10,811 research outputs found

    Vasoactive Intestinal Peptide-Secreting Tumor

    Full text link
    Vasoactive intestinal peptide-secreting tumor (VIPoma) is one of the tumors which cause “ watery diarrhea, hypokalemia, hypochlorhydria and acidosis syndrome” (WDHHA syndrome). These tumor caused by to non-insulin-secreting pancreatic islet tumor that associated with elevated vasoactive intestinal polypeptide (VIP) plasma level. VIP is a potent stimulator of gut cyclic adenosine monophosphate (cAMP) production, which leads to massive secretion of water and electrolytes mainly potassium. Over expression of VIP causes diarrhea and cancerous growth. The other clinical features of VIPomas such as hypercalcemia, abdominal discomfort, tetany, facial flushing are associated with the actions of VIP, which stimulate intestinal secretion, inhibit gastric acid secretion. VIP also regulates the synthesis, secretion, and action of neuroendocrine hormones such as secretin, glucagon, prostaglandin E, somatostatin and pentagastrin as well as cytokines and chemokines. Diagnosis is based on clinical, laboratory test show elevation VIP level, electrolyte and acid base imbalance also imaging such as CT scan or magnetic resonance imaging (MRI) which shows primary tumor in the pancreas and metastasis especially in the liver. Somatostatin receptor scintigraphy may be useful in identifying extrapancreatic VIPomas, i.e. the sympathetic chain, colon, bronchus and occult or distant metastases. Initial treatment is to correct volume, electrolyte, and acid-base abnormalities with intravenous normal saline, potassium chloride, and, sodium bicarbonate. Somatostatin or long acting ocreotide is effective in reducing serum VIP levels and promptly controlling diarrhea. Interferon alpha and glucocorticoid may be useful for reducing symptoms. Surgical resection depends on staging of pancreatic tumor

    WDHA syndrome caused by pheochromocytoma: report of a case.

    Get PDF
    A case in which a pheochromocytoma secreted vasoactive intestinal peptide, causing WDHA syndrome, is reported. The patient, a 43-year-old woman, was seen because of intractable watery diarrhea, hypokalemia and weight loss. She was found to have a mass in the right adrenal area. Preoperatively, vasoactive intestinal peptide levels were elevated, and the diagnosis of WDHA syndrome was entertained. Exploratory laparotomy revealed a tumor of the right adrenal gland, measuring 15 x 15 cm, which was resected. Histologic examination revealed it to be a pheochromocytoma. Postoperatively, vasoactive intestinal peptide returned to normal. The patient had complete remission of symptoms, and has remained well since

    Effects of the vasoactive intestinal peptide (VIP) and related peptides on glioblastoma cell growth in vitro

    Get PDF
    The growth rate of numerous cancer cell lines is regulated in part by actions of neuropeptides of the vasoactive intestinal peptide (VIP) family, which also includes pituitary adenylate cyclase-activating peptide (PACAP), glucagon, and peptide histidine/isoleucine (PHI). The aim of this work was to investigate the effect of these peptides on the growth of the rat glioblastoma cell line C6 in vitro. We also sought to determine which binding sites were correlated with the effects observed. Proliferation studies performed by means of a CyQuant trade mark assay showed that VIP and PACAP strongly stimulated C6 cell proliferation at most of the concentrations tested, whereas PHI increased cell proliferation only when associated with VIP. Two growth hormone-releasing factor (GRF) derivatives and the VIP antagonist hybrid peptide neurotensin-VIP were able to inhibit VIP-induced cell growth stimulation, even at very low concentrations. Binding experiments carried out on intact cultured C6 cells, using 125I-labeled VIP and PACAP as tracers, revealed that the effects of the peptides on cell growth were correlated with the expression on C6 cells of polyvalent high-affinity VIP-PACAP binding sites and of a second subtype corresponding to very high-affinity VIP-selective binding species. The latter subtype, which interacted poorly with PACAP with a 10,000-fold lower affinity than VIP, might mediate the antagonist effects of neurotensin- VIP and of both GRF derivatives on VIP-induced cell growth stimulation

    Glucose-targeted niosomes deliver vasoactive intestinal peptide (VIP) to the brain

