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ABSTRACT 

Compressive Sensing for Signal Ensembles 

by 

Marco F. Duarte 

Compressive sensing (CS) is a new approach to simultaneous sensing and com-

pression that enables a potentially large reduction in the sampling and computation 

costs for acquisition of signals having a sparse or compressible representation in some 

basis. The CS literature has focused almost exclusively on problems involving single 

signals in one or two dimensions. However, many important applications involve dis-

tributed networks or arrays of sensors. In other applications, the signal is inherently 

multidimensional and sensed progressively along a subset of its dimensions; examples 

include hyperspectral imaging and video acquisition. Initial work proposed joint spar-

sity models for signal ensembles that exploit both intra- and inter-signal correlation 

structures. Joint sparsity models enable a reduction in the total number of com-

pressive measurements required by CS through the use of specially tailored recovery 

algorithms. 

This thesis reviews several different models for sparsity and compressibility of 



signal ensembles and multidimensional signals and proposes practical CS measure-

ment schemes for these settings. For joint sparsity models, we evaluate the minimum 

number of measurements required under a recovery algorithm with combinatorial 

complexity. We also propose a framework for CS that uses a union-of-subspaces sig-

nal model. This framework leverages the structure present in certain sparse signals 

and can exploit both intra- and inter-signal correlations in signal ensembles. We for-

mulate signal recovery algorithms that employ these new models to enable a reduction 

in the number of measurements required. 

Additionally, we propose the use of Kronecker product matrices as sparsity or com-

pressibility bases for signal ensembles and multidimensional signals to jointly model 

all types of correlation present in the signal when each type of correlation can be ex-

pressed using sparsity. We compare the performance of standard global measurement 

ensembles, which act on all of the signal samples; partitioned measurements, which 

act on a partition of the signal with a given measurement depending only on a piece 

of the signal; and Kronecker product measurements, which can be implemented in 

distributed measurement settings. The Kronecker product formulation in the sparsity 

and measurement settings enables the derivation of analytical bounds for transform 

coding compression of signal ensembles and multidimensional signals. We also pro-

vide new theoretical results for performance of CS recovery when Kronecker product 

matrices are used, which in turn motivates new design criteria for distributed CS 

measurement schemes. 
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Chapter 1 

Introduction 

We are in the midst of a digital revolution that is driving the development and 

deployment of new sensing systems with ever increasing fidelity and resolution. The 

theoretical foundation of this revolution is the Shannon/Nyquist sampling theorem, 

which states that signals, images, videos, and other data can be exactly recovered 

from a set of uniformly-spaced samples taken at the Nyquist rate [1]. 

Unfortunately, in many important and emerging applications, the resulting Nyquist 

rate is so high that we end up with too many samples and must compress in order to 

store, process, or transmit them. To address this issue, we rely on signal compression, 

which aims to find the smallest representation of a signal that is able to achieve a tar-

get level of acceptable distortion, i.e., the lowest number of bits that describe the data 

contained in the signal. One of the most popular techniques for signal compression is 

known as transform coding, and relies on finding bases or frames that provide sparse 

or compressible representations for the class of signals of interest [2]. By a sparse 

representation, we mean that the signal has only K out of N nonzero coefficients, 

with K N; by a compressible representation, we mean that the magnitude of the 

signal coefficients, when sorted, have a power law decay with exponent — l/p,p<l. 

Both sparse and compressible signals can be compressed to high fidelity by preserving 

only the values and locations of the largest coefficients of the signal; in fact, many 
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data compression schemes like JPEG [3] and JPEG2000 [4] exploit signal sparsity 

and compressibility. 

Leveraging the concept of transform coding, compressive sensing (CS) has emerged 

as a new framework for signal acquisition and sensor design that enables a potentially 

large reduction in the sampling and computation costs for sensing signals that have 

a sparse or compressible representation. CS builds on the work of Candes, Romberg, 

and Tao [5] and Donoho [6], who showed that a signal having a sparse or compressible 

representation in one basis can be recovered from projections onto a small set of 

measurement vectors that are incoherent with the sparsity basis, meaning that the 

representation of the measurement vectors in this basis is not sparse. CS acquisition 

devices perform multiplexing of the signal entries to calculate these inner products 

and obtain a compressed representation of the signal. Random vectors play a central 

role as a universal measurements in the sense that they are incoherent with any fixed 

basis with high probability. 

1.1 Compressive Sensing for Signal Ensembles 

and Multidimensional Signals 

The CS literature has mostly focused on problems involving single sensors, one-

dimensional (1-D) signals, or 2-D images; however, many important applications that 

hold significant promise for CS involve signals that are inherently multidimensional. 

The coordinates of these signals may span several physical, temporal, or spectral 

dimensions. Additionally, the signals are often captured in a progressive fashion, 
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consisting of a sequence of captures corresponding to fixed values for a subset of 

the coordinates and are usually sensed progressively along a subset of the dimen-

sions explored. Examples include hyperspectral imaging (with spatial and spectral 

dimensions), video acquisition (with spatial and temporal dimensions), and synthetic 

aperture radar imaging (with progressive acquisition in the spatial dimensions). An-

other class of promising applications for CS features distributed networks or arrays 

of sensors, including environmental sensors, microphone arrays, and camera arrays. 

These properties of multidimensional data and the corresponding acquisition hard-

ware complicate the design of both the measurement matrix $ and the sparsifying 

basis to achieve maximum efficiency in CS, as measured by the number of mea-

surements needed to achieve a target amount of distortion. 

1.1.1 CS Measurement Matrices 

For signals and signal ensembles of any dimension, global CS measurements that mul-

tiplex all the entries of all signals are optimal, as they allow for the largest degree of 

randomization. However, such measurements require the use of multiple accumula-

tors along all data dimensions for multidimensional signals, or a considerable amount 

of communication among the sensors for signal ensembles. In many multidimensional 

signal settings it can be difficult to implement such accumulators due to the large 

dimensionality of the signals and the partial availability of the data during acquisi-

tion. For example, each frame in a video sequence is available only for a limited time; 

therefore, a device that calculates global CS measurements would have to store the 

sum of the M partial inner products from each of the frames. Similarly, global CS 
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measurements of a hyperspectral datacube would require simultaneous multiplexing 

in the spectral and spatial dimensions. However, existing systems rely on separate 

spatial multiplexing using optical modulators [7] and spectral multiplexing using op-

tical devices like prisms; this separate multiplexing nature limits the structure of the 

measurements obtained [8]. 

These limitations naturally point us in the direction of measurements that depend 

only on a subset of the entries of the multidimensional signal or, correspondingly, a 

single signal from the signal ensemble that we aim to acquire. In other words, we must 

use partitioned measurements obtained by processing only a portion of the multidi-

mensional signal or a single signal from he ensemble at a time. For multidimensional 

signals, each portion usually corresponds to a snapshot of the signal along a given 

dimension, such as one frame of a video signal or the image of one spectral band out 

of a hyperspectral datacube. 

1.1.2 Sparsifying Matrices 

For multidimensional signals, we can often characterize multiple types of structures 

corresponding to different dimensions or coordinates. Therefore, there are many 

possible choices of sparsity or compressibility bases for this type of signals, as each 

different structure present can usually be captured using a representation in a cor-

responding basis. For example, each frame of a video sequence is compressible in 

a wavelet bases, as they correspond to images obtained at different time instants. 

Simultaneously, the structure of each pixel in the video sequence along the time di-

mension is often smooth and piecewise smooth, due to camera movement, object 
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motion and occlusion, illumination changes, etc. A similar situation is observed in 

hyperspectral signals, where we acquire the reflectivity values of a 2-D area under a 

range of spectral frequencies. The reflectivity values at a given frequency correspond 

to an image, with known structure; additionally, the spectral signature of a given 

pixel is usually smooth or piecewise smooth, depending on the spectral range and 

materials present in the observed area. 

Initial work on sparsity and compressibility of multidimensional signals and signal 

ensembles [9-19] has provided new sparsity and compressibility models for multidi-

mensional signals. These models consider sections of the multidimensional data (i.e., 

cuts corresponding to a fixed value for a subset of the coordinates) as separate sig-

nals, and pose correlation models between the values and locations of their sparse 

representations. The resulting models are rather limited in the types of structures 

admitted. For almost all of these models, theoretical guarantees on signal recovery 

using these models have only been provided either for strictly sparse signals, for noise-

less measurement settings, or in asymptotic regimes. Additionally, almost all of these 

models are tied to ad-hoc recovery procedures: the algorithms has to be specifically 

tailored to the structure assumed. Clearly, it is necessary to pose more generic models 

for sparse and compressible multidimensional signal that allow us to leverage the CS 

framework to a higher degree of effective compression. 

Fortunately, there are other immediately evident ways in which inter-signal cor-

relations can be encoded. Ideally, we would formulate a sparsity or compressibility 

basis for the entire multidimensional signal that simultaneously accounts for all the 
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types of structure present in the data. 

1.2 Scope 

The goal of this thesis is to develop and study new models for sparsity and com-

pressibility of signal ensembles and multidimensional signals. We elaborate on initial 

work on distributed CS that focuses on joint sparsity models, which encode simple 

correlation structures between the values and locations of sparse signal ensembles [9]. 

The distributed CS framework has been advocated mainly for sensor and camera 

network settings, where several signals that correspond to a single physical event are 

simultaneously recorded. Because all the signals describe the same event, we expect 

them to be correlated according to the physics that rule the signal dissemination. 

The signal ensemble setting can be generalized to a two-dimensional signal simply by 

arranging the signals into a matrix, where each column of the matrix corresponds to 

one of the recorded signals. 

Algorithms for signal ensemble recovery from CS measurements in sensor networks 

have been proposed, but they often require significant communication between sen-

sors. These algorithms obtain measurements at each sensor that depend on its sensed 

signal, which are then shared between the sensors using standard communication 

techniques in order to calculate measurements for the entire signal ensemble. Such 

techniques include intersensor gossiping [20] and random sensor probing [21]. Further 

study has been devoted to the sensing capacity of a sensor network under this sensing 

and compression model [22,23]. On the other hand, Bajwa et al. [24] exploit CS for 
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joint measurement of a spatial sensor field at a single time instant. This approach 

uses matched source-channel communication [25] to significantly reduce the required 

power. Unfortunately, these algorithms neglect intra-sensor correlations - those be-

tween the samples of each signal - by performing compression of the data for each 

time instance separately. Furthermore, [24] requires both the deployment of sensors 

on a regular grid and a potentially complicated time and power synchronization of 

wireless transmitters among the nodes. 

Limited prior work exists for CS of multidimensional signals, where the focus 

is on hyperspectral imaging data [10], video sequences [11-16], and confocal mi-

croscopy [17]. These formulations employ CS acqusition schemes that distribute the 

measurements among a set of pieces of the signal, with the signal partitioning cor-

responding to different values for one of the dimensions spanned by the signal. This 

setup is immediately applicable to several architectures for compressive sensors, in-

cluding single-pixel video cameras [7,11,26] and compressive hyperspectral imagers, 

such as the coded aperture spectral snapshot imager [8] and the single-pixel hyper-

spectral camera [27]. While global measurements that depend on the entire set of data 

have been proposed [8,11,17], practical architectures that provide such measurements 

are rare [8]. 

Several frameworks have been proposed to encode the structure of multidimen-

sional signals using sparsity. The most significant class of structures link the signals 

through overlap of nonzero coefficient values and locations [13,15]. These types of 

matrices are very rigid in the kinds of structures that can be represented. Standard 
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sparsity bases for CS, such as multidimensional isotropic wavelets, suffice only for 

very specific classes of signals [11,17]. In other cases, specialized compression bases 

are combined with specially tailored recovery algorithms [10,13,16]. 

For both signal ensemble and multidimensional signal applications, we propose 

in this thesis the use of sparsity bases and CS measurement matrices that can be 

expressed as Kronecker products. Kronecker product bases for compressibility enable 

the simultaneous expression of different structures on each dimension spanned by 

the signal, while Kronecker product CS measurement matrices are well suited for 

distributed sensing due to the resulting two-stage implementation, as detailed in the 

sequel. 

Kronecker product matrices have been proposed as an alternative sparsity and 

compressibility basis in specific cases for spatiotemporal signals [12,14], Kronecker 

product representations have also been proposed for transform coding compression 

of hyperspectral datacubes, although they have relied on linear approximations us-

ing principal component analysis and Karhunen-Loeve transforms rather than sparse 

representations [28,29]. Thus, the approaches are data-dependent and difficult to 

generalize among different datasets. 

There have been very recent initial studies on the properties of Kronecker product 

matrices for CS [30,31]. A study of their coherence properties [30] is repeated in this 

thesis, with a more intuitive proof formulation. Additionally, while [31] provides a 

lower bound for their restricted isometry constants, we provide in this thesis a tighter 

lower bound and a new upper bound for the restricted isometry constants based on 
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the properties of the eigendecomposition of their submatrices. Kronecker product 

matrices have also been proposed for CS due to their computational efficiency [30]. 

1.3 Contributions 

The contributions of this thesis include: 

• the formulation of new theoretical bounds on the minimum number of mea-

surements required per signal for signal ensemble recovery from distributed CS 

measurements; 

• the design of new recovery algorithms for structured sparse signals and jointly 

sparse signal ensembles that rely on the union-of-subspaces model formalism; 

• the analysis of these new structured sparse signal recovery algorithms to provide 

performance guarantees, as related to the distortion of the recovered signal and 

the number of randomized measurements required for recovery; 

• the formulation of Kronecker product matrices as bases to achieve sparse and 

compressible representations of multidimensional signals and as measurement 

matrices that can be easily implemented in distributed CS settings; and 

• the analysis of CS performance metrics when Kronecker product matrices are 

used to obtain sparse or compressible representations, and to obtain CS mea-

surement matrices that are easily implementable in distributed CS settings. 



10 

1.4 Outline 

This thesis is organized as follows. 

Chapter 2 introduces notation and overviews concepts in low-dimensional signal 

models including sparsity, compressibility, and unions of subspaces. We review ap-

plications of sparsity in signal compression and processing. We also cover algorithms 

for sparse approximation and existing performance guarantees. Additionally, we give 

a basic review of CS, including quality metrics for measurement matrices, signal re-

covery algorithms, and their corresponding guarantees. We end this chapter with a 

brief review of distributed CS, including joint sparsity models and the corresponding 

ad-hoc signal recovery algorithms. 

Chapter 3 describes an analysis on the theoretical bounds of distributed CS; we 

describe an extension of the sparsest representation of a signal to the jointly sparsest 

representation of a signal ensemble. We then provide a theoretical result on the 

smallest number of randomized measurements per sensor that suffices for recovery of 

the signal ensemble when a combinatorially complex algorithm is used. Our recovery 

algorithm closely resembles fo-norm minimization, which features the theoretically 

lowest bounds on number of measurements required for signal recovery. 

Chapter 4 provides detail on a practical implementation of distributed CS in a 

sensor network where measurements are calculated independently by each sensor and 

then sent to a central processing unit that performs signal recovery. We highlight the 

desirable properties that distributed CS has for this application and provide a set of 

experimental results that uses real-world data to demonstrate these advantages. We 
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also elaborate on applications of distributed CS to some distributed signal processing 

tasks involving linear operations. 

Chapter 5 describes initial work on the use of structure in a sparse representation 

to improve the performance of CS through the design of specially tailored recovery 

algorithms. Our focus is on the class of piecewise smooth signals, which have a 

very succinct structure for the values and locations of the nonzero coefficients in a 

suitable wavelet transform. We provide algorithms that exploit both deterministic 

and probabilistic models for the signal coefficients and present experimental evidence 

of the advantages afforded by the use of this augmented signal model. 

Chapter 6 builds on the work in Chaper 5 by presenting a theoretical and algo-

rithmic framework for the use of structured sparse signal models in CS, which relies 

on a union-of-subspaces formalism. The union-of-subspaces model for a signal can 

capture a variety of structures for the locations of a signal's nonzero coefficients, re-

ducing the number of randomized measurements required for signal recovery. We 

formulate recovery algorithms that exploit the structure, together with guarantees 

on the quality of the recovery and bounds on the number of measurements required 

by these guarantees. While we apply this new framework to the piecewise smooth 

signals of Chpater 5, we also extend the framework to signal ensembles with common 

sparse supports; we present experimental results that validate the advantages of these 

models both for synthetic datasets and for the real-world data used in Chapter 4. 

Chapter 7 addresses extensions of sparsity and compressibility concepts for mul-

tidimensional signals. We propose the use of Kronecker products of individual bases 
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that achieve sparsity or compressibility of sections of the multidimensional signal 

across a subset of its dimensions. We compare the performance of Kronecker bases 

for multidimensional compression and standard bases for lower-dimensional, parti-

tioned compression of signals that are sparse or compressible in a wavelet basis. We 

also show that the distributed measurement setups advocated in Chapters 3 and 4 

can be expressed as Kronecker products, and provide results on the metrics of CS 

measurement matrices that are obtained using a Kronecker product formulation. Ad-

ditionally, we provide experimental evidence that shows the tradeoffs that arise when 

Kronecker product matrices are used in transform coding and CS. 

Finally, we conclude with a summary of our findings and a discussion of ongoing 

work in Chapter 8. 

The research consigned in this thesis is the result of several intensive collabora-

tions. The first page of each chapter contains a footnote identifying the collaborators 

that share credit for the respective work. 
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Chapter 2 

Background 

2.1 Notation 

We denote vectors by bold lower case letters (x, y), with the vector entries listed 

as x = [x(l) x(2) ...]. Matrices axe denoted by bold upper case letters (W) and 

their entries are indexed similarly as W ( i , j ) . Scalar quantities are denoted by up-

per case letters (K, M, N), and running indices are denoted by the corresponding 

lower case letters (k, m, n). Most calligraphic letters denote sets (j\4. T), and most 

double-barred letters denote operators acting on vectors (M, T). To keep the nota-

tion interesting, we let greek letters denote vectors, matrices, constants, and other 

structures. 

2.2 Low-Dimensional Signal Models 

Through this thesis, we will use a series of models for finite-dimensional signals x € 

These models are inspired by compression applications, where we desire that 

most of the signal's energy be captured in a representation of small size. 

Given a basis {ipi}iL 1 f°r we can represent every signal x € MjV in terms 

of N coefficients {0,;},^ as x = X ^ L i ^ ^ i arranging the ipi as columns into the 

N x N matrix ^ and the coefficients ^ into the N x 1 coefficient vector 9, we can 



14 

write succinctly that x = with 0 G MjV. Similarly, if we use a full-rank frame ^ 

containing N column vectors of length L with L < N (i.e., ^ G RLxJV), then for any 

vector x e l £ there exist infinitely many decompositions 9 G M'"v such that x = 

2.2.1 Sparsity 

We say a signal x is K-sparse in the basis or frame if there exists a vector 9 G R;V 

with only K N nonzero entries such that x = ^>9. We call the set of indices 

corresponding to the nonzero entries the support of 6 and denote it by supp((9). 

The use of sparsity as a model for signal processing dates back to Donoho and 

Johnstone's initial works in the early 1990s [32-34], where wavelet-sparse signals 

and images were denoised by assuming that the noiseless version of the signal is 

sparse (see Section 2.2.4 for a review). Since then, many mathematicians, applied 

mathematicians, and statisticians have employed sparse signal models for applications 

that include signal enhancement and superresolution, signal deconvolution, and signal 

denoising [2], The foundations of this work are detailed in the next few subsections. 

2.2.2 Finding Sparse Representations 

It is useful to determine whether a signal has a sparse representation in a given basis or 

frame. If an orthonormal basis ^ is used, then a signal x has a unique representation 

9 = and we can learn whether x is A"-sparse in 9 simply by inspecting this 

vector. When ^ is a frame, however, there are infinitely many representations 9 for 

x, making it more difficult to answer this question. Several algorithms have been 

proposed to obtain sparse representations for a signal x in a frame 
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^o-norm Minimization 

The most intuitive algorithm proceeds by finding the sparsest representation of a 

signal x in a frame It can be formalized by employing the £0 "norm"1, defined as 

the number of nonzero entries of the vector it operates on. Then the aforementioned 

algorithm can be expressed as 

9 = arg min \\6\\0 subject to x = ^9. (2.1) 
e eRN 

While this algorithm will - by construction - find the sparsest representation of 

the signal x in the frame its computational complexity is combinatorial; it must 

search whether the signal x is in the span of any of the columns of then whether it 

is in the span of any pair of columns of ty, then repeat for any set of three columns, 

etc., until a combination of columns for which x is in their span is found. 

4-norm Minimization 

As a convex relaxation of (2.1), Chen, Donoho and Saunders [35] proposed the use of 

the l\ norm, defined as ||(9||i = i This relaxation, known as basis pursuit 

(BP), is formally defined as 

9 = arg min Jf<9|Jx subject to x = W. (2.2) 

Thanks to the convex relaxation, this algorithm can be implemented as a linear 

program, making its computational complexity polynomial in the signal length. 

1 Although this is known as the £Q "norm", it is not a real norm as it does not have the subaddi-

tivity property. 
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Greedy Algorithms 

As an alternative to optimization-based algorithms, there exist greedy algorithms that 

can find sparse representations. These algorithms are iterative in nature and select 

columns of ^ according to their correlation with the relevant signal x, as measured 

by the inner product. 

The matching pursuit algorithm (MP) [36] proceeds by finding the column of ^ 

most correlated to the signal residual, which is obtained by subtracting the contribu-

tion of previously selected columns from the original signal. The algorithm is formally 

defined as Algorithm 1, where K) denotes a thresholding operator on 9 that sets 

all but the K entries of 9 with the largest magnitudes to zero. The halting criterion 

used to find sparse representations consists of checking whether x = ^9. 

While the MP algorithm is computationally efficient and often features good per-

formance, there axe specific cases in which frames ^ can be constructed that defeat 

the algorithm [37] by preventing convergence. Such a flaw is manifested, for example, 

when the algorithm selects a cycle of columns of ^ that are highly coherent to correct 

for an overcompensation made by a certain column. 

As an alternative, the orthogonal matching pursuit algorithm (OMP) [37,38] has 

been proposed. The algorithm is modified as shown in Algorithm 2, where we let 

denote the restriction of the matrix VI< to the columns corresponding to the index set 

11 C {1. . . . , N}. The residual is obtained by subtracting the projection of the signal 

x into the span of the previously selected columns. While OMP does not suffer the 

aforementioned flaw, it is penalized in its computational complexity by the calculation 
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Algorithm 1 Matching Pursuit 

Inputs: Sparsifying frame signal x 

Outputs: Sparse representation 9 

initialize: Oo = 0, r = x, i = 0. 

while halting criterion false do 

1. i*-i + 1 

2. b <— *&rr {form residual signal estimate} 

3. 0i <— Qi-1 + X(b, 1) {update largest magnitude coefficient} 

4. r r — \&T(b, 1) {update measurement residual} 

end while 

return 9 <— 6i 

of the pseudoinverse, defined and denoted as W* = W r ( W W T ) 

Algorithmic Performance 

To provide a guarantee for the performance of these algorithms, we define a metric 

of the frame known as coherence. 

Definition 2.1 [39,40] The coherence of a frame ty, is the largest absolute 

inner product between any two columns of 

= .max 
1<1,J <N 
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Algorithm 2 Orthogonal Matching Pursuit 

Inputs: Sparsifying frame \l>, signal x 

Outputs: Sparse representation 9 

Initialize: 90 = 0, r = x, Q = 0, i = 0. 

while halting criterion false do 

1. i<-i + 1 

2. b {form residual signal estimate} 

3. fi U supp(T(b, 1)) {add index of residual's largest magnitude entry 

to signal support} 

4. 9i\g, ^qX, 9i\nc 0 {form signal estimate} 

5. r x — {update measurement residual} 

end while 

return 9 <— 9< 

The coherence then dictates the maximum sparsity ||0||o for which the BP and OMP 

algorithms obtain the sparse representation of x = *Sf9: 

Theorem 2.1 [39, 40] The BP and OMP algorithms can obtain the sparse represen-

tation of any K-sparse signal in ^ if 

The success of these algorithms, however, depends on the existence of a unique spars-

est representation. Uniqueness can be guaranteed by defining a relevant metric: 
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Definition 2.2 [39] The spark of a matrix a = sparH^). is the smallest number 

a such that there exists a set of a columns of ty that are linearly dependent. 

We then obtain the following guarantee for uniqueness. 

Theorem 2.2 [39] If a signal x has a sparse representation x = ^9 with ||$||o = K 

and 

K < spark(ty)/2, (2.4) 

then 9 is the unique sparsest representation of x in 

2.2.3 Transform Coding 

Sparse representations are the core tenet of compression algorithms based on trans-

form coding. In transform coding, a sparse signal x is compressed by obtaining its 

sparse representation 9 in a suitable basis or frame ^ and encoding the values and 

locations of its nonzero coefficients. For a K-sparse signal, this type of compression 

requires O (K log N) bits. Transform coding is the foundation of most commercial 

compression algorithms; examples include the JPEG image compression algorithm, 

which uses the discrete cosine transform [3], and the JPEG2000 algorithm, which uses 

the discrete wavelet transform [4]. An example using wavelets on an image is shown 

in Figure 2.1.2 

2We use the Daubechies-8 wavelet through this thesis, except when noted. 
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(a) (b) (c) 

Figure 2.1 : Example of transform coding, (a) Cameraman image, 256 x 256 pixels, (b) 
Wavelet transform of (a); each pixel represents one wavelet coefficient. While all coefficients 
are nonzero, most are very small, represented by blue pixels, (c) Sparse approximation of 
(a) with only 6000 nonzero coefficients. Since most of the wavelet coefficients are small, the 
distortion of this sparse approximation is very low. 

2.2.4 Sparse Approximation 

While transform coding algorithms are able to encode sparse signals without distor-

tion, the signals that we observe in nature are not exactly sparse. In other cases, 

our observations of the sparse signal are corrupted by additive noise. Therefore, we 

need to find the best sparse approximation to the signal in order to feed it to the 

transform coding compression algorithm. In this way, we achieve the lowest possible 

distortion for the compressed and/or denoised version of the signal. Our baseline for 

performance is the lowest distortion we can achieve by selecting K coefficients, which 

we call the best K-term approximation error. 

cr^(x, K) = min ||x - \J>0||2. l|0||o<A" 
(2.5) 
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We say then that the optimal X-sparse approximation of x in the basis or frame 

is the sparse vector 9K that achieves this distortion, i.e., ||x — ||2 = £>>(x. K) . 

When is an orthonormal basis, the optimal sparse approximation is obtained 

through thresholding, as defined in Section 2.2.2. When <3/ is a frame instead, we 

can immediately obtain two algorithms to find a suitable sparse approximation: the 

first one finds the sparsest approximation within a certain distortion level, and the 

second one finds the signal with lowest distortion that has a certain sparsity. These 

two formulations are formalized as 

9 = arg min ||d||0 subject to ||x - ^0| |2 < e (2.6) 
eemN 

and 

0 = arg min |lx - $>9\\2 subject to ||0||o < K. (2.7) 

These two minimizations become the same unconstrained optimization under a La-

grangian relaxation: 

0 = argmin||0||o + A | |x -#0 | | 2 . (2.8) 6eRN 

Similarly to Section 2.2.2, these optimizations have convex relaxations using the i\ 

norm that result in some well-known algorithms; the first algorithm is relaxed as 

9 = arg min ||0||x subject to ||x - W||2 < e, (2.9) 

eeRN 

and we dub it basis pursuit with inequality constraints (BPIC). It can be solved by a 

quadratic or cone program. The second one, known as the Lasso [41], is formalized 
as 

9 = arg min llx - subject to IÎ U < 5, (2.10) 
0€THn 
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for which fast solvers have been proposed when K is small [42]. The Lagrangian 

relaxation is known as Basis Pursuit Denoising (BPDN) [35]: 

0 = arg min H^! + A||x - V0\\2-, (2.11) eeMN 

it can be solved using iterative thresholding algorithms [43,44]. The MP and OMP 

greedy algorithms can also be adapted to this setting, by changing their halting 

criterion to ||x — \I>0||2 < e. 

We can also provide guarantees for the sparse approximations obtained from this 

algorithms. However, we will require a more complex metric for the frame. 

Definition 2.3 The cumulative coherence of a frame H/ is defined as 

u(^,m) = max /K^ iV '? ) ! -

We note that 1) = and < m f j L W e then obtain the following 

guarantees. 

Theorem 2.3 [40] If the frame ^ has < 1/3, then the OMP algorithm's 

approximation of the signal representation after K iterations 0K to a signal x using 

the frame ^ obeys 

x-W] < Vl + 6Kay(x,K). 
2 

Algorithms that provide sparse approximation distortion bounds that are proportional 

to the distortion of the best sparse approximation are said to be instance optimal. 

For approximation of sparse signals embedded in noise, the guarantees depend on the 

constraint constants and the magnitude of the noise. 
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Theorem 2.4 [45] If the observed signal x = ^0is K-sparse in with K obeying 

(2.3), and it is corrupted by a noise vector of magnitude 5, then the BPIC algorithm's 

approximation 6 obeys 

5 + e 
e-e < 

2 - v / l - M ^ X ^ - l ) ' 

while the OMP algorithm's approximation obeys 

e - e < 
2 

provided that 5 = e < A{ 1 - pi(V)(2K - l))/2 for OMP. 

2.2.5 Compressibility 

The amount of compression that we apply to a signal is dependent on the number of 

coefficients of 9 that we keep, i.e., to the 4> norm of the signal's sparse approximation. 

To that end, we want to quantify the benefit in reduced distortion to adding more 

coefficients to the compressed version of the signal. 

Consider a signal x whose coefficients 6, when sorted in order of decreasing mag-

nitude, decay according to the power law 

|0(J(n))| < Sn"1/r, n = l,...,N, (2.12) 

where X indexes the sorted coefficients. Thanks to the rapid decay of their coef-

ficients, such signals are well-approximated by A*-sparse signals. The best A'-term 

approximation error for such a signal obeys 

<r9(x,K) < (rsy1/2SK~s, (2.13) 
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(a) (b) 

Figure 2.2 : Example of a compressible signal, (a) Wavelet coefficients of the Cameraman 
image from Figure 2.1(a) sorted by magnitude. The slope of this plot corresponds to 
the exponent of the decay of the coefficient magnitudes p. (b) Error of the optimal K-
sparse approximation of the Cameraman image as a function of K. The slope of this plot 
corresponds to the exponent of the decay of the optimal sparse approximation error s. 

with s = £ — That is, the signal's best approximation error has a power-law decay 

with exponent s as K increases. We dub such a signal s-compressible. An example is 

shown in Figure 2.2. 

