
This document is published in:

Journal of Visual Communication and Image 
Representation, 2011 22 4 332-344.
DOI: http://dx.doi.org/10.1016/j.jvcir.2011.02.002

© 2011 Elsevier Inc.

http://dx.doi.org/10.1016/j.jvcir.2011.02.002


A

MIJ2K: Enhanced video transmission based on conditional replenishment 

of JPEG2000 tiles with motion compensation

Alvaro Luis Bustamante ⇑, José M. Molina López, Miguel A. Patricio

Univ. Carlos III de Madrid, Avda. Univ. Carlos III, 22, 28270 Colmenarejo, Madrid, Spain

A video compressed as a sequence of JPEG2000 images can achieve the scalability, flexibility, and acces-sibility that is lacking in current predictive motion-

bstract:
al-time,

wever,
s a new

e app
PEG200

to imp
chniqu

2000 fr

ame co
lity, me
Keywords: JPEG2000, Streaming, rtp, Re

compensated video coding standards. Ho
solving this problem, this paper describe
JPEG2000 sequences (also called MJP2). W
reduce the bit rate necessary to transmit J

The MIJ2K technique can be used both 
relies on a fast motion compensation te
only the tiles that change in each JPEG
well as the overall MIJ2K architecture.

We compare MIJ2K against other intra-fr
terms of compression ratio and video qua
⇑ Corresponding author.

E-mail addresses: aluis@inf.uc3m.es (A.L. Bustama
Molina López), mpatrici@inf.uc3m.es (M.A. Patricio).
Motion, Tile, Interframe, Compensation.

 streaming JPEG2000-based sequences would consume considerably more bandwidth. With the aim of 
 patent pending method, called MIJ2K. MIJ2K reduces the inter-frame redundancy present in common 

ly a real-time motion detection system to perform conditional tile replenishment. This will significantly 
0 video sequences, also improving their quality.

rove JPEG2000-based real-time video streaming services or as a new codec for video storage. MIJ2K 
e, especially designed for real-time video streaming purposes. In particular, we propose transmitting 
ame. This paper describes and evaluates the method proposed for real-time tile change detection, as 

decs, like standard Motion JPEG2000, Motion JPEG, and the latest H.264-Intra, comparing performance in 
asured by standard peak signal-to-noise ratio, structural similarity and visual quality metric metrics.
1. Introduction

Video communication over IP-based networks is becoming
increasingly popular, and it has emerged as one of the most impor-
tant applications using Internet technology. Motion JPEG2000 
(MJP2) [14] is a video coding standard based on the JPEG2000 (also 
called J2K) image codec compression [13,26]. JPEG2000 employs 
an intra-frame coding technique that avoids the use of motion 
compensation adopted by most of the previous standards, such 
as MPEG-2 [12], or MPEG-4 [21]. Thus, the compression delay 
achieved by the MJP2 codec could be slightly shorter than such 
motion compensation-based techniques.

MPEG-2 and MPEG-4 or even Motion JPEG (MJPEG) are the most 
used and tested codecs. However, the MJP2 codec is now being 
integrated into new video surveillance devices and systems [4,9]. 
Compared to MPEG-based systems, the MJP2 codec can take advan-
tage of JPEG2000s unequaled number of features. This standard 
provides error resilience, regions of interest (ROIs) definition, as 
well as spatial, component, resolution and quality scalability [5,22].

The bit-stream can be easily parsed and adapted in real-time in
each of these scalabilities without having to decode frames. MJP2 is
nte), molina@ia.uc3m.es (J.M. 
also the leading digital cinema standard currently supported by 
Digital Cinema Initiatives [7] (a consortium of most major studios 
and vendors) for the storage, distribution and exhibition of high-
definition motion pictures. It is an open ISO standard and an ad-
vanced update of MJPEG, which was based on the legacy JPEG for-
mat [20].

So, it is expected to provide a better solution for applications 
that are required to stream high-quality and high-resolution vid-
eos over IP-based networks [8,25,16]. The application areas in-
clude: digital cinema, PC-based video capturing, remote 
surveillance, high-resolution medical, satellite imaging and so on.

Also, the MJP2 codec should be considered in real-time trans-
mission systems because it does not employ any motion compen-
sation or inter-frame compression. Instead, each frame is an 
independent entity encoded with JPEG2000 [13]. This feature will 
hugely reduce compression and transmission process delay as, 
contrary to motion compensation techniques, it can be transmitted 
immediately after an individual frame is compressed.

However, this low delay is achieved at the cost of increasing
bandwidth requirements, since it does not reduce any temporal
redundancy in videos (which is the main goal of motion compen-
sation-based techniques).

There is not much work related to the optimization of real-time
transmissions of JPEG2000 video sequences, at least from our point
of view. Some researchers have tried to perform scene analysis to
1



reduce Motion JPEG2000 video surveillance delivery bandwidth 
and complexity [17]. This work separates foreground objects from 
the background, which it compresses at different qualities, select-
ing better qualities for the important objects in the sequence. The 
tests run in this case are insufficient, and the research paper does 
not set out a detailed process of how to detect background/fore-
ground objects and how it is used in JPEG2000 sequences.

Other research, closer to the process proposed in this paper, is 
described in [18,19,6]. They perform a conditional replenishment 
of JPEG2000 code-blocks with motion compensation, but this tech-
nique appears to be too complex to be applied in real-time envi-
ronments, since they work with a low-level code stream. Clients 
and servers would also have to be purposely designed for use with 
these techniques, and standard protocols such as described in RFC 
5371 [10] designed for JPEG2000 transmission could not be used. 
Neither do they test the delay introduced by the techniques that 
they describe, and all results appear to be simulated, and not tested 
on a real implementation.

To solve this problem, we propose the Motion Inter-Frame
JPEG2000 (MIJ2K) method. As described in this paper, it applies a
real-time motion compensation technique to the MJP2 sequences
before transmission. It will lead to a significant reduction in band-
width requirements without adding extra delay to the compres-
sion and transmission process.

In previous research conducted by A.L. Bustamante et al. in [3] a 
system for real-time transmission of JPEG2000 live video streams 
over a real-time transport protocol (RTP) was applied in compli-
ance with RFC 5371 [10]. It takes advantage of the JPEG2000 code-
stream structure to perform intelligent transmission. In this paper, 
we also proposed a pre-transmission optimization of se-quences, 
using a low-complexity motion detection system. MIJ2K codec will 
add a real-time inter-frame compression technique in a native 
intra-frame system. It combines the benefits of inter-frame 
techniques (greater compression ratio and higher quality) with the 
advantages of using an intra-frame method (low complex-ity 
compression and fast delivery).

Added to a common JPEG2000 video streaming system, the 
MIJ2K technique will hugely improve transmission, saving band-
width, and achieving better qualities for the same bit-rate, as 
shown throughout this paper. This paper fully describes MIJ2K, 
including a real-time motion detection and compensation system. 
For streaming purposes, we use it over the J2K Streaming RTP 
developed in [3]. We compare MIJ2K against other standard co-
decs, like standard MJP2, MJPEG, and H.264-Intra. To evaluate the 
quality of MIJ2K, we will test the codec in terms of delivery delay 
in seconds; quality of video sequences measured by peak signal-to-
noise ratio (PSNR), structural similarity (SSIM) and the visual qual-
ity metric (VQM); and compression ratio, measuring the average 
bit-rate for transmission against other codecs.

