278 research outputs found

    WatchMI: pressure touch, twist and pan gesture input on unmodified smartwatches

    Get PDF
    The screen size of a smartwatch provides limited space to enable expressive multi-touch input, resulting in a markedly difficult and limited experience. We present WatchMI: Watch Movement Input that enhances touch interaction on a smartwatch to support continuous pressure touch, twist, pan gestures and their combinations. Our novel approach relies on software that analyzes, in real-time, the data from a built-in Inertial Measurement Unit (IMU) in order to determine with great accuracy and different levels of granularity the actions performed by the user, without requiring additional hardware or modification of the watch. We report the results of an evaluation with the system, and demonstrate that the three proposed input interfaces are accurate, noise-resistant, easy to use and can be deployed on a variety of smartwatches. We then showcase the potential of this work with seven different applications including, map navigation, an alarm clock, a music player, pan gesture recognition, text entry, file explorer and controlling remote devices or a game character.Postprin

    WRISTBAND.IO:expanding input and output spaces of a Smartwatch

    Get PDF
    Smartwatches are characterized by their small size designed for wearability, discretion, and mobile interactions. Most of the interactivity, however, is limited to the size of the display, introducing issues such as screen occlusion and limited information density. We introduce Wristband.io, a smartwatch with an extended interaction space along the wristband, enabling (i) back-of-band interaction using a touchpad, (ii) a low resolution ambient watchband display for offscreen notification, and (iii) tangible buttons for quick, eyes-free input. Insights gained through a study show that back-of-band input increases accuracy and task completion rates for smaller on-screen targets. We probe the design space of Wristband.io with three applications

    WRISTBAND.IO:expanding input and output spaces of a Smartwatch

    Get PDF
    Smartwatches are characterized by their small size designed for wearability, discretion, and mobile interactions. Most of the interactivity, however, is limited to the size of the display, introducing issues such as screen occlusion and limited information density. We introduce Wristband.io, a smartwatch with an extended interaction space along the wristband, enabling (i) back-of-band interaction using a touchpad, (ii) a low resolution ambient watchband display for offscreen notification, and (iii) tangible buttons for quick, eyes-free input. Insights gained through a study show that back-of-band input increases accuracy and task completion rates for smaller on-screen targets. We probe the design space of Wristband.io with three applications

    Interaction Methods for Smart Glasses : A Survey

    Get PDF
    Since the launch of Google Glass in 2014, smart glasses have mainly been designed to support micro-interactions. The ultimate goal for them to become an augmented reality interface has not yet been attained due to an encumbrance of controls. Augmented reality involves superimposing interactive computer graphics images onto physical objects in the real world. This survey reviews current research issues in the area of human-computer interaction for smart glasses. The survey first studies the smart glasses available in the market and afterwards investigates the interaction methods proposed in the wide body of literature. The interaction methods can be classified into hand-held, touch, and touchless input. This paper mainly focuses on the touch and touchless input. Touch input can be further divided into on-device and on-body, while touchless input can be classified into hands-free and freehand. Next, we summarize the existing research efforts and trends, in which touch and touchless input are evaluated by a total of eight interaction goals. Finally, we discuss several key design challenges and the possibility of multi-modal input for smart glasses.Peer reviewe

    Exploring user-defined gestures for alternate interaction space for smartphones and smartwatches

    Get PDF
    2016 Spring.Includes bibliographical references.In smartphones and smartwatches, the input space is limited due to their small form factor. Although many studies have highlighted the possibility of expanding the interaction space for these devices, limited work has been conducted on exploring end-user preferences for gestures in the proposed interaction spaces. In this dissertation, I present the results of two elicitation studies that explore end-user preferences for creating gestures in the proposed alternate interaction spaces for smartphones and smartwatches. Using the data collected from the two elicitation studies, I present gestures preferred by end-users for common tasks that can be performed using smartphones and smartwatches. I also present the end-user mental models for interaction in proposed interaction spaces for these devices, and highlight common user motivations and preferences for suggested gestures. Based on the findings, I present design implications for incorporating the proposed alternate interaction spaces for smartphones and smartwatches

    TrackballWatch: Trackball and Rotary Knob as a Non-Occluding Input Method for Smartwatches in Map Navigation Scenarios

    Get PDF
    A common problem of touch-based smartwatch interaction is the occlusion of the display. Although some models provide solutions like the Apple “digital crown” or the Samsung rotatable bezel, these are limited to only one degree of freedom (DOF). Performing complex tasks like navigating on a map is still problematic as the additional input option helps to zoom, but touching the screen to pan the map is still required. In this work, we propose using a trackball as an additional input device that adds two DOFs to prevent the occlusion of the screen. We created several prototypes to find a suitable placement and evaluated them in a typical map navigation scenario. Our results show that the participants were significantly faster (15.7 %) with one of the trackball setups compared to touch input. The results also show that the idle times are significantly higher with touch input than with all trackball prototypes, presumably because users have to reorient themselves after panning with finger occlusion

