426 research outputs found

    A systematic review of the applications of Expert Systems (ES) and machine learning (ML) in clinical urology.

    Get PDF
    BackgroundTesting a hypothesis for 'factors-outcome effect' is a common quest, but standard statistical regression analysis tools are rendered ineffective by data contaminated with too many noisy variables. Expert Systems (ES) can provide an alternative methodology in analysing data to identify variables with the highest correlation to the outcome. By applying their effective machine learning (ML) abilities, significant research time and costs can be saved. The study aims to systematically review the applications of ES in urological research and their methodological models for effective multi-variate analysis. Their domains, development and validity will be identified.MethodsThe PRISMA methodology was applied to formulate an effective method for data gathering and analysis. This study search included seven most relevant information sources: WEB OF SCIENCE, EMBASE, BIOSIS CITATION INDEX, SCOPUS, PUBMED, Google Scholar and MEDLINE. Eligible articles were included if they applied one of the known ML models for a clear urological research question involving multivariate analysis. Only articles with pertinent research methods in ES models were included. The analysed data included the system model, applications, input/output variables, target user, validation, and outcomes. Both ML models and the variable analysis were comparatively reported for each system.ResultsThe search identified n = 1087 articles from all databases and n = 712 were eligible for examination against inclusion criteria. A total of 168 systems were finally included and systematically analysed demonstrating a recent increase in uptake of ES in academic urology in particular artificial neural networks with 31 systems. Most of the systems were applied in urological oncology (prostate cancer = 15, bladder cancer = 13) where diagnostic, prognostic and survival predictor markers were investigated. Due to the heterogeneity of models and their statistical tests, a meta-analysis was not feasible.ConclusionES utility offers an effective ML potential and their applications in research have demonstrated a valid model for multi-variate analysis. The complexity of their development can challenge their uptake in urological clinics whilst the limitation of the statistical tools in this domain has created a gap for further research studies. Integration of computer scientists in academic units has promoted the use of ES in clinical urological research

    Predictive model for acute myocardial infarction in working-age population: a machine learning approach

    Get PDF
    Cardiovascular diseases are the leading cause of mortality in Latin America, particularly acute myocardial infarction (AMI), which is the primary cause of atherosclerotic cardiovascular morbidity. This study aims to develop a predictive model for the probability of AMI occurrence in the working-age population, based on atherogenic indices, paraclinical variables, and anthropometric measures. The research conducted a cross-sectional study involving 427 workers aged 40 years or older in Popayán, Colombia. Out of this population, 202 individuals were screened with a 95% confidence interval and a 5% error margin. Epidemiological, anthropometric, and paraclinical data were collected. A binary logistic regression model was employed to identify variables directly associated with the probability of AMI. Predictive classification models were generated using statistical software JASP and the programming language Python. During the training stage, JASP produced a model with an accuracy of 87.5%, while Python generated a model with an accuracy of 90.2%. In the validation stage, JASP achieved an accuracy of 93%, and Python reached 95%. These results establish an effective model for predicting the probability of AMI in the working population

    A novel pathway to detect muscle-invasive bladder cancer based on integrated clinical features and VI-RADS score on MRI: results of a prospective multicenter study

    Get PDF
    Purpose To determine the clinical, pathological, and radiological features, including the Vesical Imaging-Reporting and Data System (VI-RADS) score, independently correlating with muscle-invasive bladder cancer (BCa), in a multicentric national setting. Method and Materials Patients with BCa suspicion were offered magnetic resonance imaging (MRI) before trans-urethral resection of bladder tumor (TURBT). According to VI-RADS, a cutoff of >= 3 or >= 4 was assumed to define muscle-invasive bladder cancer (MIBC). Trans-urethral resection of the tumor (TURBT) and/or cystectomy reports were compared with preoperative VI-RADS scores to assess accuracy of MRI for discriminating between non-muscle-invasive versus MIBC. Performance was assessed by ROC curve analysis. Two univariable and multivariable logistic regression models were implemented including clinical, pathological, radiological data, and VI-RADS categories to determine the variables with an independent effect on MIBC. Results A final cohort of 139 patients was enrolled (median age 70 [IQR: 64, 76.5]). MRI showed sensitivity, specificity, PPV, NPV, and accuracy for MIBC diagnosis ranging from 83-93%, 80-92%, 67-81%, 93-96%, and 84-89% for the more experienced readers. The area under the curve (AUC) was 0.95 (0.91-0.99). In the multivariable logistic regression model, the VI-RADS score, using both a cutoff of 3 and 4 (P < .0001), hematuria (P = .007), tumor size (P = .013), and concomitant hydronephrosis (P = .027) were the variables correlating with a bladder cancer staged as >= T2. The inter-reader agreement was substantial (k = 0.814). Conclusions VI-RADS assessment scoring proved to be an independent predictor of muscle-invasiveness, which might implicate a shift toward a more aggressive selection approach of patients' at high risk of MIBC, according to a novel proposed predictive pathway

