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ABSTRACT

This thesis explores the usage of two prominent wearable devices to develop

assistive technology for users who are visually impaired. Specifically, the work in

this thesis aims at improving the quality of life of users who are visually impaired

by improving their mobility and ability to socially interact with others.

We explore the use of a smart watch for creating low-cost spatial haptic appli-

cations. This app explores the use of haptic feedback provided using a Smartwatch

and Smartphone to provide navigation instructions that let visually impaired peo-

ple safely traverse a large open space. This spatial feedback guides them to walk

on a straight path from source to destination by avoiding veering. Exploring the

paired interaction between a Smartphone and a Smartwatch, helped to overcome

the limitation that smart devices have only single haptic actuator.

We explore the use of a head-mounted display to enhance social interaction by

helping people with visual impairments align their head towards a conversation

partner as well as maintain personal space during a conversation. Audio feedback

is provided to the users guiding them to achieve effective face-to-face communica-

tion. A qualitative study of this method shows the effectiveness of the application

and explains how it helps visually impaired people to perceive non-verbal cues

and feel more engaged and assertive in social interactions.
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CHAPTER 1

INTRODUCTION

The estimated number of people taht are visually impaired in the world is 285 mil-

lion, 39 million blind and 246 million having low vision; 65% of visually impaired

people and 82% of all blind are 50 years and older [36]. The visually impaired

people face many problems and barriers in their day to day life because of their

difficulty to understand their surrounding environment. Variety of software and

hardware assistive technologies that has eased their life across mobility, daily life,

literacy and communication were developed. During ancient times, they always

had to be dependent on a person. This situation was reformed to an extent with

the introduction of assistive technologies in a later time period. An early criti-

cism of assistive technology is that it is often prohibitively expensive [1]. The high

cost is due to their small sales volume, expensive certification testing and the non-

generalized nature of their functionality. With the beginning of the digital age,

smartphones became very popular among people and also came with a lot of fea-

tures within it. Smartphones feature various built-in accessibility features for users

who are visually impaired, such as screen readers and voice enabled personal as-

sistants. Expensive assistive technology, such as currency readers, which used to

cost hundreds of dollars [5], have been replaced with free apps [3]. Smartphones

are considered as a promising platform to develop low-cost assistive technology

[15] and smartphone usage among visually impaired people has been increasing

[10]. Wearable technology is the leading new innovation since smartphones. The

possibilities of wearables in augmenting the quality of life of people are endless.

Different categories of wearables which were introduced includes Smartwatches,

Google glass, head mounted displays, smart jewelry, smart clothing and the list

is further increasing. At this point where digital world is influencing people‘s life,
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Figure 1.1: a) Smartwatch b) Google Glass

this thesis explores the use of two wearable devices - Smartwatch and Google Glass

(see Figure 1.1) to improve the life of visually impaired people.

The paper for FaceIT (Google glass application) research is to be submitted to

CHI as an Extended Abstract in 2017 conference.

1.1 Smartwatch - Spatial haptic application

In recent years, Smartwatches have garnered significant public interest as it can

interact in a more efficient, discreet, and non-obtrusive way than a Smartphone

[44]. As blind people typically hold a cane or a leash to a guide-dog in one hand,

access to computing from the wrist is more convenient and efficient than taking

out a Smartphone. Smartwatches currently offer only a subset of functionality

that is available on a Smartphone. In the future, Smartwatches could become the

preferred mobile computing form factor, as visually impaired users have no use

for increasingly larger Smartphone screens. To interact with mobile devices, blind

people largely rely on audio, such as screen-readers. Offloading or supplement-
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ing the audio channel with haptic feedback is useful, especially in mobile contexts,

which can be noisy while using a headphone. Audio feedback may be impeded

by hearings sounds from the environment, such as car traffic. Smartphones typi-

cally feature a single haptic actuator. Because the skin is our largest organ, spatial

haptic feedback significantly increases the amount of information that can be com-

municated. Various assistive systems that use spatial haptic feedback have been

developed [23, 17, 50], but these typically rely on custom hardware, and are there-

fore not commercially available.

Because most Smartwatches are tethered to a smartphone for their mobile data

needs, recent work has explored the concept of a joint interaction [19] between a

smartphone and a Smartwatch to develop novel useful applications. These apps

aren’t accessible to individuals who are blind, but the proposed interaction con-

cept has potential for developing low-cost assistive technology for blind users.

The wrist is a more sensitive location for providing haptic feedback than a pocket

[40]. Though recent Smartwatches (I-Watch) are capable of providing sophisticated

forms of haptic feedback, they don’t provide spatial feedback.

We present a novel navigation technique which assists visually impaired peo-

ple to walk in a open space area without veering. We also explore providing spatial

haptic feedback using a paired interaction between a Smartwatch and a smart de-

vice for achieving the above goal.

