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ABSTRACT 

New personal computing technologies such as smartphones and personal fitness 
trackers are widely integrated into user lifestyles. Users possess a wide range of 
skills, attributes and backgrounds. It is important to understand user technology 
practices to ensure that new designs are usable and productive. Conversely, it is 
important to leverage our understanding of user characteristics to optimize new 
technology efficiency and effectiveness. Our work initially focused on studying 
older users, and personal fitness tracker users. We applied the insights from 
these investigations to develop new techniques improving user security 
protections, computational efficiency, and also enhance the user experience. We 
offer that by increasing the usability, efficiency and security of personal 
computing technology, users will enjoy greater privacy protections along with 
experiencing greater enjoyment of their personal computing devices.  

Our first project resulted in an improved authentication system for older users 
based on familiar facial images. Our investigation revealed that older users are 
often challenged by traditional text passwords, resulting in decreased technology 
use or less than optimal password practices. Our graphical password-based 
system relies on memorable images from the user’s personal past history. Our 
usability study demonstrated that this system was easy to use, enjoyable, and 
fast. We show that this technique is extendable to smartphones. 

Personal fitness trackers are very popular devices, often worn by users all day. 
Our personal fitness tracker investigation provides the first quantitative baseline 
of usage patterns with this device. By exploring public data, real-world user 
motivations, reliability concerns, activity levels, and fitness-related socialization 
patterns were discerned. This knowledge lends insight to active user practices. 

Personal user movement data is captured by sensors, then analyzed to provide 
benefits to the user. The dynamic time warping technique enables comparison of 
unequal data sequences, and sequences containing events at offset times. 
Existing techniques target short data sequences. Our Phase-aware Dynamic 
Time Warping algorithm focuses on a class of sinusoidal user movement 
patterns, resulting in improved efficiency over existing methods. 

Lastly, we address user data privacy concerns in an environment where user 
data is increasingly flowing to manufacturer remote cloud servers for analysis. 
Our secure computation technique protects the user’s privacy while data is in 
transit and while resident on cloud computing resources. Our technique also 
protects important data on cloud servers from exposure to individual users. 
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Chapter 1 

Introduction 

New personal computing technologies such as smartphones, personal fitness 

trackers and portable computers continue to emerge and enjoy wide adoption 

among users in every part of human society. Many of us have enthusiastically 

adopted these technologies and embraced learning to use these devices in our 

daily lives. But not everyone has such an easy time adopting new technology. 

Users sometimes find technology challenging, it is important for technology 

designers to study and understand user physical, cognitive and behavioral 

attributes so that technology can be optimized to the user. Conversely, thorough 

understanding of user patterns opens opportunities for new technology 

optimizations. As always, security is important, and it shouldn’t be burdensome for 

users to maintain good security practices as they go about their daily lives. 

Frequently the “technology smart” among us are asked by struggling relatives and 

friends to provide help with getting their devices to work. Our belief is that the time 

has come for increased efforts to adapt to user characteristics and behaviors, 

instead of the other way around. Our research reveals that careful study of human 

traits not only provides clues towards more user-friendly technology designs but 

also rewards us with ideas for optimizing long-standing algorithms. 

   The convenience of personal devices provides users with access to an ever-

growing array of online services, and also gathers increasingly intimate personal 

activity measurements, wherever the user is located. As society moves more 

services online, the user population wants to take advantage of these services, 
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and they want to use them securely and efficiently. The reality is that not all can 

easily take advantage of technology due to psychological or physiological 

differences. While users wish to protect their personal information from 

compromise, they may use insecure designs because there are no better options 

available. User frustrations with technology lead to inefficiencies, and may 

ultimately lead a user to opt-out, accepting the subsequent withdrawal from online 

society.  

   Our work focused on improving usability, efficiency, and security through four 

projects.  Our first project is a new authentication system that empowers older user 

populations by leveraging their long-term memories, and just requires touches on 

a touchscreen panel to execute.  The second project collected and analyzed 

personal fitness tracker user data to develop an understanding of actual user 

activities, behaviors and social interaction patterns while wearing these devices. 

Thirdly, we applied awareness of important user movement activity patterns to 

improve efficiency of existing dynamic time warping similarity comparison 

techniques. Lastly, we created a new data privacy protection technique for use in 

remote data similarity comparisons. This was done by combining dynamic time 

warping and secure computation techniques. The result is user data privacy 

protection while engaged with online cloud services. 

1.1 User-Device Interaction Challenge 

Our vision is that personal computing technologies should be viewed as a 

combined user-device system. For optimum user experience and system 

efficiency, each side of the user-device paradigm should leverage knowledge of 
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the other. A model of our user-device concept is shown in Fig. 1.1. It shows 

important components of the human user, and interacting technology that define 

the complete technology interaction in service to a higher goal. Humans consist of 

the mind and body; hence they can be described by terms and concepts defined 

in psychology [2] and physiology [3]. By focusing on the user’s inherent 

psychological and physiological traits, effective improvements may be designed 

for personal computing devices. Effective user experiences are defined in terms of 

usability [1], the degree to which a user can easily learn, and use personal 

computing technology. When the technology is usable, the user has a satisfying 

experience that provides benefit to their lives. When a technology is not usable, 

the user is frustrated or delayed. Technology developers of unusable devices have 

wasted considerable effort and assets that could have been put to better use. Good 

technology is described in terms of efficiency and security. Efficiency [141] is the 

degree to which the personal computing technology is optimized to serve the user 

well. Users wish to obtain the benefits of their personal computing technology 

quickly, and without wasted effort or time. Efficiency is also the speed with which 

the overall task at hand is accomplished. A technology design that is not well-

designed is inefficient and will take a longer time to accomplish. Efficiency is 

measurable, allowing the quantified comparison of personal computing 

technologies in meeting user needs. Security [142] is essential to protect the user 

from harm, and also to protect the user’s data from exposure to unauthorized 

parties. A secure computing experience is a necessary part of an effective and 

satisfying user experience. Users do not want to worry about their data becoming 
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exposed to view of unauthorized parties. Often users must implicitly rely upon the 

built-in security features  of their technology to protect their personal information. 

If the built-in security features are not usable or efficient, either the user will 

abandon the technology, or they will risk compromise of valuable private data. 

  

 

Figure 1.1: User-device interaction model. 

 

1.2 Problems 

Our four projects revolve around carefully studying users, with the goals of 

understanding actual user characteristics and designing appropriate usability, 

efficiency and security enhancements. We seek to improve the usability and 

security of user services, and also leverage user characteristics to create a more 

efficient computational algorithm. The benefit to the user is an improved and easier 
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user experience. The benefit to the system designer is greater efficiency in 

processing and space utilization. 

1.2.1 Graphical Password Authentication System 

Our first project is a new authentication mechanism based on graphical passwords, 

an alternative to hard-to-remember text passwords. Our interview study with older 

users revealed that text passwords were hard to recall, keys were hard to see, and 

motor skill impairment made accurate keyboard entry tough. These are typical 

health experiences of older age. Often older volunteers reduced or eliminated their 

use of the computer and internet services due to the difficulties of carrying out 

password authentication. Their feedback provided motivation to create a more 

usable authentication method tailored for older computer users. Some existing 

graphical password systems required hard-to-memorize or hard-to-see abstract 

sequences such as emoji, icons or text-image pairs. Other techniques relied on 

precisely redrawing digital lines on a video display, challenging for those with 

manual dexterity issues such as Parkinson’s or palsy. We sought to empower older 

users by leveraging their long-term memories to create a secret password based 

on familiar images from each individual’s personal past. We make password 

sequence entry physically easy through placement of a finger on a touchscreen, 

or clicking a mouse on an image target. Our Graphical Password system allowed 

each user to select a sequence of personally recognizable black and white facial 

images for use as a password. To authenticate, each user selects their sequence 

of images displayed randomly within a larger screen of similar looking decoy facial 

images. The use of facial images leverages the unique cognitive and neural 
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abilities that humans have for processing and recognizing faces. Compared to 

existing password techniques, this method possesses entropy superior to short 

PINs and comparable to short text passwords. Our usability study demonstrated 

that users could quickly and easily use this system, and importantly, they found it 

was fun! 

1.2.2 Personal Fitness Tracker Usage Analysis 

Our second project studied the highly popular personal fitness tracker devices. 

They are wristband style devices that measure personal movement, heart rate, 

and sleep patterns. Unfortunately, there is an absence of validated data regarding 

the efficacy of these devices because manufacturers have not submitted their 

trackers for independent testing as is typically done for health care devices. Our 

goal was to collect and analyze publicly accessible user data to understand actual 

user activities, behaviors and social interaction patterns. This baseline is important 

to support the goals of improving user fitness and health by providing users with 

knowledge of utilization patterns. Developing a baseline understanding of fitness 

tracker utilization forms a basis for user healthcare and fitness decisions, along 

with future tracker development work.  

   This project focused on the popular Fitbit family of personal fitness trackers. This 

device has altimeters to count stair climbing, and records pulse rate with a skin 

sensor. The user’s private data is stored on the device until relayed through a 

personal computer or smartphone, ultimately to reside on either the user’s laptop, 

or within the manufacturer’s data storage service. Higher level data such as “steps-

per-day” or “calorie expenditure” is derived from sensor measurements. We 
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believe we are the first to study user activity patterns to include participation levels 

in social fitness forums. Our efforts result in a realistic picture of user experiences 

with this device. 

1.2.3 Phase-aware Dynamic Time Warping Analysis 

Our third project had its genesis in our second project. Fitness tracker users take 

their devices everywhere, they also enjoy comparing their activity patterns with 

others for fun and competition. The field of time series similarity comparison  relies 

on the Dynamic Time Warping (DTW) [154] algorithm. DTW complexity is O(n2) 

which is costly for long time series. Historically, small duration time series have 

recorded short discrete activities such as handwritten words, or hand gestures. 

Longer datasets will be required to capture lengthier activities such as periods of 

walking or running. Traditional DTW of long time series sequences becomes 

computationally infeasible. Our observations noted that certain classes of human 

movement patterns can be cyclical, and also limited within naturally constrained 

physical envelopes. We can take advantage of this class of sinusoidal movement 

patterns to improve simulation comparison efficiency. These movement patterns 

are often experienced by certain sports participants, and transport vehicles 

traveling through constrained natural and geographic travel routes. We 

demonstrate that adding an activity phase state descriptor to the time series data 

similarity comparison results in improved computational efficiency, and more 

effective space utilization, thereby enabling similarity comparison of longer activity 

sequences with existing technology resources. Our phase-aware algorithm 

provides a practical means of comparing longer human movement patterns than 
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was possible with conventional techniques. Our example demonstrated an 80% 

improvement over traditional DTW technique.  

1.2.4 Secure and Efficient Computation of Private Sensor Data 

Smart mobile devices, such as fitness trackers with onboard sensors, have 

spawned many cloud-based data analysis applications. These services provide 

valuable information to users, but require users to upload their private sensor data 

to remote cloud servers. The uploaded data is then compared to stored templates 

in a data library to identify user activity patterns. Unfortunately, the user loses 

control of their private sensor data after it is transferred to the cloud-based server. 

Often, data analysis services use this sensor data for other purposes, unknown to 

the user. Users wish to protect their private data, which often contains locating 

information, personal activity records, heath profiles, handwritten signatures, 

speech utterances, and hand gestures. Such information may be immediately 

sensitive, or may be exploited to extract sensitive information. Our fourth project 

presents a privacy solution that protects private user sensor data while still 

obtaining similarity comparison services from a cloud-based server. Our solution 

also protects the cloud-based server’s data template library from exposure to 

individual users.  

1.3 Contributions 

This work presents our efforts to adapt technology to human traits and patterns. 

We reject the notion that users must struggle, or learn “how the computer works” 

in order to obtain benefit from personal technology devices. Technology should 

adapt to the human user, awareness of human patterns should be leveraged to 
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improve technology efficiency. The following four projects reflect our efforts to 

improve usability, efficiency and security while considering inherent traits of the 

human user, or leveraging inherent aspects of human activity patterns. Our results 

in these projects illustrate that investigating and designing new techniques are 

effective and rewarding, furthering  user adoption of improved personal computing 

technologies. And importantly, users find these improved technologies fun and 

rewarding to use!  

1.3.1 Graphical Password Authentication System 

Our first project addressed the problem of older users decreasing or abandoning 

personal technologies because of difficulties with traditional text password 

authentication. Our interview  study revealed that accessing resources via text 

authentication was just too hard and frustrating. Users accepted a reduced 

participation in technological society as the price of avoiding text passwords. We 

created a new graphical password system based on the selection of images of 

familiar faces. Our usability study showed that our technique was easy to 

remember and fast to use. Our study participants actually found it fun to use, a 

marked contrast to the past when they dreaded having to use text passwords. 

Additionally, our technique is easy and fast for the physically disabled to use, they 

just have to select faces on a touchscreen. 

1.3.2 Personal Fitness Tracker Usage Analysis 

Our project on user fitness tracker behavior patterns revealed many aspects of 

user motivations to acquire and use these popular personal fitness tracking 

devices. Previously, there was an absence of knowledge in this area because 
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tracker manufacturers decline to reveal important information about user behavior 

patterns with their products. We were able to quantify user engagement patterns 

discriminated by age, gender and length of device ownership. We believe we are 

the first to present statistics on personal fitness tracker user behaviors in the 

context of social fitness forums. 

1.3.3 Phase-aware Dynamic Time Warping Analysis 

The third project extends current DTW technique to improve efficiency for certain 

longer time series data sequences that capture “sinusoidal” human activity 

patterns within constrained activity envelopes. With knowledge of this class of user 

movement patterns, we define an activity “phase” descriptor as an adjunct to the 

time series sequence itself. Leveraging the phase state is the basis for our “phase-

aware” dynamic time warping technique. This technique provides improved space 

and computational efficiency over previous DTW algorithms with no loss of data 

accuracy. We present an example comparison in a simulated use case, verifying 

decreased complexity over previous methods. 

1.3.4 Secure and Efficient Computation of Private Sensor Data 

Our fourth project modified the DTW technique to incorporate secure 

computational primitives that provide user data privacy protections during similarity 

comparisons with remote data analysis services This project builds on the secure 

computational primitives, Homomorphic Encryption (HE) and Oblivious Transfer 

(OT). Our algorithm protects private user sensor data, and the private data 

templates stored on the remote cloud-server. Until recently, HE and OT were 

computationally intensive, limited to servers and laptops. Modern smartphones 
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now have increased processing power and space. Lab studies with a smartphone 

and laptop demonstrated our secure processing technique, and demonstrated time 

and communication load efficiencies during similarity comparison of user time 

series data sequences. 

1.4 Dissertation Organization 

We believe that studying and applying knowledge of the user is a worthwhile 

endeavor to improve the user experience, efficiency and security. Our efforts 

towards this goal are presented as follows. A review of the literature regarding our 

human-machine interaction investigations and projects is provided in Chapter 2. 

We present a novel graphical password authentication system designed 

specifically for older computer users, who may have physical disabilities, in 

Chapter 3. Following this we investigate the use of popular commercial fitness 

tracking devices, quantifying user activities, user population trends, and fitness 

social interaction patterns in Chapter 4.  Leveraging our awareness of the unique 

data patterns and constraints generated during human activities, we present our 

extension of dynamic time warping similarity computation techniques in Chapter 5. 

Finally, we further extend the dynamic time warping technique to formulate a 

secure computation method to preserve user sensor data privacy in Chapter 6. 

Our conclusions and future work are provided in Chapter 7.  
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Chapter 2 

Related Work 

2.1 Graphical Password Authentication System 

The Graphical Password Authentication System provides an easy-to-recall, and 

easy-to-manipulate technique for older persons to gain access to computing 

resources. Previous graphical password work has been categorized as either 

recall-based, recognition-based, or cued-recall. Recall-based systems such as 

Draw A Secret (DAS) and Background Draw A Secret (BDAS) [6] require the user 

to recreate a previously produced digital drawing. GridMap [7] requires precision 

finger touching along a series of points on a map presentation. DAS, BDAS and 

GridMap would be challenging for a user with hand or finger disabilities. 

Recognition-based systems require the user to memorize sequences of abstract 

images such as emoji, icons, or anonymous faces [4][8]. These sequences are 

later chosen from amid larger displays containing similar decoy images.  Cued-

recall systems such as Passpoints [9], require the user to memorize a set of 

specific points within an image and to later accurately re-select the same point 

sequence. All of these tasks require significant manual dexterity and drawing skills, 

and significant memorization of abstract patterns. Biddle’s survey [10] reveals 

none of the previous works were implemented with solutions personalized to the 

history of each individual older user.  

   Komanduri and Hutchings [11] proposed a system requiring the matching of 

pictures with accompanying text, both shown simultaneously on a display screen. 

Users transcribe text shown below their assigned images using the keyboard to 



14 

 

form the password. Entropy is a comparative factor describing the robustness of a 

particular authentication system to attack. While Komanduri and Hutchings’s 

system achieved an entropy superior to theoretical text password entropy, 

transcription poses an additional cognitive task, and challenges those with vision 

or hand-finger impairments. 

   Users in previous work created written notes describing image, drawing or icon 

password sequences. Anyone with access to the note could then execute the 

described password sequence [12]. User notes describing the subjects in the 

Graphical Password personal sequences are not immediately useable. Attackers 

with access to the note would have to recognize the subject names and their 

corresponding images in order to match displayed images with the written 

description. 

   In practice, users often simplified their text [13] and graphical passwords, 

resulting in a reduction of the practical entropy level of the system. Bonneau and 

Preibusch [14] note that Passfaces [8] results showed predictable user image 

choices. Passfaces users often chose faces of self-similar race or gender, or chose 

faces of those deemed especially beautiful. DAS, BDAS and GridMap users 

tended to make simple, symmetric, or centered pattern choices. Florencio and 

Herley [13] showed that users also often reduce the practical entropy of their text 

passwords by choosing simplified text passwords. The Graphical Password design 

re-randomizes image placement at each presentation and requires all images to 

be unique within a personal sequence, eliminating the possibility of entropy 

reduction. 
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   Passfaces [4] required users to navigate multiple screen displays, choosing one 

facial image on each display. This additional cognitive task requires the user to 

remember current logical position within a sequence of displays. The Graphical 

Password design presents all image information on a single display screen. 

Older users are open to creative computing opportunities [15] and have shown 

they perform better at memorizing age-appropriate materials [12]. The Graphical 

Password system is personalized to the older user, with a large selection of images 

available in the database reflecting notable individuals from the prime working 

years of the over-60 user. 

   Vision and manual dexterity impairments may render the keyboard challenging 

to use, resulting in higher errors with such techniques as tap re-authentication [16], 

and video interpretations of external virtual keyboards [17]. The Graphical 

Password system enables use of the mouse and touchscreen. Both devices are 

faster than the keyboard for selecting sequences. The touchscreen has been 

shown to speed up older adult movement tasks by 35% when compared to the 

mouse [18]. 