2.2.6 Unions of Subspaces 

There is a geometric interpretation for sparse signal representations. Each coefficient 

vector 6 € MA* corresponds to a point in iV-dimensional space with coordinates given 

by the entries of 0. Consider now all /C-sparse representations that share the locations 

of the nonzero coefficients. The corresponding points form a A'-dimensional subspace 

spanned by the canonical basis vectors for the K dimensions of the A'-dimensional 

space corresponding to the support of 0. Therefore, the set of all JC-sparse signals 
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R N 

Figure 2.3 : The set SK Q RjV contains all K-sparse signals and can be expressed as a 
union of subspaces. We illustrate an example with N = 3 and K = 2. 

can be described as the union of orthogonal canonical subspaces of dimension K. 

each corresponding to a different possible supports for a /-('-sparse signals. We denote 

this union of subspaces by with an example illustrated in Figure 2.3. 

When we use a non-canonical sparsifying basis the points corresponding to 

A'-sparse signals are contained in a union of orthogonal non-canonical subspaces that 

correspond to a rotation of the canonical case. When ^ is a frame, then the points 

corresponding to A'-sparse signals is a union of non-canonical non-orthogonal sub-

spaces, with each subspace corresponding to the span of K column vectors from 

2.3 Compressive Sensing 

While a widely accepted standard, the sample-then-compress ideology behind trans-

form coding compression suffers from three inherent inefficiencies: First, we must 

start with a potentially large number of samples N even if the ultimate desired K is 
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small. Second, the encoder must compute all of the N transform coefficients 9, even 

though it will discard all but K of them. Third, the encoder faces the overhead of 

encoding the locations of the large coefficients. 

Compressive sensing (CS) integrates the signal acquisition and compression steps 

into a single process [5,6,46-53]. In CS we do not acquire x directly but rather 

acquire M < N linear measurements y = $x = using a n M x i V measurement 

matrix We then recover x by exploiting its sparsity or compressibility. Our goal is 

to push M as close as possible to K in order to perform as much signal "compression" 

during acquisition as possible. Clearly, the number of measurements M > K; the 

combinatorially complex £o~norm minimization algorithm (2.1) can achieve recovery 

in certain cases for M > K-1-1. Our goal, therefore, is to find computationally feasible 

algorithms that can get as close to this bound as possible. 

To recover the signal representation 9 from its measurements y, we can exploit the 

fact that y will be sparse in the frame However, a distinguishing feature of CS 

is that we do not want to find just a sparse representation of y, but rather we aim for 

the correct representation 9 that yields our data x = Therefore, the requirements, 

guarantees, and algorithms relevant to CS signal recovery are slightly different from, 

although clearly based on, the sparse representation and approximation algorithms 

of Section 2.2. For brevity, we define the matrix product T = so that y = T9. 

2.3.1 Restricted Isometry Property 

In order to recover a good estimate of 9 (the K 0(n)'s with largest magnitudes, for 

example) from the M compressive measurements, the matrix T should satisfy the 
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restricted isometry property (RIP). 

Definition 2.4 [5] A matrix T has the A'-restricted isometry property (K-RIP) with 

constant 5k i f , for all 0 € Sk, 

(1 - 8K)\\e\\2
2 < ||T0||| < (1 + Sk)\\9\\2

2. (2.14) 

In words, the K-RIP ensures that all submatrices of T of size M x K are close to 

an isometry, and therefore distance (and information) preserving. Practical recovery 

algorithms typically require that T have a slightly stronger 2AT-RIP, 3A'-RIP, or 

higher-order RIP in order to preserve distances between A'-sparse vectors (which are 

2A'-sparse in general), three-way sums of A'-sparse vectors (which are 3A'-sparse in 

general), and other higher-order structures. In fact, the uniqueness requirement (2.4) 

is implied when the matrix has the 2A'-RIP with S2K > 0 as this implies that all sets 

of 2K columns be linearly independent, putting spark(T) > 2K. 

2.3.2 Restricted Isometry Property for Random Matrices 

While checking whether a measurement matrix $ satisfies the A'-RIP is an NP-

complete problem in general [5], random matrices whose entries are independent 

and identically distributed (i.i.d.) Gaussian, Rademacher (±1), or more generally 

subgaussian3 work with high probability provided M = O (K \og(N/K)) [50,55]. 

3A random variable X is called subgaussian if there exists c > 0 such that E (ext) < ec2*2/2 for 

all t € K. Examples include the Gaussian, Bernoulli, and Rademacher random variables, as well as 

any bounded random variable [54]. 
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These random matrices also have a so-called universality property in that, for any 

choice of orthonormal basis \I>, has the if-RIP with high probability. This is useful 

when the signal is sparse in a non-canonical basis \I/. A random measurement matrix 

$ corresponds to an intriguing data acquisition protocol in which each measurement 

y(m) is a randomly weighted linear combination of the entries of x. 

2.3.3 Mutual Coherence 

In particular cases, the choice of measurements that can be taken from the signal 

are limited to a transformation, such as the Fourier/Radon transform performed in 

magnetic resonant imaging. Thus, we can assume that a basis $ € RiV xiV is provided 

for measurement purposes, and we can choose a subset of the signal's coefficients in 

this transform as measurements. That is, let $ be an N x M submatrix of $ that 

—T 

preserves the basis vectors with indices T and y = (I> x. Under this setup, a different 

metric arises to evaluate the performance of CS. 

Definition 2.5 [56] The mutual coherence of the N-dimensional orthonormal bases 

$ and ^ is the maximum absolute value for the inner product between elements of 

the two bases: 

= max 
1 <I,J<N 

2.3.4 Recovery Algorithms 

As mentioned earlier, the CS signal recovery process leverages the knowledge that 

the signal x has a sparse representation by performing a sparse approximation of the 
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measurement vector y in the frame T. To that end, the Basis Pursuit (BP), Match-

ing Pursuit and Orthogonal Matching Pursuit (OMP) algorithms are used to recover 

signals from noiseless measurements, while the BPIC, Lasso, BPDN, MP and OMP 

algorithms are used for recovery from noisy measurements [6,46,49,57]. Furthermore, 

solvers for the optimization problems used in Lasso and BPDN that exploit the struc-

ture of the CS measurement matrices allow for fast and accurate recovery [58-61]. 

Additional algorithms have been proposed for the specific CS setting; we list several 

relevant examples below. 

Complexity-based Regularization and Iterative Hard Thresholding 

Haupt and Nowak proposed an algorithm for recovery from noisy measurements [62]. 

The algorithm has a simple boundedness assumption on the entries of 9 (0(n) < 

B, 1 < n < N) and employs two penalties: one measures the complexity of the 

signal: 

c(0) = 21ogJV||0||o. 

while the other measures the goodness of fit to the measurements: 

1 M / N \ 2 

= y ( m ) - J ] T ( m , n ) x ( n ) , 
m=l \ n= 1 / 

These penalties arise by posing a sparsity-promoting complexity measure on the coef-

ficients of the signal representation 9 (in this specific case, assigning an i.i.d. Laplacian 

distribution to the coefficients) and an i.i.d. Gaussian prior on the noise added to each 

measurement. The recovery algorithm then consists of the optimization 

9 = arg mm R(9) + C ( ^ g 2 , (2.15) 
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where e is a constant. This optimization is equivalent to (2.8) and can be solved 

through iterative hard thresholding (IHT) [43,44,63-65]: starting with an initial 

estimate 9Q = 0, IHT obtains a sequence of improving estimates using the iteration 

ei+1=%(di + rT(y-T9i),Ky 

CoSaMP 

The Compressive Sampling Matching Pursuit (CoSaMP) algorithm borrows concepts 

from greedy algorithms as well as solvers for the optimization-based CS signal recovery 

algorithms to achieve a high-performance, computationally efficient algorithm [66]. 

CoSaMP is an iterative algorithm that relies on two stages of sparse approximation: 

a first stage selects an enlarged candidate support set in a similar fashion to the OMP 

algorithm, while a second stage prunes down this initial approximation to the desired 

sparsity level. The algorithm is formally detailed as Algorithm 3. Subspace Pursuit 

(SP) [67], an independently proposed algorithm, features a very similar implementa-

tion. 

2.3.5 Performance Bounds on Signal Recovery 

Instance Optimality Guarantees 

Several CS signal recovery algorithms have similar guarantees on the signal estimate 

distortion. We collect a set of independent results in a single theorem. 

Theorem 2.5 [5, 65, 66] The outputs 9 of the CoSaMP, IHT, and BPIC algorithms 
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Algorithm 3 CoSaMP 

Inputs: CS matrix T, measurements y, signal sparsity K 

Output: if-sparse approximation 9 to true signal representation 9 

Initialize: = 0 . r = y; z = 0 

while halting criterion false do 

1. i <- i + 1 

2. e TTr 

3. Q <- supp(1(e, 2 K ) ) 

4. T <- a U supp(^_i) 

5. bjx <- T^y, b|Tc 

6. 6i T(b, K) 

7. r <- y - Tdi 

end while 

return 9 9i 

operating on y = T9 + n obey 

IIo - 0\\2 < Ci||0 - 9k||2 + C2-±==\\9 - 9k\\i + C3||n]|2. (2.16) 

For the CoSaMP algorithm, this guarantee requires S^K <0.1 and set C\ = C2 = 

C3 = 20. For the IHT algorithm, we require S3x < l/y/32 and set Cx = C2 = C3 = 7. 

For the BPIC algorithm, we require 82K < \/2 — 1 and e > ||n||2, and set C\ = 0; 

C2 = 4.2 and C3 = 8.5 when 52K = 0.2. 

{form signal residual estimate} 

{prune signal residual estimate} 

{merge supports} 

{form signal estimate} 

{prune signal estimate} 

{update measurement residual} 
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Theorem 2.5 states that these algorithms achieve provably instance optimal stable 

signal recovery (recall (2.5)). 

For a A'-sparse signal, these algorithms offer perfect recovery from noiseless mea-

surements, meaning that the signal x recovered from the measurements y = <&x is 

exactly x = x. Note also that in this case, we can apply the BPIC algorithm guarantee 

by setting the constant e = 0, turning in this case into the standard BP algorithm. 

For a A'-sparse signal x whose measurements are corrupted by noise n of bounded 

norm, the mean-squared error of the recovered signal x is bounded by 

| | x - x | | 2 < C | | n | | 2 , (2.17) 

with C a small constant. 

For an s-compressible signal x whose measurements are corrupted by noise n of 

bounded norm, we can simplify this expression to 

Mutual Coherence-Dependent Guarantees 

In some cases, the measurement matrix $ corresponds to the transpose of a submatrix 

of an orthonormal basis with the columns chosen randomly. In this case, we can 

formulate a guarantee for the distortion of the recovered signal that relies on the 

bases' mutual coherence. 

Theorem 2.6 [56] Let x = be a K-sparse signal in with support Q C 

{ l , . . . , iV} , |f2| = K, and with entries having signs chosen uniformly at random. 



Choose a subset T C {1 , . . . , N} for the set of observed measurements, with M = |r | . 

Suppose that M > CKN/j,2($, tf) \og(N/6) and M > C'\og2(N/8) for fixed values of 

S < I, C, C'. Then with probability at least 1 — 5,9 is the solution to (2.2). 

The range of posible coherence values /x(<3>, is \N~1'2,1]. Thus, the number of 

measurements required by Theorem 2.6 ranges from 0(K log(TV)) to O(N). It is pos-

sible to expand the guarantee of Theorem 2.6 to compressible signals by adapting an 

argument of Rudelson and Vershynin in [68] to link coherence and restricted isometry 

constants. 

Theorem 2.7 [68, Remark 3.5.3] Choose a subset T C {1,...,N} for the set of 

observed measurements, with M = | r | . Suppose that 

M > CKV~Nt/j,($, \og(tK log N) log2 K (2.19) 

for a fixed value of C. Then with probability at least 1 — 5e~* the resulting matrix 

has the RIP with constant 52K < 1/2. 

Using this theorem, we obtain the guarantee of Theorem 2.5 for compressible signals 

with the number of measurements M dictated by the coherence value ty). 

Probabilistic Guarantees 

We can provide probabilistic guarantees for the complexity-based regularization al-

gorithm when we observe exactly sparse signals in the canonical basis ^ = I and use 

random measurement matrices $ with i.i.d. normalized Rademacher entries. 
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Theorem 2.8 [62] For x £ EK , the output of the complexity-based regularization 

(2.15) obeys 

where C is a constant dependent on B and a. 

For .s-compressible signals, a similar guarantee is obtained. 

Theorem 2.9 [62] I f x is an s-compressible signal in the basis ^ = I, then 

where C is a constant dependent on B and a. 

Similarly, there is a probabilistic guarantee for the OMP algorithm when random 

matrices with i.i.d. normalized Gaussian entries (with any basis XV) or Rademacher 

entries (with the canonical basis ^ = I) are used. 

Theorem 2.10 [57] Let M > CK\og(N/S) for some 5 e (0,0.36) and x 6 ZK. 

Then with probability 1 — 5 the output of OMP obeys 9 = 6. Furthermore, if M > 2K 

and OMP yields a residual r = 0 after K iterations, then 9 = 9 with probability 1; 

otherwise, OMP fails to recover the signal. 

Unfortunately, no guarantees for recovery from noisy measurements or for compress-

ible signals have been proven for OMP-based recovery in CS. 

E 
\\9~9f CK\ogn 

N ~ M 



2.4 Distributed Compressive Sensing 

In this section, we generalize the notion of a signal being sparse in some basis to 

the notion of an ensemble of signals being jointly sparse [9]. A joint sparsity model 

(JSM) encodes the correlation between the values and locations of the coefficients for 

a group of sparse signals. As we will show later, joint sparsity is applicable to cases 

where multiple sparse signals are generated by a single event. In most of these cases, 

we either favor or it is our only choice to obtain independent measurements for each 

sparse signal, resulting in a set of measurement vectors yj = 1 < j < J. Since 

the measurements are independent, we use joint sparsity models in order to exploit 

the correlations between the signals in the ensemble to improve the performance of 

CS recovery. 

2.4.1 Joint Sparsity Models 

We consider three different JSMs that are inspired by different real world situations. 

In the first two models, each signal is itself sparse, and so we could use the CS 

framework from above to encode and decode each one separately, yet there also exists 

a framework wherein a joint representation for the ensemble uses fewer total vectors. 

In the third model, no signal is itself sparse, yet there still exists a joint sparsity among 

the signals that allows recovery with significantly fewer measurements per sensor. We 

note that for different real world settings, different models for sparsity-based signal 

ensemble structure can be posed, together with appropriate recovery algorithms. 

We use the following notation for signal ensembles. Denote the signals in the 
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ensemble by Xj, j = 1,2,... ,J where each Xj € MiV. We assume that there exists a 

known basis or frame for RA' in which Xj can be sparsely represented. 

JSM-1: Sparse Common Component + Innovations 

In this model, all signals share a common sparse component while each individual 

signal contains a sparse innovations component: 

xj=zc + zj, j e {1,2, . . . , J} 

with 

z c = Mc, || 0c Ho = K, 

zj = W j , 110,-Uo = Kj. 

Thus, the signal zc is common to all of the Xj and has sparsity K in basis The 

signals Zj are the unique portions of the Xj and have sparsity Kj in the same basis. 

A practical situation well-modeled by JSM-1 is a group of sensors measuring 

temperatures at a number of locations throughout the day. The temperature readings 

Xj have both temporal (intra-signal) and spatial (inter-signal) correlations. Global 

factors, such as the sun and prevailing winds, could have an effect zc that is both 

common to all sensors and structured enough to permit sparse representation. More 

local factors, such as shade, water, or animals, could contribute localized innovations 

zj that are also structured (and hence sparse). A similar scenario could be imagined 

for a sensor network recording light intensities, air pressure, or other phenomena. 

All of these scenarios correspond to measuring properties of physical processes that 

change smoothly in time and in space and thus are highly correlated. 
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JSM-2: Common Sparse Supports 

In this model, all signals are constructed from the same sparse index set of basis 

vectors, but with different coefficients: 

where each Oj is supported only on the same f2 C {1,2, . . . , N} with |Q| = K. Hence, 

all signals are K-sparse, and all are constructed from the same K elements of ty, 

but with arbitrarily different coefficients. This model can be viewed as a special case 

of JSM-1 (with Kc = 0 and Kj = K for all j ) but features additional correlation 

structure that suggests distinct recovery algorithms. 

A practical situation well-modeled by JSM-2 is where multiple sensors acquire the 

same Fourier-sparse signal but with phase shifts and attenuations caused by signal 

propagation. In many cases it is critical to recover each one of the sensed signals, such 

as in many acoustic localization and array processing algorithms. Another application 

for JSM-2 is MIMO communication [69]. Section 4.4 presents a series of experiments 

applying JSM-2 to environmental and acoustic data. 

JSM-3: Nonsparse Common + Sparse Innovations 

This model extends JSM-1 so that the common component need no longer be sparse 

in any basis; that is, 

xj = zc + zj, je{ 1 ,2 , . . . , J} 

with 

z c = *0c and Zj = W j , ||0Jo = K j t 
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but zc is not necessarily sparse in the basis We also consider the case where the 

supports of the innovations are shared for all signals, which extends JSM-2. 

A practical situation well-modeled by JSM-3 is where several sources are recorded 

by different sensors together with a background signal that is not sparse in any basis. 

Consider, for example, a computer vision-based verification system in a device pro-

duction plant. Cameras acquire snapshots of components in the production line; a 

computer system then checks for failures in the devices for quality control purposes. 

While each image could be extremely complicated, the ensemble of images will be 

highly correlated, since each camera observes the same device with minor (sparse) 

variations. 

2.4.2 Signal Ensemble Recovery Algorithms 

The algorithm used for joint signal recovery depends on the relevant JSM for the 

signals observed. We briefly overview proposed recovery techniques for each JSM; 

more details on the algorithms (and the theoretical requirements on the measurement 

rates Mj) can be found in [9]. 

For JSM-1, there exists an analytical framework inspired by principles of infor-

mation theory. This allows us to characterize the measurement rates Mj required 

to jointly recover the signals Xj. The measurement rates relate directly to the sig-

nals' conditional sparsities, in parallel with the Slepian-Wolf theory. The recovery 

technique is based on a single execution of a weighted linear program that seeks the 

sparsest components [zc; Zj.; . . . z j ] that account for the observed measurements. 

Theoretical analysis and numerical experiments confirm that the rates Mj required 
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for joint CS recovery are well below those required for independent CS recovery of 

each signal x.j [9]. 

For JSM-2, there exist algorithms inspired by conventional greedy algorithms 

(such as OMP) that can substantially reduce the number of measurements when 

compared with independent recovery. In the single-signal case, OMP iteratively con-

structs the sparse support set f2; decisions are based on inner products between the 

columns of and a residual. In the multi-signal case, there are more clues available 

for determining the elements of Q. An example algorithm is DCS-SOMP, a simple 

variant of Simultaneous Orthogonal Matching Pursuit (SOMP) [9,69] which is for-

malized as Algorithm 4. For a large number of sensors J , close to K measurements 

per signal suffice for joint recovery (that is, c —> 1 as J —> oo); see Figure 2.4 for an 

example of improving performance as J increases. On the contrary, with independent 

CS recovery, perfect recovery of all signals requires increasing each Mj in order to 

maintain the same probability of recovery of the signal ensemble. This surprise is 

due to the fact that each signal will experience an independent probability p < 1 of 

successful recovery; therefore the overall probability of complete success is pJ. Conse-

quently, each sensor must compensate by making additional measurements. We also 

note that when the supports of the innovations of the signals are small, signals that are 

well modeled by JSM-1 can also be modeled by JSM-2 by selecting a global support 

that contains all of the individual supports. Such approximation allows for a simpler 

recovery algorithm, while incurring a slight increase in the number of measurements 

required for recovery. 
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Figure 2.4 : Joint recovery of synthetic JSM-2 signals having length N = 128 and sparsity 
K — 10 using M = 11 random measurements per sensor. Each measurement is quantized to 
approximately 5 bits of precision. The recovery is robust to quantization and is progressive: 
as the number of sensors J increases we see improved recovery performance. 

For JSM-3, no individual signal Xj is sparse, and so recovery of each signal sep-

arately would require a full N measurements per signal. To approach the recovery 

problem, we note that the common component zc is observed by all sensors. This is 

the main concept behind the Alternating Common and Innovation Estimation (ACIE) 

recovery algorithm [9], which alternates between two steps: (1) Estimate the com-

mon component zc by combining all measurements and treating the innovations Zj 

as noise that can be averaged out; (2) Estimate the innovations Zj from each sensor 

by subtracting the estimated common component zc and then applying standard 

CS recovery techniques. We have proved that, asymptotically, each sensor need only 

measure at the rate dictated by the sparsity K} [9], Thus, for a large number of 

sensors J , the impact of the common nonsparse component zc is eliminated. 
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Algorithm 4 DCS-SQMP 

Inputs: Measurement matrices measurement vectors y j , j = 1 , . . . , J. 

Outputs: Sparse signals Xj, j = 1 , . . . , J. 

Initialize: Q = 0, i = 0 

for j = 1,..., J do 

Xj,o = 0 . r? = y^s {initialize} 

end for 

while halting criterion false do 

1. i <r~ i + 1 

2. b j j = 1 , . . . , J {form residual signal estimates} 

3. b = l {merge signal residual estimates 

in absolute value} 

4. Q <- n U supp(1(b, 1)) {add index of residual's largest 

magnitude entry to signal support} 

for j = 1 , . . . , J do 

5a. XJ,I|q ^ J n y j , Serine 0 {form signal estimates} 

5b. Y j ^ - y j - <$>hXj. {update measurement residuals} 

end for 

end while 

return Xj <— x.jti, j = 1,..., J 
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Chapter 3 

Theoretical Measurement Bounds 
for Jointly Sparse Signals via Graphical Models 

In Section 2.4, we summarized a framework for distributed compressive sensing (DCS) 

that enables new distributed coding algorithms to exploit both intra- and inter-signal 

correlation structures. In a typical DCS scenario, multiple sensors measure signals 

that are each individually sparse in some basis and also correlated among sensors. 

Each sensor independently encodes its signal by projecting it onto a small set of 

randomized vectors and then transmits the resulting coefficients to a single collection 

point. Under the right conditions, a decoder at the collection point can recover each 

of the signals precisely. 

The DCS theory relies on the joint sparsity of a signal ensemble. Unlike the single-

signal definition of sparsity, however, there are numerous plausible ways in which joint 

sparsity could be defined. In this chapter,1 we provide a general framework for joint 

sparsity using graphical models. Using this framework, we derive upper and lower 

bounds for the number of noiseless measurements required for recovery. Our results 

are also applicable to cases where the signal ensembles are measured jointly, as well 

as to the single signal case. 

xThis work is in collaboration with Shriram Sarvotham, Dror Baron, Michael B. Wakin, and 

Richard G. Baraniuk [9,70, 71] 
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3.1 Algebraic Framework 

Our framework enables analysis of a given ensemble x l 5 x 2 , . . . , Xj in a "jointly sparse" 

sense, as well as a metric for the complexities of different signal ensembles. It is based 

on a factored representation of the signal ensemble that decouples location and value 

information. We begin by illustrating the single signal case. For clarity and without 

loss of generality, we will assume in this chapter that the signals x J ; 1 < j < J, are 

sparse in the canonical basis ^ = I. 

3.1.1 Single Signal Case 

Consider a sparse vector x G RN with K < N nonzero entries. Alternatively, we can 

write x = P0, where 9 € RK contains the nonzero values of x, and P is an identity 

submatrix, i.e., P contains K columns of the N x N identity matrix I. To model the 

set of all possible sparse signals, let V be the set of all identity submatrices of all 

possible sizes N x K', with 1 < K' < N. We refer to V as a sparsity model. Given a 

signal x, one may consider all possible factorizations x = P9, with P eV. Whether 

a signal is sufficiently sparse is defined in the context of this model: given a signal 

x, one can consider all possible factorizations x = P0 with P e V. Among these 

factorizations, the unique representation with smallest dimensionality for 6 equals 

the sparsity level of the signal x under the model V. 
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3.1.2 Multiple Signal Case 

For multiple signals, consider factorizations of the form X = PQ where 

x = [xf ... xTj}T, xemJN 

is the concatenation of the signals in the ensemble, P £ M.JNyD, and 9 £ RD . We 

refer to P and 0 as the location matrix and value vector, respectively. A JSM is 

defined in terms of a set V of admissible location matrices P with varying numbers 

of columns; we specify below additional conditions that the matrices P must satisfy 

for each model. For a given ensemble X, we let 7V(X) C V denote the set of feasible 

location matrices P £ V for which a factorization X = PG exists. We define the 

joint sparsity level of the signal ensemble as follows. 

Definition 3.1 The joint sparsity level D of the signal ensemble X is the number of 

columns of the smallest matrix P £ VF{X). 

In contrast to the single-signal case, there are several natural choices for what 

matrices P should be members of a joint sparsity model V. We restrict our attention 

in the sequel to what we call common/innovation component JSMs. In these models 

each signal Xj is generated as a combination of two components: (i) a common 

component zc, which is present in all signals, and (u) an innovation component zj, 

which is unique to each signal. These combine additively, giving 

Xj = zc + Zj, j £ A. 
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Note, however, that the individual components might be zero-valued in specific sce-

narios. We can express the component signals as 

z c = P c 9 c , Zj = PJOJ, j e A, 

where 6C € and each 6j e RKj have nonzero entries. Each matrix P 6 V that 

can express such signals {x^} has the form 

P c P i 0 . . . 0 

P c 0 P 2 . . . 0 
P = (3.1) 

P c 0 0 . . . Pj 

where P c , {Pj}jGA are identity submatrices. We define the value vector as 0 = 

[<% Of 0% . . . 07)]T, where 9C G RKc and each 9j G R ^ , to obtain X = P©. 

Although the values of Kc and Kj are dependent on the matrix P, we omit this 

dependency in the sequel for brevity, except when necessary for clarity. 

If a signal ensemble X = P 9 , 0 6 l 5 were to be generated by a selection of P c 

and {PjJjgA, where all J + 1 identity submatrices share a common column vector, 

then P would not be full rank. In other cases, we may observe a vector 0 that has 

zero-valued entries; i.e., we may have 6j(k) = 0 for some 1 < k < Kj and some 

j € A, or 9c(k) = 0 for some 1 < k < Kc. In both of these cases, by removing 

one instance of this column from any of the identity submatrices, one can obtain a 

matrix Q with fewer columns for which there exists 0 ' e M*5"1 that gives X = Q©'. If 

Q G P , then we term this phenomenon sparsity reduction. Sparsity reduction, when 

present, reduces the effective joint sparsity of a signal ensemble. As an example of 
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sparsity reduction, consider J = 2 signals of length N = 2. Consider the coefficient 

Zc(l) 0 of the common component Zc and the corresponding innovation coefficients 

Zi(l),Z2(l) v̂  0. Suppose that all other coefficients are zero. The location matrix P 

that arises is 

1 1 0 

0 0 0 

1 0 1 

0 0 0 

The span of this location matrix (i.e., the set of signal ensembles X that it can 

generate) remains unchanged if we remove any one of the columns, i.e., if we drop any 

entry of the value vector 0 . This provides us with a lower-dimensional representation 

©' of the same signal ensemble X under the JSM V; the joint sparsity of X is D = 2. 

3.2 Bound on Measurement Rates 

In this section, we seek conditions on J\4 = (Mi, M 2 , . . . , Mj), the tuple of number 

of measurements from each sensor, such that we can guarantee perfect recovery of 

X given Y. To this end, we provide a graphical model for the general framework 

provided in Section 3.1. This graphical model is fundamental in the derivation of the 

number of measurements needed for each sensor, as well as in the formulation of a 

combinatorial recovery procedure. 

Based on the models presented in Section 2.4.1, recovering X requires determin-

ing a value vector 0 and location matrix P such that X = P 0 . Two challenges 

immediately present themselves. First, a given measurement depends only on some 



of the components of 0 , and the measurement budget should be adjusted between 

the sensors according to the information that can be gathered on the components 

of 0 . For example, if a component 0(d) does not affect any signal coefficient Xj(-) 

in sensor j , then the corresponding measurements y j provide no information about 

0(d). Second, the decoder must identify a location matrix P G P f ( X ) from the set 

V and the measurements Y = [yf y^ . . . y j ] T . 

3.2.1 Graphical Model Framework 

We introduce a graphical representation that captures the dependencies between the 

measurements in Y and the value vector 0 , represented by $ and P. Consider a 

feasible decomposition of X into a full-rank matrix P G VF (X) and the corresponding 

0; the matrix P defines the sparsities of the common and innovation components KC 

and KJ, 1 < j < J , as well as the joint sparsity D = KC + ]C/=i Kj• Define the 

following sets of vertices, illustrated in Figure 3.1: (i) the set of value vertices Vy 

has elements with indices d € {1 , . . . , D} representing the entries of the value vector 

0(d); (ii) the set of signal vertices Vs has elements with indices (j, n) representing the 

signal entries x,-(n), with j G A and n G {1, . . . , A }̂; and (Hi) the set of measurement 

vertices VM has elements with indices (j. m) representing the measurements Dj(m), 

with j 6 A and m G {1 ,...,Mj}. The cardinalities for these sets are \Vy\ = D, 

|Vs| = JN, and \VM\ = i M?> respectively. 

Let P be partitioned into location submatrices P J , j G A, so that Xj = P-^0; here 

P-7 is the restriction of P to the rows that generate the signal x r We then define the 

bipartite graph G = (Vs, Vv,E), determined by P and shown in Figure 3.1(a), where 
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there exists an edge connecting {j, n) and d if and only if P J(n, d) ^ 0. 

A similar bipartite graph G' = (VM, VS, E'), illustrated in Figure 3.1(a), connects 

the measurement vertices {(j, m)} to the signal vertices {(j, n)}; there exists an edge 

in G' connecting ( j , n) e VS and (j,m) € VM if n) ^ 0. When the measure-

ments matrices are dense, which occurs with probability one for i.i.d. Gaussian 

random matrices, the vertices corresponding to entries of a given signal Xj in Vs are all 

connected to all vertices corresponding to the measurements y j in Vy. Figure 3.1(a) 

shows an example for dense measurement matrices: each measurement vertex (j, •) is 

connected to each signal vertex (j, •). 

The graphs G and G' can be merged into G = (VML VV, E) that relates entries 

of the value vector to measurements. Figure 3.1(b) shows the example composition 

of the previous two bipartite graphs. G is used to recover 0 from the measurement 

ensemble Y when P is known. 

3.2.2 Quantifying Redundancies 

In order to obtain sharp bounds on the number of measurements needed, our analysis 

of the measurement process must account for redundancies between the locations of 

the nonzero coefficients in the common and innovation components. To that end, we 

consider the overlaps between common and innovation components in each signal. 