1.2 FaceIT

Human communication contains both verbal and nonverbal information, which

interplay in our daily lives. Even a small and common conversation could con-
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tain a wealth of nonverbal information, which sighted people take for granted in

daily routine. For example, a sighted speaker consciously and unconsciously uses

eye contacts to convey information with the conversation partner [42]. This phe-

nomenon where two people look at each other’s eyes is mutual gaze[13]. Mutual

gaze has important role in face-face conversation. Various researchers indicate

different qualities that are exposed through high level of mutual gaze between

two people. The qualities perceived by face to face communication with mutual

eye gaze are intimacy, attentiveness, powerfulness and influential [45, 52, 8]. One

among many problems faced by visually impaired people is the difficulty of eye

gaze when talking to people during social gatherings. They need help from an-

other person to orient themselves towards the conversation partner and to main-

tain personal distance from the partner. By performing an interview with eight

visually impaired people, White et al.[49] found that one person has experienced

the communication problem since it was difficult for him to meet people. He men-

tioned that this difficulty was that he could not see and make eye contact with the

sighted people.

Eye contact being a key element in face-to-face conversation, FaceIT is a Google

glass project that helps people who are blind in delivering an effective face to face

communication by aligning their face to the conversing partner. This application is

the very first application that helps the visually challenged person in a face-to-face

communication scenario by overcoming his/her challenges in such a communi-

cation. The application finds the distance between the communicating partners.

This information helps the user to maintain a social or personal distance while

communicating. Hence, the application helps the visually impaired people to en-

gage more in social activities. Another advantage of this application is the use of

basic gestures available in Google Glass. The gestures being used are swipe left
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for information regarding face orientation, while swipe right gives information

with respect to distance. All the information’s is provided as audio feedback. The

simpleness, understandability, accessibility and efficiency makes this application

relevant in Human Computer Interaction.

The remaining of the thesis is organized as follows: Chapter 2 discusses the

works with similar interests; Chapter 3 describes the design, methodology, imple-

mentation, user study and results for the spatial haptic application (smart watch

application); Chapter 4 discusses the solution for face to face interaction for vi-

sually impaired people with essential design, user study and results; Chapter 5

concludes this thesis by discussing the limitation in each work and future modifi-

cations to make it more efficient.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Smartwatch - Spatial Haptic Application

Spatial haptic feedback has been explored for navigation, as a natural mapping

that can be established between haptic cues on the body and geolocated informa-

tion around the user.

2.1.1 Spatial Haptics for Navigation

GentleGuide [16] uses two wristbands with integrated vibrotactors. A user study

with 16 sighted subjects found this approach to be useful for conveying indoor

navigation directions. A vibrotactile belt [23] has been developed with 8 vibrotac-

tors spaced 45◦ around the user. A user study with 12 sighted subjects found the

belt to allow for accurately guiding a user towards a GPS coordinate. A similar

approach uses a headband [17] to allow its wearer to have 180◦ spatial awareness

from behind. 6 vibrotactors and infrared sensors were spaced 30◦ on the headband.

A user study with 10 sighted subjects found 87% of subjects could avoid an unseen

object from behind. SpaceSense[50] explores the use of vibration motors attached

to different locations on a smartphone to convey spatial geographical informa-

tion. A disadvantage of these approaches is that they have used custom hardware

and none of the systems are commercially available. Lechal [4] is a commercially-

available inset for shoes that connects to a smartphone using Bluetooth. This tech-

nique can be used for conveying navigation instructions, e.g., turn left or right by

generating haptic feedback in either shoe.
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2.1.2 Paired Interactions

Providing haptic feedback on different mobile devices (Smartwatch/smartphone)

has been explored to convey different types of messages [40]. Duet [19] explored

the design space of a joint interaction between a smartphone and a Smartwatch.

Multi-device gestures, such as a pinch across devices, as well as using sensing

information from the watch (orientation) were explored to create email and map

applications. The design space is mapped by identifying what role each device

plays, e.g., a device can be on the foreground or background. Most closely related

to our approach is VI-Bros [35], which uses a smartphone and a Smartwatch to con-

vey navigation directions in an indoor environment, similar to GentleGuide [16].

A number of holding positions are explored for the smartphone (pocket/hand). A

user study with 3 sighted subjects demonstrated the feasibility of this technique to

convey indoor navigation directions. None of these approaches report results and

experiences with blind users.

2.1.3 Spatialized Haptic Feedback at the Wrists

Initially, studies were conducted to identify the best locations in the body where

vibrations can be effectively felt. Fingers were often used for vibrotactile feed-

back due to their sensitivity to small amplitude and high spatial acuity. [22] Later

studies were extended to examine the efficiency of sensing vibrational feedback to

forearm and abdomen [20][21]. The results showed that performance is enhanced

at points such as wrists, elbow and shoulder. Later studies showed that the per-

formance of sensing the vibrations was slightly better at tactors located near the

wrist than proximal to elbow[18]. The easiness to perceive alerts by those using
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wrist Worn Tactile Displays [WTDs] has been explored in various papers as well.

Buzzwear[33] explored this by performing an experiment which evaluates user’s

ability to distinguish 24 tactile patterns associated with 4 parameters - intensity,

starting point, temporal pattern and direction. They proved the easiness in per-

ceiving the patterns associated with the parameters by achieving an accuracy of

99.32% which shows that application of usage of Smartwatch for haptic feedback.

Haptic feedbacks with strong intensity and temporal patterns were most easily

perceivable among the 4 parameters. Qian also experimented with determining

the efficacy of multi-parameter tactile icons and concluded that vibrational feed-

back with strong intensity, short duration and short intervals are recognized and

interpreted in shorter time than other combination of parameters[41]. Both these

papers prove easy alert perception of wrist mounted tactile displays which thereby

enable implementation of multitasking friendly mobile user interfaces. Based on

these findings, we were stimulated to use spatial haptic feedback with strong in-

tensity and short intervals in Smartwatches to provide feedback to blind users.