The proposed MIJ2K is patent pending and can be easily applied 
to the previous work done in [3]. Also it is RFC 5371 compliant.

The remainder of the paper is organized as follows. Section 2 pro-
vides background on JPEG2000 code streams. Section 3 introduces
some fundamentals about video compression evaluation. Section
4 fully describes the proposed architecture, including the adopted
real-time motion compensation technique. Section 5 is used to eval-
uate the quality of MIJ2K compared with other standard codecs. Fi-
nally, we present some conclusions about the proposed method.
2. JPEG2000 code stream

JPEG2000 is a wavelet-based [1] image compression standard,
created by the Joint Photographic Experts Group committee in
the year 2000, with the intention of superseding their original dis-
crete cosine transform-based JPEG standard (dating from 1992).
Although JPEG2000 offers a modest increase in compression
performance compared with JPEG, its main benefit is significant
code-stream flexibility. The code stream obtained after compres-
sion of an image with JPEG2000 is scalable, meaning that it can
be decoded in a number of ways. For instance, by truncating the
code stream at any point, we can get a representation of the image
at a lower resolution or signal-to-noise ratio. By ordering the code
stream in various ways, applications can achieve significant perfor-
mance increases.

Some of the characteristics of JPEG2000 images are:

� Superior compression performance: At high bit rates, where
artifacts become nearly imperceptible, JPEG2000 has a small 
machine-measured fidelity advantage over JPEG. At lower bit 
rates (e.g., less than 0.25 bits/pixel for gray-scale images), JPEG 
2000 has a much more significant advantage over certain JPEG 
modes: artifacts are less visible and there is almost no blocking. 
The compression gains over JPEG are attributed to the use of 
DWT and a more sophisticated entropy encoding scheme [23].
� Multiple resolution representation: JPEG2000 decomposes the

image into a multiple resolution representation in the course 
of its compression process. This representation can be put to 
use for other image rendering purposes beyond compression 
as such [13].
� Progressive transmission by pixel and resolution accuracy, com-

monly referred to as progressive decoding and signal-to-noise
ratio (SNR) scalability: JPEG2000 provides efficient code-stream
organizations which are progressive by pixel accuracy and by
image resolution (or by image size). This way, after a small part
of the whole file has been received, the viewer can see a lower
quality version of the final picture. The quality then improves
progressively as more data bits are downloaded from the
source. The 1991 JPEG standard also has a progressive transmis-
sion feature, but it is rarely used.
� Lossless and lossy compression: like JPEG 1991 [28], the

JPEG2000 standard provides both lossless and lossy compres-
sion in a single compression architecture. Lossless compression
is provided by the use of a reversible integer wavelet transform
in JPEG2000.
� Random code-stream access and processing: JPEG2000 code

streams offer several mechanisms to support spatial random
access or region of interest access at varying degrees of granu-
larity. This feature is achieved in part by the concept of tiling
introduced in JPEG2000, where an image is split into so-called
tiles, rectangular regions of the image that are transformed
and encoded separately. For each encoded tile there are also
other random-access mechanisms such as the concept of
precincts.
� Error resilience: like JPEG 1991, JPEG2000 is robust to bit errors

introduced by noisy communication channels because data is
coded in relatively small independent blocks.
� Side channel spatial information: It fully supports transparency

and alpha planes.

Apart from the above features, the main benefit of using 
JPEG2000 for video streaming is that, unlike other video compres-
sors including MPEG-4, compression could be done in real-time [3] 
because it is an intra-frame codec. Thanks to this feature, JPEG2000 
can be used in events that require real-time transmission, like vi-
deo surveillance.

As far as our proposal is concerned, however, the main advan-
tage is that the image can, optionally, be partitioned into smaller 
independent non-overlapped rectangular blocks called tiles [13]. 
We will exploit this exceptional feature, provided by this compres-
sor alone, to perform real-time inter-frame compression using the 
proposed conditional tile replenishment method. We will employ a
2



Fig. 1. JPEG2000 code stream structure.

Color 
Transform DCT Local 

Contrast

SCSFWeighted
Pooling -VQM 

Distorsion

Fig. 2. Overview of VQM.
new block-based difference coding technique [24] for this task, 
having tiles assume the role of blocks.

Tiles can be any size, and the whole image can even be consid-
ered as one single tile. Once the size has been chosen, though, all 
the tiles will be of the same size (except, optionally, tiles on the 
right and bottom borders). Dividing the image into tiles is advan-
tageous in that the encoder/decoder will need less memory to en-
code/decode the image, and it can opt to encode/decode only 
selected tiles to achieve a partial coding/decoding of the image. It 
will provide full control of whatever area of the image is being 
compressed, decompressed, transmitted, etc. However, a trade-off 
exists when selecting the tile size. As discussed in [33], a small tile-
size reduces the JPEG2000 compression efficiency, limiting the 
interest of using a wavelet transform. Also it may create blocking 
artifacts at moderate to high compression ratios. We use in this 
work small tile sizes, since the worse compression efficiency is 
highly compensated with the motion compensation technique, as 
we found out in [2].

Fig. 1 presents an example of how the J2K code stream is struc-
tured, and how an image is divided using tiles. The first marker
present is the Start of Code Stream (SOC). This is followed by a
main header (MH), which includes the common parameters re-
quired for image decoding. The tile-part header (TH) contains the
necessary information for decoding each tile. It is followed by the
corresponding tile-part bit-stream. Finally, the End of Code-Stream
(EOC) marker denotes the termination of a J2K code stream.

Notice that each region of the image occupies a definite region 
in the J2K code stream. Thanks to the method for defining headers 
[13], each region can also be accessed randomly.

3. Video compression evaluation

Since video compression somehow alters the original videos,
methods are required to evaluate the quality of the compressions
performed. They are directly concerned with the data reduction
quantity, and the compressed video quality (similarity) compared
with the original video.

As regards quality, or similarity, there are some standard qual-
ity metrics. The most common objective quality metrics are the
mean square error (MSE) and the peak signal-to-noise ratio (PSNR).
The MSEi is the cumulative squared error between the original (fi)
and compressed (f̂ i) images. So, MSE is calculated pixel by pixel
over a frame of X � Y (1). On the other hand, PSNRi represents qual-
ity on a logarithmic decibel (dB) scale. This is calculated from the
MSEi value (2). When comparing compression codecs, they are
used as an approximation to human perception of reconstruction
quality. Higher PSNR (and lower MSE) values would normally indi-
cate that the reconstruction is of higher quality.
MSEi ¼
1

XY

XX

x¼1

XY

y¼1
ff ðx; yÞ � f̂ ðx; yÞg2

; ð1Þ

PSNRi ¼ 10 � log10
2552

MSEi
: ð2Þ

MSE and PSNR are both objective quality metrics, but there exist 
other quality metrics that take subjective quality measurements, 
since PSNR and MSE have proved to be inconsistent with human 
eye perception [11].

These techniques are based on the human vision system and 
theoretically are more like our perception. Some current tech-
niques designed to fulfill this purpose are structural similarity 
(SSIM) [29] and the visual quality metric (VQM) [32].

