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Figure 1. The three main techniques proposed in our paper: (a) Omni-direction pressure touch (b) Bi-direction twist and (c) Omni-direction panning.

ABSTRACT
The screen size of a smartwatch provides limited space to
enable expressive multi-touch input, resulting in a markedly
difficult and limited experience. We present WatchMI: Watch
Movement Input that enhances touch interaction on a smart-
watch to support continuous pressure touch, twist, pan gestures
and their combinations. Our novel approach relies on software
that analyzes, in real-time, the data from a built-in Inertial
Measurement Unit (IMU) in order to determine with great ac-
curacy and different levels of granularity the actions performed
by the user, without requiring additional hardware or modi-
fication of the watch. We report the results of an evaluation
with the system, and demonstrate that the three proposed input
interfaces are accurate, noise-resistant, easy to use and can
be deployed on a variety of smartwatches. We then showcase
the potential of this work with seven different applications
including, map navigation, an alarm clock, a music player, pan
gesture recognition, text entry, file explorer and controlling
remote devices or a game character.
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INTRODUCTION
Arm and wrist-worn devices such as fitness trackers or smart-
watches are seeing growing adoption. Many of these devices
have screen displays for interaction, such as the Samsung
Gear [17], Fitbit Surge [5] or Apple Watch [2]. However, due
to the average width of human fingers [10] and the limited
screen size or interaction surface, interacting with such de-
vices can be difficult and cumbersome. Existing challenges
with interaction on mobile devices, such as the “fat finger”
problem [3, 18] or occlusion [22] can be exacerbated with
small interaction surfaces on such devices. Further challenges
now present themselves, such as how to support the range of
multi-touch interactions which consumers commonly expect.
Researchers and device manufacturers have attempted to ad-
dress many of these challenges by incorporating new input
modalities, such as pressure sensitive touch [2, 16], bezel rota-
tion [17], shear gestures [6, 8] and a combination of these [14,
23]. Such approaches, however, require additional hardware
and moving parts which can increase both cost and weight of
the devices, limiting their adoption for common use.

In this paper, we propose a new approach to sense continuous
rate-based “touch pressure”, “twist angle” , “pan movement”
and the combination of these on unmodified smartwatches.
Our goal is to expand the input expressiveness, so that users
can interact with small devices without suffering the limita-
tions of the small screen size. Our techniques leverage the
built-in IMU already available in almost every smartwatch and
smart wristband in the consumer market, and does not require
additional sensor or hardware modification of the watch. The
software utilizes a multi-modal approach combining touch
events with the orientation of the watch to enrich the input
capabilities, while also effectively rejecting false positives. In
the following sections we introduce related work, a description



of our system, an evaluation to gauge its performance, and
illustrate limitations and future avenues of research.

RELATED WORK
Prior watch-based interactions have extensively relied on cus-
tom hardware extensions or modifications to achieve the input
expressiveness that is usually not possible on off-the-shelf de-
vices. WatchIt [15] and BandSense [1], for example, expands
the input area to the wristband using custom pressure sensors.
Alternatively, Xiao et al. [23] and SkinWatch [14] enhance the
interaction by supporting tilt, twist and pan on the watchface
with Hall-effect joysticks or photo-reflective sensors. Addi-
tional sensors can also extend the interaction space around
the watch. In EdgeSense [12] input is expanded to the side of
the watch by using an array of capacitive sensors. SkinBut-
tons [9] and Lim et al. [11] have expanded the input area to the
skin surface beside the watch, using infrared sensors, while
zSense [20] expands the input to mid-air area around the watch,
using LEDs and infrared sensors. These approaches rely on
additional hardware but result in a wide range of interactions
that are not possible on commodity smartwatches.

An alternative approach is to instrument the user’s finger which
is used to interact with the smartwatch. For example, NanoSty-
lus [22] presents a method to include a finger-mounted stylus
to improve touch precision when interacting on smartwatches.
In Abracadabra [7] the authors expand the input to a mid-air
area around the watch but requires a user to wear a magnet ring.
By contrast, FingerPad [4] proposes an interaction method us-
ing different sides of the finger but it requires augmenting the
finger with a magnet and Hall-effect sensor grid.

