984 research outputs found

    MIJ2K: Enhanced video transmission based on conditional replenishment of JPEG2000 tiles with motion compensation

    Get PDF
    A video compressed as a sequence of JPEG2000 images can achieve the scalability, flexibility, and accessibility that is lacking in current predictive motion-compensated video coding standards. However, streaming JPEG2000-based sequences would consume considerably more bandwidth. With the aim of solving this problem, this paper describes a new patent pending method, called MIJ2K. MIJ2K reduces the inter-frame redundancy present in common JPEG2000 sequences (also called MJP2). We apply a real-time motion detection system to perform conditional tile replenishment. This will significantly reduce the bit rate necessary to transmit JPEG2000 video sequences, also improving their quality. The MIJ2K technique can be used both to improve JPEG2000-based real-time video streaming services or as a new codec for video storage. MIJ2K relies on a fast motion compensation technique, especially designed for real-time video streaming purposes. In particular, we propose transmitting only the tiles that change in each JPEG2000 frame. This paper describes and evaluates the method proposed for real-time tile change detection, as well as the overall MIJ2K architecture. We compare MIJ2K against other intra-frame codecs, like standard Motion JPEG2000, Motion JPEG, and the latest H.264-Intra, comparing performance in terms of compression ratio and video quality, measured by standard peak signal-to-noise ratio, structural similarity and visual quality metric metrics.This work was supported in part by Projects CICYT TIN2008– 06742-C02–02/TSI, CICYT TEC2008–06732-C02–02/TEC, SINPROB, CAM MADRINET S-0505/TIC/0255 and DPS2008–07029-C02–02.Publicad

    Seminario sullo Standard MPEG-4: utilizzo ed aspetti implementativi

    Get PDF
    Una delle tecnologie chiave che hanno permesso il grande sviluppo della televisione digitale è la compressione video. La tecnologia di codifica video nota come MPEG-2, sviluppata nei primi anni novanta, è diventata lo standard di trasmissione DTV (Digital TV) sia satellitare sia terrestre in quasi tutti i paesi del mondo. Da allora la velocità dei microprocessori e le capacità di memoria dei dispositivi hardware per la codifica e la decodifica sono migliorate significativamente rendendo possibile lo sviluppo e l’implementazione di algoritmi di codifica innovativi in grado di abbattere significativamente i limiti di compressione dello standard MPEG-2. Tali innovazioni, sfociate nel 2003 nello standard MPEG-4 AVC (Advanced Video Coding), non hanno permesso di mantenere la compatibilità all’indietro con l’MPEG-2, e questo ha inizialmente costituito un limite alla loro introduzione nei sistemi di trasmissione DTV. Tuttavia, negli ultimi anni la codifica MPEG-4 AVC si è diffusa rapidamente, è stata adottata dal progetto DVB, recentemente dall’ATSC, ed è lo standard di codifica nell’IPTV. L’obiettivo di questo seminario, che si articola in due giornate, è quello di presentare lo standard di codifica MPEG-4 AVC con particolare attenzione agli aspetti implementativi del livello di codifica video.2008-11-18Sardegna Ricerche, Edificio 2, Località Piscinamanna 09010 Pula (CA) - ItaliaSeminario sullo Standard MPEG-4: utilizzo ed aspetti implementativ

    Error resilient packet switched H.264 video telephony over third generation networks.