The SSIM metric is calculated on various windows of an image.
The measure between two windows of size N � N, x and y, is de-
fined in (3), where lx is the average of x; ly is the average of y;
r2

x is the variance of x; r2
y is the variance of y; covxy is the covari-

ance of y; c1 = (k1L)2, c2 = (k2L)2 are two variables to stabilize the
division with weak denominator; L is the dynamic range of the pix-
el values (typically, this is 2#bits per pixel � 1); and K1 = 0.01 and
K2 = 0.03 are default values.

SSIMðx; yÞ ¼
ð2lxly þ c1Þð2covxy þ c2Þ

l2
x þ l2

y þ c1
� �

r2
x þ r2

y þ c2

� � : ð3Þ

The resultant SSIM index is a decimal value between �1 and 1, and
value 1 is only reachable if there are two identical sets of data. Typ-
ically, it is calculated on 8 � 8 window sizes.

On the other hand, VQM is based on Watson’s Digital Video 
Quality (DVQ) model [30,31]. DVQ uses the Discrete Cosine Trans-
form (DCT). The process for this measurement is more complex 
than SSIM, and Fig. 2 outlines its flowchart. The VQM algorithm is 
as follows. Both the compressed and original video sequences are 
converted to the YUV color space, and undergo DCT transfor-
mation. The DCT coefficients are converted to units of local con-
trast, which is defined as the ratio of the AC amplitude to the 
temporally low-pass filter DC amplitude. The local contrasts are 
subjected to spatial contrast sensitivity functions for the static 
and dynamic frames, and the DCT coefficients are converted to just 
noticeable differences. The video sequences are subtracted to pro-
duce a difference sequence, and this is subjected to a contrast 
masking in a maximum operation and a weighted pooling mean 
distortion. In this case, higher values in this metric denote less sim-
ilarity with the original frame, and zero values are assigned when 
the likeness is perfect.

On the other hand, the data reduction quantity is measured by 
the compression ratio factor (CR). CR indicates by how much the 
image has been compressed, and is defined in (4). Higher values of 
CR will be equivalent to better compression ratios.

CompressionRatio ¼ UncompressedSize
CompressedSize

ð4Þ

These standard metrics are useful for evaluating the quality of
compressions, but some standard videos are also needed to evalu-
ate and compare compression with other codecs. There are several
3



Fig. 3. Standard videos used for compression evaluation.

Fig. 4. ‘Surveillance’ sequence for compression evaluation.
sequences available for this purpose. We have selected some from 
the Xiph.org Test Media repository [15]. The selected sequences are 
‘Akiyo’ and ‘Hall monitor’, shown in Fig. 3.

The real-time motion compensation technique used in this 
work, which is described further, performs better in videos with 
a still background. In this paper, we will demonstrate the particular 
skills of our proposal in these type of scenarios, which are very 
common in video surveillance systems. To evaluate the encoder 
in its real environment, we also propose a new video sequence, 
called ‘Surveillance’ 1, that has different features to these standard 
sequences: video surveillance from a fixed camera. Fig. 4 shows a 
frame from this sequence. It is recorded from a fixed camera mon-
itoring the back of a building.
4. MIJ2K architecture

This section details the MIJ2K method designed to introduce an
inter-frame technique to any JPEG2000-based streaming system.
This procedure is applied directly to the streams that are being
transmitted, and consequently, only blocks (denoted tiles in
JPEG2000) with movement will be transmitted.

The inter-frame technique adopted in MIJ2K is a real-time spe-
cific block-based difference coding, adapted to JPEG2000 streams.
This technique is useful in the real-time transmission scheme be-
cause it provides low computational complexity. It also preserves
the real-time latency provided by the native JPEG2000 intra-frame
architecture.
1 http://www.giaa.inf.uc3m.es/miembros/alvaro/jjbase.avi
The MIJ2K architecture designed for this task is outlined in 
Fig. 5 and explained in more detail in the following sections. The 
general operating procedure is as follows.

A common JPEG2000-based streaming system is basically di-
vided into three steps. The first step is related to frame acquisition
and compression. It is followed by the transmission of the resulting
compressed frames. Finally, it ends with the reception and display
of each frame. The acquisition and compression step in these sys-
tems is not complex. Each frame is acquired and compressed sep-
arately, and can be transmitted as soon as it is compressed.

In the proposed MIJ2K streaming architecture, an extra process
is inserted in the compression step. Instead of compressing each
whole frame, it compresses and transmits only the areas that are
different (changing tiles) from the previously transmitted frame.
Compressing only changing tiles improves compression, transmis-
sion, and decoding performance, since it hugely reduces the total
amount of data for management.

For example, Fig. 6 shows the tiles detected as changing in 
frame 127 of the ‘Akiyo’ sequence. They are marked with a green 
rectangle. Notice how only 17% of the tiles in this frame are de-
tected as changing. When the MIJ2K method is applied to the 
whole ‘Akiyo’ sequence, it saves around 87% of bandwidth com-
pared with a native JPEG2000 streaming system.

Changing tiles are detected using a reference frame FR
i that

stores a representation of the last frame transmitted. Each new
frame FS

i to be transmitted is compared tile by tile with the refer-
ence frame FR

i , in order to detect the tiles that differ with their
counterparts. Frame by frame, FR

i is updated with the tiles that
are detected as ‘changing’ to create a real representation of what
the client is viewing.

The client receiving this modified stream (a JPEG2000 code
stream containing just some of the tiles) will have to decode each
tile received and use it to update the displaying frame FD

i . The cli-
ent can easily locate each tile position since they are identified by a
tile number. Knowing that all tiles (except image boundaries) are
of the same size, it is easy to calculate the position of the tile inside
the full image.

All the subsystems illustrated in Fig. 5, and the details of the de-
signed MIJ2K system are explained in more detail in the following 
sections.
4.1. JPEG2000 encoder

This module compresses the JPEG2000 still images. It basically
takes and compresses the source frame FS

i using tile partitioning.
The encoder should be modified to assure that only the tiles spec-
ified by the TINDEX

i parameter, and not all the tiles of the frame are
compressed. This is feasible since the tiles in JPEG2000 images can
be compressed and decompressed separately. Ideally, then, only
the changing tiles are compressed. This will save compression
4



Fig. 5. Overall functioning of the MIJ2K architecture, performing real-time selective tile compression and transmission.

Fig. 6. ‘Akiyo’ sequence. Tiles detected as changing in frame 127. In this frame, a
bandwidth saving of around 83% is achieved.

Fig. 7. MIJ2K encoder operation.

Fig. 8. Overlay areas with different tile sizes. From left to right 16 � 16, 32 � 32 and
64 � 64.
time, improving the overall system operation. All frames will be
compressed with the same quality, given by bppi.

