334 research outputs found

    Remote Sensing

    Get PDF
    This dual conception of remote sensing brought us to the idea of preparing two different books; in addition to the first book which displays recent advances in remote sensing applications, this book is devoted to new techniques for data processing, sensors and platforms. We do not intend this book to cover all aspects of remote sensing techniques and platforms, since it would be an impossible task for a single volume. Instead, we have collected a number of high-quality, original and representative contributions in those areas

    Compressive sensing for signal ensembles

    Get PDF
    Compressive sensing (CS) is a new approach to simultaneous sensing and compression that enables a potentially large reduction in the sampling and computation costs for acquisition of signals having a sparse or compressible representation in some basis. The CS literature has focused almost exclusively on problems involving single signals in one or two dimensions. However, many important applications involve distributed networks or arrays of sensors. In other applications, the signal is inherently multidimensional and sensed progressively along a subset of its dimensions; examples include hyperspectral imaging and video acquisition. Initial work proposed joint sparsity models for signal ensembles that exploit both intra- and inter-signal correlation structures. Joint sparsity models enable a reduction in the total number of compressive measurements required by CS through the use of specially tailored recovery algorithms. This thesis reviews several different models for sparsity and compressibility of signal ensembles and multidimensional signals and proposes practical CS measurement schemes for these settings. For joint sparsity models, we evaluate the minimum number of measurements required under a recovery algorithm with combinatorial complexity. We also propose a framework for CS that uses a union-of-subspaces signal model. This framework leverages the structure present in certain sparse signals and can exploit both intra- and inter-signal correlations in signal ensembles. We formulate signal recovery algorithms that employ these new models to enable a reduction in the number of measurements required. Additionally, we propose the use of Kronecker product matrices as sparsity or compressibility bases for signal ensembles and multidimensional signals to jointly model all types of correlation present in the signal when each type of correlation can be expressed using sparsity. We compare the performance of standard global measurement ensembles, which act on all of the signal samples; partitioned measurements, which act on a partition of the signal with a given measurement depending only on a piece of the signal; and Kronecker product measurements, which can be implemented in distributed measurement settings. The Kronecker product formulation in the sparsity and measurement settings enables the derivation of analytical bounds for transform coding compression of signal ensembles and multidimensional signals. We also provide new theoretical results for performance of CS recovery when Kronecker product matrices are used, which in turn motivates new design criteria for distributed CS measurement schemes

    Remote Sensing Data Compression

    Get PDF
    A huge amount of data is acquired nowadays by different remote sensing systems installed on satellites, aircrafts, and UAV. The acquired data then have to be transferred to image processing centres, stored and/or delivered to customers. In restricted scenarios, data compression is strongly desired or necessary. A wide diversity of coding methods can be used, depending on the requirements and their priority. In addition, the types and properties of images differ a lot, thus, practical implementation aspects have to be taken into account. The Special Issue paper collection taken as basis of this book touches on all of the aforementioned items to some degree, giving the reader an opportunity to learn about recent developments and research directions in the field of image compression. In particular, lossless and near-lossless compression of multi- and hyperspectral images still remains current, since such images constitute data arrays that are of extremely large size with rich information that can be retrieved from them for various applications. Another important aspect is the impact of lossless compression on image classification and segmentation, where a reasonable compromise between the characteristics of compression and the final tasks of data processing has to be achieved. The problems of data transition from UAV-based acquisition platforms, as well as the use of FPGA and neural networks, have become very important. Finally, attempts to apply compressive sensing approaches in remote sensing image processing with positive outcomes are observed. We hope that readers will find our book useful and interestin

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    eXplainable data processing

    Get PDF
    Seminario realizado en U & P U Patel Department of Computer Engineering, Chandubhai S. Patel Institute of Technology, Charotar University of Science And Technology (CHARUSAT), Changa-388421, Gujarat, India 2021[EN]Deep Learning y has created many new opportunities, it has unfortunately also become a means for achieving ill-intentioned goals. Fake news, disinformation campaigns, and manipulated images and videos have plagued the internet which has had serious consequences on our society. The myriad of information available online means that it may be difficult to distinguish between true and fake news, leading many users to unknowingly share fake news, contributing to the spread of misinformation. The use of Deep Learning to create fake images and videos has become known as deepfake. This means that there are ever more effective and realistic forms of deception on the internet, making it more difficult for internet users to distinguish reality from fictio

    Intelligent data processing

    Get PDF
    Seminario realizado en U & P U Patel Department of Computer Engineering, Chandubhai S. Patel Institute of Technology, Charotar University of Science And Technology (CHARUSAT), Changa-388421, Gujarat, India 2021[EN]In recent years, disruptive technologies have emerged and have revolutionized our communication capabilities over the internet. One of those technologies is Deep Learning. It fits under the broader branch of Artificial Intelligence known as Machine Learnin

    The future of Earth observation in hydrology

    Get PDF
    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE) system, with costs typically of the order of 1 billion dollars per satellite and with concept-to-launch timelines of the order of 2 decades (for new missions). More recently, the proliferation of smart-phones has helped to miniaturize sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3-5 m) resolution sensing of the Earth on a daily basis. Start-up companies that did not exist a decade ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-metre resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery state, and sense other hydrologically important variables such as channel depths using commercially available wireless devices. Global internet access is being pursued via high-altitude balloons, solar planes, and hundreds of planned satellite launches, providing a means to exploit the "internet of things" as an entirely new measurement domain. Such global access will enable real-time collection of data from billions of smartphones or from remote research platforms. This future will produce petabytes of data that can only be accessed via cloud storage and will require new analytical approaches to interpret. The extent to which today's hydrologic models can usefully ingest such massive data volumes is unclear. Nor is it clear whether this deluge of data will be usefully exploited, either because the measurements are superfluous, inconsistent, not accurate enough, or simply because we lack the capacity to process and analyse them. What is apparent is that the tools and techniques afforded by this array of novel and game-changing sensing platforms present our community with a unique opportunity to develop new insights that advance fundamental aspects of the hydrological sciences. To accomplish this will require more than just an application of the technology: in some cases, it will demand a radical rethink on how we utilize and exploit these new observing systems

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF
    • …
    corecore