When we have zc(n) / 0 and z j (n ) 0 for a certain signal j and some index 

1 < n < N, we cannot recover the values of both coefficients from the measurements 

of this signal alone; therefore, we will need to recover zc(n) using measurements of 

other signals that do not feature the same overlap. We thus quantify the size of the 
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Measurements ^ v e c t o r 
E' m E 

{J, Mj) 

Measurements V a l u J v e c t ° r 
coerticients 

E 

(J, Mj) 

VM Vv 

(a) (b) 

Figure 3.1 : Bipartite graphs for distributed compressive sensing, (a) G = (V5, Vy,E) 
connects the entries of each signal with the value vector coefficients they depend on; 
G' = (VM,VS, E') connects the measurements at each sensor with observed signal en-
tries. The matrix is a dense Gaussian random matrix, as shown in the graph, (b) 
G — (VM, Vy, E) is the composition of G and G', and relates between value vector coeffi-
cients and measurements. 

overlap for all subsets of signals P C A under a feasible representation given by P 

and 0 , as described in Section 3.1. 

Definition 3.2 The overlap size for the set of signals T C A, denoted A"c(r, P), is 

the number of indices in which there is overlap between the common and the innovation 

component supports at all signals j ^ F; 

KC(T, P) = \{ne{l,...,N}: z c{n) ±0 and V j$ T, z » ^ 0}|. (3.2) 

We also define Kc{A,P) = Kc(P) and Kc(®, P) = 0. 
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For T C A, Kc{T. P) provides a penalty term due to the need for recovery of common 

component coefficients that are overlapped by innovations in all other signals j ^ F. 

Intuitively, for each entry counted in Kc(r,P), some sensor in T must take one 

measurement to account for that entry of the common component — it is impossible 

to recover such entries from measurements made by sensors outside of T. When all 

signals j £ A are considered, it is clear that all of the common component coefficients 

must be recovered from the obtained measurements. 

3.2.3 Measurement Bounds 

Converse and achievable bounds for the number of measurements necessary for DCS 

recovery are given below. Our bounds consider each subset of sensors F C A , since 

the cost of sensing the common component can be amortized across sensors: it may 

be possible to reduce the rate at one sensor j i 6 T (up to a point), as long as other 

sensors in T offset the rate reduction. We quantify the reduction possible through the 

following definition. 

Definition 3.3 The conditional sparsity of the set of signals T is the number of 

entries of the vector O that must be recovered by measurements yj, j £ T : 

The joint sparsity gives the number of degrees of freedom for the signals in A, while 

the conditional sparsity gives the number of degrees of freedom for signals in F when 

the signals in A \ F are available as side information. 
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The bipartite graph introduced in Section 3.2.1 is the cornerstone of Theorems 3.1, 

3.2, and 3.3, which consider whether a perfect matching can be found in the graph; 

see the proofs in Appendices A, C, and D, respectively, for detail. 

Theorem 3.1 (Achievable, known P) Assume that a signal ensemble X is obtained 

from a common/innovation component JSMV. Let M = (Mi, ..., Mj) be a 

measurement tuple, let {<!>./}j£A be random matrices having Mj rows of i.i.d. Gaussian 

entries for each j € A, and write Y — $X. Suppose there exists a full rank location 

matrix P 6 "Pf(X) such that 

X > ^ ^ c o n d ( r , P ) (3.3) 
je r 

for all r c A. Then with probability one over {^jjgr, there exists a unique solution 

6 to the system of equations Y = <E>PO; hence, the signal ensemble X can be uniquely 

recovered as X = PB. 

Theorem 3.2 (Achievable, unknown P) Assume that a signal ensemble X and mea-

surement matrices {^jjgA follow the assumptions of Theorem 3.1. Suppose there 

exists a full rank location matrix P* £ VFOQ such that 

> # c o n d ( r , P * ) + | r | (3.4) 
jer 

for all r C A. Then X can be uniquely recovered from Y with probability one over 

Theorem 3.3 (Converse) Assume that a signal ensemble X and measurement ma-

trices {QjjjeA follow the assumptions of Theorem 3.1. Suppose there exists a full rank 
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location matrix P E Pp(X.) such that 

<ifcond(r,p) (3.5) 
je r 

/or some T C A. Then there exists a solution 0 SMC/J Y = $ P 0 but X := P 0 ^ 

X. 

The identification of a feasible location matrix P causes the one measurement per 

sensor gap that prevents (3.4)-(3.5) from being a tight converse and achievable bound 

pair. We note in passing that the signal recovery procedure used in Theorem 3.2 is 

akin to ^o-norm minimization on X; see Appendix C for details. 

3.2.4 Discussion 

The bounds in Theorems 3.1-3.3 are dependent on the dimensionality of the sub-

spaces in which the signals reside. The number of noiseless measurements required 

for ensemble recovery is determined by the dimensionality dim(«S) of the subspace S 

in the relevant signal model, because dimensionality and sparsity play a volumetric 

role akin to the entropy H used to characterize rates in source coding. Whereas 

in source coding each bit resolves between two options, and 2NH typical inputs are 

described using NH bits [72], in CS we have M = dim(S) + 0(1). Similar to Slepian-

Wolf coding [73], the number of measurements required for each sensor must account 

for the minimal features unique to that sensor, while at the same time features that 

appear among multiple sensors must be amortized over the group. 

Theorems 3.1-3.3 can also be applied to the single sensor and joint measurement 

settings. In the single-signal setting, we will have x = P9 with 9 £ RK, and A = {1}; 
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Theorem 3.2 provides the requirement M > K + 1. It is easy to show that the 

joint measurement is equivalent to the single-signal setting: we concatenate all the 

individual signals into a single signal vector, and in both cases all measurements 

are dependent on all the entries of the signal vector. However, the distribution of 

the measurements among the available sensors is irrelevant in a joint measurement 

setting. Therefore, we only obtain a necessary condition Mj > D + 1 on the total 

number of measurements required. 
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Chapter 4 

Distributed Compressive Sensing 
for Sensor Networks 

In this chapter,1 we demonstrate the potential of DCS for universal distributed sensing 

in sensor networks. We develop and validate algorithms for several network-specific 

signal processing and compression tasks using random measurements on real sensor 

network data. The properties of DCS directly address the sensor network challenges 

outlined in Chapter 1. In particular, DCS algorithms: offer a universal encoding ap-

propriate for any jointly sparse signal ensemble; are completely non-collaborative and 

involve no communication overhead; can be implemented on the simplest computing 

hardware on the sensor nodes since they shift nearly all computational complexity to 

the decoder at the collection point; are inherently fault tolerant, robust to measure-

ment and quantization noise, and secure; are robust to lossy communication links; 

offer progressively better, tunable recovery as measurements stream in; and are ap-

plicable to a range of sensor network signal processing tasks, from signal compression 

to estimation and detection/classification. To coin a term, DCS sensors are "om-

nescient": they omnisciently capture the relevant signal information despite being 

nescient (ignorant) of the actual structure. 

1This work is in collaboration with Michael B. Wakin, Dror Baron, and Richard G. Baraniuk [74] 
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4.1 Related Work 

Several approaches have been proposed for data collection in sensor networks, most of 

which exploit the correlation among the signals being recorded. DIMENSIONS [75] 

enables distributed information storage and multiresolution data retrieval; it achieves 

compression by assuming that the signal at each sensor node features temporal corre-

lation and clustering sensors that observe correlated signals in a hierarchical fashion. 

The compression of signal ensembles thus requires high computation during cluster-

ing, and so the cluster heads must be capable of performing such tasks within their 

power and computational budgets. Fractional cascading [76] allows queries to be 

injected at any point in the network. Information is redundantly stored at several 

sensors, requiring again collaboration and computation to integrate measurements 

from local groups of sensors. 

Other algorithms that exploit correlations in sensor networks include signal com-

pression [77], routing [78], and signal processing tasks [79-81]. The general approach 

consists of clustering nodes that observe correlated signals and then performing local 

processing, routing, or compression at a node chosen as a cluster head; the process 

continues iteratively until a single cluster is obtained. Unfortunately, clustering tech-

niques require collaboration amongst sensors, which increases power consumption for 

the nodes due to message passing inside clusters. Furthermore, not all sensor net-

work architectures can support the computational complexity of the signal processing 

algorithms. 

In contrast to these approaches, our proposed framework involves no collaboration 



among the sensors, has low computational complexity, and facilitates easy measure-

ment aggregation. Section 4.3 elaborates on these and other benefits. 

4.2 Distributed Sensing Using Random Projections 

In this section we describe the mechanics of implementing DCS in a sensor network 

environment. In the next section, we highlight the unique benefits afforded by such 

an approach. 

4.2.1 Incoherent Measurements 

We consider a collection of J synchronized sensor nodes that observe signals obeying 

one of the JSMs or their extensions (as described in Section 2.4.1). Each sensor inde-

pendently collects a set of incoherent measurements and transmits them to a data sink. 

The signals are then recovered jointly using algorithms discussed in Section 2.4.2. We 

emphasize that, thanks to the universal nature of random measurements, the sensors 

need not be informed of the sparsity-inducing basis for the signals; this information 

is only required to perform recovery at the decoder. 

We assume that sensor j acquires the iV-sample signal x3- observed during a time 

interval [to, to + T] and computes a given number of measurements Mj. The period 

[to ,to + T] could be the complete duration of the signal of interest or could correspond 

to a length-./V block of a longer signal; the above process can be repeated periodically. 

We denote the measurement vector by y j = where (J>3 is the measurement matrix 

for sensor j ; is Mj x N and, in general, the entries of are different for each j . 



57 

Since all measurements have the same relevance for signal recovery, their values are 

quantized using the same scheme for each index m; the distortion in the recovery due 

to quantization is bounded [82]. 

The CS and DCS frameworks require knowledge during recovery of the measure-

ment matrix for the different sensors j = I,..., J. This can be accomplished 

by constructing each measurement matrix using a pseudorandom number generator, 

whose seed could be provided by the data sink or computed as a function of the 

node ID. While most of the existing theory for CS encoding applies specifically to 

random Gaussian or Bernoulli measurements, there is active research into developing 

lower-complexity alternatives [26,83]. We have strong experimental evidence that 

structured measurement matrices (involving, for example, an FIR filter with pseu-

dorandom taps [83]) can provide suitable mutual coherence with the sparse basis 

4.2.2 Communication to the Data Sink 

Each quantized measurement y j ( m ) is transmitted to the sink together with its times-

tamp to, index m, and node ID j. This is the only information necessary from the 

sensors to recover the signals. Since the measurements can arrive out of order, they 

can be sent individually over the network or grouped into packets if desired. Many 

different options exist for routing the measurements, including TreeCast [84] and 

DIMENSIONS [75], 
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4.2.3 Joint Recovery 

As the measurements are received by the data sink, the measurement matrices <1̂  

for the different sensors are built accordingly through the same procedure as in the 

sensors. Once the data sink receives all Mj measurements from each sensor — or 

alternatively, once it starts receiving measurements for the next measurement period 

(beginning at to + T) — the data sink can begin recovering the signal ensemble as 

detailed in Section 2.4.2. 

4.3 Advantages of Distributed Compressive Sensing 

for Sensor Networks 

Our DCS implementation for sensor networks is robust and widely applicable in sensor 

network scenarios. This section describes in more detail several of the desirable 

features. 

4.3.1 Simple, Universal Encoding 

DCS coding is particularly appealing when we employ random projections at the 

sensors. Random projections are universal in the sense that they are incoherent with 

any fixed sparsity basis [49]. In fact, using the same set of random measurements 

the decoder can attempt to recover the signals using any supposed sparse basis ^ or 

JSM. In addition to being universally incoherent, the CS/DCS random measurements 

are also future-proof, if a better sparsity-inducing basis is found (or a better JSM is 

proposed), then the same random measurements can be used to recover an even more 
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accurate view of the environment without requiring any changes in the deployed 

sensing hardware. Additionally, DCS can be applied to any number of sensors J > 2, 

and the sensors need not know their physical locations (other than to network their 

data). 

The CS/DCS frameworks, in which measurements can be obtained with low com-

plexity and without collaboration, also shifts the computational load of recovery from 

the sensor network to the data sink or cluster head. Each sensor only needs to com-

pute its incoherent projections of the signal it observes, while the data sink or cluster 

head recovers all of the signals. This computational asymmetry is desirable in many 

sensor networks since data sinks and cluster heads have typically more computational 

power than sensor nodes. 

4.3.2 Robustness, Progressivity, and Resiliency 

DCS enjoys remarkable robustness properties thanks to the robustness of the CS 

framework. CS measurements have been shown to be robust to quantization and 

noise [62,82], making the framework applicable to real world settings. Additionally, 

the incoherent measurements coming from each sensor have equal priority, unlike 

transform coefficients in current coders. Thus, the CS measurements can be trans-

mitted and received in any order. Signal recovery can be attempted using any number 

of the received measurements — as more measurements are received they allow a pro-

gressively better recovery of the data [49]. 

In this sense, DCS is automatically robust to packet loss in wireless sensor net-

works; any loss of measurements leads to a graceful degradation in the recovery 
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quality. This loss resiliency is particularly useful, as errors in wireless sensor network 

transmissions often cause as many as 10 — 30% of the packets to be dropped [85]. 

This effect is exacerbated in multi-hop networks. 

One existing approach that is robust to packet drops is multiple description cod-

ing [86,87]. These techniques enable data recovery at varying levels of quality depend-

ing on the number of packets that arrive. Unfortunately, multiple description coding 

techniques for distributed source coding have not been fully developed [88]. Another 

approach uses layered coding for unequal bit error protection, where the first layer is 

highly protected with strong channel coding and is also used as side information when 

decoding the second layer [89]. This layered approach also increases demands on the 

system resources because the stronger channel code requires substantial redundancy 

in terms of channel resources and power consumption. 

4.3.3 Security 

Using a pseudorandom basis (with a random seed) effectively implements encryption: 

the randomized measurements will themselves resemble noise and be meaningless to 

an observer who does not know the seed. 

4.3.4 Fault Tolerance and Anomaly Detection 

DCS recovery techniques can be extended to be fault tolerant. In the case where 

a small number of signals may not obey the overall JSM (due to a faulty sensor, 

for example), the joint recovery techniques can be tailored to detect such anomalies. 

In the case of JSM-2, for example, after running SOMP to determine the common 
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support set Q, the data sink could examine each sensor's measurements to check 

for agreement with $1. Those signals that appear to disagree can then be recovered 

separately from the remaining (JSM-faithful) nodes. 

4.3.5 Adaptivity to Channel Capacity 

The DCS measurement and transmission rates can be scaled to adapt to the conditions 

of the wireless communication channel and the nuances of the observed signals. If, 

for example, the communication channel capacity is below the required rate to send 

Mj measurements, then the sensors can perform rate limitation in a similar manner 

to congestion control algorithms for communication networks. When the data sink 

detects congestion in the communication channel, it can send a congestion notification 

(using a trickle of feedback) to the nodes so that the bit rate of the information sent 

is reduced in one of two ways. First, the sensors could increase the quantization 

stepsize of the measurements, since the CS/DCS recovery is robust to quantization. 

Second, the sensors could reduce the number of measurements taken for each signal: 

due to the resiliency of CS measurements, the effect of having few measurements 

on the recovery distortion is gradual. Thus, the CS/DCS measurement process can 

easily scale to match the transmission capacity of the communication channel, which 

is reminiscent of joint source-channel coding. 

4.3.6 Information Scalability 

Incoherent measurements obtained via DCS can be used to recover different levels of 

information about the sensed signals. It has been shown [90] that the CS framework 
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is information scalable beyond signal recovery to a much wider range of statistical 

inference tasks, including estimation, detection, and classification. Depending on the 

situation, the lower levels of information about the signals can often be extracted 

using lower computational complexity or fewer incoherent measurements than would 

be required to recover the signals. For example, statistical detection and classification 

do not require recovery of the signal, but only require an estimate of the relevant 

sufficient statistics. Consequently, it is possible to directly extract such statistics from 

a small number of random projections without ever recovering the signal. As a result, 

significantly fewer measurements are required for signal detection than for signal 

recovery [90]. Furthermore, as in recovery, random measurements are again universal, 

in the sense that with high probability the sufficient statistics can be extracted from 

them regardless of the signal structure. 

As a first example, we consider sensor networks for surveillance applications [79]. 

Typically, a detection algorithm is executed continuously on the sensed data; when 

the algorithm returns an event detection, other algorithms such as classification, 

localization, and tracking are executed. These algorithms require a larger amount of 

information from the signals than that of detection. In our DCS scheme, we can adapt 

the measurement rate of the sensor nodes according to the tasks being performed. 

We apply a low measurement rate for detection; once the detection returns an event, 

the measurement rate is increased to that required by the other tasks. 

As another example, one may be interested in estimating linear functions of the 
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sensed signals 

j 

examples include averages and linear interpolations. Thanks to the linearity of the 

CS/DCS measurement process, we can extract such information from the incoherent 

measurements without first recovering the signals Xj. More specifically, assuming we 

use the same measurement process = $ at each sensor, we can write 

- y^wjQXJ = j j 

Assuming that v is sparse, it can be recovered from using standard CS techniques. 

Thus, by aggregating the measurements y j using the desired linear function we can 

directly obtain incoherent measurements of v without recovering the Xj. We also 

note that the measurement vectors can be aggregated using matched source-channel 

communication [24,25], in which the wireless nodes collaborate to coherently send 

their measurements so that a receiver directly obtains the weighted sum. This could 

enable a significant reduction in power. Such aggregation can also be implemented 

hierarchically in frameworks such as TreeCast [84] or DIMENSIONS [75]. 

4.4 Experiments 

In this section, we consider four different sensor network datasets. Although the 

signals we consider are not strictly sparse, we see that the JSM models provide a 

good approximation for the joint sparsity structure and that DCS offers a promising 

approach for such sensing environments. 
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4.4.1 Environmental Sensing 

The first three datasets [91] contain temperature, humidity, and light readings from 

a group of 48 nodes deployed at the offices of Intel Research Labs in Berkeley, CA.2 

The signals in Figures 4.1(a), 4.2(a) and 4.3(a) were recorded in an office environment 

and therefore exhibit periodic behavior caused by the activity levels during day and 

night. Furthermore, there are small fluctuations at each one of these states; thus 

we expect the signals to be compressible both in the Fourier and wavelet domains. 

Since the signals are observations of physical processes, they are smoothly varying in 

time and space; this causes the sensor readings to be close in value to each other, a 

situation well captured by the JSM-1 and JSM-2 models. 

We now confirm the joint sparsity of the signals under the JSM-2 model. The top 

panel in Figure 4.4 shows the distortion of the best /C-term wavelet approximation 

for each signal in the light dataset as K increases. The figure shows that a modest 

value of K = 100 gives low distortion for all signals. However, the union over all 

signals of the K best wavelet basis vectors per signal has size greater than K. The 

bottom panel in Figure 4.4 shows the size of this union (the "joint support" for the 

signals under JSM-2) as K increases. We see that approximately jQj = 200 vectors 

are required to include the K = 100 most significant vectors for each signal, which 

makes the JSM-2 model feasible due to the shared compactness of the representation. 

Similar results are observed for the other datasets, which are compressible in the 

2For the purposes of our experiments, we select signals of length N = 1024 and interpolate small 

amounts of missing data. 
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(b) Transform Coding, SNR = 26.4842 dB 

(c) Compressive Sensing, SNR = 21.6426 dB 

(d) Distributed Compressive Sensing, SNR = 27.1906 dB 

Figure 4.1 : Recovery of light intensity signals from 48 sensors with length N = 1024. (a) 
Original signals; (b) wavelet thresholding using 100 coefficients per sensor, average SNR = 
26.48c/B; (c) separate recovery of each signal using CS from M = 400 random projections 
per sensor, average SNR = 21.64dB; (d) joint recovery of the signal ensemble using DCS 
from M = 400 random projections per sensor, average SNR = 27.19dB. 

wavelet domain as well. Thus, we expect that such datasets can be recovered from 

incoherent projections using DCS with the appropriate sparsity inducing bases. 

We now consider a hypothetical implementation of DCS for these signals. For 

the light intensity signal we take M = 400 random Gaussian measurements per 

sensor and compare DCS recovery (via DCS-SOMP using wavelets as the sparsity 

basis) with separable OMP recovery. For comparison, we also compare to wavelet 

thresholding at each signal using 100 terms. Figure 4.1 shows the recovery of the light 

intensity signal ensemble. We see average SNRs of 26.48dB, 21.64dB, and 27.19dB for 

wavelet thresholding, separate CS, and DCS recovery, respectively. The DCS recovery 

algorithm identifies the common structure emphasized by JSM-2, recovering salient 
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(b) Transform Coding, SNR = 28.8418 dB 

(c) Commpressive Sensing, SNR = 19.3876 dB 

(d) Distributed Compressive Sensing, SNR = 29.6559 dB 

Figure 4.2 : Recovery of humidity signals from 48 sensors with length N = 1024. (a) 
Original signals; (b) wavelet thresholding using 20 coefficients per sensor, average SNR = 
28.84dB; (c) separate recovery if each signal using CS from M = 80 random projections per 
sensor, average SNR = 19.39dB; (d) joint recovery of the signal ensemble using DCS from 
M = 80 random projections per sensor, average SNR = 29.66dB. 

common features for all signals in the ensemble in addition to many of the distinct 

features in each signal. Similar results are seen for the humidity and temperature 

datasets in Figures 4.2, 4.3, and 4.5. 

To illustrate progressivity, Figure 4.6 also plots the CS (OMP) and DCS (DCS-

SOMP) recovery errors for the temperature signal ensemble at a variety of mea-

surement rates M. SOMP recovery is superior at low and moderate rates, yet it 

is surpassed by OMP at high rates. This illustrates the applicability of the JSM-2 

model, which becomes less valid as the very fine features of each signal (which vary 

between sensors) are incorporated. A joint recovery algorithm tailored to this fact 

would likely outperform both approaches. 
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(b) Transform Coding, SNR = 28.589 dB 

(c) Compressive Sensing, SNR = 18.7817 dB 

Figure 4.3 : Recovery of temperature signals from 48 sensors with length N = 1024. (a) 
Original signals; (b) wavelet thresholding using 20 coefficients per sensor, average SNR = 
28.59dB; (c) separate recovery of each signal using CS from M = 80 random projections 
per sensor, average SNR = 18.78dB; (d) joint recovery of the signal ensemble using DCS 
from M = 80 random projections per sensor, average SNR — 29.95dB. 

4.4.2 Acoustic Sensing 

Our fourth dataset [80] contains audio recordings of military vehicles from a 16-

microphone sensor network array from the SITEX02 experiment of the DARPA Sen-

SIT program. The audio signals are compressible in the Fourier domain and follow 

the JSM-2 model (see Figure 4.7). Figure 4.8 shows an example DCS recovery (using 

SOMP with the Fourier sparse basis); the results are similar to those seen in the 

previous datasets. 



68 

Figure 4.4 : Top: Quality of approximation of light intensity signals as a function of the 
number K of wavelet coefficients used per sensor. When K > 100, the approximations 
yield low distortion; thus the signals are compressible. Bottom: Number of wavelet vectors 
required to include the K largest wavelet coefficients for each signal. The slope of the curve 
is much smaller than J = 48, meaning that the supports of the compressible signals overlap, 
and that the ensemble is well represented by the JSM-2 model. 
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Figure 4.5 : Recovery of temperature signal # 4 1 (extracted from Figure 4.3). (a) Original 
signal; (b) separate recovery of each signal using wavelet tresholding, SNR — 25.95dB; (c) 
recovery using CS, SNR = 16.83dB; (d) joint recovery of the signal ensemble using DCS, 
SNR = 29.41dB. 
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Figure 4.6 : Average SNR of temperature signals recovered from M measurements per 
sensor using CS (OMP) and DCS (DCS-SOMP). 
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Figure 4.7 : Top: Quality of approximation of vehicle audio signals as a function of the 
number K of Fourier coefficients used per sensor. Bottom: Number of Fourier vectors 
required to include the K largest Fourier coefficients for each signal. 

jfatl 
(a) Original 

(c) Compressive Sensing, SNR = 9.51 dB 

(d) Distributed Compressive Sensing, SNR = 12.20 dB 

Figure 4.8 : Fourier coefficients for recovery of vehicle audio signals from 18 sensors with 
length N — 1024. (a) Original signals; (b) Fourier thresholding using 100 coefficients per 
sensor, average SNR — 11.53dB; (c) separate recovery using CS from M = 400 random 
projections per sensor, average SNR = 9.51dB; (d) joint recovery using DCS from M — 400 
random projections per sensor, average SNR = 12.20dB. 
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Chapter 5 

Compressive Sensing for Wavelet-Sparse Signals 

The signal recovery algorithms for CS listed in Section 2.3.4 are generic, in the sense 

that they do not exploit any structure (aside from sparsity) that may exist in the 

sensed signals. An important subclass of sparse signals, however, is the class of 

piecewise smooth signals — many punctuated real-world phenomena give rise to such 

signals [2]. The wavelet transform of a piecewise smooth signal yields a sparse, struc-

tured representation of signals in this class: the largest coefficients tend to form a 

connected subtree of the wavelet coefficient tree. While other methods have been 

proposed for fast recovery of wavelet-sparse signals [46,63], these methods do not 

fully exploit this connectedness property. In this chapter,1 we propose algorithms 

for CS signal recovery that are specially tailored for the structure of sparse wavelet 

representations. 

5.1 The Structure of Multiscale Wavelet Transforms 

Without loss of generality, we focus on 1-D signals, although similar arguments apply 

for 2-D and multidimensional data. Consider a signal x of length N = 2 /, for an 

1This work is in collaboration with Michael B. Wakin and Richard G. Baraniuk [92-94] 
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integer value of I. The wavelet representation of x is given by 

J - l 2 4 - l 

X = V0U + ^ Wij'&ij' (S-1) 
1 = 0 j=0 

where v is the scaling function and is the wavelet function at scale i and offset 

j . The wavelet transform consists of the scaling coefficient vo and wavelet coefficients 

Witj at scale i, 0 < i < I — 1, and position j, 0 < j < 2l — 1. In terms of our earlier 

matrix notation, x has the representation x = where ^ is a matrix containing 

the scaling and wavelet functions as columns, and 9 = [v0 w0,o w\,\ u->2/j • • -]r is 

the vector of scaling and wavelet coefficients. We are, of course, interested in sparse 

and compressible 9. 

In a typical 1-D wavelet transform, each coefficient at scale j € {1 , . . . , J := 

log2(iV)} describes a portion of the signal of size 0(2~i). With 2-?-1 such coefficients 

at each scale, a binary tree provides a natural organization for the coefficients. Each 

coefficient at scale j < log2(iV) has 2 children at scale j + 1, and each coefficient at 

scale j > 1 has one parent at scale j — 1. 

5.1.1 Deterministic Signal Models 

Due to the analysis properties of wavelets, coefficient values tend to persist through 

scale. A large wavelet coefficient (in magnitude) generally indicates the presence of a 

singularity inside its support; a small wavelet coefficient generally indicates a smooth 

region. Thanks to the nesting of child wavelets inside their parents, edges in general 

manifest themselves in the wavelet domain as chains of large coefficients propagating 

across scales in the wavelet tree; we call this phenomenon the persistence property. 
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Figure 5.1 : Binary wavelet tree for a 1-D signal. The squares denote the large wavelet 
coefficients that arise from the discontinuities in the piecewise smooth signal drawn below; 
the support of the large coefficients forms a rooted, connected tree. 

Additionally, wavelet coefficients also have exponentially decaying magnitudes at finer 

scales [2]. This causes the significant wavelet coefficients of piecewise smooth signals to 

concentrate within a connected subtree of the wavelet binary tree. This deterministic 

structure is illustrated in Figure 5.1. 

In specific cases, we might observe signals that are piecewise smooth but that 

do not exhibit the connected subtree structure. The reasons for this are twofold. 

First, since wavelets are bandpass functions, wavelet coefficients oscillate between 

positive and negative values around singularities. Second, due to the linearity of 

the wavelet transform, two or more singularities in the signal may cause destructive 

interference among coarse scale wavelet coefficients; that is, the persistence of the 

wavelets across scale is weaker at coarser scales. Either of these factors may cause 

the wavelet coefficient corresponding to a discontinuity to be small yet have large 
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children, yielding a non-connected set of meaningful wavelet coefficients. 

In summary, we have identified several properties of wavelet expansions: 

• large/small values of wavelet coefficients generally persist across the scales of 

the wavelet tree; 

• persistence becomes stronger as we move to finer scales; and 

• the magnitude of the wavelet coefficients decreases exponentially as we move to 

finer scales. 

5.1.2 Probabilistic Signal Models 

The properties identified in Section 5.1.1 induce a joint structure among the wavelet 

coefficients that is far stronger than simple sparsity. We also note that the spar-

sity of the wavelet transform causes the coefficients to have a peaky, non-Gaussian 

distribution. The Hidden Markov Tree model (HMT) [95,96] offers one modeling 

framework that succinctly and accurately captures this joint structure. HMT mod-

eling has been used successfully to improve performance of denoising, classification, 

and segmentation algorithms for wavelet-sparse signals. 

The HMT model sets the probability density function of each wavelet to be a 

Gaussian mixture density with a hidden binary state that determines whether the 

coefficient is large or small. The persistence across scale is captured by a tree-based 

Markov model that correlates the states of parent and children coefficients. The 

following properties are captured by the HMT. 
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Non- Gaussianity 

Sparse coefficients can be modeled probabilistically using a mixture of Gaussians: 

one component features a large variance that models large nonzero coefficients and 

receives a small weight (to encourage few such coefficients), while a second component 

features a small variance that models small and zero-valued coefficients and receives 

a large weight. We distinguish these two components by associating to each wavelet 

coefficient 9(n) an unobserved hidden state s(n) € {S, L}\ the value of s(n) determines 

which of the two components of the mixture model is used to generate 9(n). Thus 

we have 

/(fl(n)|s(n) = S) = A/-(0,4„), 

f(9(nMn) = L) = jV(0 ,<„), 

with <T| n > crgn. To generate the mixture, we apply a probability distribution to the 

available states: P(s(n) = S) = and P(s(n) = L) = with p^ + = 1. 

Persistence 

The perpetuation of large and small coefficients from parent to child is well-modeled 

by a Markov model that links coefficient states. This induces a Markov tree where 

the state s(n) of a coefficient 9(n) is affected only by the state s(V(n)) of its parent 

V(n). The Markov model is then completely determined by the set of state transition 

matrices for the different coefficients 9(n) at wavelet scales 1 < j < J: 

Arc — 
—>S j^S—iL 

I n I n 
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The persistence property implies that the values of Pn~*L and are significantly 

larger than their complements. If we are provided the hidden state probabilities for 

the wavelet coefficient in the coarsest scale pf and p f , then the probability distribution 

for any hidden state can be obtain recursively: 

P(s(n) = L) = p%(n)ps
n-L +P^in)P^L. 

As posed, the HMT parameters include the probabilities for the hidden state {pf,pf}, 

the state transition matrices An, and Gaussian distribution variances Wi n, <Tgn} for 

each of the wavelet coefficients 0{n). To simplify the model, the coefficient-dependent 

parameters are made equal for all coefficients within a scale; that is, the new model 

has parameters Aj for 1 < j < J and , a2
s -} for 1 < j < J. 