Finally, there are also examples of interaction techniques for
smartwatches which solely rely on the existing hardware and
sensors available on off-the-shelf wearable devices. Clicking,
covering, holding, tapping and swiping are some examples of
the interaction techniques available within commodity devices
today. FingerPose [24] and Finger Orientation [19] attempt to
infer finger angle on a touch screen while Beats [13] expands
interaction by proposing temporal touches. Similarly to this
last group of interfaces, our system does not require any addi-
tional hardware sensors, but it also allows highly expressive
input by supporting continuous and different levels of touch
pressure, pan movement and twist angle using only the data
collected from the built-in IMU sensor.

PROTOTYPE AND INTERACTION
We prototype our system using the Android Wear SDK for an
unmodified LG Urbane smartwatch, which mounts an IMU
with sensor fusion composed by an Invensense M651 6-axis
accelerometer and gyroscope, and by an Asahi Kasei AK8963
3-axis compass sensor. Our system adds omni-direction pres-
sure touch, bi-direction twist and omni-direction pan that, in a
user’s eyes, operate like many familiar devices, such as music
keyboards (pressure touch), volume knobs (twist) or joysticks
(panning). The basic working principle is simple. The human
skin is elastic and stretchable, so are typical watch straps made
from leather, rubber or metal meshes. These material proper-
ties allow us to measure the changes in a watch’s tilt angle due
to skin and strap deformation when pressed or twisted with

force. Using the IMU tilting vector data, we can then estimate
the amount of pressure and the direction of the force applied.
When the force is released, the elasticity of the skin and strap
naturally pushes the watch face back to its original position.

Our software collects in real-time the rotation vector (the
orientation measure of the device based on the integration
of the internal accelerometer, gyroscope and magnetometer
readings) from the IMU sensor, at a sampling frequency of
about 100 Hz. It gives the 3-axis orientation of the watch as
yaw, pitch and roll angles. Since we collected data using the
Android sensor fusion, which is factory calibrated and reliable
against noise, no further calibration was necessary. When a
touch event occurs (i.e., when the user touches the screen),
our software records the current orientation as the initial value.
Then it constantly measures the latest value and calculates the
difference from the initial value as a delta vector. This delta
of relative change is then normalized and linearly mapped to
screen coordinates, with a minimum threshold and multiplier
determined in pilot testing. For pressure touch and panning,
we use only the pitch and roll value while in twisting we only
use the yaw value. This simple calculation performed at every
touch makes the system resistant to noise (e.g., unintentional
arm movements) and allows users to comfortably input on
the smartwatch, regardless of its initial orientation. Finally,
depending on the technique being used, we visualize the delta
as a growing bar (pressure), rotating arc (twist) and a cursor
(panning) that moves in a 2D plane, as shown in Figure 1 and
Figure 2.

Since the IMU senses any changes in acceleration or orien-
tation, which can be caused by any hand motion, we use the
touch event as a trigger, and stop measuring the value when the
user lifts the fingers from the screen. This is simple but very
effective: if no touch is detected, the changes in IMU values
are discarded, preventing us interpreting accidental motions
such as hand waving or gesturing. In addition, we can turn off
IMU sensing when it is not necessary, thus reducing battery
consumption. A minimum threshold also clearly differentiates
between a normal touch or the enhanced touch (pressure, twist
or pan). Finally in the pressure touch mode, we use a hybrid
approach checking both the touch location and the tilt direc-
tion in order to ignore the accidental triggering of events (e.g.,
if the touch position does not match the tilt direction).

EVALUATION STUDY
We designed a user study to assess the usability of the three
bespoke input interfaces - pressure, twist and pan input. To
characterize the performance of each condition, we modified
the three interfaces and collected measures for input entry
times and errors (Figure 2). The input for each interface was
discretized in 24 selectable regions. In the twist interface,
24 identical regions each spanning 15° were radially placed
around the edge of the screen. In the pressure and pan inter-
faces, the screen was divided into 8 regions, each spanning
45° and subdivided in 3 levels along the radius for different
strengths applied. There is a minimum threshold before enter-
ing the first level. A visual cursor on the screen allows a user
to navigate across the 24 regions. To select a target region the
user needs to remain within the specific region for the duration



Figure 2. Experiment tasks, from top: 3 levels of pressure targets along
the radius (in 8 directions), middle: 3 levels of twist (nearest 4, medium
4, farthest 4 targets in both directions) and bottom: 3 levels of panning
targets along the radius (in 8 directions).

of 1000ms. The 1000ms duration is restarted if the cursor
exits the target region accidentally.