    Get PDF
    The aim of this study was to evaluate glucose-bearing niosomes as a brain targeted delivery system for the vasoactive intestinal peptide (VIP). To this end, VIP/125I-VIP-loaded glucose-bearing niosomes were intravenously injected to mice. Brain uptake was determined by measuring the radioactivity of 125I-labeled VIP using gamma-counting, after intravenous administration of VIP in solution or encapsulated in glucose-bearing niosomes or in control niosomes. VIP integrity was assessed by reversed-phase HPLC analysis of brain extracts. Distribution of 125I-VIP derived radioactivity was examined from serial brain slices. HPLC analysis confirmed the presence of intact VIP in brain after administration of VIP-loaded niosomes, but not after administration of VIP solution. Encapsulation within glucose-bearing niosomes mainly allowed a significantly higher VIP brain uptake compared to control niosomes (up to 86%, 5min after treatment). Brain distribution of intact VIP after injection of glucose-bearing niosomes, indicated that radioactivity was preferentially located in the posterior and the anterior parts of the brain, whereas it was homogeneously distributed in the whole brain after the administration of control vesicles. In conclusion, this novel vesicular formulation of VIP delivers intact VIP to particular brain regions in mice. Glucose-bearing vesicles might be therefore a novel tool to deliver drugs across the blood-brain barrier (BBB)

    Brain delivery of vasoactive intestinal peptide (VIP) following nasal administration to rats

    Get PDF
    The aim of this work was to study in rats the nasal route for the brain delivery of the vasoactive intestinal peptide (VIP) neuropeptide. After evaluating VIP stability in solutions obtained from nasal washes, the effect of formulation parameters (pH 4-9, 0-1% (w/v) lauroylcarnitine (LC), hypo- or isoosmolality) on the brain uptake of intranasally administered VIP (10(-8)M)/125I-VIP (300,000 cpm/ml) was studied, using an in situ perfusion technique. Brain radioactivity distribution was assessed by quantitative autoradiographic analysis. Results were compared to intravenously administered VIP. With a hypotonic formulation at pH 4 containing 0.1% LC and 1% bovine serum albumin, VIP stability was satisfactory and loss by adsorption was minimal. Using this formulation, around 0.11% of initial radioactivity was found in the brain after 30 min perfusion and was located in the olfactory bulbs, the midbrain and the cerebellum. HPLC analysis of brain and blood extracts demonstrated the presence of intact VIP in brain and its complete degradation in the blood compartment. By intravenous administration, no intact VIP was found either in brain or in blood. In conclusion, intact VIP could be delivered successfully to the brain using the intranasal route for administration

    Expression of VPAC1 in a murine model of allergic asthma

    Get PDF
    Vasoactive intestinal polypeptide (VIP) is a putative neurotransmitter of the inhibitory non-adrenergic non-cholinergic nervous system and influences the mammalian airway function in various ways. Hence known for bronchodilatory, immunomodulatory and mucus secretion modulating effects by interacting with the VIP receptors VPAC1 and VPAC2, it is discussed to be a promising target for pharmaceutical intervention in common diseases such as COPD and bronchial asthma. Here we examined the expression and transcriptional regulation of VPAC1 in the lungs of allergic mice using an ovalbumin (OVA) -induced model of allergic asthma. Mice were sensitized to OVA and challenged with an OVA aerosol. In parallel a control group was sham sensitized with saline. VPAC1 expression was examined using RT-PCR and real time-PCR studies were performed to quantify gene transcription. VPAC1 mRNA expression was detected in all samples of OVA-sensitized and challenged animals and control tissues. Further realtime analysis did not show significant differences at the transcriptional level. Although the present studies did not indicate a major transcriptional regulation of VPAC1 in states of allergic airway inflammation, immunomodulatory effects of VPAC1 might still be present due to regulations at the translational level

    Effect of Intraduodenal Bile and Taurodeoxycholate on Exocrine Pancreatic Secretion and on Plasma Levels of Vasoactive Intestinal Polypeptide and Somatostatin in Man

    Get PDF
    Intraduodenal (i.d.) application of bile or Na-taurodeoxycholate (TDC) dose dependently enhances basal exocrine pancreatic secretion. The hydrokinetic effect is mediated at least in part by secretin. This study should show, whether vasoactive intestinal polypeptide (VIP), a partial agonist of secretin, may also be involved in the mediation of the hydrokinetic effect. Furthermore, plasma concentrations of somatostatin-like immunoreactivity (SLI) were measured in order to check whether this counterregulating hormone is also released by bile and TDC. Twenty investigations were carried out on 10 fasting healthy volunteers provided with a double-lumen Dreiling tube. Bile and TDC were intraduodenally applied in doses of 2-6 g and 200-600 mg, respectively, at 65-min intervals. Plasma samples were withdrawn at defined intervals for radioimmunological determination of VIP and SLI. Duodenal juice was collected in 10-min fractions and analyzed for volume, pH, bicarbonate, lipase, trypsin, and amylase. I.d. application of bile or TDC dose dependently stimulated hydrokinetic and ecbolic pancreatic secretion. Bile exerted a slightly stronger effect than TDC. Pancreatic response was simultaneously accompanied by a significant increase of plasma VIP and SLI concentrations. The effect of bile on integrated plasma VIP and SLI concentrations seems to be dose dependent; the effect of TDC on integrated SLI, too. For the increase of integrated plasma VIP concentrations after TDC no dose-response relation could be established. We conclude that VIP may be a further mediator of bile-induced volume and bicarbonate secretion. The release of plasma SLI indicates that inhibitory mechanisms concomitantly are triggered by i.d. bile and TDC, as already shown during digestion for the intestinal phase of pancreatic secretion