Magnitude Decay 

To enforce the decay of the coefficient magnitudes across scale, the variances a ^ j and 

Cgj are modeled so that they decay exponentially as the scale becomes finer [97]: 

— n O-jocL 

_ n 9-jas 

Since the wavelet coefficients that correspond to signal discontinuities decay slower 

than those representing smooth regions, the model sets a s > a^. 

Scale-Dependent Persistence 

To capture the weaker persistence present in the coarsest scales, the values of the 

state transition matrices A j follow a model that strengthens the persistence at finer 
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scales [97]. Additionally, the model must reflect that in general, any large parent 

generally implies only one large child (that which is aligned with the discontinuity). 

This implies that the probability that s(n) = L, given that s (V(n) ) = L, should be 

roughly 1/2. HMT accounts for both factors by setting 

= \ + C L L 2 p f ^ s = \ - CLL 

= 1 - C s s ^ s j , and p ^ L = C S S 2 ^ s j . 

Estimation 

We can obtain estimates of all parameters 

n = {p'I , Pi, a,s, , Ca], Cas, 7/,, 7,s, Cu, • CSs } 

for a set of coefficients 9 using maximum likelihood estimation: 

n M L = argmax/(0 |n) . (5.2) 

The expectation-maximization (EM) algorithm in [95] efficiently performs this esti-

mation. Similarly, one can obtain the state probabilities P(s(n) = S'|0, II) using the 

Viterbi algorithm; the state probabilities for a given coefficient will be dependent on 

the states and coefficient values of all of its predecessors in the wavelet tree. 

We aim to exploit this structure to improve the computational complexity and 

reduce the number of measurements required for recovery of piecewise smooth signals. 

In the next two sections, we will present two different algorithms that model the sparse 

wavelet structure during the signal recovery. 
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5.2 Iterative Greedy Algorithms for Signal Recovery 

Not surprisingly, we observe for piecewise smooth signals that greedy recovery algo-

rithms tend to select wavelet coefficients located near the top of the tree first and then 

continues selecting down the tree, effectively building a connected tree that contains 

the most significant coefficients from the top down. This suggests that it may not be 

necessary for the recovery algorithm to check all possible coefficients at each stage. 

Rather, the next most important coefficient at each stage is likely to be among the 

children of the currently selected coefficients. 

We must refine this heuristic, however, to obtain an effective algorithm. In par-

ticular, for real world piecewise smooth signals, the nonzero coefficients generally do 

not form a perfect connected subtree. The reasons for this are twofold. First, since 

wavelets are bandpass functions, wavelet coefficients oscillate positive and negative 

around singularities [98]. Second, due to the linearity of the wavelet transform, two or 

more singularities in the signal may cause destructive interference among large wavelet 

coefficients. Either of these factors may cause the wavelet coefficient corresponding 

to a discontinuity to be small yet have large children, yielding a non-connected set of 

meaningful wavelet coefficients. We can still define a connected subtree that contains 

all of the nonzero valued coefficients, however, which will contain some gaps consisting 

of sequences of small or zero values. Our proposed algorithm features a parameter 

designed to address this complication. 
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5.2.1 Tree Matching Pursuit and Tree Orthogonal Matching Pursuit 

The Tree Matching Pursuit (TMP) and Tree Orthogonal Matching Pursuit (TOMP) 

algorithms consider only a subset of the basis vectors at each iteration, and then 

expand that set as significant coefficients are found. For each iteration i, we define 

two sets of coefficients Si and Cl. which contain the set of selected vectors (those 

vectors that correspond to nonzero coefficients in the estimate a) and the candidate 

vectors (vectors with zero coefficients in a but whose projections will be evaluated at 

the next iteration). These sets are initialized as <So = 0 and Co = {1} UVb(l), where 

the 6-depth set of descendants T>h(n) is the set of coefficients within b levels below 

coefficient n in the wavelet tree.2 

At each iteration i, we search for the dictionary vector index n in St U CL that 

yields the maximum inner product with the current residual; if the selected index 

comes from Ci, then that index n and its ancestors, denoted A(n), are moved to the 

set of selected coefficients Si and removed from Ci, and the descendant set T>b{n) is 

added to Ct. For TMP and TOMP, we adapt Step 2 of the MP and OMP algorithms 

(Algorithm 1 and 2, respectively), as shown in Algorithms 5 and 6, respectively. 

While the existence of gaps in the wavelet subtree containing the set of meaningful 

coefficients will hamper the ability to reach some nonzero coefficients, the parameter 

b enables us to define a "lookahead" band of candidate coefficients wide enough that 

2An independently obtained algorithm that is also called TOMP is proposed in [99,100]; this 

algorithm evaluates the sums of the projections along each wavelet tree branch, rather than the 

projection of each single coefficient. 
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Table 5.1 : Computational complexity of CS algorithms. N = signal length; K = signal 
sparsity; I — convergence factor, C — oversampling factor; B = TMP band width. 

Algorithm B P MP OMP b- TMP 6-TOMP 

Complexity 0(N3 log(iV)) 0(CKNI) 0(CK2N) 0{2bCK2I) 0(2bCK3) 

each possible gap is contained in the band. This modification has advantages and 

disadvantages; it is clear from the results shown in Figure 5.2 that the recovery will 

be the same or better as we add more descendants into T>h{n). However, the compu-

tational complexities of b-TMP and b-TOMP, given by 0{2bCK2I) and 0{2bCK?'), 

respectively, will increase with b. For moderate b both still represent a significant 

improvement over their generic counterparts, and 6-TOMP improves upon BP by a 

factor of 0((N/K)3); Table 5.2.1 summarizes the computational complexity of the 

various algorithms. 

5.2.2 Experiments 

We perform experiments to test the performance of standard and tree-based greedy 

algorithms on prototypical piecewise smooth signals. We use the standard piecewise 

constant signal Blocks of length N = 512, and obtain M = 200 measurements using 

a random Gaussian matrix. Figure 5.2 shows that when the lookahead parameter b 

is set to be large enough to bypass discontinuities in the connected subtree, TMP 

achieves quality similar to that of standard MP while reducing the computational 

complexity of the recovery by about 50%. Additional experimental results that verify 
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the robustness of TMP and TOMP to noise can be found in [92]. 

5.2.3 Extensions 

Complex Wavelet Transform 

By using a complex wavelet transform (CWT) [98], we can avoid some of the pitfalls of 

the standard real wavelet transform. The CWT shares the same binary tree structure 

as the real wavelet transform, but the wavelet functions are complex-valued 

Ipc = Ipr+fyi-

The component ipr is real and even, while jipi(t) is imaginary and odd; they form an 

approximate Hilbert transform pair. The CWT transform can be easily implemented 

using a dual-tree structure, where we simply compute two real wavelet transforms (tpr 

and ipi) in parallel, obtaining the sequences of coefficients a r and a t . The complex 

wavelet coefficients are then defined as a c = a r + jet,;. 

Note that either the real or the imaginary part of the wavelet coefficients would 

suffice to recover a real signal; however, the dual representation establishes a strong 

coherency among the complex magnitudes. Due to the Hilbert transform relationship 

between the real and imaginary wavelets, when a discontinuity is present and the real 

(or imaginary) wavelet coefficient is small, the imaginary (or real) wavelet coefficient 

is large [98]. Thus, the shift-sensitivity of the standard real-wavelet transform is 

alleviated. As such, when the 6-TMP algorithm is implemented using the CWT, a 

much smaller band will be necessary for efficient recovery. Figure 5.2 (bottom right) 

shows the approximate recovery of Blocks using a band of width 1. Unfortunately, 
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Original Signal Matching Pursuit Tree Matching Pursuit, b = 2 

200 400 
57.2068 dB 

200 400 
4.4133 dB 

Tree Matching Pursuit, b = 3 HMTMP, s = 4 Tree MP with CWT, b = 1 

200 400 
41.1729 dB 

200 400 
57.221 dB 

200 400 
38.272 dB 

Figure 5.2 : CS recoveries of Blocks signal using several different algorithms. We set 
N = 512 and obtain M = 200 measurements using a random Gaussian matrix. Axis labels 
indicate recovery quality and computational complexity, measured by the number of inner 
products performed by the greedy algorithm. Top left: original signal. Top middle: MP. 
Top right: b-TMP with b = 2; the band is too small to cover the gaps in the wavelet 
coefficients and recovery fails. Bottom left: b-TMP with b = 3; the band is large enough to 
bypass the gap, leading to correct recovery. Bottom middle: s-MTMP, s = 4. Bottom right: 
b-TMP with the C WT, 6 = 1. Both of these modifications yield approximate recovery. 
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complex coefficients can still interfere destructively, suggesting b slightly greater than 

1 as a conservative choice. 

Random Lookahead 

We propose a second modification to TMP that can be applied to both the real and 

CWT variants. The modification involves a probabilistic definition of the candidate 

set Ct at each iteration, based on the HMT. We label the coefficients selected at each 

iteration as large, i.e., P(s(nt) = L) = 1 , and calculate the conditional probability 

that each of its descendants is in the L state. During the candidate set selection, for 

each leaf rii in the subtree containing the set of selected coefficients, we select a random 

sample of descendants DHMT^) according to the probability that each descendant 

is in the large state, where for a coefficient rij that is d levels below coefficient nJ: 

P(s(rij) = L) = (Pn~*S)d- Thus, coefficients with higher estimates of P(s(rij) = L) 

are more likely to be selected in the candidate set. 

We amend this formulation slightly for easier computation by choosing a constant 

s and then constructing Dhmt(0 by randomly selecting s descendant coefficients from 

each scale below i. We denote by Hidden Markov Tree Matching Pursuit (HMTMP) 

the TMP algorithm that uses this descendant set in the updates. It is worth noting 

that by setting s — 2b, the descendants selected by the s-MTMP algorithm contain 

the set of descendants selected by the original TMP algorithm. The algorithm can 

enable recovery of signals having large gaps inside the set of meaningful coefficients, 

while keeping the number of coefficients in the candidate sets relatively small. In 

Figure 5.2 (bottom middle), we see that by using the random lookahead with 5 = 4, 
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the significant coefficients below the gap are recovered. 

Regularization and Denoising 

When the signal is sparse in the wavelet basis, we can effectively perform denoising 

by thresholding (see Section 2.2.4 and [32]) by varying the convergence criterion e 

as a function of the signal-to-noise ratio. We then identify only the most significant 

coefficients using the MP or TMP algorithm and effectively threshold their values at 

the recovery. CS recovery using the standard algorithms also typically suffers from 

artifacts since the energy of the signal is not discriminated by band; in this CclSG, cl 

small amount of the energy from the coefficients in the coarsest scales "leaks" to the 

finer scales and causes low-amplitude, high-frequency artifacts that resemble small-

scale noise. By giving preference to the coarsest coefficients over the finest, the TMP 

algorithms help mitigate this effect during recovery. 

5.3 Optimization-Based Signal Recovery 

The connected subtree structure has been exploited in modifications to greedy algo-

rithms; see the previous section and [99,100]. While the TMP and TOMP algorithms 

enable faster recovery and lower recovery distortion by exploiting the connected tree 

structure of wavelet-sparse signals, for many real-world piecewise smooth signals the 

nonzero wavelet coefficients generally do not form a perfectly connected subtree. TMP 

and TOMP used heuristic rules to ameliorate the effect of this phenomenon. How-

ever, this considerably increases the computational complexity, and the success of 
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such heuristics varies markedly between different signals in the proposed class. 

5.3.1 Iterative Reweighted fi-norm Minimization 

When the complexity of the signal is measured using the ^-norm, individual signal 

coefficients are penalized according to their magnitude; in contrast, when the IQ-

norm is used to measure the signal complexity, the penalty for a nonzero coefficient is 

independent of its magnitude. The effect of this disparity is reflected in the increase 

of the overmeasuring factor M/K between the two algorithms. 

A small variation to the ^i-norm penalty function has been suggested to rectify 

the imbalance between the ^o-norm and ft-norm penalty functions [101]. The basic 

goal is to minimize a weighted ^i-norm penalty function ||W0||i, where W is a diag-

onal "weighting" matrix with entries W n n approximately proportional to \/\0{n)\. 

This creates a penalty function that achieves higher magnitude independence. Since 

the true values of 0 are unknown (indeed they are sought), however, an iterative 

reweighted ^i-norm minimization (IRii) algorithm is suggested. 

The algorithm starts with the solution to the unweighted £i-norm minimization 

algorithm (2.2), which we name The algorithm then proceeds iteratively: on 

iteration i > 0, it solves the optimization problem 

= argmin||W(*)0||1 subject to y = 6 (5.3) 

where W ^ is a diagonal reweighting matrix with entries 
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1 < n < N, and e is a small regularization constant, and all other entries of W are 

zero. The algorithm can be terminated when the change between consecutive solutions 

is smaller than an established threshold or after a fixed number of iterations. Each 

iteration of this algorithm can be posed as a linear program. 

5.3.2 HMT-Based Weights for IRA 

The IRii algorithm described in Sec. 5.3.1 provides an opportunity to implement 

flexible signal penalizations while retaining the favorable computational complexity 

of £i-norm minimizations. 

We now pose a new weight rule for the IRZi algorithm that integrates the HMT 

model to enforce the wavelet coefficient structure during CS recovery. Our weighting 

scheme, dubbed HMT+IRfi, employs the following weighting scheme: 

W(i>(n,n) = (p (s(n) = L|^ i-1>,n) 

In words, for each wavelet coefficient in the current estimate we obtain the probability 

that the coefficient's hidden state is large; in the next iteration, we apply to that 

coefficient a weight that is inversely proportional to that probability. The parameter 

e is a regularization parameter for cases where P(s(n) = is very small, and 

the exponent q is a parameter that regulates the strength of the penalization for small 

coefficients. The goal of this weighting scheme is to penalize coefficients with large 

magnitudes that have low likelihood of being generated by a wavelet sparse signal; 

these coefficients are often the largest contributors to the recovery error. 

The first step of HMT+IRA consists of an initial training stage in which an EM 
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algorithm solves (5.2) to estimate the values of the parameters for a representative 

signal; additionally, the solution 0 ^ for the standard formulation (2.2) is obtained. 

Subsequently, we proceed iteratively with two alternating steps: a weight update step 

in which the Viterbi algorithm for state probability calculations is executed for the 

previous solution and a recovery step in which the obtained weights are used in 

(5.3) to obtain an updated solution 0®. The convergence criterion for this algorithm 

is the same as for the IRii algortihm. 

Other probabilistic models for wavelet-sparse signals can also be used in combina-

tion with the IRii algorithm, including generalized Gaussian densities [102], Gaussian 

scales mixtures [103], and hierarchical Dirichlet processes [104], 

5.3.3 Experiments 

We now compare the IRii and HMT+IRii algorithms. We use piecewise-smooth 

signals of length N = 1024, with 5 randomly placed discontinuities and cubic polyno-

mial pieces with random coefficients. Daubechies-4 wavelets are used to sparsify the 

signals. Measurements are obtained using a matrix with i.i.d. Gaussian entries. For 

values of M ranging from 102 to 512, we test the fi-norm minimization and the IRi1( 

TMP [93] and HMT+IRA algorithms. We fix the number of iterations for IRii and 

HMT+IRii to 10. The parameters are set for best performance to e = 0.2, q = 0.1, 

and e = 10_1°. For each M we perform 100 simulations using different randomly 

generated signals and measurement matrices. 

Figure 5.3 shows the magnitude of the recovery error for each of the algorithms, 

normalized by the error of the unweighted ^-norm minimization recovery, as a func-
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Figure 5.3 : Performance of IRl\ algorithm, normalized by the performance of £\-norm 
minimization. Since all values are less than 1, IR£i and HMT+IRIi consistently outperforms 
t\-norm minimization. 

Original signal IR̂ , MSB = 1.55 

TMP, MSE = 1.47 HMT+TR£i, MSE = 0.08 

Figure 5.4 : Example outputs for the recovery algorithms. 

tion of the iteration count. Figure 5.4 shows a recovery example. TMP performs 

well for smaller numbers of measurements M. IRA consistently outperforms t\ min-

imization. Our proposed HMT+IRA algorithm outperforms IRA for most values of 

M. For large M near N/2, HMT+IRA becomes less efficient than IRA; we speculate 

that at this stage the recovered signal has roughly equal numbers of large and small 

wavelet coefficients, which begins to violate the HMT model. Figure 5.4 plots the 

various recovered signals for one realization of the experiment, with M = 300. 
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Algorithm 5 Tree Matching Pursuit 

Inputs: CS Matrix T = measurements y 

Outputs: A'-sparse approximation x 

Initialize: x0 = 0, r = y, i = 0, <S0 = 0, CQ = {1} UV 6(1). 

while halting criterion false do 

1. i i + 1 

2. b TTr 

3- b|(S4_ lUCi_ l)c = 0 

4. % Xi_! + T(b, 1) 

5. r < - y - T S ( b , l ) 

6. UJ <— supp(T(b, 1)) 

if to C Ci-i then 

7a. Si = Si-i U w U A(u) 

{form residual signal estimate} 

{restrict search to selected 

and candidate coefficients} 

{update largest magnitude coefficient 

in signal estimate} 

{update measurement residual} 

{update selected coefficient set} 

7b. Cj = (Ci-i \ (cu U ̂ 4(o;))) U T>b{u>) {update candidate coefficient set} 

else 

7c. Si = S ^ , Ci = Ci-1 

end if 

{preserve selected and candidate sets} 

end while 

return x <— x,-
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Algorithm 6 Tree Orthogonal Matching Pursuit 

Inputs: CS Matrix T = $*]/, measurements y 

Outputs: A'-sparse approximation x 

initialize: xo = 0, r = y, Q = 0, i = 0, <S0 = 0, C0 = {1} U T>b( 1). 

while halting criterion false do 

1. i<-i + 1 

2. b TTr {form residual signal estimate} 

3- b|(5i_lUcj_1)c = 0 {restrict search to selected 

and candidate coefficients} 

{add index of largest magnitude 

coefficient to signal support} 

{form signal estimate} 

{update measurement residual} 

4. ft ft U supp(X(b, 1)) 

5. T^y, %\nc 0 

6. r y — Txj 

7. CJ supp(T(b, 1)) 

if u> C Ci-1 then 

8a. Si = Si-1 UwU A.(u) {update selected coefficient set} 

8b. Ci = (Ci-1 \ {oJ U A(oo)) U T>b(tu) {update candidate coefficient set} 

else 

8c. Si — Si-1, Ci — Ci-1 

end if 

{preserve selected and candidate sets} 

end while 

return x x« 
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Chapter 6 

Model-Based Compressive Sensing 

Most research in CS has focused primarily on reducing both the number of mea-

surements M (as a function of N and K) and on increasing the robustness and 

reducing the computational complexity of the recovery algorithm. Today's state-

of-the-art CS systems can robustly recover if-sparse and compressible signals from 

just M = O (K lo$(N/K)) noisy measurements using polynomial-time optimization 

solvers or greedy algorithms (see Section 2.3.4). 

While this represents significant progress from Nyquist-rate sampling, our con-

tention in this chapter1 is that it is possible to do even better by more fully leverag-

ing concepts from state-of-the-art signal compression and processing algorithms. In 

many such algorithms, the key ingredient is a more realistic structured sparsity signal 

model that goes beyond simple sparsity by codifying the inter-dependency structure 

among the signal coefficients 6.2 For instance, modern wavelet image coders exploit 

xThis work is in collaboration with Richard G. Baraniuk, Volkan Cevher, and Chinmay Hegde [18, 

105], 
2 Obviously, sparsity and compressibility correspond to simple signal models where each coefficient 

is treated independently; for example in a sparse model, the fact that the coefficient 9(i) is large has 

no bearing on the size of any d(j), j / i. We will reserve the use of the term "model" for situations 

where we are enforcing dependencies between the values and the locations of the coefficients 6(i). 



not only the fact that most of the wavelet coefficients of a natural image are small 

but also the fact that the values and locations of the large coefficients have a par-

ticular structure. Coding the coefficients according to a structured sparsity model 

enables these algorithms to compress images close to the maximum amount possible 

- significantly better than a naive coder that just processes each large coefficient in-

dependently. In addition to the work described in Chapter 5, a previously developed 

CS recovery algorithm promotes structure in the sparse representation by tailoring 

the recovered signal according to a sparsity-promoting probabilistic model, such as 

an Ising model [106]. Such probabilistic models favor certain configurations for the 

magnitudes and indices of the significant coefficients of the signal. 

We expand on this prior work by introducing a model-based CS theory that paral-

lels the conventional theory and provides concrete guidelines on how to create model-

based recovery algorithms with provable performance guarantees. By reducing the 

degrees of freedom of a sparse/compressible signal by permitting only certain config-

urations of the large and zero/small coefficients, structured sparsity models provide 

two immediate benefits to CS. First, they enable us to reduce, in some cases signifi-

cantly, the number of measurements M required to stably recover a signal. Second, 

during signal recovery, they enable us to better differentiate true signal information 

from recovery artifacts, which leads to a more robust recovery. 

To precisely quantify the benefits of model-based CS, we introduce and study 

several new theoretical concepts that could be of more general interest. We begin 

with structured sparsity models for K-sparse signals and make precise how the struc-



ture reduces the number of potential sparse signal supports in a. Then using the 

model-based restricted isometry property (RIP) from [107,108], we prove that such 

structured sparse signals can be robustly recovered from noisy compressive measure-

ments. Moreover, we quantify the required number of measurements M and show 

that for some structured sparsity models M is independent of N. These results unify 

and generalize the limited related work to date on structured sparsity models for 

strictly sparse signals [9,92,93,99,100,107-111]. We then introduce the notion of a 

structured compressible signal, whose coefficients 0 are no longer strictly sparse but 

have a structured power-law decay. To establish that structured compressible sig-

nals can be robustly recovered from compressive measurements, we generalize the CS 

RIP to a new restricted amplification property (RAmP). For some structured sparsity 

models, the required number of measurements M for recovery of compressible signals 

is independent of TV. 

To take practical advantage of this new theory, we demonstrate how to integrate 

structured sparsity models into two state-of-the-art CS recovery algorithms, CoSaMP 

and iterative hard thresholding (IHT) (see Section 2.3.4). The key modification is sur-

prisingly simple: we merely replace the nonlinear sparse approximation step in these 

greedy algorithms with a structured sparse approximation. Thanks to our new the-

ory, both new model-based recovery algorithms have provable robustness guarantees 

for both structured sparse and structured compressible signals. 

To validate our theory and algorithms and demonstrate its general applicability 

and utility, we present two specific instances of model-based CS and conduct a range 
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of simulation experiments. The first structured sparsity model accounts for the fact 

that the large wavelet coefficients of piecewise smooth signals and images tend to 

live on a rooted, connected tree structure, as described in Section 5.1. Using the 

fact that the number of such trees is much smaller than , the number of A'-sparse 

signal supports in N dimensions, we prove that a tree-based CoSaMP algorithm needs 

only M = O ( K ) measurements to robustly recover tree-sparse and tree-compressible 

signals. 

The second structured sparsity model accounts for the fact that the large coeffi-

cients of many sparse signals cluster together [19,110]. Such a so-called block sparse 

model is equivalent to a joint sparsity model for an ensemble of J , length-iV signals 

[9,19] (see Section 2.4.1), where the supports of the signals' large coefficients are 

shared across the ensemble. Using the fact that the number of clustered supports 

is much smaller than ( j^ ) , we prove that a block-based CoSaMP algorithm needs 

only M = 0{JK + K log(^)) measurements to robustly recover block-sparse and 

block-compressible signals. 

Our new theory and methods relate to a small body of previous work aimed 

at integrating structured sparsity models with CS. Several groups have developed 

structured sparse signal recovery algorithms [9,92-94,99,100,107-111] however, their 

approaches have either been ad hoc or focused on a single structured sparsity model. 

Most previous work on unions of subspaces [107,108,112] has focused exclusively on 

strictly sparse signals and has not considered feasible recovery algorithms. 

A related CS modeling framework for structured sparse signals [19] collects the 



N samples of a signal into D groups, D < N, and allows signals where K out of 

D groups have nonzero coefficients. This framework is immediately applicable to 

block-sparse signals and signal ensembles with common sparse supports. While [19] 

provides recovery algorithms, measurement bounds, and recovery guarantees similar 

to those provided in Section 6.4, our proposed framework has the ability to focus 

on arbitrary subsets of the groups that yield more elaborate structures, such as 

connected subtrees for wavelet coefficients. To the best of our knowledge, our general 

framework for model-based recovery, the concept of a structured compressible signal, 

and the associated RAmP are new to the literature. 

6.1 Structured Sparsity and Compressibility 

While many natural and manmade signals and images can be described to first-

order as sparse or compressible, the support of their large coefficients often has an 

underlying inter-dependency structure. This phenomenon has received only limited 

attention by the CS community to date [9,19,92-94,99,100,107-111]. In this section, 

we introduce a model-based theory of CS that captures such structure. A model 

reduces the degrees of freedom of a sparse/compressible signal by permitting only 

certain configurations of supports for the large coefficient. As we will show, this allows 

us to reduce, in some cases significantly, the number of compressive measurements M 

required to stably recover a signal. 
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6.1.1 Structured Sparse Signals 

Recall from Section 2.2.6 that a iT-sparse coefficient vector 0 lives in HK C RiV, which 

is a union of subspaces of dimension K. Other than its A'-spaxsitv, there are no 

further constraints on the support or values of its coefficients. A structured sparsity 

model endows the A'-sparse coefficient vector 6 with additional structure that allows 

certain /^-dimensional subspaces in T,^ and disallows others [107,108]. 

Definition 6.1 A structured sparsity model MK is defined as the union of THK 

canonical K-dimensional subspaces 

rriK 
MK = | J Xm, such that Xm := {9 € RN : 0|nc = 0}, 

TO= 1 

where {fti,... ,QmK} is the set containing all allowed supports, each support having 

cardinality K, and each subspace Xm contains all vectors 9 with supp(#) e Qm. 

Signals from M.K are called K-model sparse. Clearly, MK Q ^K and contains TUK < 

subspaces. 

In Sections 6.3 and 6.4 below we consider two concrete structured sparsity models. 

The first model accounts for the fact that the large wavelet coefficients of piecewise 

smooth signals and images tend to live on a rooted, connected tree structure, as 

described in Section 5.1. The second model accounts for the fact that the large 

coefficients of sparse signals often cluster together [9,19,110]. 
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6.1.2 Model-Based RIP 

If we know that the coefficient vector 9 being acquired is /("-model sparse, then we 

can relax the RIP constraint on the CS measurement matrix $ and still achieve stable 

recovery from the compressive measurements y = $x = T9 [107,108]. 

Definition 6.2 [107,108] An M x N matrix T has the M/^-restricted isometry 

property (M-K-RIP) with constant 5Mk i f , for all 9 € M.K> w e have 

(l-5MK)\\9\\l<\\r9\\l<(l + 5MK)\\9\\l (6.1) 

Blumensath and Davies [107] have quantified the number of measurements M 

necessary for a random CS matrix to have the .MK-RIP with a given probability. 

Theorem 6.1 [107] Let MK be the union of nix subspaces of K-dimensions in R^. 

Then, for any t > 0 and any 

M > - J — ( ln(2m K ) +Kln-^ + t ) , 
MK V OMK J 

where c is a positive constant, an M x N i.i.d. subgaussian random matrix has the 

M-K-RIP with constant 5Mk with probability at least 1 — e_ t . 

This bound can be used to recover the conventional CS result by substituting 

n%K = (K) ~ (Ne/K)K. Similarly, as the number of subspaces mx that arise from the 

structure imposed can be significantly smaller than the standard , the number of 

rows needed for a random matrix to have the .M^-RIP can be significantly lower than 

the number of rows needed for the standard RIP. The .M /<-RIP property is sufficient 

for robust recovery of structured sparse signals, as we show below in Section 6.2.2. 
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6.1.3 Structured Compressible Signals 

Just as compressible signals are "nearly K-sparse" and thus live close to the union 

of subspaces in M;V, structured compressible signals are "nearly /f-model sparse" 

and live close to the restricted union of subspaces M-K- In this section, we make 

this new concept rigorous. Recall from (2.13) that we defined compressible signals in 

terms of the decay of their K-term approximation error. 

The £i error incurred by approximating x € RjV by the best structured sparse 

approximation in is given by 

CTMK(X):= inf | | x - x | | 2 . 
X€MK 

We define M#(x, K) as the algorithm that obtains the best K-term structured sparse 

approximation of x in the union of subspaces M-K'-

M(x, K) = arg min ||x - x||2. x.£MK 

This implies that ||x - M(x, K)\\2 — aMK(x). The decay of this approximation error 

defines the structured compressibility of a signal. 

Definition 6.3 The set of .s-structured compressible signals is defined as 

ms = {B e R* : <7^(0) < GK'1/s, 1 < K < N,G < oo} . 

Define as the smallest value of G for which this condition holds for 6 and s. 

We say that 9 e 9Jts is an s-structured compressible signal in the structured spar-

sity model MK- These approximation classes have been characterized for certain 

structured sparsity models; see Section 6.3 for an example. 
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6.1.4 Nested Model Approximations and Residual Subspaces 

In conventional CS, the same requirement (RIP) is a sufficient condition for the stable 

recovery of both sparse and compressible signals. In model-based recovery, however, 

the class of structured compressible signals is much larger than that of structured 

sparse signals, since the set of subspaces containing structured sparse signals does 

not span all A'-dimensional subspaces. 

To address this difference, we need to introduce some additional tools to develop 

a sufficient condition for the stable recovery of structured compressible signals. We 

will pay particular attention to structured sparsity models A4 K that generate nested 

approximations, since they are more amenable to analysis. 

Definition 6.4 A structured sparsity model M = {M\,M.2, • • •} has the nested ap-

proximation property (NAP) «/supp(M(6>, K)) c supp(M(0, K')) for all K < K' and 

for all 6 G RN. 

In words, a structured sparsity model generates nested approximations if the sup-

port of the best K'-texm structured sparse approximation contains the support of the 

best Af-term structured sparse approximation for all K < K'. An important exam-

ple of a NAP-generating structured sparse model is the standard compressible signal 

model of (2.13). 

When a structured sparsity model obeys the NAP, the support of the difference 

between the best jK-term structured sparse approximation and the best (j + 1 )K-

term structured sparse approximation of a signal can be shown to lie in a small 

union of subspaces, thanks to the structure enforced by the model. This structure is 
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captured by the set of subspaces that are included in each subsequent approximation, 

as defined below. 

Definition 6.5 The jth set of residual subspaces of size K is defined as 

njtK(M) = {uelw such that u = M{0,jK) - M(0, ( j - 1 )K) for some 9 e RN} , 

forj = l,...,[N/K]. 

Under the NAP, each structured compressible coefficient vector 9 can be par-

titioned into its best K-term structured sparse approximation 9^, the additional 

components present in the best 2K-texm structured sparse approximation 9t2, and 

so on, with 9 = Y^jHi^ and 9^ € lZhx(M) for each j. Each signal partition 

9^ is a A'-sparse signal, and thus TZj^i-M) is a union of subspaces of dimension K. 