We recruited 12 volunteers (3 female, 3 left-handed) from a lo-
cal university, including undergraduate and graduate students,
researchers and staff, aged between 20 and 36 (M: 25.8, SD:
5.2). Five reported familiarity with wearable devices, and of
these, four said they own a smart wristband or fitness tracker.
Participants were compensated with 5 GBP.

The experiment was conducted in a quiet lab and took between
40 to 60 minutes to complete. Before the study we debriefed
participants and collected demographics. The study followed
a repeated-measures design, and the three interface conditions
were balanced in a Latin-squared design order. Each condition
was identical. Participants received a demonstration of one of
the interfaces and had a chance to practice with it for about
2 minutes. They then were required to complete a targeting
task - each of the 24 regions were highlighted in randomized
order and a trial consisted of selecting the correct region. A
successful trial resulted in prompting the next randomized
region, while a failure would require participants to try the
selection again. Each condition required 144 correct trials
(24 regions x 6 repetitions), of which the first 48 trials were
considered practice and discarded in the analysis. During the
targeting tasks, users remain seated on a chair and the arm
with the smartwatch rested on the table. After completing
the targeting task, participants rated the perceived usefulness
and usability of each interface using a 7-points Likert scale.
After each condition, participants were interviewed and asked
to comment about each of the interfaces and their possible
applications. For each of the three interfaces we collected
1152 valid trials (12 participants x 24 regions x 4 repetitions)
for the analysis.

Results
The analysis is based on one-way ANOVA tests followed
by post-hoc analysis using Bonferroni correction, with
α=0.05. Mauchley’s test assessed sphericity, and, if violated,
Greenhouse-Geisser corrections were employed. Pressure

Figure 3. Error occurrence by location for three techniques. Errors for
left-handed people were vertically mirrored so to mimic right-handed
users’ input.

was the slowest input interface (M: 2.6s, SD: 0.9) followed by
Twist (M: 2.5s, SD: 0.6) and then Pan (M: 2.1s, SD: 0.6). Time
differences are statistically significant ( F(1.84, 2120.9)=104.1,
p<0.01, η2

p=0.08) with Bonferroni post-hoc pairwise compar-
isons significant as well (p<0.01). While the overall input
entry time took about 2.4 seconds, it is interesting to note
that on average only 62% (SD: 0.07) of this time was used
for the actual input (1.5s including 1s dwell time) while the
remainder of the time was devoted to navigate to the next task
and decipher the instructions for the task. In terms of errors,
Pressure unsurprisingly performed worse than the other two
interfaces with a 1.6% error rate (in total, 18 failed trials),
compared with the 0.3% (3 failed trials) and 0.2% (2 failed
trials) of Twist and Pan. Differences were again statistically
significant ( F(2, 2302)=11, p<0.01, η2

p=0.01) and the post-
hoc tests corroborated that Pressure was worse than the other
two (p<0.01). Figure 3 shows in detail the number of errors
for the 24 selectable regions. For Twist and Pan all reported
errors consisted of selecting the region immediately before or
after the target. For pressure, the average distance between the
erroneous selection and the target was of 1.9 (SD: 2.1) regions.
Finally, we used a Chi-square test to analyze the Likert scores
and found a statistically significant difference in perceived
usefulness ( χ2 (2, N=12) = 7.03, p = 0.03 ) and usability (χ2
(2, N=12) = 8.1, p = 0.017) of the three prototypes, with Twist
reported to be most useful (M: 6.5, SD: 0.7) and usable (M: 6,
SD: 0.7), followed by Pan (usefulness = 5.8 SD: 1; usability =
5.7 SD: 1.2) and Pressure (usefulness = 5.7 SD: 1; usability =
4.3 SD: 1.1).