Fig. 7 is a diagram of this module. It shows all the required in-
puts and outputs. These are described in more detail in the 
following:

� Source frame FS
i : This is the last image acquired by the digitizer

board or digital camera, that is, the frame that is going to be
transmitted. It should be formatted in some J2K encoder-under-
standable format, for instance, a RAW 8 bpp or 24 bpp RGB
image (depending on whether it is a gray-scale or color picture).
� Quality bppi: This parameter is related to compression quantity,

or target quality after each still image has been compressed.
This parameter is usually expressed as the quantity of bits used
to represent each pixel in the generated JPEG2000 code stream,
that is, bits per pixel (bpp).
� Tile size TSIZE: This parameter defines the size of the tiling per-

formed in the J2K compressed image. Once the tile size has been
set, all images will be compressed in separate squared regions
of the same size. Tile size is variable, but, theoretically, small tile
sizes can achieve a better fitting to moving objects. This is illus-
trated in Fig. 8, where the soccer player is a moving object in the
sequence, and little tiles are a better fit for the player. But we
have found that the best tile size for a motion compensation
technique using JPEG2000 code streams is 32 � 32. This was
optimized in [2] before the release of the MIJ2K codec. So, the
default value will be set to 32 � 32.
� Changing tiles index TINDEX

i : This input is delivered by the
motion measurement subsystem (this process is detailed later),
as shown in Fig. 5. It indicates the index of the tiles that contain
some movement, that is, the tiles that should be compressed. In
this case, the JPEG2000 encoder should compress these tiles
(regions) of the image only. This will improve the compression
delay since the encoder does not have to compress the whole
image.
� J2K code stream FMIJ2K

i : This is the J2K code stream output after
compression. It should contain only the changing tiles specified
in the TINDEX

i input. The tiles bit-stream should be between the
main header and End of Code-Stream markers, as shown in
5



Fig. 7. In this case, only tiles 3, 7 and 15 have been detected as
changing. The FMIJ2K

i output will be passed directly to the Pack-
etization Subsystem, which will transmit the frame over the
network.

This process defined as in Eq. (5), where the J2K function repre-
sents the encoder, and the inputs of the function are: source frame
FS

i , index of tiles for compression TINDEX
i , quality bppi and size of tiles

TSIZE with the default value 32 � 32.

FMIJ2K
i ¼ J2K FS

i ; bppi; T
INDEX
i ; TSIZE ¼ 32� 32

� �
: ð5Þ
Fig. 10. Detailed MIJ2K motion measurement.
4.2. Motion measurement

This subsystem manages the motion measurement between
two consecutive frames and detects the tiles index of images that
contain some movement. The algorithm proposed for this task
achieves a low complexity in order to meet real-time transmis-
sions, instead of look for high-efficient motion detection performed
by common inter-frame encoders. Such sophisticated techniques,
like used in H.264/MPEG-4 AVC, usually are not feasible for critical
real-time environments such as video surveillance.

This algorithm, as shown in Fig. 9, takes two frames, FS
i and FR

i

(source and reference), for comparison. Also it has to know the se-
lected tile size TSIZE used in the compression step.

All the inputs and outputs of this system are described below:

� Source frames FS
i and FR

i : FS
i should be the same image as used in

the J2K encoder in some affordable format where the pixel val-
ues of the image can be directly manipulated. The other
required image is the reference frame FR

i . For comparison pur-
poses, it should have the same format as the source frame FS

i .
� Tile size TSIZE: As compression is performed using the concept of

tiling, motion should be measured in tile units. So, this subsys-
tem must know the working tile size TSIZE. It should take the
same value as used in the J2K encoder, that is, a default value
of 32 � 32.
� Changing tiles index TINDEX

i : As mentioned in the JPEG2000
encoder section, this subsystem should provide the index of
tiles containing some movement. The indexes could range from
0 to the total amount of tiles in any order and without any
restriction. If no tiles with movement are detected (the current
frame is almost equal to the last frame), this subsystem should
somehow notify this circumstance and then send no tile for the
current FS

i frame (but the client side must be notified).

TINDEX
i ¼ Motion FS

i ; F
R
i ; TSIZE ¼ 32� 32

� �
: ð6Þ

So, this subsystem can be defined as in (6). In this case, we will
specify what the ‘Motion’ function does in more detail, since this
is the most important part of the adopted inter-frame technique.
Fig. 10 shows this function in detail. We also describe all the
tasks involved as follows:
Fig. 9. Motion measurement inputs/output.
� Preprocessing: This task prepares the source frame FS
i for

motion measurement. The conversion performed is related to
the extraction of image intensity information, that is, the Y-
luminance component of the YUV color space. The conversion
specified in (7) is applied in case of RGB images. This way we
can work with one simple representation of the image, leading
to a faster analysis of source frames.

Y ¼ 0:2999Rþ 0:587Gþ 0:114B: ð7Þ

Once the source frame has been correctly transformed to a gray-
scale image, a simple blur filter is used to reduce excessive detail
and noise present in many surveillance cameras.

Fig. 11 shows the effects of the simple blur applied in the pre-
processing subsystem for noise reduction. Fig. 11 a and b are two
consecutive frames from the ‘Surveillance’ sequence (with the ex-
tracted Y component). Fig. 11c, and e represent the absolute differ-
ence (between frames n and n + 1) and binarization, where blur is
not used in source frames. On the other hand, d and f represent the
same frames but applying the blur filter to source frames. Notice
that using simple blur in preprocessing can reduce noise, generally
present in contours, and provide a clear binarization of the image.
It hugely improves movement detection, discarding almost all
noisy information.

Other techniques like erode and dilate are also useful for this
task, but are computationally more complex. It is also harder to ad-
just the proper structuring element [27] to prevent too much infor-
mation from being discarded.

Then, the preprocessed frame output by this subsystem, FP
i ,

should be a gray-scale image conversion of FS
i passed trough a sim-

ple blur filter, as described in (8).

FP
i ¼ Blur GrayScale FS

i

� �� �
: ð8Þ
� Tile change detector: This module, illustrated in Fig. 10, should

detect the tiles that contain movement for the purpose of selec-
tive tile compression and transmission. The method used in this
subsystem should be relatively simple in order to meet real-
time requirements.

This subsystem compares the whole preprocessed frame FP
i

against the reference frame FR
i tile by tile. It detects how much

movement there is in each tile to decide whether or not it should
be transmitted. Fig. 12 shows how this subsystem works. It is also
described in detail in the following:

� Absolute difference ABSi[x]: Each tile from both preprocessed
and reference frames is passed through an absolute difference
6



Fig. 11. Effects of simple blur on noise reduction.

Fig. 12. MIJ2K tile change detector.
filter to detect absolute changes between two tiles. The compu-
tational complexity of this operation a low, and it is useful for
detecting objective differences between tiles. It generates a
black-and-white image in which white pixels represent differ-
ences, whereas black pixels signify no changes. This is described
in (9), where FP

i½x� and FR
i½x� are tile x of frame i in the preprocessed

P and reference R frames. On the other hand, ABSi[x] represents
the absolute difference between the tiles. In this case, both
FP

i½x� and FR
i½x� are two matrices of u � v containing all the tile’s

pixel values.

ABSi½x� ¼ FP
i½x� � FR

i½x�

���
���: ð9Þ

The tile image ABSi[x] output by the absolute difference process
should be analyzed in order to detect how much movement there
is, and thus decide whether or not it should be transmitted. Changes
should be measured somehow, and here we propose two efficient
methods, which should work together.

� Mean value MEANi[x]: This is the first measurement. It is the
mean pixel value of the ABSi[x] tile. This process takes all the val-
ues of the ABSi[x] tile, calculates the total and divides this by the 
number of tile pixels, as described in (10).
7



Fig. 13. RTP transmission.
MEANi½x� ¼
Pu�1

s¼0

Pv�1
t¼0 ABSi½x�ðs;tÞ

u� v : ð10Þ

� Max value MAXi[x]: The second measurement is the maximum
pixel value of the ABSi[x] tile, as described in (11). This is useful
for detecting movement peaks in tiles, since they could be over-
looked by the mean value when nearby pixels values are near to
zero.