We will denote by Rj the number of subspaces that compose Hj^iM) and omit the 

dependence on A4 in the sequel for brevity. 

Intuitively, the norms of the partitions H^rJ^ decay as j increases for signals 

that are structured compressible. As the next subsection shows, this observation is 

instrumental in relaxing the isometry restrictions on the measurement matrix $ and 

bounding the recovery error for .s-structured compressible signals when the model 

obeys the NAP. 

6.1.5 The Restricted Amplification Property (RAmP) 

For exactly A'-structured sparse signals, we discussed in Section 6.1.2 that the number 

of compressive measurements M required for a random matrix to have the M. i^-RIP 
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is determined by the number of canonical subspaces m^ via (6.2). Unfortunately, 

such structured sparse concepts and results do not immediately extend to structured 

compressible signals. Thus, we develop a generalization of the yVtA-RIP that we will 

use to quantify the stability of recovery for structured compressible signals. 

One way to analyze the robustness of compressible signal recovery in conventional 

CS is to consider the tail of the signal outside its K-term approximation as contribut-

ing additional "noise" to the measurements of size ||T(0 — %(Q,K))H2 [65,66,113]. 

Consequently, the conventional A'-sparse recovery performance result can be applied 

with the augmented noise n + T(9 — 1(9, K)). 

This technique can also be used to quantify the robustness of structured com-

pressible signal recovery. The key quantity we must control is the amplification of 

the structured sparse approximation residual through The following property is a 

new generalization of the RIP and model-based RIP. 

Definition 6.6 A matrix $ has the (ex, r)-restricted amplification property (RAmP) 

for the residual subspaces TZj,K °f model M. if 

\\$u\\l<(l + eK)j2rMl (6.2) 

for any u G PI-J.K for each 1 < j < \N/K]. 

The regularity parameter r > 0 caps the growth rate of the amplification of 

u £ Tij,K as a function of j . Its value can be chosen so that the growth in amplification 

with j balances the decay of the norm in each residual subspace TZjjt with j. 

We can quantify the number of compressive measurements M required for a ran-
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dom measurement matrix $ to have the RAmP with high probability; we prove the 

following in Appendix E. 

Theorem 6.2 Let $ be an M x N matrix with i.i.d. subgaussian entries and let the 

set of residual subspaces 7ZjtK of the structured sparsity model M. contain Rj subspaces 

of dimension K for each 1 < j < \N/K\. If 

M> max • — p \2K + 4 In — ^ + 2£ ] , (6.3) 
L<J<WK] i f \ K J 

then the matrix $ has the (ex,r)-RAmP with probability 1 — e_ t . 

The order of the bound of Theorem 6.2 is lower than O {K log(Ar/K)) as long as 

the number of subspaces Rj grows slower than NK. 

Armed with the RaMP, we can state the following result, which will provide 

robustness for the recovery of structured compressible signals; see Appendix F for the 

proof. 

Theorem 6.3 Let 0 € 9Jls be an s-model compressible signal in a structured sparsity 

model M that obeys the NAP. If T has the (en,r)-RAmP and r = s — 1, then we 

have 

| |T(0-M(0,/iO)||2 < V T + ^ K ~ s l n 

6.2 Model-Based Signal Recovery Algorithms 

To take practical advantage of our new theory for model-based CS, we demonstrate 

how to integrate structured sparsity models into two state-of-the-art CS recovery 

N 
K 1*1 
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algorithms, CoSaMP [66] (in this section) and iterative hard thresholding (IHT) [43, 

44,63-65] (in Appendix G). The key modification is simple: we merely replace the 

best if-term sparse approximation step in these greedy algorithms with a best K-

term structured sparse approximation. Since at each iteration we need only search 

over the m ^ subspaces of M. x rather than subspaces of Ex, fewer measurements 

will be required for the same degree of robust signal recovery. Or, alternatively, more 

accurate recovery can be achieved using the same number of measurements. 

After presenting the modified CoSaMP algorithm, we prove robustness guarantees 

for both structured sparse and structured compressible signals. To this end, we must 

define an enlarged union of subspaces that includes sums of elements in the structured 

sparsity model. 

Definition 6.7 The 5-Minkowski sum for the set A4K, with B > 1 an integer, is 

defined as 

MB
K = = with 0(r) 6 ^ J • 

We also define Mg(#, K) as the algorithm that obtains the best approximation of 

6 in the enlarged union of subspaces M-x: 

Mb(9 ,K ) = arg min \W - 0||2. 

We note that M(#, K) — Mi(6l, K). Note also that for many structured sparsity 

models, we will have M.® c MBK, and so the algorithm M ( 6 , B K ) will provide a 

strictly better approximation than Mb(0, K). 
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6.2.1 Model-based CoSaMP 

We choose to modify the CoSaMP algorithm [66] for two reasons. First, it has ro-

bust recovery guarantees that are on par with the best convex optimization-based 

approaches. Second, it has a simple iterative, greedy structure based on a best BK-

term approximation (with B a small integer) that is easily modified to incorporate a 

best Minkowski sum of if-term structured sparse approximation K). Pseu-

docode for the modified algorithm is given in Algorithm 7. 

6.2.2 Performance of Structured Sparse Signal Recovery 

A robustness guarantee for noisy measurements of structured sparse signals can be 

obtained using the model-based RIP (6.1). Our performance guarantee for structured 

sparse signal recovery will require that the measurement matrix $ be a near-isometry 

for all subspaces in M^ f° r some B > 1. This requirement is a direct generalization 

of the 2/f-RIP, 3A"-RIP, and higher-order RIPs from the conventional CS theory. The 

following theorem is proven in Appendix H. 

Theorem 6.4 Let 9 E MK and let y = TO + n be a set of noisy CS measurements. 

If T has an M%-RIP constant of SM4_ < 0.1, then the signal estimate 9I obtained 

from iteration i of the model-based CoSaMP algorithm satisfies 

| | 0 - 0 i | | 2 < 2"i||0||2 + 15||n|l2- (6.4) 
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Algorithm 7 Model-based CoSaMP 

Inputs: CS matrix T, measurements y, structured sparse approx. algorithm 

Output: A'-sparse approximation 9 to true signal representation 9 

Initialize: 0o = O , r = y;z = O 

while halting criterion false do 

1. i i + 1 

2. e TTr {form signal residual estimate} 

3. n < --supp(M2(e,A:)) {prune residual estimate according to structure} 

4. T <-- Q U supp($i_i) {merge supports} 

5. b|T <- T^y, b|Tc {form signal estimate} 

6. - M(b, K) {prune signal estimate according to structure} 

7. r <— {update measurement residual} 

end while 

return 9 9I 

This guarantee matches that of the CoSaMP algorithm [66, Theorem 4.1]; however, 

our guarantee is only for signals that exhibit the structured sparsity. 

6.2.3 Performance of Structured Compressible Signal Recovery 

Using the new tools introduced in Section 6.1, we can provide a robustness guarantee 

for noisy measurements of structured compressible signals, using the RAmP as a 

condition on the matrix T. 
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Theorem 6.5 Let 9 € 9JtA. be an s-structured compressible signal from a structured 

sparsity model M that obeys the NAP, and let y = T9 + n be a set of noisy CS 

measurements. If T has the M%-RIP with 5M* < 0.1 and the (eK,r)-RAmP with 

6k < 0.1 and r = s — I, then the signal estimate 9i obtained from iteration i of the 

model-based CoSaMP algorithm satisfies 

||6> - %||2 < 2 - p | | 2 + 35 (||n||2 + \9\msK-s(l + ln\N/K])) . (6.5) 

Proof sketch. To prove the theorem, we first bound the optimal structured sparse 

recovery error for an s-structured compressible signal 9 E 9Jl,s when the matrix T has 

the (e#,r)-RAmP with r < s — 1 (see Theorem 6.3). Then, using Theorem 6.4, we 

can easily prove the result by following the analogous proof in [66]. • 

The standard CoSaMP algorithm also features a similar guarantee for structured 

compressible signals, with the constant changing from 35 to 20. 

6.2.4 Robustness to Model Mismatch 

We now analyze the robustness of model-based CS recovery to model mismatch, which 

occurs when the signal being recovered from compressive measurements does not 

conform exactly to the structured sparsity model used in the recovery algorithm. 

We begin with optimistic results for signals that are "close" to matching the 

recovery structured sparsity model. First, consider a signal 9 that is not A"-mo del 

sparse as the recovery algorithm assumes but rather (K + «)-model sparse for some 

small integer k. This signal can be decomposed into 0K = M{6, K), the signal's K-
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term structured sparse approximation, and 0 — Ok, the error of this approximation. 

For K < K, we have that 0 — OK € If the matrix T has the , r)-RAmP, then 

it follows than 

||T(0 - e K ) \ \ 2 < 2 r V l T ^ \ \ 0 - 0K\\2. (6.6) 

Using equations (6.4) and (6.6), we obtain the following guarantee for the ith iteration 

of model-based CoSaMP: 

II O - OIH < 2-^0112 + 16 • 2RY/L+7^\\E - 0K ||2 + 15 | |n | | 2 . 

By noting that ||0 — OkH2 is small, we obtain a guarantee that is close to (6.4). 

Second, consider a signal 0 that is not s-model compressible as the recovery al-

gorithm assumes but rather (s — e)-model compressible. The following bound can 

be obtained under the conditions of Theorem 6.5 by modifying the argument in Ap-

pendix F: 

II* - S||2 < 2 - i | 0 | | 2 + 35 ( j |n | | 2 + \E\VK.K- ( l + W^LZL^J . 

As e becomes smaller, the factor -1 approaches \og\N/K], matching (6.5). 

In summary, as long as the deviations from the structured sparse and structured 

compressible classes are small, our model-based recovery guarantees still apply within 

a small bounded constant factor. 

We end with an intuitive worst-case result for signals that are arbitrarily far 

away from structured sparse or structured compressible. Consider such an arbi-

trary 0 € MA' and compute its nested model-based approximations Ojk = M ( 0 , j K ) , 

j = 1,..., \N/K~\. If 0 is not structured compressible, then the model-based approx-

imation error ajx{0) is not guaranteed to decay as j decreases. Additionally, the 
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number of residual subspaces 7Zjt[< could be as large as ; that is, the jth difference 

between subsequent model-based approximations = Q)k — might lie in any 

arbitrary ff-dimensional subspace. This worst case is equivalent to setting r = 0 and 

Rj = in Theorem 6.2. It is easy to see that this condition on the number of mea-

surements M is nothing but the standard RIP for CS. Hence, if we inflate the number 

of measurements to M = O (K log(N/K)) (the usual number for conventional CS), 

the performance of model-based CoSaMP recovery on an arbitrary signal 6 follows 

the distortion of the best K-term model-based approximation of 6 within a bounded 

constant factor. 

6.2.5 Computational Complexity of Model-Based Recovery 

The computational complexity of a model-based signal recovery algorithm differs 

from that of a standard algorithm by two factors. The first factor is the reduction 

in the number of measurements M necessary for recovery: since most current re-

covery algorithms have a computational complexity that is linear in the number of 

measurements, any reduction in M reduces the total complexity. The second factor 

is the cost of the model-based approximation. The X-term approximation used in 

most current recovery algorithms can be implemented with a simple sorting operation 

(O(NlogN) complexity, in general). Ideally, the structured sparsity model should 

support a similarly efficient approximation algorithm. 

To validate our theory and algorithms and demonstrate their general applicability 

and utility, we now present two specific instances of model-based CS and conduct a 
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range of simulation experiments. 

6.3 Example: Wavelet Tree Model 

In Chapter 5, we showed that wavelet coefficients can be naturally organized into a 

tree structure; for many kinds of natural and manmade signals, the largest coefficients 

cluster along the branches of this tree. This motivates a connected tree model for the 

wavelet coefficients [114-116]. 

While CS recovery for wavelet-sparse signals has been considered previously (see 

Chapter 5 and [99,100,109, 111]), the resulting algorithms integrated the tree con-

straint in an ad-hoc fashion. Furthermore, the algorithms provide no recovery guar-

antees or bounds on the necessary number of compressive measurements. 

6.3.1 Tree-Sparse Signals 

We first describe tree sparsity in the context of sparse wavelet decompositions. We 

focus on one-dimensional signals and binary wavelet trees, but all of our results extend 

directly to d-dimensional signals and 2d-ary wavelet trees. 

We remember from Section 5.1 that wavelet functions act as local discontinuity 

detectors, and using the nested support property of wavelets at different scales, it 

is straightforward to see that a signal discontinuity will give rise to a chain of large 

wavelet coefficients along a branch of the wavelet tree from a leaf to the root. More-

over, smooth signal regions will give rise to regions of small wavelet coefficients. This 

"connected tree" property has been well-exploited in a number of wavelet-based pro-
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cessing [95,97,117] and compression [118,119] algorithms. In this section, we will 

specialize the theory developed in Sections 6.1 and 6.2 to a connected tree model T. 

A set of wavelet coefficients Q is a connected subtree if, whenever a coefficient 

Wij € Q, then its parent ^-17721 £ as well. Each such set Q defines a subspace 

of signals whose support is contained in Q; that is, all wavelet coefficients outside Q 

are zero. In this way, we define the structured sparsity model TK as the union of all 

/("-dimensional subspaces corresponding to supports Q, that form connected subtrees. 

Definition 6.8 Define the set of K-tree sparse signals as 
{ 1 - 1 2l 

x = vqv + ^ ^ ^ ^ Wijifiij : = 0, |Q| = is a connected subtree 
i=0 j=1 

To quantify the number of subspaces in Tk, it suffices to count the number of 

distinct connected subtrees of size K in a binary tree of size N. We prove the 

following result in Appendix I. 

Proposition 6.1 The number of subspaces in TK obeys TK < for K > log2 N 

and TK < ^ for K < log2 N. 

To simplify the presentation in the sequel, we will simply use the weaker bound 

Tk < for all values of K and N. 

6.3.2 Tree-Based Approximation 

To implement tree-based signal recovery, we seek an efficient algorithm T(x, K) to 

solve the optimal approximation 

= arg mm ||x - x||2. (6.7) xeTft: 
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Fortuitously, an efficient solver exists, called the condensing sort and select algorithm 

(CSSA) [114-116]. Recall that subtree approximation coincides with standard K-term 

approximation (and hence can be solved by simply sorting the wavelet coefficients) 

when the wavelet coefficients are monotonically nonincreasing along the tree branches 

out from the root. The CSSA solves (6.7) in the case of general wavelet coefficient 

values by condensing the nonmonotonic segments of the tree branches using an iter-

ative sort-and-average routine during a greedy search through the nodes. For each 

node in the tree, the algorithm calculates the average wavelet coefficient magnitude 

for each subtree rooted at that node, and records the largest average among all the 

subtrees as the energy for that node. The CSSA then searches for the unselected node 

with the largest energy and adds the subtree corresponding to the node's energy to 

the estimated support as a supernode: a single node that provides a condensed repre-

sentation of the corresponding subtree [116]. Condensing a large coefficient far down 

the tree accounts for the potentially large cost (in terms of the total budget of tree 

nodes K) of growing the tree to that point. 

Since the first step of the CSSA involves sorting all of the wavelet coefficients, 

overall it requires O (N log N) computations. However, once the CSSA grows the 

optimal tree of size K, it is trivial to determine the optimal trees of size < K and 

computationally efficient to grow the optimal trees of size > K [114]. 

The constrained optimization (6.7) can also be rewritten as an unconstrained 

problem by introducing the Lagrange multiplier A [120]: 

min \\9 — 0\\l 4- A(||#||o — K), 
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where f = U ^ T ; and 6 are the wavelet coefficients of x. Except for the inconsequen-

tial AK term, this optimization coincides with Donoho's complexity penalized sum of 

squares [120], which can be solved in only O (N) computations using coarse-to-fine 

dynamic programming on the tree. Its primary shortcoming is the nonobvious rela-

tionship between the tuning parameter A and and the resulting size K of the optimal 

connected subtree. 

6.3.3 Tree-Compressible Signals 

Specializing Definition 6.1 from Section 6.1.3 to T, we make the following definition. 

Definition 6.9 Define the set of s-tree compressible signals as 

% = {9 e R^ : ||0 - T(0, K)||2 < GK'S, 1 < K < N, G < oo} . 

Furthermore, define \9\%s as the smallest value ofG for which this condition holds for 

9 and s. 

Tree approximation classes contain signals whose wavelet coefficients have a loose 

(and possibly interrupted) decay from coarse to fine scales. These classes have been 

well-characterized for wavelet-sparse signals [115,116,119] and are intrinsically linked 

with the Besov spaces Bg(Lp([0,1])). Besov spaces contain functions of one or more 

continuous variables that have (roughly speaking) s derivatives in Lp([0,1]); the pa-

rameter q provides finer distinctions of smoothness. When a Besov space signal 

xa G Bp(Lp([0,1])) with s > 1/p — 1/2 is sampled uniformly and converted to a 

length-TV vector x, its wavelet coefficients 9 belong to the tree approximation space 
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X.5, with 

\9\%s X ||^a|Up([0,l]) + ll^a||B|(ip([0,l])) 

where "x" denotes an equivalent norm. The same result holds if s = l/p — 1/2 and 

q < p. A more thorough description of Besov spaces is provided in Section 7.4. 

6.3.4 Stable Tree-Based Recovery From Compressive Measurements 

For tree-sparse signals, by applying Theorem 6.1 and Proposition 6.1, we find that a 

subgaussian random matrix has the 7^-RIP property with constant STl< and proba-

bility 1 — e~l if the number of measurements obeys 

Thus, the number of measurements necessary for stable recovery of tree-sparse signals 

is linear in AT, without the dependence on N present in conventional non-model-based 

CS recovery. 

For tree-compressible signals, we must quantify the number of subspaces Rj in 

each residual set 1Zj:K for the approximation class. We can then apply the theory of 

Section 6.2.3 with Proposition 6.1 to calculate smallest allowable M via Theorem 6.5. 

Proposition 6.2 The number of K-dimensional subspaces that comprise 1Zj:k obeys 

Rj ~ (Kj + K + l)(Kj + l)' 
(2e)*W+1) (6.8) 

Using Proposition 6.2 and Theorem 6.5, we obtain the following condition for the 

matrix $ to have the RAmP, which is proved in Appendix J. 
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Proposition 6.3 Let ^ be an M x N matrix with i.i.d. subgaussian entries. If 

M > — 2
 ? (10 K + 2 In —— r + H , 

- ( y r r ^ - l ) 2 V K(K + 1)(2K+1) )> 

then the matrix $ has the (eK,s)-RAmP for the structured sparsity model T and all 

s > 0.5 with probability 1 — e~4. 

Both cases give a simplified bound on the number of measurements required as 

M = O (K) , which is a substantial improvement over the M = O (K\og(N/K)) re-

quired by conventional CS recovery methods. Thus, when $ satisfies Proposition 6.3, 

we have the guarantee (6.5) for sampled Besov space signals from B*(Lp([0,1])). 

6.3.5 Experiments 

We now present the results of a number of numerical experiments that illustrate 

the effectiveness of a tree-based recovery algorithm. Our consistent observation is 

that explicit incorporation of the structured sparsity model in the recovery process 

significantly improves the quality of recovery for a given number of measurements. 

In addition, model-based recovery remains stable when the inputs are no longer tree-

sparse, but rather are tree-compressible and/or corrupted with differing levels of noise. 

We employ the model-based CoSaMP recovery of Algorithm 7 with a CSSA-based 

structured sparse approximation step in all experiments. 

We first study one-dimensional signals that match the connected wavelet-tree 

model described above. Among such signals is the class of piecewise smooth functions, 

which are commonly encountered in analysis and practice. 
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Figure 6.1 illustrates the results of recovering the tree-compressible HeaviSine sig-

nal of length N = 1024 from M = 80 noise-free random Gaussian measurements using 

CoSaMP, fpnorm minimization using the l l _ e q solver from the ^-Magic toolbox,3 

and our tree-based recovery algorithm. It is clear that the number of measurements 

(M = 80) is far fewer than the minimum number required by CoSaMP and ^-norm 

minimization to accurately recover the signal. In contrast, tree-based recovery using 

K = 26 is accurate and uses fewer iterations to converge than conventional CoSaMP. 

Moreover, the normalized magnitude of the squared error for tree-based recovery is 

equal to 0.037, which is remarkably close to the error between the noise-free signal 

and its best K-term tree-structured sparse approximation (0.036). 

Figure 6.2(a) illustrates the results of a Monte Carlo simulation study on the 

impact of the number of measurements M on the performance of model-based and 

conventional recovery for a class of tree-sparse piecewise polynomial signals. Each 

data point was obtained by measuring the normalized recovery error of 500 sam-

ple trials. Each sample trial was conducted by generating a new piecewise poly-

nomial signal of length N = 1024 with five polynomial pieces of cubic degree and 

randomly placed discontinuities, computing its best K-term tree-approximation us-

ing the CSSA, and then measuring the resulting signal using a matrix with i.i.d. 

Gaussian entries. Model-based recovery attains near-perfect recovery at M = 3K 

measurements, while CoSaMP only matches this performance at M — 5K. 

For the same class of signals, we empirically compared the recovery times of our 

3http://www. acm. caltech. edu/llmagic. 

http://www
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(c) A-norm minimization (d) model-based recovery 

(RMSE = 0.751) (RMSE = 0.037) 

Figure 6.1 : Example performance of model-based signal recovery for a piecewise smooth 
signal, (a) HeaviSine test signal of length N — 1024. This signal is compressible in a con-
nected wavelet tree model. Signal recovered from M = 80 random Gaussian measurements 
using (b) the iterative recovery algorithm CoSaMP, (c) standard t\-norm minimization, and 
(d) the wavelet tree-based CoSaMP algorithm from Section 6.3. In all figures, root mean-
squared error (RMSE) values are normalized with respect to the norm of the signal. 

proposed algorithm with those of the standard approach (CoSaMP). Experiments 

were conducted on a Sun workstation with a 1.8GHz AMD Opteron dual-core pro-

cessor and 2GB memory running UNIX, using non-optimized Matlab code and a 

function-handle based implementation of the random projection operator As is 

evident from Figure 6.2(b), wavelet tree-based recovery is in general slower than 

CoSaMP. This is due to the fact that the CSSA step in the iterative procedure is 
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(a) (b) 

Figure 6.2 : Performance of CoSaMP vs. wavelet tree-based recovery on a class of piece-
wise cubic signals, (a) Average normalized recovery error and (b) average runtime for each 
recovery algorithm as a function of the overmeasuring factor M/K. The number of mea-
surements M for which the wavelet tree-based algorithm obtains near-perfect recovery is 
much smaller than that required by CoSaMP. The penalty paid for this improvement is a 
modest increase in the runtime. 

more computationally demanding than simple if—term approximation. Neverthe-

less, the highest benefits of model-based CS recovery are obtained around M = 3K] 

in this regime, the runtimes of the two approaches are comparable, with tree-based 

recovery displaying faster convergence and yielding much smaller recovery error. 

Figure 6.3 shows the growth of the overmeasuring factor M/K with the signal 

length N for conventional CS and model-based recovery. We generated 50 sample 

piecewise cubic signals and numerically computed the minimum number of mea-

surements M required for the recovery error \\9 — 61|2 < 2.5<jtk{&), the best tree-

approximation error, for every sample signal. The figure shows that while doubling 

the signal length increases the number of measurements required by standard recov-
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Figure 6.3 : Required overmeasuring factor M/K to achieve a target recovery error 
||x — x||2 < 2.b(jTK(x) as a function of the signal length N for standard and model-
based recovery of piecewise smooth signals. While standard recovery requires M to 
increase logarithmically with N, the required M is essentially constant for model-
based recovery. 

ery by K, the number of measurements required by model-based recovery is constant 

for all N. These experimental results verify the theoretical performance described in 

Proposition 6.3. 

Furthermore, we demonstrate that model-based recovery performs stably in the 

presence of measurement noise. We generated sample piecewise polynomial signals as 

above, computed their best if-term tree-approximations, computed M measurements 

of each approximation, and finally added Gaussian noise of expected norm ||n||2 to 

each measurement. We emphasize that this noise model implies that the energy 

of the noise added will be larger as M increases. Then, we recovered the signal 

using CoSaMP and model-based recovery and measured the recovery error in each 

- - CoSaMP 
— Model-based recovery 

«r 
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Figure 6.4 : Robustness to measurement noise for standard and wavelet tree-based CS 
recovery algorithms. We plot the maximum normalized recovery error over 200 sample 
trials as a function of the expected signal-to-noise ratio. The linear growth demonstrates 
that model-based recovery possesses the same robustness to noise as CoSaMP and £\-norm 
minimization. 

case. For comparison purposes, we also tested the recovery performance of the BPIC 

algorithm (see Section 2.2.4), which has been implemented as the ll_qc solver in the 

^i-Magic toolbox. First, we determined the lowest value of M for which the respective 

algorithms provided near-perfect recovery in the absence of noise in the measurements. 

This corresponds to M — 3.5K for model-based recovery, M = 5K for CoSaMP, and 

M = 4.5K for ti minimization. Next, we generated 200 sample tree-modeled signals, 

computed M noisy measurements, recovered the signal using the given algorithm and 

recorded the recovery error. Figure 6.4 illustrates the growth in maximum normalized 

recovery error (over the 200 sample trials) as a function of the expected measurement 

signal-to-noise ratio for the tree algorithms. We observe similar stability curves for all 

three algorithms, while noting that model-based recovery offers this kind of stability 

using significantly fewer measurements. 
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(a) Peppers (b) CoSaMP (c) model-based recovery 

(RMSE = 22.8) (RMSE = 11.1) 

Figure 6.5 : Example performance of standard and model-based recovery on images, (a) 
N = 128 x 128 = 16384-pixel Peppers test image. Image recovery from M = 5000 com-
pressive measurements using (b) conventional CoSaMP and (c) our wavelet tree-based al-
gorithm. 

Finally, we turn to two-dimensional images and a wavelet quadtree model. The 

connected wavelet-quadtree model has proven useful for compressing natural im-

ages [115]; thus, our algorithm provides a simple and provably efficient method for 

recovering a wide variety of natural images from compressive measurements. An ex-

ample of recovery performance is given in Figure 6.5. The test image (Peppers) is of 

size N = 128 x 128 = 16384 pixels, and we computed M — 5000 random Gaussian 

measurements. Model-based recovery again offers higher performance than standard 

signal recovery algorithms like CoSaMP, both in terms of recovery mean-squared error 

and visual quality. 
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6.4 Example: Block-Sparse Signals and Signal Ensembles 

In a block-sparse signal, the locations of the significant coefficients cluster in blocks 

under a specific sorting order. Block-sparse signals have been previously studied in 

CS applications, including DNA microarrays and magnetoencephalography [19,110]. 

An equivalent problem arises in CS for signal ensembles, such as sensor networks 

and MIMO communication [9,19,121], when signals have common sparse supports; 

see Section 2.4.1 for a description. Such signal ensembles can be re-shaped as a 

single vector by concatenation, and then the coefficients can be rearranged so that 

the concatenated vector exhibits block sparsity. 

It has been shown that the block-sparse structure enables signal recovery from 

a reduced number of CS measurements, both for the single signal case [19,110,122] 

and the signal ensemble case [9], through the use of specially tailored recovery algo-

rithms. However, the robustness guarantees for the algorithms [19,110,122] either are 

restricted to exactly sparse signals and noiseless measurements, do not have explicit 

bounds on the number of necessary measurements, or are asymptotic in nature. An 

optimization-based algorithm introduced in [19] provides similar recovery guarantees 

to those obtained by the algorithm we present in this chapter; thus, our method can 

be interpreted as a greedy-based counterpart to that provided in [19]. 

In this section, we formulate the block sparsity model as a union of subspaces 

and pose an approximation algorithm on this union of subspaces. The approxima-

tion algorithm is used to implement block-based signal recovery. We also define the 

corresponding class of block-compressible signals and quantify the number of mea-
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surements necessary for robust recovery. For simplicity, and without loss of generality, 

we will assume in this section that the sparsity basis is ^ = I, so that x = 9 is itself 

sparse. 

6.4.1 Block-Sparse Signals 

Consider a class S of signal vectors x € RNJ, with N and J integers. This signal 

can be reshaped into a N x J matrix X, and we use both notations interchangeably 

in this chapter. We will restrict entire rows of X to be part of the support of the 

signal as a group. That is, signals X in a block-sparse model have entire rows as 

zeros or nonzeros. The measure of sparsity for X is its number of nonzero rows. More 

formally, we make the following definition. 

Definition 6.10 [19,110] Define the set of K-block sparse signals as 

SK = {X = [xf . . . x^]T G RNxJ s i x n = 0 / o r n ^ , N C { l ) . . . 1 N}, = K). 

It is important to note that a K-block sparse signal has sparsity KJ, which is 

dependent on the size of the block J . We can extend this formulation to ensembles 

of J , length-iV" signals with common sparse supports. Denote this signal ensemble 

by {x i , . . . ,Xj] , with G RN, 1 < j < J. We formulate a matrix representation 

X of the ensemble that features the signal x.j in its jth column: X = [xi . . . x,v]. 

The matrix X features the same structure as the matrix X obtained from a block-

sparse signal; thus, the matrix X can be converted into a block-sparse vector x that 

represents the signal ensemble. 
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6.4.2 Block-Based Approximation 

To pose the block-based approximation algorithm, we need to define the mixed norm 

of a matrix. 

Definition 6.11 The (p,q) mixed norm of the matrix X = [xf x2 . . . x^]T is 

defined as 

When q = 0, ||X||(Pio) simply counts the number of nonzero rows in X. 

We immediately find that ||X||(p)P) = ||x||p, with x the vectorization of X. Intu-

itively, we pose the algorithm §(X, K) to obtain the best block-based approximation 

of the signal X as follows: 

It is easy to show that to obtain the approximation, it suffices to perform row-wise 

hard thresholding: let p be the Kth largest A-norm among the rows of X. Then our 

approximation algorithm is S(X, K) — Xf- = [(xf- 1)T . . . (xf- /V)T]7'. where 

for each 1 < n < N. Alternatively, a recursive approximation algorithm can be 

obtained by sorting the rows of X by their norms, and then selecting the rows with 

largest norms. The complexity of this sorting process is O (NJ + N log N). 

= arg _min ||X - X||(2,2) subject to ||X||(2,o) < K. 
xeKNxJ (6.9) 
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6.4.3 Block-Compressible Signals 

The approximation class in the block-compressible model corresponds to signals with 

blocks whose i2 norm has a power-law decay rate. 

Definition 6.12 We define the set of s-block compressible signals as 

es = { x = [Xl . . . Xjv] € MJxiV s.t. ||xj(i)||2 < Gi~s~1!2,1 < i < N, S < oo}, 

where T indexes the sorted row norms. 

