Users main set described in
subsection F.1.1.

Since the VP-Model Library is an on-line database, it is vulnerable to hacker attacks as any
other on-line infrastructure. Therefore, if the security threat is a top priority for the company,
strong server authentication and encryption protections are recommended. However, this is
out of the scope of this research.

225

Appendix F. Appendix F - VP-Model Library implementation

F.1.3 File repository setup

In order to better understand the structure of the file repository of the model library explained
in this subsection, it is recommended to revise the VP-Model Library structure described in
section F.2 on page 227 before reading this subsection.

All the database model metafiles such as symbols, source codes, documentation and project
files are stored in a Linux-based Apache (Red Hat) HTTP server. This folder is password
protected, and it uses the same login data of the VP-Model Library. The organization of the
VP-Model Library folder is shown in Figure F.3. The structure consists of three main folders:
Containers, Simulation_Projects, and Source_Code.

Figure F.3: Model_library folder organization example.

Firstly, the Containers folder is dedicated to storing the symbols, the block diagrams and
any other image of the VP-Model Library. The Containers folder has 4 subfolders as it is
shown in Figure F.3. The Symbols folder contains all the Symbol diagrams of the models in
the library database. The image must be stored using the MODEL_ID number of the respective
model record. The Model_Block_Diagram folder contains the block diagram images of the
model implementations (architectures) in the database. The image must be stored using

226

F.2. VP-Model Library structure

the Implementation number IMP_ID of the respective implementation (architecture). The
TB_Block_Diagram folder contains the images of the block diagram of the associated test
bench. The image must be stored using the Bench_ID number of the respective test bench.
Finally, The TB_Example_Results folder contains the images of relevant simulation results
of the associated test bench. The images must be stored using the Bench_ID number of the
respective test bench.

Secondly, for storing simulation project files, the database administrators must create a folder
inside the Simulation_Projects folder by following this naming rule for the new folder and
its subfolders:

/BENCH_ID_N/Software_tool/Bench_name/

where N is the respective Bench_ID number, Software_tool is the name of the software tool
used for the test bench simulation and Bench_name is the name of the respective test bench.

Finally, the source code files of the library models are stored in the Source_Code folder. For
the different code files of the library, it has been chosen a practical organization which consists
of 3 main sub-folders shown in Figure F.3. Each of these folders represents a library view: In
the folder Packages, the package files are stored using the unique PACKAGE_ID number at the
beginning of the file name for every single package file. The folder Testbenches is dedicated
to storing test bench files. There is a folder for every single test bench record in the database,
which is named by using the unique BENCH_ID identifier. Inside these folders must be stored
the respective test bench file and any other associated file. Similarly, the Models folder is
dedicated to storing source code files for every single model record in the database. A folder
using the unique MODEL_ID identifier as name, see Figure F.3, is used to store de source code
of all the model implementations related to the respective model record. The source code
of the models inside these folders is characterized by a unique Implementation ID number
(IMP_ID) which is binding the file which its respective location in the database.

F.1.3.1 Version Control System

The history of all the documents related to the models (i.e. source code, documentation,
pictures, etc.) is managed by the version control system (VCS) software (GIT - http://git-scm.
com/). It is highly recommended for VP-Model Library users to have their own version
controlling application in for their simulation projects using the same or similar tools. The
version tracking system is independent of the database software. The VP-Model Library
provides a link to the latest version of the source code files. It is also desired to count with a
link to the history of the source code files from the VP-Model Library; however, since the file
history is managed externally by GIT software, this was not fully implemented.

F.2 VP-Model Library structure

The metadata of the component models, VPs, and their verification models and files (i.e. test
benches, packages, and configurations), are stored in tables following the structure displayed in
Figure F.1 on page 224. The metadata is accessed via database views, which are data interfaces
holding alphanumeric fields, graphical fields, portal and tab windows for displaying related
metadata. The views of the VP-Model Library are explained in the three following subsections.

227

http://git-scm.com/
http://git-scm.com/

Appendix F. Appendix F - VP-Model Library implementation

F.2.1 Model views

Figure F.4: Model detailed view example (Pockels-cell).

The model records and its related metadata are displayed in the Model views. The VP-Model
Library is implemented with three model views: list view, quick view, and detailed view. The
list and quick views are dedicated to showing summarized data, e.g. the name and description
of the model, in order to facilitate a fast search of models. The detailed view shows the
complete model information, see Figure F.4. Each model record can be dedicated to a simple
component model or to a more complex VP; it is important mentioning that the VP-Model
Library can link the metadata of several component models records used in a more complex
hierarchical component model or VP.

From the VHDL-AMS perspective, a model record in these views defines a design entity with a
well-defined interface, i.e. an entity declaration with a set of well-defined generic parameters
and ports (model signature). Similar model implementations that model the same component
or system, but using different port interfaces (disregarding the model parameters), need to
be included in separated model records. For example, an ADC can be modeled at particular
refinement levels by using different system architectures such as successive approximation,
sigma-delta, direct conversion, etc. Therefore, the ADC model can consist of several model
implementations related to the same model record if they share the same port interface;
otherwise, another model record is required for storing the different model implementations.
If the entity of different model implementations only differs in the number and type of generic
parameters, they can be included in the same model record. In this case, the model signature
will contain the union of the generic parameters of all model implementations.

The example given in Figure F.4 shows a model with two implementations. Each model record

228

F.2. VP-Model Library structure

has a unique positive integer identifier number called MODEL_ID, see left-bottom part of the
figure. Likewise, each model implementation has a unique positive integer identifier number
called IMP_ID as it is shown in the figure. The description of the fields and portals of the
detailed view is given as follows:

1. Model Name: Complete and self-explicative name of the Model. Since a model can have
several implementations, the Model Name must be a general name which encloses all
the possible implementations of that model. An appropriate generic name, related to
the function of such model, is the principal criterion to search for models.

2. Symbol Diagram: This is an abstract diagram of the model that shows the port interface
of the model represented as a ‘black-box’. All the interface ports must be clearly depicted
in the symbol.

3. Model Category: It refers to the classification of the model inside the library structure;
it represent a list of keywords of the model. This field is important for model searching
together with the Model Name field. In order to facilitate the searching process of the
model, the Model Category field contains one or more keywords related to the domain,
functionalities, algorithms, and type of the device/system that is modeled. The order of
the keywords is not relevant. For instance, for a specific ADC model that implements the
successive approximation algorithm, the keywords could be: \ Electrical \ Mixed-signal
\ Converters \ Successive approximation.

4. Model Status: This field indicates the status of the model according to its level of
development. A series of accumulative levels classify the model in a certain status,
meaning that it complies with the characteristics of that level and all the previous
levels from the most basic status defined in the Model Library. The model status levels
available in MRFs and in the VP-Model Library are listed as follows:

(a) Requested: It means that the model does not exist yet, but the desired function
and interface can be described and requested using an MRF. In this way, the MRFs
can be used as a bidirectional communication channel between system/subsystem
designers and the Model maintenance process, see section 5.4 on page 155. This
status is only used in MRFs for Contributors or Administrators.

(b) In development: This status is meant for unfinished models or finished but not
verified models. Since the VP-Model Library only contains conditioned models,
models with this status only can appear in MRFs. If an incomplete/problematic
model needs to be shared (e.g. for analysis and correction purposes), the model
can be documented in an MRF. If the model is finished but the verification is
executed by another person, the model can be documented and shared using an
MRF.

(c) Verified: In this status, at least the main functionality of the model has been
verified in simulation. In a simple model, a complete functional verification is
done by properly identifying the operational range of the interface ports and
the parameters of the model. The main cause of simulation failure/errors when
building complex hierarchical models by aggregation of simpler models, is the
simulation out of the operational range of the model variables. This is why it is
highly desirable to perform a robust functional verification of the model before
performing further verifications towards the device/system validation. A verified
model must include one or more test benches properly documented and stored in
the VP-Model Library, see more details in subsection F.2.2 on page 239.

229

Appendix F. Appendix F - VP-Model Library implementation

(d) Validated: In this status, the model has a high development process, it has been
both verified extensively and validated against experimental data. Normally, these
are highly refined models that pass through a model validation process using
physical prototypes for experimental measurements. The model accuracy and
precision can be estimated when the simulation and experimental conditions very
close.

5. Last update: Date of the last update of the model. This date must correspond to the
current version of the model.

6. Model Type: This field indicates the type of the model from the more simple and general
to the more complex and specific type of model. The classification considers three
types:

(a) Utility: These type of models describe very basic (ideal) behaviors which are essen-
tial for the operation of test benches or other hierarchical models; these models are
building blocks. For instance, passive circuit elements such as resistors, inductors
or capacitors, which can be used to create more complex models. Likewise, these
models can also be functional blocks for producing excitation signals or measuring
output signals of a design under verification (DUV) in a test bench; for example,
signal sources or standard signal processing units. The sole condition of a model
to be classified as Utility is that it has a high probability to be reused for different
applications. Since the utility models possess a simple functionality and they are
needed to build test benches for another type of models, they do not require a
dedicated test bench to verify them exclusively.

(b) Application Specific: As it name suggest, these type of models have been created
to be used in a specific application. The application range of these models is less
general than the utility models. Some models can have more potential to be reused
than others; therefore, they are less Application Specific. In principle, every
single model in the library has a potential to be completely or partially reused.
Frequently, the size and the complexity of the model is directly proportional to the
specificity of the model.

(c) General Application: This type of models can be used in different applications for
several purposes. General purpose models can describe more complex behaviors
and functionalities than the Utility models; for example, digital or analog compo-
nents such as converters, amplifiers, adders, multipliers, integrators, etc. These
models can have any implementation type, i.e. they can be functional, behavioral,
physical, or hierarchical models.

(d) Virtual Prototype: These are hierarchical models composed of several component
models which execute multiple specific applications for producing a particular
functionality. These models can be very complex in terms of interconnections
and number of parameters (not necessarily in the number of components), they
represent the complete system to be designed that is often an important part of a
CPS or a complete CPS.