8s; t=s P 0 ^ s < u; t P 0 ^ t < v
MAXi½x� ¼ ABSi½x�ðs;tÞ ()
:9 ABSi½x�ðg;hÞ > ABSi½x�ðs;tÞ

ð11Þ

Operating in conjunction, MEANi[x] and MAXi[x] can detect all kinds
of movements, ranging from small uniform variations (using the
mean) to occasional big changes (using max threshold). Both met-
rics are easy to implement, providing a very low complexity method
for detecting movement. This complexity will be analyzed in the
test sections where we will compute the delay introduced.

� Thresholding: Both MEANi[x] and MAXi[x] indicators together tell
us when the tile should be transmitted. In this way, there is said
to be a big enough change in a tile to warrant transmission
when both values are above some threshold. The threshold val-
ues were optimized in [2]. This process should only compare the
results of the processed values with the static thresholds estab-
lished in the MIJ2K encoder. For example, tested values with
good results are 2.0 for MEANi[x] and 15 for MAXi[x].
� Reference update: This subsystem is used to update the refer-

ence frame FR
i . The first reference frame, FR

0, is an entirely black
image, and it is updated frame by frame with the tiles that are
different from preprocessed frame FP

i . Logically, the first frame
FP

0 will update all the tiles of the reference frame. The reference
frame is also updated directly from the blurred image output by
the preprocessing subsystem. This will stop the reference frame
from having to be preprocessed at each time and reduce system
complexity.

4.3. Packetization

This subsystem comes into operation once the motion measure-
ment process has detected the tiles that should be transmitted, and
the MIJ2K encoder has compressed the detected tiles only. The in-
put of this subsystem is the output of the MI2JK encoder, that is, a
FMIJ2K

i code stream, containing tiles with detected movement only.
The packetization subsystem should parse the J2K code stream

in order to perform an intelligent transmission. The transmission
achieved is compliant with RFC 5371 [10]. The implementation is
described in more detail in [3].

It basically takes the input J2K code stream and sends RTP pack-
ets in units of main header and tiles. In this case, RTP packets use a
special payload defined for transmitting JPEG2000 sequences, as
described in RFC 5371.

The transmission is performed as shown in Fig. 13. Each inde-
pendent part of the J2K code stream should be transmitted in an
independent RTP packet, that is, the first RTP packet should be
the main header, followed by each independent tile of the frame.

Some benefits of this procedure are reported in [3], and briefly
explained as follows:

� Parallel processing: The whole frame does not have to be com-
pressed before it is sent. As soon as a tile is compressed, it can
be sent. Thus, it is possible to compress and transmit at the
same time, improving overall system performance. The same
applies on the client side: it is possible to receive and decode
tiles from the same frame at the same time.
� Error resilience: If a packet is lost during a tile transmission, the
loss would affect this specific tile only rather than the whole
frame.
� Main header recovery: Main header is the most important part

of the code stream. Without the main header, decompression is
impossible. To solve this problem, the system can use a main
header identification (like a content-dependent hash encode)
for recovery if the frame transmission is missing the main
header. To do this, each RTP packet includes an integer value
identifying the main header associated with the transmitted
content. itemThanks to this ID, the client side can use a previous
main header backup to recover a main header lost during trans-
mission. This is feasible since all frames in a video sequence
tend to share the same values for width, height, components,
bits per pixel, number and size of tiles, etc., that is, the
same main header. Exploiting this feature the main header does
not always have to be sent, saving some bandwidth in
transmissions.

4.4. Transmission/reception

These subsystems are involved in the transmission and recep-
tion of RTP packets. RTP packets should be transmitted over a
transport protocol to define the source and destination address.
We use the user datagram protocol (UDP). This protocol caters
for real-time requirements, and avoids the overhead introduced
by other transport protocols, such as the transmission control pro-
tocol (TCP). Moreover, UDP is not connection oriented, allowing the
video sequences to be transmitted to many clients via broadcast
and multicast.

Another important transmission and reception component is
the transmission channel. It should provide a fast and reliable
transmission and enough bandwidth for transmitting video signals.
Nowadays, available Internet connections tend to provide enough
bandwidth for this purpose, and the system could be used almost
all over the world.

Although all of our tests have been performed in a 100 Mbps lo-
cal area network (LAN), better LANs like Gigabit Ethernet or Fiber
Optic could hugely improve the system, reducing latency and
increasing the number of video channels.
4.5. JPEG2000 decoder

The MIJ2K architecture JPEG2000 Decoder subsystem should
decode JPEG2000 tiles as soon as they are received. As we can
see from the transmission subsystem, each part of the J2K code
stream (main header and tiles) is transmitted in independent RTP
packets. In this way, the decoder does not have to wait to receive
the whole J2K code stream. The J2K decoder should decode the
independent tiles upon reception, while the other tiles are still
being received.
8



Table 1
Video sequences details.

Sequence Resolution Length Original size

Akiyo 352 � 288 251 f, 10 s 72.8 MB
Hall Monitor 352 � 288 251 f, 10 s 72.8 MB
Surveillance 640 � 480 704 f, 28 s 622.3 MB
Fig. 14 shows this process. The first RTP packet received is the 
main header. The header is necessary to decode the rest of the code 
stream. The following RTP packets are tiles. Tiles can be decoded 
independently. Therefore, this subsystem should provide the de-
coded tile immediately, without waiting to receive the other tiles.

Notice that the potential for parallelism in decoding indepen-
dent tiles. Many threads can be waiting for and decode incoming
tiles simultaneously. This will speed up the decoding time, as the
number of core processors increases.

4.6. Display/store decoded video

This subsystem displays and/or stores the decoded video se-
quences in the client side. This subsystem is quite straightforward,
since its only task is to update the decoded FD

i½x� tiles in the display-
ing frame FD

i . This frame can also be stored to keep a copy of the
received sequence.

5. MIJ2K performance tests

This section details all the tests performed on the proposed
MIJ2K architecture in order to evaluate its suitability. We evaluate
MIJ2K in the following terms:

� Video quality: MIJ2K adds a pure basic inter-frame technique to
the native JPEG2000 intra-frame compression system. So, we
want to evaluate the improvements on the native JPEG2000 in
terms of video quality. We will also evaluate other intra-frame
compressors, like MJPEG or H.264-Intra.
� Added computational complexity: Since MIJ2K introduces some

processing of live video frames, we want to find out how much
time is spent on this task, and how this can affect the live video
streaming system.
� Latency: This test should show the total latency of our imple-

mentation of MIJ2K in a real environment. We use our labora-
tory (VISLAB) to stream a live video sequence, and compute
the total time from when the video is captured, compressed
and transmitted by the server to when it is displayed on the cli-
ent side. This will tell us if it is really suitable for real-time
purposes.

For video quality evaluation we will use a standard set of vid-
eos, as described in Section 3. The selected sequences are ‘Akiyo’
and ‘Hall Monitor’. We also use the ‘Surveillance’ sequence.

