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Abstract
Machine learning encompasses statistical approaches such as logistic regression (LR) through to more
computationally complex models such as neural networks (NN). The aim of this study is to review current
published evidence for performance from studies directly comparing logistic regression, and neural
network classification approaches in medicine.

A literature review was carried out to identify primary research studies which provided information
regarding comparative area under the curve (AUC) values for the overall performance of both LR and NN for
a defined clinical healthcare-related problem. Following an initial search, articles were reviewed to remove
those that did not meet the criteria and performance metrics were extracted from the included articles. Teh
initial search revealed 114 articles; 21 studies were included in the study. In 13/21 (62%) of cases, NN had a
greater AUC compared to LR, but in most the difference was small and unlikely to be of clinical significance;
(unweighted mean difference in AUC 0.03 (95% CI 0-0.06) in favour of NN versus LR.

In the majority of cases examined across a range of clinical settings, LR models provide reasonable
performance that is only marginally improved using more complex methods such as NN. In many
circumstances, the use of a relatively simple LR model is likely to be adequate for real-world needs but in
specific circumstances in which large amounts of data are available, and where even small increases in
performance would provide significant management value, the application of advanced analytic tools such
as NNs may be indicated.

Categories: Quality Improvement, Healthcare Technology, Other
Keywords: performance, neural network, logistic regression, machine learning, clinical informatics, electronic health
records

Introduction And Background
There is increasing interest in the potential role that data science and machine learning can play in
healthcare [1-5]. Machine learning encompasses a range of approaches ranging from applied statistical
methods of supervised learning such as logistic regression models to more computationally complex models
such as various types of neural networks [6].

The aim of applied machine learning methods in healthcare is to improve decision-making and patient
management by providing data-based predictions or classifications which are superior to alternative
approaches. The majority of decisions in healthcare clinical practice are multifactorial and based on varying
degrees of incomplete data. Often, observations on a small number of major risk or predictive features for
particular conditions or scenarios are available though they are influenced by biases and medicolegal factors
[7]. In this regard, it has been reported in many fields that generally, algorithms or models perform better
than human experts, even using simple rule-based systems as well as more advanced algorithms [8]. In
medicine, there is increasing interest in the potential value of artificial intelligence and advanced machine
learning tools such as neural networks, but such approaches are computationally more expensive and less
easily interpretable than simpler statistical methods such as logistic regression models [9].

The purpose of this study is, therefore, to specifically review the current evidence for clinical performance
from studies that directly compared logistic regression (LR) and neural network (NN) approaches in
medicine in terms of model performance (represented by the area under the curve (AUC) of the receiver
operating characteristic (ROC) curve metric) for classification of specific outcomes using identical datasets.
The aim is to provide an overview of the current state of published data comparing such methods in order to
inform future discussion and strategy relating to health informatics, rather than to provide specific clinical
guidance in any medical area, evaluate any specific model, or to compare to the clinical performance of gold
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standard. We specifically focus on comparing NN and LR as they share a common origin in statistical pattern
recognition, and the former may be regarded as a generalisation of the latter [10]. LR is a parametric
statistical model; thus, it yields estimates of odds ratios, which allow assessment of the uncertainty of
specific aspects of the relationship between the outcome and explanatory variables, and these estimates may
be represented as predictions of the outcome variable for specific values of the covariates. NNs are focused
on prediction and can be regarded as a fully non-parametric procedure. LR estimates are highly
interpretable, which is often not the case with the estimates/parameters of a NN (weights).

Review
A literature review was carried out in September 2021 on the Pubmed database [11] using the following
search terms: (Performance[ti] OR accuracy[ti] OR sensitivity[ti] OR specificity[ti] OR prediction[ti]) AND
regression[ti] AND (neural AND network[ti]) OR (tree[ti] OR forest[ti]), all years, English language. Inclusion
criteria for selection were primary research studies, which provided information regarding comparative area
under the receiver operating curve (AUC) values for the overall performance of both logistic regression (LR)
and neural networks (NN) for a defined clinical healthcare-related classification problem using structured
data with a categorical output. Articles that examined other machine learning methods, such as decision
trees but without LR and NN, were excluded. This was a literature review only, and a Research Ethics
Committee approval was not required.

