916 research outputs found

    Automated 3D model generation for urban environments [online]

    Get PDF
    Abstract In this thesis, we present a fast approach to automated generation of textured 3D city models with both high details at ground level and complete coverage for birds-eye view. A ground-based facade model is acquired by driving a vehicle equipped with two 2D laser scanners and a digital camera under normal traffic conditions on public roads. One scanner is mounted horizontally and is used to determine the approximate component of relative motion along the movement of the acquisition vehicle via scan matching; the obtained relative motion estimates are concatenated to form an initial path. Assuming that features such as buildings are visible from both ground-based and airborne view, this initial path is globally corrected by Monte-Carlo Localization techniques using an aerial photograph or a Digital Surface Model as a global map. The second scanner is mounted vertically and is used to capture the 3D shape of the building facades. Applying a series of automated processing steps, a texture-mapped 3D facade model is reconstructed from the vertical laser scans and the camera images. In order to obtain an airborne model containing the roof and terrain shape complementary to the facade model, a Digital Surface Model is created from airborne laser scans, then triangulated, and finally texturemapped with aerial imagery. Finally, the facade model and the airborne model are fused to one single model usable for both walk- and fly-thrus. The developed algorithms are evaluated on a large data set acquired in downtown Berkeley, and the results are shown and discussed

    Scene representation and matching for visual localization in hybrid camera scenarios

    Get PDF
    Scene representation and matching are crucial steps in a variety of tasks ranging from 3D reconstruction to virtual/augmented/mixed reality applications, to robotics, and others. While approaches exist that tackle these tasks, they mostly overlook the issue of efficiency in the scene representation, which is fundamental in resource-constrained systems and for increasing computing speed. Also, they normally assume the use of projective cameras, while performance on systems based on other camera geometries remains suboptimal. This dissertation contributes with a new efficient scene representation method that dramatically reduces the number of 3D points. The approach sets up an optimization problem for the automated selection of the most relevant points to retain. This leads to a constrained quadratic program, which is solved optimally with a newly introduced variant of the sequential minimal optimization method. In addition, a new initialization approach is introduced for the fast convergence of the method. Extensive experimentation on public benchmark datasets demonstrates that the approach produces a compressed scene representation quickly while delivering accurate pose estimates. The dissertation also contributes with new methods for scene matching that go beyond the use of projective cameras. Alternative camera geometries, like fisheye cameras, produce images with very high distortion, making current image feature point detectors and descriptors less efficient, since designed for projective cameras. New methods based on deep learning are introduced to address this problem, where feature detectors and descriptors can overcome distortion effects and more effectively perform feature matching between pairs of fisheye images, and also between hybrid pairs of fisheye and perspective images. Due to the limited availability of fisheye-perspective image datasets, three datasets were collected for training and testing the methods. The results demonstrate an increase of the detection and matching rates which outperform the current state-of-the-art methods

    Localization in urban environments. A hybrid interval-probabilistic method

    Get PDF
    Ensuring safety has become a paramount concern with the increasing autonomy of vehicles and the advent of autonomous driving. One of the most fundamental tasks of increased autonomy is localization, which is essential for safe operation. To quantify safety requirements, the concept of integrity has been introduced in aviation, based on the ability of the system to provide timely and correct alerts when the safe operation of the systems can no longer be guaranteed. Therefore, it is necessary to assess the localization's uncertainty to determine the system's operability. In the literature, probability and set-membership theory are two predominant approaches that provide mathematical tools to assess uncertainty. Probabilistic approaches often provide accurate point-valued results but tend to underestimate the uncertainty. Set-membership approaches reliably estimate the uncertainty but can be overly pessimistic, producing inappropriately large uncertainties and no point-valued results. While underestimating the uncertainty can lead to misleading information and dangerous system failure without warnings, overly pessimistic uncertainty estimates render the system inoperative for practical purposes as warnings are fired more often. This doctoral thesis aims to study the symbiotic relationship between set-membership-based and probabilistic localization approaches and combine them into a unified hybrid localization approach. This approach enables safe operation while not being overly pessimistic regarding the uncertainty estimation. In the scope of this work, a novel Hybrid Probabilistic- and Set-Membership-based Coarse and Refined (HyPaSCoRe) Localization method is introduced. This method localizes a robot in a building map in real-time and considers two types of hybridizations. On the one hand, set-membership approaches are used to robustify and control probabilistic approaches. On the other hand, probabilistic approaches are used to reduce the pessimism of set-membership approaches by augmenting them with further probabilistic constraints. The method consists of three modules - visual odometry, coarse localization, and refined localization. The HyPaSCoRe Localization uses a stereo camera system, a LiDAR sensor, and GNSS data, focusing on localization in urban canyons where GNSS data can be inaccurate. The visual odometry module computes the relative motion of the vehicle. In contrast, the coarse localization module uses set-membership approaches to narrow down the feasible set of poses and provides the set of most likely poses inside the feasible set using a probabilistic approach. The refined localization module further refines the coarse localization result by reducing the pessimism of the uncertainty estimate by incorporating probabilistic constraints into the set-membership approach. The experimental evaluation of the HyPaSCoRe shows that it maintains the integrity of the uncertainty estimation while providing accurate, most likely point-valued solutions in real-time. Introducing this new hybrid localization approach contributes to developing safe and reliable algorithms in the context of autonomous driving