7. Model Class: This field indicates the class of the model based on two class criteria:

(a) Dependent: These models are part of a bigger model/architecture that carries out a
specific task or represents certain behavior. Dependent models do not make sense
if they are used alone or without their correspondent co-models. For example, the
Thermal Coupling model of the electro-thermal Rogowski coil model (ETRCM)
(see Figure 4.4 on page 58) cannot be used alone or connected with a different set

230

F.2. VP-Model Library structure

of models. Dependent models are always Application specific model types, but
Application specific models are not necessarily Dependent models.

(b) Standalone: These are independent models that can be used in an autonomous
way according to its model type, i.e. they can be used for several applications or
they can be only used for specific applications but in different ways. For example,
the Busbar Thermal model that is part of the ETRCM is an Application specific and
Standalone model that can be used in other architectures or configurations within
its application context, i.e. a Standalone model is not automatically tied to any
architecture and can be used alone.

8. Model Description: This field is dedicated to explaining what the model is about and
what are its applications in general terms. A self-explicative summary of the model with
its main characteristics should be included. The detailed description of the model im-
plementations should not be included in this field, it must be included in the respective
description fields in the Implementations portal, see subsection F.2.1.4 on page 234.

F.2.1.1 Dependencies

The Dependencies are the set of specific libraries and/or packages that the model requires for
a proper operation. The related fields are explained as follows:

1. Library: This is the specific name of the VHDL-AMS design library used by the model
(at the top level). All the list of standard and non-standard libraries of the model must be
included. For custom packages contained in the VP-Model Library, the name displayed
in this field is VP, it must be properly documented in the Custom Packages view2, see
section F.2.4 on page 244.

2. Package name: As its name suggests, this is the name of the package contained in the
specified library.

3. Package ID: For packages contained in the VP-Model Library database, this is the ID
number of the package record. The button ‘Go’ is a link to the respective package
information. Standard libraries such as the IEEE (in VHDL and VHDL-AMS) are not
contained in the database.

F.2.1.2 Ports

The Ports portal contains the list of the port interface of the model. It is important to mention
that the field structure of the port interface has been designed to comply VHDL-AMS port
specifications. Although the port properties do not always have the same meaning among the
different description languages, the port classification proposed here can be used to classify
any computational mockup interface in any description language supported by the simulation
framework.

1. Class: This refers to the sort/class of port. The following classes are defined based on
VHDL-AMS terminology:

2Custom library names should not use the name WORK. The design library WORK is a logical name defined in
the IEEE VHDL-AMS standard that refers to a physical design library (some folder or directory) that is hosting the
binary codes of compiled design units. Custom design libraries should have more meaningful names.

231

Appendix F. Appendix F - VP-Model Library implementation

Figure F.5: Ports portal corresponding to the Pockels-cell example of Figure F.4.

(a) Signal-flow: is the class of port used to represent an analog value such as a voltage
or a current level which is a continuous function of time. This class is directly
related to quantity ports in VHDL-AMS.

(b) Conservative: This port class represents the energy-conservative connection
nodes. A key feature of a conservative port is the two values associated with
that node: the across and the through values. Any node in a conservative system
(e.g. electrical, mechanical, or thermal system), is modeled by two quantities: the
potential (also known as the across value) and the flow (also known as the through
value). When a component is connected to a conservative port, it can either affect
or be affected, by either the potential and/or the flow through the port. In this way,
the conservation of the energy is modeled.

(c) Discrete-event: This class is normally used to represent digital signals of different
nature; e.g. the input clock signal of a synchronous digital block. This class is
directly related to the signal ports in VHDL and VHDL-AMS.

2. Name: Name of the port as is written in the source code.

3. Type: This field keeps the information of the port type (nature) that is normally (always
in VHDL-AMS) giving more specific information about the port class. For example, in
electrical circuits, an electrical port can be modeled as a conservative terminal port
of nature ELECTRICAL. It means that to this node is associated an across (voltage) and
through (current) values (branch quantities). Likewise, multi-domain conservative and
signal-flow ports of different natures (e.g. electrical, thermal, hydraulical) can also be
modeled. For Discrete-event ports, the Type is directly related to the values that the
digital signal can have; e.g. BIT, STD_LOGIC or other types. For any other kind of port in
VHDL-AMS or any other description language, this field should contain the information
of the basic types, e.g. REAL, INTEGER, BOOLEAN, etc.

4. Mode: The mode of a specific port can be one of the following: Input, Output, Bidirec-
tional or None. For instance, discrete-event or signal-flow ports can be instantiated
as Input, Output, or Bidirectional according to their usage, e.g. a VHDL-AMS digital
signal of type STD_LOGIC. On the other hand, since conservative ports can affect, or be
affected, by the model that is connected, they do not have any predefined direction in
reality (None or Bidirectional); yet they can be used to represent the inputs or outputs in

232

F.2. VP-Model Library structure

a model more accurately. For instance, the analog input voltage of an ADC can be mod-
eled by a VHDL-AMS terminal port of type electrical. For any conservative VHDL-AMS
port, the mode is ‘None’; contrarily, the mode for conservative Verilog-A(MS) ports is
‘Bidirectional’, since the conservative behavior is modeled by bidirectional (inout) ports.
Whatever the case may be, the same conservative behavior is represented by None or
Bidirectional modes.

5. Min: Minimum value(s) of the port. It is desired that the model verifies these values
automatically by using VHDL-AMS assertions. The minimum values for the two related
quantities in conservative ports must be specified. Not used for discrete-event class
ports.

6. Max: Maximum value(s) of the port. It is desired that the model verifies these values
automatically by using VHDL-AMS assertions. The maximum values for the two related
quantities in conservative ports must be specified. Not used for discrete-event class
ports.

7. Description: The meaning of the port and perhaps, a clarifying expected utilization of
the port, are part of a proper description of a port.

F.2.1.3 Parameters

The Parameters portal shown in Figure F.4 contains the list of the PMPs. The following is the
list of fields dedicated to documenting the model parameters:

1. Name: Name of the parameter as is written in the source code.

2. Type: Standard data type of the parameter, e.g. REAL, INTEGER, POSITIVE, BOOLEAN,
etc.

3. Default: Default value of the parameter, if any.

4. Units: Units of the parameter value. Non-dimensional values are indicated with a dash.

5. Min: Minimum value of the parameter, if any. This value can be verified by using
VHDL-AMS assertions in the entity declaration or in the model architecture.

6. Max: Maximum value of the parameter, if any. This value can be verified by using
VHDL-AMS assertions in the entity declaration or in the model architecture.

7. Description: Description of the parameter. A complete description explains the mean-
ing of the parameter, its purpose, and how it is used in the model. Parameters can be
used not only for modeling functionalities, and behaviors of a real system/component,
but they can also be used for controlling particular features of the model abstractions
and their structures.

For instance, suppose that a model has three parameters A, B and C. Let’s assume
that parameter A acts as a flag, i.e., its default value is ‘infinite’ (i.e., real’high). If A
is defined with a different value than the default one, the value of the parameter C is
computed internally from the values of A and B, while if A has its default value, the value
of parameter C is the default one. Another example could be a configuration parameter
that can (statically) select different sets of equations and/or processes (e.g. by using
generate statements).

233

Appendix F. Appendix F - VP-Model Library implementation

F.2.1.4 Implementations

The Implementations portal shown in Figure F.4 contains the list of architectures or imple-
mentations which are associated with the model. Since a model record can have several
implementations, the Implementations portal has the following fields for the model documen-
tation:

1. IMP ID: This ID number is a unique identifier for a particular implementation of the
model. This means that a specific model implementation is only available for a unique
model record, it cannot be shared. However, a model record can have more than one
implementation. Likewise, a complete model record (i.e. a model interface with one or
more implementations) can be used in other hierarchical models. Therefore, a specific
model implementation can evolve independently from other model implementations
that could belong to the same model record. The lack of association between implemen-
tations of the same model tends to cause redundancy in the VP-Model Library. Although
it is highly desirable to eliminate such redundancy, it can be difficult and unpractical in
the long run. Instead, the VP-Model Library offers mechanisms such as unique IDs and
bidirectional relationships between interdependent models to deal with redundancy.
This number is automatically generated in the database.

2. Implementation Name: Name of the model implementation. This name is useful for
the identification of specific implementations and their differentiation. This name is
practical to distinguish among any implementation in similar models. For example, the
VP-Model Library could contain different models of ADCs, where each of those models
could have multiple and similar implementations. Based on VHDL-AMS syntax, it is
used an “entity_name(architecture_name)” approach for naming, but this is not strictly
required as long as the Model Name and the Implementation Name are clear.

3. Implementation Type: The VP-Model Library proposes four different Implementation
Types according to the abstraction level of the model, see section 3.2:

(a) Functional: This is the simplest implementation which describes the main ideal
operation of the model.

(b) Behavioral: This implementation type includes the main critical features of the
design. It can include first, and possibly second order effects that allow evalua-
ting the system performances, e.g. throughput, bandwidth, temperature, power
consumption and so on.

(c) Physical: Implementations of this type are low-level models which include de-
tailed information about physical effects (both external and internal effects), e.g.
quantum effects, thermal effects, mechanical effects.

(d) Hierarchical: This implementation describes a hierarchical design which can be
formed of one or more sub-models of any of any Implementation Type. This
category can include any model record in the VP-Model Library.

4. Description: Detailed description of the model implementation, i.e. how the design
operates and small details about its operation, functionalities, and behaviors. In other
words, it should present an overview of the general behavior of the model, with the main
characteristics and features.

5. Source Code: This field contains the name of the source code file of the particular model
implementation. The exact name of the file (including its extension) must be provided.

234

F.2. VP-Model Library structure

The button ‘Get’ offers a link to the last version of the file. Since the source code version
tracking task is managed independently throughout a GIT repository as it is described in
subsection F.1.3.1. The ‘VCS’ button provides a link to the history of the respective file.

