1,758 research outputs found

    Multimodality with Eye tracking and Haptics: A New Horizon for Serious Games?

    Get PDF
    The goal of this review is to illustrate the emerging use of multimodal virtual reality that can benefit learning-based games. The review begins with an introduction to multimodal virtual reality in serious games and we provide a brief discussion of why cognitive processes involved in learning and training are enhanced under immersive virtual environments. We initially outline studies that have used eye tracking and haptic feedback independently in serious games, and then review some innovative applications that have already combined eye tracking and haptic devices in order to provide applicable multimodal frameworks for learning-based games. Finally, some general conclusions are identified and clarified in order to advance current understanding in multimodal serious game production as well as exploring possible areas for new applications

    Haptic feedback in eye typing

    Get PDF
    Proper feedback is essential in gaze based interfaces, where the same modality is used for both perception and control. We measured how vibrotactile feedback, a form of haptic feedback, compares with the commonly used visual and auditory feedback in eye typing. Haptic feedback was found to produce results that are close to those of auditory feedback; both were easy to perceive and participants liked both the auditory ”click” and the tactile “tap” of the selected key. Implementation details (such as the placement of the haptic actuator) were also found important

    GazeTouchPass: Multimodal Authentication Using Gaze and Touch on Mobile Devices

    Get PDF
    We propose a multimodal scheme, GazeTouchPass, that combines gaze and touch for shoulder-surfing resistant user authentication on mobile devices. GazeTouchPass allows passwords with multiple switches between input modalities during authentication. This requires attackers to simultaneously observe the device screen and the user's eyes to find the password. We evaluate the security and usability of GazeTouchPass in two user studies. Our findings show that GazeTouchPass is usable and significantly more secure than single-modal authentication against basic and even advanced shoulder-surfing attacks

    Novel Interaction Techniques for Mobile Augmented Reality applications. A Systematic Literature Review

    Get PDF
    This study reviews the research on interaction techniques and methods that could be applied in mobile augmented reality scenarios. The review is focused on themost recent advances and considers especially the use of head-mounted displays. Inthe review process, we have followed a systematic approach, which makes the reviewtransparent, repeatable, and less prone to human errors than if it was conducted in amore traditional manner. The main research subjects covered in the review are headorientation and gaze-tracking, gestures and body part-tracking, and multimodality– as far as the subjects are related to human-computer interaction. Besides these,also a number of other areas of interest will be discussed.Siirretty Doriast

    Eyewear Computing \u2013 Augmenting the Human with Head-Mounted Wearable Assistants

    Get PDF
    The seminar was composed of workshops and tutorials on head-mounted eye tracking, egocentric vision, optics, and head-mounted displays. The seminar welcomed 30 academic and industry researchers from Europe, the US, and Asia with a diverse background, including wearable and ubiquitous computing, computer vision, developmental psychology, optics, and human-computer interaction. In contrast to several previous Dagstuhl seminars, we used an ignite talk format to reduce the time of talks to one half-day and to leave the rest of the week for hands-on sessions, group work, general discussions, and socialising. The key results of this seminar are 1) the identification of key research challenges and summaries of breakout groups on multimodal eyewear computing, egocentric vision, security and privacy issues, skill augmentation and task guidance, eyewear computing for gaming, as well as prototyping of VR applications, 2) a list of datasets and research tools for eyewear computing, 3) three small-scale datasets recorded during the seminar, 4) an article in ACM Interactions entitled \u201cEyewear Computers for Human-Computer Interaction\u201d, as well as 5) two follow-up workshops on \u201cEgocentric Perception, Interaction, and Computing\u201d at the European Conference on Computer Vision (ECCV) as well as \u201cEyewear Computing\u201d at the ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp)

    Exploring the Use of Wearables to develop Assistive Technology for Visually Impaired People

    Get PDF
    This thesis explores the usage of two prominent wearable devices to develop assistive technology for users who are visually impaired. Specifically, the work in this thesis aims at improving the quality of life of users who are visually impaired by improving their mobility and ability to socially interact with others. We explore the use of a smart watch for creating low-cost spatial haptic applications. This app explores the use of haptic feedback provided using a smartwatch and smartphone to provide navigation instructions that let visually impaired people safely traverse a large open space. This spatial feedback guides them to walk on a straight path from source to destination by avoiding veering. Exploring the paired interaction between a Smartphone and a Smartwatch, helped to overcome the limitation that smart devices have only single haptic actuator.We explore the use of a head-mounted display to enhance social interaction by helping people with visual impairments align their head towards a conversation partner as well as maintain personal space during a conversation. Audio feedback is provided to the users guiding them to achieve effective face-to-face communication. A qualitative study of this method shows the effectiveness of the application and explains how it helps visually impaired people to perceive non-verbal cues and feel more engaged and assertive in social interactions

    Haptic feedback to gaze events

    Get PDF
    Eyes are the window to the world, and most of the input from the surrounding environment is captured through the eyes. In Human-Computer Interaction too, gaze based interactions are gaining prominence, where the user’s gaze acts as an input to the system. Of late portable and inexpensive eye-tracking devices have made inroads in the market, opening up wider possibilities for interacting with a gaze. However, research on feedback to the gaze-based events is limited. This thesis proposes to study vibrotactile feedback to gaze-based interactions. This thesis presents a study conducted to evaluate different types of vibrotactile feedback and their role in response to a gaze-based event. For this study, an experimental setup was designed wherein when the user fixated the gaze on a functional object, vibrotactile feedback was provided either on the wrist or on the glasses. The study seeks to answer questions such as the helpfulness of vibrotactile feedback in identifying functional objects, user preference for the type of vibrotactile feedback, and user preference of the location of the feedback. The results of this study indicate that vibrotactile feedback was an important factor in identifying the functional object. The preference for the type of vibrotactile feedback was somewhat inconclusive as there were wide variations among the users over the type of vibrotactile feedback. The personal preference largely influenced the choice of location for receiving the feedback

    Interactive form creation: exploring the creation and manipulation of free form through the use of interactive multiple input interface

    Get PDF
    Most current CAD systems support only the two most common input devices: a mouse and a keyboard that impose a limit to the degree of interaction that a user can have with the system. However, it is not uncommon for users to work together on the same computer during a collaborative task. Beside that, people tend to use both hands to manipulate 3D objects; one hand is used to orient the object while the other hand is used to perform some operation on the object. The same things could be applied to computer modelling in the conceptual phase of the design process. A designer can rotate and position an object with one hand, and manipulate the shape [deform it] with the other hand. Accordingly, the 3D object can be easily and intuitively changed through interactive manipulation of both hands.The research investigates the manipulation and creation of free form geometries through the use of interactive interfaces with multiple input devices. First the creation of the 3D model will be discussed; several different types of models will be illustrated. Furthermore, different tools that allow the user to control the 3D model interactively will be presented. Three experiments were conducted using different interactive interfaces; two bi-manual techniques were compared with the conventional one-handed approach. Finally it will be demonstrated that the use of new and multiple input devices can offer many opportunities for form creation. The problem is that few, if any, systems make it easy for the user or the programmer to use new input devices
    • 

    corecore