 

2.2 Personal Fitness Tracker Usage Analysis 

Previous work with PFTs has been scattered in nature, relying on easy-to-obtain 

public data that provides a limited view into PFT user patterns. Previous work 

proposed numerous models of user activity and behavior, each narrowly focused 

within an aspect of personal informatics. A user activity and behavior model was 

developed as a more holistic and organized depiction of the PFT user experience. 
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Previous work is categorized under the three stages of PFT user activities as 

shown in the User Behavior and Usability Model in Fig. 2.1. This model 

encompasses the user’s decision to acquire a PFT, utilization of the device, and 

eventual device abandonment. The three stages are called the Initiation Phase, 

Utilization Phase, and Abandonment Phase. The Initiation Phase covers the 

motivating impulse by the user to acquire a device, including making a needs 

assessment, shopping for a desirable PFT model, activating the device software, 

and user account, and then learning to use the device. The Utilization Phase 

incorporates normal wear, tracking, reliability and socialization activities as the 

user goes about their normal daily routine. Finally, the Abandonment Phase 

addresses the user’s decision to stop using the PFT. Previous work has largely 

focused on the Abandonment phase, and portions of the Initiation phase. This work 

describes important aspects of user behavior in the Initiation phase and 

emphasizes the quantitative assessment of user activities and behavior in the 

Utilization phase. This work is the first to extensively address socialization by PFT 

users in fitness forums. Several previous works have extensively studied the 

Abandonment phase. The Abandonment phase is included in the User Activity and 

Behavior Model for completeness. It is not expanded further in this work. 
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Figure 2.1: User activity and behavior model. 

 

2.2.1 User Activity Models 

Previous work with user models has been more narrowly focused on user self-

reflection, and informatics derived from user surveys and interviews. Li et al 

presented a five-stage model comprising the user’s preparation, collection, 

integration, reflection and action stages [29]. Epstein et al [24] proposed a user 

behavioral change, four-stage model comprising “deciding to track,” “selecting 

tools,” “tracking & acting,” and “lapsing.” Our three-stage User Activity and 

Behavior Model is described by information gathered from user-posted comments, 

activity levels, and social connections. 

 
2.2.2 Initiation Phase 

Previous work has been focused on user concerns, and level of understanding 

regarding discrete topics such as device accuracy. Interviews with small groups of 

subjects, or video analysis were used as the basis for these works. Shin [19] 
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interviewed a small group to understand intrinsic and extrinsic motivations, noting 

an initial presence of the Quantified Self (QS)-motivated user. Yang [27] has 

analyzed user product reviews from a large online marketplace and interviewed a 

small group of subjects to identify user awareness and technical concerns 

regarding PFT measurement. Oh [28] analyzed user reviews on a QS community 

website to identify important user QS tools and experiences. Li [29] has further 

studied the types of questions users have about their data to support user tool 

development. Whooley [21] analyzed videos of fitness tracker users to understand 

user lifestyle goals. In contrast, our work quantified actual user motivations and 

concerns exhibited by thousands of PFT users. User data was obtained from a 

wide variety of data sources. An additional understanding of the varying 

characteristics of data sources was developed. 

 
2.2.3 Utilization Phase 

Previous work sought to understand a single aspect of user practices. Fritz [20] 

interviewed a small group to identify user practices and benefits in fitness-oriented 

social networks. Rooksby [23] conducted an interview study to understand user 

practices that interweave PFTs into everyday life activities. Choe [22] analyzed QS 

videos to understand existing and emerging user practices. Bentley [26] has 

designed a system to identify health related user activities. Motti and Caine [140] 

analyzed user reviews of wearable devices in Amazon and found that most 

interaction problems are attributed to platform issues (e.g., tracking accuracy, 

usability issues, synchronization, and battery), which contribute to frustration and 

interruption and may result in abandonment. “Epstein [34] has developed data 
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visualization techniques to show the locations and goals behind specific PFT user 

movements. Shin [77] interviewed a small group to understand intrinsic and 

extrinsic motivations, noting an initial presence of the QS-motivated user. Whooley 

[21] analyzed videos of fitness tracker users to understand user lifestyle goals. 

Epstein [24] and Li [25] have formally defined models of QS personal tracking 

activities. In constrast to previous work developing behavior models, this project 

sought to understand and describe the quantity of actual user exercise practices 

based on large amounts of post facto user-posted data. 

 
2.2.4 Utilization Phase – Social Engagement 

Previous work sought to understand specific aspects of PFT user habits in a social 

fitness context. This project developed a quantified understanding of the degree 

and extent of fitness social networks, and variance in user fitness patterns. 

Consolvo has designed and tested an app to share user step data among friends 

[35] and further studied the user reasoning behind data sharing decisions [36]. 

Tsubouchi [37] has used PFT movement data to detect close working relationships 

among PFT users. Newman [38] has studied user motivations behind sharing 

health information on social networks. Burke [39][40] has studied the benefits to 

social well-being of sharing information on social networks. PFT users have 

embraced the use of existing social networks to share their fitness achievements 

and receive peer support. PFT manufacturers have developed dedicated social 

communities for their users. Work is beginning on understanding the 

characteristics of Tumblr (Chang [41]), Instagram (Hu [42]), and Flickr (Kennedy 

[43]). Ugander [44] has focused on Facebook’s social network structure, and 
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defined average user characteristics within the network. Park [45] has mined large 

quantities of Twitter updates from MyFitnessPal users, to discern qualitative 

characteristics of persistent users versus short-lived users.  

 
2.2.5 Abandonment Phase 

Much effort has been devoted to understanding the rationale behind user 

abandonment of PFT use. Van Berkel [30] has identified obstacles to long term 

QS-data collection. User PFT sales advertisements were analyzed by Clawson 

[31], and Lazar [32] conducted interview-style surveys to understand user 

abandonment. They found users often did not understand the data produced by 

PFTs or found the devices difficult to manage. Hansel [33] has investigated the 

user challenges posed by large quantities of health data. Epstein et al. [24] focused 

on abandonment by studying not only the reasons why people abandon their 

devices, but also how their lives change after the abandonment. They noted 

reasons such as: cost of data collection and management, discomfort with 

information, and data accuracy concerns. After abandonment, some users were 

indifferent, but some felt guilt and frustration with their failure to accomplish their 

tracking goals. It was also noted that some users felt a feeling of freedom as they 

were no longer using bothersome trackers, yet they continued to use knowledge 

they acquired from the experience of tracking.   
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2.3 Phase-aware Dynamic Time Warping Analysis 

 
2.3.1 Similarity Evaluation 

Dynamic time warping has proven valuable as a technique to compare time series 

datasets containing measurements of human activity patterns. Human generated 

time series data sets often vary in length between two individuals performing the 

same action. Important data features may occur at different offsets within the data 

even though the two persons performed similar actions. The benefit of DTW 

technique is enabling comparison of reference datasets of varying temporal 

qualities and lengths. With DTW, it is possible to compare time series data 

sequences of discrete human activities with libraries of stored reference data 

templates. Matching a new data sequence with a similar reference dataset 

provides identification of the submitted activity sequence. Originating in the speech 

recognition community, DTW is important in gesture recognition, handwriting 

recognition, sign language interpretation, and gait analysis [143][144][85], 

[103][104][105][117][121][122] . Bartolini’s work illustrates the use of DTW in 

retrieving shapes from image databases [152]. Other work uses gestures as 

pattern passwords to replace traditional text passwords [106][118][119]. Barbon 

recognizes short speech segments [120]. The uWave [85] authenticates users 

through their hand-writing signature movements with smartphones. uWave argues 

that memorizing gesture passwords is less difficult than traditional passwords. 

WiFinger [107] has utilized multi-dimensional DTW for similarity calculation 

between channel state information patterns and gesture patterns. Other work uses 

DTW as a way to use touching movements to authenticate users [108][109]. As 
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new applications move forward to compare user time series sequences of 

increasing lengths, time and space requirements increase quadratically. 

 
2.3.2 Complexity Reduction 

There has been strong interest in reducing the quadratic time and space 

complexity of the classic DTW algorithm. These approaches tend to either 

constrain the populated cells in the distance matrix, or create an approximate warp 

path solution through use of data down sampling, or use of the mean of aggregated 

data sample groups. Sakoe & Chiba, and Itakura proposed limiting distance 

computations to a diagonal band or parallelogram [143][144]. The restricted space 

in the distance matrix reduces the number of required computations, restricts the 

warp path construction and increases the potential for missing the optimal warp 

path solution  [143][144]. FastDTW  was designed to approximate DTW through a 

multi-level approach that has linear time and space complexity but at a loss of 

resolution that loses fine-grained detail about human activities [146]. Coarse-DTW 

reduces the complexity of DTW through down sampling of datasets with resultant 

loss of fine-grained details in the dataset  [151]. SparseDTW relies upon similarities 

between two sequences, re-quantizes the data samples to lower-resolution bins, 

then creates sparse matrices to formulate the optimal warp path [149]. Keogh 

devised a Piecewise Aggregate Approximation technique by windowing the data 

and utilizing the mean value within each window in the DTW calculation [145][147]. 

Optimizations of the DTW algorithm will be necessary to improve efficiency [148]. 

Approximation techniques such as FastDTW [124], Lucky Time Warping [125], and 

Zhu’s work [126] may not prove accurate enough to discriminate between a 
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server’s “somewhat similar” data template library population accurately. 

PrunedDTW is not an approximation but an exact technique to eliminate DPM cells 

that cannot lead to the optimal warp path solution [127]. Constraint techniques risk 

omitting the true optimal warp path solution in favor of a solution within the 

constrained distance field. Approximation techniques lose a degree of data 

granularity, an important difference from the Phase-aware technique. 

 

 

2.4 Secure and Efficient Computation of Private Sensor Data 

Related work for the traditional DTW may be found in Section 2.3.1.  That work 

relied on a single distance matrix, usually located at a server to hold the 

intermediate and final data products of the similarity comparison of two time 

series data sequences. This project strives to keep user data and server data 

private from each other, and therefore requires a two-part distance matrix. The 

user keeps their private sensor data within their part of the distance matrix. The 

server keeps their data template private within their server. Privacy-preserving 

applications and tools such as Homomorphic Encryption, and Oblivious Transfer 

are the building blocks of our project. The similarity comparison product is 

constructed through exchange of encrypted values for use as components in 

homomorphic computations. 

2.4.1 Privacy Preserving Computation  

Earlier privacy-preserving application techniques such as profile-matching on 

social networks [110], authentication through biometric data matching [111], 

wireless network data aggregation [112], have relied upon additive homomorphic 
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computations [87]. Huang has identified practical performance issues with placing 

privacy-preserving applications on Android smartphones [83]. Atallah’s [113] work 

utilized a split distance matrix to privately compute edit-distance between 

sequences held by two parties, however it cannot hide the optimal path from the 

other party. Zhu et al. [87], presented a privacy-preserving DTW protocol based 

on homomorphic encryption that suffers from poor scalability with increasing time 

series length due to the use of dummy data. Zhu’s method sacrifices security for 

improved performance by using 64-bit homomorphic encryption. Our work 

explores performance obtainable on a smartphone with stronger 512, 1024, and  

2048 bit encryption. Compared to the state-of-the-art, our Secure Computation 

project shows that improved security through use of computations with stronger 

encryption on a smarthone are achievable. 
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Chapter 3 

Graphical Password Authentication System 

3.1 Background 

User authentication through keyboard entry of text passwords is a daily activity for 

most users. Yet not all portions of the user population find this to be an easy task. 

After interviewing a group of older volunteers about their human-computer 

interactions, it was confirmed that creating, recalling, and managing strong text 

passwords were very challenging tasks [4][5], and motivated the design of a new 

password authentication mechanism specifically for older users, a system that 

would be cognitively and physically easy to use, and also foster feelings of user 

well-being and competence. The Graphical Password System enables a user to 

choose a personally meaningful set of black and white facial images as their 

personal password sequence, known as the target image set [46]. A set of 

unfamiliar, yet similar images, known as the decoy image set, are appended to the 

user’s target image set to form the displayed image set. The complete set of 

displayed images are randomized for each presentation to the user. The image 

identifier numbers associated with the target and decoy images constitute the 

graphical password definition within the computing system. An example of a 

sixteen-image display is shown on the right in Fig. 3.1. The numbered grid cells on 

the left of Fig. 3.1 indicate this user’s correct image selection sequence to 

successfully authenticate, for this instance of the randomized user display 

presentation. 
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Figure 3.1:  Graphical password example. 

   The Graphical Password technique leverages the unique cognitive and neural 

abilities that humans have for processing and recognizing faces. The Fusiform 

Face Area (FFA) in the temporal region of the brain is dedicated to the processing 

of faces [47], beginning from infancy [48]. The neural processing of faces in the 

FFA has been extensively documented via MRI studies [7][49][50]. The built-in 

human ability to recognize faces from an individual’s personal past history is an 

easier cognitive task than recollecting memorized sequences of text, symbols or 

anonymous facial images [51][52]. 

   The U.S. population is aging, and having difficulty using computer technology. 

By 2030, more than 20% of the U.S. population will be 65 and older, contrasting 

with 13% in 2010 [53]. In 2013, 41% of U.S. adults aged 65 and older did not use 

the internet and one-third of these felt that the internet was not very easy to use 

[54].  Among users aged 77 or older, fully 62% do not use the internet [55]. As 
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more of society’s functions move online, it is important to study and facilitate older 

user engagement with computing and the internet [56][57]. 

   During our interview study, volunteers indicated that typing strong text 

passwords was physically challenging because text passwords require good vision 

to search computer keys for required letters and symbols. Finger, hand, and arm 

mobility issues can also impair fine motor skills needed for successful typing. The 

Graphical Password system eliminates the need to enter text entirely. Each user 

recognizes and selects their personal target image sequence from within the 

randomized display using either the mouse or applying their finger directly to the 

touchscreen. 

   The password strength or entropy of the Graphical Password system is 

comparable to short text passwords and superior to PINs. Increasing the entropy 

of the system is possible by increasing the number of images on the display, and 

increasing the number of images in the user’s chosen target sequence. Increasing 

entropy potentially results in increased authentication time, and reduced recall 

performance as users search among a larger set of images or strive to recall a 

longer personal sequence. 

   Previous work and volunteer interviews revealed that users often kept written 

notes of text passwords to aid recall. Unfortunately, loss of the note constituted an 

immediate password compromise. Written descriptions of the graphical password 

sequences are not literal physical descriptions. User notes may cite subject names 

or occupations. Such information may not be recognizable to an adversary gaining 

possession of the note. Users of the Graphical Password system can create 
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personalized sequences of images that are very meaningful. Some of the interview 

volunteers shared that they did not need to keep notes because their chosen 

sequences had strong personal associations, making them hard to forget.  

   A usability study was conducted to measure recall and timing performance of the 

Graphical Password design. We first assembled a database of 550 black and white 

images, each image coded as to physical attributes, and occupation of the image 

subject. An image sequence selection tool was created so users could efficiently 

browse the database based on occupation of the image subject. In the usability 

study, each volunteer chose three personal target image sequences in lengths of 

four, seven, and ten images.  A series of authentication exercises was created to 

measure recall rates and elapsed password sequence selection times with varying 

display image densities, password image sequence lengths, image arrangement 

patterns, and input device modalities. Additional exercises measured text entry 

time using the keyboard for comparison purposes. Exercises were repeated at one 

week or longer intervals to measure user improvement through training 

experience. 

3.2 System Design 

3.2.1 Design Motivation  

An open-ended interview-style technology survey was conducted with twenty-six 

(n=26) computer users over the age of 60. The goals were to understand their 

computing concerns and motivations, and identify technology areas for 

enhancement germane to this older user population. Strong text password 

creation, management, and recall emerged as a major user issue. Some older 

volunteers deliberately chose to limit their use of technology in order to avoid 
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accumulating more passwords. Other volunteers only used one or two passwords 

at multiple internet sites. Representative volunteer comments obtained during 

interviews are listed in Table 3.1. 

   Nineteen of the interview-style study participants answered more detailed 

questions focusing on password creation, management, and recall strategies. 

None of the nineteen personally used strong passwords meeting the classic 

definition of a series of characters including upper/lower case, numbers, and 

symbols, without personally meaningful text sequences. All but one of the 

volunteers prepared text passwords containing character sequences with strong 

personal associations such as a child’s name, previous phone number, pet name, 

or spouse’s birthdate. Such information may be easily findable by an adversary 

using the internet. 

   All but two of the volunteers routinely wrote down passwords, making them 

available to anyone with access to the written record. Two volunteers refused to 

use more than two passwords, and accepted the resulting lifestyle limitations on 

internet and computer use. 

   Our motivation was to design a new password mechanism specifically for older 

users, a system that would be physically easy to use, and foster feelings of well-

being by enabling user competence, and relatedness to their past memories [51]. 

By relying on personally meaningful images, it is hoped that the tendency to write 

down explicit password descriptions will be lessened. It would be hard for users to 

hand draw accurate image reproductions to make a personal note. If a user does 

write down a list describing image subjects, an attacker must understand the 
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description to make a match possible to an image subject name. As an example, 

a music fan may choose images of Kate Smith, Glenn Miller, Dizzy Gillespie and 

Louis Armstrong for his password sequence images. The attacker finding the list 

of names “Kate, Glenn, Diz and Louis” will have to understand the names and 

research each person’s appearance  before attempting their attack.  

   Using a single display screen for the entire authentication process reduces the 

need for users to remember selections from previous screens, and reduces the 

number of hand and finger actions. 

 

Table 3.1: User interview comments 

User comment Comment topic 

It is annoying to create passwords, it is an extra 
effort and hard to memorize. 
 
It is hard to make a password that is halfway safe. 
 
I only use one password in order to keep life 
simple. 

Password creation 
 
 
Password creation 
 
Password usage 

 

 

3.2.2 Design Components  

The Graphical Password system design components consist of a collection of 

black and white images, software for user selection of target images forming 

personal user sequences, software to facilitate selection of user decoy images, 

laptop computer equipped with touchscreen and mouse, and usability study 

software. The usability software displayed a sequential series of displays with 

varying configurations of images. The user applied input from the touchscreen or 
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mouse. The usability study software recorded user results and the elapsed times 

of user actions. 

   Each graphical password is formed from the user’s target image set and their 

decoy image set as shown in Fig. 3.2. Each image has a unique image identifier 

number. The complete graphical password is formed by the set of target image 

identifier numbers in correct sequence appended to their personalized set of decoy 

image identifier numbers. Each user’s personal target image sequence, chosen 

based on strong personal memories from the past, forms a “secret key,” unique to 

each individual. Only the user recognizes their personal sequence when viewing 

all the images on the display. 