F.2.1.5 Execution Capabilities

Since a model can be used for different types of executions depending on its implementations;
the Execution Capabilities portal, see Figure F.6, contains the same list of Model implementa-
tions specified in the Implementations portal, organized by the IMP ID, the Implementation
Name, and the following information about the model implementations:

Figure F.6: Execution Capabilities portal corresponding to the Pockels-cell example of Figure
F.4.

1. Implementation Language: Since VHDL-AMS supports model implementations of
different languages (e.g. C/C++, SPICE, or Verilog-AMS), this field must contain the
modeling language of the specific implementation.

2. Analysis Types: It describes the specific type of simulations that the model supports.
Any special restriction or configuration used for correct simulation must be provided in
the Application Notes text field.

3. Vendor & Synthesis tool: If the model implementation is synthesizable and has been
elaborated using a particular semi-custom technology, this field shall include the infor-
mation related to the vendor and the software used for synthesis.

F.2.1.6 Block Diagram

For hierarchical model implementations, The Block Diagram portal must show the respective
block diagram schematic for each implementation. This portal, see Figure F.7, contains the
same list of implementations shown in the implementations portal, organized by the IMP ID,
the Implementation Name, and the block diagram area. It is important mentioning that the
portal only shows one entry, for seeing more entries use the scroll bar at the right of the portal
window.

235

Appendix F. Appendix F - VP-Model Library implementation

Figure F.7: Block Diagram portal corresponding to the Pockels-cell example of Figure F.4.

F.2.1.7 Model Dependencies

The Model Dependencies portal indicates all the dependencies that certain implementation
has with other models stored in the VP-Model Library. In the right side of the portal, see Figure
F.8, we can see two windows, cyan (upper) and magenta (lower): The upper window called
“Models used by the implementation”, indicates which models are used in the selected im-
plementation, this is true for hierarchical models. On the other hand, the lower window called
“Implementation used in the following models”, indicates if the selected implementation
is used in other models in the library. Keeping track of these dependencies is important for
documentation and evolution of complex hierarchical models. Furthermore, this portal helps

Figure F.8: Model Dependencies portal corresponding to the Pockels-cell example of Figure
F.4.

236

F.2. VP-Model Library structure

to distinguish among the possible slight variants of a model, which can lead to redundancy.
The Model Dependencies portal has been designed for indicating where and how the models
are used so that it helps to deal with redundancy.

F.2.1.8 Verification

This portal is dedicated to indicating the list of test benches in which the current model record
is used. The fields in Figure F.9 are explained as follows:

1. Bench_ID: This is the ID number of the test bench in which the model is tested. The
model can be present in one or more test benches of the VP-Model Library. All of them
must be correctly stored and documented using the Test Benches view, see section F.2.2.

2. Bench Name: Name of the test bench. This name is the same as the name provided in
the Bench Name field in the Test Benches view.

3. Description: This is a small description of the test bench. Specifically, a small description
of what are the type of verifications made on the test bench. A broader description of the
test bench must be included in the corresponding field in the Test Benches view.

Figure F.9: Verification portal corresponding to the Pockels-cell example of Figure F.4.

The button ‘Go’ is a link to the respective test bench record in the Test benches view.

F.2.1.9 Model Configurations

This portal contains the list of VHDL-AMS configurations that the model might have. Large
hierarchical models can have multiple configurations to describe several possible model
architectures at different abstraction levels. For example, an ADC model could have several
implementations to describe several types of ADCs at more than one abstraction level. This
portal includes the following fields:

237

Appendix F. Appendix F - VP-Model Library implementation

1. Name: This field contains the name of the configuration. Meaningful names are highly
desired instead of short abbreviations.

2. Description: This field contains a brief description of the configuration mentioning
the particular model implementations, packages, and other details that constitute the
configuration.

3. File: This field contains the name of the particular source code file of the configuration.
The exact name of the file (including its extension) shall be provided.

F.2.1.10 Tool Dependencies

Figure F.10: Tool Dependencies portal corresponding to the Busbar thermal model of the
ETRCM example, see Figure 4.4 on page 58.

This portal is dedicated to describing the restrictions and/or behaviors of model implementa-
tions that depend on particular simulation tools. Ideally, the VP-Model Library should only
contain software independent models. Unfortunately, this cannot be 100% ensured since
different simulators support most of the VHDL-AMS standard in different ways, and they can
offer multiple specific features that are tool dependent. Therefore, the VP-Model Library allows
documenting these simulation limitations in each model implementation when they have
been previously identified. This portal contains the list of model implementations organized by
the IMP ID number and the Implementation Name similarly to the Implementations portal.
Additionally, it includes the following fields:

1. Software Tool: This field contains the software tool name (with version) in which the
model implementation has been designed and/or simulated.

2. Description: This field is dedicated to describing the identified restrictions and/or
behaviors that are particular to the model implementation using the selected Software
Tool. For example, the model implementation called thermal_conductor(standard_-
model) shown in Figure F.10, uses an unbalanced if - use VHDL-AMS statement for the
quiescent domain that is only supported in SMASH software tool. Similarly, if the model
implementation uses quantity tolerances, this restriction shall also be reported in this
field since other software tools such as Mentor Graphics simulators do not support this
VHDL-AMS feature.

238

F.2. VP-Model Library structure

F.2.1.11 References

This portal contains a list of pertinent bibliographic references that are related to the model
record, see Figure F.11. These documents are stored in the VP-Model Library repository and
can be accessed by the library users. The fields in this portal are explained as follows:

1. Reference No.: This is an automatically generated number that simply indicates the
order of a particular reference within the model record.

2. Reference details: This field contains all the details about the bibliographic reference
document such as authors, document title, publisher, journal, report number, dates,
etc.

3. Reference ID: Since multiple model records can use the same reference, a unique
document is required to be stored in the File repository of the VP-Model Library. The
Reference IDnumber is the unique identifier of that document. By pressing the button
“Get File” it is possible to download the reference document if the user counts with the
proper permissions.

Figure F.11: References portal corresponding to the Busbar thermal model of the ETRCM
example, see Figure 4.4 on page 58.

F.2.1.12 Application Notes

This portal, which is located beside the Reference portal, contains a single text field dedicated
to store and display any other useful information for the users of the model regarding the model
utilization. For example, this field can be used in case of model validation and characterization
procedure using experimental data. Any important details about the model operation and
the conditions for its utilization can be included here. This improves the model reliability and
trustworthiness for verification.

F.2.2 Test Benches view

The VP-Model Library dedicates an independent view for test benches, which are the essential
modeling elements for verification in the proposed VP-based design methodology. The Test
Benches view contains the documentation and links to all models and files that are related to

239

Appendix F. Appendix F - VP-Model Library implementation

Figure F.12: Test benches view. The electro-thermal behavior of the RogoCoil sensor system
test bench example.

a test bench record. Component models, custom packages, simulation results, configurations
and project files are organized and displayed in the Test Benches view in the VP-Model Library
database.

Since the criteria of VHDL-AMS conditioned models (see subsection 3.6.1) requires to have at
least one test bench for verifying each model record in the library3, the Test Benches view shown
in Figure F.12 becomes of high importance. Properly designed and documented test benches
are the final examples that demonstrate the capabilities and potentials of component models
and VPs. A model can be verified by simulation using different analysis types and verification
procedures such as nominal analyses (DC, transient, small signal, and stability analysis), noise
analysis, power analysis, stress analysis, perturbation or sensitivity analyses, worst-case or
corner-case analyses, failure modes and effects analyses (FMEA), sneak circuit analysis (SCA),
parametric and statistical analyses (Monte Carlo, nested parameter sweep). For each analysis
type, the model can give different results (e.g., current, voltage, temperature, force, power,
failure) obtainable either dynamically during the simulation or only after completion. Each
result can be in a different form like a flag, a message, a scalar, a vector, a waveform, or a
relation/equation (e.g. a non-time series forming a table of the interaction of two or more
variables).

The metadata fields of the Test Benches view contains the following information:

3The exception is the utility models, which do not necessarily need a dedicated test bench.

240

F.2. VP-Model Library structure

1. Title: Complete and self-explicative name of the test bench.

2. Bench Name: Abbreviated name of the test bench useful for the test bench identification.
Similar to the model Implementation Name, we can use a VHDL-AMS approach of the
form “testbench_name(architecture_name)” for naming.

3. Block Diagram: This field shows an abstract diagram of the test bench model. All the
main component models included inside and outside the DUV are shown as black boxes
in the diagram as is shown in Figure F.12.

4. Description: General description of the test bench. It is briefly described the construc-
tion, the purpose, the manipulation, and the assumptions of the test bench case.

5. Bench_ID: Unique test bench record identifier.

The Test Benches view contains the following portals:

F.2.2.1 Dependencies

This portal contains the list of component models and packages that are part of the selected
test bench record. The fields are explained as follows:

1. Library: This is the specific name of the VHDL-AMS library used on the test bench
(at the top level). All the list of standard and non-standard VHDL-AMS libraries must
be included. For custom packages and models contained in the VP-Model Library,
the Library name is ‘VP’. The same clarification for naming custom libraries given in
subsection F.2.1.1 on page 231 also applies.

2. Type: There are 2 types of dependencies in the test bench: the PACKAGE type, which
indicates a custom or standard package contained in the VP-Model Library; and the
MODEL type, which indicates a component model or VP stored in the VP-Model Library.

3. Dependency ID: If the type of dependency is MODEL, the Model ID number is available
in the respective field. Otherwise, if the dependency is a Custom Package included in
the VP-Model Library, the Package_ID number is available in the respective field. If the
dependency is a standard package, no number is included in these fields.

4. Dependency Name: Name of the dependency. In the case of models, if only one specific
implementation of a model is used in the test bench, the Dependency Name corresponds
to the Implementation Name. Otherwise, the Dependency Name is the Model Name. In
the case of custom packages, the Dependency Name corresponds to the Package Name.
The button ‘Go’ is a link to the respective model or custom package record.