2.1.4 Multi-device Assistive Technology

A few approaches have explored creating assistive technology for blind users us-

ing multiple devices. Perkinput [12] is an input technique that uses two smart-

phone screens to provide Braille input. One hand provides input for dots 1-3 on

one phone and dots 4-6 on the other in order to type a single character through

chording. A wrist band was used to create a remote control for the iPhone for

blind people [51]. In interviews, users expressed a desire to be included in wear-

able computing and expressed satisfaction with the multiple device setup. Gravvi-

tas [26] attaches wearable vibrotactors on the index finger of both hands to let blind
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individuals trace lines on a map and diagram. A user study with 6 sighted subjects

evaluated the feasibility of this technique.

2.2 FaceIT

Google glass has been explored for enabling face to face interaction for visually

impaired user. It takes into account face recognition and audio feedback, giving

information about face alignment and distance. Assistive technology has been

growing drastically in this digital age. It resulted in development of lot of ideas

and applications that assists blind people in various occasions.

2.2.1 Image recognition application

Mattos [37] introduced an image processing technology for the visually impaired

to locate the object. Also the system can be used for automatic recognition of the

texts and images. Balas [14] suggested a new class of image features that is use-

ful to the set of representational tools for face-recognition tasks. Thus improvising

the ideas of image recognition introduced techniques for face recognition using

computer vision. Komai [30] proposed a visual speech recognition (VSR), method

to convert faces viewed from various directions into faces that are viewed from

the front using Active Appearance Models (AAM). TactileFace is a face recogni-

tion application which provides a real time conversion of face images into tactile

counterparts which helps the users to understand the face by touching the tactile

reproduction [34]. Another set of wearable eye glasses allows visually impaired

users to identify faces of people present in the social places and helps them to



10

identify and interpret facial expressions, emotions and gestures [32].

2.2.2 Sensing Gaze behaviors

Researchers also tried to understand the importance of gaze behavior and expres-

sions in a face to face communication and its outcome on visually challenged peo-

ple. In his research on dyadic (two-person) conversations, Argyle studied that

about 75% of the time people are listening coincides with gazing at the speaker

[7]. Kendon suggested the importance of giving attention and avoiding looking

at the conversation partner’s face during a dyadic conversation. He reports its

effect while communicating emotions or relationships and its significance in reg-

ulating the flow of conversation [29]. In recent years, researchers have advanced

gaze based interfaces using eye tracking technology. Eyefeel and EyeChime are

two communication interfaces developed by Asako and Yasuaki which help in

augmenting the eye gaze information within a face to face communication envi-

ronment. Eyefeel helps in converting and delivering the gaze of another person as

tactile information whereas EyeChime generates and plays sound when the partic-

ipants who is sitting in a around a table meets with each other’s face or eyes [28].

Agency Glass is another scenario which helps to decrease the emotional workload

of sighted people by simulating their eye gestures [39]. Both the abovementioned

applications are supported for sighted people. There are other applications which

help visually impaired people to build a gaze communication. E-gaze is one such

application that is designed to help blind people to access and react to gaze signals

from blind people. This project is very much similar to ours except for the fact that

it involves an external hardware and doesn’t take into account the situation when

blind person can independently walk towards the user and talk to them by main-
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taining the interpersonal space. Rantala et.al introduced an eye glass that provides

haptic feedbacks which uses gaze gestures for input. The glass has a vibrotactile

actuator that provides gentle simulation to three locations on users head [43].

2.2.3 Sensing facial expressions

Yet another research area which is an extension of face recognition in social inter-

action is to read the facial expressions during face-to-face communications. These

are the visual cues which blind people are not able to access. Some applications

related to this area are as below. Facial Expression Appearance vibroTactile System

(FEATS) is a vibrotactile chair with 9 vibrators spatially mounted behind the chair

[48]. These vibrators are used to convey some specific facial features. Another

assistive technology was developed by Sreekar Krishna et al. using a vibrotac-

tile glove with 14 tactors which is worn by the person who is blind. This glove

conveys the conversation partner’s seven facial expression with different vibra-

tion patterns[31]. Douglas et al. has developed a face recognition system mounted

on the white cane which can detect six basic emotions [9]. iFEPS also helps the

visually impaired person to perceive his conversation partner’s facial expressions

using a smartphone [47]. ABBI was proposed by Sara Finocchietti et al., which uses

an audio bracelet to rehabilitate special cognition on how and where the body is

moving which helps a blind person to conduct social interaction [25]. Expression

is an application which uses Google Glass in order to track the face and detect the

expressions in the face [6]. They detect up to 8 expressions including smile and

yawn.
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2.2.4 Interpersonal distance sensing

For over four decades, the effect of interpersonal distances in social situations have

been studied in behavioral psychology. Proxemics distances vary with culture and

environment. In a social interaction maintaining the interpersonal distance is very

much important as mutual gaze and reading the expression. This is also an area

which visually impaired people have difficulty. In order to convey interpersonal

distance to visually challenged people there is another set of applications. Mc-

Daniel et al. uses an elastic vibrotatctile belt which has 7 tactors in order to help

detect and localize people and objects in front of the user [38]. Another approach

called Social Sensing designs a Wi-Fi signal based system to help the user to deter-

mine the presence of people and distance to people in the room [27].