Following an initial search, all potential titles and abstracts were reviewed to remove articles that clearly did
not meet the inclusion criteria. The remaining articles were then retrieved, and the abstracts and full texts
were examined to determine articles for inclusion in the final list. Performance metrics and key features
were then extracted from each article, and the results tabulated. 

The initial search revealed 114 articles for potential inclusion. Following title and abstract screening, 62
remained, which after full-text examination resulted in the inclusion of the final 21 studies in which
required information was available, including a total of 1,442,703 subjects (Figure 1, Table 1).
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FIGURE 1: Flow diagram illustrating search strategy and outcome
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Author Clinical area n AUC LR AUC NN

Ing et al. [12] Giant cell arteritis diagnosis 1,201 0.87 0.86

Kuang et al. [13] Alzheimer's disease progression 361 0.81 0.9

Owari & Miyatake [14] Lower back pain progression 96 0.72 0.77

Parsaeian et al. [15] Low back pain outcome 17,294 0.75 0.75

Abouzari et al. [16] Subdural haematoma outcome 300 0.59 0.77

Tang et al. [17] Cardiovascular autonomic dysfunction 2.092 0.76 0.76

Hsieh et al. [18] Pancreatic cancer diagnosis 1,358,634 0.73 0.61

McLaren et al. [19] Malignant breast lesion diagnosis 71 0.8 0.82

Lin et al. [20] ICU mortality 1,496 0.72 0.75

Sakai et al. [21] Appendicitis outcome 169 0.72 0.74

Erol et al. [22] Head injury outcome 46 0.9 0.93

Bassi et al. [23] Survival post cystectomy 369 0.76 0.76

Dumont et al. [24] Outcome post SAH 91 0.93 0.96

Doig et al. [25] ICU mortality 422 0.82 0.82

Botha et al. [26] Structural vascular disease diagnosis 171 0.71 0.71

Borzouei et al. [27] Thyroid disease diagnosis 310 0.95 0.97

Yao et al. [28] Diabetic retinopathy diagnosis 530 0.77 0.84

Chen et al. [29] Hip fracture outcome 10.534 0.88 0.93

Lin et al. [30] Adipose tissue volume 5,772 0.77 0.9

Tong et al. [31] Pancreatic cancer outcome 221 0.85 0.92

Sutradhar et al. [32] Cancer ED visits 42,523 0.67 0.67

TABLE 1: Summary of studies
Studies directly comparing the performance of logistic regression (LR) and neural network (NN) machine learning models in clinical medicine, in terms of
area under the receiver operating curve (AUC) using identical datasets for specific clinical classification scenarios. (ICU=intensive care unit,
SAH=subarachnoid haemorrhage, ED=emergency department)

In 13/21 (62%) of cases, NN had a greater AUC compared to LR, but in almost all cases, the difference was
small and unlikely to be of clinical significance; unweighted (large study size heterogeneity) mean
difference in AUC 0.03 (95% CI 0-0.06) in favour of NN versus LR (Table 1, Figure 2).
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FIGURE 2: Scatter plot for studies in Table 1
Scatter plot of the area under the receiver operating curve (ROC AUC) results for logistic regression (LR) and
neural network (NN) classification models for studies presented in Table 1. The line indicates equal performance,
with superior NN performance represented for points above the line and superior LR performance for those below
the line. Point size represents study sample size (logarithmic scale). Overall, in the majority of studies, NN
performance is similar or superior but the clinical significance remains uncertain.  

The findings of this study demonstrate that for machine learning performance used in a range of clinical
scenarios, complex NNs are slightly superior to simple LR approaches in 60% of cases undergoing direct
comparison. However, the overall improvement in performance gained by using NNs is small (mean
improvement in AUC of 0.03), and is associated with algorithmic complexity, computational cost and
reduced interpretability/ explainability [33]. For specific applications, the trade-off between algorithm
performance and costs may justify the use of complex NNs, but in general, the performance of simpler LR
based approaches is essentially similar, and at the present time, LR-based machine learning models remain
useful initial techniques to address a range of clinical questions.

