4,028 research outputs found

    Assessing Distance Perception In Virtual And Augmented Realities With Electroencephalography

    Get PDF
    A comfinding in spatial perception research is that subjects tend to underestimate distances in virtual reality compared to the real world. The degree and methods of measurement of underestimation vary between studies, but the trend of underestimation is consistent. This study uses electroencephalography as a neuroimaging technique to examine patterns of brain activity when fixating objects in near space and far space in the real world, in virtual reality, and in augmented reality. For the augmented reality condition, a custom optical see-through augmented reality head-mounted display (HMD) was built and calibrated. A calibration method was developed to correct the geometric distortion introduced by the HMD\u27s optical combiners. This method also calibrates a motion tracker mounted on the HMD to allow for tracking of head movements

    Optical versus video see-through mead-mounted displays in medical visualization

    Get PDF
    We compare two technological approaches to augmented reality for 3-D medical visualization: optical and video see-through devices. We provide a context to discuss the technology by reviewing several medical applications of augmented-reality research efforts driven by real needs in the medical field, both in the United States and in Europe. We then discuss the issues for each approach, optical versus video, from both a technology and human-factor point of view. Finally, we point to potentially promising future developments of such devices including eye tracking and multifocus planes capabilities, as well as hybrid optical/video technology

    Conceptual design study for an advanced cab and visual system, volume 2

    Get PDF
    The performance, design, construction and testing requirements are defined for developing an advanced cab and visual system. The rotorcraft system integration simulator is composed of the advanced cab and visual system and the rotorcraft system motion generator, and is part of an existing simulation facility. User's applications for the simulator include rotorcraft design development, product improvement, threat assessment, and accident investigation

    Contributions to virtual reality

    Get PDF
    153 p.The thesis contributes in three Virtual Reality areas: ¿ Visual perception: a calibration algorithm is proposed to estimate stereo projection parameters in head-mounted displays, so that correct shapes and distances can be perceived, and calibration and control procedures are proposed to obtain desired accommodation stimuli at different virtual distances.¿ Immersive scenarios: the thesis analyzes several use cases demanding varying degrees of immersion and special, innovative visualization solutions are proposed to fulfil their requirements. Contributions focus on machinery simulators, weather radar volumetric visualization and manual arc welding simulation.¿ Ubiquitous visualization: contributions are presented to scenarios where users access interactive 3D applications remotely. The thesis follows the evolution of Web3D standards and technologies to propose original visualization solutions for volume rendering of weather radar data, e-learning on energy efficiency, virtual e-commerce and visual product configurators

    Off-Line Camera-Based Calibration for Optical See-Through Head-Mounted Displays

    Get PDF
    In recent years, the entry into the market of self contained optical see-through headsets with integrated multi-sensor capabilities has led the way to innovative and technology driven augmented reality applications and has encouraged the adoption of these devices also across highly challenging medical and industrial settings. Despite this, the display calibration process of consumer level systems is still sub-optimal, particularly for those applications that require high accuracy in the spatial alignment between computer generated elements and a real-world scene. State-of-the-art manual and automated calibration procedures designed to estimate all the projection parameters are too complex for real application cases outside laboratory environments. This paper describes an off-line fast calibration procedure that only requires a camera to observe a planar pattern displayed on the see-through display. The camera that replaces the user’s eye must be placed within the eye-motion-box of the see-through display. The method exploits standard camera calibration and computer vision techniques to estimate the projection parameters of the display model for a generic position of the camera. At execution time, the projection parameters can then be refined through a planar homography that encapsulates the shift and scaling effect associated with the estimated relative translation from the old camera position to the current user’s eye position. Compared to classical SPAAM techniques that still rely on the human element and to other camera based calibration procedures, the proposed technique is flexible and easy to replicate in both laboratory environments and real-world settings

    Future Directions in Astronomy Visualisation

    Full text link
    Despite the large budgets spent annually on astronomical research equipment such as telescopes, instruments and supercomputers, the general trend is to analyse and view the resulting datasets using small, two-dimensional displays. We report here on alternative advanced image displays, with an emphasis on displays that we have constructed, including stereoscopic projection, multiple projector tiled displays and a digital dome. These displays can provide astronomers with new ways of exploring the terabyte and petabyte datasets that are now regularly being produced from all-sky surveys, high-resolution computer simulations, and Virtual Observatory projects. We also present a summary of the Advanced Image Displays for Astronomy (AIDA) survey which we conducted from March-May 2005, in order to raise some issues pertitent to the current and future level of use of advanced image displays.Comment: 13 pages, 2 figures, accepted for publication in PAS

    IMPROVE: collaborative design review in mobile mixed reality

    Get PDF
    In this paper we introduce an innovative application designed to make collaborative design review in the architectural and automotive domain more effective. For this purpose we present a system architecture which combines variety of visualization displays such as high resolution multi-tile displays, TabletPCs and head-mounted displays with innovative 2D and 3D Interaction Paradigms to better support collaborative mobile mixed reality design reviews. Our research and development is motivated by two use scenarios: automotive and architectural design review involving real users from Page\Park architects and FIAT Elasis. Our activities are supported by the EU IST project IMPROVE aimed at developing advanced display techniques, fostering activities in the areas of: optical see-through HMD development using unique OLED technology, marker-less optical tracking, mixed reality rendering, image calibration for large tiled displays, collaborative tablet-based and projection wall oriented interaction and stereoscopic video streaming for mobile users. The paper gives an overview of the hardware and software developments within IMPROVE and concludes with results from first user tests

    Image-Based Rendering Of Real Environments For Virtual Reality

    Get PDF

    Panoramic 360â—¦ videos in virtual reality using two lenses and a mobile phone

    Get PDF
    Cameras generally have a 60â—¦ field of view of and can capture only a portion of their surroundings. Panoramic cameras are used to capture the entire 360â—¦ view known as panoramic images. Virtual reality makes use of these panoramic images to provide a more immersive experience compared to seeing images on a 2D screen. Most of the panoramic cameras are expensive. It is important for the camera to be affordable in order for virtual reality to become a part of daily life. This is a comprehensive document about the successful implementation of the cheapest 360â—¦ video camera, using multiple lenses on a mobile phone. With the advent of technology nearly everyone has a mobile phone. Equipping these mobile phones with the technology to capture panoramic images using multiple lenses will convert them into the most economical panoramic camera
    • …
    corecore