   The complete graphical password is stored by the computer in association with 

the user’s account username, comparable to storage of a traditional text password. 

The user authentication software would access an image database to retrieve the 

correct images for display and selection by the user. The image database could 

be installed locally or accessed from a web service over the internet via a secure 

channel. User amenities such as password hints and password reset features 

could also be adapted for use with graphical passwords. 
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Figure 3.2: System display design. 

 

3.2.3 Entropy Analysis 

A goal of the Graphical Password design is to achieve a level of entropy, or 

password strength, comparable or superior to traditional text password or PIN code 

systems [58]. Entropy is characterized as the strength of a password system, or 

the unpredictability of possible values in a password sequence. A password 

system with higher entropy is more resistant to guessing or brute force attacks, but 

may become harder to memorize or recognize due to increased symbol 

complexity, increased password sequence length, or increased user display 

density. Higher entropy configurations in the Graphical Password system may 

increase user authentication time as users search for more password sequence 

images from among higher density displays. 

   The entropy of the Graphical Password approach is described from three 

perspectives. First, the information entropy of the symbol set formed by the image 

database is characterized. Second, the password strength of the system from the 

perspective of an attacker with direct access to a user system is described. Third, 



33 

 

the entropy of a client-server Graphical Password configuration is described from 

the perspective of an outside attacker emulating a user. For comparison purposes, 

equal length text and image password sequences are assumed in each 

description. 

   Information entropy is defined as the log2 of the number of possible passwords, 

provided that each symbol in the password is independent [58].  A random 

password’s entropy H, is defined  

 

H = L (log2N), 

 

where N is the number of symbols available to form the password, and L is the 

password symbol length. A text password consisting of case-sensitive 

alphanumeric symbols a-z, A-Z and 0-9 has 62 possible symbols available to be 

chosen for each password character. Given a password length of eight characters,  

 

Htext = 8 (log2 (62)) = 47.6 bits 

 

   In the Graphical Password approach, each image is represented by a unique 

image number that constitutes one symbol in the password sequence. A graphical 

password image sequence that does not permit repeating images will have as 

many possible images available for the first password image as there are images 

available for selection. In the usability study there are 550 images in the database. 

One less image is available for each subsequent choice. For the eighth image, 
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there will be 543 possible image choices. The binary log of the number range 543 

to 550 is rounded and represented as 9.1 in the comparison. Given a Graphical 

Password equal length sequence of eight images, 

 

Hgraphical = 8 x 9.1 = 72.8 bits 

 

Hgraphical is a 53% improvement over Htext. 

   The second perspective is that of an attacker with direct access to a user’s 

personal computer. Faced with attempting to enter a four-character text password, 

there are NM possible combinations where N = 62 possible valid text characters 

and M = 4 choices to be made. To exhaustively try all possible text combinations 

will take 624 = 14,776,336 attempts. Facing a Graphical Password display of 

sixteen images and choosing the correct permutation of four images will take N! / 

(N-M)! = 43,680 attempts. In this case, exhaustively trying a text password, at three 

attempts per minute before a system-imposed timeout of ten minutes, it will take 

111 days of non-stop attempts to exhaust all possibilities. For comparison, a four-

digit numeric PIN offers 10,000 possible combinations. A common touch screen 

password mechanism requires the user to select the correct symbol sequence 

from a grid of identical static symbols such as dots. A configuration requiring the 

user to select the correct sequence of four non-repeating symbols from a grid of 

sixteen symbols would have an entropy of 43,680 possible variations. Since the 

correct symbol sequence does not vary in location, a smudge pattern could 

develop on the touchscreen surface that could aid an attacker. The Graphical 
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Password approach eliminates the possibility of a smudge pattern by randomizing 

each display presentation. 

   The third perspective is that of an attacker attempting to log into a user account 

on a website from the attacker’s personal computer. In this scenario, if a user had 

a valid four-character text password already stored at the website, the attacker 

must submit a correct four-character password. As described previously in the 

second perspective, there are 624 = 14,776,336 attempts to be made by the 

attacker to exhaust all possible combinations. With the Graphical Password design 

implemented in a client-server configuration, website servers would already 

possess a pre-existing record of all sixteen images forming the user’s display along 

with a record of the user’s valid four image sequence. Each authentication attempt 

with the Graphical Password system requires the attacker’s client to submit to the 

server, via a secure channel, sixteen symbols representing the chosen image 

numbers of the user-selected sequence along with the unchosen decoy images. 

An attacker with no knowledge of any of the images in the user’s display must 

submit the correct combination of sixteen image numbers in addition to the correct 

permutation of four image numbers forming the user’s chosen target sequence. 

Assuming the attacker knows that the database is currently limited to 550 images, 

there are 2.69 x 1030 possible combinations of the sixteen images that must be 

attempted, each combination with 43,680 possible four image permutations. 

   The entropy of the Graphical Password design may be increased by either 

increasing the number of images in the display or increasing the length of the 
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password image sequence. The usability study was designed to measure the 

effects of increasing entropy on user authentication success and timing. 

   Fig. 3.3 illustrates many of the configurations that were implemented in the 

usability study described in Section 3.4. Fig. 3.3 shows the four and ten image 

sequences, along with the fifteen, sixteen, twenty-five, thirty-six, and seventy 

image density displays. The effects on user recall and elapsed time as entropy 

increased, were measured and captured. Results of the usability study are 

presented in Section 3.5. 

   Fig. 3.4 provides a comparison of the Graphical Password entropy under six 

configurations of password sequence length and display image density. Each 

configuration is denoted within Fig. 3.4 by GP-xxfmyy where xx is the sequence 

length and yy is the display density. Entropy levels of varying PIN, text, and actual 

text [13] systems are also plotted along with notable graphical password systems 

described in the literature review of Section 2. Entropy is expressed as the bit 

strength or binary log of the number of possible guessing attempts for the listed 

password system configuration. While the four-image configuration is comparable 

to short text passwords and superior to four-digit PINs, the client-server design 

implementation offers the potential for higher entropy than traditional text 

passwords of length eight characters. 
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Figure 3.3:  Configuration examples. 
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Figure 3.4: Entropy comparison with previous work. Blue asterisks denote varying 
configurations of Graphical Password sequences. 

 

3.2.4 Image Database 

550 black and white facial images of notable figures from the past were collected, 

processed, and coded. These subjects were prominent in many areas of U.S. 

culture during the early-to-mid working years of the over-60 user. While the 

Graphical Password system could be used by those of any age or cultural 

background, a deliberate decision was made to chose images familiar to older 

U.S. study volunteers to leverage the cognitive advantages offered by the FFA. 

For future work, a production version of the Graphical Password system could 
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permit the user to identify their age and cultural heritage, and then offer 

candidate target images that are likely to resonate with the user’s cultural 

background.  

   It is important that images appear to be similar on the screen to defend against 

shoulder surfing attack. All collected images were converted to black and white. 

Images were then digitally manipulated to remove noticeable identifying team 

logos, military insignia or corporate markings from clothing and backgrounds.  

Prominent features noticeable from a distance such as large jewelry or 

boutonnieres were also digitally removed. Images were cropped down to one of 

three sizes: head and shoulder, head to waist, and full body. 

   Each image has been coded as to subject body size, sex, race, gaze direction, 

attire, image foreground color, background color, and brightness level. Attire 

codes indicate if image subjects are wearing glasses, hats or notable 

accessories. Foreground and background coloring is coded as white, black or 

gray. Gaze direction indicates if the image subject is looking straight ahead into 

the camera or to the right or left. Brightness level is a description of the overall 

image tone and is coded as light, medium or dark. By selecting decoy images 

similar in appearance to target images, an attacker is challenged to guess the 

password sequence based on gross visible image attributes. Attackers must be 

physically close to the display to discern finer differences in image details. For 

future work, color profiles and brightness levels may be quantified through image 

spectrum analysis and serve as inputs to a decoy image selection model.  
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   For the Graphical Password technique to be effective, it is necessary that 

decoy images be unfamiliar to the usability study subjects. To assess the 

suitability of the image collection to serve as a source for decoy images, 

volunteers were asked to evaluate the images for familiarity. Sixteen older (over-

60, average age 71.9 years) volunteers and five younger (under-60, average age 

37.2 years) volunteers manually reviewed each image. Volunteers assigned 

image recognition ratings from a 5-point scale. The scale ranged from 1 = Do Not 

Recognize to 5 = Know Well.   

   Fig. 3.5 illustrates the results of this review with over-60 users shown in red 

and the younger group shown in blue. A mean of greater than 50% of images 

were rated as “not recognized” by both groups. This provided evidence that the 

database has enough images to form strong decoy image sets. Fig. 3.5 also 

illustrates the younger (blue) user rate of non-recognition of images is 19.2% 

higher than older (red) users, and younger users strongly recognized 14.4% less 

than older users. This provides evidence that this set of images is more 

recognizable by the target population of over-60 people.  
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Figure 3.5: User image recognition. 

3.2.5 Target Image Selection Tool 

The MATLAB image selection software tool enables older users to efficiently select 

personally meaningful images based upon their unique personal interests. As 

shown in Fig. 3.6, the user interface presents a series of radio buttons enabling 

selection of a specific category of images based on image subject occupation. 

Some examples of occupations are actors, football, golf, writers, and Presidents. 

Users could choose their personal image sequences from just one category or 

choose each image from a separate category. Image categories reflect a wide 

range of U.S. cultural interests such as sports, entertainment, journalism, politics, 

industry, etc. Relying on images from a single category to form a personal 

sequence increases the risk of an attacker successfully performing a thematic 
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analysis on the images in the display presentation. A security policy to address this 

risk could require users to select images from more than one occupational 

category. 

   Users form their personal target password sequences by browsing among the 

thirty-three categories of images. Users cycle through each category by using the 

“Go Back” or “Go Forward” buttons shown on the right side of Fig. 3.6. Once the 

user has selected an image for their personal sequence, that image was displayed 

at the bottom of the screen in the order chosen. The tool allows users to change 

selected images if desired. The tool measured level of effort expended by users in 

choosing their personal images by capturing elapsed time to choose each image 

and number of images examined by each user. For the study, each user chose 

three sequences of length four, seven, and ten images. Longer sequences were 

built upon shorter sequences. As an example, a user’s seven image sequence 

consisted of their four-image sequence with three additional images appended. 

During the usability study, it was observed that each user enjoyed the image 

sequence selection experience, often reminiscing about personal associations as 

familiar images appeared on the screen. Each user was careful to choose images 

with strong personal associations. 

   The decoy images that accompany the target images are chosen based on the 

user’s unfamiliarity with subjects within each decoy image. As discussed in Section 

3.2, volunteers previously evaluated each image in the database as part of the 

effort to ensure that a sizeable pool of unrecognized images were available for the 

study. For the purposes of the usability study described in Section 3.4, project 
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personnel selected decoy images that were unknown to the user and possessed 

physical characteristics similar to the user’s target images. As an example, a user 

selecting images of blond women for their personal target password sequence will 

find that the decoy images are also of blond women. The coding in the image 

database facilitated the identification of suitable decoy images. If all of the user 

target images featured subjects wearing light clothing on a dark background shown 

from the waist up, the coding facilitated the selection of decoy images with similar 

image composition. During the usability study we observed that volunteers strongly 

preferred some occupational categories over others. For future work, a production 

version of the Graphical Password system could automate the decoy selection 

process by having users identify specific occupations with no personal 

associations, thereby enabling the software tool to automatically draw decoy 

images from those unfamiliar occupational categories. 

 
 

 

Figure 3.6:  Image selection tool. 
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3.3 Usability Study Design 

The usability study software displayed varying screen configurations of increasing 

image density during a series of exercises. Each exercise accepted user inputs in 

the form of touchscreen or mouse image selections, recorded user action elapsed 

times, and authentication success/failure. The usability configurations ranged from 

a 3x5 display of fifteen images to a 7x10 display of seventy images. Success was 

defined as user selection of their target image sequence in the correct order. If the 

user is unsuccessful at selecting their correct sequence, then the authentication 

request is considered a failure, the failure is recorded, and the display is refreshed 

with a re-randomized display of images. The image arrangement re-randomizes 

with each display presentation to include screen refreshes. A casual onlooker will 

not observe a static placement pattern in the location of any images. Re-

randomizing the arrangement of images also defends against smudge attacks [59] 

by ensuring that all portions of the screen will be touched by the user’s finger. A 

security policy invoking a lock-out interval upon three successive failures or screen 

refreshes provides further defense against brute force attacks. 

   The cognitive challenge presented is that while longer password sequences 

result in greater entropy, they add to the user memorization, recall, and visual 

search burden. A goal of this work was to measure the time needed to find and 

select target password images within surrounding decoy images as screen image 

density increases. The probability of choosing correct images in incorrect order 

also increases with personal sequence length. Increasing the number of images 

on the display to achieve higher entropy forces each image to be smaller, and 
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therefore harder to see and discern image details. Several questions arise that the 

usability study seeks to answer. How do users search the displayed images? Do 

users consciously adopt specific search patterns looking for their target images? 

Does peripheral vision aid in speeding up the search for the target images? Do 

users remember the current locations of subsequent target images encountered 

while searching for the initial members of the target image set? Do target image 

sequences become too long for effective recall and search? Can display screens 

have too many or too small images for effective search? 

3.3.1 Study Procedures 

Nineteen volunteers (n=19) were recruited, all over the age of 60, from the local 

community.  After signing the consent form, volunteers were provided information 

about study goals, definition and benefits of strong passwords, and a description 

of the tasks they would be expected to perform. In contrast to previous work, 

individual meetings were set up with volunteers at convenient off campus 

locations. This strategy ensured that all volunteers completed the exercise 

sessions. The most popular locations were in volunteer homes or at local coffee 

shops. While meeting outside the lab environment was not as time efficient, it had 

the advantage of putting volunteers at their ease in familiar settings.  

   During the initial session, each volunteer utilized the Graphical Password 

software tool to browse the database of images and select their target image 

sequences. Volunteers often shared that they developed a mental story or 

acronym to aid recall of their image sequences in the correct order. The mental 
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story was formed from the user’s previous personal association with the subjects 

in the images. 

   Volunteers were contacted at least a week after choosing their images, to 

perform a series of authentication exercises. In total, 74 sessions, each consisting 

of 44 individual exercises were held that lasted from an hour to an hour and a half 

each. Each exercise consisted of two screens. An introductory screen provided 

brief instructions and allowed the user to indicate when they were ready to proceed 

to the exercise displayed on the second screen. The purpose of the introductory 

screen was fourfold: allow the user to control the pace of the exercises, provide a 

small break to allow the user’s short-term memory to clear from the previous 

exercise, provide an opportunity for the user to ask questions without adversely 

affecting exercise timing, and clearly delineate the start time of each exercise. 

Many of the volunteers described themselves as not comfortable or confident using 

computers. The introductory screen was deliberately intended to foster user 

confidence by providing the user with control over the pace of exercise activity. 

   The second screen consisted of the images displayed in a grid pattern similar to 

Fig. 3.1. An adjacent space was dedicated to hold selected images. Each user 

chose their image sequence and then selected the “OK” button to signify exercise 

completion. Immediate feedback was presented via a success or failure message 

in a text box. The user then acknowledged the feedback before proceeding to the 

next screen. If the password sequence was incorrect, the display screen reloaded 

with a re-randomized image pattern and the user tried again. If the password 

sequence was correct, the introductory screen for the subsequent exercise 
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appeared. After the last exercise, elapsed times were displayed for the user. This 

prompted much discussion with volunteers who were curious about the processes 

running behind the scenes, and the techniques used to interpret timing information. 

User comments were recorded, and specific questions were asked regarding 

conscious visual search techniques and ease of finding target images. Volunteer 

comments are listed in Table 3.2. 

   It should be noted that throughout this study, participants were permitted to keep 

personal notes about their chosen password sequences. Personal notes were not 

permitted to be consulted during volunteer sessions. This is consistent with their 

current widespread practice of keeping written records of personal text passwords. 

   The suite of forty-four exercises consisted of thirty-five exercises requiring 

selection of a personal password image sequence and nine exercises requiring 

the typing of given text passwords for comparative performance analysis. Personal 

password sequences varied among lengths of four, seven, and ten images. 

Display screen image densities ranged from 5x3, 4x4, 5x5, 6x6 to 7x10. 

Sequences of length four were chosen from all display densities. Sequences of 

length seven, and ten were chosen only from the 7x10 display densities, as lesser 

densities did not provide sufficient display space to conceal target images among 

the decoy images. Volunteers went through the exercises initially using the mouse 

and repeated the exercises using the touchscreen to allow analysis of performance 

differences between the two input modalities.  

   To investigate volunteer search patterns, eight of the exercises were designed 

with images deliberately either clustered together or arranged in a linear pattern. 
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User images close together in specific patterns enables analysis of peripheral 

vision effects on image recognition. The intuition was that clustering may speed up 

image recognition and reduce search time. 

   Five exercises employed “pseudo-random” image placement patterns to enable 

analysis of visual seeking patterns constant across all volunteer sessions. All 

remaining exercises were true random arrangements generated at each exercise 

invocation. Volunteers were not provided any information about specific pattern 

arrangements before their exercise sessions.  

   Varying image sizes and densities permit analysis of the effects of image size on 

visual search and perception of image details. The intuition was that smaller 

images may be more challenging to view by an aging user population, resulting in 

increased elapsed authentication times and increased recall error rates. 

   Varying image attributes such as differing or similar foreground and background 

colors may affect speed of recognition. The intuition was that some images will 

prove harder to find, increasing sequence selection times. For future work, a formal 

definition of an optimal facial image may facilitate image usability, and be a 

valuable reference in a decoy image selection model. 

3.4 Usability Study Evaluation Results 

3.4.1 Recall Performance 

Nineteen volunteers completed a total of 995 discrete exercises selecting personal 

password sequences from varying display image densities. Thirty errors were 

recorded in the 995 exercises for a successful recall rate of 97%, superior to all 

but two previous works (see Table 3.3). This was especially notable given that our 
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work is the only project with participants over the age of 60. Seven of the thirty 

errors occurred with the touchscreen. The remaining twenty-three errors occurred 

using the mouse. The reduced error rate with the touchscreen may be a result of 

either the ease and immediacy of directly touching the screen with the finger, or a 

result of the ordering of exercises. Touchscreen exercises always followed mouse 

exercises. The mouse exercises could have served as memory reinforcement, and 

equipment and procedural training for the subsequent touchscreen exercises. The 

sources of errors are shown in Table 3.4 presented in order of frequency of 

occurrence.  

   Errors associated with memory, such as recall, transposition and omission were 

few. Some volunteers offered comments that they used mental stories or 

mnemonic sequences to aid recall. One individual chose a chronologically ordered 

sequence of U.S. Presidents. Another chose eastern major league baseball team 

coaches. A third created a mnemonic of the last names of their image subjects. 