    Get PDF
    Real-time video communication over wireless networks is a challenging problem because wireless channels suffer from fading, additive noise and interference, which translate into packet loss and delay. Since modern video encoders deliver video packets with decoding dependencies, packet loss and delay can significantly degrade the video quality at the receiver. Many error resilience mechanisms have been proposed to combat packet loss in wireless networks, but only a few were specifically designed for packet switched video telephony over Third Generation (3G) networks. The first part of the thesis presents an error resilience technique for packet switched video telephony that combines application layer Forward Error Correction (FEC) with rateless codes, Reference Picture Selection (RPS) and cross layer optimization. Rateless codes have lower encoding and decoding computational complexity compared to traditional error correcting codes. One can use them on complexity constrained hand-held devices. Also, their redundancy does not need to be fixed in advance and any number of encoded symbols can be generated on the fly. Reference picture selection is used to limit the effect of spatio-temporal error propagation. Limiting the effect of spatio-temporal error propagation results in better video quality. Cross layer optimization is used to minimize the data loss at the application layer when data is lost at the data link layer. Experimental results on a High Speed Packet Access (HSPA) network simulator for H.264 compressed standard video sequences show that the proposed technique achieves significant Peak Signal to Noise Ratio (PSNR) and Percentage Degraded Video Duration (PDVD) improvements over a state of the art error resilience technique known as Interactive Error Control (IEC), which is a combination of Error Tracking and feedback based Reference Picture Selection. The improvement is obtained at a cost of higher end-to-end delay. The proposed technique is improved by making the FEC (Rateless code) redundancy channel adaptive. Automatic Repeat Request (ARQ) is used to adjust the redundancy of the Rateless codes according to the channel conditions. Experimental results show that the channel adaptive scheme achieves significant PSNR and PDVD improvements over the static scheme for a simulated Long Term Evolution (LTE) network. In the third part of the thesis, the performance of the previous two schemes is improved by making the transmitter predict when rateless decoding will fail. In this case, reference picture selection is invoked early and transmission of encoded symbols for that source block is aborted. Simulations for an LTE network show that this results in video quality improvement and bandwidth savings. In the last part of the thesis, the performance of the adaptive technique is improved by exploiting the history of the wireless channel. In a Rayleigh fading wireless channel, the RLC-PDU losses are correlated under certain conditions. This correlation is exploited to adjust the redundancy of the Rateless code and results in higher Rateless code decoding success rate and higher video quality. Simulations for an LTE network show that the improvement was significant when the packet loss rate in the two wireless links was 10%. To facilitate the implementation of the proposed error resilience techniques in practical scenarios, RTP/UDP/IP level packetization schemes are also proposed for each error resilience technique. Compared to existing work, the proposed error resilience techniques provide better video quality. Also, more emphasis is given to implementation issues in 3G networks

    Viewpoint switching in multiview videos using SP-frames

    Get PDF
    Centre for Signal Processing, Department of Electronic and Information EngineeringRefereed conference paper2008-2009 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Description-driven Adaptation of Media Resources

    Get PDF
    The current multimedia landscape is characterized by a significant diversity in terms of available media formats, network technologies, and device properties. This heterogeneity has resulted in a number of new challenges, such as providing universal access to multimedia content. A solution for this diversity is the use of scalable bit streams, as well as the deployment of a complementary system that is capable of adapting scalable bit streams to the constraints imposed by a particular usage environment (e.g., the limited screen resolution of a mobile device). This dissertation investigates the use of an XML-driven (Extensible Markup Language) framework for the format-independent adaptation of scalable bit streams. Using this approach, the structure of a bit stream is first translated into an XML description. In a next step, the resulting XML description is transformed to reflect a desired adaptation of the bit stream. Finally, the transformed XML description is used to create an adapted bit stream that is suited for playback in the targeted usage environment. The main contribution of this dissertation is BFlavor, a new tool for exposing the syntax of binary media resources as an XML description. Its development was inspired by two other technologies, i.e. MPEG-21 BSDL (Bitstream Syntax Description Language) and XFlavor (Formal Language for Audio-Visual Object Representation, extended with XML features). Although created from a different point of view, both languages offer solutions for translating the syntax of a media resource into an XML representation for further processing. BFlavor (BSDL+XFlavor) harmonizes the two technologies by combining their strengths and eliminating their weaknesses. The expressive power and performance of a BFlavor-based content adaptation chain, compared to tool chains entirely based on either BSDL or XFlavor, were investigated by several experiments. One series of experiments targeted the exploitation of multi-layered temporal scalability in H.264/AVC, paying particular attention to the use of sub-sequences and hierarchical coding patterns, as well as to the use of metadata messages to communicate the bit stream structure to the adaptation logic. BFlavor was the only tool to offer an elegant and practical solution for XML-driven adaptation of H.264/AVC bit streams in the temporal domain
    • …
    corecore