We say that X is an .s-block compressible signal if X G 6 S . For such signals, we 

have ||X - Xjr||(2,2) = ^ ( X ) < GiK'3, and ||X - X^||(2,i) < G2K^2-S. Note that 

the block-compressible model does not impart a structure to the decay of the signal 

coefficients, so that the sets 7Z^k are equal for all values of j ; due to this property, 

the (55K,s)-RAmP is implied by the <S;<-RIP. Taking this into account, we can derive 

the following result from [66], which is proven similarly to Theorem 6.4. 

Theorem 6.6 Let x be a signal from the structured sparsity model S, and let y = 

$x + n be a set of noisy CS measurements. I f $ has the S^-RIP with SS4_ <0.1, then 

the estimate obtained from iteration i of block-based CoSaMP, using the approximation 

algorithm (6.9), satisfies 

II* - Sills < 2-i||x||j + 20 ( | |X - x £ | | ( „ ) + 

Thus, the algorithm provides a recovered signal of similar quality to approxima-

tions of X by a small number of nonzero rows. When the signal x is if-block sparse, 
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we have that | |X — X^-||(2|2) = ||X — Xf-||(2,i) = 0, obtaining the same result as 

Theorem 6.4, save for a constant factor. 

6.4.4 Stable Block-Based Recovery From Compressive Measurements 

Since Theorem 6.6 poses the same requirement on the measurement matrix T for 

sparse and compressible signals, the same number of measurements M is required to 

provide performance guarantees for block-sparse and block-compressible signals. The 

class Sk contains S = subspaces of dimension JK. Thus, a subgaussian random 

matrix has the <Sft-RIP property with constant SsK and probability 1 — e"* if the 

number of measurements obeys 

To compare with the standard CS measurement bound, the number of measurements 

required for robust recovery scales as M = O (JK + K\og(N/K)), which is a sub-

stantial improvement over the M = O (JK\og(N/K)) that would be required by 

conventional CS recovery methods. When the size of the block J is larger than 

l o g ( N / K ) , then this term becomes 0(KJ); that is, it is linear on the total sparsity 

of the block-sparse signal. 

We note in passing that the bound on the number of measurements (6.10) as-

sumes a dense subgaussian measurement matrix, while the measurement matrices 

used in [9] have a block-diagonal structure. To obtain measurements from an M x JN 

dense matrix in a distributed setting, it suffices to partition the matrix into J pieces 

of size M x N and calculate the CS measurements at each sensor with the cor-

(6.10) 
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responding matrix; these individual measurements are then summed to obtain the 

complete measurement vector. For large </, (6.10) implies that the total number of 

measurements required for recovery of the signal ensemble is lower than the bound 

for the case where each signal recovery is performed independently for each signal 

(M = O (JK\og(N/K))). 

6.4.5 Experiments 

We conducted several numerical experiments comparing model-based recovery to 

CoSaMP in the context of block-sparse signals. We employ the model-based CoSaMP 

recovery of Algorithm 7 with the block-based approximation algorithm (6.9) in all 

cases. For brevity, we exclude a thorough comparison of our model-based algorithm 

with A-norm minimization and defer it to future work. In practice, we observed that 

our algorithm performs several times faster than convex optimization-based proce-

dures. 

Block-sparse signals 

Figure 6.6 illustrates an N = 4096 signal that exhibits block sparsity, and its recovered 

version from M — 960 measurements using CoSaMP and model-based recovery. The 

block size J = 64 and there were K — 6 active blocks in the signal. We observe the 

clear advantage of using the block-sparsity model in signal recovery. 

We now consider block-compressible signals. An example reoovery is illustrated 

in Figure 6.7. In this case, the A-norms of the blocks decay according to a power 

law, as described above. Again, the number of measurements is far below the mini-
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(a) original block-sparse signal (b) CoSaMP (c) model-based recovery 

(RMSE = 0.723) (RMSE = 0.015) 

Figure 6.6 : Example performance of model-based signal recovery for a block-sparse signal, 
(a) Example block-sparse signal of length N = 4096 with K = 6 nonzero blocks of size 
J = 64. Recovered signal from M = 960 measurements using (b) conventional CoSaMP 
recovery and (c) block-based recovery. 

mum number required to guarantee stable recovery through conventional CS recovery. 

However, enforcing the structured sparsity model in the approximation process results 

in a solution that is very close to the best 5-block approximation of the signal. 

Figure 6.8(a) indicates the decay in recovery error as a function of the numbers of 

measurements for CoSaMP and model-based recovery. We generated sample block-

sparse signals as follows: we randomly selected a set of K blocks, each of size J, 

and endow them with coefficients that follow an i.i.d. Gaussian distribution. Each 

sample point in the curves is generated by performing 200 trials of the corresponding 

algorithm. As in the connected wavelet-tree case, we observe clear gains using model-

based recovery, particularly for low-measurement regimes; CoSaMP matches model-

based recovery only for M > 5K. 

Figure 6.8(b) compares the recovery times of the two approaches. For this par-

ticular model, we observe that our proposed approach is in general much faster than 
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(a) signal 
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(b) best 5-block approximation 

(RMSE = 0.116) 

(c) CoSaMP (d) model-based recovery 

(RMSE = 0.711) (RMSE = 0.195) 

Figure 6.7 : Example performance of model-based signal recovery for block-compressible 
signals, (a) Example block-compressible signal, length N = 1024. (b) Best block-based 
approximation with K = 5 blocks. Recovered signal from M = 200 measurements using 
both (c) conventional CoSaMP recovery and (d) block-based recovery. 

CoSaMP. This is because of two reasons: a) the block-based approximation step in-

volves sorting fewer coefficients, and thus is faster than if—term approximation; b) 

block-based recovery requires fewer iterations to converge to the true solution. 

Signal ensembles with common sparse supports 

We now consider the same environmental sensing dataset that was used in Section 4.4. 

The signals were recorded in an office environment and therefore exhibit periodic 
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1.6 
-CoSaMP 
-Model-based recovery 

-•-CoSaMP 
-— Model-based recovery 
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(a) (b) 

Figure 6.8 : Performance of CoSaMP vs. block-based recovery on a class of block-sparse 
signals, (a) Average normalized recovery error and (b) average runtime for each recovery 
algorithm as a function of the overmeasuring factor M/K. CoSaMP does not match the 
performance of the block-based algorithm until M = 5K. Furthermore, the block-based 
algorithm has faster convergence time than CoSaMP. 

behavior caused by the activity levels during day and night. Therefore, we expect the 

signals to be compressible in the wavelet domain. Since the signals are observations 

of physical processes, they are smoothly varying in time and space; this causes the 

sensor readings to be close in value to each other, a situation well captured by the 

common sparse supports model. 

We consider the recovery from CS measurements for these signals. We obtain M 

CS measurements for each signal using a matrix with random Gaussian distributed 

entries. We modify the model-based recovery algorithm due to the special structure 

observed by the distributed measurements performed. The resulting algorithm, which 

we call model-based distributed CoSaMP, is formalized as Algorithm 8. We then 

compare model-based recovery with standard CoSaMP recovery, where the parameter 
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(c) Model-based recovery, distortion = 16.3197 dB 

Figure 6.9 : Recovery of light intensity signal 35 from the Intel Berkeley sensor network 
using the standard and model-based distributed CoSaMP (Algorithm 8). N = 1024, M = 
400. When the common sparse supports model is used in model-based distributed CoSaMP, 
the features that are salient in all signals are preserved, while those that are observed only 
in one signal (such as the spike on the left side of the signal) are removed. 

K is chosen to achieve best performance. 

Figure 6.9 shows the recovery for a representative example: the light intensity 

signal from sensor 35. The model-based recovery algorithm exploits the common 

sparse supports structure, recovering salient common features for all signals in the 

ensemble, and thus obtaining better recovery performance than standard CoSaMP 

from the same sets of measurements. Table 6.4.5 summarizes similar results for the 

different datasets. 

We also study the performance of these algorithms for different numbers of mea-

surements. Figures 6.10 - 6.12 plot the probability of exact recovery for the standard 

and model-based distributed CoSaMP recovery algorithms for the three environmen-

tal sensing datasets; we also show the performance of DCS-SOMP as a baseline. 

Model-based recovery is superior at low and moderate rates, yet it is surpassed by 
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Table 6.1 : Performance comparison for standard and model-based distributed 
CoSaMP recovery on 49 environmental sensing signals from the Intel Berkeley dataset. 

Dataset M Standard Model-based 

Light 200 14.07dB 17.87dB 

Humidity 80 20.45dB 26.68dB 

Temperature 400 19.10dB 26.40dB 

standard CoSaMP at high rates. This illustrates the applicability of the common 

sparse supports model, which becomes less valid as the very fine features of each 

signal (which vary between sensors) are incorporated. While the performance of 

model-based recovery is similar to that of DCS-SOMP, model-based recovery has the 

added benefit of the aforementioned recovery guarantees. 

We now study the dependence of model-based recovery performance on the number 

of signals in the ensemble. Figure 6.13 compares the performance of the standard 

and model-based distributed CoSaMP algorithms on synthetically generated exactly 

sparse signals with common sparse supports. Over 100 repetitions, we select the signal 

supports at random and assign coefficients from a standard Gaussian distribution. We 

then obtain CS measurements for each signal using matrices with entries following 

a standard Gaussian distribution. The figure shows that while standard CoSaMP 

recovery requires more measurements to achieve high probability of successful recovery 

— as each sensor must succeed independently — the model-based recovery algorithm 

requires fewer measurements as the number of signals increases, as it is simpler to 
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Figure 6.10 : Performance of CoSaMP, DCS-SOMP and block-based recovery on a group 
of light signals from the Intel Berkeley sensor network as a function of the number of 
measurements M. 

establish the common sparse support structure. We also see that the number of 

measurements necessary for recovery appears to converge to M = 2K as the number 

of sensors becomes larger; in comparison, for the DCS-SOMP algorithm this number 

of measurements converged to M = K [74]. We believe that this increase in the 

bound is due to the enlarged support estimate obtained in model-based distributed 

CoSaMP. 
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Figure 6.11 : Performance of CoSaMP, DCS-SOMP and block-based recovery on a group 
of humidity signals from the Intel Berkeley sensor network as a function of the number of 
measurements M. 

Figure 6.12 : Performance of CoSaMP, DCS-SOMP and block-based recovery on a group 
of temperature signals from the Intel Berkeley sensor network as a function of the number 
of measurements M. 
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Algorithm 8 Model-based distributed CoSaMP 

Inputs: CS matrices {Y}^=1, measurements {yj}/=1 

Output: if-sparse approximations {Oj}j=x to true signal representations {Gj}j=i 

Initialize: i = 0 

for j = 1 , . . . , J do 

6jx) = 0 , r.j = yj-, {initialize} 

end for 

while halting criterion false do 

1. i «- i + 1 

2. e3- Tj'r.j. j = 1,... .J {form signal residual estimates} 

3. e = Yl'Jj=i(ej ' e j ) {merge signal residual estimates 

in squared l2 norm} 

4. Q *- supp(T(e, 2K)) {prune merged residual estimate 

5. T QUsupp(%_ x) 

6. b j | T <- bj\Tc 0 

7- b = E j = i ( b i - b J ) 

according to structured sparsity} 

{merge supports} 

{form signal estimates} 

{merge signal estimates 

8. A supp(X(b, K)) 

in squared i2 norm} 

{prune signal estimate support} 

9- bjU, Qj,i\hc 0, j = 1,... ,J {prune signal estimates} 

10. r j y j — T0j}i, j — 1 , . . . , J {update measurement residuals} 

end while 

return 0 <— 0i 



135 

Figure 6.13 : Performance of CoSaMP (dashed lines) and model-based distributed CoSaMP 
(solid lines) on a class of signals with common sparse supports (K = 5y as a function of M 
for several numbers of sensors J. While more measurements are required with CoSaMP as J 
increases, model-based CoSaMP requires a decreasing number of measurements, appearing 
to converge to M = 2 K as J —> oo. 
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Chapter 7 

Kronecker Product Compressive Sensing 

In this chapter,1 we show that Kronecker product matrices are a natural way to 

generate sparsifying and measurement matrices for CS of multidimensional signals. 

Kronecker product sparsity bases combine the structures encoded by the sparsity 

bases for each signal dimension into a single matrix. Similarly, Kronecker product 

measurement matrices for multidimensional signals can be implemented by perform-

ing a sequence of separate multiplexing operations on each dimension. The Kronecker 

product formulation for sparsity bases and measurement matrices enables the deriva-

tion of analytical bounds for recovery of compressible multidimensional signals from 

randomized or incoherent measurements. 

We can use Kronecker product matrices as sparsifying bases for multidimensional 

signals to jointly model the signal structure along each one of its dimensions when 

such structures can be expressed using sparsity or compressibility. In some cases, such 

as wavelet bases, it is possible to obtain bounds for the magnitude rate of decay for 

the coefficients of a signal when a Kronecker product basis is used. The Kronecker 

product basis rate of decay is dependent on the rates of decay for the coefficients 

of slices of the signals across the different dimensions using the individual bases. 

1 This work is in collaboration with Richard G. Baraniuk [123]. Thanks to Kevin Kelly, Ting Sun, 

and Dharmpal Takhar for providing experimental data for the single-pixel hyperspectral imager. 
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When the rates of decay using the corresponding bases for each of the dimensions 

are different, the Kronecker product basis rate will fall between the maximum and 

minimum rates among the different dimensions; when the rates of decay are all the 

same, they are matched by that of the Kronecker product basis. 

Additionally, many of the CS measurements schemes proposed for multidimen-

sional signals can be easily expressed as Kronecker product matrices. In particular, 

when partitioned measurements are used and the same measurement matrix is ap-

plied to each piece of the signal, the resulting measurement matrix can be expressed 

as the Kronecker product of an identity matrix and the measurement matrix used. 

We can also build new Kronecker measurement matrices that are performed in two 

stages: a first stage uses the same measurement vectors on each piece of a partitioned 

signal, and a second stage combines those measurements together using fixed linear 

combinations on measurements with matching indices. 

When Kronecker matrices are used in CS, we can provide metrics to evaluate 

partitioned measurement schemes against Kronecker measurement matrices, as well 

as guidance on the improvements that may be afforded by the use of such multidi-

mensional structures. We provide some initial results by studying the special case 

of signals that are compressible in a Kronecker products of wavelet bases, comparing 

the rates of decay for the CS recovery error when Kronecker products are used to 

that of standard CS recovery along a single dimension. We also verify our theoretical 

findings using experimental results with synthetic and real-world multidimensional 

signals. 
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7.1 Stylized Applications 

7.1.1 Hyperspectral Imaging 

Our Kronecker Compressive Sensing (KCS) concept is immediately applicable to sev-

eral CS applications that use partitioned measurements. As an example, consider the 

hyperspectral single-pixel camera [7], which computes inner products of the pixels 

in each band of a hyperspectral datacube against a measurement vector with 0/1 

entries by employing a digital micromirror device (DMD) as a spatial light modu-

lator. Each spectral band's image is multiplexed by the same binary functions, as 

the DMD reflects all of the imaged spectra. This results in the same measurement 

matrix being applied to each spectral image, which results in a Kronecker product 

measurement matrix. Additionally, there are known compressibility bases for each 

spectral band as well as each pixel's spectral signature, which can be integrated into a 

single Kronecker product compressibility basis. An example datacube captured with 

a single-pixel hyperspectral camera is shown in Figure 7.1 [27]. 

7.1.2 Video Acquisition 

Similarly, consider the example of compressive video acquisition, where a single-pixel 

camera applies the same set of measurements to each frame of the video sequence, 

resulting once again in a Kronecker product measurement matrix. It is possible to 

sparsify or compress the video sequence observed at each pixel using a Fourier or 

wavelet transform, depending on the video characteristics. Furthermore, as each 

frame of the video is an image, it is possible to sparsify each frame using standard 
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(a) (b) (c) 

Figure 7.1 : Example capture from a single-pixel hyperspectral camera at resolution 128 x 128 
pixels by 64 spectral bands (220 voxels) from M = 5000 CS measurements (210 x sub-Nyquist) [27], 
(a) Mandrill test image, (b) Hyperspectral datacube obtained via independent CS recovery of 
each spectral band, (c) Datacube obtained via KCS; marked improvement is seen in bands with 
low signal-to-noise ratios. Measurement data provided by Kevin Kelly, Ting Sun, and Dharmpal 
Takhar. 

cosine or wavelet transforms. We can then use a Kronecker product of these two bases 

to sparsify or compress the video sequence. 

7.1.3 Source Localization 

Finally, consider the sparsity-based distributed localization problem [124], where a 

sparse vector encodes the locations of the sources in a localization grid, and the CS 

matrix encodes the propagation physics and known source signal. We can instead 

assume that the signal propagated by the target is not exactly known, but that it 

is sparse in a known basis. It is therefore possible to employ a Kronecker product 

matrix that encodes both the propagation physics and the sparse or compressible 

structure of the source signal. Such a structure has applications not only in sensors 
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and surveillance networks, but also in the localization of action potentials in multineu-

ron recordings, where the neural activity or spikes are recorded by several electrodes 

with varying amplitudes (due to decay) and large electrical noise [125]. 

7.2 Background 

7.2.1 Tensor and Kronecker Products 

Let V and W represent Hilbert spaces. The tensor product of V and W is a new 

vector space V 0 W together with a bilinear map T : V x W —> V 0 W that is 

universal in the following sense: for every vector space X and every bilinear map 

§ : V x W —>• X there is a unique linear map §' : V 0 W —> X such that for all v e V 

and weW, ${v,w) = S'(T(u,w)). 

The Kronecker product of two matrices A and B of sizes P x Q and R x S, 

respectively, is defined as 

A{1,1)B A{1,2)B ... A{1,Q)B 

A(2,1)B A(2,2)B ... A(2,Q)B 
A<S> B := (7.1) 

A(P,1)B A(P,2)B ... A(Q,Q)B 

Thus, A 0 B is a matrix of size PR x QS. The definition has a straightforward 

extension to the Kronecker product of vectors a 0 b. In the case where V = M1' and 

W = R"\ it can be shown that V 0 W = R™ and a suitable map T : R" x R™ -4 

R" ® R'"' is defined by the Kronecker product as T(a,b):= a 0 b. 

Let = {^v, 1 , • • •} a n d ^ w = {^w^ii'wfi, • • •} be bases for the spaces V 
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and W, respectively. Then one can pose a basis for V 0 W as = : 

ipv £ xiv,i'iu e Once again, when V = R1' and W = Mu\ we will have 

= 

7.2.2 Signal Ensembles 

In distributed sensing problems, we aim to acquire an ensemble of signals x x , . . . , Xj € 

RN that vary in time, space, etc. We assume that each signal's structure can be 

encoded using sparsity with an appropriate basis This ensemble of signals can 

be expressed as a N x J matrix X = [xi x2 . . . x.y] = [x lT x2 T . . . xN'r]T, where 

the individual signals x l 5 . . . ,Xj corresponding to columns of the matrix, and where 

the rows x 1 , . . . , xN of the matrix correspond to different snapshots of the signal 

ensembles at different values of time, space, etc. For brevity we refer to the rows of X 

as signals and to its columns as snapshots. Under this construction, the structure of 

each signal is observable on each of the columns of the matrix, while the structure of 

each snapshot (spanning all the signals) is present on each of the rows of the matrix 

X. 

We expect that, in certain applications, the inter-signal correlations can also be 

modeled using sparsity; that is, that a basis or frame ^ can be used to compress 

or sparsify x 1 , . . . xN. For example, in sensor network applications, the structure of 

each snapshot is determined by the geometry of the sensing deployment, and can 

also be captured by a sparsity basis [124], In such cases, it is desirable to obtain 

a single sparsity basis for the signal ensemble that encodes both intra- and inter-

signal correlations; such representation would significantly simplify the analysis of 
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joint sparsity structures. 

7.3 Kronecker Product Matrices for Multidimensional 

Compressive Sensing 

We now describe our framework for the use of Kronecker product matrices in multi-

dimensional CS. In this section, we will assume that the signal X is 2-D and slightly 

abuse terminology by calling its rows and columns snapshots and signals, respec-

tively; this allows us more easily to bridge the multidimensional signal and signal 

ensemble applications. While our exposition is based on 2-D signals for simplicity, 

the framework is extendable to multidimensional settings. 

7.3.1 Kronecker Product Sparsity Bases 

It is possible to simultaneously exploit the sparsity properties of a multidimensional 

signal along each of its dimensions to provide a new representation for their structure. 

We obtain a single sparsity/compressibility basis for all signals and snapshots as the 

Kronecker product of the bases used for the individual signals and snapshots. For 

multidimensional signals, this encodes all of the available structure using a single 

transformation. For signal ensembles, we obtain a single coefficient vector to represent 

all the signals observed. 

More formally, we denote the individual signals as Xj £ R*'v, 1 < j < J, and 

the individual snapshots as x" € MJ, 1 < n < N. The multidimensional signal 

X is then in M^ 0 1RJ = R'VJ, where its columns corresponds to the individual 
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signals and the rows correspond to individual snapshots. We further assume that 

the snapshots xn are sparse or compressible in a basis and that the signals Xj are 

sparse or compressible in a basis We then pose a sparsity/compressibility basis 

for X obtained from Kronecker products a = = 

and obtain a coefficient vector © for the signal ensemble so that X = where 

X = [x'f x2 • • • Xj]r is a vector-reshaped representation of X. 

7.3.2 Kronecker Product Measurement Matrices 

We can also design measurement matrices that are formulated as Kronecker prod-

ucts; such matrices correspond to measurement processes that operate first on each 

individual signal/snapshot, followed by operations on the measurements obtained for 

the different signals/snapshots, respectively. The resulting measurement matrix can 

be expressed as $ = with $ € MM i x N , e R M a X j , and $ e RM>M»xJVJ. This 

results in a matrix that provides M = M\M2 measurements of the multidimensional 

signal X. 

Consider the example of distributed measurements, whose structure is succinctly 

captured by Kronecker products. We say that the measurements taken are distributed 

when for each signal Xj, 1 < j < J, we obtain independent measurements y j = 

with an individual measurement matrix being applied to each signal. To compactly 
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represent the signal and measurement ensembles, we denote 

yi 

Y2 

y j 

and $ = 

$1 0 . . . 0 

0 $2 . . . 0 

0 0 . . . <5/ 

(7.2) 

with 0 denoting a matrix of appropriate size with all entries equal to 0. We then 

have Y = $X. Equation (7.2) shows that the measurement matrix that arises from 

distributed sensing has a characteristic block-diagonal structure when the entries of 

the sparse vector are grouped by signal. If a matrix = is used at each sensor 

to obtain its individual measurements, then we can express the joint measurement 

matrix the matrix as $ = I j <g> where I j denotes the J x J identity matrix. 

7.3.3 Compressive Sensing Performance for Kronecker Product Matrices 

We now derive results for metrics of Kronecker product sparsifying and sensing ma-

trices that are relevant to obtain CS performance guarantees. The results obtained 

provide a link between the performance of the Kronecker product matrix and that of 

the individual matrices used in the product for CS recovery. 

Mutual Coherence 

Consider a Kronecker sparsity basis ^ = $ ® and a global measurement basis 

obtained through a Kronecker product of individual measurement bases: $ = 

with $ and ^ and and iff' being mutually incoherent. The following lemma provides 

a conservation of mutual coherence across Kronecker products. 
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Lemma 7.1 Let ^ and be bases or frames for RN and respectively. 

Then 

® ip <8> tf') = 

Proof. First we consider the inner product of columns from $ = $ <g> and 
$ = \]> <g> 

N 

= (Mn)<l>u>ll>v(n)xl/W) 
n = l 

where r, s are aleatory indices for columns of $ and respectively, and t, u, v, w 

are the indices for the columns of respectively, involved in (pr and ips. 

We have 
N 

= i & M ^ M n W M = (<t>'uM { h M . (7.3) 
n=1 

Since the absolute values for the two inner products at the end of (7.3) attain the 

value of the mutual coherences for some values of t, u, v, w, then there exist r',s' 

for which 

4>r>, ^s 

Furthermore, since for all other r, s the mutual coherence is an upper bound for the 

inner products at the end of (7.3), 

| = \(<t>'u^'w)\m^v)\ (r,s) Jt (r', s'). 

Thus, we have shown that <g> ^ <g> = D 

Since the mutual incoherence of the snapshot sparsity and measurement basis 

is upper bounded by one, the number of Kronecker product-based measurements 
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necessary for successful recovery of the signal ensemble is strictly lower than the cor-

responding number of necessary partitioned measurements. This reduction is max-

imized when the snapshot measurement basis is $ maximally incoherent with the 

snapshot sparsity basis ty. 

Restricted Isometry Constants 

The restricted isometry constants for $ are intrinsically tied to the singular values of 

all submatrices of $ of a certain size. The structure of Kronecker products enables 

simple bounds for their mutual coherence. 

Lemma 7.2 Let $ and be matrices with N and J columns, respectively, and with 

restricted isometry constants 5k (4>) and 5k(&), respectively. Then, 

Proof. We denote by $<-; the A"-column submatrix of $ containing the columns 

4>t, t G ft: its nonzero singular values obey 

i - < 

Since each <j>t = <pu® <fi'v for specific u, v, we can build sets . fl2 of cardinality up 

to K that contain the values of u, v, respectively, corresponding to t £ fl. Then, it 

is easy to see that is a submatrix of <g> , which has up to K2 columns. 

Furthermore, it is well known that crmin($ 0 $') = crmin($)crmin($/) and <Jmax($ ® 

= "max^Vmaxf^')- Additionally, the range of singular values of a submatrix are 
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interlaced inside those of the original matrix [126]. Thus, 

"min umax 

"•minC^JcTmin^nJ < <7min($n) < < ' W O S f i J ' W ^ f i J -

By using the A'-restricted isometry constants for $ and we obtain the following 

bounds: 

(1 - - SK{&)) < "min($fi) < <W($f i ) < (1 + + 5K(&)), 

proving the lemma. • 

When $ is an orthonormal basis, it has restricted isometry constant = 0 

for all K < N. Therefore the restricted isometry constant of the Kronecker product 

of an orthonormal basis and a matrix is equal to that of the (second) matrix. We 

note, however, that the sparsity of the multidimensional signal in the basis $ ® is 

larger than the sparsity of any of its pieces in each independent basis 

7.3.4 Extensions to multidimensional settings 

The framework provided in this section can be extended to multidimensional signals 

in two ways. One option is to use a sequence of multiple Kronecker products. For 

example, we can obtain a basis for 3-D volumes as the result of a dual Kronecker 

product $ = <g> $2 ® $3. Another option is to choose sparsity bases and measure-

ment matrices for signal sections of 2-D or higher dimension. This entails reshaping 

the corresponding data sections into vectors, so that the basis can be expressed as a 

matrix and the Kronecker product can be performed. For example, in Section 7.5 we 
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obtain a basis for a 3-D hyperspectral datacube as the Kronecker product of a 2-D 

wavelet basis along the spatial dimensions with a 1-D wavelet basis along the spectral 

dimension. 

7.4 Case Study: CS with Multidimensional Wavelet Bases 

Kronecker products are prevalent in the extension of wavelet transforms to multi-

dimensional settings. We describe several different wavelet basis constructions de-

pending on the choice of basis vectors involved in the Kronecker products. For 

these constructions, our interest is in the relationship between the compressibil-

ity of each signal in the wavelet component basis and the compressibility of the 

signal ensemble in the wavelet Kronecker product basis. In the rest of this sec-

tion, we assume that the AMength, D-D signal X is a sampled representation of a 

continuous-indexed D-D signal f(t\, ...to), with td € ft := [0,1], 1 < d < D, such that 

X(m, ...,nD) = f(ni/Ni,..., nd/ND), with N = Nx x . . . x ND. 

7.4.1 Isotropic, Anisotropic, and Hyperbolic Wavelets 

Consider a 1-D signal g(t) : ft —> R with ft = [0,1]; its wavelet representation is given 

2i — l 
g = VQU + Wij'&i,], 

i>0 j=0 

where v is the scaling function and tpi,] is the wavelet function at scale i and offset j: 

by 
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The wavelet transform consists of the scaling coefficient vq and wavelet coefficients 

Wij at scale i, i > 0, and position j, 0 < j < 2i - 1; the support of the corre-

sponding wavelet ipij is roughly [2 lj, 2l(j -I- 1)]. In terms of the sampled signal x and 

our earlier matrix notation, x has the representation x = where ^ is a matrix 

containing the scaling and wavelet functions for scales 1 , . . . , L = log2 N as columns, 

and 9 = [y0 t%o Wi,o wi,\ ^2,0 • • -]T is the vector of corresponding scaling and wavelet 

coefficients. We are, of course, interested in sparse and compressible 9. 

Several different extensions exist for construction of D-D wavelet basis vectors as 

Kronecker product of 1-D wavelet functions [2,127,128]. In each case, a D-D wavelet 

basis vector is obtained from the Kronecker product of D 1-D wavelet basis vectors: 

= Tpiuh ® ••• ®i)iD,iD- Different bases for the multidimensional space 

can then be obtained through the use of appropriate combinations of 1-D wavelet 

basis vectors in the Kronecker product. For example, isotropic wavelets arise when 

the same scale j = ji = • • • = jo is selected for all wavelet functions involved, while 

anisotropic wavelets force a fixed factor between any two scales, i.e. a(itd' = jd/jd1, 1 < 

d, d! < D. Additionally, hyperbolic wavelets result when no restriction is placed on the 

scales ji,..., jo- Therefore, the anisotropic wavelet basis can also be obtained as the 

Kronecker product of the individual wavelet basis matrices [127,128]. In the sequel, 

we identify the isotropic, anisotropic, and hyperbolic wavelet bases as and 

yftf, respectively; example basis elements for each type of multidimensional wavelet 

basis are shown in Figure 7.2. 
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• • • 

(a) 

Figure 7.2 : Example basis elements from 2-D wavelet bases. In each case, zeroes are 
represented by green pixels, while blue and red (dark-colored) pixels represent large values. 
(a) Isotropic wavelets have the same degree of smoothness on all dimensions, and are ob-
tained from the Kronecker product of two 1-D wavelets of the same scale; (b) Anisotropic 
wavelets have different degrees of smoothness in each dimension, but with a constant ratio 
and are obtained from the Kronecker product of two 1-D wavelets at ratio-matching scales; 
(c) Hyperbolic wavelets have different degrees of smoothness in each dimension without 
restrictions and are obtained from the Kronecker product of two 1-D wavelets of any scale. 

7.4.2 Isotropic Besov Spaces 

The most popular type of multidimensional wavelet bases are isotropic wavelets, which 

have been found suitable for analysis of images and for specific video sequences [11]. 

Significant study has been devoted to identify the types of signals that are sparse 

or compressible in an isotropic wavelet basis. A fundamental result in this direction 

states that the discretizations of signals in isotropic Besov spaces are compressible in 

an appropriate wavelet transform. Such signals have the same degree of smoothness 

in all dimensions. We begin by providing a formal definition of Besov spaces. 