All sequences used for this task are stored as uncompressed 
24 bit RGB, without any audio channel. They are described in 
Table 1.
Fig. 14. MIJ2K decoder operation.
5.1. Comparison against native JPEG2000 streaming system

This test should evaluate the suitability of MIJ2K against tradi-
tional JPEG2000 sequences. We evaluate the quality of all output
video sequences, compressed both either MIJ2K or standard
JPEG2000. All video sequences have been compressed at approxi-
mately the same compression ratio (CR) in order to evaluate the
quality output by both encoders. In order to achieve this tests,
JPEG2000 encoder has been setup with a constant bit-rate com-
pression without tiling. MIJ2K also uses constant bit-rate compres-
sion but in this case achieves a tiling compression. The bit-rate
compression in both cases is not the same, since MIJ2K may use
higher bit-rates (this is how it obtains better image quality) to
achieve the same compression ratio provided by JPEG2000, as it
takes advantage of the motion compensation technique.

The parameters used for MIJ2K algorithm are 32 � 32 for TSIZE, 
2.0 for MEANi[x], and 15 for MAXi[x] as result of the optimization per-
formed in [2]. The JPEG2000 encoder/decoder used for this tests is 
Kakadu JPEG2000 SDK. Results are summarized in Table 2.

Figs. 15–17 indicate that MIJ2K outperforms native JPEG2000 
intra-frame compression in all sequences and especially the ‘Sur-
veillance’ sequence. Figs. 15–17 show the frame-by-frame PSNR 
achieved by both compressors, and MIJ2K clearly outdoes the stan-
dard JPEG2000 video coder. Remember too that JPEG2000 se-
quences do not use tiling for frame compression; instead each 
frame is compressed in a single tile. This is an advantage for 
JPEG2000 sequences, since the compressor is more efficient, but 
it not is enough for it to outperform MIJ2K. Using the same tiling 
as MIJ2K, the results for JPEG2000 sequences would be even worse.

The extra PSNR achieved by MIJ2K compared with standard 
JPEG2000 appears to depend on the compressed sequence and 
especially the resolution. ‘Akiyo’ and ‘Hall Monitor’ share the same 
resolution, and both compression qualities are better with MIJ2K by 
around 5 dB (see Table 2 for average PSRN and CR). On the other 
hand, the ‘Surveillance’ sequence has a better resolution, which ap-
pears to increase the probability of non-moving areas (since the 
camera is fixed) and better tile reuse. Thanks to this, compression 
was better with MIJ2K than with traditional JPEG2000 by around 
9 dB. So, MIJ2K can be expected to achieve higher performances 
at better resolutions.

Notice that the human eye can detect a variation of just 0.5 dB, 
and we are increasing this value by around 10 to 18 times. An 
example of the difference of quality is shown in Fig. 18, where the 
top image is the 550th frame of the ‘Surveillance’ sequence, 
compressed with JPEG2000 and the bottom image is the same 
frame compressed with MIJ2K. The contours are better defined in 
the MIJ2K frame, whereas the J2K frame appears to be blurred.

Let us also look at how the size of each frame varies depending 
on the movement detected in the scene. Fig. 19 compares frame 
size variation in the ‘Akiyo’ sequence. In the case of MIJ2K, the 
whole first frame has to be transmitted, leading to the initial peak. 
The following frames reuse the information of the first frame, sav-
ing around 80% of data with respect to the first frame. This will 
obviously depend on the movement in the scene, but we have 
found that on average it is around 80 to 95% in fixed cameras.

In the case of standard JPEG2000, all frames are encoded simi-
larly, then a continuous bit-rate is output for the entire sequence.
Note that the size of the first frame of MIJ2K (whole frame) and
9



Table 2
Results comparing the compression quality of the proposed MIJ2K architecture against a native J2K intra-frame codec.

Sequence MIJ2K Size J2K Size MIJ2K CR J2K CR MIJ2K Avg. PSNR J2K Avg. PSNR

Akiyo 1265 KB 1201 KB 59:1 62:1 41.2525 dB 36.6815 dB
Hall Monitor 2070 KB 2138 KB 36.01:1 34.86:1 39.9168 dB 34.9348 dB
Surveillance 2534 KB 2556 KB 251.46:1 249.302:1 39.5379 dB 30.9377 dB

0 50 100 150 200 250
35

36

37

38

39

40

41

42

43

Frame number

PS
N

R
[d

B]

PSNR MEASUREMENT [AKIYO SEQUENCE]

MIJ2K
COMMON JPEG2000

Fig. 15. Video quality of ‘Akiyo’ sequence.

0 50 100 150 200 250
34

34.5

35

35.5

36

36.5

37

37.5

38

38.5

39

Framenumber

PS
N

R
[d

B
]

PSNRMEASUREMENT[HALLMONITOR]

MIJ2K
COMMON JPEG2000

Fig. 16. Video quality of ‘Hall Monitor’ sequence.

0 100 200 300 400 500 600 700
30

32

34

36

38

40

42

Frame number

PS
N

R
[d

B]

PSNR MEASUREMENT [SURVEILLANCE SEQUENCE]

MIJ2K
COMMON JPEG2000

Fig. 17. Video quality of ‘Surveillance’ sequence.
first frame of JPEG2000 is very unalike. This is due to the different
bpp qualities used in the two types of compression. MIJ2K can use
better qualities, because it will use only some tiles of the image,
and can compress these tiles with better qualities (this is why
MIJ2K outperforms JPEG2000). On the other hand, JPEG2000 would
have to use worse compression to maintain the set compression
ratio, since it has to compress whole frames every time.

5.2. Motion measurement delay

This test should somehow measure the complexity of the mo-
tion measurement technique used in MIJ2K. Since there is no spe-
cific metric to evaluate this point, we are going to measure the
total delay introduced by this motion measurement in the real-
time transmission system. In other words, we will measure the
time it takes to detect changing tiles. This includes all the opera-
tions performed by this subsystem, ranging from the preprocessing
of source FS

i images to the updating of reference frame FR
i .

Almost all the operations that this subsystem performs on
images, that is, gray-scale conversion, simple blur, absolute differ-
ence between source and reference frame and both max and mean
pixel values have been implemented in C++ using the OpenCV vi-
sion library. Notice that at the time of writing, this subsystem
had not yet been parallelized. We think that the use of multi-
threading architectures could hugely improve these results.

The motion analysis system is an Intel Centrino2 Duo at
1.66 GHz, with 2.5 GB of DDR2 at 533 MHz. The operating system
is 64 bit Windows Vista SP1 Business. As mentioned in the defini-
tion of the MIJ2K architecture, the size of tiles for detection is
32 � 32 pixels over 352 � 288 and 640 � 480 frames. To measure
the code execution time, we have used the highly accurate Win-
dows QueryPerformanceFrequency API.

Fig. 20 includes times measured in milliseconds for both resolu-
tions, 352 � 288 and 640 � 480. It takes only about 6 ms to pro-
cess 352 � 288 frames, whereas 640 � 480 frames are processed 
in around 19 ms. These are good values, since a live video source 
usually provides 25 frames per second (FPS), that is, there is a 
new frame every 40 ms. As a result, there is enough time to process 
the current frame before a new frame arrives, meaning that this 
system is suitable for real-time purposes. Using more capable 
hardware and implementing parallelization, it could also support 
higher resolutions.