    Loss of heterozygosis on chromosome 18q21-23 and muscle-invasive bladder cancer natural history

    Get PDF
    Loss of heterozygosis (LOH) on chromosome (Chr) 18q21-23 was reported to be one of the most common genetic alterations identified in bladder cancer. The current study aimed to determine the prognostic role of LOH on Chr 18q21-23 in patients diagnosed with muscle-invasive urothelial bladder carcinoma (MIBC). A total of 34 consecutive patients were enrolled in the present prospective study. LOH on Chr 18 was assessed by performing multiplex polymerase chain reaction on paired blood and tumour tissue samples from each patient. The following primers were used in the present study: D18S51, MBP LW and MBP H. These data were then compared with follow-up information. The main outcome measure was patient status at the end of the follow-up. Cox regression was used to evaluate the impact of each parameter on cancer-specific survival and the Kaplan Meier test for disease-free survival was plotted in order to estimate survival. Out of 34 patients, 18 (52.9%) exhibited ≥1 alteration in one of the loci analysed on chromosome 18, while 16 (47.1%) revealed no alterations. No correlation was identified with stage (P=0.18) or grade (P=0.06); however, LOH on Chr 18q21-23 was significantly associated with a lower recurrence-free probability (P<0.0001). Kaplan-Meier curves demonstrated a significant association between patient status at follow-up and LOH on Chr 18 (P<0.001). In addition, multivariate analysis identified LOH on Chr 18 (P<0.001) and stage (P=0.01) as independent survival predictors. Furthermore, artificial neural network analysis was consistent with the results of the multivariate analysis. In conclusion, the present study highlighted the role of LOH on Chr 18q21-23 in predicting the clinical outcome of patients with MIBC

    Better prognostic markers for nonmuscle invasive papillary urothelial carcinomas

    Get PDF
    Bladder cancer is a common type of cancer, especially among men in developed countries. Most cancers in the urinary bladder are papillary urothelial carcinomas. They are characterized by a high recurrence frequency (up to 70 %) after local resection. It is crucial for prognosis to discover these recurrent tumours at an early stage, especially before they become muscle-invasive. Reliable prognostic biomarkers for tumour recurrence and stage progression are lacking. This is why patients diagnosed with a non-muscle invasive bladder cancer follow extensive follow-up regimens with possible serious side effects and with high costs for the healthcare systems. WHO grade and tumour stage are two central biomarkers currently having great impact on both treatment decisions and follow-up regimens. However, there are concerns regarding the reproducibility of WHO grading, and stage classification is challenging in small and fragmented tumour material. In Paper I, we examined the reproducibility and the prognostic value of all the individual microscopic features making up the WHO grading system. Among thirteen extracted features there was considerable variation in both reproducibility and prognostic value. The only feature being both reasonably reproducible and statistically significant prognostic was cell polarity. We concluded that further validation studies are needed on these features, and that future grading systems should be based on well-defined features with true prognostic value. With the implementation of immunotherapy, there is increasing interest in tumour immune response and the tumour microenvironment. In a search for better prognostic biomarkers for tumour recurrence and stage progression, in Paper II, we investigated the prognostic value of tumour infiltrating immune cells (CD4, CD8, CD25 and CD138) and previously investigated cell proliferation markers (Ki-67, PPH3 and MAI). Low Ki 67 and tumour multifocality were associated with increased recurrence risk. Recurrence risk was not affected by the composition of immune cells. For stage progression, the only prognostic immune cell marker was CD25. High values for MAI was also strongly associated with stage progression. However, in a multivariate analysis, the most prognostic feature was a combination of MAI and CD25. BCG-instillations in the bladder are indicated in intermediate and high-risk non-muscle invasive bladder cancer patients. This old-fashion immunotherapy has proved to reduce both recurrence- and progression-risk, although it is frequently followed by unpleasant side-effects. As many as 30-50% of high-risk patients receiving BCG instillations, fail by develop high-grade recurrences. They do not only suffer from unnecessary side-effects, but will also have a delay in further treatment. Together with colleagues at three different Dutch hospitals, in Paper III, we looked at the prognostic and predictive value of T1-substaging. A T1-tumour invades the lamina propria, and we wanted to separate those with micro- from those with extensive invasion. We found that BCG-failure was more common among patients with extensive invasion. Furthermore, T1-substaging was associated with both high-grade recurrence-free and progression-free survival. Finally, in Paper IV, we wanted to investigate the prognostic value of two classical immunohistochemical markers, p53 and CK20, and compare them with previously investigated proliferation markers. p53 is a surrogate marker for mutations in the gene TP53, considered to be a main characteristic for muscle-invasive tumours. CK20 is a surrogate marker for luminal tumours in the molecular classification of bladder cancer, and is frequently used to distinguish reactive urothelial changes from urothelial carcinoma in situ. We found both positivity for p53 and CK20 to be significantly associated with stage progression, although not performing better than WHO grade and stage. The proliferation marker MAI, had the highest prognostic value in our study. Any combination of variables did not perform better in a multivariate analysis than MAI alone