Being said all the existing assistive devices examples, some of these applica-

tion recognizes face, some of them in addition detects the facial expression and

some other application helps to adjust the interpersonal distance. None of them

had the combination of two most important factors which helps in starting the so-

cial interaction which are aligning face/gaze towards the conversing partner and

maintaining the social interpersonal distance. FaceIT is a Google Glass application

which guides the user to go near the person who is in nearby proximity and start

talking to them by looking at them also maintaining proper social space. In this

work, only interpersonal distances within personal distance (2.5 - 4 feet) is consid-

ered and we take into account one-to-one social interactions
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CHAPTER 3

SMARTWATCH- SPATIAL HAPTIC APPLICATION

3.1 Motivational survey

Prior to the trials, we interviewed participants using non-directed questions to

identify their interest in Smartwatches, and to verify whether the accessibility

problems addressed by the app were real. Six out of seven participants owned

a smartphone. In addition to calling and texting, most participants used their

smartphone for email, playing games, taking notes and listening to audio books

and podcasts. Five participants used their smartphone for navigation using apps

such as, Google Maps, BlindSquare, and talking GPS. Six participants said crossing

large open spaces was a problem. Strategies used to traverse open spaces include:

(1) follow the edges; (2) follow a stranger; (3) rely on a sighted guide; and (4) use a

GPS app.

Three participants used haptic feedback on their smartphone, mostly for notifi-

cation. One participant used Morse code like vibration patterns to distinguish text

messages from different people. None of the participants owned a Smartwatch,

but four participants were open to buying one in the near future. Reasons for this

included: (1) to replace their smartphone; (2) to answer their phone quicker; and

(3) to use it for navigation.
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3.2 Implementation

Conveying navigation directions using haptic feedback is useful for blind pedes-

trians [11]. Usually blind people rely on the tactile landmarks they encounter and

they make a spatial map of the area in their mind. This mental map is essential for

blind people to stay on the right track. Large open spaces, such as public squares,

are often devoid of any tactile features. Following directions, such as crossing an

open space, can be quite a challenge, and blind users often end up veering from

their intended path [24]. We developed an app that guides blind users towards a

specific destination. The spatial haptic feedback provision was inspired by how

rumble strips work. These raised markers or notches in the road provide a tactile

sensation to a driver when they drift from their lane and intuitively drivers steer

away from the side of the car the haptic feedback was felt from. Blind users wear

the Smartwatch on a wrist and the smartphone in their pocket or hand on the op-

posite side. Haptic feedback is provided in either of the devices depending on to

which side the user is veering (asynchronous feedback) (See Figure 3.1).

This app uses Google Maps as a spatial data source. In this application user

is provided with the option to select the destination point. User’s starting point

is chosen as the current location of the user when the destination location is se-

lected. The orientation sensor and GPS are used to acquire the Azimuth values of

the phone’s current orientation (ϕ) and direction (θ) to the target. For better un-

derstanding consider a circle drawn around the user. The circle is divided into 8

segments of 45◦ each. If both ϕ and θ are angles within the same segment it shows

user is moving in the right intended direction. Phone’s current orientation is up-

dated every 5 seconds to keep the track of the user accurately. At any time if ϕ goes

outside the segment of θ it means the user has veered from the proper path. If ϕ
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Figure 3.1: Rumble strips metaphor inspired the haptic feedback provision for the
navigation app. If we detect the user is veering to the right, haptic feedback is pro-
vided on the right side (smart phone). If the user veers to the left haptic feedback
is provided using the Smartwatch on their left wrist.

is now in the segment which is to the left(right) of θ, it means the user has veered

to left(right) direction. Similar to rumble strips, if the app detects the user veering

to a side, haptic feedback on that side is provided to nudge a blind user to rotate

away from the side the haptic feedback is felt from. One of the challenge faced was

to determine in which hand each device should be placed. To allow hands-free us-

age, we intended to have users wear a phone in their pocket. Preliminary trials,
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however, found that subjects found it difficult to accurately feel haptic feedback

when the phone was in their pocket. We believe to a large extent this depends

on the type of pants and the fabric they are made of. For perceiving the haptic

feedback perfectly, the users were advised to hold the phone in their hands. With

the help of initial questionnaire, we found that majority of the users holds cane on

their left hand. Users were instructed to wear Smartwatch on the right hand and

hold the phone in the left hand considering the difficulty of holding the cane and

mobile in the same hand. When user veer to left side Smartphone provides hap-

tic feedback whereas when the user veers to right direction Smartwatch provides

haptic feedback. The spatial haptic feedback provided is asynchronous. This type

of functionality would be difficult to provide using a single smartphone, as users

would not know what direction to turn to when they veer. Alternatively, the tar-

get direction could be indicated using haptic feedback, but for long traversals this

would drain the battery and users’ hands might start feeling numb. Haptic feed-

back was produced constantly for a period of 70ms until the user is facing to the

correct path. When the user is less than 7 meter away from the destination point,

they are notified by a speech.

