
Beschrijvingsgedreven aanpassing van mediabronnen

Description-Driven Adaptation of Media Resources

Wesley De Neve

Promotor: prof. dr. ir. R. Van de Walle
Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. J. Van Campenhout
Faculteit Ingenieurswetenschappen
Academiejaar 2006 - 2007

ISBN 978-90-8578-132-5
NUR 980, 986
Wettelijk depot: D/2007/10.500/6

Dankwoord

Met het indienen van dit proefschrift sluit ik een periode van ruim vier jaar af.
In deze tijdspanne heb ik de mogelijkheid gekregen om in een boeiend domein
aan wetenschappelijk onderzoek te doen. Dit is dan ook een uitgelezen kans
om de mensen te bedanken zonder wie dit werk niet mogelijk zou zijn geweest.

In de eerste plaats wil ik mijn promotor, prof. dr. ir. Rik Van de Walle
bedanken. Dankzij zijn onuitputtelijke inzet is het Multimedia Lab als onder-
zoeksgroep uitgegroeid tot een gevestigde waarde op nationaal en internatio-
naal vlak. Deze omgeving vormde voor mij dan ook het ideale kader voor het
behalen van mijn doctoraat. Verder wil ik mijn promotor eveneens bedanken
voor de kansen die hij mij geboden heeft om mijn onderzoek voor te stellen op
verschillende internationale conferenties. Het bijwonen van deze conferenties
heeft me als onderzoeker, maar ook als mens, enorm veel bijgebracht.

Ook mijn vroegere (Boris Rogge, Sam Lerouge) en huidige collega’s van
het Multimedia Lab wil ik uitgebreid bedanken. Het was voor mij erg aange-
naam in een dergelijke open en vriendschappelijke omgeving te kunnen wer-
ken. Een aantal collega’s hebben grote delen van dit proefschrift heel grondig
nagelezen. Hun opmerkingen en suggesties hebben de kwaliteit van dit werk
in grote mate verhoogd. Ik wil hen dan ook in het bijzonder danken voor deze
inspanningen. Ook Rita Breems en Ellen Lammens bedank ik van harte voor
de administratieve ondersteuning en de leuke babbels tijdens het middageten.

Een bijzonder woord van dank gaat ook uit naar Davy Van Deursen voor
de bijdrage die hij, als thesisstudent en als collega, tot dit werk heeft gele-
verd. Ook Peter Lambert en Davy De Schrijver wens ik te bedanken voor de
talrijke en boeiende discussies over H.264/AVC en MPEG-21 BSDL. In deze
context zou ik eveneens Gary J. Sullivan (Microsoft Corporation) en Miska
M. Hannuksela (Nokia) willen danken, en dit voor de tips en de informatie
die zij verstrekt hebben met betrekking tot het gebruik van sub-sequences in
de H.264/AVC-standaard. Tevens wens ik Danny Hong (Columbia Universi-
ty) te bedanken voor het delen van zijn kennis met betrekking tot de werking
van XFlavor. Ook de anonieme reviewers van het door Elsevier gepubliceerde

ii

manuscript over BFlavor wil ik uitdrukkelijk bedanken voor de uitgebreide en
opbouwende feedback.

Ik wens ook mijn ouders te bedanken voor de vele kansen die zij mij ga-
ven, alsook voor hun raad, steun en vertrouwen in mij. Verder wil ik ook mijn
zus Lindsey bedanken voor haar relativerende kijk op haar grote broer. Ook
wens ik al mijn vrienden van harte te bedanken voor de vele boeiende en leuke
momenten, zowel in de online als offline wereld. Zij zorgden ervoor dat ik
regelmatig mijn zinnen kon verzetten en dat de vele uren voor het computer-
scherm draagbaar bleven.

Tot slot wil ik nog een aantal bijzondere mensen bedanken die ik heb le-
ren kennen dankzij mijn onderzoek, zij het in een meer informele context:
Charles-Frederik Hollemeersch, Elisabeth Hollemeersch, en Mieke De Kete-
laere, voor de onvergetelijke deelname aan de Imagine Cup in Brazilië; R.A.
Skip Campbell, voor de avontuurlijke roadtrip in Coloroda; Leyda en Florence
(Xiafen Zhang), voor jullie boeiende verhalen over China; en Sehee Lee, voor
het gidsen in het Land van de Ochtendkalmte.

Wesley M. De Neve
31 Augustus 2006

Summary

The last decade has witnessed a significant number of innovative developments
in the multimedia ecosystem. Advanced media formats have emerged for the
efficient representation, storage, and presentation of digital media resources.
New network technologies have been devised, wired and wireless, providing
access to audio-visual information services such as online music stores, movie
download services, and video blogs. A plethora of networked mobile devices
has popped up as well, ranging from cell phones to personal entertainment de-
vices, often having sufficient processing power for the playback of multimedia
presentations. From these observations, it is clear that the multimedia land-
scape is characterized by a vast diversity in terms of media formats, network
capabilities, and device properties.

The ever-increasing heterogeneity in the multimedia consumption chain
poses a number of new challenges. One such challenge is the realization of the
Universal Multimedia Access paradigm, which is the notion that multimedia
content should be accessible at any place, at any time, and with any device. As
acknowledged by the Moving Picture Experts Group (MPEG), the successful
realization of ubiquitous and seamless access to multimedia content requires
an appropriate reaction from different knowledge domains.

• The answer of MPEG’s coding community consists of the specification
of scalable or layered coding schemes. Indeed, the picture rate and spa-
tial resolution of scalable video resources can for instance be adapted in
a straightforward way to meet the different constraints that are imposed
by a particular usage context (e.g., constraints in terms of available band-
width, screen resolution, and so on).

• The answer of MPEG’s metadata community consists of the develop-
ment of a number of description tools. These tools are for example used
to describe the properties of media resources and the capabilities or con-
straints of usage environments. The resulting descriptions enable the
construction of a format-agnostic content adaptation system that is able

iv

to maximize the user experience, for the consumption of a particular
multimedia presentation in a well-defined usage environment.

In this dissertation, we have first studied a number of concepts and de-
sign principles of the state-of-the-art H.264/MPEG-4 Advanced Video Coding
standard, typically abbreviated as H.264/AVC. The H.264/AVC specification
incorporates the latest advances in standardized video coding technology. As
demonstrated by our experiments, as well as by other scientific and technical
sources, H.264/AVC provides up to 50% bit rate savings for equivalent per-
ceptual quality relative to the performance of prior video coding standards.

The design of the H.264/AVC standard is, besides efficiency, also char-
acterized by a flexibility for use over a broad variety of network types and
application domains1. In this context, we have reviewed several content adap-
tation tools that are part of the initial version of the H.264/AVC specification.
Examples include the exploitation of multi-layered temporal scalability and
the use of Flexible Macroblock Ordering (FMO) for region of interest coding.

The emphasis of our review was put on providing a complete and de-
tailed picture regarding H.264/AVC’s temporal adaptivity provisions. As such,
our overview contains an extensive discussion with respect to the use of sub-
sequences and sub-sequence layers, coding patterns based on hierarchical bidi-
rectionally coded pictures (B pictures), and Supplemental Enhancement Infor-
mation messages (SEI messages) for communicating the bitstream structure
to a bitstream extractor or decoder. Sub-sequences are employed to constrain
H.264/AVC’s coding flexibility in a minimal way. This allows the execution
of meaningful adaptations in the temporal dimension.

More powerful adaptivity features and SEI messages are incorporated in a
newly developed amendment to the H.264/AVC specification, which is com-
monly referred to as H.264/AVC Scalable Video Coding (SVC). This amend-
ment includes explicit support for spatial and quality scalability; temporal
adaptivity tools are inherited from the first version of the H.264/AVC standard.

Further, the principles of Bitstream Syntax Description-driven (BSD-
driven) content adaptation were also discussed in this dissertation. A BSD con-
tains a description of the high-level structure of a binary media resource, typ-
ically expressed using the eXtensible Markup Language (XML). This XML-
based description, i.e. the BSD, can be transformed to reflect a desired adap-
tation of the binary media resource. The transformed BSD can subsequently
be used to automatically create an adapted media resource by relying on a
format-independent content adaptation engine. This adapted media resource is
then suited for consumption in a particular usage environment.

1Efficient and flexible are two terms that are often used in the context of H.264/AVC.

v

Two different approaches for BSD-driven content adaptation were studied
in more detail: a standardized framework driven by the MPEG-21 Bitstream
Syntax Description Language (MPEG-21 BSDL) and a framework based on
the use of the Formal Language for Audio-Visual Object Representation, ex-
tended with XML features (XFlavor). Both technologies provide different
means for the automatic translation of the structure of a binary media resource
into an XML-based BSD, and for the subsequent generation of a tailored bit-
stream using a transformed BSD.

The high-level structure of a number of common video coding and con-
tainer formats was described using MPEG-21 BSDL and XFlavor. Particular
attention was paid to the construction of a description in MPEG-21 BSDL for
the first version of H.264/AVC, as this effort exposed a few shortcomings in
the schema language in question, requiring the development of a number of
non-normative extensions to MPEG-21 BSDL.

Besides testing the expressive power of MPEG-21 BSDL and XFlavor,
we also evaluated their performance in the context of the different media for-
mats described, targeting applications such as BSD-driven temporal adaptation
and demultiplexing. Our experiments resulted in the identification of several
performance bottlenecks, in particular the slow and memory-consuming gen-
eration of BSDs using BSDL’s BintoBSD Parser (which allows the format-
agnostic and automatic generation of BSDs), the verbose BSDs produced by
XFlavor-based parsers, and the memory-consuming transformation of BSDs
using eXtensible Stylesheet Language Transformations (XSLT).

The performance issues of BSDL’s BintoBSD Parser are due to the storage
of an entire BSD in the system memory, needed to correctly steer the process-
ing behavior of this parser. To enable a more efficient generation of BSDs,
we have proposed BFlavor (BSDL + XFlavor), a new description tool that is
the result of a cross-fertilization between MPEG-21 BSDL and XFlavor. In-
deed, BFlavor harmonizes BSDL and XFlavor by combining their strengths
and by eliminating their weaknesses. In particular, the processing efficiency
and expressive power of XFlavor, together with the ability of BSDL to create
high-level BSDs, were our key motives for its development. As such, the use of
BFlavor-based BSD producers, which are format-specific but generated auto-
matically by a format-independent process, is an efficient alternative to the use
of BSDL’s format-neutral but inefficient BintoBSD Parser. The development
of BFlavor can be considered the main contribution of this research.

The expressive power and performance of a hybrid, BFlavor-driven con-
tent adaptation chain, compared to tool chains entirely based on either BSDL
or XFlavor, were illustrated by several experiments. One series of experiments
particularly targeted the exploitation of multi-layered temporal scalability in

vi

H.264/AVC, paying special attention to the combined use of sub-sequences
and SEI messages. BFlavor was the only tool to offer an elegant and prac-
tical solution for the BSD-driven adaptation of H.264/AVC bitstreams in the
temporal domain.

In this dissertation, we have also outlined the BSD-based construction of
placeholder slices and pictures for a number of video coding formats. These ar-
tificial syntax structures allow to eliminate a number of unwanted side-effects,
resulting from a BSD-driven content adaptation step in the compressed do-
main. The use of placeholder slices and pictures was discussed in more detail
in the context of the BSD-based exploitation of temporal and Region Of In-
terest (ROI) scalability in the first edition of the H.264/AVC standard, respec-
tively providing a solution for synchronization and conformance issues.

A final contribution consists of introducing a real-time work flow for the
BSD-driven adaptation of H.264/AVC bitstreams in the temporal domain. The
key technologies used were BFlavor for the efficient generation of BSDs,
Streaming Transformations for XML (STX) for the efficient transformation
of BSDs, and BSDL’s format-neutral BSDtoBin Parser for the efficient con-
struction of tailored video bitstreams. Extensive performance data were pro-
vided for several use cases, involving the exploitation of temporal scalability
by dropping slices, the enhanced exploitation of temporal scalability by relying
on placeholder slices, and the creation of video skims (i.e., video summaries).
The latter application is made possible by enriching a BSD with additional
metadata to steer the BSD transformation process.

To conclude, we hope we have convinced the reader that this dissertation,
although limited in its scope, contributed to bridging the gap between content
and context, supporting the vision that in the end, the user, and not the ter-
minal and the network, is to be considered the real point of attention in the
multimedia consumption chain.

Samenvatting

De laatste jaren zijn we getuige geweest van een aantal innovatieve ontwikke-
lingen in het multimedia-ecosysteem. Geavanceerde mediaformaten zijn be-
schikbaar voor de efficiënte representatie, opslag, en presentatie van digitale
mediabronnen. Nieuwe netwerktechnologieën werden ontwikkeld, bedraad en
draadloos, die toegang verlenen tot audiovisuele diensten zoals online muziek-
winkels, online filmverkoop en videogedreven dagboeken op het Internet. Een
waaier aan mobiele toestellen, gaande van mobieltjes tot draagbare mediaspe-
lers, is eveneens in staat om multimediapresentaties op een vlotte manier weer
te geven.

De voorgaande vaststellingen maken duidelijk dat het multimedialand-
schap gekenmerkt wordt door een enorme diversiteit in termen van beschikbare
mediaformaten, netwerkmogelijkheden en toesteleigenschappen. Deze almaar
toenemende heterogeniteit in de multimediaketen brengt een aantal nieuwe
uitdagingen met zich mee. Een voorbeeld van een dergelijke uitdaging is de
realisatie van Universele Multimediatoegang, wat betekent dat multimediale
inhoud door eender welk toestel overal en te allen tijde moet kunnen afge-
speeld worden.

De succesvolle totstandkoming van alomtegenwoordige en naadloze toe-
gang tot digitale multimediapresentaties vergt een gepaste reactie vanuit ver-
schillende kennisdomeinen. Dit wordt eveneens erkend door de Moving Pic-
ture Experts Group (MPEG).

• Het antwoord van de gemeenschap die in MPEG verantwoordelijk is
voor de ontwikkeling van codeeralgoritmen, bestaat uit de specificatie
van schaalbare of gelaagde codeerschema’s. Inderdaad, de beeldsnel-
heid en de ruimtelijke resolutie van schaalbare videobronnen kunnen
bijvoorbeeld op een eenvoudige manier aangepast worden aan de be-
perkingen die door een bepaalde gebruiksomgeving worden opgelegd.
Hierbij kan gedacht worden aan restricties in termen van beschikbare
bandbreedte en schermresolutie.

viii

• Het antwoord van MPEG’s metadatagemeenschap bestaat uit de ont-
wikkeling van hulpmiddelen die toelaten de eigenschappen van media-
bronnen vast te leggen, alsook de beperkingen van gebruiksomgevingen.
Deze beschrijvingen maken het mogelijk om een formaatonafhankelijk
adaptatiesysteem te bouwen dat in staat is om de gebruikerservaring te
maximaliseren, voor het afspelen van een welbepaalde multimediapre-
sentatie in een welgedefinieerde gebruiksomgeving.

In dit doctoraatsproefschrift hebben we in eerste instantie een aantal con-
cepten en ontwerpprincipes bestudeerd van de nieuwe H.264/MPEG-4 Advan-
ced Video Coding-standaard, waarvan de naam gewoonlijk wordt afgekort tot
H.264/AVC. Deze specificatie belichaamt de laatste ontwikkelingen in het do-
mein van gestandaardiseerde digitale videocodering. Onze experimenten heb-
ben aangetoond dat H.264/AVC, in vergelijking met vorige compressiestan-
daarden, tot 50% beter doet in termen van codeerefficiëntie. Deze vaststelling
is in lijn met de resultaten die bekomen werden in andere experimenten, zoals
besproken in de wetenschappelijke en technische literatuur.

Het ontwerp van de H.264/AVC-standaard wordt, naast efficiëntie, ook ge-
kenmerkt door een grote flexibiliteit. Dit laat het gebruik toe van H.264/AVC-
gecodeerde bitstromen in verschillende types netwerken en applicatiedomei-
nen2. In deze context werden een aantal hulpmiddelen onderzocht die aanwe-
zig zijn in de eerste versie van de H.264/AVC-specificatie. Deze hulpmiddelen
kunnen aangewend worden om videostromen aan te passen aan de beperkingen
van verschillende gebruikscontexten. Meer bepaald kan hierbij gedacht wor-
den aan meerlagige temporele schaalbaarheid en Flexibele Macroblokordening
(Eng. Flexible Macroblock Ordering; FMO) voor de codering van interesse-
gebieden (Eng. Regions Of Interest; ROIs).

De klemtoon van onze studie werd gelegd op het aanreiken van een volle-
dig overzicht met betrekking tot het gebruik van meerlagige temporele schaal-
baarheid in H.264/AVC-bitstromen. Bijgevolg bevat dit overzicht een uitge-
breide uitleg over subsequenties (Eng. sub-sequences) en subsequentielagen
(Eng. sub-sequence layers), hiërarchische codeerpatronen, en metadatabood-
schappen (Eng. Supplemental Enhancement Information messages; SEI mes-
sages) voor het communiceren van de bitstroomstructuur naar adaptatielogica
of een decoder. Dankzij het gebruik van subsequenties is het mogelijk de co-
deervrijheid van H.264/AVC op een minimale manier te beperken zodat geco-
deerde bitstromen op een zinvolle manier kunnen aangepast worden langsheen
de temporele dimensie.

2Efficiënt en flexibel zijn twee termen die vaak gebruikt worden in de context van de
H.264/AVC-standaard.

ix

Meer uitgebreide adaptatiemogelijkheden worden op het moment van
schrijven vastgelegd in een nieuw amendement op de H.264/AVC-specificatie.
Naar dit amendement wordt typisch verwezen als H.264/AVC Schaalbare
Videocodering (Eng. Scalable Video Coding; SVC). Deze uitbreiding op
de H.264/AVC-standaard bevat uitdrukkelijke ondersteuning voor resolutie-
en kwaliteitsschaalbaarheid; de mogelijkheden qua temporele schaalbaarheid
worden overgenomen uit de eerste versie van de H.264/AVC-specificatie.

In deze thesis hebben we ook toegelicht hoe mediabronnen met behulp van
bitstroomsyntaxbeschrijvingen (Eng. Bitstream Syntax Descriptions; BSDs)
op een formaat-onafhankelijke manier kunnen aangepast worden in functie
van de beperkingen van een gebruiksomgeving. Een BSD bevat een beschrij-
ving van de hoog-niveaustructuur van een binaire mediabron, typisch vastge-
legd met behulp van XML (Eng. eXtensible Markup Language). Eénmaal een
XML-gebaseerde beschrijving van de structuur van een binaire mediabron be-
komen werd (i.e., de BSD), kan deze in een volgende stap getransformeerd
worden om een gewenste aanpassing van de betreffende mediabron te weer-
spiegelen. De getransformeerde BSD kan vervolgens gebruikt worden om au-
tomatisch een aangepaste versie van de mediabron te creëren, en dit met behulp
van formaatonafhankelijke adaptatielogica. De aangepaste mediabron is dan
geschikt voor consumptie in een welbepaalde gebruiksomgeving.

Twee verschillende technieken voor het BSD-gedreven adapteren van bi-
naire mediabronnen werden in meer detail bestudeerd: enerzijds een gestan-
daardiseerd raamwerk gebaseerd op de MPEG-21 Bitstream Syntax Descrip-
tion Language (MPEG-21 BSDL) en anderzijds een raamwerk gebaseerd op
het gebruik van de Formal Language for Audio-Visual Object Representation,
uitgebreid met XML-ondersteuning (XFlavor). Gegeven een formele beschrij-
ving van de syntax van een welbepaald mediaformaat (in MPEG-21 BSDL
of XFlavor), beschikken beide technologieën over verschillende mogelijkhe-
den om de structuur van een binaire mediabron automatisch te vertalen naar
een XML-beschrijving, en voor het opeenvolgend aanmaken van een op maat
gemaakte bitstroom met behulp van een getransformeerde BSD.

De hoog-niveaustructuur van een aantal veelgebruikte formaten voor vi-
deocodering en opslag werd beschreven met behulp van BSDL en XFlavor. De
opbouw van een BSDL-beschrijving voor de eerste versie van de H.264/AVC-
standaard werd in meer detail besproken. De ontwikkeling van deze beschrij-
ving vereiste immers een aantal niet-normatieve uitbreidingen op BSDL, nodig
voor het oplossen van verschillende tekortkomingen in de betreffende taal.

Naast het testen van de uitdrukkingskracht van MPEG-21 BSDL en XFla-
vor, hebben we eveneens hun prestaties geëvalueerd in de context van een
aantal mediaformaten, ons hierbij richtend op applicaties zoals de BSD-

x

gebaseerde uitbuiting van temporele schaalbaarheid en BSD-gedreven demul-
tiplexering. Onze experimenten hebben geleid tot de identificatie van een aan-
tal fundamentele prestatieproblemen, in het bijzonder de trage en geheugenbe-
lastende creatie van BSDs door BSDL’s BintoBSD Parser (die toelaat om op
een formaatonafhankelijke en automatische manier BSDs voort te brengen),
de omvang van de BSDs zoals aangemaakt door XFlavor-gebaseerde parsers,
en de geheugenintensieve transformatie van BSDs door gebruik te maken van
eXtensible Stylesheet Language Transformations (XSLTs).

De prestatieproblemen van BSDL’s BintoBSD Parser zijn te wijten aan het
bijhouden van de volledige BSD in het systeemgeheugen, wat nodig is om een
correct gedrag van de betreffende parser te garanderen. Teneinde een meer
efficiënte generatie van BSDs mogelijk te maken, hebben we BFlavor (BSDL
+ XFlavor) voorgesteld. Deze nieuwe techniek voor het aanmaken van BSDs
is het resultaat van een kruisbestuiving tussen MPEG-21 BSDL en XFlavor.
Inderdaad, BFlavor harmoniseert beide talen door het samenbrengen van hun
sterktes en door het wegwerken van hun zwaktes. Meer bepaald waren de
verwerkingsefficiëntie en de uitdrukkingskracht van XFlavor, samen met de
mogelijkheid van MPEG-21 BSDL om hoog-niveau BSDs aan te maken, onze
belangrijkste motieven voor de ontwikkeling van BFlavor. Bijgevolg is het
gebruik van BFlavor-gebaseerde BSD-producenten, die formaatspecifiek zijn
maar automatisch gegenereerd worden door een formaatonafhankelijk proces,
een efficiënt alternatief voor het gebruik van BSDL’s formaatneutrale maar
inefficiënte BintoBSD Parser. De ontwikkeling van BFlavor kan beschouwd
worden als de hoofdbijdrage van dit onderzoek.