Remember also that this system can reduce compression time,
since it is not necessary to compress the whole frame. Therefore,
combined with the compression system, this system could reduce
the overall compression time (changing tile detection plus com-
pression) to less than taken by a simple compression system com-
pressing whole frames.
10



Fig. 18. Difference of quality between traditional J2K (top) to MIJ2K (bottom) at the
same compression ratio for the ‘Surveillance’ sequence.

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3
x 104

Frame number

By
te

s
pe

rf
ra

m
e

BYTES PER FRAME [AKIYO SEQUENCE]

MIJ2K
COMMON JPEG2000

Fig. 19. Bytes per frame used in ‘Akiyo’ Sequence.

0 50 100 150 200 250
5

10

15

20

25

30

35

Frame number

De
la

y
[m

s]

MOTION MEASUREMENT DELAY

352x288
640x80

Fig. 20. Delay introduced by the motion measurement technique used in the MIJ2K
architecture.
5.3. Total latency

The test performed in this section is related to the total amount
of time that the streaming system takes from when the image is
captured in the server to when the image is displayed in the client.
In this case, we are evaluating more than the designed MIJ2K archi-
tecture. Consequently, this test is not fully representative of the
proposed method, but it is useful for getting an idea of potential
performance.

The systems used for this test are as follows:

� Server: Computer running Microsoft Windows XP Service Pack
2. Intel Core 2 Duo at 2.0 GHz and 2 GB of DDR2 at 533 MHz.
It uses Matrox Morphis boards to acquire video and JPEG2000
compression. The streaming software is our own implementa-
tion of the RFC 5371 and the MIJ2K architecture, all developed
in C++.
� Network: Network used in this test is a 100 Mbps Ethernet mul-

ticast transmission by the server. Client and server are con-
nected by a single CISCO router running at the same speed.
� Client: The client hardware in this case is the same as for the

motion measurement delay test. The client software used to
receive and decode RTP streams is our own implementation
developed in C++ with graphical interface developed using
WxDevCpp. It complies with RFC 5371. JPEG200 decoding is
performed in this case using Kakadu JPEG2000 SDK, developed
by Dr. Taubman.

One way to evaluate how long the acquisition, compression,
transmission, decoding and displaying processes take is to syn-
chronize two computers (client and server) at exactly the same
time. Then, the server can use timestamps to indicate when the
process began. Once the frame with this timestamp has been re-
ceived and decoded on the client side, the client can subtract the
current time from the timestamp received and find out the total
process time.

But it is quite a challenge to synchronize the clock of two com-
puters with millisecond precision. So, we chose an easier option
that provides the same results. This method displays a clock on a
computer screen, which is focused on the camera used for stream-
ing. The streaming video received is displayed on the same screen,
and two clocks will appear, the ‘local’ clock, and the ‘remote’ clock.
The difference between these two clocks will give the total time
that MIJ2K takes to transmit the sequence.

The screenshot in Fig. 21 shows the result of this test. The time
taken in this case to perform the live video streaming is about
11



0 100 200 300 400 500 600 700
28

30

32

34

36

38

40

42

Frame number

PS
N

R
[d

B]

PSNR MEASUREMENT FOR SURVEILLANCE SEQUENCE

H.264−Intra
J2K
MIJ2K
MJPEG

Fig. 22. PSNR measurement for H.264-Intra, J2K, MIJ2K and MJPEG for the
‘Surveillance’ sequence.

Fig. 21. Total delay in the image obtained with the MIJ2K video streaming
architecture. It takes around 187 ms to perform the acquisition, compression,
transmission, decoding and displaying processes.

0 100 200 300 400 500 600 700
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Frame number

SS
IM

[0
-1

]

SSIM MEASUREMENT FOR SURVEILLANCE SEQUENCE

H.264−Intra
J2K
MIJ2K
MJPEG

Fig. 23. SSIM measurement for H.264-Intra, J2K, MIJ2K and MJPEG for the
‘Surveillance’ sequence.

0 100 200 300 400 500 600 700
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Frame number

VQ
M

VA
LU

E
VQM MEASUREMENT FOR SURVEILLANCE SEQUENCE

H.264−Intra
J2K
MIJ2K
MJPEG

Fig. 24. VQM Measurement for H.264-Intra, J2K, MIJ2K and MJPEG for the
‘Surveillance’ sequence.
187 ms, which is adequate for real-time purposes, as discussed in
[34].

5.4. Comparison with other intra-frame codecs

This last test should evaluate MIJ2K performance with respect
to other intra-frame codecs. In Section 5.1 MIJ2K was compared
with a native JPEG2000 system. In this case, we will also use the
MJPEG codec and H.264-Intra specification. The use of H.264-Intra
instead of standard H.264 is due to we should compare the codecs
in the same conditions of low latency and complexity, as MIJ2K
provides. Standard H.264 achieves more complexity in motion
detection and the compression latency is not suitable for real-time
transmissions.

The quality measurements will be taken using the PSNR, VQM,
and SSIM metrics on the ‘Surveillance’ video sequence. We use the
Surveillance video because it is the most representative sequence,
as it is captured from a real surveillance camera. The resolution is
also more representative of today’s cameras. This evaluation will
cover both objective and subjective metric measurements.

Figs. 22–24 illustrate the results of the test performed in this 
section. We can see how MIJ2K is better than the other compres-
sion systems in all cases. The output PSNR is around 8 dBs better 
than the second-best codec, H.264-intra. The worst compression 
achieved in this case was for the MJPEG codec, which has a mean 
PSNR of 28 dB, around 11 dBs less than MIJ2K. Notice also in Table 3 
that the MJPEG compression ratio is worse, since it cannot achieve 
a better image compression.

The SSIM test shows how MIJ2K achieves better results for this
subjective quality metric. The quality results for JPEG2000 and
H.264-intra are more or less the same, but H.264-intra looks to
be slightly better. Again, MJPEG achieves poor results for SSIM
metric.

The last test performed is related to the VQM subjective quality
metric. Note how MJPEG scores the highest values (worst results),
12



Table 3
Results comparing the compression quality of the ‘Surveillance’ sequence. Codecs used are H.264-Intra, JPEG2000, MIJ2K, and MJPEG.

Codec Video size Compression ratio PSNR SSIM VQM

H.264-Intra 2567 KB 248.23:1 31.7048 dB 0.87921 1.66347
JPEG2000 2556 KB 249.30:1 30.9377 dB 0.87876 1.72719
MIJ2K 2534 KB 251.46:1 39.5379 dB 0.96434 0.79581
MJPEG 8094 KB 78.72:1 28.6561 dB 0.79552 3.61294
whereas the qualities for JPEG2000 and H.264-intra performance
are almost the same. MIJ2K again achieves the best compression
results with values nearer to 0.8 (better results).

So, we can definitely say that MIJ2K outperforms all tested in-
tra-frame compressors. This is good news, taking into count that
MIJ2K compresses in near real-time as if it were a pure intra-frame
codec. Potential compression time is even lower, since it does not
compress the whole frame.
6. Conclusions

In this paper, we have fully described the patent pending codec
MIJ2K. It is based on the introduction of a new real-time motion
detection system for JPEG2000 sequences, using the JPEG2000
code-stream tiling concept. It reduces the bandwidth necessary
for transmission, improving the overall quality of sequences. Basi-
cally it involves detecting and transmitting the tiles that change in
each frame. We have demonstrated that MIJ2K is suitable for use in
real-time environments, like video surveillance, where latency is a
critical point. We have also compared the MIJ2K codec with other
intra-frame codecs, like standard JPEG2000 sequences, Motion
JPEG, and H.264-Intra. All tests show that MIJ2K outputs better
qualities (around 9 dBs at best) at the same compression ratio.

