12 research outputs found

    Whisking with robots from rat vibrissae to biomimetic technology for active touch

    Get PDF
    This article summarizes some of the key features of the rat vibrissal system, including the actively controlled sweeping movements of the vibrissae known as whisking, and reviews the past and ongoing research aimed at replicating some of this functionality in biomimetic robots

    Determining object geometry with compliance and simple sensors

    Full text link

    Modeling of a mobile haptic system based on flexible antennas

    Get PDF
    [Resumen] En los últimos años ha aumentado el interés en el desarrollo de sistemas de medición para robots móviles, entre los que se encuentran los sistemas táctiles basados en antenas sensoras bioinspiradas en los bigotes y antenas de animales e insectos. En este trabajo se estudia un robot móvil con este tipo de sistemas. En concreto, se desarrolla el modelo dinámico del conjunto plataforma móvil y antena sensora que conforman el robot, considerando el movimiento del conjunto comprendido en el plano y teniendo en cuenta el efecto de la gravedad. Para ello se aplica el principio de Hamilton, obteniendo las ecuaciones de movimiento para la plataforma móvil y el planteamiento del problema de condiciones de contorno para la antena. Posteriormente, mediante el análisis modal se llega a una solución única del modelo de la antena sensora, el cual se valida mediante el software Adams al definir unas trayectorias de referencia del robot a partir de sus limitaciones físicas.[Abstract] In recent years, there has been a growing interest in the development of measurement systems for mobile robots, including tactile systems based on bioinspired sensor antennas, inspired by the whiskers and antennas of animals and insects. This work focuses on studying a mobile robot equipped with such systems. Specifically, a dynamic model for the mobile platform and sensor antenna that comprise the robot is developed, considering the planar motion of the system and taking into account the gravity effect. The extended Hamilton principle is applied to derive the equations of motion for the mobile platform, while the boundary-value problem is formulated for the antenna. Subsequently, by means of modal analysis, a unique solution for the sensor antenna model is obtained and validated using Adams software by defining reference trajectories for the robot, considering its physical limitations.Ministerio de Ciencia, Innovación y Universidades; PRE2020-09522

    Sensing device with whisker elements

    Get PDF
    A sensing device includes an elongated whisker element having a flexible cantilever region and a base region where a change in moment or curvature is generated by bending of the cantilever region when it contacts an object. One or more sensor elements cooperatively associated with the whisker element provide one or more output signals that is/are representative of two orthogonal components of change in moment or curvature at the whisker base region to permit determination of object distance, fluid velocity profile, or object contour (shape) with accounting for lateral slip of the whisker element and frictional characteristics of the object. Multiple sensing devices can be arranged in arrays in a manner to sense object contour without or with adjustment for lateral slip

    A Biologically Inspired Controllable Stiffness Multimodal Whisker Follicle

    Get PDF
    This thesis takes a soft robotics approach to understand the computational role of a soft whisker follicle with mechanisms to control the stiffness of the whisker. In particular, the thesis explores the role of the controllable stiffness whisker follicle to selectively favour low frequency geometric features of an object or the high frequency texture features of the object.Tactile sensing is one of the most essential and complex sensory systems for most living beings. To acquire tactile information and explore the environment, animals use various biological mechanisms and transducing techniques. Whiskers, or vibrissae are a form of mammalian hair, found on almost all mammals other than homo sapiens. For many mammals, and especially rodents, these whiskers are essential as a means of tactile sensing.The mammalian whisker follicle contains multiple sensory receptors strategically organised to capture tactile sensory stimuli of different frequencies via the vibrissal system. Nocturnal mammals such as rats heavily depend on whisker based tactile perception to find their way through burrows and identify objects. There is diversity in the whiskers in terms of the physical structure and nervous innervation. The robotics community has developed many different whisker sensors inspired by this biological basis. They take diverse mechanical, electronic, and computational approaches to use whiskers to identify the geometry, mechanical properties, and objects' texture. Some work addresses specific object identification features and others address multiple features such as texture and shape etc. Therefore, it is vital to have a comprehensive discussion of the literature and to understand the merits of bio-inspired and pure-engineered approaches to whisker-based tactile perception.The most important contribution is the design and use of a novel soft whisker follicle comprising two different frequency-dependent data capturing modules to derive more profound insights into the biological basis of tactile perception in the mammalian whisker follicle. The new insights into the biological basis of tactile perception using whiskers provide new design guidelines to develop efficient robotic whiskers