De uitdrukkingskracht en prestaties van een hybride, BFlavor-gedreven
adaptatieketting voor binaire mediabronnen werden onderzocht met behulp
van verschillende experimenten. Eén reeks experimenten beoogde het uit-
buiten van meerlagige temporele schaalbaarheid in H.264/AVC. Bijzondere
aandacht werd besteed aan het gezamenlijk gebruik van subsequenties en SEI-
boodschappen. De bekomen resultaten werden vergeleken met technieken die
volledig gebaseerd zijn op ofwel BSDL of XFlavor. De hybride ketting geba-
seerd op BFlavor was de enige die een elegante en praktische oplossing kon
aanreiken voor de BSD-gedreven aanpassing van H.264/AVC-bitstromen in
het temporeel domein.

Verder hebben we in deze dissertatie ook stilgestaan bij de BSD-
gebaseerde constructie van plaatsvervangende sneden (Eng. slices) en beelden,
en dit in de context van verschillende formaten voor digitale videocodering.
Deze kunstmatige syntaxstructuren laten toe om een aantal ongewenste neven-
effecten weg te werken. Deze neveneffecten zijn het resultaat van een BSD-
gebaseerde adaptatiestap in het gecomprimeerde domein. Het gebruik van

xi

plaatsvervangende sneden en beelden werd in meer detail besproken in de con-
text van de BSD-gebaseerde uitbuiting van temporele en ROI-schaalbaarheid
in de eerste versie van de H.264/AVC-standaard, respectievelijk een oplossing
aanreikend voor synchronisatieproblemen en het overtreden van regels opge-
legd door de betreffende specificatie.

Een laatste bijdrage van dit onderzoek bestaat uit het introduceren van een
ware-tijdsaanpak voor de BSD-gedreven adaptatie van H.264/AVC-bitstromen
in het temporeel domein. De volgende technologieën werden gebruikt: BFla-
vor voor de efficiënte generatie van BSDs, Streaming Transformations for
XML (STX) voor de efficiënte transformatie van BSDs, en BSDL’s formaat-
neutrale BSDtoBin Parser voor de efficiënte constructie van op maat gemaak-
te videobitstromen. Uitgebreide prestatiemetingen werden voorgesteld voor
verschillende gevalstudies, in het bijzonder voor het uitbuiten van tempore-
le schaalbaarheid door het weglaten van sneden, het uitbuiten van temporele
schaalbaarheid door het gebruik van plaatsvervangende sneden, en de aanmaak
van samengevatte videobitstromen (Eng. video skims). De laatste toepassing
is mogelijk dankzij het verrijken van een BSD met extra metadata die door het
BSD-transformatieproces kunnen gebruikt worden.

Alhoewel beperkt in zijn toepassingsgebied, hopen we de lezer overtuigd
te hebben dat dit onderzoek een originele bijdrage heeft geleverd tot het over-
bruggen van de kloof tussen inhoud en context, hierbij de visie ondersteu-
nend dat uiteindelijk de gebruiker, en niet het toestel of het netwerk, moet
beschouwd worden als het eigenlijke aandachtspunt in de multimediaketting.

xii

List of abbreviations

ADTE Adaptation Decision Taking Engine
API Application Programming Interface
AVS Audio and Video coding Standard
ASP Advanced Simple Profile
AVC Advanced Video Coding
BiM Binary MPEG format for XML
BDA Blu-ray Disc Association
BFlavor BSDL + XFlavor
BS Schema Bitstream Syntax Schema
BSD Bitstream Syntax Description
BSDL Bitstream Syntax Description Language
CfP Call for Proposals
CABAC Context Adaptive Binary Arithmetic Coding
CAVLC Context Adaptive Variable Length Coding
CGS Coarse-Grained quality Scalability
CIF Common Intermediate Format
CSS Cascading Style Sheet
DCT Discrete Cosine Transform
DIA Digital Item Adaptation
DIM Decoder Initialization Metadata
DOM Document Object Model
DPB Decoded Picture Buffer
DTM Document Table Model
DVD Digital Versatile Disc
EBDU Embedded Bitstream Data Unit
ESS Extended Spatial Scalability
FCD Final Committee Draft
FGS Fine-Grained quality Scalability
FLAVOR Formal Language for Audio-Visual Object Representation
FMO Flexible Macroblock Ordering
FourCC Four Character Code
FRExt Fidelity Range Extensions
gBS Schema generic Bitstream Syntax Schema
gBSD generic Bitstream Syntax Description

xiv

GMC Global Motion Compensation
GNU GNU is Not Unix
GOP Group Of Pictures
GPAC GNU Project on Advanced Content
GPRS General Packet Radio Service
HD High Definition
HDTV High Definition Television
IDR Instantaneous Decoding Refresh
IEC International Electrotechnical Commission
IMBR Random Intra Macroblock Refresh
IP Internet Protocol
I/O Input/Output
ISO International Organization for Standardization
ITU International Telecommunication Union
ITU-T ITU Telecommunication Standardization Sector
JM Joint Test Model of the JVT
JND Just Noticeable Difference
JPEG Joint Photographic Experts Group
JSVM Joint Scalable Video Model
JTC Joint Technical Committee
JVT Joint Video Team of VCEG and MPEG
Kbps Kilobits per second
Mbps Megabits per second
MC-EZBC Motion Compensated Embedded Zero Block Coding
MCP Motion-Compensated Prediction
MDS Multimedia Description Schemes
MMCO Memory Management Control Operation
MOS Mean Opinion Score
MPEG Moving Picture Experts Group
MSE Mean Squared Error
MTU Maximum Transfer Unit
N-VOP non-coded VOP
NAL Network Abstraction Layer
NALU NAL Unit
PC Personal Computer
PDA Personal Digital Assistant
POC Picture Order Count
PPS Picture Parameter Set
PRExt Professional Range Extensions
PSNR Peak Signal-to-Noise Ratio
PU Parse Unit
QCIF Quarter CIF
QoE Quality of Experience
QoS Quality of Service
QP Quantization Parameter

xv

RBSP Raw Byte Sequence Payload
RD Rate-Distortion
ROI Region Of Interest
RTP Real-time Transport Protocol
SAX Simple API for XML
SC Steering Committee
SDTV Standard Definition Television
SEI Supplemental Enhancement Information
SMPTE Society of Motion Picture and Television Engineers
SNR Signal-to-Noise Ratio
SPS Sequence Parameter Set
STB Set-Top Box
STX Streaming Transformations for XML
SVC Scalable Video Coding
UED Usage Environment Description
UEP Unequal Error Protection
UMA Universal Multimedia Access
VC-1 Video Codec 1
VCEG Video Coding Experts Group
VCL Video Coding Layer
VLC Variable Length Code
VOP Video Object Pane
VTC Visual Texture Coding
VUI Video Usability Information
W3C World Wide Web Consortium
WiFi Wireless Fidelity
XFlavor Flavor, extended with XML features
XHTML Extensible HyperText Markup Language
XML Extensible Markup Language
XPath XML Path Language
XSLT Extensible Stylesheet Language Transformations

xvi

Contents

1 Introduction 1
1.1 Context . 1

1.1.1 Scalable video coding 2
1.1.2 MPEG-21 Digital Item Adaptation 4

1.2 Outline . 5

2 The H.264/AVC standard 7
2.1 Introduction . 7
2.2 History of the standardization process 8

2.2.1 The first version of H.264/AVC 8
2.2.2 The Fidelity Range Extensions 9
2.2.3 The scalable extensions to H.264/AVC 10

2.3 Profiles . 10
2.4 Technical design features . 12

2.4.1 The network abstraction layer 13
2.4.2 The video coding layer 19

2.5 Rate-distortion performance 28
2.5.1 RD performance of the first version of H.264/AVC . . 28
2.5.2 RD performance of H.264/AVC FRExt 32

2.6 Conclusions and original contributions 33

3 Adaptivity provisions in H.264/AVC 35
3.1 Introduction . 35
3.2 Switching pictures for bitstream switching 36

3.2.1 Background . 36
3.2.2 Switching pictures 37

3.3 FMO for region of interest coding 40
3.4 Data partitioning for SNR scalability 42
3.5 Multi-layered temporal scalability 45

3.5.1 Background . 45

xviii CONTENTS

3.5.2 Conventional temporal scalability 46
3.5.3 Sub-sequences and sub-sequence layers 47
3.5.4 The sub-sequence concept in H.264/AVC 49
3.5.5 Summary . 57

3.6 The scalable extensions to H.264/AVC 59
3.6.1 Design philosophy and technical features 59
3.6.2 Bitstream structure 61

3.7 Conclusions and original contributions 64

4 BSD-driven media resource adaptation 69
4.1 Introduction . 69
4.2 Principles of BSD-based content adaptation 71
4.3 Bitstream syntax description languages 73

4.3.1 MPEG-21 BSDL . 74
4.3.2 XFlavor . 84
4.3.3 Summary . 87

4.4 BS Schemata for MPEG media formats 87
4.4.1 Structure of the BS Schemata 88
4.4.2 Complexity assessment of the BS Schemata 89
4.4.3 Design features of the BS Schema for H.264/AVC . . 90

4.5 BSD-driven temporal adaptation in VC-1 98
4.5.1 Video Codec 1 . 99
4.5.2 Performance data . 104

4.6 Conclusions and original contributions 107

5 BFlavor: a new bitstream syntax description tool 111
5.1 Introduction . 111
5.2 The BFlavor tool chain . 112

5.2.1 Application scenario 112
5.2.2 Harmonized adaptation architecture 115
5.2.3 Definition of BFlavor on top of XFlavor 116

5.3 Performance data . 125
5.3.1 Methodology . 125
5.3.2 BSD generation performance 126
5.3.3 Temporal adaptation performance 134
5.3.4 Concluding remark 138

5.4 Conclusions and original contributions 139

CONTENTS xix

6 Enhanced BSD-driven adaptation 145
6.1 Introduction . 145
6.2 Enhanced exploitation of temporal scalability 146

6.2.1 Placeholder pictures 148
6.2.2 Placeholder pictures in MPEG-21 BSDL 149
6.2.3 BSD-based construction of placeholder pictures 151

6.3 Performance of temporal adaptation in H.264/AVC 166
6.3.1 Methodology . 166
6.3.2 BSD generation . 168
6.3.3 BSD transformation and adapted bitstream construction 171

6.4 Enhanced exploitation of ROI scalability 175
6.5 Conclusions and original contributions 178

7 Conclusions 181

A Syntax and BSD fragments for H.264/AVC 187
A.1 Introduction . 187
A.2 Syntax fragments . 187
A.3 BSD fragments . 195

B BS Schemata for MPEG media formats 199
B.1 Introduction . 199
B.2 Features BS Schemata . 199

B.2.1 MPEG-1 Video . 199
B.2.2 MPEG-1 Systems . 200
B.2.3 H.262/MPEG-2 Video 200
B.2.4 MPEG-2 Systems . 200
B.2.5 MPEG-4 Visual . 201
B.2.6 H.264/AVC . 201

B.3 Visualization of the BS Schemata 201

C Context management for BSDL’s BintoBSD 215
C.1 Introduction . 215
C.2 BSD generation using context management 215

D Stylesheets for BSD transformation 221
D.1 Introduction . 221
D.2 XSLT, STX, and XSLT/STX stylesheets 222

xx CONTENTS

E A prospective view of DIA Amendment 2 239
E.1 Introduction . 239
E.2 BSDL features in DIA Amendment 2 239

E.2.1 Extensions to BSDL-2 240
E.2.2 Extensions to BSDL-1 242
E.2.3 Profiles . 244

Chapter 1

Introduction

Variety is the very spice of life that gives it all its flavour.

William Cowper (1731-1800), The Task, 1785.

1.1 Context

The last decade has witnessed a significant increase in the use of digital mul-
timedia content [1]. This growth has led to a vast diversity of media formats,
enabling an increased richness of audio-visual content and services. Several
formats for digital video coding are for instance the driving force behind user-
centric content sites such as YouTube1 and Metacafe2, which allow users to
upload, view, and share video feeds with a minimal effort.

At the same time, the multitude of devices for accessing and interacting
with multimedia content has grown substantially. This spectrum ranges from
Personal Computers (PCs) and Set-Top Boxes (STBs) to portable devices like
Personal Digital Assistants (PDAs) and mobile phones. Each device may be
constrained in a different way, such as in terms of display size, color support,
input options, processing power, memory resources, and power supply.

A wide spectrum of networks for the transmission of multimedia content
has emerged as well. In particular, wireless networks and broadband access
technologies have proliferated in recent years, giving users the possibility to
access the Web and multimedia content from different locations, in different
contexts, and with varying connectivity characteristics.

1Available online: http://www.youtube.com.
2Available online: http://www.metacafe.com.

http://www.youtube.com
http://www.metacafe.com

2 Introduction

1.1.1 Scalable video coding

In recent years, scalable coding has been one of the key research topics in
the field of digital media coding. Scalable bitstreams can be used for vari-
ous purposes, such as the adjustment of the transmitted bit rate according to
the prevailing network throughput in streaming applications, or for scaling the
complexity of the decoding process according to the available computational
resources on a terminal. As such, scalable content allows to take into account
the capabilities and the constraints of different usage contexts.

Scalable coding partitions a coded bitstream into a number of layers with
a different impact on the decoded quality. Typically, the lowest layer is coded
independently, while each subsequent layer is coded with respect to previously
decoded layers. The lowest layer is called the base layer; the other layers
are denoted as enhancement layers. Therefore, scalable coding is sometimes
referred to as layered or hierarchical coding. As a rule of thumb, the more
layers that are taken into account by the decoding process, the better the user
experience.

Scalable video coding techniques are usually classified into temporal, spa-
tial, and Signal-to-Noise Ratio (SNR) approaches, as well as any combination
of these (known as combined or hybrid scalability). The different scalabil-
ity axes are visualized in Figure 1.1. Each axis has a different impact on the
perceived quality:

• temporal scalability: the more layers decoded, the higher the temporal
resolution;

• spatial scalability: the more layers decoded, the higher the spatial res-
olution;

• SNR or fidelity scalability: the more layers decoded, the better the
visual quality (i.e., the less visual artifacts).

Using this layered approach, the quality of scalable bitstreams can typi-
cally be reduced by means of straightforward editing operations. The resulting
bitstreams are characterized by a lower quality, but also by the fact that their
decoding requires less network and terminal resources.

Scalable coding tools are available in several standards for digital video
coding, such as H.262/MPEG-2 Video [2], H.263 [3], and MPEG-4 Visual [4].
However, thus far, the commercial use of scalable video coding has not been
successful. A number of possible reasons can be identified:

• licensing issues;

1.1. Context 3

temporal axis

fid
el

ity
 a

xi
s

spatial axis

original

Figure 1.1: The different scalability axes in digital video coding (using the Stefan test
sequence).

• the limited application space;

• the lack of coding efficiency;

• the complexity of the coding algorithms;

• the lack of an overall framework that facilitates the straightforward adap-
tation of scalable media content.

Nowadays, the need for scalable content has soared significantly, thanks to
the fast evolution of the terminal and network technology during the last years,
resulting in a plethora of devices and communication possibilities.

Furthermore, in this dissertation, a state-of-the-art video coding format is
studied in more detail. This specification is at the foundation of a newly de-
veloped standard for scalable video coding, which targets a coding-efficient
solution with an acceptable complexity (1.5 times the decoding complexity of
single layer H.264/AVC decoding at a particular resolution and bit rate) [5].

4 Introduction

In this research, attention is also paid to an efficient, secure, and interoper-
able framework for the consumption of multimedia content in heterogeneous
usage environments. The vision and goals of this framework are briefly in-
troduced in the next section, with a particular focus on the format-agnostic
adaptation of digital media content.

1.1.2 MPEG-21 Digital Item Adaptation

The MPEG-21 Multimedia Framework aims at easily exchanging multime-
dia content without technical barriers, by shielding users from network and
terminal installation, management, and implementation issues [6]. More pre-
cisely, the goal of this framework is to realize the Universal Multimedia Access
(UMA; [7]) paradigm, which is the ability to achieve seamless access to mul-
timedia content at any place, at any time, and with any device.

The MPEG-21 Multimedia Framework is organized into several inde-
pendent parts. One pillar comprises the MPEG-21 Digital Item Adaptation
(MPEG-21 DIA; [8]) standard, which specifies a comprehensive set of de-
scription tools that enable the optimized adaptation of multimedia content.
DIA descriptions are specified in the widely used eXtensible Markup Lan-
guage (XML; [9]), facilitating the development of applications that are creat-
ing, aggregating, exchanging, and consuming these descriptions.

Descriptions of the usage environment are employed for determining what
version of the (scalable) content optimally fits this context. For this purpose,
DIA provides a set of metadata describing the context in terms of network and
device characteristics, user preferences, and natural environment characteris-
tics (e.g., location information). These metadata are gathered under a cluster
called Usage Environment Descriptions (UEDs).

Additionally, DIA specifies content-centric metadata facilitating the con-
tent adaptation process itself.

1. DIA provides tools to express the correspondence between the usage
context and the characteristics of the content. These descriptions assist
in the decision-making process regarding what adaptation operations to
perform. That way, it is possible to obtain a media resource that is opti-
mally tailored for a particular usage environment. For instance, the Ter-
minal and Network Quality of Service (QoS) cluster within DIA specifies
tools to describe the relationship between QoS constraints (e.g., on the
network bandwidth or a terminal’s computational capabilities), feasible
adaptation operations satisfying these constraints, and associated media
resource qualities that result from a possible adaptation step.

1.2. Outline 5

2. DIA provides the means to perform content adaptation in a format-
independent way. In particular, MPEG-21 DIA leverages the use of
scalable media resources by specifying generic tools for describing their
high level syntax in XML. Such an XML description can subsequently
be used by a format-agnostic content adaptation engine to obtain an
adapted version of the scalable media resource.

One of DIA’s bitstream syntax description tools will be extensively studied
in this dissertation, as it bridges the gap between the flexibility offered by
(scalable) media resources on the one hand and the constraints of a particular
usage context on the other hand [10].

1.2 Outline

The outline of this dissertation is as follows. In the next chapter, the
H.264/AVC standard is discussed in more detail. This specification for dig-
ital video coding is designed to provide an efficient and flexible solution that is
appropriate for use in a broad range of applications, ranging from video coded
at postage stamp resolution to high-definition content suited for playback in a
digital cinema environment. The third chapter subsequently examines a num-
ber of adaptivity provisions that are incorporated in the first version of the
H.264/AVC standard. The emphasis is put on a discussion regarding the dif-
ferent techniques that can be used for the exploitation of temporal scalability.

In chapter four, we study how XML-based bitstream syntax descrip-
tions can be employed as an intermediate layer for the adaptation of (scal-
able) bitstreams to the constraints imposed by a particular usage environment.
Two XML-based tool chains are discussed in more detail, both enabling the
description-driven adaptation of binary media resources. An analysis is pro-
vided of their expressive power and computational complexity, targeting the
temporal adaptation of bitstreams compliant with the VC-1 video coding stan-
dard. Our study resulted in the identification of a number of issues. Solutions
for these problems are addressed in the next chapters.

Chapter five introduces a new tool for the efficient generation of XML-
based bitstream syntax descriptions. This description tool harmonizes the two
solutions that were explained in the previous chapter by combining their ad-
vantages and by eliminating their disadvantages. Its efficiency is tested by the
exploitation of temporal scalability in the context of the MPEG-1 Video and
H.264/AVC coding formats. These experiments show that our new descrip-
tion tool offers an adequate solution for a fundamental performance problem
identified in the previous chapter.

6 Introduction

The sixth chapter describes an enhanced approach towards the description-
driven adaptation of coded video bitstreams. This technique, which is based
on the use of placeholder pictures, allows the elimination of a number of un-
wanted side effects. These side effects stem from the fact that content adapta-
tion is executed in the compressed domain. The use of our enhanced approach
is verified for the description-driven adaptation of H.264/AVC bitstreams in
the temporal and spatial dimension. Finally, we end this dissertation with the
major conclusions that can be drawn from our research.

The research that has led to this dissertation resulted in a number of scien-
tific and technical publications. One paper has been accepted for publication
in Elsevier’s Signal Processing: Image Communication [11]. Two papers were
published in the Lecture Notes in Computer Science series [12, 13], which ap-
pears in the Science Citation Index (SCI). Furthermore, our work also served
as a contribution to a paper that was published in IEEE Transactions on Cir-
cuits and Systems for Video Technology [14], to a paper that was published
in Journal of Visual Communication & Image Representation [15], to a paper
that was published in Multimedia Systems Journal [16], to four papers that
were published in Lecture Notes in Computer Science [17–20], and to a paper
that is accepted for publication in Journal of Visual Communication & Image
Representation [21]. In addition, seven contributions were made as a first au-
thor to papers presented at international conferences [22–28], as well as twelve
contributions as a co-author [29–40]. Finally, our research has also resulted in
a number of MPEG input contributions [41–49].

Chapter 2

The H.264/AVC standard

Your codec is a guest in my process space – I expect it to act
accordingly, not to terminate my app.

Avery Lee, author of VirtualDub, regarding anti-debugger
routines added to the DivX 5.1 video codec.

2.1 Introduction

Digital video coding is used under the hood of a plethora of multimedia ap-
plications, including digital storage media, streaming video, television broad-
casting, and many others. The engines behind the commercial success of these
applications are several international specifications for video coding. The key
merit of these standards is worldwide interoperability among products devel-
oped by different manufacturers, while at the same time allowing enough flex-
ibility for tailoring the coding technology to fit the needs of a certain multime-
dia application.

H.120 was the first international standard for digital video coding to see the
light in 1984 [50]. Since then, numerous coding efficiency improvements have
been developed by the academic world and the industry, especially by taking
advantage of an ever increasing processing power. This increase in processing
power allowed the use of more complex algorithms, which were mainly used
to further minimize the large amount of temporal redundancy in video content.

Some of these innovations have found their way into new and well-defined
sets of coding tools through an open process of collaboration. This resulted
in the standardization of H.261 in 1990 [51], MPEG-1 Video in 1993 [52],
H.262/MPEG-2 Video in 1994, H.263 in 1995, and MPEG-4 (Part 2) Visual
in 1999. The main incentive behind the development of these specifications

8 The H.264/AVC standard for digital video coding

was the need for a higher coding efficiency, which has always been a trade-off
between bit rate, distortion, and computational complexity. For a more detailed
overview regarding the history and the concepts of digital video coding, we
would like to refer the reader to a manuscript of Sullivan et al. [53]. A good
introduction to the principles of video compression can also be found in [54].