3.3 Methodolgy

3.3.1 Participants

Seven blind participants were recruited from a local chapter of the National Fed-

eration of the Blind (3 Female and 4 males, average age 38.3, SD = 12.5). Three

participants were totally blind and four participants were legally blind with some
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Figure 3.2: Map of the quad, showing the six target destinations. Distance in grey.
The red line shows an actual path followed by a participant.

residual light perception. The legally blind participants wore a blindfold during

the user studies. None had any self-reported impairments in mobility or tactile

perception. All participants were right-handed and used a cane for navigation.

3.3.2 Apparatus

To implement this app, we used an Android Nexus 5 smartphone with a Qual-

comm Snapdragon 800 CPU (2.3 GHz quad-core) running Android Lollipop 5.1.

We used the Samsung Gear Live Smartwatch running Android Wear 5.0.2. The

Smartwatch was connected to the smartphone using Bluetooth. A helper app on

the Smartwatch created using Android Wear receives messages from the smart-

phone app to enable or disable haptic feedback. Though haptic actuators are sub-

ject to a startup delay this did not seem noticeable.
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3.3.3 Design

A within subject user study was performed to collect the quantitative and qualita-

tive analysis of the Smartwatch application. This application relies mostly on the

starting and destination GPS coordinates. Since the GPS accuracy varies from 5-8.5

meters depending on the weather conditions, atmospheric effects, multipath effect,

satellite geometry etc. [2], it is considered as a confounding variable throughout

the study. The starting point is kept as constant for all the participants whereas

the destination location is randomly chosen from the list of locations. Destination

location is the independent variable in this user study which helps us to examine

the path used by the user to reach the destination. We use six different destination

location which are of varying distance and varying direction from the starting lo-

cation (see Figure 3.2). This is to test the efficiency and effectiveness of the applica-

tion. While performing each test case, the no: of times the user veered is measured

along with the total time they took to reach the destination. After completion of all

the six test cases, users were also asked to perform qualitative analysis by rating

the usability, learnability, reliability and understandability of the application using

a 5-point Likert scale (1- Strongly disagree to 5-Strongly agree)

3.3.4 Procedure

The user study was conducted in a large open grass area (150 x 50 meters) called

the Quad. Six distinct destinations were defined (see Figure 3.2) as well as a start-

ing location. Participants wore a Smartwatch on their right wrist and held the

phone in their left hand (see Figure 3.3). Participants were instructed how to in-

terpret the haptic feedback using the rumble strips metaphor. They were told to
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Figure 3.3: A participant taking part in user study

walk in the direction they were facing if no haptic was felt and turn away from the

side haptic feedback was felt from until feedback stopped. Participants tried out a

single path. When they felt comfortable, the trial started. The order of paths was

randomized and the quad was free of obstacles. Participants were not told what

their destination was, but to just follow the haptic guidance. GPS has an accuracy

that varies between 5 and 8.5 meters [53]. The app considered the navigation task

a success if the user was within 7 meter of the destination, which was verbally an-

nounced to the user. After that participants were returned to the start location and

the next path was started.
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Guided Navigation
P Statue Stone Bench 1 Door Bench 2 Bench 3 Avg no: of time feedback received

1 128 143 154 108 107 104 15
2 133 104 - 123 93 55 8
3 98 70 70 99 72 40 6
4 192 128 43 114 90 54 9
5 202 94 47 103 107 51 8
6 148 237 189 181 94 85 11
7 186 112 46 95 202 94 10
Avg 155 127 92 118 109 69 9.44
SD 39 54 64 30 42 25 2.74

Table 3.1: Guided navigation: results for each path in seconds and average number
of feedback received for successful completion of each test case

Figure 3.4: Qualitiative responses on the usability of the app.

3.4 Results

Table 3.1 lists the results for each participant. All but one participant (P2) was

able to successfully navigate to each destination. Due to a temporary obstruction

(sprinkler leak) we were not able to let P2 navigate to bench1. The average naviga-

tion times vary between each path due to the varying distances. The average no:
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of feedback received by all the users are also shown in table 3.1. It is seen that all 6

out of 7 participants reached their destination with an average no: of feedback less

than 12. One person who has an average of 15 had a difficulty in feeling the haptic

feedback as and when it occurred. Figure 3.4 shows the qualitative analysis of the

application. Most of the users agreed to the effectiveness of the applications and

intuitiveness of haptic feedback. Quite a number of percentage is shown as neu-

tral. Since the users are visually impaired they might have felt they made errors

while using the application based on the number of haptic feedback’s they sensed

or at times they were confused to which direction they should turn to. As they

reached 6th test case, every user seemed to complete the task very quickly with

least number of feedbacks.

3.5 Discussion

The app was perceived positively, however, P3 strongly disliked the navigation

app despite having average results. When asked about this P3 said: “I just don’t

like haptic feedback". Individual preferences aside, most participants thought the

app was useful and the haptic feedback provision that was used was perceived as

intuitive.

An interesting issue that was raised when we designed the navigation app was

on what arm a blind person should wear their Smartwatch. Most people wear a

Smartwatch on their non-dominant arm, as their dominant hand is more dexterous

and which facilitates input provision, however, blind people typically hold a cane

or a leash in their dominant arm. For them it would be more practical to wear

the Smartwatch on their dominant arm, to allow them to interact with their watch
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without having to put the cane or leash away. P6 however said that he used his

right arm to get feedback from his cane and it was therefore difficult to pay close

attention to receiving feedback from the watch.
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CHAPTER 4

FACEIT

4.1 Motivational survey

We conducted an online survey for visually impaired people where they were

asked to answer some in-directed questions. This helped to identify the accessi-

bility problems they were facing during communications in social occasions and

their approach to these problem.