   Errors recorded due to inadvertent equipment issues included pressing too hard 

and registering a “double click” on an image without intending to select that image 

twice in a row. The test software did not allow the volunteer to “backspace” to 

correct such errors which were frequently recognized immediately. After 

disregarding the ten errors originating in equipment issues, the recall rate becomes 

97.4%. The demonstrated recall rate is comparable to the best previous work, yet 

the Graphical Password system also makes the challenging task of password entry 

easier and fun for older users.  
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Table 3.2:  Usability study comments. 

User comment Comment topic 

It was interesting. Very advantageous for seniors, young 
people wouldn’t recognize images from earlier times. 
 

Overall opinion 

I memorized those people before I got home, and I live 
close by.” 
 

Memorization 

It was interesting. Overall opinion 

It was fun. Overall opinion 

I have to think, but it’s easy thinking. Recall 

It was easy to quickly recognize my chosen images 
because I have followed the careers of those individuals  
all my life. 
 

Recall 

It has been a week and I cannot forget my password 
image sequence. 

Recall 

I was mentally saying the names in my head. Memorization 

I can remember my image sequence easily after a week 
and I cannot normally remember my passwords or the cell 
phone numbers of friends. 

Recall 

My finger got ahead of my brain and I touched my third 
image instead of my second image. 

Recall 

I can visualize these photographs, I like the people, they 
are like friends. 
 

Recall 

The seventy-image display took too long to hunt through 
and would not be practical in real world application.  
 

Searching for 
images 

I was struck by the sports guys shown on the display so I 
chose them. 

Thematic analysis 
during guessing 
attack 
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3.4.2 Authentication Timing  

Median authentication times with four-image password sequences at varying 

screen densities are shown in Fig. 3.7. Blue asterisks indicate results from 324 

exercises with the mouse, black diamonds indicate results from 285 touchscreen 

exercises, and red triangles denote percentage performance improvement of the 

touchscreen over the mouse. Overall results show median time improvement of 

32% using the touchscreen versus the mouse. Median time to select a four-image 

password image sequence at a low density was about ten seconds. This is less 

time than many volunteers would take to look up a text password in their personal 

notes. As screen density increased, time needed to select a four-image sequence 

increased. Many volunteers commented that searching the 7x10 screen displays 

took too long, ranging from 30 to 35 seconds. 

   Table 3.5 compares the time ranges taken to perform a successful authentication 

versus previous work. The minimum recorded time to use the system was 7.4 

seconds, better than half of the other systems. The maximum time was 33 

seconds, substantially longer than other systems. It must be mentioned that the 

other systems all conducted usability studies with predominantly young, college 

age participants. Our usability study was conducted entirely with participants over 

the age of 60, some significantly over 60 with minor physical disabilities, some with 

no ability to touch type. 
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Table 3.3:  Password recall comparison. 
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Table 3.4:  Error categories. 

Description of Error  Count 

Selected incorrect image due to incorrect recall 8 

Selected incorrect image due to equipment issue, e.g. inadvertent 
double-click or double-touch 

10 

Transposed valid images 6 

Omitted valid images 6 

Total errors 30 

 

 

 

Table 3.5:  Authentication timing comparison. 

Password System Time Range 

Graphical Password System – mouse select four from sixteen 7.4 to 33 seconds 

Passhint [20] 13 to 17 seconds 

Pictures [19] 13.7 seconds 

Characters[19] 10.5 seconds 

DAS [27] 4.5 to 7.5 seconds 

DAS Disappearing Stroke [27] 5.3 to 9.6 seconds 

DAS Line Snaking [27] 5.9 to 12.4 seconds 

 

 

3.4.3 Individual Image Selection Timing 

Fig. 3.8 shows the separate individual image selection timing for the same 

volunteer exercises whose median time results are shown in Fig. 3.7. At each 

screen density (with one exception) median time needed to find a subsequent 
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image always decreased. Some volunteers commented that they noted the 

locations of later images in each sequence during the process of searching for 

earlier images in their sequences, a form of “drive by” recognition. Variance in 

finding and selecting images increased significantly as screen density increased, 

reflecting the increased effort needed to search among more images. 

 

Figure 3.7: Median authentication timing with constant sequence size and varying 
input device modality. 
 

 

 



55 

 

 

Figure 3.8: Individual image selection timing. 

 

3.4.4 User Input Device Modality  

Fig. 3.9 shows median authentication timing data for varying user input devices. 

Volunteers selected varying length personal image sequences from a constant 

image display density of seventy. Volunteers performed 82 mouse (blue bars) and 

75 touchscreen exercises (red bars). For all three personal sequence lengths, 

touchscreen use improved sequence selection timing. 

   One interesting study goal was understanding the impact of using a touchscreen 

versus using a mouse. Many older persons have no touchscreen experience, or 

may have disabilities that limit arm and finger movements needed to reach out and 

accurately select images. Fig. 3.7 and Fig. 3.9 show that these concerns were 
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unfounded as use of the touchscreen significantly improved median timing by 32%. 

As shown by the bottom curve in Fig. 3.7, use of the touchscreen increasingly 

improved performance times as screen image density increased until reaching the 

densest display, 7x10. This suggests that some other factor overcame the 

advantage provided by the touchscreen. The usability study volunteers repeatedly 

commented that the 7x10 screen had too many images which took too long to 

search. 

 

Figure 3.9: Median authentication timing with varying sequence sizes and varying 
input device modality.   
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Figure 3.10: Authentication training effects 

 

3.4.5 Training Benefits 

A goal was to understand any training benefits resulting from repeating exercises 

at similar sequence lengths and display image densities. Previous work noted the 

challenge of getting volunteers to return for subsequent exercise sessions in the 

lab environment [7]. The increased effort made by going to each volunteer made 

it possible to observe and measure repeated exercise sessions. Through 

observation it was noted that initial exercises were often encumbered by volunteer 

unfamiliarity with handling the equipment and operating the software.  Fig. 3.10 

provides a comparison of the median timing differences of first attempts versus 

last attempts at repeated identical exercises using the mouse. Blue data identifies 
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the first exercise. Red data identifies the last exercise. Results show that the 

median performance improved, and variance decreased, reflecting user 

improvement with practice. 

3.4.6 Personal Image Sequence Selection Timing  

At the start of the study, each volunteer was asked to carefully select personal 

images important to them. Appropriate selection was key to a successful and 

efficient password image sequence. Volunteers were instructed to take their time 

and find meaningful password images. Table 3.6 provides a comparison of the 

time taken to decide upon and select each user’s personal four image password 

sequence from the database of 550 images. Many volunteers found the image 

selection experience enjoyable, relating stories about their personal associations 

with the subjects in the images. Those users enjoying the selection process took 

markedly longer to complete their image sequence selection than other users. The 

faster users selected their image sequences in a comparable timeframe to the 

Passhint system. Through observation it was noted that volunteers often 

consciously decided on a strategy of selecting images based on occupational 

category, or era of professional fame, before beginning their image selections. The 

minimum time for a volunteer to select four images was 52.2 seconds, less than 

the 55 second mean of the Passhint system, showing that the Graphical Password 

system can be a practical alternative to Passhint for password creation. 
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3.4.7 Guessing Study 

A guessability study was conducted with a subset of the usability study 

participants. The intuition was that attackers of comparable age to the volunteers 

would have a greater chance of recognizing the display images and discerning any 

themes that might provide hints to actual password images. Five participants were 

asked to view the 6x6 display screens of five other participants and then guess 

which four images formed the “victim’s” personal password image sequence. 

Guessers were told only the sex of the password owner and reminded that the 

password owner was over sixty years old. None of the guessers were successful 

at guessing a correct sequence. Guessers did choose at least one of the four 

images making up each sequence, ineffective for a successful attack. The best 

guesser chose three of the four correct images, in incorrect order, by performing a 

thematic analysis on the displayed images. A security policy requiring user 

selection of target images from multiple categories would thwart this type of 

adversary analysis. 
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Table 3.6: Password selection timing comparison. 

Password System  Selection Time Range 

Passhint [20]   55 to 58 seconds 

Graphical Password System – four images   52.2 to 401 seconds 

 

3.4.8 Image Pattern Effects 

A goal was to learn if peripheral vision could play a role in target image recognition. 

Some exercises placed target images in deliberate patterns. As shown in Fig. 3.11, 

a random arrangement could result in the placement of images anywhere, whereas 

a block pattern puts the four target images immediately adjacent to each other. A 

linear pattern places the four images in a line on the display. The results for 

nineteen volunteers selecting four images from a display of twenty-five images with 

the mouse and the touchscreen are shown in Fig. 3.12. With both mouse and 

touchscreen, the block pattern resulted in improved median timing performance. 

The linear arrangement achieved comparable median timing performance to the 

random pattern with the touchscreen and improved median performance with the 

mouse. This provides evidence that users recognize nearby target images more 

quickly. 

   It was a goal to learn how the volunteers approached performing the exercises 

given that this was a completely new technique. After each exercise session, 

volunteers were asked about any consciously adopted image search strategies. 
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Some volunteers stated they just allowed their eye to generally roam about the 

screen display with no conscious direction. Other volunteers adopted “search left 

to right by row” or “search up and down by column” strategies. 

 

 

 

Figure 3.11: Image arrangement examples. 

 



62 

 

 

Figure 3.12: Timing effects of varying image arrangement patterns. 

 

3.4.9 Text Password Comparison 

A goal was to measure the elapsed time differences between entering a graphical 

password sequence and typing a text password. Fig. 3.13, from left to right, 

illustrates the median timing to enter a four-image password sequence with the 

mouse, then the touchscreen, typing a four-character strong text password, then 

a seven-character strong text password and finally a ten-character strong text 

password. Volunteers were asked to mentally create each strong text password 

for themselves. They were timed solely on typing of the text. The volunteers were 

observed putting significant effort into typing even the short four-character text 

password. Often, they were challenged by finding unfamiliar keyboard symbols or 

they were very slow typists. The median time to enter a four-image sequence with 
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the mouse was 14.2 seconds, less than the 15.7 second median time needed to 

type a four-character strong text password. Entering the four-image sequence with 

the touchscreen was faster yet with a median time of 9.9 seconds, a 37% 

improvement over text entry. The wider variance shown with the text entry may be 

attributable to the wide range of typing skills demonstrated by the volunteers. 

Further observations showed that the over-60 volunteers enjoyed selecting the 

image sequences and felt that typing a strong text password was not enjoyable 

because of the effort needed to find correct keys and unusual symbol characters. 

 

Figure 3.13: Timing comparison between image and text-based password 
sequences.  
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3.5 Graphical Password Extension to Smartphones 

Older persons have significantly lagged younger generations in adopting modern 

technology [54] but are now quickly embracing smartphones. 64% of those 65 and 

older owned smartphones in 2015, reflecting an 8% increase in a single year [60]. 

Since smartphones are designed as inherently touch-based devices, and users 

spend up to 9% of their smartphone-engaged time unlocking their devices [61], the 

Graphical Password technique would seem appropriate for the smartphone 

platform. As a group, older persons have visual, mobility, and orthopedic 

disabilities which limit hand or finger use, lengthen visual search processes, 

adversely affect the ability to perceive small icons, and compromise their ability to 

move arms, hands and fingers smoothly and continuously” [62]. These physical 

characteristics can render some current phone unlock mechanisms difficult and 

frustrating to use. The Graphical Password technique can turn unlocking into an 

engaging and fun experience, key to maintaining a positive user experience [51] 

that discourages users from disabling security unlock mechanisms. 

   With a view toward widespread smartphone adoption by older persons the 

graphical password technique was compared with many common “phone lock” 

mechanisms in use today. Our survey methodology was to examine the online 

descriptions of the first twenty-five “phone lock” apps found in the Amazon Android 

[63], Apple iPhone [64], and Google Play Android [65] app stores. The most 

common “phone lock” apps included:  

• Slider – slide finger along indicated path to unlock smartphone 

• Zipper – slide finger along image of a zipper to unlock smartphone 
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• Numeric PIN – select four-digit (or higher) PIN from numeric keyboard 
display 

• Alphanumeric Password – select text password from ten-digit keyboard 
display 

• Pattern Swipe – swipe finger across display pattern connecting pre-
entered symbols 

• Voice Phrase Match – utter a passphrase into the smartphone microphone 

• Drawing Match – swipe finger across display creating a drawing that must 
match pre-entered drawing 

• Smartphone Shaking – hold an unlocked phone against a locked phone 
and shake them together to pass the unlocked state [66] 

• Fingerprint Scanner (fake) – hold finger to target to unlock phone 

• Fingerprint Scanner (real) – hold finger to target for scanning and match to 
pre-entered fingerprint scan 

   The survey analysis considered smartphone physical icon size, unlock technique 

entropy, ability to replace compromised unlock code, accessibility, touchscreen 

smudge-resistance, and capacity for personalization. The results are shown in 

Table 3.7.  Each technique was rated using a scale from None (N), Low (L), 

Medium (M) to High (H) in terms of suitability of each attribute. 

   Physical size of finger target icons displayed on the smartphone touchscreen is 

very important. As described by Fitt’s Law, the time taken to touch a target is a 

function of icon size and distance [67][52]. Larger finger targets are easier to see 

and touch. The complexity of each technique was reviewed in order to gauge 

resistance to brute force attacks. Many of the apps devolved to simple slider 

switches which anyone with physical access to the smartphone could unlock the 

device. More complex techniques such as PIN, pattern and password entry 

required users to locate and touch very small target characters or icons. Users with 

vision impairments would benefit from enlarging portions of the screen to make 
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viewing and touching easier. Attempts to enlarge the on-screen keyboard displays 

were unsuccessful. Any unlock apps providing screen enlargement capability also 

adds significant task functional complexity measurable through Goals, Operators, 

Methods, and Selection (GOMS) analysis of enlargement and scroll motions 

necessary for successful unlocking [68]. As an example, a user able to directly 

view and select an icon would be able to successfully select the desired icon in 

one step. A user needing to enlarge a section of the screen would need to select 

the screen area to be enlarged, make a zoom gesture and then select the desired 

icon, a minimum of three steps. 

   Unlock codes may become compromised and require replacement. In such 

cases PINs, passwords, and the graphical password technique enable easy 

replacement of the unlock coding. Other techniques such as real fingerprint scans 

or facial photo matching are limited to the user’s ten fingerprints or single facial 

image. Once available biometric data is exhausted the user must seek an 

alternative unlock technique. Fingerprints may become less effective as users age, 

due to thinning skin. Accessibility in design enables those with disabilities to 

successfully utilize the unlock technique. Unlocks requiring matching of line 

drawings are challenging for those with shaky hands drawing on the touchscreen. 

Both the hand holding the smartphone and the hand with the drawing finger add 

variation to the executed drawing. Smudge patterns are created on touchscreens 

executing repeated swipe patterns on static symbol grids.  Lastly, unlock 

techniques providing some user personalization features assists with unlock 

pattern recall. 
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   As shown in Table 3.7, the graphical password technique, in the 3x3 or 4x4 

configuration, provides large target size, good complexity, smudge-resistance, and 

a high degree of personalization. A ten-digit keypad displayed on a Droid Maxx 

running Android 4.4.4 was measured. Each character measured 0.25 by 0.25 

inches. The same screen with a 4x4 graphical password presentation provides 0.6 

by 0.6 inches for each image, more than twice the target space of the ten-digit 

keypad. The large target size facilitates users with vision, finger and arm mobility 

impairments. As older users more widely adopt smartphones, the graphical 

password technique will continue to be beneficial. 

   In recent times, password managers have come into use as repositories of 

passwords for users. In a manner similar to text passwords, graphical passwords 

may be stored and retrieved from an appropriately modified password manager 

able to handle the list of image identifiers forming the password sequence. 
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Table 3.7: Smartphone “phone unlock” technique comparison. 

Technique S C DR A SR P Note 

Graphical Password 

System 

H H H H H H Assuming choose four images from sixteen 

images, randomized display. 

Slider H N N H N N Anyone with physical access may unlock 

the smartphone. 

Zipper H N N H N N Anyone with physical access may unlock 

the smartphone. 

Numeric PIN L H H L M N Assuming four (or greater) digit PIN. 

Alphanumeric 

Password 

L H H L M M Assuming four (or greater) alphanumeric 

character password. 

Pattern Swipe M H H L L L Assuming four (or greater) dot swipe pattern 

on a nine (or greater) dot grid. 

Voice Phrase Match L H H M H H Physical size is not relevant to the voice 

recording quality. Button touches needed.  

start voice recording. Drawing Match H H H L H H Challenging for shaky hands to recreate line 

drawings consistently. 

Smartphone Shaking L H N L H N Physical size is not relevant to the quality of 

the shake pattern reproduction. Button 

touches needed to start shake 

measurement. 

Fingerprint Scanner – 

fake 

H N N H N N Also known as “prank scanner.” Simple 

touch and hold of finger on large target 

image Anyone with physical access may 

unlock the smartphone. 

Fingerprint Scanner – 

real 

L H L H H H Limited current availability for Samsung, 

Apple iTouch and Android 6+ smartphones. 

 

H – High    S – Physical Size.   A - Accessibility 

M – Medium   C – Complexity.    SR – Smudge Resistance 

L – Low    DR – Data Replacement.  P – Personalization 

N - None  
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3.6 Conclusion 

Our work on this project has transformed a challenging authentication process for 

older users into an enjoyable technique that will facilitate continued engagement 

with technology by older users. Our interview-style study of older computer users 

revealed challenges with the creation, recall, and management of strong text 

passwords. Our investigation of the inherent facial recognition capabilities within 

each user enabled us to create a Graphical Password system based on the 

selection of familiar facial images from the past personal history of the individual 

older user. In effect, users were able to rely on memory secrets within themselves 

to build their personal password sequence. Our usability study with nineteen 

volunteers demonstrated a 97% recall success rate, faster password selection 

than many previous graphical password systems, and faster performance than 

traditional text password entry with a keyboard. Our technique is naturally usable, 

easy-to-recall, and easy to execute. By enabling use of mouse or touchscreen 

image selection, a faster password entry mechanism was created that facilitates 

the manually impaired user. We have shown that the entropy of the Graphical 

Password technique is comparable to four-character text passwords, and superior 

to four-digit PINs, a viable security alternative to commonly used authentication 

systems. Additionally, we are rewarded to know that our technique is enjoyable to 

use and provides a supportive and positive user experience. 
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Chapter 4 

Personal Fitness Tracker Usage Analysis 

Over twenty-five million U.S. adults have purchased personal fitness trackers 

(PFTs) to pursue their health and fitness goals [69][70][71] and made them a key 

part of their lifestyle [135]. It has been shown that seventy percent of U.S. adults 

track some aspect of their health, while seven percent use an app or mobile device 

as a part of their personal health data tracking program [72]. With so many users 

wearing PFTs every day, it is important to investigate user activity patterns as a 

basis of comparison with manufacturer provided information. Manufacturers have 

not tested their devices in the context of health appliances, nor have they released 

detailed scientific information about the health aspects of utilizing their devices. It 

is essential for the user to have this baseline information in order to have an 

efficient health and fitness improvement program. This project gathered extensive 

data from many sources to develop a quantified picture of user activity, behavior, 

and fitness social network patterns. 