H.264/AVC is currently the most powerful and state-of-the-art specifica-
tion in the series of international video coding standards [55]. The main ob-
jectives behind its development are as follows [56]:

• an enhanced coding efficiency;

• an improved use of coded video data in a wide variety of network envi-
ronments (focusing on mobile networks and the Internet);

• a simple syntax specification (targeting simple and clean solutions).

In this chapter, we first discuss the history of the H.264/AVC stan-
dardization process, followed by a brief overview of the profiles defined in
H.264/AVC. Next, we outline the most important design characteristics of
the H.264/AVC specification. Finally, we discuss our main contribution in
this domain, in particular an assessment of the rate-distortion performance of
H.264/AVC compared to a number of other video coding formats.

H.264/AVC specifies an extensive quantity of features, out of which we
discuss the ones that are essential for achieving a good understanding of our
research. For a more detailed discussion regarding the H.264/AVC standard,
we would like to refer the interested reader to a special issue of IEEE Transac-
tions on Circuits and Systems for Video Technology [57] and to a special issue
of Journal of Visual Communication & Image Representation [58].

2.2 History of the standardization process

2.2.1 The first version of H.264/AVC

The initial version of H.264/AVC was developed over a period of about four
years [59]. The roots of the H.264/AVC standard lie in the H.26L project initi-
ated in 1998 by the Video Coding Experts Group (VCEG) of the ITU Telecom-
munication Standardization Sector (ITU-T), one of the three sectors of the In-
ternational Telecommunication Union (ITU). The H.26L project aimed at the
creation of a “long-term” recommendation for digital video coding, with the
target to double the coding efficiency compared to any other standard for digi-
tal video coding. This essentially comes down to halving the bit rate necessary

2.2. History of the standardization process 9

for a given level of picture fidelity, which is usually expressed in terms of Peak
Signal-to-Noise Ratio (PSNR; see Section 2.5).

In 2001, ISO/IEC’s Moving Picture Experts Group (MPEG) issued a Call
for Proposals (CfP) to invite new contributions to further improve the coding
efficiency beyond what was achieved on the then recently finished MPEG-4
Visual project. VCEG chose to provide the draft design for its new standard in
response to MPEG’s CfP. Other proposals were also submitted and were tested
by MPEG as well. As a result of those tests, ITU-T and ISO/IEC agreed to
jointly develop a new video coding standard and to use H.26L as the starting
point.

A Joint Video Team (JVT), consisting of experts from VCEG and MPEG,
was formed in December 2001 and it completed the technical development of
the new standard in May of 2003. The ITU-T approved the standard under its
naming structure as ITU-T Recommendation H.264, and ISO/IEC approved
it as ISO/IEC 14496-10 Advanced Video Coding (AVC1), under the MPEG-4
umbrella of standards. The name of the specification is commonly abbreviated
as H.264/AVC or H.264/MPEG-4 AVC to reflect the cooperation between the
two organizations.

2.2.2 The Fidelity Range Extensions

The initial H.264/AVC standard was primarily focused on consumer-quality
video, based on Standard Definition Television (SDTV) or lower video resolu-
tions (i.e., progressive video content having a resolution lower than 1280×720,
720p), eight bits per sample, and 4:2:0 chroma sampling. The specification did
not include support for use in the most demanding professional applications,
such as studio editing and post-processing, for which it is necessary to support
alternative color sampling structures and a higher sample accuracy [60].

To address the needs of these most-demanding applications, the JVT added
a number of extensions to the capabilities of the original standard (see Sec-
tion 2.3). This standardization effort started in May of 2003 and was completed
in August of 2004. The extensions are incorporated in a first amendment to the
H.264/AVC specification and are better known as the Fidelity Range Exten-
sions (FRExt, Amendment 1 of H.264/AVC)2.

1The abbreviation AVC is not to be confused with the Apple Video Compressor codec (short
for compression/decompression), which is also denoted as AVC and which is sometimes nick-
named “Road Pizza”. The Apple Video Compressor was developed in the early nineties by
Apple Computer for the QuickTime architecture.

2These extensions were initially known as the Professional Range Extensions (PRExt).
However, the name was changed to FRExt in order to avoid giving the impression that the
prior standardization effort was not carried out in a professional way.

10 The H.264/AVC standard for digital video coding

Besides the support for other color sampling formats and an extended sam-
ple depth, FRExt also introduces an 8×8 transform block size [61]. This trans-
form block size is adaptively selectable by an encoder in addition to the 4×4
transform block size specified in the first version of the H.264/AVC standard.
Thanks to a better preservation of details such as film grain and fine textures,
the adaptive block size transform is of particular interest for the encoding of
high-definition content (HD content). Finally, FRExt also offers support for a
number of new color spaces, such as the YCoCg color space (luma, chroma
orange, chroma green). This color space is characterized by a simple set of
transform equations relative to the traditional RGB color space (red, green,
blue). YCoCg-R (reversible YCoCg) is a variant of the YCoCg color space
that allows a lossless round trip through RGB at the expense of a higher bit
depth for the chroma channels [26, 62].

The FRExt amendment has resulted in a third version of the H.264/AVC
specification, as the second edition refers to a version containing a number
of corrections of errata, but no added features relative to the first version. A
fourth version includes more errata corrections.

2.2.3 The scalable extensions to H.264/AVC

At the time of writing this dissertation (the summer of 2006), the JVT is work-
ing on the development of a new set of extensions to H.264/AVC. This work
item addresses the desire to incorporate algorithms for Scalable Video Coding
(SVC) into the design of H.264/AVC in a maximally-compatible way3. The
term “scalability” refers to a functionality that allows the removal of particular
parts of a coded bitstream while still achieving a rate-distortion performance
with the remaining data (at any supported spatial, temporal, or SNR resolu-
tion) that is comparable to single-layer H.264/AVC coding (at that particular
resolution). The term “comparable” refers to the design goal to achieve a cod-
ing efficiency within about 10% excess bit rate for the same decoded video
fidelity [5]. The intent is to finish the drafting work on the new extensions
by the start of 2007. A more in-depth overview of the scalable extensions to
H.264/AVC is provided in Chapter 3.

2.3 Profiles

To manage the large number of coding tools included in H.264/AVC, as well
as to keep order in the broad range of formats and bit rates supported, the con-

3The first version of H.264/AVC is sometimes referred to as a fully scalable standard by
marketing documents. However, this is due to its support for the entire bandwidth spectrum.

2.3. Profiles 11

cept of profiles and levels is employed. A profile defines a set of coding tools
or algorithms that can be used in generating a compliant bitstream, whereas
a level places constraints on certain key parameters of the bitstream, such as
the picture resolution and the bit and frame rate. To address the applications
considered by the two standardization organizations, three profiles were estab-
lished in the first version of the H.264/AVC specification.

• The Baseline Profile (BP) was designed to minimize complexity on the
one hand, and to provide high robustness and flexibility for use over a
broad range of network environments and conditions on the other hand.
It aims at (low-delay) applications in the field of video conferencing and
wireless communications.

• The Main Profile (MP) was designed with an emphasis on coding effi-
ciency. It targets applications such as television broadcasting and digital
video storage.

• The Extended Profile (XP) (formerly called the Streaming Profile or
Profile X) is a superset of the Baseline Profile. It was designed to com-
bine the robustness of the Baseline Profile with a higher degree of cod-
ing efficiency, a greater network robustness, and a number of enhanced
modes (for instance enabling bitstream switching in video streaming ap-
plications; see Chapter 3).

The FRExt project produced a suite of four additional profiles collectively
called the High or FRExt profiles: the High Profile (HP), the High 10 Pro-
file (Hi10P), the High 4:2:2 Profile (H422P), and the High 4:4:4 Profile
(H444P). These profiles support all features of the prior Main Profile and
additionally support an 8×8 transform block size and perceptually-optimized
encoder-selected quantization scaling matrices [61].

Figure 2.1 shows the relationship between the different profiles and the
coding tools supported by the different versions of the H.264/AVC standard.
A number of these coding tools will be described in more detail in the re-
mainder of this dissertation. The High Profile is often considered to be the
most important profile of the H.264/AVC standard, mainly because of its fast
embrace by the industry and standardization organizations. It supports eight
bit video with 4:2:0 sampling, addressing high-end consumer use and other
applications using high-resolution video without a need for extended chroma
formats or extended sample accuracy. The High 4:4:4 Profile, offering initial
standardized support for mathematical lossless inter coding, has recently been
removed from the H.264/AVC specification due to a lack of coding efficiency.

12 The H.264/AVC standard for digital video coding

data partitioning

SP and SI slices

B slices

CABAC

interlaced coding

weighted prediction

I slices

P slices

CAVLC

FMO

redundant slices

8x8 spatial
luma

prediction

perceptual
scaling

matrices

8x8 luma
transform

monochrome
format

sample bit
depth:
8-10

4:2:2
chroma
format

sample bit
depth: 8-12

residual
color

transform
(YCoCg-R)

lossless
coding

4:4:4
chroma
format

Extended Profile

Baseline Profile

Main Profile

High Profile High 10 Profile High 4:2:2
Profile

High 4:4:4
Profile

Figure 2.1: Profiles in H.264/AVC (adopted from [61] and [63]).

2.4 Technical design features

The H.264/AVC specification has a very broad application range that covers
all forms of digitally coded video, from low bit-rate streaming applications to
HDTV broadcast and digital cinema applications characterized by nearly loss-
less coding. As shown by Figure 2.2, H.264/AVC relies on a two-tier design
to address the requirements of these various applications: it covers a Video
Coding Layer (VCL), which is designed to efficiently represent the video con-
tent, and a Network Abstraction Layer (NAL), which formats the VCL rep-
resentation of the video data and provides header information to package the
coded video data for transport or storage. As such, this design allows to dis-
tinguish between coding-specific features, which is the focus of the VCL, and
transport/storage-specific features, which is the focus of the NAL.

Most features outlined in the following sections are already covered by
a number of high-quality publications in the scientific literature [53, 56, 64].
However, some of them will be discussed in more detail to make this disserta-
tion more self-containing, and hence, to increase its readability.

2.4. Technical design features 13

Video Coding Layer (VCL)

datapartitioning

coded macroblock

co
nt

ro
l d

at
a

(e
nc

od
in

g
pa

ra
m

et
er

s)

coded slice/partition

Network Abstraction Layer (NAL)

NALU... ...

systems layer (network protocols and file formats)

RTP/IP ISO media file format MPEG-2 SystemsH.323/IP

NALU NALU NALU NALU NALU NALU NALU

elementary bitstream

Figure 2.2: Two-tier design of H.264/AVC [56]. The screenshot is taken from the
Foreman test sequence.

raw_byte_sequence_payloadforbidden_zero_bit nal_ref_idc nal_unit_type

NALU header NALU payload

Figure 2.3: Structure of a NAL unit, which is the fundamental unit of processing of
the NAL, either carrying coded video or coded header data.

2.4.1 The network abstraction layer

The NAL is designed to enable simple and effective customization of the out-
put of the VCL for a broad variety of systems. The full degree of customization
of the video content to fit the needs of each particular application is outside the
scope of the H.264/AVC standard itself, but the design of the NAL anticipates
a variety of such mappings. The fundamental unit of processing in the NAL
is a NAL unit (NALU). Other key concepts of the NAL design are parame-
ter sets, access units, coded video sequences, and supplemental enhancement
information. A concise discussion of these building blocks is given below.

NAL units

The NAL encoder encapsulates the output of the VCL encoder into NAL units,
which are suitable for transmission over packet networks [e.g., using the Real-
time Transport Protocol (RTP)] or for use in packet oriented multiplex environ-

14 The H.264/AVC standard for digital video coding

ments (e.g., MPEG-2 Transport Streams). Consequently, a NAL unit can be
considered the fundamental unit of processing by an H.264/AVC encoder and
decoder. As shown by Figure 2.3, a NAL unit consists of a one-byte header
and a payload byte string.

• The header indicates the (potential) presence of bit errors or
syntax violations in the NAL unit payload (signaled by the
forbidden zero bit syntax element), information regarding the
relative importance of the NAL unit for the decoding process (commu-
nicated by the nal ref idc syntax element), and the type of the NAL
unit (conveyed by the nal unit type syntax element).

• The payload byte string of every NAL unit is called the Raw Byte Se-
quence Payload (RBSP), which is a set of data corresponding to coded
video data or header information.

The different types of NAL units are usually organized in two different
classes: one class contains the so-called VCL NAL units, while the other class
consists of the non-VCL NAL units.

• The VCL NAL units contain the data representing the values of the sam-
ples in the pictures.

• The non-VCL NAL units contain information such as parameter sets
(important header data that can apply to a large number of VCL NAL
units) and Supplemental Enhancement Information messages (SEI mes-
sages). SEI messages convey timing information and other supplemental
data that may enhance the usability of the decoded video signal but that
are not necessary for decoding the values of the samples in the pictures.

The Annex B byte stream format Some systems (e.g., H.320,
H.222.0/MPEG-2 Systems) require delivery of the entire or partial stream of
NAL units as an ordered stream of bytes. For use in such systems, Annex B of
the H.264/AVC standard specifies a byte stream format. In this format, each
NAL unit may be prefixed by one or more zero-valued bytes, followed by a
mandatory pattern of three bytes 0x000001, called a start code prefix. Such a
NAL unit is called a byte stream NAL unit. The hierarchical syntax structure
of an H.264/AVC elementary bitstream, having the byte stream format, is visu-
alized in Figure 2.4. This syntax hierarchy was extensively used in the context
of this research.

2.4. Technical design features 15

zero_byte = 0x00 start_code_prefix_one_3bytes = 0x000001 nal_unit

bitstream

byte_stream

byte_stream_nal_unit byte_stream_nal_unit byte_stream_nal_unit... ...

raw_byte_sequence_payloadforbidden_zero_bit = 0b0 nal_ref_idc nal_unit_type

coded_slice_of_a_non_IDR_picture

slice_layer_without_partitioning_rbsp

slice_header slice_data

first_mb_in_slice slice_type pic_parameter_set_id frame_num ...

V
C

L
sy

nt
ax

N
A

L
sy

nt
ax

Figure 2.4: Complete syntax hierarchy for an H.264/AVC elementary bitstream hav-
ing the byte stream format. The VCL syntax will be explained in more detail in Sec-
tion 2.4.2.

The start code prefix can be uniquely identified in the byte stream. As
shown in Figure 2.5, if necessary, the payload data of a NAL unit are in-
terleaved with emulation prevention bytes that eliminate the occurrence of
‘pseudo’ start code prefixes within the payload, which might occur as a dis-
advantageous combination of coded data bytes.

The NAL unit stream format In other systems (e.g., RTP), the coded data
are carried in packets that are framed by the system transport protocol, and
identification of the boundaries of NAL units within the transport packets can
be established without use of start code prefix patterns. As such, the transmis-
sion of start codes is typically omitted in these systems.

Access units

A set of NAL units that comprises all data necessary to decode one picture is
called an Access Unit (the data of a coded picture may be distributed over dif-
ferent NAL units; see Section 2.4.2). This Access Unit consists of VCL NAL
units composing the so-called primary coded picture. Additionally, NAL units
with Supplemental Enhancement Information (SEI) can be contained in an ac-
cess unit, as well as VCL NAL units for additional representation of important

16 The H.264/AVC standard for digital video coding

00 00 00 01 ... 7A 00 00 03 01 6B FC ...NALU... ...00 00 00 01 NALU00 00 00 01

byte stream NAL unit

bitstream

00 00 00 01 ... 7A 00 00 03 01 6B FC ...NALU... ...00 00 00 01 NALU00 00 00 01

byte stream NAL unit

bitstream

(a)

(b)

0x03

Figure 2.5: Handling of start code prefix emulation prevention bytes: (a) insertion of
emulation prevention bytes by an encoder; (b) removal of emulation prevention bytes
by a decoder.

areas of the primary picture for the purpose of error resilience. The latter VCL
NAL units constitute so-called redundant slices.

Coded video sequences and IDR

A series of sequential access units in the NAL unit stream that requires one
single Sequence Parameter Set (SPS) is called a coded video sequence. An
SPS can be seen as a form of header data (see the next paragraph for a more
precise definition). A NAL unit stream can contain multiple coded video se-
quences. Each coded video sequence begins with an access unit containing an
Instantaneous Decoding Refresh (IDR).

The IDR consists of a self-contained intra-coded picture that is required to
start a new video sequence. An H.264/AVC encoder cannot use any pictures
that precede the IDR picture (in decoding order) as references for the inter
prediction of any pictures that follow the IDR picture (in decoding order). As
such, the presence of an IDR causes a reset of the different lists of reference
pictures in the decoded picture buffer of a decoder.

IDR pictures provide random access points in an H.264/AVC bitstream.
Furthermore, the presence of an IDR picture in an H.264/AVC bitstream also
causes a reset of the Picture Order Count (POC) and the frame num counters
of the decoding process, while an intra-coded picture that is not an IDR picture
does not. The basic concept of POC is to provide a counter that specifies the
relative order of the pictures in the bitstream in output order (which may differ
from the relative order in which the coded pictures appear in the data of the bit-
stream, which is referred to as the decoding order). The frame num counter
keeps track of reference pictures for error resilience purposes (see Chapter 3).

2.4. Technical design features 17

NALU header SPS (seq_parameter_set_id = 0)

NALU header SPS (seq_parameter_set_id = 31)

NALU header active SPS (seq_parameter_set_id = i)
...

...

NALU header PPS (pic_parameter_set_id = 0)

NALU header PPS (pic_parameter_set_id = 255)

NALU header active PPS (pic_parameter_set_id = j)
...

...

NALU header slice header slice data

NALU header slice header slice data

NALU header slice header slice data

...

...

decoding order

set of sequence parameter sets

set of picture parameter sets

pi
c_

pa
ra

m
et

er
_s

et
_i

d
=

j

se
q_

pa
ra

m
et

er
_s

et
_i

d
=

i

values valid for an entire sequence
- profile@level information
- resolution
- number of reference pictures
- disposal of reference pictures

 expected

parameters valid for at least one
picture

- type of entropy coding
- number of slice groups
- macroblock allocation map
- values for deblocking filter

Figure 2.6: Interaction between VCL NAL units, which contain coded slice data (see
Section 2.4.2), and the different types of parameter sets.

Parameter sets

A parameter set contains important header information that can apply to a large
number of VCL NAL units. There are two types of parameter sets:

• a Sequence Parameter Set (SPS), which applies to a series of consecutive
coded video pictures; and

• a Picture Parameter Set (PPS), which applies to the decoding of one or
more individual pictures.

The different parameter sets are conveyed in separate NAL units besides
the VCL NAL units. There are no limits on the number of SPSs and PPSs
allowed in a bitstream. In order to be able to change picture parameters such
as the picture size without the need to transmit parameter set updates syn-
chronously to the slice packet stream, the encoder and decoder can maintain
a list of more than one SPS and PPS. More precisely, an H.264/AVC decoder
must be capable of storing up to 32 SPSs and 256 PPSs at the same time. Note
that the quantity of memory reserved for SPS and PPS storage will ordinarily
be fairly small compared to the total amount of memory needed by a decoder
(for example, for the storage of decoded reference pictures).

18 The H.264/AVC standard for digital video coding

Each VCL NAL unit has an identifier that indicates the PPS to be used to
decode the VCL data (i.e., the active PPS). The PPS in its turn contains an
identifier to the applicable SPS (i.e., the active SPS)4. An active SPS remains
unchanged throughout a coded video sequence (i.e., until the next occurrence
of an IDR picture), and an active PPS remains unchanged within a coded pic-
ture. In this manner, a small amount of data (the identifier) can be used to
establish a larger amount of information (the parameter set) without repeating
that information within each VCL NAL unit. Note that it is for instance le-
gitimate for an encoder to use only one SPS in a bitstream, and to update the
SPS content associated with that identifier by repeatedly overriding the SPS
with another SPS having the same identifier (instead of using multiple SPSs
with different identifiers). The interaction between VCL NAL units and the
different types of parameter sets is visualized in Figure 2.6.

Both types of parameter sets can be transmitted at any time, e.g. well in
advance before the VCL units they apply to. Since the parameter information
is crucial for the decoding of large portions of the NAL unit stream, it can be
protected stronger or retransmitted at any time for increased error robustness.
In-band transmission with the VCL NAL units or out-of-band transmission
over a separate channel can be used if desired by a target application.

Supplemental Enhancement Information

In addition to the basic coding tools, the H.264/AVC standard enables sending
extra information along with the compressed video data, called Supplemen-
tal Enhancement Information messages (SEI messages). These messages are
stored in an H.264/AVC elementary bitstream using an own NAL unit type.
SEI messages, introduced for the first time in H.263+, can assist in processes
related to decoding, display, or other purposes. However, they are not required
for the actual reconstruction of the luma and chroma samples by the decod-
ing process. Nonetheless, their use can be made normative by an applications
organization (e.g., the Blu-ray Disc Association; BDA).

SEI metadata messages can for instance be used to convey timing informa-
tion, scene transition information, and arbitrary user data. These messages can
also be employed to signal the occurrence of temporal enhancement layers in
an H.264/AVC bitstream (see Chapter 3), or they can be used to communicate
additional random access points next to IDR pictures.

4Some decoders activate an SPS or PPS once they retrieve these parameter sets from the
bitstream, which is incorrect decoder behavior.

2.4. Technical design features 19

2.4.2 The video coding layer

The VCL contains the signal processing functionality - this is, means such as
transform coding, quantization logic, Motion-Compensated Prediction (MCP),
and a deblocking filter. The fundamental unit of processing of the VCL is a
slice (and not a picture). Although the design of the VCL of H.264/AVC basi-
cally follows the traditional hybrid concept of block-based MCP and transform
coding, a number of important innovative ideas have been developed that en-
able a significant improvement in terms of coding efficiency. Some of the key
features are given below [61]:

• enhanced MCP capabilities (e.g., the use of variable block sizes during
motion estimation for a more efficient representation of complex motion,
know as tree-structured motion estimation);

• multiple reference pictures and generalized B slice coded pictures [65];

• spatial intra prediction in the pixel domain (for an efficient compression
of gradients);

• 4x4 block-size transform in integer precision (allows reducing ringing
artifacts, especially in areas of fine detail);

• context-adaptive in-loop deblocking filter (resulting in smooth and clean
pictures due to the elimination of blocking artifacts, which are mainly
the result of quantization errors);

• enhanced entropy coding methods.