F.2.2.2 Details

The Details portal shown in the lower-right side in Figure F.12 contains the following specific
information related to the test bench:

1. Language: It is the language of the test bench top level file.

241

Appendix F. Appendix F - VP-Model Library implementation

2. Software Tool Version: This field contains the software tool name and the version in
which the test bench has been implemented.

3. Source Code File: This field contains a link to the test bench source code. To get the
source code click on the button ‘Get file’.

4. Date: Date of the last update of the test bench.

5. Project Organization: This field contains a detailed explanation of the structure of the
simulation project folders and their contents, i.e. simulator files, .inc files, and source
code files.

6. Project Folder: This is a link to the simulation project folder (which is archived in a
.zip file). By clicking the button ‘Get Folder’, a web browser window must show the
main project folder in which one or more software tool subfolders can exist when the
simulation project is available in different simulation tools.

F.2.2.3 SMASH

During this work, the SMASH simulator was the preferred simulation tool; therefore, a SMASH
portal has been included in the Test Benches view in order to explain how the main simulator
files (the .pat and .inc files) are designed and how they should be manipulated for simulation.
The portal fields showed in Figure F.13 are explained as follows:

1. Directive: These fields contain the list of principal SMASH directives included in the
.pat file.

2. Description: This is a brief description of each main SMASH directive included in the
.pat file. It is important to include details about how to manipulate these directives to
obtain the desired simulation results.

3. .INC File Name: Name of the available include (.inc) files. In order to decrease the size
of a large .pat SMASH file, several .inc files can be used to defined and organize multiple

Figure F.13: SMASH portal corresponding to the test bench example in Figure F.12.

242

F.2. VP-Model Library structure

test cases by using a different set of SMASH directives. An adequate selection of .inc files
is called from the .pat file in order to set a particular test case.

4. .INC File Description: This is the description of the specific .inc file. An explanation of
the include file purpose and its key SMASH directives must be given.

F.2.2.4 Configurations

This portal contains the list of all the related test bench configurations (TBCs) used by the test
bench. The fields included in this portal, see Figure F.14, are explained as follows:

1. TBC Files: This is a link to the file or files containing the source code of the TBCs. The
button “Get Files” allows the access to the source code in a web browser window.

2. Name: This field contains the complete name of the configuration. The use of meaning-
ful names is advocated disregarding the length.

3. Description: This field contains a clear description of the TBC including its test case
purpose. Enough details of the TBC must be included in order to distinguish from other
TBCs.

Figure F.14: Test bench configurations portal corresponding to the test bench example in Figure
F.12.

F.2.3 Example Results and Application Notes

The last two portals of the Test Benches view are the Example Results and the Application
Notes. The first portal is dedicated to store and display images of the test bench simulation
results that allow to better understand the expected verification results of a given example.
This field is optimized for storing a single image file or a .pdf file with multiple simulation
images.

243

Appendix F. Appendix F - VP-Model Library implementation

On the other hand, the Application Notes portal is a single text field devoted to extending the
information about the test bench utilization. Any additional information that can be useful
to understand and manipulate the test bench must be included in this field. For example, if
instead of using configurations, the model designer uses other technique to switch among
different test case within the same test bench, the explanation about how to manipulate the
test bench must be included here. Simulation issues and limitations can also be reported in
this field.

F.2.4 Custom packages view

Commonly, projects which involve the development of large VPs require the elaboration of
custom packages that contain functions, constants, classes, and/or any other custom types
which are used in different blocks throughout the design. Since these custom packages can
be easily adapted for other projects, the VP-Model Library dedicates the Custom Packages
view for documenting and displaying custom packages and all its related declarations. Each
custom package record has a unique identifier number, the PACKAGE_ID.

A good strategy in VHDL-AMS virtual prototyping consists of developing custom packages
gathered in project libraries for those functions, constants, classes, types and many other
declarations which are applied to several blocks in the design. The advantage of placing them
in a package is that they do not clutter up other parts of the model, and they can be shared
within and among models without having to rewrite them.

Figure F.15: Custom packages view. MATH_REAL_EXTENDED package example.

244

F.2. VP-Model Library structure

This practice can save a lot of time in future projects, in which a package implementation can
be done quickly and effectively. However, the success of the package adoption will strongly
depend on the practicality of its declarations and the quality of the documentation. The fields
of this view, shown in Figure F.15, are dedicated to facilitating the package documentation in a
direct and organized way as follows:

1. Package Name: This is the name of the package as it is used in the source code.

2. Package Type: There are two types of packages:

(a) Utility: This type of packages offer general purpose declarations such as functions,
types, or procedures that can be applied in many different virtual prototyping
projects. For example, extended mathematic custom packages can offer functions
for custom type operations.

(b) Application specific: This type of packages are particularly designed for specific
applications; so that, its direct re-utilization in different projects is limited. They
are normally parameter packages with mainly constant declarations. However,
they can be used as examples for future modeling projects.

3. Language: This is the language in which the package is written.

4. Source Code File: This field contains the complete name (including the extension) of
the source code file of the package. To get the source code click on the button ‘Get file’.

5. Description: A clear and complete description of the package must be included in this
field.

F.2.4.1 Declarations

The Custom Packages view only contains one portal named ‘Declarations’, see Figure F.15.
This portal list all the declarations that the custom package contains. The fields are explained
as follows:

1. Name: This is the name of the listed declaration as it is given in the source file.

2. Kind: Following the VHDL-AMS syntax, there can be multiple kinds/types of declara-
tions as follows:

(a) Constant: This is a constant value, its type and value must be described in the
Description field. By defining a constant in a package we can avoid scattering
literal values throughout the models. If we need to update the value we only need
to change it in the package declaration, this is much easier and reliable than trying
to find all instances of a literal value throughout the models.

(b) Variable: This is a shared variable value, its type must be described in the Descrip-
tion field. The initialization expression is optional. If we omit it, the default initial
value assumed by the variable when it is created depends on the type. For scalar
types, the default initial value is the leftmost value of the type. For example, for
integers, it is the smallest representable integer. As normal variables can only be
accessed by one Process, Function or Procedure, a variable in a package only make
sense if it can be shared in multiple places, i.e. if it is a shared variable.

245

Appendix F. Appendix F - VP-Model Library implementation

(c) Signal: This is a standard VHDL-AMS signal declaration. Typically, a Signal is
declared in an Architecture and is known and able to be evaluated and driven
without redeclaration within any Process, Block, Procedure or Function in an
Architecture. The scope of such signals does not extend into any Component
defined by the Architecture, nor to any VHDL-AMS Entity outside the Architecture
at all. A signal’s value may be passed to any other Entity only through connection
with a Port Signal of that Entity. Signals that are declared in Packages are identical
in basic nature to any other Signal anywhere in the design, they conserve all its
typical characteristics. The difference is that a signal declared in a package can
potentially be evaluated and/or driven by every concurrent or sequential Process
in every Architecture in the entire design. The use of Signals declared in Packages
is a valuable and powerful test bench technique which can solve tough problems,
but this is not recommended for synthesis. It is unknown if the synthesis engines
will consider those signals since they are not included in any Entity or Architecture.
This technique must be only used by carefully studying the impact of those signals
in simulation.

(d) Procedure: This is a common VHDL-AMS subprogram (or function) which re-
ceives input, output or inout parameters and execute a series of sequential state-
ments to produce a result. This function can modify one or more output or global
parameters. Similar to Process statements, the Procedure can be written in a
form of concurrent call statements. A proper explanation must be included in the
Description field to understand the purpose and the operation of the Procedure

(e) Function: Contrarily to the Procedure, the VHDL-AMS Function can only take
constant or input parameters to return a determined value of a specific type. The
functions can be pure or impure. An adequate explanation of the Function must
be given in the Description field, including the input parameters and the expected
value to be returned.

(f) Type: This is a specific VHDL-AMS custom data type, it must be properly explained
in the Description field.

(g) Subtype: When a model contains objects that should only take on a restricted
range of the complete set of values of a Type, we can represent such objects by
declaring a Subtype. A clear description of the Subtype must be included in the
Description field.

(h) Alias: An Alias is simply an alternate name for something, we can make our code
simpler by defining Alias to complex structures. If we have a model that includes a
data object, such as a constant, a variable, a signal, a quantity, a terminal or, a file,
we can declare an Alias for the object. We can also declare Aliases for other named
items that do not represent stored data, such as types, natures, subprograms,
packages, entities and so on. In fact, the only kinds of items for which we cannot
declare Aliases are labels, loop parameters and generate parameters. A clear
description of the Alias must be included in the Description field.

3. Description: A clear and complete description of the declaration must be included here.

F.3 Modeling request

A modeling request is a specific petition of a modeling element update of the VP-Model Library.
The modeling requests are the inputs of the model maintenance process that supports the
virtual prototyping activity using the VP-based design methodology. The different types of

246

F.3. Modeling request

modeling requests are explained in section 5.4. The success of the Model maintenance flow
depicted in Figure 5.7 on page 156, largely depends on the mechanism that the VP-Model
Library actors (see section F.3) have to communicate with them. The result of a modeling
request is an update (i.e. modification, correction, addition) of the VP-Model Library content.

As part of the VP-Model Library implementation, the proposed vehicle for executing modeling
requests is denominated the model registration form (MRF), which is basically a copy of the
VP-Model Library structure that can be modified4 by contributors and administrators. The idea
is to assign to each library contributor an MRF that can be used for both submitting modeling
requests and for collecting all type of modeling elements and their respective documentation.

If the modeling request is about the refinement of an existent model in the library, using
an MRF provides the advantage of linking directly the available model with the requested
model implementation. In this way, it is faster and easier both to describe and understand the
refinement direction in terms of new behaviors and interactions, such as modeling additional
non-idealities, cross-domain variables, parameters, or more new architectures (refinement by
aggregation of components).

4i.e. writing privileges for all the fields of the model’s detailed view.

247

Bibliography

[1] E. A. Lee. Cyber Physical Systems: Design Challenges. In 2008 11th IEEE Interna-
tional Symposium on Object and Component-Oriented Real-Time Distributed Comput-
ing (ISORC), pages 363–369, May 2008.