    VIP treatment prevents embryo resorption by modulating efferocytosis and activation profile of maternal macrophages in the CBAxDBA resorption prone model

    Get PDF
    Successful embryo implantation occurs followed by a local pro-inflammatory response subsequently shifted toward a tolerogenic one. VIP (vasoactive intestinal peptide) has embryotrofic, anti-inflammatory and tolerogenic effects. In this sense, we investigated whether the in vivo treatment with VIP contributes to an immunosuppressant local microenvironment associated with an improved pregnancy outcome in the CBA/J × DBA/2 resorption prone model. Pregnancy induced the expression of VIP, VPAC1 and VPAC2 in the uterus from CBA/J × DBA/2 mating females on day 8.5 of gestation compared with non-pregnant mice. VIP treatment (2 nmol/mouse i.p.) on day 6.5 significantly increased the number of viable implantation sites and improved the asymmetric distribution of implanted embryos. This effect was accompanied by a decrease in RORÎłt and an increase in TGF-ÎČ and PPARÎł expression at the implantation sites. Moreover, VIP modulated the maternal peritoneal macrophages efferocytosis ability, tested using latex beads-FITC or apoptotic thymocytes, displaying an increased frequency of IL-10-producer F4/80 cells while did not modulate TNF-α and IL-12 secretion. The present data suggest that VIP treatment increases the number of viable embryos associated with an increase in the efferocytic ability of maternal macrophages which is related to an immunosuppressant microenvironment.Fil: Gallino, Lucila. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica BiolĂłgica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica BiolĂłgica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Calo, Guillermina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica BiolĂłgica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica BiolĂłgica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Hauk, Vanesa Cintia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica BiolĂłgica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica BiolĂłgica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Fraccaroli, Laura Virginia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica BiolĂłgica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica BiolĂłgica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Grasso, Esteban Nicolas. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica BiolĂłgica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica BiolĂłgica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Vermeulen, Elba Monica. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; ArgentinaFil: Perez Leiros, Claudia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica BiolĂłgica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica BiolĂłgica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Ramhorst, Rosanna Elizabeth. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂ­mica BiolĂłgica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂ­mica BiolĂłgica de la Facultad de Ciencias Exactas y Naturales; Argentin

    PACAP and migraine headache: immunomodulation of neural circuits in autonomic ganglia and brain parenchyma.

    Get PDF
    The discovery that intravenous (IV) infusions of the neuropeptide PACAP-38 (pituitary adenylyl cyclase activating peptide-38) induced delayed migraine-like headaches in a large majority of migraine patients has resulted in considerable excitement in headache research. In addition to suggesting potential therapeutic targets for migraine, the finding provides an opportunity to better understand the pathological events from early events (aura) to the headache itself. Although PACAP-38 and the closely related peptide VIP (vasoactive intestinal peptide) are well-known as vasoactive molecules, the dilation of cranial blood vessels per se is no longer felt to underlie migraine headaches. Thus, more recent research has focused on other possible PACAP-mediated mechanisms, and has raised some important questions. For example, (1) are endogenous sources of PACAP (or VIP) involved in the triggering and/or propagation of migraine headaches?; (2) which receptor subtypes are involved in migraine pathophysiology?; (3) can we identify specific anatomical circuit(s) where PACAP signaling is involved in the features of migraine? The purpose of this review is to discuss the possibility, and supportive evidence, that PACAP acts to induce migraine-like symptoms not only by directly modulating nociceptive neural circuits, but also by indirectly regulating the production of inflammatory mediators. We focus here primarily on postulated extra-dural sites because potential mechanisms of PACAP action in the dura are discussed in detail elsewhere (see X, this edition)
    • 

    corecore