26,807 research outputs found

    User Centered and Ontology Based InformationRetrieval System for Life Sciences

    Get PDF
    Because of the increasing number of electronic data, designing efficient tools to retrieve and exploit documents is a major challenge. Current search engines suffer from two main drawbacks: there is limited interaction with the list of retrieved documents and no explanation for their adequacy to the query. Users may thus be confused by the selection and have no idea how to adapt their query so that the results match their expectations. 
This talk describes a request method and an environment based on aggregating models to assess the relevance of documents annotated by concepts of ontology. The selection of documents is then displayed in a semantic map to provide graphical indications that make explicit to what extent they match the user’s query; this man/machine interface favors a more interactive exploration of data corpus.
&#xa

    Integrating Medical Ontology and Pseudo Relevance Feedback For Medical Document Retrieval

    Get PDF
    The purpose of this thesis is to undertake and improve the accuracy of locating the relevant documents from a large amount of Electronic Medical Data (EMD). The unique goal of this research is to propose a new idea for using medical ontology to find an easy and more reliable approach for patients to have a better understanding of their diseases and also help doctors to find and further improve the possible methods of diagnosis and treatments. The empirical studies were based on the dataset provided by CLEF focused on health care data. In this research, I have used Information Retrieval to find and obtain relevant information within the large amount of data sets provided by CLEF. I then used ranking functionality on the Terrier platform to calculate and evaluate the matching documents in the collection of data sets. BM25 was used as the base normalization method to retrieve the results and Pseudo Relevance Feedback weighting model to retrieve the information regarding patients health history and medical records in order to find more accurate results. I then used Unified Medical Language System to develop indexing of the queries while searching on the Internet and looking for health related documents. UMLS software was actually used to link the computer system with the health and biomedical terms and vocabularies into classify tools; it works as a dictionary for the patients by translating the medical terms. Later I would like to work on using medical ontology to create a relationship between the documents regarding the medical data and my retrieved results

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm users’ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ‘unannotated’ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ‘Bag of Visual Words’ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ‘non-informative visual words’ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation

    PRESY: A Context Based Query Reformulation Tool for Information Retrieval on the Web

    Full text link
    Problem Statement: The huge number of information on the web as well as the growth of new inexperienced users creates new challenges for information retrieval. It has become increasingly difficult for these users to find relevant documents that satisfy their individual needs. Certainly the current search engines (such as Google, Bing and Yahoo) offer an efficient way to browse the web content. However, the result quality is highly based on uses queries which need to be more precise to find relevant documents. This task still complicated for the majority of inept users who cannot express their needs with significant words in the query. For that reason, we believe that a reformulation of the initial user's query can be a good alternative to improve the information selectivity. This study proposes a novel approach and presents a prototype system called PRESY (Profile-based REformulation SYstem) for information retrieval on the web. Approach: It uses an incremental approach to categorize users by constructing a contextual base. The latter is composed of two types of context (static and dynamic) obtained using the users' profiles. The architecture proposed was implemented using .Net environment to perform queries reformulating tests. Results: The experiments gives at the end of this article show that the precision of the returned content is effectively improved. The tests were performed with the most popular searching engine (i.e. Google, Bind and Yahoo) selected in particular for their high selectivity. Among the given results, we found that query reformulation improve the first three results by 10.7% and 11.7% of the next seven returned elements. So as we can see the reformulation of users' initial queries improves the pertinence of returned content.Comment: 8 page

    Utilising semantic technologies for intelligent indexing and retrieval of digital images

    Get PDF
    The proliferation of digital media has led to a huge interest in classifying and indexing media objects for generic search and usage. In particular, we are witnessing colossal growth in digital image repositories that are difficult to navigate using free-text search mechanisms, which often return inaccurate matches as they in principle rely on statistical analysis of query keyword recurrence in the image annotation or surrounding text. In this paper we present a semantically-enabled image annotation and retrieval engine that is designed to satisfy the requirements of the commercial image collections market in terms of both accuracy and efficiency of the retrieval process. Our search engine relies on methodically structured ontologies for image annotation, thus allowing for more intelligent reasoning about the image content and subsequently obtaining a more accurate set of results and a richer set of alternatives matchmaking the original query. We also show how our well-analysed and designed domain ontology contributes to the implicit expansion of user queries as well as the exploitation of lexical databases for explicit semantic-based query expansion

    Personalized content retrieval in context using ontological knowledge

    Get PDF
    Personalized content retrieval aims at improving the retrieval process by taking into account the particular interests of individual users. However, not all user preferences are relevant in all situations. It is well known that human preferences are complex, multiple, heterogeneous, changing, even contradictory, and should be understood in context with the user goals and tasks at hand. In this paper, we propose a method to build a dynamic representation of the semantic context of ongoing retrieval tasks, which is used to activate different subsets of user interests at runtime, in a way that out-of-context preferences are discarded. Our approach is based on an ontology-driven representation of the domain of discourse, providing enriched descriptions of the semantics involved in retrieval actions and preferences, and enabling the definition of effective means to relate preferences and context
    corecore