[2] R. Poovendran, K. Sampigethaya, S. K. S. Gupta, I. Lee, K. V. Prasad, D. Corman, and
J. Paunicka. Special Issue on Cyber - Physical Systems [Scanning the Issue]. Proceedings
of the IEEE, 100(1):6–12, 2012.

[3] Radhakisan Baheti and Helen Gill. Cyber-physical Systems. The Impact of Control
Technology, 2011.

[4] J. Sztipanovits, X. Koutsoukos, G. Karsai, N. Kottenstette, P. Antsaklis, V. Gupta, B. Good-
wine, J. Baras, and Shige Wang. Toward a Science of Cyber-Physical System Integration.
Proceedings of the IEEE, 100(1):29–44, 2012.

[5] B. Balaji, M. A. Al Faruque, N. Dutt, R. Gupta, and Y. Agarwal. Models, abstrac-
tions, and architectures: The missing links in cyber-physical systems. In 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6, June 2015.

[6] A. Sangiovanni-Vincentelli. Quo Vadis, SLD? Reasoning About the Trends and Challenges
of System Level Design. Proceedings of the IEEE, 95(3):467–506, 2007.

[7] J. C. Jensen, D. H. Chang, and E. A. Lee. A model-based design methodology for cyber-
physical systems. In 2011 7th International Wireless Communications and Mobile
Computing Conference, pages 1666–1671, July 2011.

[8] W. D. Li, W. F. Lu, J. Y. H. Fuh, and Y. S. Wong. Collaborative computer-aided de-
sign—research and development status. Computer-Aided Design, 37(9):931–940, August
2005.

[9] Daniel Cocks, Michael Dickerson, David Oliver, Joseph Skipper, and MDSD Working
Group and AP233 Teamr. Model Driven Design. INSIGHT, 7(2):5–8, July 2004.

[10] Robin T. Bye, Ottar L. Osen, and Birger Skogeng Pedersen. A computer-automated
design tool for intelligent virtual prototyping of offshore cranes. In ECMS 2015, Albena
(Varna), Bulgaria, May 2015. Springer.

[11] Zhiyi Pan, Xin Wang, Rumin Teng, and Xuyang Cao. Computer-aided design-while-
engineering technology in top-down modeling of mechanical product. Computers in
Industry, 75:151–161, January 2016.

[12] David C. Ku and Giovanni DeMicheli. High Level Synthesis of ASICs under Timing and
Synchronization Constraints. Springer Science & Business Media, March 2013.

249

Bibliography

[13] Valter Bellucci, Bruno Schuermans, Dariusz Nowak, Peter Flohr, and Christian Oliver
Paschereit. Thermoacoustic Modeling of a Gas Turbine Combustor Equipped With
Acoustic Dampers. Journal of Turbomachinery, 127(2):372–379, May 2005.

[14] Jay Lee, Behrad Bagheri, and Hung-An Kao. A Cyber-Physical Systems architecture for
Industry 4.0-based manufacturing systems. Manufacturing Letters, 3:18–23, January
2015.

[15] Q. Ha, Y. Maret, J. S. R. Estupiñan, and A. Vachoux. VHDL-AMS virtual prototyping
of a generator circuit breaker ablation monitoring system. In 2015 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1854–1857, May 2015.

[16] Olivier Steiger, Sergio V. Marchese, Joris Pascal, Klaus Bohnert, and Stephan Wildermuth.
Signal processing for electro-optic voltage sensor. pages 1–4. IEEE, November 2013.

[17] J. S. R. Estupiñán, A. Vachoux, and J. Pascal. Electro-thermal virtual prototyping of
a Rogowski Coil sensor system. In 2015 IEEE International Conference on Industrial
Technology (ICIT), pages 1451–1456, March 2015.

[18] C. Grimm and C. Radojicic. Verification and validation of AMS systems: Towards cover-
age of uncertainties. In 2015 IEEE 20th International Mixed-Signals Testing Workshop
(IMSTW), pages 1–6, June 2015.

[19] Alberto Sangiovanni-Vincentelli, Werner Damm, and Roberto Passerone. Taming Dr.
Frankenstein: Contract-Based Design for Cyber-Physical Systems*. European Journal of
Control, 18(3):217–238, 2012.

[20] John Vargas. Reduce Project Schedules and Increase Quality Using Model Driven De-
velopment for Design, Verification and Test. In 2013 NDIA Ground Vehicle Systems
Engineering and Technology Symposium, page 7, Troy, Michigan, USA, August 2013.

[21] Y. Hervé and A. Legendre. Chapter 11 - Functional Virtual Prototyping for Heterogeneous
Systems. In Design Technology for Heterogeneous Embedded Systems, pages 223–253.
Springer Science, 1 edition, 2012.

[22] AUTOSAR Partnership. AUTomotive Open System ARchitecture - An Industry-Wide
Initiative to Manage the Complexity of Emerging Automotive E/E-Architectures. SAE
International, 2004.

[23] P. J. Prisaznuk. ARINC 653 role in Integrated Modular Avionics (IMA). In 2008 IEEE/AIAA
27th Digital Avionics Systems Conference, pages 1.E.5–1–1.E.5–10, October 2008.

[24] T. Mahne, A. Vachoux, and Y. Leblebici. Fostering the reuse and collaborative develop-
ment of models in the AMS SoC design process. In Research in Microelectronics and
Electronics Conference, 2007. PRIME 2007. Ph.D., pages 285–288, July 2007.

[25] J. Wan, A. Canedo, and M. A. Al Faruque. Functional Model-Based Design Methodology
for Automotive Cyber-Physical Systems. IEEE Systems Journal, PP(99):1–12, 2015.

[26] L. A. Kamentsky and C. N. Liu. Computer-Automated Design of Multifont Print Recogni-
tion Logic. IBM Journal of Research and Development, 7(1):2–13, January 1963.

[27] Herbert Palm, Jorg Holzmann, Robert Klein, Stefan-Alexander Schneider, and Dieter
Gerling. A Novel Approach on Virtual Systems Prototyping Based on a Validated, Hierar-
chical, Modular Library. page 10, Nuremberg, Germany, February 2013.

250

Bibliography

[28] F. Pecheux, C. Lallement, and A. Vachoux. VHDL-AMS and Verilog-AMS as alternative
hardware description languages for efficient modeling of multidiscipline systems. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24(2):204–
225, 2005.

[29] Alain Vachoux, Christoph Grimm, and Karsten Einwich. SystemC-AMS Requirements,
Design Objectives and Rationale. In Proceedings of the Conference on Design, Automation
and Test in Europe - Volume 1, DATE ’03, pages 10388–, Washington, DC, USA, 2003.
IEEE Computer Society.

[30] Michał Rewieński. A Perspective on Fast-SPICE Simulation Technology. In Peng
Li, Luís Miguel Silveira, and Peter Feldmann, editors, Simulation and Verification
of Electronic and Biological Systems, pages 23–42. Springer Netherlands, 2011. DOI:
10.1007/978-94-007-0149-6_2.

[31] F. Bennini, J. Mehner, and W. Dötzel. System level simulations of mems based on re-
duced order finite element models. International Journal of Computational Engineering
Science, 04(02):385–388, June 2003.

[32] F. Mendoza, J. Pascal, P. Nenninger, and J. Becker. Framework for dynamic verification
of multi-domain virtual platforms in industrial automation. In IEEE 10th International
Conference on Industrial Informatics, pages 935–940, July 2012.

[33] Sanford Friedenthal, Alan Moore, and Rick Steiner. A Practical Guide to SysML: The
Systems Modeling Language. Morgan Kaufmann, October 2014.

[34] Peter H. Feiler and David P. Gluch. Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. Addison-Wesley, September 2012.

[35] Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica
2.1. John Wiley & Sons, August 2010.

[36] Ahmad A. Mahfouz, Mohammed M. K., and Farhan A. Salem. Modeling, Simulation
and Dynamics Analysis Issues of Electric Motor, for Mechatronics Applications, Using
Different Approaches and Verification by MATLAB/Simulink. International Journal of
Intelligent Systems and Applications, 5(5):39–57, April 2013.

[37] Marian Petre. UML in Practice. In Proceedings of the 2013 International Conference on
Software Engineering, ICSE ’13, pages 722–731, Piscataway, NJ, USA, 2013. IEEE Press.

[38] A. Sangiovanni-Vincentelli, Guang Yang, S.K. Shukla, D.A. Mathaikutty, and J. Szti-
panovits. Metamodeling: An Emerging Representation Paradigm for System-Level
Design. IEEE Design Test of Computers, 26(3):54–69, 2009.

[39] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauss, H. Elmqvist, A. Junghanns,
J. Mauss, M. Monteiro, T. Neidhold, D. Neumerkel, H. Olsson, J.-V. Peetz, and S. Wolf.
The Functional Mockup Interface for Tool independent Exchange of Simulation Models.
pages 105–114, June 2011.

[40] P. Derler, E.A. Lee, and A.-S. Vincentelli. Modeling Cyber-Physical Systems. Proceedings
of the IEEE, 100(1):13–28, 2012.

[41] I. Akkaya, P. Derler, S. Emoto, and E. A. Lee. Systems Engineering for Industrial Cyber
Physical Systems Using Aspects. Proceedings of the IEEE, 104(5):997–1012, May 2016.

251

Bibliography

[42] J. Eker, J. W. Janneck, E. A. Lee, Jie Liu, Xiaojun Liu, J. Ludvig, S. Neuendorffer, S. Sachs,
and Yuhong Xiong. Taming heterogeneity - the Ptolemy approach. Proceedings of the
IEEE, 91(1):127–144, January 2003.

[43] Gabriela Nicolescu and Pieter J. Mosterman. Model-Based Design for Embedded Systems.
CRC Press, November 2009.