    Enriching mobile interaction with garment-based wearable computing devices

    Get PDF
    Wearable computing is on the brink of moving from research to mainstream. The first simple products, such as fitness wristbands and smart watches, hit the mass market and achieved considerable market penetration. However, the number and versatility of research prototypes in the field of wearable computing is far beyond the available devices on the market. Particularly, smart garments as a specific type of wearable computer, have high potential to change the way we interact with computing systems. Due to the proximity to the user`s body, smart garments allow to unobtrusively sense implicit and explicit user input. Smart garments are capable of sensing physiological information, detecting touch input, and recognizing the movement of the user. In this thesis, we explore how smart garments can enrich mobile interaction. Employing a user-centered design process, we demonstrate how different input and output modalities can enrich interaction capabilities of mobile devices such as mobile phones or smart watches. To understand the context of use, we chart the design space for mobile interaction through wearable devices. We focus on the device placement on the body as well as interaction modality. We use a probe-based research approach to systematically investigate the possible inputs and outputs for garment based wearable computing devices. We develop six different research probes showing how mobile interaction benefits from wearable computing devices and what requirements these devices pose for mobile operating systems. On the input side, we look at explicit input using touch and mid-air gestures as well as implicit input using physiological signals. Although touch input is well known from mobile devices, the limited screen real estate as well as the occlusion of the display by the input finger are challenges that can be overcome with touch-enabled garments. Additionally, mid-air gestures provide a more sophisticated and abstract form of input. We present a gesture elicitation study to address the special requirements of mobile interaction and present the resulting gesture set. As garments are worn, they allow different physiological signals to be sensed. We explore how we can leverage these physiological signals for implicit input. We conduct a study assessing physiological information by focusing on the workload of drivers in an automotive setting. We show that we can infer the driver´s workload using these physiological signals. Beside the input capabilities of garments, we explore how garments can be used as output. We present research probes covering the most important output modalities, namely visual, auditory, and haptic. We explore how low resolution displays can serve as a context display and how and where content should be placed on such a display. For auditory output, we investigate a novel authentication mechanism utilizing the closeness of wearable devices to the body. We show that by probing audio cues through the head of the user and re-recording them, user authentication is feasible. Last, we investigate EMS as a haptic feedback method. We show that by actuating the user`s body, an embodied form of haptic feedback can be achieved. From the aforementioned research probes, we distilled a set of design recommendations. These recommendations are grouped into interaction-based and technology-based recommendations and serve as a basis for designing novel ways of mobile interaction. We implement a system based on these recommendations. The system supports developers in integrating wearable sensors and actuators by providing an easy to use API for accessing these devices. In conclusion, this thesis broadens the understanding of how garment-based wearable computing devices can enrich mobile interaction. It outlines challenges and opportunities on an interaction and technological level. The unique characteristics of smart garments make them a promising technology for making the next step in mobile interaction

    Usability, Efficiency and Security of Personal Computing Technologies

    Get PDF
    New personal computing technologies such as smartphones and personal fitness trackers are widely integrated into user lifestyles. Users possess a wide range of skills, attributes and backgrounds. It is important to understand user technology practices to ensure that new designs are usable and productive. Conversely, it is important to leverage our understanding of user characteristics to optimize new technology efficiency and effectiveness. Our work initially focused on studying older users, and personal fitness tracker users. We applied the insights from these investigations to develop new techniques improving user security protections, computational efficiency, and also enhancing the user experience. We offer that by increasing the usability, efficiency and security of personal computing technology, users will enjoy greater privacy protections along with experiencing greater enjoyment of their personal computing devices. Our first project resulted in an improved authentication system for older users based on familiar facial images. Our investigation revealed that older users are often challenged by traditional text passwords, resulting in decreased technology use or less than optimal password practices. Our graphical password-based system relies on memorable images from the user\u27s personal past history. Our usability study demonstrated that this system was easy to use, enjoyable, and fast. We show that this technique is extendable to smartphones. Personal fitness trackers are very popular devices, often worn by users all day. Our personal fitness tracker investigation provides the first quantitative baseline of usage patterns with this device. By exploring public data, real-world user motivations, reliability concerns, activity levels, and fitness-related socialization patterns were discerned. This knowledge lends insight to active user practices. Personal user movement data is captured by sensors, then analyzed to provide benefits to the user. The dynamic time warping technique enables comparison of unequal data sequences, and sequences containing events at offset times. Existing techniques target short data sequences. Our Phase-aware Dynamic Time Warping algorithm focuses on a class of sinusoidal user movement patterns, resulting in improved efficiency over existing methods. Lastly, we address user data privacy concerns in an environment where user data is increasingly flowing to manufacturer remote cloud servers for analysis. Our secure computation technique protects the user\u27s privacy while data is in transit and while resident on cloud computing resources. Our technique also protects important data on cloud servers from exposure to individual users