MIJ2K sequences can also be transmitted with the standard RTP 
transmission payload for JPEG2000 images described in RFC 5371 
[10]. So, any standard RFC-capable client could benefit from MIJ2K 
built into the server without any modification whatsoever.

Acknowledgments

This work was supported in part by Projects CICYT TIN2008–
06742-C02–02/TSI, CICYT TEC2008–06732-C02–02/TEC, SINPROB,
CAM MADRINET S-0505/TIC/0255 and DPS2008–07029-C02–02.

References

[1] M. Adams, R. Ward, Wavelet transforms in the JPEG-2000 standard, in: 2001
IEEE Pacific Rim Conference on Communications, Comput. signal Proces., 2001.
PACRIM, vol. 1, 2001.

[2] A.L. Bustamante, J.M. Molina, M.A. Patricio, Video encoder optimization via
multiobjective evolutionary algorithms, Proceedings of the 11th Annual
conference on Genetic and evolutionary computation. GECCO ’2009, 2009,
pp. 1835–1836.

[3] A.L. Bustamante, M.A. Patricio, Scalable Streaming of JPEG 2000 Live Video
Using RTP over UDP, International Symposium on Distributed Computing and
Artificial Intelligence 2008 (DCAI 2008), 50/2009 (2008) 574–581.

[4] M. Charrier, D. Cruz, M. Larsson, JPEG2000, the next millennium compression
standard for still images, in: IEEE International Conference on Multimedia
Computing and Systems, 1999, vol. 1, 1999.

[5] C. Christopoulos, A. Skodras, T. Ebrahimi, The JPEG2000 still image coding
system: an overview, IEEE Trans. Consumer Electron. 46 (4) (2000) 1103–1127.

[6] F. Devaux, J. Meessen, C. Parisot, J. Delaigle, B. Macq, C. De Vleeschouwer, A
flexible video transmission system based on JPEG 2000 conditional
replenishment with multiple references, in: IEEE International Conference on
Acoustics, Speech Signal Proces. (ICASSP 07).
[7] L. Digital Cinema Initiatives, Digital cinema system specification version 1.2.
March 07, 2008.

[8] S. Fossel, G. Fottinger, J. Mohr, Motion JPEG2000 for high quality video systems,
IEEE Trans. Consum. Electron. 49 (4) (2003) 787–791.

[9] T. Fukuhara, K. Katoh, S. Kimura, K. Hosaka, A. Leung, Motion-JPEG2000
standardization and target market, in: Image Processing, 2000. Proceedings.
2000 International Conference on, vol. 2, 2000.

[10] S. Futemma, E. Itakura, A. Leung, RTP Payload Format for JPEG 2000 Video
Streams, Technical Report 5371, Oct. 2008.

[11] B. Girod, What’s wrong with mean-squared error? (1993)
[12] B. Haskell, A. Puri, A. Netravali, Digital video: An introduction to MPEG-2,

Kluwer Academic Publishers., 1996.
[13] ISO/IEC. 15444-1:2000 information technology JPEG2000 image coding

system-part 1: core coding system, Technical report, ISO/IEC, 2000.
[14] ISO/IEC, 15444-3:2007 information technology JPEG2000 image coding

system-part 3: Motion jpeg 2000, Technical report, ISO/IEC, 2007.
[15] M. Lora, Xiph.org:: Test media, World Wide Web electronic publication, 1994–

2008.
[16] D. Marpe, V. George, H. Cycon, K. Barthel, Performance evaluation of Motion-

JPEG2000 in comparison with H. 264/AVC operated in pure intra coding mode,
in: Proceedings of SPIE, vol. 5266, 2004, pp. 129–137.

[17] J. Meessen, C. Parisot, X. Desurmont, J. Delaigle, Scene analysis for reducing
motion JPEG 2000 video surveillance delivery bandwidth and complexity, in:
IEEE International Conference on Image Processing, 2005. ICIP 2005, vol. 1,
2005.

[18] A. Naman, D. Taubman, A novel paradigm for optimized scalable video
transmission based on JPEG2000 with motion, in: IEEE International
Conference on Image Processing, 2007. ICIP 2007, vol. 5, 2007.

[19] A. Naman, D. Taubman, Optimized scalable video transmission based on
conditional replenishment of JPEG2000 code-blocks with motion
compensation, in: Proceedings of the International Workshop on Mobile
Video, ACM, New York, NY, USA, 2007, pp. 43–48.

[20] W. Pennebaker, J. Mitchell, JPEG Still Image Data Compression Standard,
Kluwer Academic Publishers., 1993.

[21] F. Pereira, T. Ebrahimi, The MPEG-4 Book, Prentice Hall, PTR Upper Saddle
River, NJ, USA, 2002.

[22] D. Santa-Cruz, T. Ebrahimi, An analytical study of JPEG 2000 functionalities, in:
Image Processing, 2000. Proceedings. 2000 International Conference on, vol. 2,
2000.

[23] D. Santa-Cruz, T. Ebrahimi, J. Askelof, M. Larsson, C. Christopoulos, JPEG 2000
still image coding versus other standards, in: PROC SPIE INT SOC OPT ENG, vol.
4115, 2000, pp. 446–454.

[24] Y. Shi, H. Sun, Image and Video Compression for Multimedia Engineering:
Fundamentals, Algorithms, and Standards, CRC press, 2000.

[25] D. Shirai, T. Yamaguchi, T. Shimizu, T. Murooka, T. Fujii, 4K SHD real-time video
streaming system with JPEG 2000 parallel codec, in: IEEE Asia Pacific
Conference on Circuits and Systems, 2006. APCCAS 2006, 2006, pp. 1855–
1858.

[26] A. Skodras, C. Christopoulos, T. Ebrahimi, JPEG2000: The upcoming still image
compression standard, Pattern Recognit. Lett. 22 (12) (2001) 1337–1345.

[27] M. Van Droogenbroeck, H. Talbot, Fast computation of morphological
operations with arbitrary structuring elements, Pattern Recognit. Lett. 17
(14) (1996) 1451–1460.

[28] G. Wallace et al., The JPEG still picture compression standard, Commun. ACM
34 (4) (1991) 30–44.

[29] Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli, Image quality assessment: From
error visibility to structural similarity, IEEE Trans. Image Proces. 13 (4) (2004)
600–612.

[30] A. Watson, Toward a perceptual video quality metric, in: Proc. SPIE, vol. 3299,
1998, pp. 139–147.

[31] A. Watson, J. Hu, J. McGowan III, Digital video quality metric based on human
vision, J. Electron. Imag. 10 (2001) 20.

[32] F. Xiao. DCT-based video quality evaluation. Final Project for EE392J, 2000.
[33] K. Varma, A. Bell, JPEG2000-choices and tradeoffs for encoders, IEEE Sign.

Proces. Mag. 21 (6) (2004) 70–75.
[34] G. Karlsson, Asynchronous transfer of video, IEEE Commun. Mag. 34 (8) (1996)

118–126.
13