4.1 Background 

PFTs are small devices, unobtrusively worn either on the wrist or clipped to the 

body with the primary fitness goal of counting user steps. Additional functions 

include counting stairs climbed, estimating calorie burn, measuring heart rate and 

recording sleep patterns. Avid PFT users have integrated these devices 

throughout their daily lives, increasing awareness of fitness activity levels, and 

receiving motivations to achieve their goals for healthy living [73]. Users may rely 

upon their PFTs to not only inform important decisions about lifestyle choices and 
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health behaviors, but also to connect to others in fitness-related social groups for 

mutual motivation, social benefit and goal reinforcement. This important surge in 

user self-measurement and analysis has been dubbed the Quantified-Self (QS) 

[74] movement. 

   Unfortunately, there is limited public information about current user practices 

available to inform the user of product efficacy. Manufacturers do not publish user 

activity statistics for public consumption. Manufacturers have declined to undergo 

the rigorous independent US FDA and HIPAA testing processes [75] that inform 

consumers of device effectiveness and durability. Consumer information consists 

of user reviews in popular journals and web forums, manufacturer technical 

information, and user-contributed postings to fitness related social media. It is 

important to understand PFT usage patterns because employers and insurance 

companies are moving to obtain user tracking data to identify and address 

individual insurance risks [130]. 

   Previous studies on PFT user patterns enrolled small groups to characterize 

usage patterns without addressing gender or age differences. Other work was 

limited to college age participants [76][134][136] or medical patients [133]. There 

is an identified need to study more diverse PFT user groups [136]. Many studies 

were the results of interviews or video analysis. Our project captured real-world 

user data to quantitatively describe usage patterns among typical users. 

   Previous work based on interview-style user studies, user surveys, and analysis 

of user experience videos have developed themes important to understanding PFT 

usage but do not attempt to quantify user activity levels of the diverse PFT user 
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population. Some studies compensated participants with money, providing an 

external motivation to continue PFT use, or creating a feeling of obligation to 

perform well that may skew results [136]. Researcher coding of interviews, surveys 

and videos may introduce error through incomplete understanding of user 

intentions. Users may also introduce error in the form of inaccurate recall or a 

desire to give the researcher pleasing answers. This project’s data is collected 

post-facto from publicly available, user-posted data. There was no opportunity to 

motivate user participation with a stipend or recognition prior to data collection.  

   The project goal was to develop a quantified portrait of “in the wild” PFT usage 

by mining publicly accessible user data postings to popular social media, reviews 

on websites, and activity data shared among consenting user fitness groups. The 

importance of user postings has grown as 79% of Americans engaged online in 

2016 [128]. A recent fitness tracking study has noted that half of their participants 

also engaged on social networks [134]. It was possible to mine detailed information 

about daily activities from users who were open to engaging with other users. This 

accumulated data enabled measurement of significant gender and age differences 

in fitness social network group composition and user activity levels. It was possible 

to identify important fitness trends based on type of social media forum. It is 

believed this is the first project to use data from real-world PFT users, and the first 

to quantify the PFT user experience in fitness social forums. 

   While mining the dataset of user records, it was discerned that a device 

manufacturer’s user URL coding mechanism was strongly correlated with user 
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ownership onset date. This knowledge enabled characterization of step activity 

levels as a function of device ownership duration. 

   Even as PFTs are enjoying wide adoption, and evolving in exciting ways, their 

functionality is being incorporated into smartwatches, providing users with access 

to phone functionality directly from the user’s wrist [71][129]. PFT and mobile 

phone functions directly interact together to create a beneficial and personalized 

user experience.  

4.1.1 User Activity and Behavior Model 

A holistic model of user activity and behavior defined user activities in three stages 

is shown in Fig. 2.1. The Initiation phase encompasses the user steps taken to 

acquire and begin to utilize the PFT. The Utilization phase incorporates normal 

wear, activity, reliability and socialization activities as the user goes about their 

normal daily routine. The Abandonment phase addresses the user’s decision to 

stop using the PFT. The project data collection and analysis effort focused on the 

Initiation and Utilization phases of user activities.  

 

4.1.2 Personal Fitness Device Hardware, Software, and Social Forums 

There is a broad array of PFT devices available in the marketplace. This work 

focuses on wrist-worn PFT products. Fig. 4.1 shows two popular and 

representative PFTs collocated on a user’s left wrist. On the left is a Fitbit Charge 

alongside an Apple Watch. The user motivation results revealed in Table 4.1, that 

users are highly interested in product appearance, and wrist band comfort. As 

personal devices typically worn for much, if not all day, users desire an attractive 
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band and display. Both models normally have a darkened screen until awakened 

with a tap or swing of the wrist up to the face. The Fitbit Charge has a single LED 

screen display and one button to click through user information displays.  The 

Apple Watch has a larger screen with many tap selectable activity displays.  Like 

most models, these devices not only track user steps but also floors climbed on 

stairs, distance traveled, calories burned, heart rate, active minutes of exercise 

and more.  

   PFTs pair using Bluetooth to relay collected activity data via the user’s mobile 

phone or personal computer dongle. That data is then viewable on PFT 

manufacturer websites, user apps and personal computers. Users frequently view 

PFT data and change PFT settings via their phone app. Fig. 4.2 shows a 

representative Fitbit Surge app display showing the PFT model name, number of 

steps taken that day, resting heart rate, calories burned, floors climbed and other 

useful information. Images of user app screens can be easily posted to social 

networking sites for sharing with friends. 

   Users have access to a wide array of manufacturer or independent apps to assist 

with data analysis, and foster participation in web-based social forums. As in 

traditional social networks, PFT users “friend” other PFT users and join groups with 

similar motivational goals. The forums provide users motivational feedback in the 

form of achievement “badges” at specified step activity levels and “friend” 

comments. Group members can “see” the activities of other group members if 

allowed by individual user account settings. The manufacturers also host 



75 

 

“challenges” whereby small groups of users can track their step activity for short 

periods of time such as a week or a weekend. 

   Several popular models of personal fitness trackers and smart watches were 

identified as desirable targets for gathering internet-posted data. The focus was 

placed on devices with major market share, specifically Jawbone UP, Garmin, 

Samsung, Fitbit Charge HR, Fitbit Surge and Apple Watch. 

 

 

Figure 4.1: Fitbit Charge and Apple Watch 
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Figure 4.2: Fitbit Surge User Daily Activity Display on Mobile Phone 

 

 

4.2 Motivation 

Users typically wear their PFTs all day, and transmit their data off-device for 

subsequent storage and use within a wide array of personal fitness apps or device 

manufacturer websites. Users are relying upon their devices to not only inform 

important decisions about lifestyle choices and health behaviors but also to 

connect to others in fitness-related social groups for mutual motivation and goal 

reinforcement. This work brings together user-posted records from a wide array of 

sources to achieve a quantified understanding of current fitness activities and 

extent of fitness related social interactions. 
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4.3 Data Collection Methodology 

English language user product reviews, performance data, social network data and 

demographic information were collected. Product reviews consist of user 

comments regarding motivation, PFT performance issues, and reliability. User 

performance data contained the numeric quantity of steps achieved on the day the 

user posted information onto a website. Only user-posted information was 

collected which clearly came from a single PFT user as judged from context, 

content and user self-identification. Data posted by commercial organizations, 

professional consumer electronics reviewers, professional journalists or online 

publications was excluded. Demographic data consisting of age and gender was 

collected from performance and social group postings as presented by each user 

fitness account. Performance and social group postings without viewable gender 

and age information were not included in this study. User social group data 

consisted of the size and composition of the user’s fitness social group. Data was 

deliberately collected from a variety of online sources to minimize potential effects 

of site editorial bias, and to enable observation of varying user motivations by data 

source. Data was collected in the form of screen scrapes (html files), screen grabs 

(jpg), or manual transcription of displayed screen data. Individual users were 

tracked by the user-chosen nickname associated with each review or data posting. 

   This work brings together user-posted step activity records from a wide array of 

sources including social groups on PFT manufacturer social forums. User-posted 

fitness data screenshots placed on popular image-sharing venues such as Yahoo, 

Instagram, Tumblr and Flickr, display actual numbers for notable user step 
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achievements. Each record displayed specific activity levels from one or more 

users. Individual record sources may be biased due to editorial policies or user 

group mutual interests. The project gathered data from multiple sources to develop 

a more complete spectrum of user motivations and concerns. Social groups and 

other online forms of online communications have been studied for a long time 

[132]. Evidence suggests that users may feel most comfortable expressing 

themselves through internet postings [131].  This lends support to these sources 

as accurately reflecting PFT user activities and behaviors. 

   User accounts offer privacy controls regarding public visibility of user information. 

All website-posted information was explicitly open to public viewing as set by the 

data owner. No attempt was made to circumvent any security or privacy controls. 

User data was analyzed statistically with Matlab© software. 

   PFTs automatically upload user data to manufacturer websites when an 

authenticated and paired connection is established. This supports data reliability 

as users cannot directly modify their step activity data. Potential limitations of this 

work are that users may have mis-represented their gender or age on websites, 

users may have posted activity information that was actually performed by a 

different person. It is believed these limitations are minimized by the large set of 

data collected, and the randomness of the data sources selected. The result of this 

project is the first fine-grained insight into the real-world usage patterns of PFT 

technologies. 
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4.3.1 Product Reviews 

Retailers, manufacturers and fitness bloggers provide forums for purchasers to 

post PFT product reviews and comments. User product reviews consist of the 

user’s comments in text form describing personal experiences with the PFT. These 

comments include user primary motivations, and reliability issues encountered 

with the PFT.  Retailer sources consulted were amazon.com, bestbuy.com, 

target.com, walmart.com, rei.com, bhphotovideo.com, verizon.com and att.com. 

Manufacturer sources consulted were Apple, Fitbit, Garmin, Jawbone and 

Samsung. Resellers such as eBay and Craigslist were intentionally omitted as their 

users have the explicit goal of completing a sale and may bias their writing with a 

positive slant. It must be noted that manufacturer and retailer forums may be 

curated, as PFT manufacturers have a vested interest in presenting a positive 

product image. The presence of negative reviews was noted on all websites. 

Collected reviews were analyzed thematically to discern user purchase 

motivations and reliability issues. 

4.3.2 Blogging Websites 

Thirty independent fitness-oriented blogs were identified which focused on the use 

and performance characteristics of PFT devices. Bloggers posted screenshots of 

their Fitbit and Garmin fitness activity to support their writing. Tumblr is a 

microblogging service supporting users posting about personal interests. Tumblr 

users typically posted an image followed by a short comment along with appended 

search tags. As an example, by searching on hashtags such as #jawboneup 

posted fitness data for ten Jawbone PFT users were obtained. Fig. 4.3 shows a 
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representative Tumblr posting containing a screenshot of a user app screen. The 

top portion of the screen indicates this user has moved 12,681 steps, burning 

1,741 calories. The bottom of the screen shows the user-added text indicating their 

pride in achieving over 12,000 steps despite encountering bad weather. This user’s 

text also provides evidence of their motivation to lose weight. The user text added 

to Tumblr postings provided interesting insights into user behavior patterns and 

motivations. One Jawbone user posted for ten days, recording an average cardio 

workout of 1 hour 24 minutes and an average walk of 31 minutes per day. Another 

poster provided information about device idle settings and personal motivation “My 

up idle alert is set to 30mins so if I don’t move for thirty minutes and get that buzz 

I’ve decided to get up and do 10 squats.” 

 

Figure 4.3: Tumblr posting from Jawbone UP user 
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4.3.3 Image Sharing Websites 

Users enjoy sharing screenshot images of their fitness achievements with friends 

on the image sharing websites Flickr, Instagram and Yahoo. Searching with the 

terms “fitbit dashboard,” “fibit activity,” “fitbit steps” or tag “#fitbit” resulted in a large 

number of resulting images. Users will post a screenshot of their mobile phone 

PFT app display to celebrate a notable step activity achievement. Often there is 

accompanying text reflecting pride in their achievement. It is hypothesized that the 

step activity numbers shown in these screenshot images are often “personal 

bests,” an upper fitness bound, and are posted to let friends know about user 

achievements. 

4.3.4 Social Networks 

Screenshots posted to Facebook were collected by searching with terms “fitbit 

dashboard,” “fitbit chargehr” and similar terms. It was possible to measure user 

engagement with online fitness networks by examining the Fitbit online community. 

Many major PFT device manufacturers maintain websites to support their 

respective user communities. Individual PFT users may view their personal fitness 

data and engage in social activities with other device users. Formal groups of Fitbit 

users within the Fitbit Community are organized into “Activity Groups.” Individual 

users who join a group are called “friends.” Individual user step activity records 

were collected from thousands of users on the Fitbit website. Users may establish 

and/or join activity groups matching their personal interests, fitness goals, 

occupation, age, geographic location and other focus areas. Data was collected 

from groups of younger (20s) and older (60s) users. Upon viewing the public profile 
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of each user, it was often possible to identify the user’s gender based upon the 

provided image and name. When the presented user name or image was not clear 

as to gender then that user’s data was excluded from the gender-based activity 

statistics in this study. 

   Just as social networks have become a significant part of society, PFT 

manufacturers have created fitness-focused social networks to foster social 

relationships between PFT users. These relationships are a source of motivation 

to improve fitness and a means of friendly competition with family, friends and 

others. Fig. 4.4 shows a representative mobile phone Fitbit app screen with the 7 

Day Step Total for one user and five of her friends who are also using Fitbit PFTs 

to record step activities. The display is in a “leaderboard” style format, meaning the 

five friends with the highest current step totals will be shown on this display. 

   It is possible to view the personal data of the friends of each device user if the 

friends have their privacy settings set to permit public view. Users may have 

varying numbers of friends, up to eight of which are visible in the user data Friends 

screen on a personal computer. Only six friends are viewable on one Friends 

screen of a mobile phone. Through analysis of the publicly visible data, it is 

possible to characterize the quantities and gender of friends linked with each user. 

By capturing Friend data, a portrait can be developed of the degree of socialization 

within the group, and between genders. 
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Figure 4.4: Fitbit Friends Display 

 

4.3.5 Fitness Infrastructure 

During the course of collecting user data from the Fitbit community website, we 

discerned that a unique coding mechanism was assigned to each user account 

public Uniform Resource Locator (URL) by this manufacturer. Each URL contained 

an alphanumeric sequence unique to each user. It was also observed that many 

users had left their personal profile “Join Date” open to public viewing. Correlating 

the publicly viewable “Join Dates” with user alphanumeric codes confirmed that 

user codes were assigned in a strictly increasing pattern. Given an ample 

collection of unique join-date-code-sequence pairs, it was possible to construct a 

reference list of the range of assigned code sequences assigned for each 

month/year since the Fitbit was first introduced. Knowing the duration in months of 

PFT ownership for all users in the collected data enabled further analysis of 

popular device purchase timeframes, and persistence of PFT usage over time. The 
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data collection phase was completed in December 2015. It was possible to 

estimate the number of users joining the Fitbit community in each of the months 

preceding the data collection effort. As shown in the upper plot of Fig. 4.5, 20-year-

old users exhibited large spikes in onset of PFT use at 12 and 24 months prior to 

December 2015. This implies that large quantities of younger users are beginning 

PFT use during the North American holiday season. As shown in the lower plot of 

Fig. 4.6, older users exhibited significant onset of PFT use during the same holiday 

seasons. Older users also exhibited a significant spike in user onset at the 

beginning of the immediately previous North American summer season in 2015. 

There was no corresponding summer onset bump for younger users. 
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Figure 4.5: Device ownership onset. Upper plot reflects 20-year-old device 

owners. Lower plot reflects 60-year-old device owners. X-axis is number of 

months of ownership. Y-axis is number of devices initially activated during the 

month 
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4.4 User Data Analysis 

4.4.1 Initiation Phase Analysis 

PFTs are designed to track multiple aspects of user fitness activities. Users may 

choose to use one, several or all the available modalities of their device depending 

upon their personal goals and interests. To understand actual user motivations for 

acquiring and utilizing PFTs, user comments were gathered and thematically 

analyzed the text of user-posted product reviews on manufacturer and retailer 

websites. User PFT reliability concerns were also captured through the same 

means. A total of 2,461 user-posted product reviews were collected. Each review 

was evaluated to determine if motivational or product reliability content was 

present. Examples of motivational statements were “step activity tracking”, “sleep 

tracking” or “heart rate tracking.” Examples of reliability statements were “synching 

was easy,” “step tracking was inaccurate,” or “battery charging was a concern.” A 

review such as “It's only been a couple of weeks, but so far I really like the Fitbit 

Charge HR. It keeps really great track of my steps, monitors my heart rate well, 

and I like the added feature of having a watch on, which I haven't worn one for 

years. I haven't quite learned how to understand the sleep data, but it is definitely 

monitoring that too. I'm still learning, but so far really like it“ provides relevant 

insight into this user’s interest in multiple current modes of self-tracking, step 

activity and heart rate. Other reviews such as “I love this item. It's fantastic” or “It 

worked as advertised“ provide no specific motivational or reliability insight and 

were not considered further. Reviews commenting solely on PFT pricing, 

availability and shipping were also not considered further. From the original set of 

reviews, 1,613 (66%) contained relevant statements meeting the study goals. 
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Often, user product reviews contained more than one relevant statement. The 

collection of user product reviews with relevant content contained 3,114 individual 

statements, an average of 2 relevant comments contained within each qualifying 

relevant user product review. An example of a user review with multiple relevant 

statements is “I love my Fitbit Charge HR! It is very accurate, easy to use and a lot 

of fun. I love that is syncs automatically to my phone. The heart rate feature is 

great. The band is comfortable to wear and not too big. The clasp is very secure. 

The battery will last about 4 days and it charges quickly. I am glad I waited for this 

product!!” Reviews with compound statements were parsed into multiple individual 

statements. The previous example counted towards the topics of device synching, 

heart rate tracking, wrist band comfort and battery capacity.  

   Table 4.1 lists the ten most significant motivational themes identified in this study. 

While step tracking is the dominant use, the next most prominent theme stressed 

the physical appearance of the PFT, more so than the heart rate tracking and sleep 

tracking user applications. It was theorized that since dedicated PFT users often 

wear their devices all day, they wish the PFT to be visually attractive, and 

compatible with their attire. 
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Table 4.1: PFT User Motivation Themes. Each row indicates the raw count, and 
proportion of user reviews. 
 