The coding gains of H.264/AVC do not stem from a single coding tech-
nique, but they are the result from the combined use of advanced prediction,
quantization, and entropy coding schemes. Nonetheless, the improved motion
estimation and motion compensation capabilities offered by the standard can
be considered the most important ones. In what follows, a number of coding
tools and concepts are highlighted that contribute to a better understanding of
the remainder of this dissertation.

Macroblocks, slices, and slice groups

Macroblocks. The output of the VCL is a coded video sequence, which con-
sists of a sequence of coded pictures. Every picture is partitioned into fixed size
macroblocks that each contain a rectangular picture area of 16x16 samples for
the luma component and the corresponding 8x8 sample regions for each of the

20 The H.264/AVC standard for digital video coding

two chroma components (when using 4:2:0 input). Macroblocks are the ba-
sic building blocks for which the decoding process is specified. All luma and
chroma samples are predicted - either spatially or temporally - and the resulting
prediction residual is transmitted using transform coding: each color compo-
nent of the residual is subdivided into blocks, and each block is transformed
using an integer-valued transform, after which the transform coefficients are
quantized and entropy coded.

Slices. The macroblocks (MBs) of a picture are organized into slices, which
represent regions of the given picture that can be decoded independently. Each
slice is a sequence of macroblocks that is processed in raster scan order, i.e. a
scan from the top-left corner of the picture to the bottom-right corner. Note that
the macroblocks are not necessarily always consecutive in the raster scan of
the picture, as further described for the Flexible Macroblock Ordering (FMO)
coding tool.

A picture may contain one or more slices. Each slice is self-contained, in
the sense that, given the active sequence and picture parameter sets, its syntax
elements can be parsed from the bitstream and the values of the samples in the
area of the picture that the slice represents can basically be decoded without
the use of data from other slices of the picture (provided that all previously-
decoded reference pictures are available at the decoder for use in MCP). How-
ever, for completely exact decoding, information from other slices may be
needed in order to apply the deblocking filter across slice boundaries. As dis-
cussed by Sullivan et al. in [53], slices can be used for:

• error resilience, as the partitioning of the picture allows spatial conceal-
ment within the picture and as the start of each slice provides a resyn-
chronization point at which the decoding process can be reinitialized;

• creating well-segmented payloads for packets that fit the Maximum
Transfer Unit (MTU) size of a network (e.g., the MTU size is 1500 Bytes
for Ethernet, and typically around 100 bytes in wireless environments);

• parallel processing, as each slice can be encoded and decoded indepen-
dently of the other slices of the picture.

As shown in Figure 2.7, the bitstream representation of a coded slice con-
sists of a slice header and slice data. Syntax elements that change frequently
from picture to picture are placed in the slice header for reasons of robustness
to data losses. As such, a slice header can be considered a third parameter set,
next to the sequence and picture parameter sets. Finally, the slice data contain
the coded representation of the macroblocks.

2.4. Technical design features 21

MBfirst_mb_in_slice slice_type frame_num

slice header slice data

...MB MB MB...pic_parameter_set_id

Figure 2.7: Structure of a slice, the fundamental unit of processing of the VCL.

Slice types. The H.264/AVC standard distinguishes five slice types, signaled
by the value of the slice type syntax element in a slice header (see Fig-
ure 2.7).

• I slice: A slice in which all macroblocks of the slice are coded using
intra prediction.

• P slice: In addition to the coding types of an I slice, macroblocks of a
P slice can also be coded using inter prediction with at most one MCP
signal per prediction block.

• B slice: In addition to the coding types available in a P slice, mac-
roblocks of a B slice can also be coded using inter prediction with two
MCP signals per prediction block that are combined using a weighted
average.

• SP slice: A so-called switching P slice is coded such that efficient and
exact switching between different video streams (or efficient jumping
from place to place within a single stream) is possible without the large
number of bits needed for an I slice.

• SI slice: A so-called switching I slice allows an exact match with an
SP slice for random access or error recovery purposes, while only using
intra prediction.

The first three slice types listed above are very similar to coding methods
used in previous standards, with the exception of the use of (multiple) reference
pictures as described further in this section. The other two slice types are new.
For a more profound overview regarding the novel concept of SP and SI slices,
the interested reader is referred to [66]. In Chapter 3, the use of these slices
will be discussed in more detail for the purpose of bit rate adaptation.

A single coded picture may consist of a mixture of the different slice types.
As such, the traditional concept of I, P, and B pictures is replaced by a highly
flexible and general concept that can be exploited by an encoder for different
purposes. Also, from this discussion, it should be clear that a slice, and not a
picture, is the fundamental unit of processing in H.264/AVC’s VCL.

22 The H.264/AVC standard for digital video coding

picture

slice slice slice

MB MB MB MB MB MB MB

(a)

picture

slicegroup slicegroup

slice sliceslice

MB MB MB MB MB MB MB MB

slice

MB

(b)

Figure 2.8: The different layers when coding a picture [68]: (a) in prior video coding
standards; (b) in H.264/AVC.

Slice groups and FMO. Prior video coding standards, such as
H.262/MPEG-2 Video and MPEG-4 Visual, require encoders to process
the macroblocks of a picture in a consecutive raster scan order. This process
typically starts at the top-left corner of a picture, encoding macroblocks
row by row until the bottom-right corner of this picture is reached. In [67],
Wenger and Horowitz discuss how FMO allows altering the order in which
macroblocks are processed. This tool was introduced in H.264/AVC by means
of a new concept called slice groups. Using FMO, pictures are no longer
divided into slices but into slice groups. More precisely, each picture can be
divided in up to eight different slice groups consisting of one or more slices.
As illustrated by Figure 2.8, slice groups introduce a new layer between a
picture and its slices.

Every macroblock can be assigned freely to a slice group using a mac-
roblock allocation map. All macroblocks of every slice group are coded in a
consecutive raster scan order. This implies that all macroblocks of a picture
will be encoded in a consecutive raster scan order when assigning them to one
slice group, which is behavior similar to previous standards. The term FMO
is used when more than one slice group is used per picture. Since each mac-
roblock can be assigned arbitrarily to one of the different slice groups during
the encoding process, a decoder has to know which macroblock is assigned
to which slice group. This is realized by transmitting a macroblock allocation
map together with the coded macroblocks. This map is included inside a PPS,
which is valid for a particular number of pictures.

Because up to eight slice groups can be used for a picture, up to three bits
are needed for every macroblock to know to which slice group it belongs. This
would make FMO an expensive feature in terms of coding efficiency. However,
in most cases, certain patterns will appear in the macroblock allocation map.
The regular structure of such a pattern can often be described by means of a

2.4. Technical design features 23

(a) Type 0 (b) Type 1 (c) Type 2

(d) Type 3 (e) Type 4 (f) Type 5

Figure 2.9: Different types of FMO.

simple function characterized by a number of variables. Transmitting a pattern
comes down to signaling the predefined type of pattern (i.e., the function) and
the variables needed to construct the macroblock allocation map. This means
that the macroblock allocation map can often be stored in two to eight bytes.

The H.264/AVC specification provides seven options to store the mac-
roblock allocation map inside a PPS syntax structure. The first six options are
fixed patterns. The seventh option is used when the map cannot be represented
by any of the six predefined patterns; it allows a complete randomization of
the data and it should be signaled completely. Possible configurations for the
six predefined patterns are shown in Figure 2.9. For this research, FMO type 2
is the most interesting configuration.

• For FMO type 0, each slice group consists of a fixed number of mac-
roblocks which follow sequentially in raster scan order (but not neces-
sarily consecutive). When all slice groups have been used and there are
still a number of macroblocks left, the entire process is repeated starting
from slice group zero.

• FMO type 1 uses a predefined function to create a scattered or dispersed
pattern. The layout of the macroblock allocation map depends on the

24 The H.264/AVC standard for digital video coding

number of slice groups. Here, the idea is to have no two macroblocks of
the same slice group next to each other (for error resilience purposes).

• FMO type 2 allows defining rectangular areas on a picture. Those rect-
angles can be efficiently stored using the macroblock numbers of the
top-left and bottom-right macroblocks. The rectangles may overlap,
causing macroblocks to belong to multiple rectangles. Since this means
that a macroblock would belong to multiple slice groups, which is not
allowed, the macroblock is assigned to the slice group with the lowest
number only. The macroblocks that do not belong to any rectangle are
part of a separate slice group. Since there is a limit of eight slice groups
per picture, this means that up to seven rectangles can be defined.

• FMO types 3 to 5 are known as evolving types. These types distribute the
macroblocks over two separate slice groups. They are called “evolving”
because the layout of the two slice groups is updated for every picture
by means of a parameter conveyed in the slice header (to avoid having
to send a PPS for every update step). The update process is such that the
number of macroblocks increases for one slice group, while the number
of macroblocks decreases in the complementary slice group.

Flexible reference picture management

Advanced motion prediction and motion compensation are two key strengths
of H.264/AVC. These techniques are made possible by the adoption of several
new design principles in the H.264/AVC standard [56].

• The decoupling of picture representation methods from picture ref-
erencing capability is a first feature that enhances the ability to predict
the values of the content of a picture to be encoded. In prior standards,
pictures encoded using some encoding methods (namely bi-predictively-
coded pictures) could not be used as references for the prediction of
other pictures in the video sequence. By removing this restriction, the
new standard provides the encoder with more flexibility and, in many
cases, an ability to use a picture for referencing that is a closer approxi-
mation to the picture being encoded.

• The decoupling of the picture referencing order from the picture
output order is a second new design principle. In prior standards, there
was a strict dependency between the ordering of pictures for motion
compensation referencing purposes and the ordering of pictures for out-
put (i.e., display) purposes. For instance, in H.262/MPEG-2 Video, a

2.4. Technical design features 25

IDR

I0
...

coding & output order

B1 B2 B3

Figure 2.10: Elimination of delay when using B slice coded pictures.

B picture must be coded using a picture that precedes the B picture in
output order on the one hand, and using a picture that succeeds the B
picture in output order on the other hand. In H.264/AVC, these restric-
tions are largely removed, allowing the encoder to choose the ordering of
pictures for referencing and display purposes with a high degree of flex-
ibility, constrained only by an imposed total memory capacity bound to
ensure decoding capability.

Removal of these restrictions also enables removing the extra delay pre-
viously associated with bi-predictive coding. Indeed, both the encoding
and decoding delay can be reduced to a delay of zero pictures by restrict-
ing MCP from using pictures as a reference that are located in the future
(in output order). This is for instance illustrated by Figure 2.10.

• A third new design feature introduced in H.264/AVC is the use of mul-
tiple reference pictures for motion compensation. This enables effi-
cient coding by allowing an encoder to select on a macroblock basis - for
motion compensation purposes - out of a large number of pictures that
have previously been decoded and stored in the Decoded Picture Buffer
(DPB).

An additional parameter is encoded with the motion vector displacement
indicating the reference picture to be used by the decoder (resulting in
an additional overhead). The reference pictures may consist of I, P, and
B slices. The number of applicable reference pictures is determined
by the SPS. The reference picture index is not transmitted in case the
application of a single reference picture is indicated.

As such, the flexible design of the H.264/AVC standard for instance allows
the following coding techniques:

• coded pictures can be mixtures of I, P, and B slices;

26 The H.264/AVC standard for digital video coding

IDR

P1,1

I0,0

I0,1

I0,2

B2,1

B2,2

B1,0
P2,0

P3,1

P3,2

I4,1

B4,2

P4,0

P5,1

B5,2

B5,0I3,0

I6,0
...

I0,3 B5,3

output order

...

decoding order

P1,1

B1,0
I0,0

I0,1

I0,2

I0,3

B2,1

B2,2

P2,0

P3,1

P3,2

I3,0

I4,1

B4,2

P4,0

P5,1

B5,2

B5,0

B5,3

I6,0

IDR

0x00 0x000001 SPS 0x00 0x000001 PPS 0x00 0x000001 I0,0 0x00 0x000001 I0,1

0x00 0x000001 I0,2 0x00 0x000001 I0,3 0x00 0x000001 I3,0 0x00 0x000001 P3,1

0x00 0x000001 P3,2 0x00 0x000001 B1,0 0x00 0x000001 B4,2

bitstream orderbyte stream NALU

... ...

Figure 2.11: Flexible use of reference pictures.

• B slices can be used as a reference for the reconstruction of other slices;

• I and P slices can be non-reference slices;

• B slices can only have one reference picture;

• B slices can have all their references in the past (or all in the future);

• P slices can rely on many reference pictures for their reconstruction;

• delayed non-reference pictures can be stored in the DPB.

A number of the above mentioned techniques are also visualized in Fig-
ure 2.11. A label Si,j has the following meaning: S denotes a slice (an I, P,
or B slice), while i indicates the picture number in output order and j repre-
sents the top-down order of the slice within a picture. An arrow pointing from
picture A to picture B implies that the reconstruction of B is dependent on
A. Finally, while the flexibility in terms of reference picture management is
beneficial to the coding efficiency, it will have a serious impact on the imple-
mentation of an adaptivity feature such as temporal scalability (see Chapter 3).

2.4. Technical design features 27

Entropy coding

H.264/AVC supports two alternatives for entropy coding. These are called
Context-Adaptive Variable Length Coding (CAVLC) and Context-Adaptive
Binary Arithmetic Coding (CABAC). CABAC is characterized by a higher
complexity than CAVLC, but it offers a better coding efficiency. Compared
to CAVLC, CABAC typically reduces the bit rate by 10 to 15% for the same
quality. Both entropy coding schemes operate at the macroblock level, where
they are for instance employed for the representation of transform coefficients.

Table 2.1: ue(v).

bit string decoded value
0 0

010 1
011 2

00100 3
00101 4
00110 5
00111 6

.

Table 2.2: se(v).

bit string decoded value
0 0

010 1
011 -1

00100 2
00101 -2
00110 3
00111 -3

.

In both of these modes, many syntax elements are also coded using a single
infinite-extent codeword set referred to as an Exponential Golomb code (Exp-
Golomb code) [69]. Thus, instead of designing a different Variable-Length
Coding (VLC) table for each such syntax element, only the mapping to the
single codeword table is customized to the data statistics.

An Exp-Golomb code has a simple and regular structure. The definition
of Unsigned and Signed Exp-Golomb codes is illustrated by Table 2.1 and
Table 2.2 respectively. In the H.264/AVC standard, the Unsigned Exp-Golomb
code is denoted by the descriptor ue(v), while the Signed Exp-Golomb code
is referred to with the descriptor se(v) (the v in the descriptor refers to the
variable-length nature of the code).

Several syntax elements in the parameter sets and the slice headers are
represented using Signed and Unsigned Exp-Golomb codes, which are only
efficient in use when small values are expected to be more common than large
values. For instance, the employment of the Unsigned Exp-Golomb code is
optimal when the first input symbol, i.e. zero, has a probability of 0.55.

5For input values higher than 14, the use of an unsigned byte representation is already more
efficient than the use of an Unsigned Exp-Golomb code.

28 The H.264/AVC standard for digital video coding

2.5 Rate-distortion performance

Most video coding standards only provide the bitstream syntax and the decod-
ing process in order to enable interoperability. The encoding process is left
out of scope to permit a sufficient level of flexibility and innovation in par-
ticular implementations of the standardized video coding schemes. However,
the operational control of the source encoder is a key problem in video com-
pression. For the encoding of a video source, many coding parameters such
as macroblock modes, motion vectors, and transform coefficient levels have
to be determined. These values determine the rate-distortion efficiency of the
bitstream produced by a given encoder.

The trade-off between coded bit rate and image distortion is an example
of the general Rate-Distortion (RD) problem in communications engineer-
ing [54]. In a lossy communication system, the challenge is to achieve a tar-
get data rate with minimal distortion of the transmitted signal (in this case,
a sequence of pictures). As such, the RD performance of a video codec (en-
coder/decoder) provides a measure of the decoded image quality (or distortion)
produced at a range of coded bit rates. In the following two sections, the results
of a series of experiments are reported that illustrate the RD performance gains
that can be achieved when using H.264/AVC. For a good overview regarding
the principles of rate-constrained coder control in the context of several video
coding formats, emphasizing Lagrangian optimization techniques, we would
like to refer the interested reader to [70].

2.5.1 RD performance of the first version of H.264/AVC

In this section, we discuss a number of key results regarding a series of ex-
periments that were conducted in the course of this research. Besides gaining
an insight into different coding tools, a major goal of our tests was to assess
to what extent a particular requirement of H.264/AVC has been met, namely
“having a capability goal of 50% or greater bit rate savings from H.263v2
(with Annexes DFIJ&T) or MPEG-4 Visual Advanced Simple Profile at all bit
rates” [71]. In other words, the H.264/AVC standard should enable using half
of the bits to code a video sequence at the same visual quality compared to the
MPEG-4 Visual Advanced Simple Profile (ASP) specification. The assessment
of this statement was done by comparing the RD performance of two imple-
mentations of the respective standards: Ad Hoc Model 2.0 (AHM 2.0) [72] as
a preliminary implementation of the H.264/AVC specification and DivX 5.16

as a widely-used implementation of MPEG-4 Visual ASP.

6DivXNetworks, Inc. Available online: http://www.divx.com/divx/.

http://www.divx.com/divx/

2.5. Rate-distortion performance 29

As input, six progressive and well-known video sequences were used in
raw YCbCr 4:2:0 format. Two different resolutions were used: the Quarter
Common Intermediate Format (QCIF, 176×144) and the Common Interme-
diate Format (CIF, 352×288), thus resulting in a total of twelve input video
sequences. These sequences were encoded by making use of one-pass Con-
stant Bit Rate (CBR) coding. As such, rate control is considered as a fully
fledged part of an encoder (as it will often be used in practice). Rate control
based on QP selection was not possible for the DivX 5.1 video codec.

Thirty different target bit rates were employed: both very low and very
high bit rates to test the coding behavior in difficult circumstances. The bit
rates are: 20, 40, 60, 80, 100, 200, 300, . . . , 2500, and 2600 kbit/s. At each
bit rate, encoding was performed at 30 frames per second. The coding pattern
used is IBBBP. . . and an intra-coded frame is forced every 16 frames. The
H.264/AVC bitstreams are conform to the Main Profile. During the generation
of the DivX 5.1 bitstreams, the quarter-pel and Global Motion Compensation
(GMC) features were enabled. A YUV-only graphics pipeline was maintained
during the entire encoding and decoding process to avoid an impact of lossy
color space conversions on the resulting quality7.

For a given coded bit rate, the distortion of the decoded sequence is mea-
sured by making use of luma PSNR (relative to the original sequence). This
measure of fidelity is the most widely-used objective video quality metric: it
can be calculated quickly and measurements can be easily compared with other
published results. Luma PSNR is given by the following equation:

PSNR-YdB = 10 · log10

(2n − 1)2

MSE
, (2.1)

where n is the number of bits used to represent the luma component of each
pel and MSE is the Mean Squared Error. The MSE is computed as follows:

MSE =
1

M ·N

M∑
i=1

N∑
j=1

[
f(i, j)− f ′(i, j)

]2
, (2.2)

where M·N is the luma resolution of the picture and f(i, j) (resp. f ′(i, j))
is the value of the original (respectively distorted) pel.

The PSNR-Y measurements allow the registration of all changes intro-
duced by a particular source coding algorithm in the luma domain, even
changes that are not noticeable for the human visual system. Consequently,
PSNR-Y can be considered a quality metric that is sometimes too objective.

7YUV is used in this dissertation as a collective term for digital color spaces based on the
separation of luma and chroma.

30 The H.264/AVC standard for digital video coding

10

15

20

25

30

35

40

45

50

55

60

25 30 35 40 45

PSNR-Y [dB]

%

Foreman Head with Glasses Mobile Mother and Daughter Silent Stefan

Figure 2.12: Bit rate savings of H.264/AVC AHM 2.0 relative to DivX 5.1, shown
per measured quality value (in terms of Y-PSNR) and for all CIF sequences.

However, in most cases, it does correlate well with subjective quality percep-
tion. As such, it is a valid alternative for subjective tests that are typically
difficult to set up.

In Figure 2.12, the bit rate savings of H.264/AVC AHM 2.0 relative to
DivX 5.1 are shown per measured quality value (in terms of PSNR-Y) and for
all CIF sequences (in the legend, Mobile is used as a short for the Mobile and
Calendar test sequence). This figure makes clear that the bit rate savings are
heavily dependent on the type of video content: sequences with similar char-
acteristics do not even yield similar bit rate savings (e.g., Mobile and Calendar
on the one hand and Stefan on the other hand). Significant bit rate savings are
obtained for very low as well as for very high qualities. This confirms the fact
that H.264/AVC is designed to support a wide range of bit rates.

The most remarkable aspect of Figure 2.12 is the fact that the bit rate sav-
ings for Mobile and Calendar are significantly higher than for the other se-
quences. Mobile and Calendar is the most complex video sequence used in the
experiments; it has the notorious reputation of being a benchmark for source
coding algorithms. However, many of the advanced features of H.264/AVC
seem to encode Mobile and Calendar very efficiently.

In Figure 2.13, the average bit rate savings for each sequence are shown.
Putting everything together, H.264/AVC AHM 2.0 achieves an average bit rate
saving of 42% at QCIF resolution and 38% at CIF resolution, if the quality is
measured in terms of PSNR. Although these numbers do not clearly confirm

2.5. Rate-distortion performance 31

0

10

20

30

40

50

60

Mother
and

Daughter

Head with
Glasses

Silent Foreman Stefan Mobile

Sequence

%

CIF
QCIF

Figure 2.13: Average bit rate savings of H.264/AVC AHM 2.0 compared to DivX 5.1,
shown per sequence (in terms of Y-PSNR). Error bars indicate the standard deviation.

Table 2.3: Average bit rate savings for video streaming applications [70].

MPEG-4 Visual ASP H.263 HLP MPEG-2 Video MP

H.264/AVC MP 37.44% 47.58% 63.57%
MPEG-4 Visual ASP - 16.65% 42.95%
H.263 HLP - - 30.61%

the goal of achieving 50% bit rate savings, it does show that significant savings
can be obtained by making use of coding tools available in the H.264/AVC
specification. For a more detailed overview of the results obtained, including
the use of the Just Noticable Difference (JND) quality metric, we would like to
refer the interested reader to [14] and to the dissertation of Peter Lambert [73].

