959 research outputs found

    Using Sensor Web Processes and Protocols to Assimilate Satellite Data into a Forecast Model

    Get PDF
    The goal of the Sensor Management Applied Research Technologies (SMART) On-Demand Modeling project is to develop and demonstrate the readiness of the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) capabilities to integrate both space-based Earth observations and forecast model output into new data acquisition and assimilation strategies. The project is developing sensor web-enabled processing plans to assimilate Atmospheric Infrared Sounding (AIRS) satellite temperature and moisture retrievals into a regional Weather Research and Forecast (WRF) model over the southeastern United States

    The Sensor Management for Applied Research Technologies (SMART) Project

    Get PDF
    NASA seeks on-demand data processing and analysis of Earth science observations to facilitate timely decision-making that can lead to the realization of the practical benefits of satellite instruments, airborne and surface remote sensing systems. However, a significant challenge exists in accessing and integrating data from multiple sensors or platforms to address Earth science problems because of the large data volumes, varying sensor scan characteristics, unique orbital coverage, and the steep "learning curve" associated with each sensor, data type, and associated products. The development of sensor web capabilities to autonomously process these data streams (whether real-time or archived) provides an opportunity to overcome these obstacles and facilitate the integration and synthesis of Earth science data and weather model output

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF

    Status and future of global and regional ocean prediction systems

    Get PDF
    Operational evolution of global and regional ocean forecasting systems has been extremely significant in recent years. GODAE (Global Ocean Data Assimilation Experiment) Oceanview supports the national research groups providing them with coordination and sharing expertise among the partners. Several systems have been set up and developed pre-operationally and the majority of these are now fully operational; at the present time, they provide medium- and long-term forecasts of the most relevant ocean physical variables. These systems are based on ocean general circulation models (OGCMs) and data assimilation techniques that are able to correct the model with the information inferred from different types of observations. A few systems also incorporate a biogeochemical component coupled with the physical system while others are based on coupled ocean-wave-ice-atmosphere models. The products are routinely validated with observations in order to assess their quality. Data and products implementation and organization, as well as service for the users has been well tried and tested and most of the products are now available  to the users. The interaction with different users is an important factor in the development process. This paper provides a synthetic overview of the GODAE Oceanview prediction systems

    Status and future of global and regional ocean prediction systems

    Get PDF
    Operational evolution of global and regional ocean forecasting systems has been extremely significant in recent years. GODAE (Global Ocean Data Assimilation Experiment) Oceanview supports the national research groups providing them with coordination and sharing expertise among the partners. Several systems have been set up and developed pre-operationally and the majority of these are now fully operational; at the present time, they provide medium- and long-term forecasts of the most relevant ocean physical variables. These systems are based on ocean general circulation models (OGCMs) and data assimilation techniques that are able to correct the model with the information inferred from different types of observations. A few systems also incorporate a biogeochemical component coupled with the physical system while others are based on coupled ocean-wave-ice-atmosphere models. The products are routinely validated with observations in order to assess their quality. Data and products implementation and organization, as well as service for the users has been well tried and tested and most of the products are now available  to the users. The interaction with different users is an important factor in the development process. This paper provides a synthetic overview of the GODAE Oceanview prediction systems.Publisheds201-s2204A. Clima e OceaniJCR Journalope

    The Pirata Program : history, accomplishments, and future directions

    Get PDF
    Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 89 (2008): 1111–1125, doi:10.1175/2008BAMS2462.1.The Pilot Research Moored Array in the tropical Atlantic (PIRATA) was developed as a multinational observation network to improve our knowledge and understanding of ocean–atmosphere variability in the tropical Atlantic. PIRATA was motivated by fundamental scientific issues and by societal needs for improved prediction of climate variability and its impact on the economies of West Africa, northeastern Brazil, the West Indies, and the United States. In this paper the implementation of this network is described, noteworthy accomplishments are highlighted, and the future of PIRATA in the framework of a sustainable tropical Atlantic observing system is discussed. We demonstrate that PIRATA has advanced beyond a “Pilot” program and, as such, we have redefined the PIRATA acronym to be “Prediction and Research Moored Array in the Tropical Atlantic.

    CIRA annual report FY 2011/2012

    Get PDF

    CIRA annual report 2007-2008

    Get PDF
    corecore