474 research outputs found

    NAQPMS-PDAF v2.0: A Novel Hybrid Nonlinear Data Assimilation System for Improved Simulation of PM2.5 Chemical Components

    Get PDF
    PM2.5, a complex mixture with diverse chemical components, exerts significant impacts on the environment, human health, and climate change. However, precisely describing spatiotemporal variations of PM2.5 chemical components remains a difficulty. In our earlier work, we developed an aerosol extinction coefficient data assimilation (DA) system (NAQPMS-PDAF v1.0) that is suboptimal for chemical components. This paper introduces a novel hybrid nonlinear chemical DA system (NAQPMS-PDAF v2.0) to accurately interpret key chemical components (SO42-, NO3-, NH4+, OC, and EC). NAQPMS-PDAF v2.0 improves upon v1.0 by effectively handing and balancing stability and nonlinearity in chemical DA, which is achieved by incorporating the non-Gaussian-distribution ensemble perturbation and hybrid Localized Kalman-Nonlinear Ensemble Transform Filter with an adaptive forgetting factor for the first time. The dependence tests demonstrate that NAQPMS-PDAF v2.0 provides excellent DA results with a minimal ensemble size of 10, surpassing previous reports and v1.0. A one-month DA experiment shows that the analysis field generated by NAQPMS-PDAF v2.0 is in good agreement with observations, especially reducing the underestimation of NH4+ and NO3- and the overestimation of SO42-, OC, and EC. In particular, the CORR values for NO3-, OC, and EC are above 0.96, and R2 values are above 0.93. NAQPMS-PDAF v2.0 also demonstrates superior spatiotemporal interpretation, with most DA sites showing improvements of over 50 %–200 % in CORR and over 50 %–90 % in RMSE for the five chemical components. Compared to the poor performance in global reanalysis dataset (CORR: 0.42–0.55, RMSE: 4.51–12.27 µg/m3) and NAQPMS-PDAF v1.0 (CORR: 0.35–0.98, RMSE: 2.46–15.50 µg/m3), NAQPMS-PDAF v2.0 has the highest CORR of 0.86–0.99 and the lowest RMSE of 0.14–3.18 µg/m3. The uncertainties in ensemble DA are also examined, further highlighting the potential of NAQPMS-PDAF v2.0 for advancing aerosol chemical component studies

    Using task farming to optimise a street-scale resolution air quality model of the West Midlands (UK)

    Get PDF
    High resolution air quality models combining emissions, chemical processes, dispersion and dynamical treatments are necessary to develop effective policies for clean air in urban environments, but can have high computational demand. We demonstrate the application of task farming to reduce runtime for ADMS-Urban, a quasi-Gaussian plume air dispersion model. The model represents the full range of source types (point, road and grid sources) occurring in an urban area at high resolution. Here, we implement and evaluate the option to automatically split up a large model domain into smaller sub-regions, each of which can then be executed concurrently on multiple cores of a HPC or across a PC network, a technique known as task farming. The approach has been tested for a large model domain covering the West Midlands, UK (902 km2), as part of modelling work in the WM-Air (West Midlands Air Quality Improvement Programme) project. Compared to the measurement data, overall, the model performs well. Air quality maps for annual/subset averages and percentiles are generated. For this air quality modelling application of task farming, the optimisation process has reduced weeks of model execution time to approximately 35 h for a single model configuration of annual calculations

    Hybrid Dispersion/ Land Use Regression Modeling for Improving Air Pollutant Concentration Estimates

    Get PDF
    The overall objective of this dissertation was to examine the utility of incorporating source-meteorological interaction information from two commonly employed atmospheric dispersion models into the land use regression technique for predicting ambient NO2 and PM2.5. Ultimately, we are interested in obtaining highly resolved spatiotemporal pollutant estimates to examine the attenuation of health effect estimate bias that may result from exposure model misspecification. A multi-pollutant sampling campaign was conducted across six successive weekly sampling sessions in the summer and winter seasons of 2011-2013 in Pittsburgh, PA. As a preliminary investigation, predictions from a roadway dispersion model (Caline3) were included as an independent predictor in pre-constructed winter season LUR models for NO2. Caline3 output improved out-of-sample model fitness and added an additional portion of unexplained variation (3-10% by leave-one-out cross-validated R2) in NO2 observations compared to the standard LUR models. Correspondingly, the AERMOD dispersion model was implemented to predict PM2.5 from local and regional stationary sources in a similar hybrid framework. As per cross-validated R2 and RMSE, AERMOD predictions improved overall model fitness and explained an additional 9-13% in out-of-sample variability in summer and winter PM2.5 models. Both dispersion model output functioned similarly when incorporated into standard LUR models, effectively displacing the respective GIS-based covariates, corroborating model interpretability, and capturing the greatest degree of improvements at nearby, high-density source locations. To examine the potential for spatially-differential exposure measurement improvement in health effect estimation studies, we applied LUR and hybrid LUR/ dispersion model PM2.5 predictions to non-sampled locations and observed non-Berkson-type measurement error only when the modeling domain was restricted to a near-source (<1km) environment. By a simple stochastic simulation, we demonstrated that a well characterized dispersion-derived geographic covariate, defined by a robust variance about the monitoring locations, can theoretically result in less exposure measurement error and exposure misclassification. Therefore, highly refined spatiotemporal information can improve out-of-sample prediction accuracy; however, the statistical fidelity remains constrained by the degree of source contribution captured by monitoring locations. These findings have important public health implications for understanding air pollutant exposure measurement error derived from typical LUR studies. In the absence of a spatially dense monitoring network, we demonstrated that AERMOD can produce a spatiotemporally resolved prediction surface compared to typical GIS-based covariates across a large urban-to-suburban domain with pertinent pollutant sources and complex topography

    The effect of short-term changes in air pollution on respiratory and cardiovascular morbidity in Nicosia, Cyprus.