Our observations are also in line with the RD performance results as re-
ported by Wiegand et al. in [70]. A key result for video streaming applications
is shown in Table 2.3, comparing the coding efficiency of the Main Profile
(MP) of H.264/AVC to the Main Profile of H.262/MPEG-2 Video, the High-
Latency Profile (HLP) of H.263, and the Advanced Simple Profile (ASP) of
MPEG-4 Visual for a number of CIF video sequences. These results clearly
indicate that H.264/AVC-compliant encoders may achieve essentially the same
reproduction quality as encoders that are compliant with prior video coding
standards, while typically allowing a reduction of the bit rate with 40 to 60%.

32 The H.264/AVC standard for digital video coding

2.5.2 RD performance of H.264/AVC FRExt

In the first version of H.264/AVC, an integer-valued 4×4 transform is em-
ployed instead of the traditional, 8×8, floating-point Discrete Cosine Trans-
form (DCT). This 4×4 transform, characterized by a low complexity on the
one hand and an exact reversibility on the other hand, especially fits the needs
of low bit rate and low resolution applications. In FRExt, as previously dis-
cussed, an 8×8 extension of the initial 4×4 transform is introduced, which is
more suited for the coding of HD content due to a better preservation of fine
details. This 8×8 transform is one of the key features of the important High
Profile, the successor of the Main Profile. The High Profile is widely adopted
by the industry; it is targeting high-end consumer video applications such as
the efficient storage of HD content.

In [74], a number of performance data are reported that were obtained
during a subjective quality evaluation done by the Blu-ray Disc Association.
This test, based on the use of Mean Opinion Score (MOS) and conducted on
1920×1080 progressive scan film material at 24 frames per second, resulted in
the following observations [59]:

• The High Profile of FRExt produced nominally (due to the use of MOS)
better video quality than H.262/MPEG-2 Video when using only one-
third as many bits (8 Mbps versus 24 Mbps);

• The High Profile of FRExt produced nominally transparent (i.e., diffi-
cult to distinguish from the original video without compression) video
quality at only 16 Mbps.

Note that this test, as well as the experiments presented in the previous sec-
tion, involved the use of very early implementations of H.264/MPEG-4 AVC
encoders compared to, for example, rather mature H.262/MPEG-2 Video en-
coders. As such, these results can be considered a rather conservative estimate.
Indeed, the H.264/AVC standard contains a lot of coding tools that improve
the coding efficiency when used properly, but a lot of experimentation and de-
velopment are still needed to assess how to take advantage of these features
(without excessive encoding times). For instance, multiple reference pictures
and generalized B slice coded pictures are new in commercial encoders, and
there is still a lot of research needed to gain insight in their full potential for
particular applications.

2.6. Conclusions and original contributions 33

2.6 Conclusions and original contributions

H.264/AVC is the newest entry in a long series of standards for digital video
coding. This specification has been developed by the Joint Video Team (JVT),
a cooperation of the ITU-T Video Coding Experts Group (VCEG) and the
ISO/IEC Moving Picture Experts Group (MPEG). The main goals of this stan-
dard for general purpose video coding are an enhanced coding efficiency (tar-
geting an average bit rate reduction of 50% compared to previous video cod-
ing standards, while maintaining a similar visual quality), the provision of a
“network-friendly” video representation (aiming at mobile networks and the
Internet), and a simple syntax specification (targeting simple and clean solu-
tions that avoid the use of an excessive quantity of optional features and profile
configurations).

In this chapter, we first outlined the history of the standardization pro-
cess, describing the different versions of the H.264/AVC standard. Next, an
overview was provided of the profiles that are defined in the H.264/AVC spec-
ification. The research further discussed in this dissertation is particularly fo-
cused on the first version of the H.264/AVC standard. This is mainly due to
the time schedule of this work, which started in the Summer of 2002 when
H.264/AVC was still known as the H.26L project.

Second, we provided an in-depth overview of a number of technical fea-
tures of H.264/AVC, emphasizing the tools and concepts that are important for
a good understanding of the remainder of this dissertation:

• the referencing mechanism between VCL NAL units and the different
types of parameter sets;

• the Annex B syntax, used to separate NAL units in an elementary
H.264/AVC bitstream;

• the use of start code prefix emulation prevention bytes;

• the employment of Exponential Golomb codes for the representation of
high-level syntax elements;

• the use of Supplemental Enhancement Information, which is helpful for
practical decoding or presentation purposes.

Finally, we reported the key results of a number of experiments that were
conducted in the context of this research. These experiments compared the RD
performance of an initial implementation of the first version of the H.264/AVC
specification with the RD performance of a number of implementations of

34 Adaptivity provisions in H.264/AVC

other coding formats. Combining our results with other achievements pub-
lished in the scientific and technical literature, we learned that the coding tools
of the new H.264/AVC design provide approximately a 50% bit rate savings
for equivalent perceptual quality, relative to the performance of prior standards.
This observation is especially true for higher-latency applications, which allow
the use of more advanced motion estimation and motion compensation tech-
niques.

Our contributions in the domain of H.264/AVC video coding can be found
in the following publications. The second paper is an equal contribution among
the first two authors.

1. Dieter Van Rijsselbergen, Wesley De Neve, Rik Van de Walle. GPU-
driven Recombination and Transformation of YCoCg-R Video Samples.
In Proceedings of the Fourth IASTED International Conference on Cir-
cuits, Signals, and Systems (IASTED CSS 2006), pages 21–26, San Fran-
cisco, California, USA, November 2006.

2. Peter Lambert, Wesley De Neve, Philippe De Neve, Ingrid Moerman,
Piet Demeester, Rik Van de Walle. Rate-Distortion Performance of
H.264/AVC Compared to State-of-the-Art Video Codecs. In IEEE
Transactions on Circuits and Systems for Video Technology, 16(1):134-
140, January 2006.

3. Wesley De Neve, Dieter Van Rijsselbergen, Charles Hollemeersch, Jan
De Cock, Stijn Notebaert, Rik Van de Walle. GPU-Assisted Decoding of
Video Samples Represented in the YCoCg-R Color Space. In Proceed-
ings of the 13th ACM International Conference on Multimedia, pages
447–450, Singapore, November 2005.

4. Wesley De Neve, Peter Lambert, Sam Lerouge, Rik Van de Walle. As-
sessment of the Compression Efficiency of the MPEG-4 AVC Specifi-
cation. In Proceedings of SPIE/Electronic Imaging 2004, Volume 5308,
pages 1082–1093, San Jose, California, USA, January 2004.

Chapter 3

Adaptivity provisions in
H.264/AVC

No, there is basically no such limit. Actually I think there is a
limit, but it is kind of big - about 4 trillion frames, which is about
4.5 years of video at 30 frames per second.

Gary J. Sullivan, co-chair of the JVT, regarding the maxi-
mum GOP size in an H.264/AVC bitstream.

3.1 Introduction

In contrast to prior specifications for digital video coding, H.264/AVC can
be seen as a universal standard for the representation of moving pictures: its
coding tools allow covering a wide spectrum of bit rates, ranging from 50 Kbps
for mobile content (176×144, 10-15 Hz) to 8 Mbps for full high-definition
and progressive video content (1080p or 1920×1080, 24 Hz), and beyond.
In addition, taking into account the tools that offer support for an efficient
network integration, error resilience, and bit rate adaptivity, it is likely that
H.264/AVC bitstreams will be deployed in various usage environments.

In this chapter, we outline a number of adaptivity provisions that are avail-
able in the video coding layer of the H.264/AVC standard. In particular, four
content adaptation tools are investigated that are mainly targeting the adap-
tation of pre-encoded content: bitstream switching, Region of Interest (ROI)
coding, quality scalability, and temporal scalability. These adaptivity features
may for instance be used to deal with bandwidth fluctuations, a typical charac-
teristic of present-day best-effort network technologies [75].

36 Adaptivity provisions in H.264/AVC

During the discussion of the aforementioned adaptivity provisions in the
H.264/AVC standard, the emphasis is put on the employment of temporal scal-
ability in H.264/AVC bitstreams. Our motivation is twofold: first, this content
adaptation technique is frequently used further in our research, and second,
the implementation and exploitation of temporal scalability in H.264/AVC can
be considered a topic that has not been extensively studied yet, as it is only
covered by a rather limited number of scientific publications. Finally, before
concluding this chapter, we also give a prospective overview of the adaptivity
features that are offered by the scalable extensions to H.264/AVC.

3.2 Switching pictures for bitstream switching

3.2.1 Background

Video streaming has emerged as one of the most important applications over
the Internet. It is also considered to be one of the killer applications for third
generation wireless networks. However, the best-effort nature of current net-
work technologies often causes variations in the amount of available band-
width. To accommodate these bandwidth fluctuations, a server or intelligent
gateway can scale the bit rate of the compressed video stream that is transmit-
ted to a receiver.

For applications where online encoding is performed and where the en-
coder receives feedback on the available bandwidth of the transmission chan-
nel, bit rate adaptation can be achieved by dynamically changing the quanti-
zation parameter. However, when already encoded content is used, bandwidth
adaptation may require the availability of more than one coded representation
of the same content at different bit rates, or it may require the existence of
non-reference pictures in the coded bitstream for the purpose of temporal scal-
ability. The parallel provision of multiple representations of the same content
is called simulstore in the context of a storage scenario, while it is referred to
as simulcast in the context of multicast-based transmission.

When using simulstore, a server may dynamically switch between the dif-
ferent bitstreams to take into account the variations of the bandwidth available
to the client. In prior video coding standards, perfect (mismatch-free) switch-
ing between bitstreams is only possible at pictures that do not use any infor-
mation prior to their location, i.e. at I pictures1. Switching at P pictures causes
error propagation due to the use of Motion-Compensated Prediction (MCP).
The drawback of using I pictures is that these pictures require a much larger

1In the context of H.264/AVC, we define an I picture as a picture that entirely consists of I
slices. P and B pictures are defined in a similar way.

3.2. Switching pictures for bitstream switching 37

number of bits than P pictures for the representation of content with the same
fidelity (since I pictures do not exploit any temporal redundancy). As such,
a lot of applications try to minimize the amount of I pictures in a bitstream.
Consequently, these applications only allow to switch infrequently between
different representations of the same content.

3.2.2 Switching pictures

As extensively discussed in [66] by Karczewicz and Kurceren, the Extended
Profile of H.264/AVC includes a new feature consisting of two picture types,
namely SP pictures and SI pictures, consisting entirely of SP slices and SI
slices respectively. SP pictures and SI pictures make it possible for a decoder
to switch between representations of the video content that use different data
or picture rates. The coding method as defined for SP and SI pictures allows
to obtain pictures that are having identical reconstructed sample values, even
when different reference pictures are used for their prediction.

Similar to P pictures, SP pictures make use of MCP to exploit temporal re-
dundancy in a sequence of pictures. The difference between SP and P pictures
is that SP pictures allow identical pictures to be reconstructed, even when they
are predicted using different reference pictures. Thanks to this property, SP
pictures can be used instead of I pictures for the implementation of a feature
such as bitstream switching. At the same time, since SP pictures - unlike I
pictures - are using MCP, their representation requires significantly fewer bits
than I pictures to achieve a similar perceptual quality.

Figure 3.1 and Figure 3.2 show how SP pictures can be used to switch
between different bitstreams, respectively encoded at a different bit rate and
temporal resolution. Within each encoded bitstream, SP pictures are placed
at those locations at which switching from one bitstream to another one is al-
lowed (pictures S1,n and S2,n in Figure 3.1). In what follows, such SP pictures
are referred to as primary SP pictures.

Further, for each primary SP picture, a corresponding secondary SP picture
is generated, which has the same identical reconstructed values as the primary
SP picture. A secondary SP picture is sent only during bitstream switching.
In Figure 3.1, the SP picture SP12,n is the secondary representation of S2,n;
it will be transmitted only when switching from bitstream 1 to bitstream 2.
S2,nuses the previously reconstructed pictures from bitstream 2 as reference
pictures, while S1,n uses the previously reconstructed pictures from bitstream
1 as reference pictures. However, thanks to the particular encoding of the
secondary SP picture, the reconstructed values of the pictures S2,n and SP12,n

are identical.

38 Adaptivity provisions in H.264/AVC

bitstream 1 (CIF, 24 Hz, 1 Mbps)

bitstream 2 (CIF, 24 Hz, 500 Kbps)

P2,n-2 P2,n-1 S2,n P2,n+1 P2,n+2

SP12,n

P1,n-2 P1,n-1 S1,n P1,n+1 P1,n+2

SI2,n

Figure 3.1: Use of SP and SI pictures for switching between bitstreams encoded at a
different bit rate [66].

The encoding of secondary pictures is affected when switching occurs be-
tween bitstreams that are representations of different video sequences (e.g.,
bitstreams originating from different cameras capturing the same event but
from different angles). Specifically, MCP of pictures from one bitstream us-
ing reference pictures from another bitstream where both bitstreams represent
different sequences will not be as effective as when both bitstreams corre-
spond to the same sequence. In such cases, using spatial prediction for the
secondary SP pictures could be more efficient. This is also illustrated in Fig-
ure 3.1, where a secondary SP picture is denoted as SI2,n to indicate that this is
a picture encoded with SI slices, using spatial prediction and having identical
reconstructed values as the corresponding secondary SP picture SP12,n and the
primary SP picture S2,n.

SI pictures can also provide random access points to the bitstream, and
have, together with SP pictures, further implications regarding error recovery
and error resilience [66]. For example, multiple representations of a single

3.2. Switching pictures for bitstream switching 39

bitstream 1 (CIF, 24 Hz, 1 Mbps)

bitstream 2 (CIF, 12 Hz, 300 Kbps)

S2,m P2,m+1

SP12,n

P1,n-2 P1,n-1 S1,n P1,n+1 P1,n+2

SI2,n

P2,m+2P2,m-1

P1,n-3 P1,n+3

Figure 3.2: Use of SP and SI pictures for switching between bitstreams encoded at a
different picture rate.

picture in the form of SP pictures predicted from different reference pictures,
e.g. the immediate previously reconstructed picture and a reconstructed pic-
ture further back in time, can be used to increase error resilience and/or error
recovery. Indeed, consider the case in which an already encoded bitstream is
streamed to a client and where packet loss has led to the disposal of a picture
or a slice. The client signals the lost picture to the server, which then responds
by sending one of the secondary representations of the next SP picture. This
secondary representation uses the reference pictures that have been correctly
received by the client, making it possible to prevent or stop error propagation.

To conclude, the use of switching pictures introduces an additional storage
cost at the server. However, their use makes it possible to reduce the bandwidth
consumption in a network while still allowing features such as random access
and fast switching between bitstreams with different characteristics.

40 Adaptivity provisions in H.264/AVC

3.3 FMO for region of interest coding

As previously explained in Chapter 2, the error resilience aspect of slices can
be enhanced through the use of Flexible Macroblock Ordering (FMO). This
technique modifies the way pictures are partitioned into slices and macroblocks
by relying on the concept of slice groups.

A slice group is a subset of the macroblocks in a coded picture and may
contain one or more slices. Within each slice in a slice group, macroblocks are
coded in raster scan order. Multiple slice groups allow mapping the sequence
of coded macroblocks to the decoded picture in a number of flexible ways. The
allocation of the macroblocks is determined by a macroblock to slice group
map that indicates to which slice group each macroblock belongs. This map is
conveyed by a PPS.

FMO allows to split a picture into a number of macroblock scanning pat-
terns such as interleaved slices (FMO type 0), a checker-board type of map-
ping (FMO type 1), and one or more rectangular foreground slice groups and
a background or left-over slice group (FMO type 2). FMO type 1 is useful for
error concealment in video conferencing applications, when the different slice
groups are transmitted in separate packets and when one of the packets gets
lost [15]. Thanks to the organization of the video data, the samples of a miss-
ing slice are surrounded by samples of correctly received and decoded slices.
Consequently, the correctly decoded samples can be used for the reconstruc-
tion of the missing samples.

In Figure 3.3, we illustrate the positive impact of FMO type 1 on the objec-
tive video quality in case of uniform packet loss. The following test setup was
used. The Stefan test sequence was extended by pasting it six times in a row se-
quentially, generating a CIF video sequence with a duration of 60 seconds and
with a frame rate of 30 Hz. This extended sequence was subsequently encoded
by making use of a slice size of 50 macroblocks; a GOP length of 18 pictures;
a GOP structure that takes the form of IBBP. . . ; and QP values of 40/40/42
and 28/28/30 (for I/P/B slices). The chosen QP values represent a low and
a high quality, respectively. The encoding was done once without FMO and
once with FMO type 1 using four slice groups (every slice group contains two
slices). Also, the first picture of the sequence was intra-coded to compensate
for the artificial scene cut. Furthermore, CABAC was used as entropy coding
scheme. If the decoder detects a missing NAL unit, the macroblocks of the
corresponding slice are reconstructed using a spatial interpolation algorithm
provided by the H.264/AVC reference software.

The abbreviation HQ (resp. LQ) in the legend of Figure 3.3 stands for high
quality (resp. low quality), which means that a low (resp. high) quantization

3.3. FMO for region of interest coding 41

20

22

24

26

28

30

32

34

36

0 1 2 5

% packet loss (uniform)

Y
-P

S
N

R
 (d

B
)

HQ: FMO
HQ: No FMO
LQ: FMO
LQ: No FMO

Figure 3.3: Decrease in objective quality due to uniform packet loss.

(a) (b) (c)

Figure 3.4: Example of a tennis game with ROI encoding and adaptation [68].

parameter was used (see above). In Figure 3.3, we observe that the difference
in average Y-PSNR between the cases with and without FMO becomes bigger
when the percentage of uniform packet loss rises. The differences in Y-PSNR
are also bigger when the bitstreams are encoded with high quality. The gains
in Y-PSNR range from 0.2 dB to 3.4 dB with an average of 1.9 dB. For a more
detailed discussion regarding the use of FMO as an error resilience tool, in-
cluding an analysis of its cost in terms of coding efficiency and computational
complexity, we would like to refer the interested reader to [15], [76], and [77].

Besides error resilience, FMO can be used for other purposes as well. For
example, FMO type 2 has been demonstrated useful for employment in ROI
type of applications, allowing to prioritize particular slice groups. Indeed, a
background slice group can be encoded at a lower quality than a more impor-

42 Adaptivity provisions in H.264/AVC

Table 3.1: Achieved bit rate savings by altering the QP inside and outside the ROI for
the Stefan test sequence (in Kbps) [68].

QP region of interest
8 16 24 32 40 48

8 11570 9385 8070 7467 7288 7230
16 8026 5836 4521 3919 3740 3682

QP background 24 5892 3702 2373 1770 1585 1528
32 4913 2719 1384 757 565 508
40 4646 2448 1118 483 267 204
48 4591 2396 1055 418 191 118

tant foreground slice group. This scenario is illustrated in Figure 3.4: in (a) the
entire video sequence is transmitted at full quality, while in (b) the background
is transmitted at a lower quality to save bandwidth. Finally, in (c) the entire
background is dropped in favor of the more important foreground (ROI ex-
traction). However, the removal of slice groups from a coded bitstream is not
allowed by the first version of the H.264/AVC standard. In Chapter 6, we will
outline a workaround for this restriction, based on the use of skipped slices.

FMO type 2, which allows specifying rectangular areas of interest in a
picture, can be used without much overhead compared to bitstreams without
FMO. The cost was less than 1% in most of the experiments described in [68].
Table 3.1 illustrates the variation in bit rate that can be achieved by altering
the QP inside and outside the ROI for the well-known Stefan test sequence (a
screenshot of this test sequence is shown in Figure 3.4). By comparing the bit
rates within a column, one can observe that the bit rate can be significantly
affected by changing the visual quality of the background. For instance, by
taking a QP of 24 for the entire Stefan sequence, which corresponds to a good
quality, the bit rate drops with over 50% if the quantization parameter of the
background is set to 48. By comparing the numbers of Table 3.1 within a row,
one similarly sees how the bit rate changes if the quantization parameter within
the ROI is altered, e.g. by raising the quality of the ROI.

3.4 Data partitioning for SNR scalability

Some coded information (e.g., motion vectors and other prediction informa-
tion) is more important than other information for the purpose of representing
the video content. Therefore, H.264/AVC allows the syntax of each slice to

3.4. Data partitioning for SNR scalability 43

be separated into different partitions for transmission, depending on a catego-
rization of the syntax elements. This feature is known as data partitioning. Its
main purpose is to be used as an error resilience tool for the transmission of
coded video over channels that allow selective protection of the different parti-
tions (Unequal Error Protection; UEP) [75]. As such, data partitioning allows
enhancing data loss robustness without harming coding efficiency.

When data partitioning is in use, the coded data of each slice is split up
into three partitions, and each partition is put into a separate NAL unit (each
having a different NAL unit type). The following partitions are defined by the
H.264/AVC specification:

• partition A contains the slice header, macroblock types, quantization
parameters, prediction modes, and motion vectors;

• partition B contains the residual data of intra-coded macroblocks;

• partition C contains the residual data of inter-coded macroblocks.

Obviously, the loss of individual partitions still results in error propagation.
The information contained in partitions B and C is useless for error resilience
purposes at the decoder if the corresponding partition A is not present. How-
ever, even when partitions B and C are missing, the information in partition A
can still be used for error concealment purposes at the decoder. Consequently,
partition A is independent of partitions B and C. In [18], we show that par-
tition B is independent of partition C when constrained intra prediction is in
use. Constrained intra prediction restricts an encoder to only use information
from other intra-coded macroblocks for intra prediction on the one hand and
for entropy coding using CAVLC on the other hand.

Data partitioning, although not a true form of scalable coding, also pro-
vides means for partitioning the coded video data into a number of priority
classes: essential data and additional data. This simple and low penalty tech-
nique2 for generating layers of data can be exploited to reduce the bit rate of
a bitstream for a particular usage environment, offering a coarse but efficient
method for quality scalability3.

In Table 3.2, we report a number of performance data when using data par-
titioning for the implementation of quality scalability in the first version of the
H.264/AVC standard, coping with bandwidth fluctuations in video conferenc-
ing applications. The results are obtained for the Silent test sequence (QCIF;
15 Hz), encoded at 256 Kbps and with an IDR period of 25 pictures. Data

2The overhead of data partitioning is in general less than 1% of the total bit rate [78].
3Note that the adapted bitsteams are no longer compliant with the H.264/AVC standard.