These findings are consistent with those of the review of machine learning approaches specifically
predicting outcome in trauma patients, in which overall, the mean AUC for NN was 0.91 compared to 0.89
with LR [34]. Similarly, in a study of 1,271 patients with a head injury, 1,000 pairs of NN and LR models were
run, which demonstrated that in 78% of the trials, AUC for the NN models was superior to the LR model,
though in 68% of cases the accuracy of the LR model was superior [35]. Other studies have reported no
significant difference in performance, for example, in predicting paediatric meningococcal disease outcome
[36]. It should also be noted that in clinical medicine, overall accuracy may not be the correct evaluation
metric if the implications of false positive and false negative classification are different and where there is
significant class imbalance. However, for the purposes of this study, we simply evaluated one easily
compared metric of performance from published studies for two machine learning approaches using the
same datasets.

The present study specifically compared LR with NNs, but in a benchmarking study examining 265 datasets
from the OpenML repository, which included some biological/ medical datasets, LR performance was
compared with that of random forests, another machine learning approach. This comparison reported that
overall, random forests performed better than LR in around 70% of datasets, but again the actual difference
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in performance was small (mean difference 0.04 (95%-CI =0.03-0.05) for AUC), similar to the present
findings [37].

In this study, we included studies directly comparing classification performance as assessed by AUC metrics.
Whilst this is a reasonable approach to overall performance in this setting, it should be highlighted that AUC
may not be a suitable metric for evaluating real-world algorithm performance, particularly in clinical
settings in which sensitivity, specificity, false-positive and false-negative rates are differentially weighted in
terms of importance. In real-world application evaluation and deployment, a full range of performance
metrics should be investigated for any specific model, but for current purposes, we summarise studies that
presented a common performance metric, AUC, to allow direct comparison of these algorithmic approaches.
Furthermore, the operational or clinical impact and importance of an apparently small incremental
improvement in classification performance may vary greatly according to the specific scenario; hence the
broad conclusions demonstrated may not necessarily be applicable to all settings. Nevertheless, in most
circumstances, there is a trade-off between performance and cost of implementation, with classification
algorithms generally intended to provide further evidence for consideration when determining clinical
management in the context of numerous other complexities.

In this specific targeted review of medical studies reporting direct AUC performance comparisons, we have
not addressed potential issues relating to variable selection/importance of LR models, neuron/layer details
of NNs or the appropriateness of using AUC as a marker of discriminatory performance in these specific
clinical settings/datasets, since the intention is to provide high-level knowledge regarding the general
relative performance of the two approaches, which broadly correspond to examples of ‘white box’ versus
‘black box’ models, rather than specific findings relating to a particular clinical scenario. However, the
general methodological similarities and differences between logistic regression and artificial neural network
approaches for medical data classification applications have been previously reviewed in detail [10]. Finally,
it should be highlighted that whilst LR models may provide acceptable performance compared to NNs for
many of the specific applications presented in this review, they are not directly applicable/comparable for
more complex machine learning tasks such as image recognition, classification and segmentation, and
evaluating details of time-series data such as electrocardiograms, and therefore model selection and
approach must be targeted to the specific clinical problem being addressed, and the findings of this review
do not necessarily generalise across other medical scenarios.

Conclusions
The findings of this study demonstrate that in the majority of cases examined across a range of clinical
settings, based on classification of categorical outcomes using structured healthcare data, relatively simple
LR models demonstrate reasonable performance that is only marginally improved, at the expense of
increased complexity, time and computation power, by using more complex methods, in this case, NNs. In
many clinical circumstances, the use of such simple LR models is likely to provide adequate performance for
real-world needs. However, in specific circumstances, for example, where large amounts of data are readily
available, including unstructured data, such as genomic and/or imaging studies, and where even small
increases in performance could provide significant management value, development and application of
advanced analytic tools such as NNs may be indicated. For most clinical classification and/or prediction
problems, a wide range of statistical/machine learning approaches are possible, and relatively quick and
accessible techniques such as LR modelling may often be the most appropriate initial technique. Improving
performance metrics for machine learning tools in clinical medicine should always be considered, but
marginal increases in performance may have limited real-world benefit whilst requiring significantly
increased resources and adding complexity. Determining the appropriate method, in addition to the optimal
balance of simplicity/complexity versus accessibility/performance for a particular scenario, requires an
understanding of both the machine learning methods and practical healthcare implications and highlights
the need for the development of multidisciplinary clinical informatics teams in healthcare institutions to
address such issues. 
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