Statement Count Motivation Theme 

409 (27%) Step activity tracking 

305 (20%) Product looks good or is stylish 

283 (19%) Heart rate tracking 

212 (14%) Sleep tracking 

121 (8%) Motivates to exercise more 

70 (5%) Calorie tracking 

59 (4%) Ability to customize appearance 

26 (2%) Stair tracking 

24 (2%) Received as a gift 

21 (1%) Enjoy social features, friends and challenges 

 

 

During this study, it became evident that the currently emerging class of wearable 

devices called “smart watches” is making a big impact with fitness tracking users. 

The extensive and enthusiastic user comments on smart watches motivated the 

expansion of the study to take a first look at this next generation of fitness trackers. 

Smart watches build on the functionality of PFTs by adding functions traditionally 

associated with mobile phones. Table 4.2 lists the four user motivation themes 

associated solely with smart watches. Smart watch themes reveal that the 

convenience of pairing a wrist worn PFT with a mobile phone is a highly valued 

technical capability. Smart watch advertising, and user product reviews comment 

that these devices eliminate the need for a user to locate and extract their mobile 

phone from a pocket or purse to review texts, caller ids, or even initiate phone 
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calls. It is suggested that as smart watches gain in user functionality they will 

become a dominant part of the wearable consumer market. 

 

Table 4.2: Smartwatch User Motivations. 

 

4.4.2 Exercise Phase Analysis 

4.4.2.1 Reliability Analysis 

Table 4.3 lists the seventeen reliability themes represented by more than 1% of 

the user review statements. Themes reflect the user’s assessment regarding the 

capability of their PFT, and related app software. Themes were categorized as 

positive or negative from the user’s perspective. Positive themes convey that the 

user is pleased with the performance described in their review. An example of a 

positive theme is “Wristband is comfortable.” Negative themes reflect user 

dissatisfaction with an aspect of PFT or app performance. An example of a 

negative theme is “Synching PFT was not easy” reflecting users challenged by 

unsuccessful attempts to synch their PFT with their mobile phone or computer. It 

is noteworthy that ten of the seventeen themes were actually positive and negative 

user perception pairs regarding only five reliability themes: app experience, battery 

life and charging, synching, wristband comfort, and setup and learning. For all five 

Statement Count Smartwatch Motivational Themes 

294 (49%) Text, caller id, and email notifications displayed on PFT 

194 (32%) PFT acts as an extension of user mobile phone 

84 (14%) Phone calls are made from PFT on the wrist 

28 (5%) PFT voice command recognition was good 
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of these themes, the amount of positive user reviews exceeded the number of 

negative user reviews. 

 

 

4.4.2.2 Step Activity Analysis 

Step activity tracking was shown earlier in Table 4.1 as the principal user 

motivation. Yet there remains no consensus on the actual amount of step activity 

occurring among active users. An obstacle to understanding step activity in the 

general population is the absence of a centralized, and publicly accessible point 

for capturing the degree and extent of PFT use by the general PFT user population. 

In order to gauge the level of step activity, user-reported step activity levels were 

gathered from a variety of data sources. Step activity data was extracted from a 

large number of user-posted fitness app screen shot images. It was also possible 

to capture a large number of user step data records that were automatically 

uploaded into the Fitbit community website. Through analysis of these step activity 

numbers we gained a quantified understanding of average user daily step activity 

levels among currently active users of PFTs. 

   Numeric data records of step activity levels posted by individual users from 

seven data sources were gathered. Table 4.4 lists these data sources and 

corresponding mean user daily step levels. Four of the seven data sources 

revealed a close correlation in mean user daily step activities. Data from images 

posted to Flickr, Tumblr, Yahoo, independent bloggers, and Facebook all reported 

a mean daily step activity level in the narrow range between 11,690 and 12,750 
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steps per day. It is suggested that their collective daily median of 12,213 steps may 

be a reasonable reference number to assume for the general population of 

motivated PFT users who went to the extra effort of maintaining a blog, 

accumulating and keeping a group of followers, or placing their information into a 

public forum. The Instagram daily average of 15,138 steps is notably higher. This 

may be reflective of a younger, more active user demographic. Instagram has been 

shown to be attractive to young adults, 55% of 18 to 29-year olds use Instagram, 

more than any other social media website [19]. 
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Table 4.3: PFT User Reliability Themes. Each row indicates the raw count and 
proportion of user reviews. The Bias column indicates the positive or negative 
nature of each theme.  
 

Statement Count Reliability Theme Theme 

Bias 

220 (14%) App experience positive and met needs Pos 

151 (10%) Battery life and charging a concern Neg 

101 (7%) Hardware was broken Neg 

99 (6%) Battery life and charging not a concern Pos 

93 (6%) Synching PFT was easy Pos 

92 (6%) Setup and learning were easy Pos 

88 (6%) Inaccurate step counting Neg 

80 (5%) Setup and learning were not easy Neg 

76 (5%) Synching PFT was not easy Neg 

75 (5%) Wristband was comfortable Pos 

66 (4%) Clasp slips and opens Neg 

64 (4%) Wristband was uncomfortable Neg 

63 (4%) App experience was negative and did not 
meet needs 

Neg 

59 (4%) Inaccurate heart rate tracking Neg 

51 (3%) Required to have mobile phone nearby Neg 

32 (2%) Inaccurate sleep tracking Neg 

24 (2%) Screen display readable and clear Pos 

 

A large amount of step activity data from groups of users within the Fitbit social 

community were gathered. As shown in Table 4.5, step data was extracted from 

three groups of sixty-year olds, and three groups of twenty-year olds for a total of 

2,483 data records. Their mean daily step level was 7,607 steps, the lowest of the 

data sources and substantially below the well-known 10,000 steps per day goal 

set by the American Health Association [73]. Examination of mean daily step 
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values from all the data sources revealed two trends.  The first trend observed was 

that as the degree of data collection automation increased, average daily step 

value decreased. The second trend noted was potential social reach, and posting 

effort increasing as average daily step value increased. Fig. 4.6 illustrates these 

trends in a plot of the mean steps per day from the seven data sources. 

   The automated data upload mechanism created by Fitbit makes it very easy for 

active users to keep online data records updated. It also may reduce data entry 

errors by removing human transcription and personal editorial concerns from the 

process of recording daily step activity values. Fitbit user data records are updated 

in an automatic and unattended manner when a user’s PFT is within range of a 

synch point such as a mobile phone or computer dongle. Often, users may not 

even notice when a data synch is occurring. 

 

Table 4.4: Comparison of mean daily step values. Numbers in parentheses 
indicate collected number of data records. 
 

Data Source Mean user daily steps 

Instagram Postings (100) 15,138 

Flickr Images (100) 12,732 

Tumblr Postings (100) 11,959 

Yahoo Images (100) 11,875 

Blogger Images (28) 11,799 

Facebook Postings (150) 11,694 

Fitbit Community (2,483) 7,607 
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Table 4.5:  Data from Fitbit Activity Groups 

 

 

Figure 4.6: Step activity trends from varied data sources as a function of 
automation and social audience 
 

Activity Group Name Quantity 

Friends 

Records 

Mean Daily 

Steps 

Over 60 Group One 107 7,431 

Over 60 Group Two 34 10,260 

Over 60 Group Three 586 7,873 

20s Group One 99 7,214 

20s Group Two 240 6,682 

20s Group Three 1,417 6,182 

Total Records 2,483 7,607 
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Websites with a large social audience may enable already-motivated users to 

publicize their step activity achievements. Instagram users can potentially reach 

millions of viewers. Independent bloggers are known to reach many thousands of 

readers. The observations of Facebook and Fitbit are that their friend populations 

are much smaller. In the case of sites such as Instagram and Flickr, the effort 

required to create a user posting is more significant than the automated Fitbit data 

upload. Instagram and Flickr users must take explicit action to post step activity 

screen shot images, select associated tags, and supply accompanying narratives 

to continue a communication stream with their readers. Their higher degree of 

motivation to set up and maintain a blog may reflect a higher commitment to 

increased fitness through increased step activity. 

   The large group of data records collected from the Fitbit activity groups enabled 

further analysis of step activity based on gender and age. As shown in Tables 4.6 

and 4.7, a large set of records was collected from users self-identifying with ages 

in their twenties and sixties. The viewable user profile data was utilized to 

determine gender. In those cases where gender was unclear, the user data record 

was excluded from further gender analysis. 
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Table 4.6: Fitbit Activity Group Records by gender and age 

Age Male User 

Count 

Group 

Percentage 

Male 

Female 

User 

Count 

Group 

Percentage 

Female 

20s 292 17.2 1,406 82.8 

60s 247 35.5 448 64.5 

 

Table 4.7: Step activity by gender and age 

Age Male Mean 

Daily Steps 

Female Mean 

Daily Steps 

Gender 

Step Delta 

20s 8,626 6,913 1,713 

60s 9,582 7,238 2,344 

 

 

The user membership described in Table 4.6 was largely female, particularly in the 

younger age group, the 20s. As shown in Table 4.7, the male PFT users recorded 

significantly higher daily step counts than the female members in both age groups. 

The male users exceeded Meyer’s counts of 7,500-8,500 steps, female users 

recorded lower activity levels [133]. All four gender-sex user categories recorded 

daily step averages below the 10,000 steps per day goal. 

   The five plots in Fig. 4.7 compare normalized mean daily step counts by gender 

and age groups as recorded over one full month, averaged to a daily step quantity. 

Fig. 4.7 (a) shows that both age groups display a skewed right normal distribution 

of step activity with the exception of 20-year olds at the lowest step activity levels. 
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Fig. 4.7 (b) reveals a normal step activity distribution pattern for the older user 

group except for increased quantities of females at the very lowest activity levels. 

Fig. 4.7 (c) compares 20-year-old users of both sexes. The overall distribution 

appears skewed right normal. Displaying male data in green and overlaying female 

data in yellow, the results are bimodally distributed, reflecting lower step activity 

levels by female PFT users. Figs. 4.7 (d) and 4.7 (e) compare normalized step 

averages of same-gender users to illustrate age differences in performance. Fig, 

4.7 (d) shows young male users dominant at the lowest activity levels, older male 

users dominant in the mid-range, and no clear dominance at higher step levels.  

Fig. 4.7 (e) compares female user step activity for both age groups. The results 

appear closer to skewed normal distribution pattern though again, younger females 

dominate the lowest activity levels to a lesser degree than the younger males in 

Fig. 4.7 (d). From this information, it was observed that relatively significant 

populations of younger users are exercising very little. 

 

(a) All gender, 20-year olds (green) and 60-year olds (yellow). Delta values of 60-
year olds over 20-year olds is plotted in black 
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(b) 60-year-old users, both genders. Males (green) and females (yellow). Delta 
values of 60-year olds over 20-year olds is plotted in black 
 

 

(c) 20-year-old males (green bars) and females (yellow bars). Delta values of 60-

year olds over 20-year olds is plotted in black 
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(d) Male users, 20-year olds (green) and 60-year olds (yellow). Delta values of 60-
year olds over 20-year olds is plotted in black 
 

 

(e) Female user, 20-year olds (green) and 60-year olds (yellow). Delta values of 
60-year olds over 20-year olds is plotted in black 
 

Figure 4.7: Normalized step activity performance level comparisons between 20 
and 60-year-old Fitbit users. X axis is increasing mean daily step count averaged 
over one month. Y axis in parts (a), (b) and (c) reflects percentage of the group 
population. Y axis in difference plots of parts (d) and (e) reflects magnitude of 
group difference with 60-year-old data negative and 20-year-old data positive. 
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4.4.2.3 Ownership Duration Activity Analysis 

The average user daily activity level as a function of duration of device ownership 

was analyzed. Fig. 4.8 illustrates activity levels recorded in November 2015 for 

devices acquired in the past. Initial speculation was that the longer the user had 

the PFT, the higher the current activity level would become as user fitness 

improved. By fitting a line to each data set through application of the Least Squares 

technique [138], it is possible to confirm overall improving trend of user 

performance for a subset of users.  

The equations used to fit the line were 

 

 𝑚 =
𝑥̅𝑦̅−𝑥𝑖𝑦𝑖̅̅ ̅̅ ̅̅

(𝑥̅)2−𝑥2̅̅̅̅                                  (1) 

 𝑏 = 𝑦̅ − 𝑚𝑥̅                                 (2) 

 

Where  

m = line slope, 

b = line y-intercept, 

 𝑥̅ = mean of set of ownership duration values, 

 𝑦̅ = mean of set of average steps per day, 

 l = element identifier within duration data set. 

 

   The slope of the 20-year-old user line is 0.1263. The slope of the 60-year-old 

user line is 0.1772. This provides evidence that while both user populations 

achieve increasing step activity levels with increasing duration of ownership, the 

older user group is increasing their step activity levels more than the younger 

group. Some of the devices in longest use are observed recording the highest step 
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activity levels. This could be evidence of very committed users exercising at high 

levels. It could also be evidence that some users are in occupations with a lot of 

walking. It has been estimated that approximately 2,000 steps are taken during 

each mile of activity [139]. This number will vary depending upon the individual 

user’s stride length. It is estimated that the users logging 40,000 steps of daily 

activity are running or walking in excess of 20 miles per day. 

 

Figure 4.8: Average daily step activity level as a function of duration of device 
ownership. Upper plot reflects 20-year-old device owners. Lower plot reflects 60-
year-old device owners. 
 

4.4.2.4 Social Engagement Analysis 

Table 4.8 shows that the mean number of friends for the three activity groups of 

60-year olds is less than the mean number of friends for the three activity groups 

of 20-year olds. From this, it can be inferred that the older group is less interested 

in socializing with other PFT users.  
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Table 4.8: Friends per viewable user record. 

 

 

 

 

 

 

 

 

 

 

   The collected data provided further insights into the distribution of friends per 

PFT user participating in the fitness-related social network. The quantity of friends 

serves as a metric for degree of user socialization in fitness social networks. Table 

4.9 presents the percentage of users versus quantity of friends. Friend quantities 

are classified into three categories. “Very Few Friends” was defined as two or less 

friends. “Few Friends” was defined as four or less friends. “Many Friends” was 

defined as those with six or more friends. As reflected in Table 4.8, younger users 

had a significantly higher proportion of members with “Many Friends” than the older 

group. Younger users had a significantly lower proportion of users with “Very Few 

Friends” than the 60-year olds. Older males appear to be the group with the 

smallest social networks. Younger users all showed strong interest in social 

activities with younger females only slightly edging out younger males. 

Activity Group Name Quantity 

Viewable 

Friend 

Records 

Mean 

Quantity 

Friends 

Per User 

Over 60 Group One  60  3.95 

Over 60 Group Two  20  5.0 

Over 60 Group Three  391  3.58 

20s Group One  83  5.05 

20s Group Two  203  5.29 

20s Group Three  1051  5.43 
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   Table 4.10 provides more detailed results describing the quantity of PFT users 

with social networks of increasing size, from 0 to 8+ Friends. As an example, there 

are twelve male 20-year-old PFT users who have zero friends. It must be noted 

that the fitness device app is set up to show no more than eight friends for each 

user. There is a strong trend within both age groups to have exactly six friends. 

This may be a result of the screen size limitations of the mobile phone. It is notable 

that among females in their 20s, 134 (12.2%) have formed friend groups of at least 

eight or larger. From this it can be inferred that the younger females are more 

interested in socialization than males or older females. A group of 42 male device 

users in their 60s have no friends at all. This is 23.7% or nearly one quarter of that 

group. Quantitatively the older males socialize the least in this social forum sample. 
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Table 4.9: Quantities of friends 

  Very Few 

Friends (<3) 

Few Friends 

(3 or 4) 

Many 

Friends 

(>4) 

20s males 10% 27% 70% 

20s females 8% 21% 74% 

60s males 36% 53% 40% 

60s females 32% 48% 46% 

 

Table 4.10: Size of friend group versus age of user 
 

 

 

 

 

 

 

The collected data enabled analysis of the gender ratios of friends within the social-

fitness network. Each of the friend records was examined for gender identity but 

not age. As shown in Tables 4.11 and 4.12, PFT users in both age groups were 

more likely to have friend relationships with females than with males. The friends 

of the users shown in Tables 4.11 and 4.12 were not further categorized as to age. 

As shown in Table 4.11, among younger users, females were the most likely to 

Number of Friends 0 1 2 3 4 5 6 7 8+ 

Male 20s 12 13 11 15 14 8 132 7 31 

Female 20s 32 54 49 38 54 58 632 43 134 

Male 60s 42 21 11 8 11 14 67 0 3 

Female 60s 52 25 22 24 17 18 126 4 6 
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have female friends and the least likely to have male friends. As shown in Table 

4.12, among older users, older males were most likely to have female friends, and 

least likely to have male friends. Table 4.13 shows the gender ratios of male to 

female friends for each gender-age category of users. If users had equal amounts 

of friends from each gender, then the friend gender ratio would be equal to one. 

As shown in Table 4.13, young males had the highest ratio of male to female 

friends. Older females had the lowest ratio of male to female friends. Tables 4.11, 

4.12 and 4.13 quantify the PFT user propensity to make female friends to a greater 

degree than male friends. These results are consistent with the general public’s 

participation on social media, specifically Facebook, younger users participate 

more than older users, females more than males [137]. 

 

Table 4.11: 20-year-old user friend-gender likelihood. 

20-year-old PFT Users Friends Ratio 

(friend/users) 

243 males 425 males 1.8 

243 males 731 females 3.0 

1,094 females 1,660 males 1.5 

1,094 females 3,760 females 3.4 
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Table 4.12: 60-year-old user friend-gender likelihood. 

60-year-old 

PFT Users 

Friends Ratio 

(friends/users) 

294 males 241 males 0.8 

294 males 861 females 2.9 

177 females 182 males 1.0 

177 females 412 females 2.3 

 

Table 4.13: Gender ratio of friends to device users 

PFT Users Ratio Male/Female 

20s males 0.58 

20s females 0.44 

60s males 0.44 

60s females 0.28 

 

4.5 Limitations 

This project collected data from thousands of active PFT users in order to quantify 

user activity, behavior and fitness social network patterns. It must be recognized 

that this group may not be a large percentage of all active users and may therefore 

not be an accurate representation of the population of all users. Additionally, 

anecdotal evidence is that a large percentage of users give up using their PFT 

after six months. There is no feasible way to capture data from the inactive user 

group without access to historical activity records from the manufacturer’s storage 

facility.   
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4.6 Conclusion 

Our project gathered a large amount of data regarding PFTs in order to illustrate 

the nature of motivations and activity levels across the range of typical PFT users. 