    Blending the Material and Digital World for Hybrid Interfaces

    Get PDF
    The development of digital technologies in the 21st century is progressing continuously and new device classes such as tablets, smartphones or smartwatches are finding their way into our everyday lives. However, this development also poses problems, as these prevailing touch and gestural interfaces often lack tangibility, take little account of haptic qualities and therefore require full attention from their users. Compared to traditional tools and analog interfaces, the human skills to experience and manipulate material in its natural environment and context remain unexploited. To combine the best of both, a key question is how it is possible to blend the material world and digital world to design and realize novel hybrid interfaces in a meaningful way. Research on Tangible User Interfaces (TUIs) investigates the coupling between physical objects and virtual data. In contrast, hybrid interfaces, which specifically aim to digitally enrich analog artifacts of everyday work, have not yet been sufficiently researched and systematically discussed. Therefore, this doctoral thesis rethinks how user interfaces can provide useful digital functionality while maintaining their physical properties and familiar patterns of use in the real world. However, the development of such hybrid interfaces raises overarching research questions about the design: Which kind of physical interfaces are worth exploring? What type of digital enhancement will improve existing interfaces? How can hybrid interfaces retain their physical properties while enabling new digital functions? What are suitable methods to explore different design? And how to support technology-enthusiast users in prototyping? For a systematic investigation, the thesis builds on a design-oriented, exploratory and iterative development process using digital fabrication methods and novel materials. As a main contribution, four specific research projects are presented that apply and discuss different visual and interactive augmentation principles along real-world applications. The applications range from digitally-enhanced paper, interactive cords over visual watch strap extensions to novel prototyping tools for smart garments. While almost all of them integrate visual feedback and haptic input, none of them are built on rigid, rectangular pixel screens or use standard input modalities, as they all aim to reveal new design approaches. The dissertation shows how valuable it can be to rethink familiar, analog applications while thoughtfully extending them digitally. Finally, this thesis’ extensive work of engineering versatile research platforms is accompanied by overarching conceptual work, user evaluations and technical experiments, as well as literature reviews.Die Durchdringung digitaler Technologien im 21. Jahrhundert schreitet stetig voran und neue Geräteklassen wie Tablets, Smartphones oder Smartwatches erobern unseren Alltag. Diese Entwicklung birgt aber auch Probleme, denn die vorherrschenden berührungsempfindlichen Oberflächen berücksichtigen kaum haptische Qualitäten und erfordern daher die volle Aufmerksamkeit ihrer Nutzer:innen. Im Vergleich zu traditionellen Werkzeugen und analogen Schnittstellen bleiben die menschlichen Fähigkeiten ungenutzt, die Umwelt mit allen Sinnen zu begreifen und wahrzunehmen. Um das Beste aus beiden Welten zu vereinen, stellt sich daher die Frage, wie neuartige hybride Schnittstellen sinnvoll gestaltet und realisiert werden können, um die materielle und die digitale Welt zu verschmelzen. In der Forschung zu Tangible User Interfaces (TUIs) wird die Verbindung zwischen physischen Objekten und virtuellen Daten untersucht. Noch nicht ausreichend erforscht wurden hingegen hybride Schnittstellen, die speziell darauf abzielen, physische Gegenstände des Alltags digital zu erweitern und anhand geeigneter Designparameter und Entwurfsräume systematisch zu untersuchen. In dieser Dissertation wird daher untersucht, wie Materialität und Digitalität nahtlos ineinander übergehen können. Es soll erforscht werden, wie künftige Benutzungsschnittstellen nützliche digitale Funktionen bereitstellen können, ohne ihre physischen Eigenschaften und vertrauten Nutzungsmuster in der realen Welt zu verlieren. Die Entwicklung solcher hybriden Ansätze wirft jedoch übergreifende Forschungsfragen zum Design auf: Welche Arten von physischen Schnittstellen sind es wert, betrachtet zu werden? Welche Art von digitaler Erweiterung verbessert das Bestehende? Wie können hybride Konzepte ihre physischen Eigenschaften beibehalten und gleichzeitig neue digitale Funktionen ermöglichen? Was sind geeignete Methoden, um verschiedene Designs zu erforschen? Wie kann man Technologiebegeisterte bei der Erstellung von Prototypen unterstützen? Für eine systematische Untersuchung stützt sich die Arbeit auf einen designorientierten, explorativen und iterativen Entwicklungsprozess unter Verwendung digitaler Fabrikationsmethoden und neuartiger Materialien. Im Hauptteil werden vier Forschungsprojekte vorgestellt, die verschiedene visuelle und interaktive Prinzipien entlang realer Anwendungen diskutieren. Die Szenarien reichen von digital angereichertem Papier, interaktiven Kordeln über visuelle Erweiterungen von Uhrarmbändern bis hin zu neuartigen Prototyping-Tools für intelligente Kleidungsstücke. Um neue Designansätze aufzuzeigen, integrieren nahezu alle visuelles Feedback und haptische Eingaben, um Alternativen zu Standard-Eingabemodalitäten auf starren Pixelbildschirmen zu schaffen. Die Dissertation hat gezeigt, wie wertvoll es sein kann, bekannte, analoge Anwendungen zu überdenken und sie dabei gleichzeitig mit Bedacht digital zu erweitern. Dabei umfasst die vorliegende Arbeit sowohl realisierte technische Forschungsplattformen als auch übergreifende konzeptionelle Arbeiten, Nutzerstudien und technische Experimente sowie die Analyse existierender Forschungsarbeiten
    corecore