From the feedback, the main difficulties they mentioned included not being

able to face the speaker, people walking around without saying anything, recog-

nizing a person, their facial expressions and body language, approaching different

people and starting talking with them and maintaining the eye contact. They all

agreed to the importance of facing a conversation partner. More than 50% of the

people agreed they had difficulty in facing their conversation partner and main-

taining correct distance from them. The solution which all the visually impaired

people stated was to listen to the sound of the voice and turn to that direction.

FaceIT is an application which is a better approach that could be used by visu-

ally impaired people to confirm that they are facing the conversation partner by

standing at the correct conversation distance.

4.2 Implementation

Social gatherings are one such place which everyone would like to go. Conver-

sations are an essential part of social interactions and eye-gaze plays an impor-
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tant role as a non-verbal component of conversation. Simmel[46] has stated that

“The totality of social relations of human beings, their self-assertions and self-

abnegation, their intimacies and estrangements, would be changed in unpredictable

ways if there occurred no glance of eye to eye”. This statement justifies the signif-

icance of eye contact in conversation. Examining the situations that visually im-

paired people might deal with when they go to social gatherings, we found three

situations. One situation is where one person is talking to you, second situation

is where you are not sure if there are any person in the room and third situation

is you are not sure about your distance with the conversation partner. Consider-

ing the first case, usually visually impaired person rely on sound waves to orient

their head towards the conversation partner. The problem here is even though

they can turn their head toward that side, still it might not be fully oriented with

the partner. In the second situation there is nothing much a blind person can do

as he/she is not aware if there is any person in the room. In the third situation,

the other partner can adjust their distance by moving back or forth adjusting to the

distance with visually impaired people but it can‘t be done vice versa. To address

these issues we have developed an application FaceIT which will use Google glass

(henceforth termed as glass) to provide voice feedback which gives information

to the users about the presence of a person and the direction to align their head &

distance with the partner. Figure 4.1 shows the system architecture of FaceIT. It has

two modules: Data acquisition module and Data assessment & Feedback module.

In Data acquisition module, Glass camera is used to capture the camera frames

(4-6 frames per second).The captured frames are then converted to grayscale for

reducing the size of the frame. This is a client-server model where Glass acts as

client and Windows PC system acts as server. The client- server model approach

was followed as we observed heavy battery drain and high heat dissipation on
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Figure 4.1: System architecture of FaceIT

running the application on the Glass. After converting, the frames are transmitted

to the server through Wi-Fi network for data assessment and client waits for the

feedback from server.

In Data assessment module, as the server receives the frames, face detection

is performed using OpenCV face detection algorithm. When a face is detected

in the frame, a flag is set to 1 and the entire frame is divided into 3 X 3 matrix.

Further, application checks the position of the center of eyes within the frame i.e.

within which block of 3 x 3 matrix does the center of eyes of the head lies (Figure

4.2). This position gives the alignment of head. Starting from row 1 and column
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Figure 4.2: Face detection and dividing a frame into 3x3 matrix to find the position
of center of eyes of head.

1 the cells in matrix are numbered from 0-8 in order i.e. (0,0) is 0, (0,1) is 1 and so

on. This number is returned to the client. Further, server calculates the total area

of the square which contains the head (henceforth termed as head-square). It is

understood that when the user is far from the conversation partner, the partner’s

head will be encompassed in a small square and hence the area of the head-square

will be small. As the user moves closer to the conversation partner the head-square

will become larger and it may also go outside the frame when the user is too close.

So the area of the square at any time is used as a parameter to calculate the distance

between the user and conversation partner. The computed area is also returned to

the client as feedback.

Hence, the feedback passed back to the client contains the flag value which

shows the presence of the face in the frame which was transmitted to server, posi-

tion of head which gives the alignment of head and area of the head-square which
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gives the distance from the head. Once these values are in the client, whenever the

user interacts with the glass, they will be provided with respective feedbacks. In

this application there are two interactions happening between user and the glass.

User can swipe the glass touch-pad forwards and backwards. When user gives a

forward swipe, based on the area value, he/she will get a voice feedback which

could be ’far’, ’correct or ’close’. ’Far’ means that user is far from the opposite

person and have to move one step closer, whereas ’close means the reversal. ’Cor-

rect’ means that user is in the right distance from his/her conversation partner.

Similarly, when the user swipes backwards he/she will be given direction of how

his/her face should be aligned so as to be facing his/her conversation partner. The

possible voice feedback cases according to the returned position are as follows: 0-

right up, 1-up, 2-left up, 3-right, 4-facing, 5-left, 6-right down, 7-down, 8-left down.

User is required to move their face according to the obtained feedback.

4.3 Methodology

4.3.1 Participants

As this system is intended for visually impaired people, we chose 9 participants (3

males and 6 female) in which one participant is totally blind, 2 participants have

low vision and rest of the participants were sighted people. They were made low

vision by blindfolding their eyes. These participants have never used this appli-

cation before. Their ages ranged between 20-40. Chosen participants had some

knowledge with technology as all of them own a smart phone. This knowledge

was essential since users had to work with gestures while using the experimental
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apparatus which is a Glass.