We were able to describe user patterns based on age, gender, and duration of 

PFT ownership. We believe we are the first to describe user behavior patterns in 

fitness social forums. This baseline knowledge will inform users as to the realistic 

benefits to be expected from their PFT devices, along with describing typical and 

usual user behaviors. Understanding current PFT utilization should facilitate 

effective future device modification, and foster more effective fitness social forums. 
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Chapter 5 

Phase-aware Dynamic Time Warping Analysis 

5.1 Background 

Human movements can be measured and analyzed with the goals of enabling 

automatic pattern recognition, improving movement efficiency and increasing 

speed. Dynamic time warping has been shown to be an ideal technique to quantify 

and compare temporal patterns of varying speed and length. A class of sinusoidal 

movement patterns was defined that captured complex human motions of sports 

participants and transport vehicles within constrained sinusoidal travel paths. The 

DTW technique was adapted to take advantage of those constraints by reducing 

ineffective computations in the DTW distance matrix based on activity phase 

agreement. Our Phase-aware algorithm provides a practical means of comparing 

longer human movement time series data sequences than was possible with 

conventional dynamic time warping comparison techniques. The performance 

example demonstrated an 80% improvement over traditional DTW technique. 

   Many aspects of human activity can be measured and recorded in the form of 

time series data sets. Comparing datasets is advantageous in that it allows 

assessment of a human action through comparison of a newly captured 

measurement dataset with a library of reference dataset templates. Matching the 

new dataset to an existing, known dataset identifies the new human activity. Short 

datasets record short discrete activities such as individual handwritten words or 

hand gestures. Longer datasets capture longer activities such as brief periods of 

walking or running which can be described in sinusoidal terms. Increasing the size 
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of the measurement sample dataset records longer activities but creates the need 

for more memory space and processing capacity. The Phase-aware comparison 

technique leverages some inherent constraints in sinusoidal human movement 

patterns to reduce complexity and space requirements for longer movement 

datasets. This project is the first to describe these constraints and apply them to 

reduce complexity of DTW analysis.  

   Equal length time series sequences can be compared with Euclidean distance 

evaluation between correponding points in each sequence. Considering that 

human activities are rarely identical, or even equal in length, the Euclidean 

distance technique cannot provide an accurate measurement of the differences 

between two human activity sequences without adjustment of sampling rate and 

resultant loss of data fidelity to the original activity. Euclidean distance comparison 

has no temporal flexibility, similar events that are offset in time cannot be matched 

as identical events. Dynamic time warping (DTW) has been shown to 

accommodate temporal variability in patterns and can be used to compare 

datasets of varying length. Initial work with DTW was used to compare and identify 

individual speech sounds [1], handwritten words [17], and hand movement 

gestures [18][19]. Expanding the ability of DTW to compare longer sequences will 

enable sequence similarity comparison in new realms of human activities. 

   The Phase-aware technique is specifically tailored to enable assessment of 

human activities well-described and constrained by sinusoidal patterns. Non-

sinusoidal patterns such as hand gestures or handwriting move unpredictably in 

360 degree spherical or planar field around a locus of action such as the hand or 
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the pen. Constrained activities such as walking on a sidewalk limit the body 

movements to the rectangular envelope of the sidewalk dimensions. Sinusoidal 

human activities follow natural or human-defined constraints within the natural or 

geographic world. Examples are: bobsledders and skiers going down mountain 

tracks, planes traveling through navigational air lanes, ships cruising in shipping 

lanes, and vehicles traveling on interstate highways. In each case the body in 

motion cannot leave the defined activity envelope but can wander within the 

envelope boundaries. The freedom of motion within the activity envelope results in 

some bodies moving faster or more efficiently than others towards meeting their 

goals. Analyzing these patterns will identify the most efficient or fastest body to 

either improve energy utilization or identify the winner in sports competitions. The 

Phase-aware technique takes advantage of the natural sinusoidal constraints to 

reduce the complexity of the DTW algorithm with no loss of underlying data fidelity. 

   Capturing basic human movement patterns such as walking is achievable with 

sensor sample rates of 20Hz, faster sports activities require sensor sampling rates 

of 100Hz [10][150] to meet the Shannon-Nyquist criteria [155]. Faster sampling 

rates result in larger datasets requiring greater storage capacity and improved 

analysis techniques for efficient similarity comparison. Olympic athletes are very 

competitive, top finishers in the sledding and alpine skiing events are only 

separated by a second or less [20]. These athletes are very interested in any 

analysis that provides a performance advantage. Sampling skier velocity rate 

within each foot of a 3 mile downhill skiing event will result in a 16,000 sample 

dataset for skiers moving at typical speeds of 70 to 90 miles per hour. Longer 
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movement patterns result in larger datasets. As an example, ships traversing 

trans-oceanic routes must maneuver to avoid natural obstacles, bad weather, and 

other ships during journeys of thousands of miles. Sampling position, velocity or 

fuel utilization at high resolution will provide insights into efficient ship operation 

but will result in a very large dataset. Traditional DTW can compare large 

sequences but quadratic complexity challenges space and computation resources 

as data sequences grow larger. 

5.2 Dynamic Time Warping Technique 

DTW optimally aligns two time sequences finding the minimum cumulative 

distance between aligned sample pairs. Fig. 5.1 illustrates the DTW alignment 

between two time series sequences, A and B. Both sequences have similar 

features, yet these features are not strictly aligned in time. DTW computes the 

optimal alignment with the minimum inter-series distance. The resulting distance 

metric defines the two series comparison. 

 

Figure 5.1:  Dynamic time warping between two time series [15]. 
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   The DTW algorithm is comprised of two steps. The first step is creating the 

distance matrix listing all distance measurements between all possible sample 

pairs. A representative distance matrix is shown in Fig. 5.2.  The second step is to 

dynamically compute the minimum cumulative distance warp path from the 

distance cell of the last data samples in both data sequences, and working back 

to the distance cell between the first data samples of both data sequences. The 

minimum warp path is shown in the green shaded cells in Fig. 5.2. The distance 

value for each cell in the distance matrix is defined as: 

 

                                         𝐷(𝑖, 𝑗) = |𝑛(𝑖) − 𝑚(𝑗)|2     (1) 

𝑓𝑜𝑟 𝑡𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑛 =  𝑛1 … 𝑛𝑁  
𝑎𝑛𝑑 𝑚 =  𝑚1 … 𝑚𝑀 

 

 

Figure 5.2: Distance matrix for data sequence m=[0 1 2 1 0 -1 -2 -1 0] and n=[0 1 
0 -1 -2 -1 0]. Minimum cumulative warp path is shown in green shaded cells. 
Cumulative warp distance for this example is 1. 
 

   Use of Squared Euclidean Distance (SED) enhances the differences between 

values in the data sequences under comparison. As can be seen in Fig. 5.2, the 

minimum distance warp path routes away from the highest distance values, 
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intuitively running through the valleys in the data avoiding the high points. The 

dynamic programming algorithm to calculate the minimum value warp path is: 

 

𝐷(𝑖, 𝑗) = 𝑚𝑖𝑛 {

𝐷(𝑖, 𝑗 − 1)

𝐷(𝑖 − 1, 𝑗)

        𝐷(𝑖 − 1, 𝑗 − 1)
} + 𝑑(𝑚𝑖, 𝑛𝑗)                (2) 

 

   Intuitively, the algorithm begins at the lower right distance cell of Figure 5.2, and 

compares blocks to the left, diagonally up, and directly up to find the neighbor cell 

with the minimum cumulative warp distance from the distance matrix origin. The 

reader is referred to [116] and [123] for implementation details. DTW complexity is 

O(MN) due to the requirement to populate the distance matrix with values for all 

possible data sample pair combinations. Fig. 5.3 illustrate previous efforts to 

reduce DTW complexity by limiting the number of cells in the distance matrix that 

are populated and contribute to the warp path construction. Risk of inaccuracy 

occurs if the actual warp path deviates outside the green shaded areas of Fig. 5.3. 

 

   Restrictions on DTW are:  

• each data sample from the first sequence must be matched with one or 

more samples from the second sequence and vice versa; 

• the first data samples from both sequences must be matched together; 

• the last data samples from both sequences must be matched together; 

• the mapping must proceed in a monotonically increasing manner, in that the 

matching pattern cannot “double back” upon itself. 
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Figure 5.3: Different distance matrix constraints. From left to right: green shaded 
cells illustrate populated distance cells utilized in traditional DTW, Sakoe-Chiba, 
and Itakura techniques [143][144]. 
 

   Fig. 5.4 illustrates a representative human activity situation suitable for 

application of the Phase-aware DTW technique. The plot illustrates a notional 

sports activity field with a ski slope defined as running from left to right. The black 

lines define the physical limits of the ski slope trail with skiers free to traverse the 

area between the lines in any manner they see fit. In this instance the velocity 

samples from two skiers were recorded at each indicated location. Red crosses 

represent the locations with data samples from skier one. Blue stars represent the 

locations with data samples from skier two. The two skiers traverse the same ski 

slope along different paths. Using the Phase-aware technique it is now possible to 

quantitatively compare the performance of multiple skiers throughout the distance 

of the skiing route. Detailed insights gained as skiers traverse difficult sections of 

the course will assist in developing improved skier technique. Without this detailed 

comparison technique, skiers will be left with only overall elapsed time to provide 

relative performance information. Historically, elite athletes study video that is 

annotated to report split times at specified locations [156]. This is time consuming 
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and error prone as trainers make manual transcription mistakes. Through the use 

of accelerometers and GPS recorders, a detailed record of athlete performance 

throughout the event is now available for analysis and comparison. 

 

 
 

Figure 5.4: Example plot showing time series data collection locations from two 
persons proceeding from left to right within constraint envelope defined by black 
lines. 
 

 

5.3 Phase-aware Dynamic Time Warping 

With Phase-aware DTW attention is focused on human activities that are best 

described through sinusoidal patterns captured in the data sample sequences. Fig. 

5.5 illustrates two sinusoidal data patterns, the red line is a weaker magnitude 

pattern at a higher frequency, the blue line is a stronger magnitude pattern at a 

lower frequency. They are similar in shape reflecting the same activity performed 

by two individuals. The activity was performed in the same physical space 

envelope. The Phase-aware DTW technique has three components. First is 
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identification of the phase changes in the data sequence. Second is population of 

the distance matrix only for sections where both sequences are in phase 

agreement. Third, construction of the optimal warp matrix in the traditional manner. 

The warp path will run through the populated areas of the distance matrix, 

augmenting with additional cell computations as needed. Intuitively, the distance 

matrix is constrained by the phase pattern agreement reflecting the human 

movement activity envelope. Recall that Phase-aware DTW is designed for 

sinusoidal environments. An empirical example is provided below. 

 

5.3.1 Phase Identification 

Successive data sample pairs in the same sequence that are increasing in value 

are defined as in positive phase. If they are decreasing in value they are defined 

as in negative phase, steady state otherwise. Please note in Fig. 5.5 that both lines 

begin in a positive phase, then disagree in phase as the red line begins to decrease 

in value. For the example in the figure, the two lines go in and out of phase as the 

activity is conducted. The first step in Phase-aware DTW is to define the phase 

associated with each data sample in the two sequences under comparison. 
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Phase agreement is defined as: 
 

             Data Condition Phase Coding Data Trend 

𝑚(𝑖 + 1) − 𝑚(𝑖) > 0 1 Increasing 

𝑚(𝑖 + 1) − 𝑚(𝑖) = 0 0 Locally Constant 

𝑚(𝑖 + 1) − 𝑚(𝑖) < 0 1 Decreasing 

 

An example is:  
 

𝑇𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑚 = { 0 1 2 1 0 − 1 − 2 − 1 0} 

𝑃ℎ𝑎𝑠𝑒(𝑚) = { 1 1 1 − 1 − 1 − 1 − 1 1 1} 

 

𝑇𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑛 = { 0 1 0 − 1 − 2 − 1 0} 

𝑃ℎ𝑎𝑠𝑒(𝑛) = { 1 1 − 1 − 1 − 1 1 0} 

 

 

 

 
Figure 5.5: Illustration of phase agreement between two sinusoid time series. 

 

 

5.3.1 Phase Agreement Blocks 

The distance matrix is subdivided into phase agreement blocks. As shown in Fig. 

5.6, the two data sequences are in agreement in blocks of cells. Intuitively this is 

because the two original human movement activities are constrained by the same 

sinusoidal constraint envelope. In blocks with no phase agreement, the two human 

activity patterns are diverging, so distance is increasing. The optimal warp path 
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alignment will avoid the higher distance cost cells representing diverging human 

activity patterns. Steady state blocks are rare and are appended to agreement 

blocks. 

   The optimal warp path is constructed in the traditional manner as described in 

Equation 2. If the warp path strays outside the pre-populated areas of the distance 

matrix, distance computations will be performed as needed until the warp path 

returns to the pre-populated areas. The accumulated sum of the warp path 

distance provides the overall comparison metric. 

 

 

 
 
Figure 5.6: Phase(m) vs phase(n). Phase agreement between two time series 
m={ 0 1 2 1 0 -1 -2 -1 0} with corresponding phase states { 1 1 1-1-1-1-1 1 1} and 
n={ 0 1 0 -1 -2 -1 0} with corresponding phase states {1 1-1-1-1 1 0}, A means 
data sequence is in same phase, or constant at sample time, and distance cell 
will be populated. N means data sequence is in opposite phase at sample time, 
distance cells will not be populated. 
 

5.4  Performance  Evaluation 

The simulated data illustrated in Fig. 5.4 consists of two, 75-element velocity 

vectors representing the sampled speeds of the two skiers traversing the notional 

ski trail. The complexity of the Phase-aware technique as measured by populated 

distance matrix cells, was compared with the traditional DTW technique, and an 
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Optimal Sakoe-Chiba technique that is just wide enough to encompass the optimal 

warp path. The results in Table 5.1 showed that the Phase-aware technique had 

greatly reduced complexity, paving the way for comparative analysis of much 

longer time series sequences. In the comparison, the number of cells were counted 

which were initially populated by Phase-aware in addition to the few additional cells 

that were additionally populated as the optimal warp path was constructed. Phase-

aware only needed to further compute 27 distance values in addition to the original 

1,110 computed in the phase agreement blocks. For this empirical example, the 

Phase-aware technique computed 1,110 cells out of the necessary 1,137 for an 

accuracy rate of 97.6% percent. 

 

Table 5.1: Empirical comparison of DTW techniques 
 

Technique Distance cells 
populated 

Percentage of All Cells 
Populated 

Traditional 
DTW 75x75 

5,625    100.0% 

Sakoe-Chiba 3,273 58.2% 

Phase-aware 1,137 20.2% 

 

 

5.5 Limitations 

As described in this work, our Phase-aware technique is suitable for the broad 

class of sinusoidal human movement patterns. Application of this technique to 

other types of data without defined phase characteristics in their patterns will not 

produce optimal results. This work has shown that it can be productive to carefully 
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study user movement patterns to deduce characteristics that can be leveraged to 

improve algorithm efficiency and complexity.  

5.5 Conclusion 

The Phase-aware DTW technique offers a new way to measure and compare 

human activity patterns in constrained sinusoidal envelopes. Our addition of phase 

state to each data sample value allowed for consideration of natural constraints 

without loss of data accuracy. Reflecting the natural and geographic constraints of 

many types of human movement patterns, Phase-aware offers an opportunity to 

compare larger time series datasets than traditional DTW computing techniques 

given limited processing and storage space. Through simulated experiment it was 

demonstrated that Phase-aware offers an 80% improvement over traditional DTW 

in space and computing complexity. Phase-aware also demonstrated a 65% 

improvement over an optimally configured Sakoe-Chiba DTW constraint. With 

sensors coming into more common use with many types of human activities, 

Phase-aware offers a new way of thinking about efficient analysis and comparison 

of human activity patterns. 
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Chapter 6  

Secure and Efficient Computation of Private 

Sensor Data 

A data similarity comparison technique is presented that preserves user sensor 

data privacy, while also comparing the user’s time series data with a library of 

templates located on a remote cloud server. As was mentioned in Chapter 5, DTW 

has been widely applied in speech [84][116], gesture [85], and  hand-writing 

signature recognition [86] by comparing a user’s individual time series sequence 

with a library of data templates stored on a server [153].  The result of the similarity 

evaluation indicates if a match to a known reference template is obtained.  

   User data transferred from personal computing technologies such as 

smartphones is vulnerable to privacy leakage. The user’s data is uploaded to the 

remote or cloud servers, with only the comparison result returning to the user’s 

device. While users are given a privacy and data usage agreement before 

accessing remote services, users frequently just accept agreements without 

reading them. These agreements may also grant the company permission to retain 

and utilize private user data for various other purposes [80]. It has been shown 

that this data could be used to infer the user’s gender, personality, emotion, name, 

and travel locations [78][79]. Little work has been done on enhancing secure 

function evaluation with personal computing devices, because existing privacy-

preserving computation protocols impose too heavy of a processing and space 

utilization burden. This project has demonstrated the feasibility of this technique in 

the lab with a smartphone-laptop server configuration. The privacy-preserving time 
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series recognition protocol applies secure computation techniques to existing 

traditional unsecure DTW technique described as shown in Table 6.1. 

 

Table 6.1: Mapping of Unsecure to Secure DTW techniques 

 

 

6.1 Privacy-Preserving Protocol Workflow 

Algorithm 6.1 provides a simple description of our protocol. Further details are 

depicted in Fig. 6.1. In our protocol, the single distance matrix used in traditional 

DTW is replace by a two-part Dynamic Programming Matrix (DPM). One part of 

the DPM resides on the user device. The other part of the DPM resides on the 

server. Encrypted data products are exchanged by the user and server to populate 

their respective matrices. This data exchange leads to significant communications 

loading, a concern for a resource-limited device such as a smartphone. 
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Figure 6.1: Workflow of Secure DTW Computation 

Algorithm 6.1 Dynamic Time Warping using SED 

1: procedure DTW(A[𝑛𝑎],B[𝑛𝑏],M[𝑛𝑎][𝑛𝑏]) 

where A is the  user’s time series dataset 
           B is a server’s data template 
           M is the distance matrix 
           na,nb are indexes 

2:     M[1][1] ← 𝑑2(A[1],B[1]) 

3:     for i = 2 : 𝑛𝑎 do 

4:          M[i][1] ← 𝑑2(A[i],B[1]) + M[i - 1][1] 

5:     for j = 2 : 𝑛𝑏 do 

6:          M[1][j] ← 𝑑2(A[1],B[j]) + M[1][j - 1] 

7:     for i = 2 : 𝑛𝑎 do 

8:          for j = 2 : 𝑛𝑏 do 

9:               M[i ][j] ← 𝑑2(A[i],B[j]) + min(M[i - 1][j  – 1],M[i][j – 1],M[i – 1][j]) 
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6.2 Cryptographic Tools 

Key components of our protocol are formed from Homomorphic Encryption and 

Oblivious Transfer tools. 

6.2.1 Homomorphic Encryption 

Homomorphic Encryption provides the capability for arithmetic operations to be 

performed on encrypted data. The result remains in encrypted form and remains 

concealed privately for further steps in our protocol. We use Paillier encryption 

[90], relevant arithmetic functionality is shown in Fig. 6.2. 