    Robust ego-localization using monocular visual odometry

    Get PDF

    On the popularization of digital close-range photogrammetry: a handbook for new users.

    Get PDF
    Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Γεωπληροφορική

    Adaptation Toward A Sustainable Built Environment: A Technical Potential & Quantification of Benefit for Existing Boilding Deep Energy Retrofits in a Subtropic Climate

    Get PDF
    The issues surrounding energy consumption in our existing building stock is proving to be a key component in the move toward a truly sustainable built environment. Best practice energy levels today are much lower than they have been in the past meaning that the buildings we are currently occupying are using much more than they need to be. It is clear that the majority of these structures will remain in operation through 2030 and even 2050. In order to limit overall energy consumption for the foreseeable future, our societies will need to focus on existing building retrofits based on finding the minimum consumptions possible. Methods for attaining deep energy retrofits can be applied to a wide variety of climates and building typologies. Measures utilized to realize results will vary by climate, building function, building use, and other site specific variables. This project focuses on developing a methodology and set of criteria for determining approaches to deep energy retrofits for office space in the Hawaiian climate. The method generated focuses on a passive first approach in order to pursue the deepest savings - otherwise known as a technical potential energy solution. The method is then applied to a specific property in Honolulu to display its potential energy consumption and economic benefits. Best practice levels were researched and applied to the property in question. By reducing active and passive loading, the space is able to reach temperature level suitable for natural ventilation with a ceiling fan assist. Application of the strategies to this property were able to show the potential to save 83% over its existing condition and a consumption level of 7.53 kBtu/sf/yr. Future steps would need to consider a moisture mitigation strategy which are not included in this package. Benefits stemming from the design are many and are calculated to a life cycle present value to show an order of magnitude value associated with the package. Direct owner value is calculated to a present value of 47/SFandqualitativetenantbenefitsequateto47/SF and qualitative tenant benefits equate to 368/SF showing that direct owner benefit is not enough accomplish the scope proposed, but when combined with tenant benefit it becomes an option that may be viable and deserves further investigation. Benefits quantified include energy savings, indoor environmental improvements, value adding amenities, and increased square footage included in the design package