We define the derivative of / in the direction h as (Ahf)(t) := f(t + h) — fix), 

with higher-degree derivatives defined as ( A % f ) ( t ) := (Ah(A^~1f))(t), m > 2. Here 

and later we define ( A h f ) ( t ) = 0 if t + h QP. For r e m € N and 0 < p < oo, 
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we define the modulus of smoothness as 

ujm(f,r,nD)p = sup | |A^/||p>nD. 
|fc|<r 

It is easy to see that u>m(f, r, QD)P —> 0 as r —> 0; smoother functions have faster 

decay in this asymptotic behavior. 

A signal can be classified according to its smoothness simply by posing conditions 

on the rate of decay of its moduli of smoothness. The resulting classes are known as 

Besov spaces. A Besov space B*<q contains D-D or multidimensional functions that 

have (roughly speaking) s derivatives in LP(QD); this smoothness is measured by the 

rate of decay of the modulus of smoothness as a function of the step size r. The Besov 

quasi-seminorm is then defined as 

Here the parameter q provides finer distinctions of smoothness. Thus, we say that a 

signal / G B^q if it has finite Besov norm, defined as H/HB^ = | |/ | |p + |/|B»,-

Similarly to the discrete signal case, we define the best A'-term approximation 

error in the basis ^ as 

= min j||/ ~g\\p,g = ^ G ^ for each » = !.••• • 

Such isotropic wavelet-based nonlinear approximations provide provable decay rates 

for the approximation error. 

Theorem 7.1 [129] If the scaling function v £ B*) q, v has at least s vanishing 

moments, and f e Bpq, withr > D/p—D/2 and 0 <r < s, then crK(f,^/)p < CK~r. 
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In words, Theorem 7.1 states that Besov-smooth signals are compressible in a suffi-

ciently smooth wavelet transform. 

7.4.3 Anisotropic Besov Spaces 

In many applications the type of structure present is different in each of the signal's 

dimensions. For example, the smoothness of a video sequence is of different scales 

in the spatial and temporal dimensions, while the smoothness of a hyperspectral 

datacube can be different in the spatial and spectral dimensions. In these cases, 

anisotropic and hyperbolic wavelets can be used to achieve sparse and compressible 

representations for signals of this type. Similarly to isotropic Besov spaces, signals in 

anisotropic Besov spaces have discretizations that are compressible in an anisotropic 

wavelet basis. We first provide a formal definition of anisotropic Besov spaces, which 

closely mirrors that of standard Besov spaces, except that the smoothness in each 

dimension is specified separately. 

We let f(t) := f{(tu...,tD)) : nD R be a D-D function. We define the 

directional derivatives as (Ah ,d f ) ( t ) f{t + hea) — f(t), 1 < d < D, where efi is the 

d?h canonical vector, i.e., its d* entry is one and all others are zero. We also define 

higher-degree directional derivatives as (A™df)(t) := (Ah^A^1 f))(t), m > 2. For 

r e R + , m € M and 0 < p < oo, we define the directional moduli of smoothness as 

By letting s = ( s i , . . . , sp), we define the anisotropic Besov quasi-seminorm as 

u>mdM,r,£lD)p = sup \\AZf\\P,n°-
\h\<r 
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An anisotropic Besov space B® contains functions of D continuous variables that 

have (roughly speaking) s,i derivatives in Lp(Ct) for any slice of the D-D function 

along the d}h dimension; the parameter q provides finer distinctions of smoothness. 

An example is a multidimensional signal that is expressed as the Kronecker product 

of two signals that are compressible in wavelet bases. 

We now study the conditions for compressibility of a signal in an anisotropic 

wavelets, as a function of the smoothness of the signal in its different dimensions. 

We will observe that the rate of decay for the wavelet coefficients will depend on 

the characteristics of the anisotropic Besov space in which the signal lives. Some 

conditions must be imposed on the wavelets used for compressibility. We denote by 

Vij{t) — 2^2u(2H — i) the scaling function dilated to scale j and translated to offset 

i, and = vh,j\ ® • • • ® vio,iD-

Definition 7.1 A scaling function u is Bpq-smooth, s > 0 (i.e. Sd > 0, 1 < d < D), 

if for (mi,..., m£>) > s and ji,... £ N® there are i\,..., ip such that for each 

keN0, 

for 1 < id < 2J'd, d = 1 , . . . , D, and if for each ( j 1?..., jo) € N® it holds that 

d= 1 

It can be shown that the scaling function formed from a Kronecker product of scaling 

functions has this smoothness property when the two individual scaling functions are 

smooth enough. This condition suffices to obtain results on approximation rates for 
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the different types of Kronecker product wavelet bases. The following theorem is an 

extension of a result from [128] to the D-D setting, and is proven in Appendix K. 

Theorem 7.2 Assume the scaling function v that generates the anisotropic wavelet 

basis a with anisotropy parameter s = (s\,... ,sp) is Bpq-smooth and that the 

function f 6 B^q, with f = ( r 1 ; . . . , r/j) and 0 < r < s. Define p = mini<^<D r^ and 

X = ED
D

l/r . If p > D/p + D/2 then the approximation rate for the function f in an 

isotropic wavelet basis is cr^if, j)p < CK~P. Similarly, if A > D/p + D/2, then the 

approximation rate for the function f in both an anisotropic and a hyperbolic wavelet 

basis is a K ( f , ^A)p < CAK'X and a K ( f , qH)p < CHK~X. 

To give some perspective for this theorem, we study two example cases: isotropy 

and extreme anisotropy. In the anisotropic case, all the individual rates r^ ~ r, 1 < 

d < D, and the approximation rate under anisotropic and hyperbolic wavelets matches 

that of isotropic wavelets: p sa r. In the extreme anisotropic case, we have that one 

of the approximation rates is much smaller than all others: re <C rd for all e ^ d. 

In contrast, in this case we obtain a rate of approximation under anisotropic and 

hyperbolic wavelets of p & Dre, which is D times larger than the rate for isotropic 

wavelets. Thus, the approximation rate with anisotropic and hyperbolic wavelets is 

in the range p e [1, D] m i n ^ ^ o rd. 

The disadvantage of anisotropic wavelets, as compared with hyperbolic wavelets, 

is that they must have smoothness ratios between the dimensions that match that 

of the signal in order to achieve the optimal approximation rate. Additionally, the 

anisotropic wavelet basis is the only one out of the three basis types described that can 
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be expressed as the Kronecker product of lower dimensional wavelet bases. Therefore, 

we use hyperbolic wavelets in the sequel and in the experiments in Section 7.5. 

7.4.4 Performance of Kronecker Product CS Recovery 

with Multidimensional Wavelet Bases 

When Kronecker product matrices are used for measurement and transform coding 

of compressible signals - a scheme we abbreviate as Kronecker Compressive Sensing 

(KCS) - it is possible to compare the rates of approximation that can be obtained 

by using independent measurements of each signal snapshot (or signal). The follow-

ing Theorem is obtained by merging the results of Theorems 2.5, 2.7 and 7.2 and 

Lemma 7.1. 

Theorem 7.3 Assume that a D-D signal X € j^Nix...xivD ^ sampied ver$ion 

of a continuous-time signal in with s = (si,... ,sd), under the conditions of 

Theorem 7.2. That is, X has Sd-compressible sections along its dth dimension in a 

wavelet bases ^ 1 < d < D. Denote by 1 < d < D a set of CS measurement 

bases that can be applied along each dimension of~K. If M measurements are obtained 

using a random subset of the columns o/<3>i ®... <8> then with high probability the 

recovery error from these measurements has the property 
d 

| | X - X | | 2 (7.4) 
d= 1 

where (3 = x^Sd — while the recovery from M measurements equally distributed 

among sections of the signal in the dth dimension has the property 

| | X - X | | (7.5) 
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for d = 1,..., D, where ld= ^ 

To summarize the theorem, the recovery error decay rate as the number of mea-

surements increases matches that of the signal's compressibility approximation error; 

however, there is an additional factor dependent on the inverse of the mutual coher-

ences that affects the decay with the same exponential rate of decay. 

To put Theorem 7.3 in perspective, we consider the isotropic and extreme anisotropic 

cases. In the anisotropic case (sd = s, 1 < d < D), all approaches provide the same 

CS recovery approximation rate, i.e., (3 = jd, 1 < d < D. In the extreme anisotropic 

case (se Sd, d ^ e) the approximation rate of KCS recovery approaches 3 & Dse, 

while the approximation rate using standard CS on the sections of the signal along 

the dth dimension is approximately 7d ~ Sd- Thus, using KCS would only provide an 

advantage if the measurements are to be distributed along the eth dimension. 

It is desirable to find a meaningful comparison of these D + 1 choices for CS 

recovery to determine the values of mutual coherences and compression error decay 

rates for which KCS is more advantageous. For example, the upper bound obtained 

from (7.4) is smaller than that of (7.5) for the eth dimension when 

d^e 

which provides the maximum number of measurements for which KCS outperforms 

standard CS with partitioned measurements. 
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7.5 Experimental Results 

In this section, we perform experiments to verify the compressibility properties of 

multidimensional hyperspectral signals in a Kronecker product wavelet basis. We 

also perform experiments that showcase the advantage of using Kronecker product 

sparsity bases and measurement matrices when compared with schemes that operate 

on partitioned versions of the multidimensional signals. 

7.5.1 Performance of Kronecker CS 

Our first experiment considers synthetically generated 8 x 8 x 8 signals (N = 512) 

that are K = 10-sparse in a Kronecker product basis, and compares three CS recovery 

schemes: the first one uses a single recovery from dense, global measurements; the 

second one uses a single KCS recovery from the set of measurements obtained inde-

pendently from each 8 x 8 slice; and the third one uses independent recovery of each 

8 x 8 slice from its individual measurements. We let the number of measurements M 

vary from 0 to N, with the measurements evenly split among the slices in the inde-

pendent and KCS cases. For each value of M, we perform 100 iterations by generating 

if-sparse signals x with independent and identically distributed (i.i.d.) Gaussian en-

tries and with support following a uniform distribution among all supports of size 

K, and generating measurement matrices with i.i.d. Gaussian entries for each slice 

as well. We then measure the probability of successful recovery for each value of M, 

where a success is declared if the signal estimate x obeys ||x — x||2 < 10~3||x||2. The 

results are shown in Figure 7.3, which shows that KCS outperforms separate slice-by-
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Figure 7.3 : Performance of Kronecker product CS measurements. We generate signals of 
size 8x8x8 that are 10-sparse in a Kronecker product of a 2D and ID wavelet bases. We 
compare the performance of recovery from measurements taken using a Kronecker product 
of a 2D random dictionary and a ID identity basis, measurements taken using a full 3D 
random matrix, and measurements taken using a 2D random dictionary separately for each 
2D slice. 

slice recovery, while achieving lower success probabilities that global measurements. 

In fact, the overmeasuring factors M/K required for 95% success rate are 6, 15, and 

30 for global measurements, KCS, and independent recovery, respectively. 

7.5.2 Hyperspectral Data 

Our second experiment performs an experimental evaluation of the compressibility 

of a real-world hyperspectral datacube using independent spatial and spectral spar-

sity bases and compares it with a Kronecker product basis. The datacube for this 

experiment is obtained from the AVIRIS database. A 128 x 128 x 128 voxel sample 

is taken, obtaining a signal of length N = 221 samples. We then process the signal 

through three different transforms: the first two (Space, Frequency) perform wavelet 
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transforms along a subset of the dimensions of the data; the third one (Kronecker) 

transforms the entire datacube with a basis formed from the Kronecker product of 

a 2D isotropic wavelet basis in space and a ID wavelet basis in frequency, provid-

ing a hyperbolic wavelet basis. For each one of these transforms, we measured the 

compression signal-to-noise ratio (SNR) when transform coding is used to preserve K 

coefficients of the data for varying values of K. The results are shown in Figures 7.4 

and 7.5; the Kronecker transform provides the sparsest representation of the signal, 

outperforming the partial transforms in compression SNR. However, Figure 7.5(b) 

shows that the rate of decay for the normalized error of the Kronecker transform is 

only slightly higher than the minimum rate of decay among the individual transforms. 

Our analysis indicates that this result is due to the difference between the degrees of 

smoothness among the signal dimensions. 

We also compare the performance of KCS to that of CS using standard bases 

to sparsify individual spectral frames or pixels. In our simulations we obtain CS 

measurements using the subsampled permuted Hadamard transform of [7] on each 

spectral frame. For KCS we use a single Kronecker product measurement matrix 

as shown in (7.2), while for standard CS we perform independent recovery of each 

spectral frame. We also obtain global CS measurements that depend on all the voxels 

of the datacube as a baseline; such measurements result in a fully dense measurement 

matrix $ and therefore are difficult to obtain in real-world applications. We perform 

the experiment using the datacube from the previous experiment; we also "flatten" it 

in the spectral dimension to 16, 32, and 64 bands through averaging of neighboring 
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bands. 

Figure 7.6 shows the recovery error from several different setups: Independent re-

covery operates on each spectral band independently using a wavelet basis to sparsify 

each spectral band. KCS employs the Kronecker product formulations to perform 

joint recovery. We test two different Kronecker product bases: KCS Wavelet uses a 

Kronecker products of wavelet bases for both the spectral and spatial dimensions, and 

KCS Fourier uses a Kronecker products of a Fourier basis in the spectral dimension 

and a 2-D wavelet basis in the spatial dimensions. We also show results using the 

Kronecker product bases for sparsity together with Global measurements that depend 

on all voxels of the datacube. 

For the smaller datacubes used in Figure 7.6(a-b), we see a strong advantage 

to the use of Kronecker product compressibility bases as compared to independent 

recovery. We also see an improvement for distributed measurements (used in KCS) 

over global measurements when the number of measurements M obtained for each 

band is small; as M increases, this advantage vanishes due to the availability of suf-

ficient information. However, as the spectral resolution of the datacube increases 

(Figure 7.6(c-d)), the distributed (in the spectral dimension) measurement vectors 

become coherent with an increasing number of wavelets at fine scales, therefore de-

teriorating the performance of KCS. Furthermore, the datacube is likely to become 

less compressible in the bases chosen due to more sudden fluctuations in intensity for 

the wider spectral bands caused by the finer spectral resolution. 
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7.5.3 Video Data 

Our third experiment performs an experimental evaluation of the compressibility in 

independent spatial (per frame) and temporal (per pixel) sparsity bases and compares 

it with a standard isotropic wavelet bases, as well as Kronecker product wavelet basis. 

We use the standard video sequences known as Foreman, Mobile, Akiyo, Hall, and 

MotherDaughter. We also test the Dawn sequence used in [11]. Each sequence is 

cropped to have frames of 128 x 128 pixels and we preserve 128 frames for each 

sequence to obtain signals of length N = 221 samples; the Dawn sequence, however, 

is originally of size 64 x 64 x 64. We then process the signals through three different 

transforms: the first (Space) performs wavelet transforms along the spatial dimensions 

of the data; the second (Isotropic) uses standard isotropic 3D wavelets for the entire 

video sequence, and the third (Kronecker) transforms the entire sequence with a 

basis formed from the Kronecker product of a 2D isotropic wavelet basis in space 

and a ID wavelet basis in time, providing a hyperbolic wavelet basis. For each one 

of these transforms, we measured the compression signal-to-noise ratio (SNR) when 

transform coding is used to preserve K coefficients of the data for varying values of 

K. The results are shown in Figure 7.7 for each sequence, and closely resemble those 

obtained for hyperspectral data. Additionally, the Kronecker product outperforms 

the isotropic wavelet transform, due to the difference in smoothness between the 

temporal and spatial dimensions. The Dawn sequence is the exception here. 

We also compare the performance of KCS to that of CS using standard bases 

to sparsify individual frames. In our simulations we obtain CS measurements using 
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the subsampled permuted Hadamard transform of [7] on each video frame. For KCS 

we use a single Kronecker product measurement matrix as shown in (7.2), while for 

standard CS we perform independent recovery of each frame. We also obtain global 

CS measurements that depend on all the pixels of the video sequence as a baseline. 

Figures 7.8 and 7.9 show the recovery error from several different setups: Indepen-

dent recovery operates on each video frame independently, using a wavelet sparsifying 

basis. KCS employs the Kronecker product matrices to perform joint recovery of all 

frames. We also show results using the Kronecker product bases for sparsity together 

with Global measurements, as well as results using an Isotropic wavelet basis both 

with Global and Distributed measurements for comparison. The sequences used for 

the figures were Foreman and Akiyo, respectively. The Foreman and Mobile sequences 

feature camera movement, which is reflected in sharp changes in the value of each 

pixel across frames; in contrast, the Akiyo, Hall and Mother Daughter sequences have 

static camera placement, making the temporal changes of each pixel much smoother. 

The CS and KCS performance is very similar for the video sequences in each group, 

and so we omit the additional results. 

Figures 7.8 and 7.9 show, once again, that the strong advantage of KCS with dis-

tributed sensing fades as the measurement vectors become coherent with more wavelet 

basis vectors, i.e., as the number of frames in the video increases. While the Kronecker 

product basis outperforms the isotropic wavelet basis when global measurements are 

used, the advantage is lost when we switch to distributed measurements, due to their 

high mutual coherence with the Kronecker product basis. In other words, using mea-
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surements that are practically feasible incurs a penalty in the CS performance using 

Kronecker product bases. 

7.5.4 Single-Pixel Hyperspectral Camera 

Our third experiment uses real-world data obtained from a imaging device that per-

forms compressive sensing of multidimensional data using the distributed measure-

ments of (7.2). It is possible to construct a powerful compressive hyperspectral imag-

ing device simply by replacing the photosensor of the single-pixel camera of [7] by a 

spectrometer [27]. The resulting single-pixel hyperspectral camera effectively applies 

the same CS measurement matrix $ to each spectral band of the hyperspectral dat-

acube, as all wavelengths are modulated in the same fashion by a digital micromirrror 

device (DMD). The spectral band division can be performed dynamically since the 

spectral granularity of the CS measurements is determined by the spectrometer used. 

Figure 7.1(a) shows an example capture from the single-pixel hyperspectral cam-

era. The target is a printout of the Mandrill test image (illuminated by a desk 

lamp), for which 64 spectral bands spanning the 450-850 nm range at a resolution of 

128 x 128 pixels were obtained. In Figure 7.1(b), each spectral band was recovered 

independently. In Figure 7.1(c), the spectral bands were recovered jointly with KCS 

using the measurement structure of (7.2) and a hyperbolic wavelet basis. The results 

show considerable improvement in the quality of the recoveiy, particularly for those 

spectral frames with low signal power. 
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F i g u r e 7.4 : Examples of transform coding of a hyperspectral datacube of size 128 x 128 x 64. (a) 
Original data; (b) Coefficients of a wavelet transform applied at each pixel in the spectral domain; 
(c) Coefficients of a wavelet transform applied at each pixel in the spatial domain; (d) Coefficients of 
a Kronecker product hyperbolic wavelet transform. Each figure shows the datacube or coefficients 
Battened to 2D by concatenating each spectral band's image, left to right, top to bottom. In (b-d), 
dark blue pixels represent coefficients with small magnitudes. 
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Figure 7.5 : Performance of Kronecker product sparsity for hyperspectral imaging. A 
128 x 128 x 128 voxel datacube is subject to transform coding using a 2D wavelet basis for 
each spectral slice, a ID wavelet basis for each pixel, and a Kronecker product of these two 
bases for the entire datacube. (a) The Kronecker product performs better in distortion than 
either basis independently; however, (b) the rate of decay of the compression error using 
the Kronecker product basis is approximately the same as the lower rate obtained from the 
individual bases. 
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Figure 7.6 : Performance of Kronecker product sparsity and measurements matrices for 
hyperspectral imaging. Four versions of a datacube are subject to transform coding using a 
2D wavelet basis for each spectral slice and a Kronecker product of a wavelet and a wavelet 
or Fourier basis for the entire datacube. The four versions used are of sizes (a) 128 x 128 x 16 
voxels, (b) 128 x 128 x 32 voxels, (c) 128 x 128 x 64 voxels, and (d) 128 x 128 x 128 voxels. 
Recovery using the Kronecker product sparsifying basis outperforms separate recovery for 
the smaller datacubes. Additionally, there is an advantage to applying distributed rather 
than global measurements when the number of measurements M is low. However, when 
the resolution of the spectral dimension is increased, the distributed measurements in the 
spectral dimension become coherent with an increasing number of fine-scale wavelet basis 
vectors, therefore deteriorating the performance of KCS. Furthermore, the datacube is likely 
to become less compressible due to more sudden fluctuations in intensity. 
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Figure 7.7 : Performance of Kronecker product sparsity basis for transform coding of video 
sequences. The sequences are of size 128 x 128 x 128 voxels. We subject to transform coding 
using a 2D wavelet basis for each frame, an isotropic wavelet bases for the sequence and a 
Kronecker product of a 2-D and a 1-D wavelet basis for the entire datacube. The sequences 
used are (a) Foreman, (b) Mobile, (c) Akiyo, (d) Hall, (e) MotherDaughter, and ( f ) Dawn 
(size 64 x 64 x 64j. For (a-e), the Kronecker product performs better in distortion than the 
alternative bases. 
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Normalized number of measurements, M/N Normalized number of measurements, M/N 

(c) (d) 

Figure 7.8 : Performance of Kronecker product sparsity and measurements matrices for 
the Foreman video sequence. Four versions of the video sequence are subject to transform 
coding using a 2D wavelet basis for each spectral slice and a Kronecker product of a wavelet 
and a wavelet or Fourier basis for the entire datacube. The four versions used are contain 
(a) 16, (b) 32, (c) 64 , and (d) 128 frames. Recovery using the Kronecker product sparsi-
fying basis outperforms separate recovery. Additionally, the Kronecker basis outperforms 
isotropic wavelets when global measurements are used. However, when the measurements 
are distributed, the isotropic wavelet basis outperforms KCS due to the higher mutual 
coherence between distributed measurements and the hyperbolic wavelet basis. 
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Figure 7.9 : Performance of Kronecker product sparsity and measurements matrices for the 
Akiyo video sequence. Four versions of the video sequence are subject to transform coding 
using a 2D wavelet basis for each spectral slice and a Kronecker product of a wavelet and 
a wavelet or Fourier basis for the entire datacube. The four versions used are contain (a) 
16, (b) 32, (c) 64 , and (d) 128 frames. Recovery using the Kronecker product sparsifying 
basis matches separate recovery for the shortest video. However, the performance of KCS 
has a small improvement when the number of frames in the video increases. The Kronecker 
basis outperforms isotropic wavelets when global measurements are used. However, when 
the measurements are distributed, the isotropic wavelet basis outperforms KCS due to the 
higher mutual coherence between distributed measurements and the hyperbolic wavelet 
basis. 
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Chapter 8 

Conclusions and Future Work 

8.1 Conclusions 

In this thesis, we have proposed and studied a group of sparsity and compressibility 

models for signal ensembles and multidimensional signals. The models contributed 

here can be leveraged for signal compression through transform coding, as well as 

for compressive sensing (CS) and signal processing. Our focus was on prominent 

applications that are well suited to the properties of CS, such as sensor and camera 

networks [7,9,74,130,131], antenna and microphone arrays [132,133], hyperspectral 

imaging [8,10,27], and video acquisition [11,13-16]. The fact that the signals ob-

tained in these applications span two or more physical dimensionalities that exhibit 

different types of structure allowed us to propose a variety of representations that 

exploit the structure present in each different dimension in a different fashion. 

In Chapter 3, we provided fundamental lower bounds on the number of measure-

ments required of each signal when a joint sparsity model is used. The bounds guar-

antee successful signal recovery using an algorithm with combinatorial computational 

complexity; while this recovery method is not feasible for routine applications, it does 

provide us with significant insight on the type of savings that joint sparsity models 

can provide. The results provided in Theorem 3.1, 3.2 and 3.3 are very reminiscent of 
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the Slepian-Wolf theorem for distributed source coding [72], with the obvious differ-

ences between sparsity metrics for finite-dimensional signals and the entropy metrics 

for source statistics. Similar to the Slepian-Wolf theorem, the bounds we obtained 

show that the number of measurements required for each group of signals must suf-

fice to recover the nonzero coefficient information that is observed exclusively by that 

group. Similarly, for coefficients that are observed in a group of signals, we can par-

tition the measurement burden between the corresponding sensors. Additionally, we 

verified the reduction in the number of measurements afforded by the use of joint 

sparsity models in real-word applications by applying our distributed CS framework 

on environmental sensor network data in Chapter 4. 

In Chapters 5 and 6, we demonstrated that there are significant performance gains 

to be made by exploiting more realistic and richer signal models beyond the simplistic 

sparse and compressible models that dominate the CS literature. Building on unions 

of subspaces models, in Chapter 6 we provided an initial contribution towards what 

promises to be a general theory for model-based CS. We introduced the notion of a 

structured compressible signal and the associated restricted amplification property 

(RAmP) condition it imposes on the measurement matrix For the volumes of nat-

ural and manmade signals and images that are wavelet-sparse or compressible, our 

tree-based CS recovery algorithms offer performance that significantly exceeds today's 

state-of-the-art while requiring only M = O (K) rather than M = 0(K\og(N/K)) 

random measurements. For block-sparse signals and signal ensembles with common 

sparse support, our block-based CS recovery algorithms offer not only excellent per-
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formance but also require just M — O (JK) measurements, where JK is the signal 

sparsity or ensemble joint sparsity, respectively. Therefore, block-based recovery can 

recover signal ensembles using fewer measurements than the number required when 

each signal is recovered independently. Additional structured sparsity models have 

been developed using our general framework in [134,135]. 

In Chapter 7, we presented initial analytical results on the performance of CS using 

Kronecker product matrices. This theoretical framework is motivated by new sensing 

applications that acquire multidimensional signals in a progressive fashion, as well as 

by settings where the measurement process is distributed, such as sensor networks 

and arrays. We also provided analytical results for the recovery of signals that live 

in anisotropic Besov spaces, where there is a well-defined relationship between the 

degrees of compressibility obtained using lower-dimensional wavelet bases on subsets 

of the signal and multidimensional anisotropic wavelet bases on the entire signal. 

Furthermore, because the formulation follows the standard CS approach of single 

measurement and sparsifying matrices, standard recovery algorithms that provide 

provable recovery guarantees can be used; this obviates the need to develop ad-hoc 

algorithms to exploit additional signal structure. 

8.2 Future Work 

There are many avenues for future work on the topics of this thesis. 

While joint sparsity models are based on the assumption that the signals are sparse 

or compressible in some basis, in some cases the event observed is governed by a small 
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number of parameters. Manifold models are often use for parameter estimation and 

signal processing tasks in this domain; fortunately, the structure of these models is 

also preserved by randomized linear projections [136]. 

Manifold models can also be extended to signal ensembles [137]. Consider the 

example of an array of antennas that sense a known signal that is emitted from an 

unknown location. In this case, determining the location of the emitter allows us to 

compute the recorded signals through the use of a physical model for the transmission 

medium and emitting and sensing devices. Therefore, when such a physical model 

is available, the received signal can be described succinctly by the location of the 

emitter, which provides a two-dimensional signal parameterization. By noting that 

the same parameter values underlie each of the recorded signals, it is straightforward 

to pose a single manifold model for a concatenation of the signals in the ensemble. 

Similarly, for model-based CS, we have only considered the recovery of signals 

from models that can be geometrically described as a union of subspaces; possible 

extensions include other, more complex geometries (for example, high-dimensional 

polytopes, nonlinear manifolds). Furthermore, our framework will benefit from the 

formulation of new structured sparsity models that are endowed with efficient struc-

tured sparse approximation algorithms. We also expect that the core of our pro-

posed algorithms — a structured sparse approximation step — can be integrated into 

other iterative algorithms, including relaxed ^-norm minimization methods. Sev-

eral such algorithms employ soft thresholding operations, in contrast to the hard 

thresholding operations performed by most greedy and greedy-inspired CS recov-
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ery algorithms [64,65]. Therefore, there is some promise in the modification of 

soft thresholding algorithms to enforce the structure present in a union-of-subspaces 

model [138,139]. 

Further work for Kronecker CS remains in finding additional signal classes for 

which the use of multidimensional structures provide an advantage during compres-

sion. Some promising candidates include modulation spaces, which contain signals 

that can be compressed using Wilson and brushlet bases [140,141]. This framework 

also motivates the formulation of novel structured representations using sparsifying 

bases in applications where transform coding compression schemes have not been 

developed, such as terahertz imaging. 

Finally, the Kronecker CS can enable several different types of analysis for the 

performance of CS using partitioned measurements. For example, the size of the 

partitioning for a Kronecker product measurement matrix affects the performance; 

intuitively, the size directly controls the amount of randomization present in the 

matrix, with a minimum appearing when the size of each piece is close to the number of 

pieces in the partition. Similarly, consider the case of a Kronecker product basis that is 

known to provide good performance for transform coding of a multidimensional signal. 

We can design Kronecker product measurement matrices composed of measurement 

bases that are incoherent with the corresponding basis used in the Kronecker product 

basis for the corresponding dimension. As an example, distributed measurements 

along a given dimension — which correspond to a measurement matrix equal to a 

submatrix of the identity — will be optimal for signals that are sparse or compressible 
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in a Fourier basis along the same dimension, and will work well with signals that are 

sparse or compressible with bases whose vectors have dense or global supports. 
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Appendix A 

Proof of Theorem 3.1 

Let 

D - ^ K c + ^ K j (A.l) 
je A 

denote the number of columns in P . Because P G V f ( X ) , there exists 0 e such 

that X = PO. Because Y = $X, then 0 is a solution to Y = $ P 0 . We will argue 

that, with probability one over 

T := $ P 

has rank D, and thus 0 is the unique solution to the equation Y = <£P0 = T0 . 

We recall that, under our common/innovation model, P has the form 

Pc P i 0 . . . 0 

P c 0 P 2 . . . 0 
P = 

P c 0 0 . . . P j 

where P ^ is an N x Kc submatrix of the N x N identity, and each P^, j € A. is an 

N x Kj submatrix of the N x N identity. 

To prove that T has rank E, we will require the following lemma, which we prove 

in Appendix B. 
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Lemma A . l If (3.3) holds, then there exists a mapping 93T : { 1 , 2 , . . . , K c } —•• A, 

assigning each element of the common component to one of the sensors, such that for 

each r c A, 
Kc 

jer jer k=i 

and such that for each k £ {1,2,..., Kc}, the kth column ofPc does not also appear 

as a column O/POT^). 

Intuitively, the existence of such a mapping suggests that (i) each sensor has 

taken enough measurements to cover its own innovation (requiring Kj measurements) 

and perhaps some of the common component, (ii) for any T C A, the sensors in T 

have collectively taken enough extra measurements to cover the requisite Kc{T, P) 

elements of the common component, and (Hi) the extra measurements are taken at 

sensors where the common and innovation components do not overlap. Formally, we 

will use the existence of such a mapping to prove that T has rank D. 