44 Adaptivity provisions in H.264/AVC

Table 3.2: Selected bit rates and PSNR values when using data partitioning for SNR
scalability, targeting video conferencing applications. The achieved bit rates are ex-
pressed in Kbps while the luma PSNR is given in terms of decibels (dB).

partition IMBR 0 IMBR 5 IMBR 10
rate PSNR costa rate PSNR cost rate PSNR cost

A & B & C 256.4 45.1 - 256.3 43.0 - 256.4 41.2 -
A & B 113.8 31.6 38.6 151.7 32.8 38.7 177.3 33.8 38.4
A 97.5 26.6 37.6 94.4 26.1 35.3 93.2 25.9 33.7

aCost refers to the PSNR obtained for the sequence, encoded using all partitions at the lower
rates given in the table. It shows the ‘price’ of providing SNR scalability using data partitioning.

(a) (b) (c)

Figure 3.5: Example of SNR scalability using data partitioning, shown for frame 75
of the Silent test sequence: (a) no data partitioning; (b) disposal of partition C; and (c)
disposal of partition B and C (showing ghosting artifacts). A value of 5 is used for the
IMBR parameter.

partitioning and constrained intra prediction were enabled, as well as RD op-
timization. Missing information, due to the removal of certain partitions, was
reconstructed as follows [18]: for a missing C partition, the residual informa-
tion for inter-coded macroblocks is assumed to be zero. When the B partition is
missing as well, intra-coded macroblocks are copied from the previous frame.
Inter-coded macroblocks are still decoded as usual (i.e., using MCP), except
for the residue, which is assumed to be zero.

Also, Random Intra Macroblock Refresh (IMBR) was used, which forces
an encoder to insert a given number of intra-coded macroblocks in P or B
slice coded pictures. For example, when IMBR is set equal to 10, besides
the macroblocks for which the mode decision algorithm had decided to use
intra prediction, at least 10 randomly chosen macroblocks per picture will be
intra-coded as well. A number of representative screenshots are provided in
Figure 3.5. For more comprehensive results regarding the use of data parti-
tioning in general and for the implementation of SNR scalability in particular,
we would like to refer the interested reader to [78] and [18], respectively.

3.5. Multi-layered temporal scalability 45

3.5 Multi-layered temporal scalability

3.5.1 Background

Digital video coding involves the accurate reproduction of color and the fluent
representation of motion. Temporal scalability, which is also known as pic-
ture dropping or bitstream thinning, influences the smoothness of the motion
representation: it refers to the ability to remove some coded pictures from a
bitstream while still obtaining a decodable remaining sequence of pictures.

Temporal scalability is typically implemented by organizing the coded pic-
tures in multiple layers. By combining these layers, the full temporal resolu-
tion can be offered, as available in the original video sequence. Since the input
picture rate is partitioned between the base layer and the different enhancement
layers, a decoder does not need to be much more complex than a single-layered
decoder in order to support temporal scalability features. This is for instance
in contrast to a decoder which needs to support spatial scalability features; its
design typically includes additional logic for the purpose of upsampling, et
cetera.

Several applications may benefit from a tool such as temporal scalabil-
ity [79].

• A first application is rate shaping, which has the objective to match the
bit rate of a coded video bitstream to the target rate constraint. Many net-
works are not capable of providing channels with a constant throughput.
Thus, many streaming servers monitor the network conditions and ad-
just the amount of transmitted data accordingly. As temporal scalability
offers flexibility in bandwidth partitioning between different layers, one
way to control the bit rate of the transmitted bitstream is to decide which
temporal enhancement layers can be transmitted on top of the base layer.

• A second application of temporal scalability is UEP. In order to apply
UEP, video bitstreams have to be organized in portions of different im-
portance of visual quality. Techniques achieving this goal include data
partitioning and scalable or layered coding.

• Temporal scalability also enables lowering the complexity of the decod-
ing process. This is for instance useful for applications requiring a tran-
sition from high to low temporal resolution progressive video formats
(e.g., from 720p content encoded at 60 Hz to 720p content encoded at
30 Hz).

In the remainder of this section, which partly follows the structure of [80],
we first explain how temporal scalability is realized in traditional video coding

46 Adaptivity provisions in H.264/AVC

formats. Next, the format-independent concepts of sub-sequences and sub-
sequence layers are introduced. Finally, we discuss into detail how the concept
of sub-sequences and sub-sequence layers can be employed in H.264/AVC.

3.5.2 Conventional temporal scalability

Individually disposable pictures

In video coding formats such as MPEG-1 Video and H.262/MPEG-2 Video,
bi-directionally coded pictures (B pictures) provide an inherent form of tempo-
ral scalability. These pictures are placed outside the decoding loop, allowing
shortcuts to be taken during the decoding process without causing drift or long-
term visual artifacts. A similar functionality can be achieved in H.264/AVC by
making use of non-reference B pictures, i.e. pictures that only consist of non-
reference B slices.

The identification of non-reference B pictures in H.264/AVC requires
checking the value of the nal ref idc syntax element in the NAL unit
header4 and the value of the slice type syntax element in the slice header
syntax structure. Note that two values may be used for signaling the property
that a slice is bi-directionally coded: a value of one for slice type implies
that other slice types may occur in the coded picture the slice belongs to, while
a value of six implies that all other slices are bi-directionally coded as well (a
similar remark can be made for the other slice types).

The detection of all B slices in a bitstream implies that all slices need to be
checked. As such, the complexity of this process is determined by the number
of slices in a bitstream, and not by the number of pictures. The computational
complexity of this analysis step may be simplified using an access unit de-
limiter NAL unit. Such a NAL unit signals the boundaries of an access unit
and it also conveys the type of the primary picture in the access unit. How-
ever, this syntax feature is not used in practice at the time of writing. Similar
functionality may be provided using SEI messages (see below).

The enhanced reference picture selection mode (Annex U) of H.263 al-
lows signaling whether a particular picture is used as a reference picture, i.e.
whether this picture is used for the prediction and reconstruction of other pic-
tures. Consequently, a picture that is not used for prediction (a non-reference
picture) can be safely disposed. The H.264/AVC syntax also includes a signal-
ing mechanism to distinguish between reference and non-reference pictures,
independent of the coding type of the slices constituting these pictures - this
is, by means of the nal ref idc syntax element in the NAL unit header.

4nal ref idc equal to zero for a NAL unit containing a slice or slice data partition indi-
cates that the slice or slice data partition is part of a non-reference picture.

3.5. Multi-layered temporal scalability 47

I1
...

output order

P2 P3 P4 P5

GOP / prediction chain

I6

Figure 3.6: Disposal of picture chains.

Implementing temporal scalability by relying on nal ref idc results in
a limited expressive power. This may already be sufficient for some applica-
tions. However, more expressive power is needed when layered bitstreams are
employed. These bitstreams are typically constructed using inter-layer predic-
tion mechanisms to improve the coding efficiency: typically, only the pictures
in the topmost enhancement layer are then communicated as non-reference
pictures to a decoder or a bitstream extractor (see below).

Disposal of picture chains

A known method to deal with a drastically dropped network bandwidth is to
transmit intra-coded pictures only. When the network throughput is restored,
inter-coded pictures can be transmitted again from the beginning of the next
GOP. Generally, any chain of inter-coded pictures can be disposed safely if no
other pictures are predicted from them. This observation can be utilized to treat
inter-coded pictures at the end of a prediction chain less important than other
inter-coded pictures (in coding order). This is illustrated in Figure 3.6, showing
a typical coding pattern as it may be used in an MPEG-4 Visual bitstream for
the purpose of video conferencing applications. A picture chain consisting of
the inter-coded pictures P3, P4, and P5 is discarded to cope with bandwidth
congestion (the picture index denotes the output order). It is clear that the
flexible design of H.264/AVC allows realizing such bandwidth control as well.

3.5.3 Sub-sequences and sub-sequence layers

Definition

Sub-sequences and sub-sequence layers are defined independently of the cod-
ing format used. A sub-sequence [80] represents a number of inter-dependent
pictures that can be disposed without affecting the decoding of any other sub-
sequence in the same sub-sequence layer or any sub-sequence in any lower

48 Adaptivity provisions in H.264/AVC

...

output order

I0

b1

P6

sub-sequence 2

P3

b2 b4 b5

sub-sequence 1

sub-sequence 0

sub-sequence layer 0

sub-sequence layer 1

...

output order

I0

P1

P8P4

P3

sub-sequence 1

sub-sequence 0

sub-sequence layer 0

sub-sequence layer 1

(a)

(b)

p2 P5 P7

sub-sequence 2

p6

Figure 3.7: Example of sub-sequences: (a) coding pattern IbbPbbP. . . ; (b) coding
pattern IPpPPPpPP. . .

sub-sequence layer. Sub-sequences were introduced in [81] by Miska Han-
nuksela as the enhanced concept of a GOP. Indeed, in contrast to a GOP, a
sub-sequence does not have to start with an intra-coded picture. Furthermore,
arbitrary temporal prediction structures are allowed within a sub-sequence to
improve the coding efficiency.

A sub-sequence is a set of coded pictures within a sub-sequence layer.
Such a sub-sequence layer contains in its turn a subset of the coded pictures in
a video sequence. The layers can be ordered hierarchically based on their de-
pendency of one another. The base layer is independently decodable. The first
enhancement layer depends on some of the data in the base layer. The second
enhancement layer depends on some of the data in the first enhancement layer
and in the base layer and so on.

Use of sub-sequences and sub-sequence layers

Pictures in a coded bitstream can be assigned to sub-sequences and sub-
sequence layers in numerous ways, provided that the coding structure used
fulfills the requirements for dependencies between sub-sequences and sub-
sequence layers: each picture belongs to exactly one sub-sequence, and each
sub-sequence belongs to exactly one sub-sequence layer. Two possible sub-
sequence configurations are visualized in Figure 3.7. A capital letter denotes a

3.5. Multi-layered temporal scalability 49

reference picture; a small letter indicates a non-reference picture. The second
coding structure is adopted from [80]5. The picture index denotes the output
order.

Sub-sequence layers are numbered with non-negative integers. Number
zero denotes the base layer. The first enhancement layer is associated with
number one and each additional enhancement layer increments the layer num-
ber by one. A sub-sequence identifier is assigned to sub-sequences. Consec-
utive sub-sequences (within the same sub-sequence layer) should not have the
same identifier, but no other numbering rule for sub-sequence identifiers is
necessary.

Only entire sub-sequences and non-reference pictures should be disposed.
When disposing a sub-sequence, any sub-sequence depending on the disposed
one should be discarded as well. As such, the result of the disposal of a sub-
sequence or sub-sequence layer is a valid bitstream. The decoding process for
the remaining bitstream and the decoded picture buffer handling in particular
is such that it does not depend on the presence or absence of any disposable
sub-sequences or sub-sequence layers.

Since a sub-sequence in the base layer can be decoded independently, the
start of a base layer sub-sequence can be used as a random access position
(closed GOP). Implementations of fast forward functionality can for instance
make use of this property. Further, the subjective quality, in terms of motion
smoothness, increases along with the number of decoded enhancement layers.

3.5.4 The sub-sequence concept in H.264/AVC

The flexible design of the H.264/AVC standard introduces a number of nov-
elties that make the achievement of temporal scalability in this coding format
more challenging than in its predecessors.

1. The fundamental unit of processing in the VCL of H.264/AVC is a slice.
Consequently, the H.264/AVC specification only defines slice types, and
not pictures types. As such, stricto senso, a B picture for instance does
not exist in the H.264/AVC standard.

2. Any coded picture other than an IDR picture may contain I, P, or B slices
in any combination (dependent on the profile used).

3. Whether or not a picture is used as a reference picture is indicated inde-
pendently from the signaling of the slice types, which implies that a B
slice coded picture can for instance be stored as a reference picture.

5In the context of H.264/AVC, the first coding pattern is compliant with its Main Profile,
while the second coding structure is compliant with the Baseline Profile.

50 Adaptivity provisions in H.264/AVC

sub-sequences and sub-
sequence layers

coding
(e.g., hierarchical B pictures)

signaling
(e.g., SEI messages)

concept

implemen-
tation

Figure 3.8: Schematic overview of the use of sub-sequences and sub-sequence layers
in H.264/AVC.

4. The decoding order of pictures is completely decoupled from their out-
put order, which for instance implies that a B slice can have all of its
references in the past.

5. P and B slices allow the use of multiple reference pictures for the pre-
diction of sample values. P slices can use at most one prediction signal
for a block of samples, whereas B slices can use at most two prediction
signals for the prediction of a block of samples.

Most of the aforementioned features aim at enabling complex prediction
structures in order to achieve a maximum coding efficiency. However, the tem-
poral dependencies introduced by these complex prediction structures may sig-
nificantly reduce the number of adaptation steps that can be performed along
the temporal axis of H.264/AVC bitstreams. To allow the use of complex pre-
diction strategies on the one hand and to enable temporal adaptation features
on the other hand, sub-sequences and sub-sequence layers can be created and
signaled in H.264/AVC bitstreams.

Before describing the creation and signaling of sub-sequences and sub-
sequence layers in H.264/AVC, the semantics of two syntax elements are dis-
cussed that are important in the context of the disposal of reference pictures.
This discussion is based on [80] and [82], as well as on technical discussions
conducted on the JVT Experts6 and MP4-Tech7 reflectors. Finally, provided as
a hold, Figure 3.8 gives a schematic overview of the practical use of the sub-
sequence and sub-sequence layer concepts in the context of the H.264/AVC
video coding format.

6http://mailman.rwth-aachen.de/mailman/listinfo/jvt-experts
7http://www.m4if.org/public/publiclistreg.php

http://mailman.rwth-aachen.de/mailman/listinfo/jvt-experts
http://www.m4if.org/public/publiclistreg.php

3.5. Multi-layered temporal scalability 51

Semantics of frame num

The frame num syntax element in the slice header syntax structure is used to
keep track of the reference pictures in an H.264/AVC bitstream. The behavior
of this syntax element depends on whether a picture is used as a reference pic-
ture or not, which is communicated by the nal ref idc syntax element in
the header of a NAL unit: frame num acts as a counter that is incremented
after the decoding of a reference picture8. This simple process enables a de-
coder to detect the loss of one or more reference pictures and to possibly apply
error concealment techniques without losing track of what is going on.

Since the proper decoding of a non-reference picture is not necessary for
the proper decoding of subsequent pictures, frame num was designed so
that a missing non-reference picture would not cause frame num to indi-
cate the presence of a problem when a non-reference picture is missing (i.e.,
frame num is not incremented after the decoding of a non-reference picture).
The value of frame num is reset to zero whenever a new coded video se-
quence begins, as well as when this counter reaches its maximum. This maxi-
mum is indicated in the active SPS by log2 max frame num minus4.

The frame num parameter is primarily a loss robustness feature: it pro-
vides a form of robustness to transmission-channel losses of reference pictures.
However, besides error concealment purposes, frame num can also be used
for the purpose of content adaptation, e.g. to assist in the identification of par-
ticular temporal enhancement layers. Chapter 5 illustrates such functionality.

Semantics of gaps in frame num value allowed flag

The gaps in frame num value allowed flag syntax element in an
SPS informs a decoder whether gaps in the frame num syntax element are
allowed or not - this is, whether the loss of reference pictures is intentional or
not. Unexpected loss of reference pictures can for instance be due to packet
loss in a congested network. Reference pictures can also be disposed inten-
tionally by a streaming server or a gateway.

• A value of one for gaps in frame num value allowed flag in
the active SPS signals to a decoder that intentional disposal of refer-
ence pictures is allowed. In this context, decoders shall not infer an
unintentional picture loss immediately when a missing picture number
is detected but will rather update the decoded picture buffer so that the
default index order remains the same as in the encoder. Otherwise, incor-
rect reference pictures may be used for the reconstruction of remaining

8A better name for frame num would probably have been ref pic num.

52 Adaptivity provisions in H.264/AVC

pictures. An update of the decoded picture buffer is realized by inserting
a so-called “non-existing” picture in this buffer, as if the pictures with
an absent value for frame num were received and decoded normally.
Unexpected pictures losses can still be deduced when “non-existing”
reference pictures are referred to in the subsequent decoding process.

• A value of zero for gaps in frame num value allowed flag
in the active SPS informs a decoder that reference pictures may not be
missing. When a decoder detects a lost reference picture (by monitor-
ing the continuity of the values of frame num), it may invoke an error
concealment process, and it may subsequently insert an error-concealed
picture into the decoded picture buffer. Such concealment may be con-
ducted by copying the closest temporally preceding picture that is avail-
able in the decoded picture buffer into the position of the missing picture.
Decoders shall infer an accidental picture loss if any “invalid” picture is
referred to in motion compensation.

This definition provides a well-defined decoder behavior for environments
in which the system operation may result in the loss of reference pictures. For
such a case, it might not really be necessary to specify how the decoder would
respond to a picture loss - however, this feature allows the encoder to decide
whether the decoder should interpret the loss of a picture as a real problem or
not (by setting the value of gaps in frame num value allowed flag
to zero or one). Further, it allows the encoder to understand how the decoder
will respond to such events, which can be beneficial to know for various pur-
poses (e.g., motion compensation using an error-concealed reference picture).

Note that the way the decoder responds to a missing reference picture when
gaps in frame num value allowed flag is equal to one may often
also be a good way for the decoder to respond to a missing reference pic-
ture when gaps in frame num value allowed flag is equal to zero.
However, when gaps in frame num value allowed flag is equal to
zero, it is at the discretion of the individual decoder designer to decide how the
decoder should respond to missing reference pictures.

Coding of sub-sequences

In contrast to previous standards for video coding, the coding and output order
of pictures in H.264/AVC is completely decoupled. Also, any picture can be
marked as a reference picture and can be used for the prediction of subsequent
pictures independent of the corresponding slice types. These novel features in

3.5. Multi-layered temporal scalability 53

I0

b5 b5

B4

B2

b5 b5

B3

P1

I0 P1 B2 B3 B4 b5 b5 b5 b5

...

output order

sub-sequence layer 0

sub-sequence layer 1

sub-sequence layer 2

sub-sequence layer 3

decoding order

Figure 3.9: Hierarchical coding pattern with four temporal levels. Each picture is
tagged with the value of the frame num syntax element.

H.264/AVC, among other ones, allow the creation of arbitrary prediction struc-
tures, which are not supported by prior video coding standards. This flexibility
in terms of possible coding structures makes it possible to organize the pictures
in a bitstream to sub-sequences and sub-sequence layers in multiple ways.

Sub-sequences in H.264/AVC are typically created by relying on a hierar-
chical coding pattern. This is a coding structure in which the use of reordering
between picture decoding order and picture output order takes the form of
building up a coarse-to-fine structuring of temporal dependencies. For exam-
ple, as shown in Figure 3.9, there might be a first conceptual layer consisting
of an I picture followed by P pictures at a very low picture rate. Then a sec-
ond conceptual layer can be created that consists of B pictures that are inserted
between the pictures of the first layer in output order, using the pictures of
the first layer (and possibly some preceding pictures of the second layer also)
as references for the decoding process. It is easy to see that this technique
can be repeated for an arbitrary number of enhancement layers, resulting in
multi-layered temporal scalability. The pictures of the various layers are inter-
leaved in the bitstream in a manner ensuring that all references needed by each
picture are found at earlier positions in decoding order and ensuring that the
total amount of decoded picture buffer memory does not exceed the capacity
specified for the given profile and level.

B pictures are often used to implement hierarchical coding patterns [83,
84]. These B pictures are usually referred to as hierarchical B pictures and the

54 Adaptivity provisions in H.264/AVC

I0

b6 I8

B7

B5

b1 b3

P2

P9

I0 I8 P9 B5 P2 b1 b3 B4 B7

...

output order

sub-sequence layer 0

sub-sequence layer 1

sub-sequence layer 2

sub-sequence layer 3

decoding order

B4

b6

Figure 3.10: Explicit coding pattern (note that the representation of a picture may
consist of multiple slices, where each slice has a different coding type).

resulting coding technique as pyramid coding. However, if coding efficiency
is less important than encoding and decoding complexity, hierarchical I or P
pictures can be used as well, or a mix of the different types. Such coding struc-
tures are referred to as explicit coding patterns. An example coding pattern,
using hierarchical B pictures and offering four temporal levels, is shown in
Figure 3.9. Figure 3.10 visualizes an explicit coding structure. Dashed boxes
are used to denote the sub-sequences. The picture index denotes the display
order.

The pattern shown in Figure 3.9 is an example of a dyadic, hierarchical
prediction structure with four different layers9. The use of hierarchical cod-
ing structures is not restricted to the dyadic case. Furthermore, the prediction
structure can be adjusted over time. Also, the concept of multiple reference
pictures can be combined with hierarchical coding structures. In Figure 3.9,
only neighboring pictures of a coarser or the same temporal level are used for
MCP. Note that a hierarchical coding pattern is typically a good structure in
terms of coding efficiency, but not in terms of end-to-end delay, unless MCP is
restricted from using pictures as a reference that are located in the future [84].

For more details regarding the use of sub-sequences in the H.264/AVC
video coding format, we would like to refer the interested reader to [80]. In
this paper, the authors demonstrate that the temporal scalability features of

9Dyadic means that the number of pictures in every temporal enhancement layer is equal to
the number of pictures residing in the lower layers, minus one. Consequently, the removal of
an enhancement layer results in halving the picture rate.

3.5. Multi-layered temporal scalability 55

Table 3.3: Sub-sequence information SEI message syntax [55].

sub seq info(payloadSize) { C Descriptor
sub seq layer num 5 ue(v)
sub seq id 5 ue(v)
first ref pic flag 5 u(1)
leading non ref pic flag 5 u(1)
last pic flag 5 u(1)
sub seq frame num flag 5 u(1)
if(sub seq frame num flag)

sub seq frame num 5 ue(v)
}

H.264/AVC allow for a wider range of bit rate scaling compared to the more
traditional techniques for picture dropping, without having to sacrifice cod-
ing efficiency. This is thanks to the flexible picture referencing mechanism of
H.264/AVC, which makes it possible to efficiently reduce the temporal corre-
lation in and between the temporal enhancement layers.

Signaling of sub-sequences

One of the design goals of the sub-sequence feature was to make the decoding
process unaware of the hierarchical nature of a bitstream. Consequently, no
layer number is added to the bitstream syntax or plays a role in the decoding
process. In other words, the introduction of sub-sequences and sub-sequence
layers required no changes to be made to the VCL syntax of H.264/AVC.

The use of SEI messages is the recommended technique to inform a bit-
stream extractor or decoder about the hierarchical coding structure of a bit-
stream, which is expressed in terms of sub-sequences and sub-sequence layers.
Three types of SEI messages are defined for sub-sequences [55].