    Minimally Invasive Urological Procedures and Related Technological Developments

    Get PDF
    The landscape of minimally invasive urological intervention is changing. A lot of new innovations and technological developments have happened over the last 3 decades. Laparoscopy and robotic surgery have revolutionised kidney and prostate cancer treatment, with more minimally invasive procedures now being carried out than ever before. At the same time, technological advancements and the use of laser have changed the face of endourology. Several new innovative treatments are now commonplace for benign prostate enlargement (BPE). Management of prostate cancer now involves procedures such as robotic prostatectomy, brachytherapy, radiotherapy, cryotherapy and HIFU. Robotic partial nephrectomy and cryotherapy have changed the face of renal cancer. En-bloc resection of bladder cancer is challenging the traditional management of non-muscle invasive bladder cancer and becoming commonplace, while robotic cystectomy is also gaining popularity for muscle invasive bladder cancer. Newer surgical intervention related to BPE includes laser (holmium, thulium and green light), water-based treatment (Rezum, Aquablation) and other minimally invasive procedures such as prostate artery embolisation (PAE) and Urolift. Endourological procedures have incorporated newer laser types and settings such as moses technology, disposable ureteroscopes (URS) and minimisation of percutaneous nephrolithotomy (PCNL) instruments. All these technological innovations and improvements have led to shorter hospital stay, reduced cost, potential reduction in complications and improvement in the quality of life (QoL)

    Classification Performance of Neural Networks Versus Logistic Regression Models: Evidence From Healthcare Practice

    Get PDF
    Machine learning encompasses statistical approaches such as logistic regression (LR) through to more computationally complex models such as neural networks (NN). The aim of this study is to review current published evidence for performance from studies directly comparing logistic regression, and neural network classification approaches in medicine. A literature review was carried out to identify primary research studies which provided information regarding comparative area under the curve (AUC) values for the overall performance of both LR and NN for a defined clinical healthcare-related problem. Following an initial search, articles were reviewed to remove those that did not meet the criteria and performance metrics were extracted from the included articles. Teh initial search revealed 114 articles; 21 studies were included in the study. In 13/21 (62%) of cases, NN had a greater AUC compared to LR, but in most the difference was small and unlikely to be of clinical significance; (unweighted mean difference in AUC 0.03 (95% CI 0-0.06) in favour of NN versus LR. In the majority of cases examined across a range of clinical settings, LR models provide reasonable performance that is only marginally improved using more complex methods such as NN. In many circumstances, the use of a relatively simple LR model is likely to be adequate for real-world needs but in specific circumstances in which large amounts of data are available, and where even small increases in performance would provide significant management value, the application of advanced analytic tools such as NNs may be indicated

    Personalized pancreatic cancer management : a systematic review of how machine learning is supporting decision-making

    Get PDF
    This review critically analyzes how machine learning is being utilized to support clinical decision-making in the management of potentially resectable pancreatic cancer. Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, electronic searches of MEDLINE, Embase, PubMed and Cochrane Database were undertaken. Studies were assessed using the Checklist for critical Appraisal and data extraction for systematic Reviews of prediction Modeling Studies (CHARMS) checklist. In total 89,959 citations were retrieved. Six studies met the inclusion criteria. Three studies were Markov decision-analysis models comparing neoadjuvant therapy versus upfront surgery. Three studies predicted survival time using Bayesian modeling (n = 1), Artificial Neural Network (n = 1), and one study explored machine learning algorithms including: Bayesian Network, decision trees, nearest neighbor, and Artificial Neural Networks. The main methodological issues identified were: limited data sources which limits generalizability and potentiates bias, lack of external validation, and the need for transparency in methods of internal validation, consecutive sampling, and selection of candidate predictors. The future direction of research relies on expanding our view of the multidisciplinary team to include professionals from computing and data science with algorithms developed in conjunction with clinicians and viewed as aids, not replacement, to traditional clinical decision making

    Predictive Dynamic Risk Mapping and Modelling of Patients Diagnosed with Bladder Cancer

    Get PDF
    corecore