[44] Aymen Louati, Kamel Barkaoui, and Chadlia Jerad. Temporal Properties Verification of
Real-Time Systems Using UML/MARTE/OCL-RT. In Thouraya Bouabana-Tebibel and
Stuart H. Rubin, editors, Formalisms for Reuse and Systems Integration, number 346 in
Advances in Intelligent Systems and Computing, pages 133–147. Springer International
Publishing, 2015. DOI: 10.1007/978-3-319-16577-6_6.

[45] Susanne Graf, Roberto Passerone, and Sophie Quinton. Contract-Based Reasoning for
Component Systems with Rich Interactions. In Alberto Sangiovanni-Vincentelli, Haibo
Zeng, Marco Di Natale, and Peter Marwedel, editors, Embedded Systems Development,
number 20 in Embedded Systems, pages 139–154. Springer New York, 2014. DOI:
10.1007/978-1-4614-3879-3_8.

[46] Ajitha Rajan and Thomas Wahl. CESAR: Cost-efficient Methods and Processes for Safety-
relevant Embedded Systems. Springer, 2013.

[47] Kevin Lynch, Randall Ramsey, George Ball, Matt Schmit, and Kyle Collins. Ontology-
Driven Metamodel Validation in Cyber-Physical Systems. In Shahram Latifi, editor,
Information Technology: New Generations, number 448 in Advances in Intelligent Sys-
tems and Computing, pages 1255–1258. Springer International Publishing, 2016. DOI:
10.1007/978-3-319-32467-8_109.

[48] Alberto Sangiovanni-Vincentelli, Luca Carloni, Fernando De Bernardinis, and Marco
Sgroi. Benefits and Challenges for Platform-based Design. In Proceedings of the 41st
Annual Design Automation Conference, DAC ’04, pages 409–414, New York, NY, USA,
2004. ACM.

[49] K. Keutzer, A. R. Newton, J. M. Rabaey, and A. Sangiovanni-Vincentelli. System-level
design: orthogonalization of concerns and platform-based design. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 19(12):1523–1543, December
2000.

[50] A. Cimatti and S. Tonetta. A Property-Based Proof System for Contract-Based Design. In
2012 38th Euromicro Conference on Software Engineering and Advanced Applications,
pages 21–28, September 2012.

[51] E. M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press, 1999.

[52] P. Nuzzo, A. L. Sangiovanni-Vincentelli, D. Bresolin, L. Geretti, and T. Villa. A Platform-
Based Design Methodology With Contracts and Related Tools for the Design of Cyber-
Physical Systems. Proceedings of the IEEE, 103(11):2104–2132, November 2015.

[53] Albert Benveniste, Benoît Caillaud, Alberto Ferrari, Leonardo Mangeruca, Roberto
Passerone, and Christos Sofronis. Multiple Viewpoint Contract-Based Specification and
Design. In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-Paul de
Roever, editors, Formal Methods for Components and Objects, number 5382 in Lecture
Notes in Computer Science, pages 200–225. Springer Berlin Heidelberg, October 2007.
DOI: 10.1007/978-3-540-92188-2_9.

252

Bibliography

[54] Luca de Alfaro and Thomas A. Henzinger. Interface Automata. In Proceedings of the
8th European Software Engineering Conference Held Jointly with 9th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ESEC/FSE-9, pages
109–120, New York, NY, USA, 2001. ACM.

[55] Sebastian S. Bauer, Alexandre David, Rolf Hennicker, Kim Guldstrand Larsen, Axel
Legay, Ulrik Nyman, and Andrzej Wąsowski. Moving from Specifications to Contracts in
Component-Based Design. In Juan de Lara and Andrea Zisman, editors, Fundamental
Approaches to Software Engineering, number 7212 in Lecture Notes in Computer Science,
pages 43–58. Springer Berlin Heidelberg, March 2012. DOI: 10.1007/978-3-642-28872-
2_3.

[56] Albert Benveniste, Benoit Caillaud, Dejan Nickovic, Roberto Passerone, Jean-Baptiste
Raclet, Philipp Reinkemeier, Alberto Sangiovanni-Vincentelli, Werner Damm, Thomas
Henzinger, and Kim G. Larsen. Contracts for System Design. report, INRIA, November
2012.

[57] John Stark. Product Lifecycle Management (Volume 1). Decision Engineering. Springer
International Publishing, third edition, 2015. DOI: 10.1007/978-3-319-17440-2_1.

[58] Filipe Ferreira, José Faria, Américo Azevedo, and Ana Luisa Marques. Product lifecycle
management in knowledge intensive collaborative environments: An application to
automotive industry. International Journal of Information Management, 37(1, Part
A):1474–1487, February 2017.

[59] Felix Wortmann and Kristina Flüchter. Internet of Things: Technology and Value Added.
Business & Information Systems Engineering; Berkeley, 57(3):221–224, June 2015.

[60] Ibrahim Abaker Targio Hashem, Ibrar Yaqoob, Nor Badrul Anuar, Salimah Mokhtar,
Abdullah Gani, and Samee Ullah Khan. The rise of “big data” on cloud computing:
Review and open research issues. Information Systems, 47:98–115, January 2015.

[61] Jay Lee, Behrad Bagheri, and Hung-An Kao. A Cyber-Physical Systems architecture for
Industry 4.0-based manufacturing systems. Manufacturing Letters, 3:18–23, January
2015.

[62] Heiner Lasi, Peter Fettke, Hans-georg Kemper, Thomas Feld, and Michael Hoffmann.
Industry 4.0. Business & Information Systems Engineering; Berkeley, 6(4):239–242, August
2014.

[63] Henning Kagermann. Recommendations for Implementing the Strategic Initiative IN-
DUSTRIE 4.0: Securing the Future of German Manufacturing Industry ; Final Report of
the Industrie 4.0 Working Group. Forschungsunion, Germany, April 2013. Google-Books-
ID: AsfOoAEACAAJ.

[64] M. Hermann, T. Pentek, and B. Otto. Design Principles for Industrie 4.0 Scenarios. In
2016 49th Hawaii International Conference on System Sciences (HICSS), pages 3928–3937,
January 2016.

[65] S. Weaver, B. Hershberg, and U. K. Moon. Digitally Synthesized Stochastic Flash ADC
Using Only Standard Digital Cells. IEEE Transactions on Circuits and Systems I: Regular
Papers, 61(1):84–91, January 2014.

[66] Tatsuji Matsuura. Recent progress on CMOS successive approximation ADCs. IEEJ
Transactions on Electrical and Electronic Engineering, 11(5):535–548, September 2016.

253

Bibliography

[67] O. Jimenez, O. Lucia, I. Urriza, L. A. Barragan, and D. Navarro. Design and Evaluation of a
Low-Cost High-Performance #x2013; ADC for Embedded Control Systems in Induction
Heating Appliances. IEEE Transactions on Industrial Electronics, 61(5):2601–2611, May
2014.

[68] Achi Brandt. Multiscale Scientific Computation: Review 2001. In Timothy J. Barth, Tony
Chan, and Robert Haimes, editors, Multiscale and Multiresolution Methods, number 20
in Lecture Notes in Computational Science and Engineering, pages 3–95. Springer Berlin
Heidelberg, 2002. DOI: 10.1007/978-3-642-56205-1_1.

[69] Antoon Goderis, Christopher Brooks, Ilkay Altintas, Edward A. Lee, and Carole Goble.
Heterogeneous composition of models of computation. Future Generation Computer
Systems, 25(5):552–560, May 2009.

[70] A. Vachoux, C. Grimm, and K. Einwich. Towards analog and mixed-signal SOC design
with systemC-AMS. In Proceedings. DELTA 2004. Second IEEE International Workshop
on Electronic Design, Test and Applications, pages 97–102, January 2004.

[71] Accellera. SystemC AMS 2.0 Standard for Mixed-Signal Design of Electronic Systems,
2013.

[72] E. Christen and K. Bakalar. VHDL-AMS-a hardware description language for analog and
mixed-signal applications. IEEE Transactions on Circuits and Systems II: Analog and
Digital Signal Processing, 46(10):1263–1272, October 1999.

[73] J Verries and A Sahraoui. Case Study On SYSML and VHDL-AMS for Designing and
Validating Systems. In Proceedings of the World Congress on Engineering and Computer
Science, volume 1, San Francisco, USA, 2013.

[74] Torsten Mähne. Efficient Modelling and Simulation Methodology for the Design of
Heterogeneous Mixed-Signal Systems on Chip. Doctoral Thesis, Swiss Federal Institute
of Technology Lausanne, Lausanne, Switzerland, 2011.

[75] SAE Electronic Design Automation Standards Committee. Model Specification Process
Standard J2546_200202, February 2002.

[76] M. H. Samimi, A. Mahari, M. A. Farahnakian, and H. Mohseni. The Rogowski Coil
Principles and Applications: A Review. IEEE Sensors Journal, 15(2):651–658, February
2015.

[77] Pavel Ripka. Electric current sensors: a review. Measurement Science and Technology,
21(11):112001, 2010.

[78] G. Meijer, M. Pertijs, and K. Makinwa. Smart Sensor Systems: Emerging Technologies
and Applications. John Wiley and Sons, Delft University of Technology, the Netherlands,
May 2014.

[79] Raphael Segas. Self calibrating current sensor system: virtual prototyping and experi-
mental test. Internship Report 9ADB005157-004, ABB Corporate Research Switzerland,
Baden-Dattwil, March 2013.

[80] Joris Pascal and Beat Kramer. SCALES Technology Demonstrator Design Report. Techni-
cal 9ADB005157-016, ABB Corporate Research Switzerland, Baden-Dättwil, November
2014.

254

Bibliography

[81] V. Dubickas and Hans Edin. High-Frequency Model of the Rogowski Coil With a Small
Number of Turns. IEEE Transactions on Instrumentation and Measurement, 56(6):2284–
2288, 2007.

[82] Mats Forssell. Rogowski Coil Self-calibration Frequency Method. Internship Report
9ADB005157-011, ABB Corporate Research Switzerland, Baden-Dättwil, August 2013.