 

Figure 6.2: Homomorphic Encryption 

 

6.2.2 Oblivious Transfer 

Oblivious Transfer(OT) protocol is a key building block in many secure 

computation applications. OT allows one party, the receiver Bob, to secretly 

retrieve one or more values of its own choice from another party, the sender Alice, 

while no other information is disclosed during the protocol [91]. In this project the 

chooser and the sender are the user and the server respectively. The chooser will 

not know the other values held by the sender, while the sender has no idea which 

values are taken by the chooser. If the chooser is selecting one value out of two 
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values from the sender, the term is called a 1-out-of-2 OT, denoted as 1-2 OT. A 

example OT workflow is provided in Fig 6.3. OT-Extension [93] is a promising 

technique to reduce the high costs of OT. It extends a small number of base OTs 

to a very large number of OTs using simpler symmetric functions. Similar to hybrid 

encryption which uses a relatively expensive public key encryption scheme to 

exchange a secret key, and then uses the secret key for relatively cheap symmetric 

encryption. Recent optimizations [94][95] have shown that efficient implementation 

of OT-Extension can reduce communication complexity. 

 

Figure 6.3: Oblivious Transfer Workflow 

 

6.3 Private Squared Euclidean Distance 

In order to calculate DTW distance privately, it is necessary to compute squared 

Euclidean distance d2(a, b) privately. To compute a squared Euclidean (𝑎 − 𝑏)2 =

𝑎2 − 2𝑎𝑏 + 𝑏2 where a and b are all l bit integers, it is only necessary to obtain the 

product ab, since a2 and b2 can be calculated locally by the user and the server. 
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   The scalar product computation, based on [96], proposes binHDOT for secure 

Hamming distance computation using OT and homomorphic encryption. This 

technique can be used for scalar product computation, since scalar product is 

actually equivalent to the Hamming distance when the alphabet is binary. This 

protocol is extended to implement secure Euclidean distance computation. Due to 

the inefficiency in homomorphic encryption, Bringer et al. [97][98] have proposed 

a protocol for Hamming distance computation using only OT and generalized it for 

several more distance metrics such as Mahalanobis distance, Euclidean Distance 

and Scalar Product. The core technique enabling use of OT for Hamming distance 

calculation is the binary representation method. By adopting a similar method to 

calculate the scalar product of two inputs,  this protocol extends from a 1-vs-1 case 

to a M × N case. The Private Squared Euclidean Distance workflow is shown in 

Fig. 6.4. 

 

 

Figure 6.4: Private Squared Euclidean Distance Workflow 
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6.4 Private Matrix Filling 

In order to fill the matrix, theserver will send an encrypted triple tuple  

[Enc(𝑀𝑏
𝑖−1,𝑗−1

);Enc(𝑀𝑏
𝑖−1,𝑗

);Enc(𝑀𝑏
𝑖,𝑗−1

)] to the client. Without a secret key, the client 

cannot decrypt these cipher texts. Through multiplecation of cipher texts, e.g  

⟦𝑀𝑎
𝑖,𝑗

⟧⟦𝑀𝑏
𝑖,𝑗

⟧ = ⟦𝑀𝑎
𝑖,𝑗

+ 𝑀𝑏
𝑖,𝑗

⟧ = ⟦𝑎𝑖
2 − 2𝑎𝑖𝑏𝑗 +  𝑏𝑗

2⟧, the client can get the SED in 

cipher text. Now the private Dynamic Programming Matrix (DPM) fill has been 

reduced to the private minimal finding problem of finding the minimal value in a 

triple tuple of cipher texts. Fig. 6.5 has the workflow for Private Matrix Filling. 

 

 

Figure 6.5: Private Matrix Filling 

 

6.5 Private Minimal Finding 

In order to find the optimal warp path, it is necessary to use a privacy-preserving 

protocol for finding the minimum value in a set of distance values adjacent to each 

cell in the DPM. The detailed workflow of Private Minimal Finding is shown in Fig. 
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6.6. An illustration of Private Matrix Filling and Private Minimal Finding is shown in 

Fig. 6.7. 

 

 

Figure 6.6: Private Minimal Finding 

 

 

Figure 6.7: Matrix Filling in Privacy-preserving DTW. 

 

6.6 Batched Matrix Filling Optimization 

The baseline matrix filling is iterative. Computations supporting each cell filling 

require individual communications loads between client and server. However, 

communications overhead may be consolidated by utilizing a batching method. 

Since the update of each distance cell only depends on three immediately adjacent 
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cells, an update scheme can be designed as shown in Fig. 6.8, where the cells in 

the same red dash-line box will be batched together and transmitted in a single 

network connection. The iteration will follow the direction shown in the figure to 

ensure correct data dependencies are present for subsequent computations. 

By employing a batched method, the number of network connections during the 

DPM filling has been reduced from O(mn) to O(m + n). 

 

 

 

Fig. 6.8 Batched Matrix Filling Scheme in Privacy-preserving DTW. 

6.7 Performance Evaluation 

This protocol has been implemented in a client-server setup for evaluation. The 

client runs on a smartphone (Huawei Nexus 6p, 2GHz Qualcomm Snapdragon 810 

processor), and the server runs on a remote server (2.2GHz Intel Core i7 MacBook 

Pro). The OT and OT-Extension protocols used for SED computing 
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implementations are based on ECC, while the 1-2 OT implementation is based on 

prime numbers. 

   Paillier Encryption is carried out on both phone and laptop. However, to evaluate 

loading on the smartphone, the key length is adjusted from 64 to 2048 bits and 

resulted are reported in Fig. 6.9 and Fig. 6.10. The left side is the result on the 

phone, noted as C and the right side is the result at the laptop, noted as S. The 

results show that the overhead of Paillier encryption is negligible when the key is 

short, and scales exponentially when the key is longer. Additionally, the 

homomorphic encryption operations cost only 1 to 2 ms on both devices. This is 

favorable since most Paillier-related operations at the phone are Add and Mul, low 

cost operations. The phone only needs the Enc and the server will do both Enc 

and Dec. Therefore, the chosen key size is 1024, which is a good trade-off between 

time cost and security. 

 

 

Figure 6.9: Benchmark of Add/Mul on 

Paillier encryption. 

 

Figure 6.10: Benchmark of Enc/Dec 

on Paillier encryption. 
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   Comparison of OT and OT-Extension is performed with both ECC-based and 

Prime-based OT implementation. The benchmark tests on smartphone and laptop 

with varying input sizes are shown in Fig. 6.11 and Fig. 6.12. The slow ECC 

implementation, of the underlying crypto library BouncyCastle [101] is illustrated. 

This benchmark shows that OT-Extension can significantly improve performance. 

Considering ECC can provide the same level of security with a much shorter key 

size, the ECC-based OT Extension is chosen for the private scalar product protocol 

to reduce communication cost. The private minimal finding requires 1-2 OT, in 

which case the improvement of OT extension technique is limited. Therefore, 

private minimal finding is implemented with Prime OT to obtain a better balance 

between time and communication costs. 

 

 

Figure 6.11: OT Benchmark on 

Laptop. 

 

Figure 6.12: OT Benchmark on 

Smartphone. 
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6.7.1 Comparison to Previous Work 

Previous work by Zhu [87] has built a privacy-preserving time series similarity 

computing protocol based on homomorphic encryption and a blind-and-insert-

dummy method. Due to the number of dummies and corresponding invocations of 

homomorphic encryption, this scheme is not efficient. Additionally, their 

implementation of Paillier encryption uses a 64-bit prime number, which is not as 

secure. Two security enhancements have been made on their implementation in 

order to make a fair comparison with this approach: 1) adoption of 1024-bit key for 

Paillier encryption; 2) change of the random number generator from Random to 

SecureRandom. The two protocols are run on a local laptop with the same 

parameter setups and compare the time and communication costs. The time and 

communication cost comparisons are illustrated in Fig. 6.13 and Fig. 6.14, 

respectively. The x-axis is the input vector length shared by client and server. From 

the communication cost breakdown in [87], it has been found that all 

communication loads are on the client side.  

 

Figure 6.13: Time Cost in seconds. 

Left bar is the protocol. Right bar is 

result from [87]. 

 

Figure 6.14: Communication Cost in 

MB. Left bar is the protocol. Right bar 

is result from [87].
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6.7.2 Performance on Smartphone-Laptop Configuration 

The protocol has been deployed on a smartphone-laptop configuration with varying 

input sizes. The time cost breakdowns are shown in Fig. 6.15. The communication 

loading costs are shown in Fig. 6.16. These indicate that the private minimal finding 

protocol is very efficient. The high time cost of phase 1 may be attributed to the 

inefficient ECC  implementation in the crypto library. The communication costs are 

in reasonable range considering current high-speed Internet provided by WiFi and 

LTE. 

 

Figure 6.15: Time Cost in seconds. 

Left bar is client side. Right bar is 

server side. 

 

Figure 6.16: Communication Cost in 

MB. 

 

6.7.3 Performance on Gesture Recognition Data 

To assess system performance on realistic time series data, our protocol was 

applied to the gesture data obtained from [102]. Seven gestures, check, circle, 

delete mark, pigtail, question mark, rectangle, and triangle formed a set of gesture 

templates. Each gesture time series length varied from 30-90 samples depending 

on different user drawing speeds. The template sets were tested on gesture check, 

with the results provided in Fig. 6.17. The expected average time savings if Early 

Abandon (EA) is enabled is also indicated, currently about 30s recognition time 
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with a smartphone and remote server setup. While orders of magnitude 

improvement have been achieved compared to previous work, it is acknowledged 

that this recognition time cost may not meet the smartphone user expectations. 

 

Figure 6.17: Time Cost of matching a check gesture to all  seven templates and 

the expected average time savings with Early Abandon. 

 

6.8 Performance Optimizations 

   As previously mentioned in Section 5, there are several techniques proposed to 

improve DTW performance by intelligently applying constraints on the number of 

filled cells in the distance matrix, hierarchically refining coarse DTW solutions, and 

aggregating or downsampling data resulting in reduced solution granularity. 

6.8.1 Performance Optimization via Early Abandon 

Our lab tests implemented an optimization technique called Early Abandon (EA). 

It tracks the intermediate DTW accumulation, and compares it to the current 

optimal result. Since the DTW solution is always increasing, the protocol can be 

terminated when the current DTW accumulation surpasses the in-hand optimal 

result. While there are other Early Abandon schemes based on other lower bounds 

[99][100], the Euclidean distance-based early abandon is advantageous since the 

distance can be computed securely. The specifics of Early Abandon is presented 
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in Alg. 6.2. A simple implementation is to check the interim DTW solution once at 

the halfway point of each run of each privacy preserving DTW algorithm. 

 

 

 

Algorithm 6.2 Early Abandon 

1: procedure EarlyAbandon(d*, i, j)  
 where d* is the current optimal distance (minimal), i, j is the index of 
client and server input respectively. 

2: Client holds  ⟦ 𝑅𝑖𝑗⟧, and key pairs sk, pk. 

3: Server holds ⟦𝑑𝑖𝑗 +  𝑅𝑖𝑗⟧ 

4: Server prepares a random number a 

5: Client computes and sends ⟦−𝑅𝑖𝑗 −  𝑑∗⟧ to server 

6: Server computes and sends ⟦𝑎(𝑑𝑖𝑗 −  𝑑∗)⟧ to client 

7: Client decrypts ⟦𝑎(𝑑𝑖𝑗 − 𝑑∗)⟧ and checks the sign 

8: if sign is positive then 

9:     abort, move on to the next input in server’s data template library 

10: continue the computation on current input 

 

6.9 Conclusion 

In this project we showed it is possible to preserve the privacy of both the user’s 

personal information, and the remote cloud server’s valuable data template library 

while performing time series data similarity comparisons. We utilized 

Homomorphic Encryption, Oblivious Transfer and a split distance matrix during 

DTW to performing similarity comparisons and also preserve privacy of both 

parties. We demonstrated that it is possible to improve DTW efficiency by adopting 

an Early Abandon technique midway through the similarity comparison if interim 
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results exceed the current “best-in-hand” solution. Lastly, we showed that our 

technique was viable  in a smartphone-laptop configuration in our lap environment. 

  



137 

 

Chapter 7  

Conclusion and Future Work 

In this dissertation we have described four projects illustrating the usability, 

efficiency and security benefits realized from strong consideration of user 

characteristics and behaviors. For our first project we have investigated the 

concerns of older computer users and created a graphical password authentication 

system leveraging the inherent ability already within everyone to recognize familiar 

faces.  With our use of touchscreen image selection, and easy-to-recall faces, our 

technique has eliminated an important barrier to technology use for this population. 

We conducted a usability study of our graphical password system that 

demonstrated our technique was fast, easy to use and fun. 

   We investigated current fitness tracker user motivations and user activity 

patterns by gathering data from a variety of sources. We were able to develop a 

quantified description of average personal fitness tracker motivations, reliability 

concerns, activity levels, behavior and social activity patterns, serving as a basis 

for user understanding of potential benefits, and a foundation for future device 

enhancements. We were able to characterize user activity and behavior patterns 

discriminated by age, gender, and duration of device ownership. We believe we 

are the first to describe user behaviors in fitness social forums. 

   For our third project we developed a new time series data similarity comparison 

algorithm that is optimized for sinusoidal human movement pattern comparison. 

Through awareness of user movement patterns, study of existing dynamic time 
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warping techniques and optimization constraints, we were able to define a new 

phase state field added to user movement time series data samples.  Relying on 

the phase state to focus on optimal comparison regions resulted in improved 

computational and space efficiency. 

   Finally, we present a secure technique for similarity comparison of private user 

sensor data with private data templates on remote-cloud servers. Our protocol 

protects both the user’s data and the server’s data from privacy compromise.  

  Our efforts have shown that rewarding results may be obtained through careful 

study and assessment of user characteristics. Technology designs that 

compensate for user disabilities may enable those users to continue participation 

in technological society. Accurate assessment of personal technology device 

utilization may allow users to make informed decisions on personal fitness 

programs. Leveraging knowledge of user movement patterns resulted in 

optimizations to the dynamic time warping algorithm. Enhancing DTW led to a 

secure computation technique that protects both user data privacy and cloud-

service data templates. 

7.1 Future Work 

We believe that each of our projects illustrate the need for future investigations in 

improving the user experience, and leveraging our increased user knowledge in 

tailoring future technology designs. Our ideas are presented below. 
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7.1.1 Graphical Password Authentication System 

In our Graphical Password project, we have shown the benefits of carefully 

studying user characteristics and creating a tailored authentication technique. 

Our current implementation is suitable for a specific cultural group of North 

American older adults. To expand this project to other cultural groups it will be 

necessary to add additional familiar images recognizable to those other groups in 

order to reap the benefits of facial recognition and recall from long-term memory 

that have been demonstrated here. The advantage to expanding the image 

database will be that it also has the beneficial effect of increasing password 

entropy thereby rendering the password sequence more resistant to attack. The 

image selection tool should be modified to permit users to choose a culturally 

appropriate image set and timeframe for their personal background. 

   Future work focusing on the color spectrum and frequency content of the 

images themselves would be a reasonable avenue to improve user recognition 

efficiency, and improve resistance to shoulder surfing attack. The set of black 

and white images are intended to provide a consistency of appearance to a 

distant observer making it difficult to detect the user’s personal sequence from 

afar. A defined common color spectrum profile applied to all images would be a 

step towards enhancing uniformity of appearance. The frequency content of 

images can also be managed to systematize the low frequency content which is 

recognizable from farther away than the high frequency fine image details. The 

user is very close to the presented images so is easily able to discern necessary 

fine image details to recognize their target images. Control and standardization of 
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image content noticeable from farther away will improve resistance to shoulder 

surfing attack. 

   Older users are very interested in using smartphones but their small displays 

are challenging for those with vision impairments. Additionally, the small areas of 

the touchscreen are challenging for those with shaky hands or disabled fingers to 

precisely and accurately target small images. Future work porting this technique 

to smartphones should focus on the essential parts of the facial image that are 

necessary to optimize recall and recognition. Images on the smartphone should 

be as large as screen real estate will permit. Additionally, adoption of a swipe 

pattern would assist those with arm/finger mobility issues. Use of a swipe pattern 

selection technique would require target images to be in adjacent proximity to 

each other each time the screen display is re-randomized. 

7.1.2 Personal Fitness Tracker Usage Analysis 

It may prove informative to revisit the data sources in this study to quantify the 

degree of continued active PFT utilization. Such a project would lend insight into 

the persistence of personal fitness tracker users and the validity of our data 

sources. Any changes in motivation and reliability trends would reflect the real-

world experiences of the maturing personal fitness tracker user population. 

Understanding current PFT utilization patterns should inform both effective future 

device modifications, and foster more effective practices within fitness social 

forums. 

 

 



141 

 

7.1.3 Phase-aware Dynamic Time Warping Analysis 

Our work with dynamic time warping has shown that it can be productive to 

carefully study movement patterns to deduce characteristics that can be leveraged 

to improve algorithm efficiency and complexity. Other types of human activities 

may prove profitable to similar study. Smartphones often contain a variety of 

sensors that would be valuable to study. Extension of this technique to the 

smartphone platform should consider maximum time series size constraints due 

to space limitation. It would be productive to evaluate smartphone energy savings 

experienced by implementing the Phase-aware technique as contrasted with 

conventional dynamic time warping constraint methods.  

  Longer data sequences are coming into greater use as users adopt personal 

technologies into their daily lives. Better techniques for similarity comparison of 

longer user actions, or greater sampling resolution of smartphone sensors, will be 

needed to smartly choose between multiple possible, yet near-equivalent distance 

warp paths in the remote server’s data template library. The simple example of Fig. 

6.4 does not illustrate the complexities of potential warp path routing in larger 

distance matrices. Some applications may find meaning in characteristic patterns 

or shapes of warp paths through the distance matrix. 

  Future work should also consider that more efficient methods of storing and 

sorting among the remote server’s library of  stored data templates will be needed. 

It may be that hierarchical access models of data template selection will be based 

on categorization by raw distance scores, shapes of warp path subsections, or 

establishment of distance minimization direction rules when multiple equivalent 
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minimization directions are present. Optimally, it should not be necessary to 

compare a user’s time series data sequence to every single data template in the 

server library if additional techniques for  template inclusion/exclusion in the 

similarity comparison can be developed. 

7.1.4 Secure and Efficient Computation of Private Sensor Data 

Future secure computation work should focus on application to  real-world user 

activities, and implementation on emerging smartphone platforms. Data privacy is 

important to users and today, users have to accept less-than-secure technologies 

to obtain personal benefits. Users desire secure features that blend in to their 

activities seamlessly and conveniently, ideally, they should also be transparent to 

the user. 
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