• The sub-sequence information SEI message10, of which the syntax is
shown in Table 3.3, is used to indicate the position of its associated pic-
ture in the data dependency hierarchy that consists of sub-sequence lay-
ers and sub-sequences. As such, this message maps a coded picture to
a certain sub-sequence (by means of the sub seq id syntax element)
and sub-sequence layer (by means of the sub seq layer num syntax
element). The use of sub-sequence information SEI messages is illus-
trated by Figure 3.11. A label Ci,j has the following meaning: C denotes

10Sub-sequence information SEI messages shall not be present unless
gaps in frame num value allowed flag in the SPS referenced by the picture
associated with the sub-sequence information SEI message is equal to one.

56 Adaptivity provisions in H.264/AVC

the coding type of a slice, i indicates the value of frame num, and j
represents the top-down order of the slice within a picture. A label Sk

has the following meaning: S denotes a sub-sequence information SEI
message, while k represents the sub-sequence layer identifier11.

• The sub-sequence layer characteristics SEI message and the sub-
sequence characteristics SEI message are two SEI messages that pro-
vide statistical information (e.g., bit rate) on the indicated sub-sequence
layer and sub-sequence respectively. Furthermore, the dependencies be-
tween sub-sequences can be indicated in the sub-sequence characteris-
tics SEI message. For instance, this SEI message may contain a list
of sub-sequences needed for the reconstruction of the pictures in the
sub-sequence that is the target of the sub-sequence characteristics SEI
message in question.

Decoders can use the sub-sequence-related SEI messages to reduce the
complexity of the decoding process in case of a lack of computational re-
sources. Also, these SEI messages provide a low-complexity solution for,
among other use cases, streaming servers to dispose certain bitstream segments
to meet bandwidth constraints. Indeed, the subsequence-related SEI messages
abstract the bitstream syntax: the streaming server only needs to have knowl-
edge about the NAL syntax of the H.264/AVC coding format, and not about
the VCL syntax to discard particular bitstream segments.

Decoders may also detect in which sub-sequences and sub-sequence
layers accidentally lost pictures reside (e.g., due to transmission errors),
thus improving error resilience. This is done by monitoring the continu-
ity of the sub seq frame num syntax element, which is optionally con-
veyed by a sub-sequence information SEI message (see Table 3.3). The
sub seq frame num syntax element has similar semantics as frame num:
it acts as a counter that is incremented when the picture associated with the
sub-sequence information SEI message is used as a reference. As such, gaps
in sub seq frame num signal the unintentional loss of a reference picture
in a sub-sequence. The main difference with the frame num syntax element
lies in the fact that sub seq frame num is defined within the context of a
sub-sequence and not within the context of a coded video sequence12.

11For the sake of completeness, it is noteworthy that Memory Management Control Operation
(MMCO) commands may only occur in the base layer. These instructions are used to adjust the
default operation of the reference lists in a decoder.

12sub seq frame num is reset to zero whenever a new sub-sequence begins. This is in
contrast to frame num: its value is reset whenever a new coded video sequence starts.

3.5. Multi-layered temporal scalability 57

I0,0

I0,1

I0,2

B2,0

B2,1

B2,2

b3,0

b3,1

b3,2

b3,0

b3,1

b3,2

P1,0

P1,1

P1,2

S0

S2 S2

S1

S0

output order

...

I0,0

I0,1

I0,2

S0

P1,0

P1,1

P1,2

S0

B2,0

B2,1

B2,2

S1

b3,0

b3,1

b3,2

S2

b3,0

b3,1

b3,2

S2

decoding order

...

0x00 0x000001 SPS 0x00 0x000001 PPS 0x00 0x000001 S0 0x00 0x000001 I0,0

0x00 0x000001 I0,1 0x00 0x000001 I0,2 0x00 0x000001 S0 0x00 0x000001 P1,0

0x00 0x000001 P1,1 0x00 0x000001 P1,2 0x00 0x000001 b2,2

byte stream NAL unit

... ...

bitstream order

Figure 3.11: Use of sub-sequence information SEI messages for assigning a picture
to a sub-sequence and a sub-sequence layer.

3.5.5 Summary

Thanks to the flexible design of the H.264/AVC video coding standard, several
solutions are possible for the exploitation of temporal scalability, dependent
on the targeted application and the features offered by a coded H.264/AVC
bitstream. Similar observations can be made for other functionalities as well,
such as the use of random access points in an H.264/AVC bitstream.

In this section, based on the information provided in the previous sections,
we summarize six methods that can be used to exploit (multi-layered) tem-
poral scalability in H.264/AVC. A clear insight in this adaptation process is
fundamental for a good understanding of the use cases discussed further in
this dissertation. The different temporal adaptation techniques will be mainly

58 Adaptivity provisions in H.264/AVC

first_mb_in_slice slice_type frame_num

NAL unit header

...pic_parameter_set_idforbidden_zero_bit nal_ref_idc nal_unit_type

NAL unit payload

MB ... MB

(2) (3) (4) (6)

slice header slice data

VCL syntaxNAL syntax

Figure 3.12: Level of detail needed by a number of temporal adaptation techniques.

discussed from the point of view of a bitstream parser, which may be part of
a streaming server or which may be running on an intermediate network node.
For a number of these techniques, the level of detail regarding the knowledge
needed about the bitstream syntax is also visualized in Figure 3.12.

1. Bitstream switching using switching pictures is a first technique to adapt
H.264/AVC bitstreams in the temporal domain. This approach does not
imply the explicit removal of certain bitstream segments.

2. For the removal of non-reference pictures in an H.264/AVC bitstream, it
is sufficient to parse a bitstream at the level of the NAL unit headers; the
values of the nal ref idc and nal unit type syntax elements are
used to identify the NAL units that belong to non-reference pictures.

3. For the elimination of non-reference B slice coded pictures, which is
the traditional view of temporal scalability, it is necessary to parse up to
and including the second syntax element of every slice header: the value
of slice type is required to identify the B slices in a bitstream; the
value of nal ref idc is needed to verify whether a B slice is used as a
reference or not; and the value of nal unit type is necessary to de-
tect whether a NAL unit conveys a coded slice. This approach assumes
that all slices of a picture share the same coding type. As previously
discussed, the bitstream structure analysis can be simplified when ac-
cess unit delimiters or SEI messages (see below) are employed in an
H.264/AVC bitstream.

4. For discarding sub-sequence layers, implemented by using hierarchi-
cal B slice coded pictures but not signaled by using SEI messages, it
is necessary to parse up to and including the fourth syntax element of
every slice header; the values of nal ref idc, nal unit type,
slice type, and frame num are necessary to determine to which
layer the slices of a particular picture belong to.

3.6. The scalable extensions to H.264/AVC 59

5. For the SEI-driven disposal of sub-sequence layers, implemented by us-
ing a hierarchical coding pattern, it is sufficient to parse the bitstream at
the level of the NAL unit headers. NAL units containing SEI messages
have to be parsed completely. This can be considered the most elegant
way to exploit multi-layered temporal scalability in H.264/AVC.

6. For the exploitation of temporal scalability using placeholder slices, it is
necessary to completely parse every slice header (to know the bit bound-
ary between the slice header() and the slice data() syntax
structures). This technique is discussed in more detail in Chapter 6.

3.6 The scalable extensions to H.264/AVC

The JVT is currently in the process of finishing a new set of extensions to the
H.264/AVC standard, called Scalable Video Coding (SVC)13. SVC addresses
coding schemes for reliable delivery of video to diverse clients over hetero-
geneous networks, and in particular in scenarios where the downstream client
capabilities, system resources, and network conditions are not known in ad-
vance. For example, clients may have different display resolutions, systems
may have different caching or intermediate storage resources, and networks
may have varying bandwidths and loss rates.

In the next two sections, for the sake of completeness, we give a brief
overview of the design goals of the SVC amendment. We then proceed with
giving an outline of its most important technical features. For more detailed
information regarding SVC, we would like to refer the reader to [86], which is
a document containing a draft of the SVC amendment, and to the Joint Scal-
able Video Model (JSVM) [87], which is a document containing background
information regarding some of the algorithms and tools used in SVC14. It is
expected that the SVC amendment will reach technical maturity around the
beginning of 2007.

3.6.1 Design philosophy and technical features

The purpose of the SVC amendment is to define a limited number of coding
tools on top of the H.264/AVC standard, offering several types of scalabil-
ity at the level of a single bitstream [59]. The SVC design builds upon an

13In this dissertation, SVC is used to refer to the scalable extensions to H.264/AVC. However,
SVC is sometimes used to refer to the more global concept of scalable video coding as well [85].

14In March 2007, a special issue of IEEE Transactions on Circuits and Systems for Video
Technology will appear on SVC.

60 Adaptivity provisions in H.264/AVC

H.264/AVC-compatible base layer, and recycles existing building blocks such
as motion compensation, transform coding, quantization, and entropy coding.

• The first version of the H.264/AVC standard already has extensive sup-
port for temporal scalability. For instance, hierarchical B pictures allow
the straightforward creation of an H.264/AVC bitstream with multiple
temporal enhancement layers. A high coding efficiency can be obtained
thanks to the fact that most of the advanced prediction techniques of
H.264/AVC can still be used to minimize the temporal correlation across
the different enhancement layers. Therefore, SVC inherits the features
for temporal adaptation that were already present in the first version of
H.264/AVC. Only a limited number of additional syntax elements are
introduced in the VCL to communicate the different temporal enhance-
ment layers to a decoder or bitstream extractor (see below).

• Two different types of quality scalability are defined in the SVC amend-
ment. The concept of scaling the visual content quality by omitting
the transport and decoding of entire enhancement layers is denoted as
Coarse-Grained quality Scalability (CGS). In some cases, the bit rate
of a given enhancement layer can be reduced by truncating bits from
individual NAL units. Truncation leads to a graceful degradation of
the video quality of the reproduced enhancement layer. This concept
is known as Fine-Grained quality Scalability (FGS).

• The first version of the H.264/AVC standard offers little support for spa-
tial scalability: an adjustment of the spatial resolution of a bitstream is
only possible by sending a new IDR picture and a new SPS (and eventu-
ally new PPSs) to switch to a different bitstream having another spatial
resolution. Therefore, the SVC amendment incorporates a number of
more advanced spatial scalability features, for instance allowing to re-
duce the spatial resolution of a bitstream from 4CIF (704×576) to CIF
(352×288) using straightforward bitstream editing operations. Similar
to the implementation of temporal scalability, cross-layer techniques are
used to reduce the redundancy between different spatial enhancement
layers, such as inter-layer prediction of residual data [31, 36]. Further,
SVC also aims at offering support for features such as non-dyadic spa-
tial scalability and cropping, which are denoted by the collective term
Extended Spatial Scalability (ESS).

• FMO type 2 allows to make a distinction between different regions of
importance in a sequence of pictures. This property can be exploited by
encoders, which may assign a large bit budget to the regions of interest

3.6. The scalable extensions to H.264/AVC 61

and a small bit budget to the regions of disinterest. At first sight, this cod-
ing tool may be employed to implement ROI scalability - this is, to en-
able the extraction of one or more ROIs from an H.264/AVC bitstream.
However, the first version of the H.264/AVC specification does not allow
any missing slice groups. This means that slice groups containing non-
ROIs still need to be coded and to be present in an H.264/AVC bitstream
in order not to violate the constraints of the standard. SVC relaxes this
requirement and allows storing slice groups containing non-ROIs in en-
hancement layers. The base layer, containing the slices carrying the ROI
data, remains compatible with the H.264/AVC standard.

• SVC includes combined scalability structures. These features make it
possible to adapt a bitstream along multiple scalability axes at the same
time. For example, a bitstream having features for spatio-temporal scal-
ability can first be adapted in the temporal dimension, after which trun-
cation operations can be applied along the spatial axis.

The new SVC amendment intends to achieve characteristics that are simi-
lar to the single-layer design of the H.264/AVC standard in terms of complex-
ity, end-to-end delay characteristics, and robustness to transmission errors and
congestion [5]. Also, a coding efficiency is to be achieved within about 10%
excess bit rate for the same decoded video fidelity as non-scalable H.264/AVC.
Meeting this objective will significantly minimize the coding efficiency gap
compared to single-layer coding. Furthermore, when applicable, bitstream
truncation is to be made possible at the level of the network abstraction layer.

3.6.2 Bitstream structure

In terms of coding structure, an SVC bitstream is composed of a base layer and
at least one enhancement layer. The base layer typically represents the mini-
mal temporal15 and/or spatial resolution and/or quality of the SVC bitstream.
This layer is independently decodable without the requirement of using any
other layer of the SVC bitstream. Because the scalability extensions are built
on H.264/AVC in a backwards-compatible way, a single-layer H.264/AVC de-
coder (as currently specified) is capable of decoding the base layer by ignoring
the parts of the bitstream that correspond to the enhancement layer(s).

The parts of the SVC bitstream that belong to the enhancement layer(s) are
conveyed by two new NAL unit types. A first new NAL unit type is defined to
carry the coded slices of IDR pictures that are part of an enhancement layer,
while a second new NAL unit type is introduced to transport the coded slices of

15Unless hierarchical coding patterns are used in the base layer.

62 Adaptivity provisions in H.264/AVC

...

output order

Ib,0

bb,1

Pb,4

Bb,2

bb,3

...Ie,0

be,1

Pe,4

Be,2

be,3

SEIsi SPSb SPSe PPSb PPSe SEIsub Ib,0 Ie,0 SEIsub Pb,4 Pe,4 ...

bitstream order

spatial
enhancement
layer (4CIF)

spatial base
layer (CIF)

Figure 3.13: SVC bitstream (based on [21]): b (e) stands for base layer (enhance-
ment layer). SEIsi denotes a scalability info SEI message, while SEIsub represents a
sub-sequence information SEI message. A full (dashed) arrow visualizes a temporal
(spatial) dependency. The numerical picture indexes indicate the output order.

non-IDR pictures. As such, a bitstream extractor or decoder can easily deter-
mine whether a NAL unit belongs to the base layer or to an enhancement layer
of an SVC bitstream by inspecting the NAL unit type. Besides two additional
NAL unit types, the SVC amendment also introduces four new slice types: EI
(I slice in scalable extension), EP (P slice in scalable extension), EB (B slice
in scalable extension), and PR (progressive refinement slice).

In Figure 3.13, a coded video sequence is visualized containing two spa-
tial layers. The spatial base layer, compliant with single-layered H.264/AVC,
contains two temporal enhancement layers (i.e., three sub-sequence layers).
The corresponding bitstream structure is provided as well, which is, similar
to a bitstream compliant with the first version of the H.264/AVC standard, a
sequence of NAL units separated from each other using zero-valued bytes and
a start code. Three categories of NAL units can be distinguished [21].

1. The first category contains NAL units carrying SPSs and PPSs. Among
other parameters, an SPS conveys the spatial resolution, which is dif-
ferent for each spatial enhancement layer. Therefore, the bitstream is
visualized in Figure 3.13 contains two SPSs, one for each spatial layer.

3.6. The scalable extensions to H.264/AVC 63

temporal_level dependency_id quality_level

regular NAL unit header

forbidden_zero_bit nal_ref_idc nal_unit_type

scalable extension of NAL unit header

VCL syntaxNAL syntax

{EI, EP, EB, PR} slice

NAL unit payload

Figure 3.14: Scalable extension of the regular NAL unit header.

2. The second category contains NAL units having coded video data as
payload. These NAL units can, in their turn, also be classified into two
sets: on the one hand, NAL units containing coded slices that are part of
the H.264/AVC-compliant base layer, and on the other hand, NAL units
containing coded slices that belong to an enhancement layer.

In contrast to the slices that are part of the H.264/AVC-compliant base
layer, the slices that are residing in an enhancement layer carry infor-
mation regarding the layer they are embedded in. This information is
stored in a number of syntax elements, which are part of an extension of
the regular NAL unit header (shown in Figure 3.14). This extension is
only defined for the two newly introduced NAL unit types. The values
of the temporal level, dependency id, and quality level
syntax elements assist a bitstream extractor in generating a bitstream that
is tailored for a particular usage environment.

3. The third category contains NAL units conveying SEI messages. A num-
ber of these SEI messages can be used by a bitstream extractor for the
efficient adaptation of an SVC bitstream. For instance, in Figure 3.13,
the first NAL unit in the bitstream contains a scalability info SEI mes-
sage (see below); all other SEI messages in the SVC bitstream are sub-
sequence information SEI messages.

A bitstream extractor is a tool that enables the creation of a bitstream of
lower bit rate and lower quality, and possibly with lower temporal or spatial
resolution from the input bitstream according to the desired extraction option,
e.g. a given target bit rate at a given spatial resolution and a given picture
rate. To prevent a bitstream extractor from having to do a complex analysis
of the bitstream structure, an SVC encoder will typically provide a scalability
information SEI message at the start of an SVC bitstream. In a manner, the
scalability information SEI message can be seen as an extended version of the
sub-sequence layer information SEI message, as previously discussed.

By analyzing the statistical information contained in the scalability infor-
mation SEI message, a single-loop bitstream extractor can be created that is

64 Adaptivity provisions in H.264/AVC

able to acquire an in-depth overview of the structure of the scalable bitstream,
including information pertaining to the different scalability features offered by
the bitstream. Consequently, a scalability information SEI message simplifies
the extraction process that is required to create a target bitstream suited for
playback in a particular usage environment.

A NAL unit that contains a slice that is part of the base layer does not
convey any information regarding the temporal layer it belongs to. This is
due to the fact that the syntax element temporal level is missing in the
NAL unit syntax for the base layer. Therefore, a sub-sequence information SEI
message is used as an alternative to the temporal level syntax element to
communicate the sub-sequence layer organization to a bitstream extractor or
decoder. In Figure 3.13, sub-sequence information SEI messages are employed
to assign pictures of the H.264/AVC-compliant base layer to one of the three
temporal enhancement layers available within the spatial base layer.

The bitstream extraction process in SVC can essentially be summarized in
the three steps described below.

• First, the bitstream extractor receives information about the constraints
of the targeted usage environment (e.g., in terms of desired bit rate).

• The bitstream extractor subsequently analyzes the scalability informa-
tion SEI message. Using the information regarding the constraints
of the usage environment, appropriate values are determined for the
temporal level, dependency id, and quality level.

• Finally, the bitstream extractor processes the remaining NAL units
of the scalable video bitstream. NAL units with feasible values for
temporal level, dependency id, and quality level
are kept (compared to the values for temporal level,
dependency id, and quality level as derived during the
analysis of the scalability information SEI message).

For a more thorough discussion regarding the bitstream extraction process
in SVC, we would like to refer the interested reader to [21].

3.7 Conclusions and original contributions

Support for true bitstream scalability, which is functionality to achieve tempo-
ral, spatial, or SNR scalability by simply discarding parts of a coded bitstream,
was not incorporated in the first version of the H.264/AVC standard, due to
the strict time schedule of the standardization process. Nonetheless, a number

3.7. Conclusions and original contributions 65

of adaptivity mechanisms are incorporated in the initial H.264/AVC specifica-
tion. Four of these adaptivity provisions, which are mainly targeting bit rate
adaptation, were reviewed in this chapter:

• switching pictures for bitstream switching;

• FMO for ROI coding (and extraction; see Chapter 6);

• data partitioning for offering coarse-granularity quality scalability;

• sub-sequence layers for achieving multi-layered temporal scalability.

During this review, we reported the key results of a number of experiments,
illustrating the flexibility of use of FMO for the purpose of error resilience and
content adaptation. Further, we also demonstrated that data partitioning can
be used as a coarse but simple and efficient technique for achieving quality
scalability. Particular attention was also paid to the implementation of multi-
layered temporal scalability in H.264/AVC bitstreams, using sub-sequences
and sub-sequence layers, coding patterns based on hierarchical B pictures, and
SEI messages. This discussion can be considered the main contribution of
this chapter: it provides a complete and coherent overview on how to employ
temporal scalability in H.264/AVC bitstreams.

The importance of sub-sequences and sub-sequence layers lies in the con-
text of video coding formats that allow the use of sophisticated prediction
strategies for the purpose of reducing the temporal correlation. The result-
ing temporal dependencies significantly increase the complexity of the deci-
sion process regarding the disposal of certain pictures or picture chains. In
H.264/AVC, complex prediction structures are often implemented using hier-
archical B pictures, although more arbitrary prediction patterns are possible as
well. The concept of sub-sequences and sub-sequence layers, which are units
of content adaptation, is particularly useful in this context: they enable the easy
identification and disposal of chains of pictures, while still allowing the use of
efficient prediction techniques. As such, sub-sequences and sub-sequence lay-
ers assist in creating a balanced trade-off between coding efficiency on the one
hand and bit rate adaptation using temporal scalability on the other hand.

A number of SEI messages are used to communicate the bitstream orga-
nization, in terms of sub-sequences and sub-sequence layers, to a bitstream
extractor or decoder. These content adaptation hints assist in abstracting the
complexity of the underlying bitstream format: they allow to think about a bit-
stream in terms of its structure (e.g., headers, packets, and layers of data), and
not in terms of coding concepts (e.g., entropy coding, transform coefficients,
motion vector differences, and so on).

66 Adaptivity provisions in H.264/AVC

Furthermore, we identified six methods that can be used to exploit (multi-
layered) temporal scalability in H.264/AVC bitstreams. A clear insight in these
temporal adaptation techniques is fundamental for a good understanding of a
number of use cases discussed further in this dissertation.

Finally, in this chapter, we also outlined the most important design prin-
ciples and features of the scalable extensions to H.264/AVC. These exten-
sions define a limited number of coding tools on top of the initial H.264/AVC
standard, adding support for features such as spatial and fidelity scalabil-
ity. Temporal adaptivity provisions are inherited from the first edition of the
H.264/AVC specification. Bitstream adaptation in SVC is achieved using sim-
ple editing operations at the level of the bitstream, a process that is again
guided by relying on SEI metadata messages.

In the next chapters, the principles of Bitstream Syntax Description-based
content adaptation will be introduced and extensively discussed. Existing
techniques, as well as own ideas, will be evaluated by relying on different
use cases. As previously mentioned, one of the most important use cases in-
volves the description-driven exploitation of multi-layered temporal scalability
in H.264/AVC, using hierarchical B pictures and SEI messages. We will also
show that there is a clear connection between the design philosophy behind
SEI messages and the idea of description-based content adaptation.

Our research in this domain resulted in contributions that are incorporated
in the publications listed below. A number of papers are deliberately omitted
as they are enumerated in one of the subsequent chapters.