4.3.2 Apparatus

This project is developed on a Google Glass. Since the computation power of Glass

is low the performance used to decrease over time. So a server which is running

on PC was developed. During the user study users will be using only Google

glass. All the back side work is done by the server without the user knowing

about it. Server keeps track of everything that user sees and this log details can

be used to evaluate the user study. So the hardware included in this application

are a Google Glass and a PC with 64 bit Windows 7 Operating System. We are

also using a dummy head replacing a real human since it was more convenient for

testing purposes. The entire apparatus is shown in 4.3.

4.3.3 Design

In this experiment, within subject study is performed to evaluate qualitative anal-

ysis by studying the efficiency, success rate, learnability, understandability and

usability of the application. These values are measured with respect to three in-

dependent variables which are position of the dummy head, distance between

dummy head and user and feedback provided. The levels of these independent

variables are as follows: position of dummy head: right, left and center, distance

between user and dummy head: far (4 feet), middle (3.5 feet), near(3 feet) and

feedback provided: voice feedback. So in total 3x3x1 = 9 test cases are evaluated

during the user study. During each test case the dependent variables which are
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Figure 4.3: a) Google Glass b) Dummy head c) PC with server running on it

measured quantitatively are number of responses (includes number of forward

swipes + number of backward swipes) by each participant in each test case, total

time taken for the completion of each test case (End time - start time). Other de-

pendent variables which are measured for qualitative analysis are the success rate

(how far user was able to align their face with dummy head), efficiency, learnabil-

ity, usability, understandability and reliability. Apart from the success rate which is

measured manually, all other variables are evaluated with respect to the responses

provided by the user using Likert scale (1-Strongly disagree to 5-Strongly agree)

during post questionnaire. In total, design space is 9x3x3x2 = 162, where number

of participants is 9, number of position independent variable is 3, number of dis-
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tance independent variable is 3 and 2 is the number of data which contains task

completion time as well as number of swipes by each user in each task). The to-

tal task completion time taken by each user for near, middle and far distances are

mentioned in figure 4.4. The task completion time is measured in seconds.

4.3.4 Procedure

As the user is welcomed for the user study he/she is asked to fill a short pre-

questionnaire which generally included demographic details and also to know

their experience with technology. After filling out the pre-questionnaire, users

where introduced to the application by giving instructions on how to use a Glass

and how does the swipes gives feedback with respect to the application. Users

will initially start the application by tapping twice. Once the application is started,

users have to scan the space in front of them to detect the face. Once face is found

the application says a voice feedback saying ‘face found’. Once the face is found,

user can interact with the Google glass to find the direction to which face should

be aligned and to find their distance with the dummy head. The two main forms

of interactions are swipe backward and swipe forward. When the user swipe back-

ward it gives audio feedback about how to align the face. The possible feedbacks

are up-left, left, up-right, right, down-left, down-right, down, up and facing. Based

on these feedbacks the user should slightly move their face in those directions. The

second form of interaction i.e. swipe forward gives the distance from the dummy

head. It gives possible auditory feedbacks as too far, far, correct, close and too

close. Based on this feedback the user should adjust their distance. Once it says

facing when swiped backwards and correct when swiped forwards it means that

user is facing the person and is at a correct conversation distance. Then the appli-
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Figure 4.4: Data used for simulation

cation is ended by swiping down. Users are made to do 2 trial runs so that they

get to understand the interactions and feedback much better. Later, real experi-

ment is done with the 9 test cases mentioned above. After completing all 9 test

cases, user is asked to fill a post questionnaire which performs qualitative analysis

of the application using Likert Scale.

4.4 Results

Both quantitative and qualitative evaluation was performed to illustrate the util-

ity of the application. Overall accuracy of the application was high as 98% as all

the users were able to align their head with respect to the dummy head correctly.

Anova is used to evaluate the significance of task completion time with respect to

two independent variables which are position of the dummy head and distance be-

tween the user and the dummy head. There was significant effect of distance with

task completion time (F(2, 16) = 24.396 and p= 0.0001). Since p value is less than
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Figure 4.5: Graph shows task completion time depends on distance

0.0005, task completion time is significant based on the distance of the user from

the dummy head rather than position of the user (F(2, 16) = 0.836 and p = 0.4572

>0.005). As the distance increased or decreased, the task completion time also in-

creased or decreased respectively. The mean task completion time for 9 tasks with

respect to distance is 48.76, 55.63, 71.7 for near, middle and far respectively (figure

4.4). It is clearly observed from the mean that as distance is increased the task com-

pletion time increases and graph representation for the same is shown in figure 4.5.