    Immersive Automotive Stereo Vision

    Get PDF
    Kürzlich wurde das erste In-Car Augmented Reality (AR) System eingeführt. Das System beinhaltet das Rendern von verschiedenen 3D Objekten auf einem Live-Video, welches auf einem Zentraldisplay in der Mittelkonsole des Fahrzeuges angezeigt wird. Ziel dieser Arbeit ist es ein System zu entwickeln, welches nicht nur 2D-Videos augmentieren kann, sondern eine 3D-Rekonstruktion der aktuellen Fahrzeugumgebung erstellen kann. Dies ermöglicht eine Vielzahl von verschiedenen Anwendungen, u.a. die Anzeige dieses 3D-Scans auf einem Head-mounted Display (HMD) als Teil einer Mixed Reality (MR) Anwendung. Eine MR-Anwendung bedarf einer überzeugenden und immersiven Darstellung der Umgebung mit einer hohen Renderfrequenz. Wir beschränken uns auf eine einzelne Front-Stereokamera, welche vorne am Auto verbaut oder montiert ist, um diese Aufgabe zu bewältigen. Hierzu fusionieren wir die Stereomessungen temporär. Zuerst analysieren wir von Grund auf die Effekte der temporalen Stereofusion. Wir schätzen die erreichbare Genauigkeit ab und zeigen Einschränkungen der temporalen Fusion und unseren Annahmen auf. Wir leiten außerdem ein 1D Extended Information Filter und ein 3D Extended Kalman Filter her, um Stereomessungen temporär zu vereinen. Die Filter verbesserten den Tiefenfehler in Simulationen wesentlich. Die Ergebnisse der Analyse integrieren wir in ein neuartiges 3D-Rekonstruktions- Framework, bei dem jeder Punkt mit einem Filter modelliert wird. Das sog. “Warping” von Pixeln von einem Bild zu einem anderen Bild ermöglicht die temporäre Fusion von Messungen nach einem Clustering-Schritt, welcher uns erlaubt verschiedene Tiefenebenen pro Pixel gesondert zu betrachten. Das Framework funktioniert als punkt-basierte Rekonstruktion oder alternativ als mesh-basierte Erweiterung. Hierfür triangulieren wir Tiefenbilder, um die 3DSzene nur mit RGB- und Tiefenbildern als Input auf der GPU zu rendern. Wir können die Eigenschaften von urbanen Szenen und der Kamerabewegung ausnutzen, um Pixel zu identifizieren und zu rendern, welche nicht mehr in zukünftigen Frames beobachtet werden. Das ermöglicht uns diesen Teil der Szene in der größten beobachteten Auflösung zu rekonstruieren. Solche Randpixel formen einen Schlauch (“Tube”) über mehrere Frames, weshalb wir dieses Mesh als Tube Mesh bezeichnen. Unser Framework erlaubt es uns auch die rechenintensiven Filter-Propagationen komplett auf die GPU auszulagern. DesWeiteren demonstrieren wir ein Verfahren, um einen vollen, dynamischen, virtuellen Himmel mithilfe der gleichen Kamera zu erstellen, welcher ergänzend zu der 3D-Szenenrekonstruktion als Hintergrund gezeigt werden kann. Wir evaluieren unsere Methoden gegen andere Verfahren in einem umfangreichen Benchmark auf dem populären “KITTI Visual Odometry”-Datensatz und dem synthethischen SYNTHIA-Datensatz. Neben Stereofehlern im Bild vergleichen wir auch die Performanz der Verfahren für die Rekonstruktion von bestimmten Strukturen in den Referenz-Tiefenbildern, sowie ihre Fähigkeit die Erscheinung der 3D-Szene aus unterschiedlichen Blickwinkeln vorherzusagen auf dem SYNTHIA-Datensatz. Unsere Methode zeigt signifikante Verbesserungen des Disparitätsfehlers sowie des Bildfehlers aus unterschiedlichen Blickwinkeln. Außerdem erzielen wir eine so hohe Rendergeschwindigkeit, dass die Anforderung der Bildwiederholrate von modernen HMDs erfüllt wird. Zum Schluss zeigen wir Herausforderungen in der Evaluation auf, untersuchen die Auswirkungen des Weglassens einzelner Komponenten unseres Frameworks und schließen mit einer qualitativen Demonstration von unterschiedlichen Datensätzen ab, inklusive der Diskussion von Fehlerfällen.Recently, the first in-car augmented reality (AR) system has been introduced to the market. It features various virtual 3D objects drawn on top of a 2D live video feed, which is displayed on a central display inside the vehicle. Our goal with this thesis is to develop an approach that allows to not only augment a 2D video, but to reconstruct a 3D scene of the surrounding driving environment of the vehicle. This opens up various possibilities including the display of this 3D scan on a head-mounted display (HMD) as part of a Mixed Reality (MR) application, which requires a convincing and immersive visualization of the surroundings with high rendering speed. To accomplish this task, we limit ourselves to the use of a single front-mounted stereo camera on a vehicle and fuse stereo measurements temporally. First, we analyze the effects of temporal stereo fusion thoroughly. We estimate the theoretically achievable accuracy and highlight limitations of temporal fusion and our assumptions. We also derive a 1D extended information filter and a 3D extended Kalman filter to fuse measurements temporally, which substantially improves the depth error in our simulations. We integrate these results in a novel dense 3D reconstruction framework, which models each point as a probabilistic filter. Projecting 3D points to the newest image allows us to fuse measurements temporally after a clustering stage, which also gives us the ability to handle multiple depth layers per pixel. The 3D reconstruction framework is point-based, but it also has a mesh-based extension. For that, we leverage a novel depth image triangulation method to render the scene on the GPU using only RGB and depth images as input. We can exploit the nature of urban scenery and the vehicle movement by first identifying and then rendering pixels of the previous stereo camera frame that are no longer seen in the current frame. These pixels at the previous image border form a tube over multiple frames, which we call a tube mesh, and have the highest possible observable resolution. We are also able to offload intensive filter propagation computations completely to the GPU. Furthermore, we demonstrate a way to create a dense, dynamic virtual sky background from the same camera to accompany our reconstructed 3D scene. We evaluate our method against other approaches in an extensive benchmark on the popular KITTI visual odometry dataset and on the synthetic SYNTHIA dataset. Besides stereo error metrics in image space, we also compare how the approaches perform regarding the available depth structure in the reference depth image and in their ability to predict the appearance of the scene from different viewing angles on SYNTHIA. Our method shows significant improvements in terms of disparity and view prediction errors. We also achieve such a high rendering speed that we can fulfill the framerate requirements of modern HMDs. Finally, we highlight challenges in the evaluation, perform ablation studies of our framework and conclude with a qualitative showcase on different datasets including the discussion of failure cases
    corecore