    Haptic robot-environment interaction for self-supervised learning in ground mobility

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia Eletrotécnica e de ComputadoresThis dissertation presents a system for haptic interaction and self-supervised learning mechanisms to ascertain navigation affordances from depth cues. A simple pan-tilt telescopic arm and a structured light sensor, both fitted to the robot’s body frame, provide the required haptic and depth sensory feedback. The system aims at incrementally develop the ability to assess the cost of navigating in natural environments. For this purpose the robot learns a mapping between the appearance of objects, given sensory data provided by the sensor, and their bendability, perceived by the pan-tilt telescopic arm. The object descriptor, representing the object in memory and used for comparisons with other objects, is rich for a robust comparison and simple enough to allow for fast computations. The output of the memory learning mechanism allied with the haptic interaction point evaluation prioritize interaction points to increase the confidence on the interaction and correctly identifying obstacles, reducing the risk of the robot getting stuck or damaged. If the system concludes that the object is traversable, the environment change detection system allows the robot to overcome it. A set of field trials show the ability of the robot to progressively learn which elements of environment are traversable

    Characterisation of a nuclear cave environment utilising an autonomous swarm of heterogeneous robots

    Get PDF
    As nuclear facilities come to the end of their operational lifetime, safe decommissioning becomes a more prevalent issue. In many such facilities there exist ‘nuclear caves’. These caves constitute areas that may have been entered infrequently, or even not at all, since the construction of the facility. Due to this, the topography and nature of the contents of these nuclear caves may be unknown in a number of critical aspects, such as the location of dangerous substances or significant physical blockages to movement around the cave. In order to aid safe decommissioning, autonomous robotic systems capable of characterising nuclear cave environments are desired. The research put forward in this thesis seeks to answer the question: is it possible to utilise a heterogeneous swarm of autonomous robots for the remote characterisation of a nuclear cave environment? This is achieved through examination of the three key components comprising a heterogeneous swarm: sensing, locomotion and control. It will be shown that a heterogeneous swarm is not only capable of performing this task, it is preferable to a homogeneous swarm. This is due to the increased sensory and locomotive capabilities, coupled with more efficient explorational prowess when compared to a homogeneous swarm

    A high speed sensor system for tactile interaction research

    Get PDF
    Schürmann C. A high speed sensor system for tactile interaction research. Bielefeld: Bielefeld University Library; 2013.In this work we will describe and implement the first tactile sensor system that combines the properties of modularity with a very high sensing speed, a high sensitivity and a high spatial resolution. This unique combination of features enables researchers to develop novel applications and makes it possible to replace task specific tactile sensors with a single system. The very high sensing speed of the system allows for slip detection during robot grasping. And as all our sensor cells are sampled with the same high frequency, our system can even enable the slip detection for multiple contact points at the same time. This high speed was made possible through the development of a highly integrated parallel sensor sampling architecture. The modularity of the system allows it to be employed in a multitude of applications. Tactile sensitive surfaces of various dimensions can be easily realized through a very simple ’plug and use’ principle without the need for software configuration by the user. This was made possible by developing a new bus system that allows the relative localization of the participants. Our system can be used to create tactile sensitive table surfaces with a large amount of sensor cells and due to its high speed design still provide for real time frame rates. The flexibility and high performance of the system enabled us to develop a tactile sensitive object that allows the continuous high speed monitoring of human finger forces. For this we solved the problem of integrating the tactile sensors to allow free movement of the object, while maintaining a constant high rate of data capture and realizing a low latency synchronization to external devices. The high sensitivity of the system was made possible through technical innovation in the state of the art of resistive based tactile sensors. We did so by creating an optimized sensor cell shape and investigating the behavior of different sensor materials. The knowledge gained in this process was further used to advance the existing method of sensor normalization into a real time method. We will present a range of tactile interaction scenarios that have been realized with the tactile sensor system named Myrmex. These scenarios include the investigating of human grasp force control during a pick and place task, a tactile table for integration into an intelligent household and a tactile table for the manipulation of virtual clay as a form of finger training. In addition we will present a selection of scenarios where the Myrmex system was employed by other researchers, as in using the sensor modules as (large) tactile fingertips on robot arms to implement tactile servoing or slip detection during object grasping. The system has also been used to study human finger forces as well as investigating novel methods for prosthesis control. The positive results from all the scenarios support our conclusion that the developed Myrmex system is a very valuable and reliable tool for the research of tactile interactions
    corecore