The increased variety of information makes it critical to retrieve documents which are not only relevant but also broad enough to cover as many different aspects of a certain topic as possible. The increased variety of users also makes it critical to retrieve documents that are jargon free and easy-to-understand rather than the specific technical materials. In this paper, we propose a new concept namely document generality computation. Generality of document is of fundamental importance to information retrieval. Document generality is the state or quality of docu- ment being general. We compute document general- ity based on a domain-ontology method that analyzes scope and semantic cohesion of concepts appeared in the text. For test purposes, our proposed approach is then applied to improving the performance of doc- ument ranking in bio-medical information retrieval. The retrieved documents are re-ranked by a combined score of similarity and the closeness of documents’ generality to that of a query. The experiments have shown that our method can work on a large scale bio-medical text corpus OHSUMED (Hersh, Buckley, Leone & Hickam 1994), which is a subset of MEDLINE collection containing of 348,566 medical journal references and 101 test queries, with an encouraging performance