We proceed by noting that T has the form 
-

$ i P c $ i P i 0 . . . 0 

$ 2 P C 0 $ 2 P 2 ••• o T = 

$ j P c 0 0 . . . $ j P J 

where each $ 7 P c (respectively, QjPj) is an Mj x Kc (respectively, Mj x Kj) submatrix 

of obtained by selecting columns from according to the nonzero entries of P c 

(respectively, Pj) . In total, T has D columns (A.l). To argue that T has rank D, 

we will consider a sequence of three matrices To, Ti, and Y2 constructed from small 
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modifications to T. 

We begin by letting T0 denote the "partially zeroed" matrix obtained from T 

using the following construction. We first let T0 = T and then make the following 

adjustments: 

1. Let k = 1. 

2. For each j such that has a column that matches column k of P c (note that 

by Lemma A.l this cannot happen if 9Jt(k) = j), let k' represent the column 

index of the full matrix P where this column of P j occurs. Subtract column 

k' of To from column k of To- This forces to zero all entries of To formerly 

corresponding to column k of the block $jPc-

3. If k < Kc, add one to k and go to step 2. 

The matrix T0 is identical to T everywhere except on the first Kc columns, where 

any portion of a column overlapping with a column of QjPj to its right has been set 

to zero. Thus, To satisfies the following two properties, which will be inherited by 

matrices Ti and T2 that we subsequently define: 

PI. Each entry of To is either zero or a Gaussian random variable. 

P2. All Gaussian random variables in To are i.i.d. 

Finally, because T0 was constructed only by subtracting columns of T from one 

another, 

rank(To) = rank(T). (A.3) 
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We now let Ti be the matrix obtained from T0 using the following construction. 

For each j E A, we select K j + lffli(fc)=j arbitrary rows from the portion of T0 

corresponding to sensor j. Using (A.l), the resulting matrix Ti has 

rows. Also, because Ti was obtained by selecting a subset of rows from T0, it has D 

columns (A.l) and satisfies 

We now let Y2 be the D x D matrix obtained by permuting columns of Ti using the 

following construction: 

1. Let T2 = [ ], and let j = 1. 

2. For each k such that 971 (k) = j, let Yi(k) denote the kth column of Ti, and 

concatenate T i {k ) to T2, i.e., let T2 [Y2 T^A;)]. There are 

such columns. 

3. Let T j denote the columns of Tx corresponding to the entries of Pj (the 

innovation components of sensor j), and concatenate T'x to T2, i.e., let Y2 <— 

[T2 T'J. There are K j such columns. 

4. If j < J , let j <— j + 1 and go to Step 2. 

Because Ti and Y2 share the same columns up to reordering, it follows that 

rank(Ti) < rank(T0). (A.4) 

rank(T2) = rank(Ti). (A.5) 



180 

Based on its dependence on T0, and following from Lemma A.l, the square matrix 

Y2 meets properties PI and P2 defined above in addition to a third property: 

P3. All diagonal entries of T2 are Gaussian random variables. 

This follows because for each j , K j 4- rows of Yi are assigned in its 

construction, while K j + Y^k=i l®t(fc)=.? columns of T2 are assigned in its construction. 

Thus, each diagonal element of T2 will either be an entry of some <f,
JPJ , which remains 

Gaussian throughout our constructions, or it will be an entry of some kth column of 

some $>jPc for which 9Jt(k) — j. In the latter case, we know by Lemma A.l and the 

construction of To that this entry remains Gaussian throughout our constructions. 

Having identified these three properties satisfied by T2, we will prove by induction 

that, with probability one over <&, such a matrix has full rank. 

Lemma A.2 Let Y^"1) be a (d — 1) x (d — 1) matrix having full rank. Construct a 

d x d matrix Y ^ as follows: 
r r(d~i) V i 

V2 W 

where vx, v2 € are vectors with each entry being either zero or a Gaussian 

random variable, to is a Gaussian random variable, and all random variables are 

i.i.d. and independent ofT^d~l\ Then with probability one, Y^ has full rank. 

Applying Lemma A.2 inductively D times, the success probability remains one. 

It follows that with probability one over rank(Y2) = D. Combining this last result 

with (A.3-A.5), we obtain rank(Y) = D with probability one over <E>. It remains to 

prove Lemma A.2. 
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Proof of Lemma A.2: When d = 1, T (d) = [to], which has full rank if and only if 

oj 0, which occurs with probability one. 

When d > 1, using expansion by minors, the determinant of T<d> satisfies 

de t (Y^) = w • det(T^~1')) + C, 

where C — C(T^-1), Vi, v2) is independent of oj. The matrix T(rf) has full rank if and 

only if de t (T^ ) / 0, which is satisfied if and only if 

^ -C 
^ det(T("-!))' 

By assumption, det(T^ -1^) ^ 0 and a; is a Gaussian random variable that is inde-

pendent of C and det(T^ -1^). Thus, u • t/r(d-i» with probability one. • 
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Appendix B 

Proof of Lemma A . l 

To prove this lemma, we apply tools from graph theory. We begin by specifying a 

bipartite graph G = (Vy, VM, E) that depends on the structure of the location matrix 

P £ VF(X). The graph G has two sets of vertices Vy and VM and a collection 

of edges E joining elements of Vy to Vm- The set Vy has vertices with indices 

k £ {1 ,2 , . . . ,D}, which are known as value vertices and represent entries of the 

value vector 0 (equivalently, columns of the matrix P). The set Vm has vertices with 

indices (j, m), with j 6 A and m £ {1,2. . . . , Mj}, which are known as measurement 

vertices and represent entries Vj{m) of the measurement vectors (equivalently, rows 

of the matrix $). The edges E are specified as follows: 

• For every k £ {1 ,2 , . . . , Kc} C Vv and j £ A such that column k of P c does 

not also appear as a column of P j , we have an edge connecting k to each vertex 

(J, m) £ VM for 1 < m < Mj. 

• For every k G {Kc +1, Kc+2,..., D} C Vy, we consider the sensor j associated 

with column k of P , and we have an edge connecting k to each vertex (j, m) £ 

VM for 1 < m < M r 

This graph G is a subgraph of the graph G shown in Figure 3.1(c), from which we 

remove the edges going from common component vertices in Vy to measurement 
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vertices in Vm that have incoming edges from innovation component vertices in Vv. 

We seek a matching within this graph, i.e., a subgraph (Vv, Vm, E) with E C E 

that pairs each element of Vv with a unique element of Vm- Such a matching will 

immediately give us the desired mapping 9Jt as follows: for each k <E { 1 , 2 , . . . , Kc} Q 

Vv, we let ( j , m) G Vm denote the single node matched to k by an edge in E, and we 

set m(k) = j. 

To prove the existence of such a matching within the graph, we invoke a version of 

Hall's marriage theorem for bipartite graphs [142]. Hall's theorem states that within 

a bipartite graph (Vi, V2,E), there exists a matching that assigns each element of Vi 

to a unique element of Vi if for any collection of elements n C Vi, the set E(Yl) of 

neighbors of n in V2 has cardinality ] £7(13) J > J XT |. 

In the context of our lemma, Hall's condition requires that for any set of entries in 

the value vector, n C VY, the set .E'(n) of neighbors of n in Vm has size l-E^n)! > |ITJ. 

We will prove that if (3.3) is satisfied, then Hall's condition is satisfied, and thus a 

matching must exist. 

Let us consider an arbitrary set U CVv. We let £ ( n ) denote the set of neighbors 

of n in Vm joined by edges in E, and we let Sn = {j G A : ( j , m) G E(U) for some m}. 

Thus, Su Q A denotes the set of signal indices whose measurement nodes have edges 

that connect to n . It follows that |-E(II)| = M,-. Thus, in order to satisfy 

Hall's condition for n , we require 

(B.l) 
jesn 
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We would now like to show that I^jeSn Kj + P) > jTT], and thus if (3.3) is 

satisfied for all T C A, then (B.l) is satisfied in particular for Sn ^ A. 

In general, the set II may contain vertices for both common components and 

innovation components. We write II = 11/ U lie to denote the disjoint union of these 

two sets. 

By construction, = |H/| because / (Sn,P) counts all innovations with 

neighbors in Sn, and because Sn contains all neighbors for nodes in IT/. We will also 

argue that KC(SU, P) > | n c | as follows. By definition, for a set T C A, Kc(r,P) 

counts the number of columns in P c that also appear in P j for all j ^ F. By 

construction, for each k € lie, node k has no connection to nodes (j, m) for j ^ Su', 

thus it must follow that the kth column of P c is present in P ; for all j ^ Sn, due to 

the construction of the graph G. Consequently, A'c(5n, P) > |IIc|. 

Thus, Kj + Kc(Sn,P) > |n7 | + |TT0] = |n|, and so (3.3) implies (B.l) for 

any II, and so Hall's condition is satisfied, and a matching exists. Because in such 

matching a set of vertices in Vm matches to a set in Vy of lower or equal cardinality, 

we have in particular that (A.2) holds for each T C A. • 
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Appendix C 

Proof of Theorem 3.2 

Given the measurements Y and measurement matrix we show that it is possible 

to recover some P E VF(X.) and a corresponding vector © such that X = P© using 

the following algorithm: 

• Take the last measurement of each sensor for verification, and sum these J 

measurements to obtain a single global test measurement y. Similarly, add the 

corresponding rows of $ into a single row (j). 

• Group all the remaining ]T\gA MJ — J measurements into a vector y and a 

matrix 

• For each matrix P E V 

- choose a single solution ©P to y = $P©p independently of (p - if no 

solution exists, skip the next two steps; 

- define X P - P© P ; 

- cross-validate: check if y — </>XP; if so, return the estimate (P, ©P); if not, 

continue with the next matrix. 

We begin by showing that, with probability one over the algorithm only terminates 

when it gets a correct solution - in other words, that for each P E V the cross-
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validation measurement y can determine whether Xp = X. We note that all entries 

of the vector <fi are i.i.d. Gaussian, and independent from <f>. Assume for the sake 

of contradiction that there exists a matrix P G P such that y = </>Xp, but Xp = 

POp ^ X; this implies <j6(X — Xp) = 0, which occurs with probability zero over <3>. 

Thus, if Xp ^ X, then 0Xp / y with probability one over <f>. Since we only need 

to search over a finite number of matrices P G P, cross validation will determine 

whether each matrix P G V gives the correct solution with probability one. 

We now show that there is a matrix in V for which the algorithm will terminate 

with the correct solution. We know that the matrix P* G 7-V (X) C V will be part 

of our search, and that the unique solution Bp. to Y = $P*QP . yields X = P*0 P . 

when (3.4) holds for P*, as shown in Theorem 3.1. Thus, the algorithm will find at 

least one matrix P and vector Q P such that X = PBp; when such matrix is found 

the cross-validation step will return this solution and end the algorithm. • 

Remark. Consider the algorithm used in the proof: if the matrices in V are 

sorted by number of columns, the algorithm is akin to £0 minimization on © with an 

additional cross-validation step. 
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Appendix D 

Proof of Theorem 3.3 

We let D denote the number of columns in P . Because P 6 'Pf(X), there exists 

9 E 8 D such that X = P©. Because Y = 3>X, then 0 is a solution to Y = $ P 0 . 

We will argue for T := $ P that rank(T) < D, and thus there exists 0 ^ 0 such that 

Y = T 0 = T 0 . Moreover, since P has full rank, it follows that X := P 0 ^ P 0 = X. 

We let To be the "partially zeroed" matrix obtained from T using the identi-

cal procedure detailed in Appendix A. Again, because T0 was constructed only by 

subtracting columns of T from one another, it follows that rank(T0) = rank(T). 

Suppose r C A is a set for which (3.5) holds. We let Ti be the submatrix of T0 

obtained by selecting the following columns: 

• For any k € {1, 2 , . . . , Kc} such that column k of P c also appears as a column 

in all P j for j £ T, we include column k of To as a column in Ti. There are 

Kc(T, P ) such columns k. 

• For any k € {Kc + 1, Kc + 2,...,£>} such that column k of P corresponds to 

an innovation for some sensor j 6 T, we include column k of T0 as a column in 

Ti- There are J^jer K j such columns k. 

This submatrix has YLj<=r ^-j + AV;(I\ P) columns. Because T0 has the same size as 

T, and in particular has only D columns, then in order to have that rank(T0) = D, 
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it is necessary that all ]Cjer Kj + Kc(T, P) columns of T j be linearly independent. 

Based on the method described for constructing To, it follows that Ti is zero for 

all measurement rows not corresponding to the set T. Therefore, let us consider the 

submatrix Y2 of Yi obtained by selecting only the measurement rows corresponding 

to the set I \ Because of the zeros in T1 ; it follows that rank(Ti) = rank(T2). 

However, since Y2 has only Mj rows, we invoke (3.5) and have that rank(Tx) = 

rank(T2) < E j e r M j < E j e r Ki + P). Thus, all Z j € r K j + Kc(T,P) columns 

of Ti cannot be linearly independent, and so T does not have full rank. • 
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Appendix E 

Proof of Theorem 6.2 

To prove this theorem, we will study the distribution of the maximum singular value 

of a submatrix <&t °f a matrix with i.i.d. Gaussian entries $ corresponding to the 

columns indexed by T. From this we obtain the probability that RAmP does not hold 

for a fixed support T. We will then evaluate the same probability for all supports T 

of elements of 7ZjtK, where the desired bound on the amplification is dependent on 

the value of j . This gives us the probability that the RAmP does not hold for a given 

residual subspace set 1Zj,K- We fix the probability of failure on each of these sets; we 

then obtain probability that the matrix $ does not have the RAmP using a union 

bound. We end by obtaining conditions on the number of rows M of $ to obtain a 

desired probability of failure. 

We begin from the following concentration of measure for the largest singular value 

of a M x K submatrix |T| = K, of an M x N matrix $ with i.i.d. subgaussian 

entries that are properly normalized [50,54,143]: 

For large enough M, /3 1; thus we ignore this small constant in the sequel. By 

letting r = jry/l + €k — 1 — (with the appropriate value of j for T), we obtain 

P (<W(<M > FVTTTD < E - ^ ' ^ - ' - W 
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We use a union bound over all possible R j supports for u € TljtK to obtain the 

probability that $ does not amplify the norm of u by more than j ry/ l + tK\ 

p (| |$u||2 > ( f V T T T ^ j ||u||2 V u e 7 l j i k ) < 

Bound the right hand side by a constant /i; this requires 

Rj < e M ^ O W - i ) - ^ ) ^ ( K 1 ) 

for each j . We use another union bound among the residual subspaces 7zjj< to 

measure the probability that the RAmP does not hold: 

p (| |$u||2 > (fVT+T?) ||u||2 V u e nitK, v j, 1 < j < \ n / k ] ) < 
N_ 
K p. 

To bound this probability by e we need [i = jfe plugging this into (E.l), we 

obtain 

3 ~ n 

for each j. Simplifying, we obtain that for $ to posess the RAmP with probability 

1 — the following must hold for all j : 

1 
m > ( \ / 2 ( l n ¥ + * ) + V T ) • (E.2) 0 ' r v T + ! ^ - 1 ) ' 

Since (y/a + Vb)2 < 2a + 2b for a,b > 0, then the hypothesis (6.3) implies (E.2), 

proving the theorem. • 
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Appendix F 

Proof of Theorem 6.3 

In this proof, we denote M(0, K) = 6k for brevity. To bound ||T(0 — 6k) lb, we write 

6 as 
[N/K] 

0 = 6k + E , 
i=i 

where 

^Tj = QjK — Q(j-i)K,j — 2 , . . . , \N/K] 

is the difference between the best jK structured sparse approximation and the best 

( j — 1 )K structured sparse approximation. Additionally, each piece € 7lj,K-

Therefore, since T satisifes the s — l)-RAmP, we obtain 

\m6-dK)b T ( Ti"Tl 
\N/K] \N/K 1 

< E i i T ^ i i 2 < E 
j=2 j=2 

(F.l) 

Since 6 G 9Jts, the norm of each piece can be bounded as 

IIMa = < + < 10\m.K- ({j - l)~s + j~s). 
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Applying this bound in (F.l), we obtain 

\N/K\ 
me-eK)\\2 < VTT^ f-'WOr.h, 

J = 2 

\N/K\ 

< v T T 7 ^ \ e U K ~ s 

j=2 
m 

< v r + ^ \ e \ m s K - s r 1 -

i=2 

It is easy to show, using Euler-Maclaurin summations, that Y^'-jl^ f 1 ^ In [A"/A']; 

we then obtain 
\\r(0-6K)\\2<VTT7^K-sln 

which proves the theorem. 

K I^Iot,, 

• 
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Appendix G 

Model-based Iterative Hard Thresholding 

Our proposed model-based iterative hard thresholding (IHT) is given in Algorithm 9. 

For this algorithm, Theorems 6.4, 6.5, and 6.6 can be proven with only a few modi-

fications: T must have the A ^ - R I P with <5̂ 3. <0.1, and the constant factor in the 

bound changes from 15 to 4 in Theorem 6.4, from 35 to 10 in Theorem 6.5, and from 

20 to 5 in Theorem 6.6. 

To illustrate the performance of the algorithm, we repeat the HeaviSine experi-

ment from Figure 6.1. Recall that N = 1024, and M = 80 for this example. The 

advantages of using our tree-model-based approximation step (instead of mere hard 

thresholding) are evident from Figure G.l. In practice, we have observed that our 

model-based algorithm converges in fewer steps than IHT and yields much more ac-

curate results in terms of recovery error. 
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Algorithm 9 Model-based Iterative Hard Thresholding 

Inputs: CS matrix T, measurements y, structured sparse approx. algorithm Mjc 

Output: K-sparse approximations 9 to true signal representation 9 

Initialize: #o = 0 , r = y ; i = 0 

while halting criterion false do 

1. i i + 1 

2. b <- i + TTd 

3. 6i <- M(b, K) 

4. r y - T9i 

end while 

return 6 <— 9i 

{form signal estimate} 

{prune residual estimate according to structure} 

{update measurement residual} 

(a) original (b) IHT (c) model-based IHT 

(RMSE = 0.627) (RMSE = 0.080) 

Figure G.l : Example performance of model-based IHT. (a) Piecewise smooth HeaviSine 
test signal, length N — 1024. Signal recovered from M = 80 measurements using both (b) 
standard and (c) model-based IHT recovery. Root mean-squared error (RMSE) values are 
normalized with respect to the norm of the signal. 
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Appendix H 

Proof of Theorem 6.4 

The proof of this theorem is identical to that of the CoSaMP algorithm in [66, Section 

4.6], and requires a set of six lemmas. The sequence of Lemmas H.1-H.6 below are 

modifications of the lemmas in [66] that are restricted to the structured sparsity 

model. Lemma H.4 does not need any changes from [66], so we state it without 

proof. The proof of Lemmas H.3-H.6 use the properties in Lemmas H.l and H.2, 

which are simple to prove. 

Lemma H . l Suppose T has M.-RIP with constant 5m- Let Q be a support corre-

sponding to a subspace in M.. Then we have the following handy bounds. 

| | T £ U | | 2 < Y/L + FA\\UH, 

IITUlb < • 7 f J = r H | 2 l Vl - oM 

| |T£Tnu| | a < (1 + y i H , , 

||T£Tau||2 > ( l - M H h , 

I K T ^ r u l h < r - ^ r -nu l l a , 
i + om 

IKTSTn)"^!!, > 7 - V l | u | | 2 . 
i — om 

Lemma H.2 Suppose T has M.2K-RIP with constant 5M2 . Let Vl be a support corre-
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sponding to a subspace in M-k, and let 6 € M.k• Then ||TqT0|qc||2 < ll^lnHk-

We begin the proof of Theorem 6.4 by fixing an iteration i > 1 of model-based 

CoSaMP. We write 6 = for the signal estimate at the beginning of the ith iteration. 

Define the signal residual s = 6 — 9, which implies that s 6 M\. We note that we 

can write r = y — T6 = T (6 — 9) + n = Ts + n. 

Lemma H.3 (Identification) The set = supp(M2(e, K)), where e = YTr, identi-

fies a subspace in and obeys 

||s|fjc||2 < 0.2223||s||2 + 2.34||n||2. 

Proof of Lemma H.3: Define the set II = supp(s). Let en = M2(e, K) be the 

model-based approximation to e with support Q, and similarly let en be the approx-

imation to e with support II. Each approximation is equal to e for the coefficients in 

the support, and zero elsewhere. Since Q, is the support of the best approximation in 
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M.2k, we must have: 

He - en||5 < lle - en||2> 
N N 

E ( e [ n ] - e f i H ) 2 < E ( e N - enN) 2 , 
N=1 n=l 

E e N 2 < E e [ n ] 2 , 
NGFL n 

N N 

E e M 2 - E e N 2 > E e N 2 - E e t n 

ra=l NGFL N=1 n 

E e N 2 > E e [ n ] 2 , 
riefi ne n 

E e M 2 > E e N 2 > 

neo\n 

l|e|n\nlll > l|e|n\fi|ll. 

where 0 \ II denotes the set difference of Q and II. These signals are in .M.% (since 

they arise as the difference of two elements from A42
K); therefore, we can apply the 

M.%-RIP constants and Lemmas H.l and H.2 to provide the following bounds on 

both sides (see [66] for details): 

IMnvnlh < <WJs| | 2 + y r 7 ^ 7 | | e | | 2 , (H.l) 

||e|n\dl2 > (1 - ^ ) | | s | n c | | 2 - ^ | | s | | 2 - y T T ^ I I e l l , (H.2) 

Combining (H.l) and (H.2), we obtain 

(Sm% + <WK)I|S||2 + 2J1 + 6M2k ||e||2 

The argument is completed by noting that 5M2 < 5M4 <0.1. • K K 

Lemma H.4 (Support Merger) Let Q be a set of at most 2K indices. Then the set 

A = fiUsupp(x) contains at most3K indices, and ||x|Ac||2 < ||s|nc||2. 
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Lemma H.5 (Estimation) Let A. be a support corresponding to a subspace in M3
K, 

and define the least squares signal estimate b by b\r = T\.y, b|yc = 0. Then 

| | x -b | | 2 <1.112 | |x | A c | | 2 + 1.06||n||2. 

Proof of Lemma H. 5: It can be shown [66] that 

||x - b||2 < ||x|Ac||2 + | |(YAYA) -1 YATx|nc| |2 + ||Tiii| |2. 

Since A is a support corresponding to a subspace in M\ and x e Mk, we use 

Lemmas H.l and H.2 to obtain 

| | x - b | | 2 < ||x|AC||a + - 4 - H T l T x l n . i l . + * H i , 
1 ~ 5 m * k - 6 m , k 

< | l + T - ^ - ) | | x | n c | | 2 + * =||n[[2. 1-5m*k) J l-SMj( 

Finally, note that < <0.1. • 

Lemma H.6 (Pruning) The pruned approximation % = M(b, K) is such that 

||x — Xj||2 < 2||x — b||2. 

Proof of Lemma H.6: Since x,: is the best approximation in Mk to b, and x G Mk, 

we obtain 

||x - Xi||2 < ||x - b||2 + ||b - Xj||2 < 2||x - b||2. 

• 
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We use these lemmas in reverse sequence for the inequalities below: 

| | x - X i | | 2 < 2 | | x - b | | 2 , 

< 2(1.112||X|AC||2 + 1.06||n||2), 

< 2.224||s|nc||2 + 2.12||n||2) 

< 2.224(0.2223||s||2 + 2.34||n||2) + 2.12||n||2, 

< 0.5||s||2 + 7.5||n||2, 

< 0.5||x — XJ_I| |2 + 7.5||n||2. 

From the recursion on we obtain ||x — Xj||2 < 2""l||x||2 + 15||n|j2. This completes 

the proof of Theorem 6.4. • 
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Appendix I 

Proof of Proposition 6.1 

When K < log2 N, the number of subtrees of size K of a binary tree of size N is the 

Catalan number [144] 

TK,N 
1 (2K\ < (2e) K 

K + 1 V K J - K + 1' 

using Stirling's approximation. When K > log2 N, we partition this count of subtrees 

into the numbers of subtrees tx,h of size K and height h. to obtain 

log 2N 
TK,N = 53 TK>H 

fi=[log2 KJ+1 

We obtain the following asymptotic identity from [144, page 51]: 

4^+1.5 
tx,h h4 E 

m> 1 

IK 
=^-(2irm)4 - 3(2ttm)2 K(2trm) T. 

e h? + 4 0 

4 K / n i ' k f h \ iK/n fin8 h 
+4 KO ( -7^- ] + A O ( 

4K+2 
< —--z /l4 

m> 1 

h5 

2K 
(27rm)4 - 3(27rm)2 K(2irm)2 

e h2 (1.1) 

We now simplify the formula slightly: we seek a bound for the sum term (which 

we denote by (3}, for brevity): 

A = £ 
m> 1 

2K 
h2 (27rm)4 - 3(27rm)2 2A\ v 4 -

m>l /l2 (1.2) 

Let mmax = the value of m for which the term inside the sum (1.2) is maximum; 
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this is not necessarily an integer. Then, 

L"lmaxJ— 1 ~ „ \mmaK] _ r , 2K fn ^4 -K(2T} , V^ 2K 4 0h < "T^"(27rm) e + - f ^ ^ m f e 
m=l m=LmmaxJ 

m> frnmaxl +1 

L-maxJ2K r ^ x 1 2 K.n ,4 

rn= [mmaxj 

+ / —(27ra;)4e h* -dx 
«/ fmrnaxl 

2 

hT1 

T̂ maxl 

where the second inequality comes from the fact that the series in the sum is strictly 

increasing for m < [mrnaxJ and strictly decreasing for m > [mmax]. One of the terms 

in the sum can be added to one of the integrals. If we have that 

fO I 1X4 -̂ eZLhnmaxll! _K(2.(rmmax1))2 

(2tt LmmaxJ) e < (2tt |mm a x | )4e , (1.3) 

then we can obtain /-rmmaxl 2K . K<2,s)2 2 K / n r l x 4 *(24r-maxl)2 
^h < I + — ( 2 7 r [ m m a x l ) 4 e - ^ 

f 0 0 2if „ K(2«*)2 

+ / -^-(2nx) e h?dx. 
J rmmaxl ^ 

When the opposite of (1.3) is true, we have that 

fLmmaxJ 2K . x4 2AT . |n4 *(2.|mmaxl)2 

< J 27rx)4e + —(27r[rnmaxJ)4e- V 

J LmmaxJ " 

Since the term in the sum reaches its maximum for mrnax. we will have in all three 

cases that 
f ° ° 2K , 4 * ( 2 ^ ) 3 8 / i 2 

0h<j^ -jp(2*x)*e + — . 
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We perform a change of variables u = 2ttx and define a = h/\/2K to obtain 

8h2 „ 1 r 1 . , 8h? 
Ph < ^ f - y e - u V 2 ° 2 d x + f ^ < r - 7 ^ e - ^ d x + 2tt Jo a2 Ke2 2a7_oo y/tora Ke2' 

Using the formula for the fourth central moment of a Gaussian distribution: 

r _L_ u4e-u2/2°2dx = 3ct4 

J-oo V27T \/2tt(7 

we obtain 

3tx3 8 ft2 _ 3ft3 8/i2 

^ - 2A/27T + # e 2 ~ sVidO + ^ e 2 ' 

Thus, (1.1) simplifies to 

+ ^ 4K ( 6 128 \ 

Correspondingly, Tk,n becomes 

log2JV K 

V — ( 6 1 2 8 Tk,N < 
ft=[log2 KJ+1 

4a ' / 6 ^ 1 128 128 < E i izo 
h + K \ v^rK , ^ h e2 ^ fr2e2 

\ v /^Llogj/fJ+l h=[log2Ki + l 

It is easy to show, using Euler-Maclaurin summations, that 

E r 1 < I n a n d ^ r ^ - ^ - r ; ' a — 1 ' a — 1 j=a j=a 

we then obtain 

-k,n 
< f 6 log2iV 128 \ Ak+a 

- K n [\og2K\ + e2[log2 K\) ~ Ke2[log2K\ ~ 

This proves the proposition. • 
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Appendix J 

Proof of Proposition 6.3 

We wish to find the value of the bound (6.3) for the subspace count given in (6.8). 

We obtain M > maxi<j<\N/K] Mj, where Mj follows one of these three regimes: 

1 ( (2e)K(2j+1') N 
Mj = -o [2K + A\n——-^rrrrr-. r ^ — r + 2t 

{ j r y / T T ^ - l ) 2 \ K(Kj + l)(Kj + K + l) 

We separate the terms that are linear on K and j, and obtain 

(K(3 + 4 In 2) + 8Kj( 1 + In 2) + 4 In K(KJ+1)?Kj+K+1) + 2t) 

{fVTTT^ - if 
_ («*(* + m 2) + g a y f e a + 3 m K ( K J + 1 ) f K 3 + K + 1 ) + f ) 

f - 1 The 

sequence {Mj}**\ is a decreasing sequence, since the numerator is a decreasing 

sequences and the denominator is an increasing sequence whenever s > 0.5. We then 

have 

M £ ( v T h4 - 1 ) 2 + 1 2 1 n 2 ) + 4 W + WK + 1 ) •+ 2 t 

This completes the proof of Proposition 6.3. • 

Mj = 
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Appendix K 

Proof of Theorem 7.2 

Following [128], we define the anisotropy for the smoothness values s i , . . . , sp through 

the use of constants a i , . . . , ad such that 

se ad 

In order for this set of equations to have a unique solution, we pose the additional 

constraint ad — D- We search for the resulting approximation rate A such that 

the following holds: 

A (—,...,— ) = (si,...,sD). 
\Oi aDJ 

In other words, we require sd = 1 <d< D. Thus, we can write A as the average 

of the products 

S\d\ + s2a2 + ... + SpaD A = 
D 

A + s2(P - ai - o3 - ... - aD) + •.. + sD(P - ax - ... - ap-i) 
D 

D E ? = 2
 Sd + A - Ox Sd - a2 Ed=3 Sd - Sd - . . . - dp Y ^ j Sd 

D 
D \ _ A o. _ A \rD o. _ A „. _ sr0-1 

D 
d—2 

\ _ A c _ A c _ A V ^ c _ fL c 

D 
D , / D D D D-l 

- e I — E S 
d = 2 \ d = 2 1 d = 3 ^ d=2,dj^3 6 d=2 u 

= E ^ + ^ - ^ E ^ - E f E ^ 
rf=2 \ 1 d = 2 e=2 e d=2,d^e 



Grouping the terms with A, we obtain 

A_ 
D 

( 1 D D D \ D 

^ - i + r E ^ + E r E " = X > \ (2=2 e=2 e d—2,cb£e J d= 2 
Solving for A, we obtain 

A = 
D EjL2 

D 1 + s1! Ed=2 + Ee=2 Se Ed=2,d#e 'Sd 

D 
DEt 2 ^ 

^ - 1 + J E L ^ + E f=2 i (E?=2 - *e) ' 

^ E L ^ 
^ - 1 + i E?=2 ^ + Ef=2 i E?=2 ^ ~ " 1) ' 

D 

SI ^ Z ^ e = 2 S e 

D 
— v D X' 

proving the theorem. 
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