[83] Peter Nefzger, Ulf Kaintzyk, and Joao Felix Nolasco. Overhead Power Lines: Planning,
Design, Construction. Springer, April 2003.

[84] IEEE Power Engineering Society. IEEE Standard for Calculating the Current-Temperature
of Bare Overhead Conductors. Standard IEEE Std 738-2006, IEEE-SA Standards Board,
November 2006.

[85] J.P. Holman. Heat Transfer. Series in Mechanical Engineering. Mc. Graw Hill, 10th
edition, 2010.

[86] Adrian Bejan and Allan D. Kraus. Heat Transfer Handbook. John Wiley & Sons, June
2003.

[87] MatWeb, LLC. Online Material Properties Database. http://www.matweb.com, 2013.

[88] Ph. Moreau, A. Le-Luyer, P. Malard, P. Pastor, F. Saint-Laurent, P. Spuig, J. Lister, M. Tous-
saint, P. Marmillod, D. Testa, S. Peruzzo, J. Knaster, G. Vayakis, S. Hughes, and K. M. Patel.
Prototyping and testing of the Continuous External Rogowski ITER magnetic sensor.
Fusion Engineering and Design, 88(6–8):1165–1169, October 2013.

[89] Charles Kitchin and Lew Counts. RMS to DC Conversion Application Guide.
Available in: http://www.analog.com/media/en/training-seminars/design-
handbooks/RMStoDC_cover-Section-I.pdf?doc=AD8436.pdf, 1986.

[90] Linear Technology Corporation. LTC1967 - Precision Extended Bandwidth, RMS-to-DC
Converter. Available in: http://cds.linear.com/docs/en/datasheet/1967f.pdf, 2004.

[91] Richard Schreier and Gabor C. Temes. Understanding Delta-Sigma Data Converters.
John Wiley & Sons Inc, 2017.

[92] B. E. Boser and B. A. Wooley. The design of sigma-delta modulation analog-to-digital
converters. IEEE Journal of Solid-State Circuits, 23(6):1298–1308, December 1988.

[93] Miroslav Oljaca and Tom Hendrick. Combining the ADS1202 with an FPGA Digital Filter
for Current Measurement in Motor Control Applications. Application Report SBAA094,
Texas Instruments, June 2003.

[94] N. S. Alagha and P. Kabal. Generalized raised-cosine filters. IEEE Transactions on
Communications, 47(7):989–997, July 1999.

[95] James Barnes. Data Converters. Colorado State University, Dept of Electrical and Com-
puter Engineering. Available at: https://www.engr.colostate.edu/ECE423/lectures_-
pdf/2014/notes_lec03.pdf, 2014.

[96] International Electrotechnical Commission. IEC 60044-8 Standard, 2002.

[97] S Balaji and M Sundararajan Murugaiyan. Waterfall vs. V-Model vs. Agile: A compar-
ative study on SDLC. International Journal of Information Technology and Business
Management, 2(1):26–30, 2012.

255

Bibliography

[98] The Business Plan Shop web page. How to do a market analysis for a business
plan. https://www.thebusinessplanshop.com/blog/en/entry/market_analysis_for_busi-
ness_plan, 2016.

[99] International Electrotechnical Commission. IEC 61869-2 Standard, September 2012.

[100] Hirokazu Goto and Takashi Kato. Hall-effect current detector, April 2004. US Patent:
U.S. Classification 324/117.00H, 324/117.00R; International Classification G01R15/20;
Cooperative Classification G01R15/202; European Classification G01R15/20B.

[101] P. P. Freitas, R. Ferreira, S. Cardoso, and F. Cardoso. Magnetoresistive sensors. Journal of
Physics: Condensed Matter, 19(16):165221, 2007.

[102] Wayne C. Goeke. Active shunt ammeter apparatus and method, March 2016. US Patent:
International Classification H03F3/45, G01R19/00, H03F1/34, G01R1/20, G01R1/30;
Cooperative Classification H03F2203/45138, H03F3/45475, G01R19/0092, G01R1/203,
G01R19/0023, H03F2200/261, H03F1/34.

[103] B. Djokic. A new calibration system for small AC voltages at power frequencies. In 29th
Conference on Precision Electromagnetic Measurements (CPEM 2014), pages 770–771,
August 2014.

[104] E. Martí-Arbona, D. Mandal, B. Bakkaloglu, and S. Kiaei. A High-Voltage-Compliant
Current-to-Digital Sensor for DC-DC Converters in Standard CMOS Technology. IEEE
Transactions on Power Electronics, 32(3):2180–2188, March 2017.

[105] Yan Shen, Yunhe Lu, Zhao Liu, Xueliang Yu, Guoqing Zhang, and Wenbin Yu. Perfor-
mance of magneto-optical glass in optical current transducer application. Journal of
Magnetism and Magnetic Materials, 389:180–185, September 2015.

[106] D. Drung, J. H. Storm, and J. Beyer. SQUID Current Sensor With Differential Output.
IEEE Transactions on Applied Superconductivity, 23(3):1100204–1100204, June 2013.

[107] Hua-Xin Peng, Faxiang Qin, and Manh-Huong Phan. Giant Magnetoimpedance Sensors
and Their Applications. In Ferromagnetic Microwire Composites, Engineering Materials
and Processes, pages 99–117. Springer International Publishing, 2016. DOI: 10.1007/978-
3-319-29276-2_8.

[108] Y. S Didosyan, H Hauser, and J Nicolics. Magneto-optical current sensors of high
bandwidth. Sensors and Actuators A: Physical, 81(1–3):263–267, April 2000.

[109] B. Yi, B. C. B. Chu, and K. S. Chiang. Magneto-optical electric-current sensor with
enhanced sensitivity. Measurement Science and Technology, 13(7):N61, 2002.

[110] Petr Drexler and Pavel Fiala. Utilization of Faraday Mirror in Fiber Optic Current Sensors.
Radioengineering, 17(4):101–107, December 2008.

[111] Kiyoshi Kurosawa, Kazunori Yamashita, Tomohiro Sowa, and Yasuhisa Yamada. Flexible
Fiber Faraday Effect Current Sensor Using Flint Glass Fiber and Reflection Scheme.
IEICE TRANSACTIONS on Electronics, E83-C(3):326–330, March 2000.

[112] Team Electronics Tutorials. Current Transformer Basics and Current Transformer Theory.
http://www.electronics-tutorials.ws/transformer/current-transformer.html, September
2013.

256

Bibliography

[113] A. Marinescu. A calibration laboratory for Rogowski Coil used in energy systems and
power electronics. In 2010 12th International Conference on Optimization of Electrical
and Electronic Equipment, pages 913–919, May 2010.

[114] E. Hemmati and S. M. Shahrtash. Digital Compensation of Rogowski Coil’s Output
Voltage. IEEE Transactions on Instrumentation and Measurement, 62(1):71–82, January
2013.

[115] J. P. Dupraz, A. Fanget, W. Grieshaber, and G. F. Montillet. Rogowski Coil: Exceptional
Current Measurement Tool For Almost Any Application. In 2007 IEEE Power Engineering
Society General Meeting, pages 1–8, June 2007.

[116] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill
Higher Education, 1st edition, 1994.

[117] M. Cirstea. Modeling and design of digital electronic systems. In 2016 International
Conference on Development and Application Systems (DAS), pages 189–194, May 2016.

[118] CST Computer Simulation Technology AG. CST Microwave Studio - Workflow and Solver
Overview Manual, 2016.

[119] David B. Davidson. Computational Electromagnetics for RF and Microwave Engineering.
Cambridge University Press, October 2010.

[120] E. Hemmati and S. M. Shahrtash. Investigation on Rogowski coil performance for
structuring its design methodology. IET Science, Measurement Technology, 7(6):306–314,
November 2013.

[121] J. H. Stathis. Reliability limits for the gate insulator in CMOS technology. IBM Journal of
Research and Development, 46(2.3):265–286, March 2002.

[122] M. Wang, A. J. Vandermaar, and K. D. Srivastava. Review of condition assessment
of power transformers in service. IEEE Electrical Insulation Magazine, 18(6):12–25,
November 2002.

[123] F. Legrand, H. Levi, N. Couture, and J. J. Charlot. VHDL-AMS modeling and library
building for Power Electrical Engineering. In The 8th IEEE International Workshop on
Advanced Motion Control, 2004. AMC ’04, pages 111–116, March 2004.

[124] Franke Rüdiger and Wiesmann Hansjürg. Flexible modeling of electrical power systems
– the Modelica PowerSystems library. In Proceedings of the 10th International Modelica
Conference, pages 515–522, Lund, Sweden, March 2014.

[125] O. Enge-Rosenblatt, J. Haase, and C. Clauss. Important characteristics of VHDL-AMS and
modelica with respect to model exchange. In 1st International Workshop on Equation-
Based Object-Oriented Languages and Tools, EOOLT 2007, pages 89–98, 2007.

[126] Asma Merdassi, Laurent Gerbaud, and Seddik Bacha. Automatic Generation of Av-
erage Models for Power Electronics Systems in VHDL-AMS and Modelica Modelling
Languages. ResearchGate, 1(3):176–186, May 2010.

[127] Prakash Rashinkar, Peter Paterson, and Leena Singh. System-on-a-Chip Verification:
Methodology and Techniques. Springer Science & Business Media, May 2007.

257

Bibliography

[128] C. Radojicic and C. Grimm. Instrumentation of the Control Flow of SystemC AMS -
Models for Symbolic Simulation. In ANALOG 2016; 15. ITG/GMM-Symposium, pages
1–6, September 2016.

[129] David J. Lucia, Philip S. Beran, and Walter A. Silva. Reduced-order modeling: new
approaches for computational physics. Progress in Aerospace Sciences, 40(1–2):51–117,
February 2004.

[130] Alfio Quarteroni and Gianluigi Rozza. Reduced order methods for modeling and compu-
tational reduction, volume 9. Springer, 2014.

[131] SAE Electronic Design Automation Standards Committee. VHDL-AMS Statistical Analy-
sis Packages. Standard J2748_200610, October 2006.