    Get PDF
    Presented at the 6th International Conference on Urban Air Quality, Limassol, March, 2007. Short-paper was submitted for peer-review and appears in proceedings of the conference.This study investigates the effect of daily changes in levels of PM10 on the daily volume of respiratory and cardiovascular admissions in Nicosia, Cyprus during 1995-2004. After controlling for long- (year and month) and short-term (day of the week) patterns as well as the effect of weather in Generalized Additive Poisson models, some positive associations were observed with all-cause and cause-specific admissions. Risk of hospitalization increased stepwise across quartiles of days with increasing levels of PM10 by 1.3% (-0.3, 2.8), 4.9% (3.3, 6.6), 5.6% (3.9, 7.3) as compared to days with the lowest concentrations. For every 10μg/m3 increase in daily average PM10 concentration, there was a 1.2% (-0.1%, 2.4%) increase in cardiovascular admissions. With respects to respiratory admissions, an effect was observed only in the warm season with a 1.8% (-0.22, 3.85) increase in admissions per 10μg/m3 increase in PM10. The effect on respiratory admissions seemed to be much stronger in women and, surprisingly, restricted to people of adult age

    Modeling of the Concentrations of Ultrafine Particles in the Plumes of Ships in the Vicinity of Major Harbors

    Get PDF
    Marine traffic in harbors can be responsible for significant atmospheric concentrations of ultrafine particles (UFPs), which have widely recognized negative effects on human health. It is therefore essential to model and measure the time evolution of the number size distributions and chemical composition of UFPs in ship exhaust to assess the resulting exposure in the vicinity of shipping routes. In this study, a sequential modelling chain was developed and applied, in combination with the data measured and collected in major harbor areas in the cities of Helsinki and Turku in Finland, during winter and summer in 2010-2011. The models described ship emissions, atmospheric dispersion, and aerosol dynamics, complemented with a time-microenvironment-activity model to estimate the short-term UFP exposure. We estimated the dilution ratio during the initial fast expansion of the exhaust plume to be approximately equal to eight. This dispersion regime resulted in a fully formed nucleation mode (denoted as Nuc(2)). Different selected modelling assumptions about the chemical composition of Nuc(2) did not have an effect on the formation of nucleation mode particles. Aerosol model simulations of the dispersing ship plume also revealed a partially formed nucleation mode (Nuc(1); peaking at 1.5 nm), consisting of freshly nucleated sulfate particles and condensed organics that were produced within the first few seconds. However, subsequent growth of the new particles was limited, due to efficient scavenging by the larger particles originating from the ship exhaust. The transport of UFPs downwind of the ship track increased the hourly mean UFP concentrations in the neighboring residential areas by a factor of two or more up to a distance of 3600 m, compared with the corresponding UFP concentrations in the urban background. The substantially increased UFP concentrations due to ship traffic significantly affected the daily mean exposures in residential areas located in the vicinity of the harbors.Peer reviewe

    Uncertainty estimation of regionalised depth–duration–frequency curves in Germany

    Get PDF
    The estimation of rainfall depth–duration–frequency (DDF) curves is necessary for the design of several water systems and protection works. These curves are typically estimated from observed locations, but due to different sources of uncertainties, the risk may be underestimated. Therefore, it becomes crucial to quantify the uncertainty ranges of such curves. For this purpose, the propagation of different uncertainty sources in the regionalisation of the DDF curves for Germany is investigated. Annual extremes are extracted at each location for different durations (from 5 min up to 7 d), and local extreme value analysis is performed according to Koutsoyiannis et al. (1998). Following this analysis, five parameters are obtained for each station, from which four are interpolated using external drift kriging, while one is kept constant over the whole region. Finally, quantiles are derived for each location, duration and given return period. Through a non-parametric bootstrap and geostatistical spatial simulations, the uncertainty is estimated in terms of precision (width of 95 % confidence interval) and accuracy (expected error) for three different components of the regionalisation: (i) local estimation of parameters, (ii) variogram estimation and (iii) spatial estimation of parameters. First, two methods were tested for their suitability in generating multiple equiprobable spatial simulations: sequential Gaussian simulations (SGSs) and simulated annealing (SA) simulations. Between the two, SGS proved to be more accurate and was chosen for the uncertainty estimation from spatial simulations. Next, 100 realisations were run at each component of the regionalisation procedure to investigate their impact on the final regionalisation of parameters and DDF curves, and later combined simulations were performed to propagate the uncertainty from the main components to the final DDF curves. It was found that spatial estimation is the major uncertainty component in the chosen regionalisation procedure, followed by the local estimation of rainfall extremes. In particular, the variogram uncertainty had very little effect on the overall estimation of DDF curves. We conclude that the best way to estimate the total uncertainty consisted of a combination between local resampling and spatial simulations, which resulted in more precise estimation at long observation locations and a decline in precision at unobserved locations according to the distance and density of the observations in the vicinity. Through this combination, the total uncertainty was simulated by 10 000 runs in Germany, and it indicated that, depending on the location and duration level, tolerance ranges from ± 10 %–30 % for low-return periods (lower than 10 years) and from ± 15 %–60 % for high-return periods (higher than 10 years) should be expected, with the very short durations (5 min) being more uncertain than long durations
    corecore