Discussion and Findings
Overall, participants were able to complete all input tasks in
less than 2.4 seconds (including the 1 second dwell time) and
with an average error rate of 0.7%. During the interviews,
most participants described the system as “responsive” and
“easy to learn”, findings which were numerically corroborated
in the post-experiment questionnaire. The Pressure interface
was described to be the most challenging of the three, as it
was difficult to apply the correct force in the correct direction.
Moreover, 55% of errors (10 out of 18 errors) for the Pressure
interface were performed by only two of the twelve partici-
pants. Analyzing the video recordings of the experiment, we
observed that P1 and P11 strapped the watch tightly on the
wrist and in proximity of the Ulnar styloid process (the extrud-
ing part of the Ulnar bone near the wrist), so that the watch
could barely register any motion when the screen was pressed,



Figure 4. Screenshots of the applications. From left to right: (a) map, (b) alarm clock, (c) music player, (d) gesture recognizer, (e) text entry, (f) file
explorer, and (g) controlling remote device and game character.

causing errors on the right hemisphere. Though further inves-
tigations are required, we suspect that the way the watch is
strapped on the wrist might impact on the overall recognition
performance of the system. Finally, the errors occurred on the
left hemisphere are mainly due to occlusion, as the right hand
clicking on the left portion of the watch screen (strapped on
the left wrist) occludes the view from the user line of sight.

During the interview several participants noted that the Twist
interface in practice requires the usage of three fingers - two
fingers to hold the rim of the watch, and one finger to act as a
pivot while touching the screen. Users noted that, not only is
such a gesture complex, but it also results in large portions of
the screen being occluded. Ways to overcome this problems
were suggested and employed by the users. For example, it
is possible to place the pivoting finger on the corner of the
screen. Users also suggest to use an alternative visualization
for the Twist interface. We note however that the visualization
we chose was only meant for use in the study and we share the
participants concerns that in practice, Twist techniques should
rely on simpler visuals so as to avoid cluttering the screen.

APPLICATIONS
To illustrate the potential and immediate feasibility of our ap-
proach, we developed 7 applications (Figure 4 and Figure 5)
to showcase these 3 interaction techniques - a) Continuous
map navigation b) Alarm clock c) Music player d) Pan gesture
recognition e) Text entry f) File explorer and g) Controlling
remote devices. These demos take advantage of the continuous
rate control based on the strength applied, such as continuously
navigating and zooming the map (Figure 5), twisting the clock
hand, adjust the volume or controlling game characters. In text
entry, different pressures disambiguate between characters,
similar to how MultiTap operates. In file explorer, panning
up/down scroll through the list while panning left/right enter
or exit the current folder. Finally, pan gesture recognition [21]
acts as a shortcut to launch apps. Please refer to our supple-
ment video figure to see how each demo works in practice.

Our techniques, instead of being used for new interactions,
can be also use for reserved functions. For example, all An-
droid smartwatches reserved the left and down swipe for OS
functionality - exiting app and showing top menu bar. This
severely limits the interaction capability. Our technique can
free the reserved left and down swipe for more basic purposes.

LIMITATIONS AND FUTURE WORK
This work has a number of limitations but also opportunities
for improvement in future revisions. First of all, our tech-
niques require a touch event on the capacitive screen in order
to register an event - in other words, the software requires the

Figure 5. Map application running on LG watch Urbane: Twist to zoom
and pressure touch to move the map at different speed.

user to touch the screen in order to discriminate intentional
input from accidental arm movements. This limitation has
practical consequences: capacitive input is required so that the
watch screen area is partially occluded during input interac-
tion, especially during multi-touch selections (e.g., Twisting).
Similarly, touching a smartwatch on its rim will, for most of
currently available devices, does not trigger a touch event and
the input will not be recognised by the system. Future work
will attempt to address this problem by using accelerometer
or other sensor data to replace the need for triggering a touch
event, perhaps a conductive tape on the rim to route the touch.

Another limitation of this work is that, though the three inter-
action techniques we presented work well independently as
shown in our study, we did not collect evidence of how they
work when used simultaneously. Our applications showcased
that it is possible to combine and seamlessly integrate them,
but future work will need to address in more detail about pos-
sible degraded performance or mis-recognitions of triggering
events. Future work will also attempt to study these techniques
when applied to wearable devices with different form factors
or located on different body locations beyond the wrist (e.g.,
upper arm band, necklace, belt) or for eyes-free input inter-
action. Finally, we plan to measure the sensing accuracy and
study how our techniques perform while a user is engaged in
activities requiring motion, such as walking or running.

CONCLUSIONS
In this work, we designed and implemented three techniques
for augmenting normal touch input on a smartwatch, which
lead to many potential use cases. Our techniques use only the
signal from integrated IMU to infer the action and its magni-
tude. Thus, it can already work on most of the smartwatch in
the market, perhaps via a simple software update. Our user
study showed that our techniques are immediately feasible,
with users’ input accuracies in excess of 98.4%.
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