[132] J. Haase and C. Sohrmann. VHDL-AMS Statistical Analysis for marginal probabilities. In
2009 IEEE Behavioral Modeling and Simulation Workshop, pages 114–119, September
2009.

258

Juan Sebastián Rodriguez Estupiñán

Address: Chemin des Croix-Rouges 6

 1007 Lausanne, Switzerland

Mobile: +41 78 616 44 81

E-mail: juansebastian.rodriguez22@gmail.com

Strengths

 Multicultural and multidisciplinary

experience.

 Result-oriented and self-disciplined

Electrical and Electronics Engineer.

 Project Management and Leadership skills.

QUALIFICATIONS PROFILE

 More than 6 years of experience in programmable logic design, simulation and implementation in FPGAs and microcontrollers.

 Comprehensive knowledge in embedded systems, analog and digital electronic design.

 Good knowledge in control engineering, power electronics, power management.

 Strong communication skills, mobility, reliability, initiative and teamwork skills.

EDUCATION

Ecole Polytechnique Fédérale de Lausanne (EPFL). Lausanne, Switzerland

 2013 – 2017 Doctorate of Philosophy in Microsystems and Microelectronics (EDMI).

 2010 – 2012 Master of Science in Electrical and Electronics Engineering

 Major: Microelectronics. Minor: Management of Technology and Entrepreneurship (MTE).

Universidad de Los Andes. Bogota, Colombia

 2003 – 2008 Bachelor of Science in Electronics Engineering (Graduation with Cum Laude).

 2003 – 2008 Bachelor of Science in Electrical Engineering (Graduation with Cum Laude).

PROFESSIONAL EXPERIENCE & PROJECTS
03/2013 – 01/2017. Ecole Polytechnique Fédérale de Lausanne & ABB, Lausanne, Switzerland: Doctoral Assistant

 My research consists on the development of a design and verification methodology based on virtual prototyping for industrial Cyber-

Physical Systems (CPS). In particular, my work shows that the use of virtual prototyping at early stages of complex system

development reduces the overall design and verification effort by allowing the exploration of the complete system architecture and

uncovering integration issues early on, thus reducing the developing time and costs. The main contributions of my research are: the re-

definition of the system development life-cycle by using system level virtual prototypes; the design and implementation of a model

library that maximizes the reuse of computational models and their related IP; and a set of VHDL-AMS modeling guidelines

established with the purpose of improving the modularity and scalability of virtual prototypes. These techniques have been successfully

used during the design of smart electrical sensors and monitoring equipment for high and medium voltage applications. This work has

been carried out under a special collaboration between EPFL - LSM and the Integrated Sensors Group of ABB Corporate Research at

Baden-Dättwil, Switzerland.

 Teaching assistant of Hardware Systems Modeling I & II Master level courses (4 years of experience in VHDL-AMS modelling,

simulation and verification of digital and analog electronics).

02/2012 – 08/2012 ABB Switzerland Ltd (Integrated Sensors Group), Baden, Switzerland: R&D Intern

 Designed virtual prototypes of innovative industrial electrical sensors for High and Medium Voltage applications.

 Developed a robust and efficient model of an Electro-Optic Voltage Transducer (EOVT) which involves mixed-signal components and

digital signal processing for accurate high voltage measuring. A fully synthesizable signal processing algorithm was developed for

direct implementation in a FPGA system; so that, the current sensor system is improved and optimized.

 Designed a self-calibration and self-diagnostic system for enhancing Medium Voltage non-conventional sensors. The objective is to

compensate the different possible drifts of simple and non-expensive sensors by adding more complex electronics associated with

embedded signal processing. A robust, multi-physics and multi-language model was developed for temperature and noise analysis for

different circuit topologies. The results obtained demonstrate that the proposed self-calibration methodology is feasible and patentable.

Current commercial devices can be improved using this technique.

02/2011 – 07/2011 Microelectronic Systems Laboratory (LSM) EPFL, Lausanne, Switzerland: R&D Intern

 Designed PCBs for chip system testing in the context of 3D chip staking project of the Microelectronic Systems Laboratory. The new

system works with the JTAG boundary scan standard, improving both the naked and packaged experimental chip testing.

01/2010 – 09/2010 Czech Technical University in Prague (CVUT), Prague , Czech Republic: R&D Hardware Engineer

 Designed an interface electronic board to carry out faster and reliable readouts of pixel detectors (Medipix & Timepix). This embedded

system is able to store, process and transmit data at high frequency using an FPGA-DSP system, removing important limitations of

current interfaces and providing enhanced operability.

07/2009 – 12/2009 Colegio de Estudios Superiores de Administración (CESA), Bogota, Colombia: Assistant lecturer

 Taught Integral calculus lectures focused for management students. Excellent results for the youngest docent in this college.

02/2009 – 12/2009 Universidad de Los Andes, Bogota, Colombia: Research and Teaching Assistant

 Active researcher of the Center for Microelectronics of Los Andes University. Co-advisor of several undergraduate projects related

with Multiphysics design and modeling. FPGA and Embedded systems.

 Taught lab sessions and lectures on Materials and Semiconductor Devices. (Special assignation granted by the titular professor)

 Designed, implemented and developed an electrical engineering lab on Circuit Foundations.

07/2008 – 01/2009 European Organization for Nuclear Research (CERN), Geneva, Switzerland: R&D Intern

 Designed and implemented a multi-channel high-speed optical system based on a FPGA’s network which emulates the data flow from

the CMS-Preshower silicon strip detectors, for functional testing and commissioning of the detector acquisition system.

 Carried out clean room tests of Preshower hybrid micromodules to be installed in the CMS detector of the Large Hadron Collider

(LHC). Carried out pin-to-pin length measurements of the Preshower’s support in the installation disks of the CMS end caps.

TECHNICAL SKILLS

 VLSI : Software tools for Full & Semi-Custom design and verification: (Cadence, Mentor Graphics, Dolphin Integration, Synopsis)

 Multiphysics modeling: COMSOL Multiphysics, ANSYS (Electromechanical & Electrothermal device modeling).

 FPGA programing & Verification: ISE (Xilinx); Quartus II, NIOS IDE, SOPC Builder (Altera); ISP Lever (Lattice Semiconductor);

ModelSim.

 PCB design & IDEs: Altium Designer, OrCAD, Eagle, Code Composer Studio.

 Industrial Automation: LabVIEW(Core I certified), LTSpice, Siemens PLC SIMATIC 300 Family, serial communication protocols.

 Programming Languages: C/C++, VHDL-AMS, Verilog, Python, Visual Basic, GRAFCET, SML, Spice, Assembler, MATLAB.

 Database software: Filemaker pro, Filemaker server, Microsoft Access.

 Applications: MATLAB, Autocad, Microsoft Office software, Adobe Photoshop, GIT, LATEX.

 OS: MAC OS, Windows & Linux.

HONORS AND AWARDS
2011 Ecole Polytechnique Fédérale de Lausanne (EPFL): Scholarship granted by the Social Commission of EPFL.

2008 Los Andes University (Bogota, Colombia): Graduation with Cum Laude in both Electrical and Electronics Engineering.

2008 High Energy Physics Latin-American-European Network - HELEN: Six-month fellowship at CERN.

2007 Publicar S.A. (Bogota, Colombia): High GPA Scholarship sponsored by this company.

2001 Liceo San Basilio Magno High School (Bogota, Colombia): Ranked First among 42 Fellow Graduated Students.

PUBLICATIONS

 Rodriguez Estupinan, J.S., Vachoux, A.; Pascal, J. Electro-thermal virtual prototyping of a Rogowski Coil sensor system. IEEE

international conference on Industrial Technology (ICIT), 17 - 19 March 2015, Seville, Spain.

 Qianqian Ha; Maret, Y.; Rodriguez Estupinan, J.S.; Vachoux, A. VHDL-AMS virtual prototyping of a generator circuit breaker

ablation monitoring system. IEEE international conference on Circuit and Systems (ISCAS), 24-27 May 2015, Lisbon, Portugal.

 Rodriguez Estupinan, J.S., Vachoux, A.; Pascal, J.Electro-thermal modeling of a Rogowski coil sensor system. IEEE international

Symposium on VLSI Design, Automation and Test (VLSI-DAT), 27-29 April 2015, Hsinchu, Taiwan.

 J.S. Rodriguez, S. Bonilla and A. Ávila. “Mediciones de Rompimiento Electrostático en Separaciones Micrométricas” (Electrostatic

Breakdown Measurements in Micro-gaps), Revista de Ingeniería, R.29 Sección Técnica, May 2009. Electronic-version ISSN 2011-

0049. Print-version ISSN 0121-4993.

 G. Antchev, D. Barney, W. Bialas, R.S. Bonilla Osorio, K.-F. Chen, C.-M. Kuo, R.-S. Lu, V. Patras, S. Reynaud, J.S. Rodriguez

Estupiñan, P. Vichoudis "Commissioning and performance of the Preshower off-detector readout electronics in the CMS experiment",

Published in Proceedings of the Topical Workshop on Electronics for Particle Physics TWEPP-09. 21-25 September 2009, Paris,

France.

 J.S. Rodriguez, A. Avila, D.F. Reyes. “Modelaje y simulación de un biosensor para detección bioquímica extra/intracelular”

(Modeling and Simulation of a Silicon Nanowire-Based Sensor for Extra/Intracellular Biochemical Detection). Published in

Proceedings of the 6th Ibero-American Congress on Sensors – IBERSENSOR. 24-26 November 2008, Sao Paulo, Brazil.

LANGUAGES

Spanish

Native language
English

Fluent (C1)
French

Intermediate (B1-B2)
German

Beginner (A1)

EXTRA-CURRICULAR ACTIVITIES

 Music: Salsa dancer, Guitar and Percussion player.

 Sports: Football, Volleyball, Squash, Ski, Rafting.

 Member of the Colombian Association of Researchers in

Switzerland (ACIS)

Personal Situation

32 years old, Swiss residence permit (type B), Married, No children.