Irrespective of the position’s where the users stood, users where able to align their

head properly with the dummy head. It is understood from the task completion

time which was captured for all nine tasks that after each task the users was get-

ting more familiar with the application and the task completion time decreased as

they complete each task successfully. Qualitative analysis was performed using a
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5-point Likert scale with 1 being strongly disagree and 5 being Strongly agree. Fig-

ure 4.6 shows the qualitative evaluation result. Reliability was measured by asking

the users if they felt they made any errors. This is bit low because it took time for

users to get adapted to the feedback. During the first stages when they receive the

feedback ‘left‘ they turned their head too much left which resulted in missing the

frame with face. So in this way errors were made by the users which got corrected

by itself with the successful completion of each task. Overall, the users liked the

application and its learnability and usability very well. In terms of suggestion and

improvement one user said that he didn‘t have any idea regarding the distance

between user and the dummy head and so any initial value which could give a

rough distance between the user and dummy head would be good to have an idea

about the distance. One user suggested that the starting felt bit lagging and having

an initial voice feedback saying the application is started will be useful. Another

user wanted continuous feedback until she reached the correct position so that she

don‘t have to swipe all the time. Two participants liked the purpose of the appli-

cation and agreed that this will be very useful for blind people.

4.5 Discussion

The focus of this research was to help visually impaired people to orient their head

with their conversation partner. All the users were able to successfully complete

this task. We discussed about relation between task completion time and distance

in the result. But there is further more to discuss which is number of swipes.

Number of swipes of given by the participants is also relevant because certain

pattern was observed which affected the task completion time. Certain partici-
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Figure 4.6: Graph showing qualitative evaluation

pants used less number of swipes to complete the task and certain participants

used more number of swipes. Also participants were asked to do forward swipe

and backward swipe according to their interest. Five out of seven participants

used forward swipe first and then backward swipe. This increased the task com-

pletion time by an average of 30 seconds because when they are adjusting their

distance by doing forward swipe and there is high chance they might go out of

the frame where dummy head is placed. When this happens application gives a

voice feedback saying ‘Face not found‘. Then they need to scan the environment

again to find a frame with head in it and again do swipes. Whereas one of the

participant used backward swipe first which was followed by forward swipe. So

by doing this he tried to align his face correctly with the dummy head first and

then correct the distance between them. Hence by doing this he has lesser chance
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to go out of the frame compared to other. Another participant used backward and

forward swipes alternatively. So he made sure he is never out of the frame which

contains head because he was correcting his head orientation and distance equally.

This was observed to take the least task completion time compared to other both.

Furthermore, the distance at which Glass was able to detect face was a problem.

Due to its low resolution camera, Glass can detect a face only at a distance of 4.1

feet. This could be further explored to find ways which would allow the users to

detect the face irrespective of distance.

We found that Wi-Fi signal strength is also an important factor which increases

or decreases the speed at which frames are sent from client to server. When Wi-

Fi strength is at its highest the round trip time was found to be less than 100ms.

Whereas when the strength is low, it takes near to 1 minute as round trip time. We

ensured consistency of Wi-Fi strength during the user study by maintaining high

Wi-Fi strength throughout.

There were some issues of background face detection as well where the appli-

cation was detecting some objects which has the shape of face (e.g. square shaped

small speaker box). This problem could also be further explored to overcome this

issue.
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CHAPTER 5

CONCLUSION

5.0.1 Summary

The main idea behind exploring wearable technology was to help visually im-

paired people to understand their surroundings in a better way. Spatial haptic

application is a novel approach of using a Smartwatch and a Smartphone work-

ing as PairABLE’s to guide visually impaired people to navigation in open spaces.

Overall, we demonstrated the feasibility of using a paired interaction for develop-

ing low-cost spatial haptic app. Though Smartwatches cost a few hundred dollars,

the efficient, non-obtrusive interaction they offer specifically benefits users who

are blind, as they have no need for large screens. With smartphone adoption be-

ing high among blind users [10], Smartwatch usage could eventually be high too,

which would reduce the cost of spatial haptic feedback provision to $0, especially

considering that few systems are commercially available.

Also, FaceIT application implemented in Google Glass helped visually impaired

people to know their surrounding in a social occasion. Basically we have ad-

dressed all the three problems pointed out in the implementation section. With

the help of this application, user can orient their head towards the conversation

partner if someone comes to talk with them, user can adjust their distance thus

maintaining the personal space and also if the user is not aware about presence of

people in a room, he/she can scan the room with the help of Google Glass which

will return a voice feedback when a human face is found thus assures the pres-

ence of human inside the room. The implementation and good results signifies the

effectiveness and usability of the application.
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5.0.2 Future Work

As future work of Smartwatch application, we will investigate using an iWatch,

which features a linear resonant actuation (LRA) that is capable of providing much

stronger haptic sensations, such as tapping. Building on the concept of a paired in-

teraction to create low cost assistive technology, we will explore useful apps for

other types of impairments. For example, a Smartwatch could function as a switch

input controller for interacting with a head-mounted display, which could be use-

ful for someone who is quadriplegic. It may be challenging for wheelchair users

to look under a couch or table when looking for a lost item and they often rely on

low-cost technology like a mirror on a stick. A periscope like app could channel

the smartphone camera to the Smartwatch screen, and a wheelchair user can look

into locations out of their sight with the smartphone attached to a selfie stick.

In FaceIT application, the current study provides a starting point for the explo-

ration of face at any distance and at any angle. Better face detection algorithms

could also be tested or new ones could be explored to reduce the problem of back-

ground face detection. This application could be extended to other head mounted

devices which could be cheaper than Google Glass but have higher efficiency. Non-

verbal cues given by conversation partner could also be incorporated in this ap-

plication to increase its effectiveness. The application could also be expanded to

detect expressions and body language as well.
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