1. Stefaan Mys, Peter Lambert, Wesley De Neve, Piet Verhoeve, Rik
Van de Walle. SNR Scalability in H.264/AVC Using Data Partitioning.
In Lecture Notes in Computer Science - Advances in Multimedia Infor-
mation Processing - PCM 2006, Volume 4261, pages 333–343, October
2006.

2. Koen De Wolf, Davy De Schrijver, Wesley De Neve, Rik Van de Walle.
Adaptive Residual Interpolation: A Tool For Efficient Spatial Scalability
In Digital Video Coding. In Proceedings of The 2006 International Con-
ference on Image Processing, Computer Vision, & Pattern Recognition
(IPCV’06), pages 131–137, Las Vegas, Nevada, USA, June 2006.

3. Peter Lambert, Wesley De Neve, Yves Dhondt, Rik Van de Walle. Flex-
ible Macroblock Ordering in H.264/AVC. Journal of Visual Communi-
cation & Image Representation, 17:358-375, January 2006.

4. Koen De Wolf, Robbie De Sutter, Wesley De Neve, Rik Van de Walle.
Comparison of Prediction Schemes with Motion Information Reuse for

3.7. Conclusions and original contributions 67

Low Complexity Spatial Scalability. In Proceedings of SPIE/Visual
Communications and Image Processing, Volume 5960, pages 1911–
1920, Beijing, China, July 2005.

68 BSD-driven media resource adaptation

Chapter 4

BSD-driven media resource
adaptation

Adapt or perish, now as ever, is nature’s inexorable imperative.

Herbert G. Wells (1866-1946), Mind at the End of Its Tether,
1945.

4.1 Introduction

Scalable coding formats have always been a major point of interest in the world
of digital media content. Scalability features are available in several standards
for still image coding (e.g., JPEG 2000 [88]), audio coding (e.g., MPEG-4
Bit Sliced Arithmetic Coding, abbreviated as MPEG-4 BSAC [89]), and video
coding (e.g., H.262/MPEG-2 Video, H.263+, MPEG-4 Visual). A scalable bit-
stream is defined in MPEG-21 DIA as: “A bitstream in which data is organized
in such a way that, by retrieving the bitstream, it is possible to first render a
degraded version of the resource, and then progressively improve it by loading
additional data”.

Scalable bitstreams are intended to pave the way for the deployment of sev-
eral new multimedia architectures. These architectures will make it possible to
tackle the tremendous diversity in terminals and networks used in present-day
and future multimedia ecosystems. However, an efficient solution for dealing
with this heterogeneity does not only imply the use of scalable coding formats,
but it also requires the employment of an Adaptation Decision Taking Engine
(ADTE; [90]) and a content adaptation system [91]. These complementary
technologies aim at formulating an answer to the question on how to optimally

70 BSD-driven media resource adaptation

and efficiently adapt a scalable bitstream to a given set of constraints (e.g., de-
vice and network capabilities, user characteristics and preferences, and natural
environment characteristics) [92].

The adaptation of scalable bitstreams usually involves a number of
straightforward editing operations. These operations typically consist of the re-
moval of certain data segments and the modification of the values of particular
syntax elements, without requiring the compressed media data to be recoded.
This process can for instance be realized by relying on automatically gener-
ated textual descriptions that contain information about the high-level syntax
of a scalable bitstream [93]. These structural metadata, typically expressed
using XML, can subsequently be transformed to reflect a desired adaptation of
a scalable bitstream, and can then be used to automatically create an adapted
version of the bitstream. As such, the textual descriptions, further referred
to as Bitstream Syntax Descriptions (BSDs), act as an intermediate layer for
adapting (scalable) bitstreams to the constraints imposed by a particular usage
environment (see Figure 4.1).

In this chapter, we first describe the principles of BSD-driven media re-
source adaptation. Next, two different approaches are outlined for BSD-based
content customization: a framework using the standardized MPEG-21 Bit-
stream Syntax Description Language (MPEG-21 BSDL) and a framework re-
lying on the Formal Language for Audio-Visual Object Representation, ex-
tended with XML features (commonly abbreviated as XFlavor). MPEG-21
BSDL is explained in detail because of the activities of the Multimedia Lab
research group, which are closely aligned to MPEG standardization. As such,
MPEG-21 BSDL was used as the starting point for our study of the principles
of BSD-driven content adaptation. In a next step, we discuss a number of orig-
inal contributions in the domain of BSD-based media resource adaptation, in
particular the use of MPEG-21 BSDL in the context of several state-of-the-art
media formats (file formats and video coding formats). Before concluding this
chapter, a performance analysis is provided regarding an implementation of
the MPEG-21 BSDL and XFlavor tool chains for the BSD-driven exploitation
of temporal scalability in Video Codec 1 (VC-1; [94]), a new video coding
format that was standardized in 2006 by the Society of Motion Pictures and
Television Engineers (SMPTE).

Finally, for a good understanding of this chapter, we assume some aware-
ness of the basic design principles of a few popular MPEG media formats
(e.g., H.262/MPEG-2 Video [2], MPEG-2 Systems [95]), as well as of a num-
ber of XML technologies such as W3C XML Schema [96], XML Path lan-
guage (XPath; [97]), and eXtensible Stylesheet Language Transformations
(XSLT; [98]).

4.2. Principles of BSD-based content adaptation 71

<bitstream>
<header />
<I_picture />
<b_picture />
<B_picture />
<b_picture />
<P_picture />

</bitstream>

<bitstream>
<header />
<I_picture />
<B_picture />
<P_picture />

</bitstream>

bitstream

adapted
bitstream

BSD

transformed
BSD

transformation

BSD generation

bitstream generation

(1)

(2)

(3)

usage environment
description

I b B b P

I
B

P

Figure 4.1: Generic architecture for a BSD-based content adaptation system, bridging
the gap between content (media resources) and context (usage environment).

4.2 Principles of BSD-based content adaptation

In general, BSD generation, BSD transformation, and bitstream reconstruction
are performed as shown in Figure 4.1. Explanatory notes are provided below:

1. automatic generation of a BSD, which closely reflects the bitstream
structure (e.g., described in terms of layers, headers, or pictures);

2. BSD transformation, resulting in the disposal or modification of partic-
ular BSD fragments (e.g., removal of BSD fragments describing non-
reference B pictures) to take into account the constraints of a particular
usage environment;

3. adapted bitstream generation (e.g., creation of a coded video bitstream
without non-reference B pictures), optionally using the original bit-
stream (denoted by a dashed arrow in the figure).

In the remainder of this chapter, Figure 4.1 will be further refined to de-
scribe the different architectures for BSD-driven media resource adaptation.
Note that, for reasons of simplicity, the fictive BSDs, as used throughout the
different figures, describe the coded bitstream structure in output order, and
not in bitstream order.

The main advantages of using XML-based BSDs for media resource adap-
tation can be summarized as follows:

1. A BSD acts as an abstraction layer. This can be considered from two
different points of view. First, a BSD abstracts the complexity of the

72 BSD-driven media resource adaptation

composition of the coded bitstream; its typical high-level nature only re-
quires a limited knowledge regarding the bitstream structure. As such, it
is for example not necessary to reason about a video bitstream in terms
of transform coefficients or motion vectors, but it is possible to think
about the bitstream as how it is organized in terms of packets, head-
ers, or layers of data1. Second, a BSD abstracts the bitstream parsing
process. As BSDs are typically generated in an automatic way, it is no
longer required to implement cumbersome bitstream parsing operations
in a particular programming language in order to discover the bitstream
structure.

2. The complexity of the content adaptation step is shifted from the com-
pressed domain to the XML domain. This enables the use of many
already existing XML tools for manipulating BSDs, such as editors
and transformation engines. It also allows to achieve a straightforward
integration with other XML-oriented metadata standards, such as the
MPEG-7 specification [99].

3. A format-neutral content adaptation engine can be implemented, which
is a combination of a BSD transformation engine and a BSD-driven bit-
stream extractor. This format-independent property, which is the main
advantage of a BSD-based content adaptation approach, implies that the
same software modules can be used, regardless of whether adaptation is
employed in the context of a scalable still image format, a scalable audio
format, or a scalable video format.

This also means that the program code of these software components
does not have to be updated in order to support a new media format2,
which makes these modules particularly suited for an implementation in
hardware.

The following reasons justify the use of XML for the representation of the
structural metadata [100]:

• XML offers a flexible way for describing highly structured data.
1This objective is similar to the purpose of the different sub-sequence SEI messages in

H.264/AVC, as well as to the purpose of the scalability information SEI message in SVC.
2The reuse of program code is an issue when transcoding is used as an alternative to the use

of scalable coding. Transcoding routines are often application-specific and format-dependent,
and their implementation is typically to be considered an awkward and error-prone task. How-
ever, transcoding is for example useful in an application scenario in which end-users are able to
upload home-made video streams, using different video coding formats, to a content site, which
relies on a single (scalable) video coding format for the purpose of efficient distribution.

4.3. Bitstream syntax description languages 73

• XML is the de facto language for describing metadata [101]. This way,
BSDs can be easily integrated with already existing metadata standards.
For instance, descriptive metadata in line with MPEG-7 can be used to
implement semantic adaptations (e.g., removal of violent scenes).

• An extensive tool set is available for processing XML documents in a
fast, reliable, and flexible way.

• XML is extensible: it is possible to add information to an existing XML
document in such a way that applications that are not familiar with this
new information will ignore it.

• XML is platform-independent as it is represented by means of plain text.

In addition to the exploitation of scalability, BSD-driven content adapta-
tion also enables other applications. For instance, this approach can be used
for correcting wrongly coded syntax elements without a need for reencoding.
Think for example about the adjustment of aspect ratio information, about cor-
recting four-character codes in file containers (FourCCs), and so on. These
operations are sometimes referred to as header hacks.

Further possible applications with regard to BSD-based adaptation, but
not restricting to, are format-independent streaming/hinting [102], multiplex-
ing and demultiplexing, automatic video summarization, scene selection, bit-
stream syntax validation, and metadata injection. The last technique can for
example be used to insert user data in MPEG-4 Visual elementary bitstreams
or to add SEI messages to H.263+ or H.264/AVC bitstreams (see Chapter 5).

4.3 Bitstream syntax description languages

In recent years, a number of bitstream syntax description languages have
been defined that enable XML-driven manipulation of digital media resources,
such as XFlavor [103], the MPEG Video Markup Language (MPML; [104]),
MPEG-21 BSDL, and MPEG-21 generic Bitstream Syntax Schema (MPEG-
21 gBS Schema; [8]).

MPML is an XML application specifically designed for describing the syn-
tax of bitstreams compliant with MPEG-4 Visual [4]. This language will not
be discussed in further detail due to its rather specific nature. The main prin-
ciples of BSDL and XFlavor are explained in the following sections. gBS
Schema will be described briefly in the section pertaining to BSDL. Detailed
information about BSDL and gBS Schema, and about the MPEG-21 Multime-
dia Framework in general, can be found in [105] and in a special issue of IEEE
Transactions on Multimedia [106].

74 BSD-driven media resource adaptation

To allow the reader to do a side-by-side comparison of the language fea-
tures of BSDL and XFlavor, a number of syntax fragments are listed in Ap-
pendix A. A description in BSDL of several important syntax structures of
H.264/AVC can be found in Listing A.1. Listing A.2 contains a description
of the same syntax structures in XFlavor. These descriptions are respectively
used by a BSDL and XFlavor tool chain to automatically create BSDs for
H.264/AVC bitstreams. The BSDs in question are depicted in Listing A.5 for
BSDL and in Listing A.6 for XFlavor.

4.3.1 MPEG-21 BSDL

Introduction

MPEG-21 BSDL provides means for translating the high-level syntax of a bi-
nary media resource into an XML document [107]. The language is built on
top of the World Wide Web Consortium’s (W3C) XML Schema language and
falls under the umbrella of the Bitstream Syntax Description tool of the MPEG-
21 DIA specification. This standard envisions the construction of a generic
content adaptation framework that is entirely steered by XML technologies.
The goal of DIA is in its turn in line with the vision of the MPEG-21 Multi-
media Framework, which aims at enabling a transparent and augmented use of
multimedia resources across a wide range of networks and devices, by means
of the creation of a multimedia framework that consists of generic software
components, communicating with each other using XML-based messages that
capture the format-dependent specificities.

The primary motivation behind the development of BSDL is to assist in the
adaptation of scalable bitstreams, such that the resulting bitstreams meet the
constraints imposed by a particular usage environment. The generic character
of MPEG-21 BSDL, and hence its merit, lies in the format-independent nature
of the logic that is responsible for the creation of BSDs and for the generation
of the adapted bitstreams. More precisely, these different pieces of logic do
not need to be updated or modified in order to support a new (scalable) media
format in a BSDL-based content adaptation framework. This is due to the fact
that all information, necessary for discovering the structure of a bitstream, is
available in a document called a Bitstream Syntax Schema (BS Schema).

A BS Schema contains a description of (a part of) the syntax of a particular
media format in the MPEG-21 BSDL schema language. It conveys, among
other things, information about the name-giving of syntactical structures, their
type and binary encoding, and their position in the media format hierarchy. As
such, the MPEG-21 BSDL specification enables the construction of a format-
independent processor to automatically parse a bitstream and to generate its

4.3. Bitstream syntax description languages 75

XML description. It also allows the creation of a processor that is unaware
of a specific media format in order to generate an adapted bitstream from its
transformed XML description. The BSD and bitstream generator are named
BintoBSD Parser and BSDtoBin Parser, respectively.

Listing 4.1: BS Schema fragment for a sub-sequence information SEI message.

<xsd:element name="sub_seq_info">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="sub_seq_layer_num"

type="jvt:UnsignedExpGolomb"/>
<xsd:element name="sub_seq_id"

type="jvt:UnsignedExpGolomb"/>
<xsd:element name="first_ref_pic_flag" type="b1"/>
<xsd:element name="leading_non_ref_pic_flag" type="b1"/>
<xsd:element name="last_pic_flag" type="b1"/>
<xsd:element name="sub_seq_frame_num_flag" type="b1"/>
<xsd:element name="sub_seq_frame_num_flag" minOccurs="0"

bs2:if="./jvt:sub_seq_frame_num_flag = 1"
type="jvt:UnsignedExpGolomb"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

Listing 4.2: BSD fragment for a sub-sequence information SEI message.

<sub_seq_info>
<sub_seq_layer_num>0</sub_seq_layer_num>
<sub_seq_id>0</sub_seq_id>
<first_ref_pic_flag>0</first_ref_pic_flag>
<leading_non_ref_pic_flag>0</leading_non_ref_pic_flag>
<last_pic_flag>0</last_pic_flag>
<sub_seq_frame_num_flag>0</sub_seq_frame_num_flag>

</sub_seq_info>

A BS Schema fragment is provided in Listing 4.1; it describes the formal
syntax of a sub-sequence information SEI message3. Listing 4.2 contains a
corresponding BSD excerpt, obtained after having parsed a sub-sequence in-
formation SEI message in an H.264/AVC bitstream using a BintoBSD Parser.

Figure 4.2 summarizes the overall method for adapting a scalable bitstream
using MPEG-21 BSDL, illustrating the removal of particular bidirectionally

3For comparison, the tabular syntax of a sub-sequence information SEI message, as used in
the H.264/AVC standards document, is provided in Table 3.3 in Chapter 3.

76 BSD-driven media resource adaptation

<bitstream
bs1:bitstreamURI=“movie_30hz.264”>

<header>0 24</header>
<I_slice>24 2637</I_slice>
<b_slice>2661 746</b_slice>
<B_slice>3407 903</B_slice>
<b_slice>4310 857</b_slice>
<P_slice>5167 1103</P_slice>

</bitstream>

<bitstream
bs1:bitstreamURI=“movie_30hz.264”>

<header>0 24</header>
<I_slice>24 2637</I_slice>
<B_slice>3407 903</B_slice>
<P_slice>5167 1103</P_slice>

</bitstream>

bitstream

adapted
bitstream

bitstream syntax
description

transformed bitstream
syntax description

transformation
BS

Schema

BintoBSD

BSDtoBin

(2)

(3)

(4)

(1)

BSDL-2

BSDL-1

usage environment
description

BSDL-1

I b B b P

I
B

P BSDL-0

BSDL-0

Figure 4.2: BSD-driven content (i.e., video) adaptation with BSDL. Note how the
BSDs refer to data segments of the original input bitstream.

coded pictures to create a tailored video bitstream suited for playback in a
constrained usage environment. Explanatory notes are provided below:

1. an MPEG-21 BS Schema contains a description of the high-level syntax
of a particular media format;

2. a BSD is created by a format-independent BintoBSD Parser, taking as
input a particular bitstream and a corresponding BS Schema;

3. a BSD is transformed to meet the constraints of a certain usage environ-
ment (the way the BSD is transformed is not standardized by DIA);

4. a format-independent BSDtoBin Parser is used for creating an adapted
bitstream, using the transformed BSD and the BS Schema, optionally
taking the original bitstream as an additional input (denoted by the
dashed arrow).

MPEG-21 BSDL only addresses the description of the high-level structure
of a bitstream; the schema language is typically used to describe a restricted
subset of the syntax of a particular media format, the exact level of detail de-
pendent on the application targeted. This means that the description itself is
scalable (i.e., its granularity can be adjusted), making it possible to avoid a
large overhead and the execution of unnecessary computations. Consequently,
a BSD created in the context of MPEG-21 BSDL acts as an additional metadata
layer that is not meant to replace the original bitstream.

MPEG-21 DIA also contains a second tool for describing the syntax of a
media resource - MPEG-21 gBS Schema. This language allows the creation

4.3. Bitstream syntax description languages 77

Table 4.1: Relevant namespaces.

specification namespace prefix
XML Schema http://www.w3.org/2001/XMLSchema xsd

BSDL-0 urn:mpeg:mpeg21:2003:01-DIA-BSDL0-NS bs0

BSDL-1 urn:mpeg:mpeg21:2003:01-DIA-BSDL1-NS bs1

BSDL-2 urn:mpeg:mpeg21:2003:01-DIA-BSDL2-NS bs2

of format-independent BSDs, so-called generic BSDs (gBSDs). Individual
elements in the gBSDs can also be marked to enable or simplify semantic-
based and complex adaptations. However, gBS Schema does not provide a
BS Schema that would allow the BintoBSD operation to be performed on a
bitstream. gBSDs must be created by some other (unspecified) means (e.g.,
using an application-specific parser; see [93] for an in-depth overview).

The principles of MPEG-21 BSDL have been illustrated in [107] for the
adaptation of JPEG 2000 still images and MPEG-4 Visual compliant bit-
streams. An example application of BSDL to MPEG-4 Visual Texture Cod-
ing (MPEG-4 VTC) was introduced in [108], and an application of BSDL to
the experimental wavelet-based Motion Compensated Embedded Zero Block
Coding (MC-EZBC) codec was discussed in [16]. A harmonized BSDL/gBS
Schema approach was outlined in [93], while [109] briefly discusses the use
of BSDL for the adaptation of audio bitstreams compliant to MPEG-4 BSAC.
These examples illustrate the expressive power of the MPEG-21 BSDL frame-
work, enabling BSD-driven content adaptation. Regardless of the bitstream
format used, the same format-agnostic media processors can be deployed for
BSD generation and bitstream adaptation.

Language specification

MPEG-21 BSDL is built by introducing two normative successive sets of ex-
tensions and restrictions over the W3C XML Schema language. The exten-
sions are expressed by means of two XML Schemas, while the restrictions are
fixed in the standards document itself. The Schema for BSDL-1 Extensions
defines a number of attributes and data types that can be used in a BS Schema,
but that do not exist in XML Schema. The BSDtoBin process needs these ex-
tensions for the creation of correct bitstreams from a (transformed) BSD. The
Schema for BSDL-2 Extensions defines a number of additional extensions to
XML Schema that are needed to resolve ambiguities in the BintoBSD process.
For the sake of completeness, a number of relevant namespaces and corre-
sponding prefixes can be found in Table 4.1.

78 BSD-driven media resource adaptation

Table 4.2: Overview of all XML Schema data types allowed in BSDL.

data type length (bytes)
xsd:string unlimited
xsd:float 4
xsd:double 8

xsd:hexBinary unlimited
xsd:base64Binary unlimited

xsd:long 8
xsd:int 4

xsd:short 2
xsd:byte 1

xsd:unsignedLong 8
xsd:unsignedInt 4

xsd:unsignedShort 2
xsd:unsignedByte 1

Restrictions on XML Schema Some constructs and data types that may
occur in an XML document and that can be expressed in an XML Schema are
not useful for BSDs as they may cause certain ambiguities. Therefore, BSDL
defines a number of restrictions on the XML Schema language.

A first restriction is that bitstream data have to be embedded in a BSD as
element content, and not in an attribute. The reason for this is that the order of
attributes in an XML document is not significant. As such, an external knowl-
edge would be required to specify in what order attributes should be processed
in case they would contain symbols to be added to the output bitstream.

Mixed content is not allowed either, as all elements must be assigned
a type. Therefore, xsd:mixed cannot occur in a BS Schema. Ele-
ments with no type, expressed by means of xsd:any, xsd:anyType, or
xsd:anySimpleType are not allowed either.

A limited number of data types that exist in XML Schema are allowed
in BSDL. Only those for which a binary representation is possible, are per-
mitted. For instance, xsd:integer is not allowed, as the number of bytes
needed for representing such an element is not specified. An element of type
xsd:int is allowed, because in this case, the number of bytes is fixed. In
Table 4.2, all data types that belong to XML Schema and that are allowed to
occur in a BS Schema, are shown. Some of these data types do not have an a
priori length. If such a data type occurs in a BS Schema, the BintoBSD process
will need information belonging to the BSDL-2 Extensions for determining the

4.3. Bitstream syntax description languages 79

actual length. This problem does not occur for BSDtoBin as the length of the
data stream becomes clear when evaluating the element content.

Listing 4.3: Example of the use of xsd:maxExclusive in BSDL.

<!-- The following data type consists of 18 bits. -->
<xsd:simpleType name="b18">

<xsd:restriction base="xsd:unsignedInt">
<xsd:maxExclusive value="262144"/>

</xsd:restriction>
</xsd:simpleType>
<!-- Use of the b18 data type. -->
<xsd:element name="time_code" type="m4v:b18"/>

In addition, other data types can be defined in a BS Schema, by re-
stricting the range of one of the existing unsigned data types, using the
xsd:maxExclusive restriction mechanism of XML Schema. Listing 4.3
shows how to define a new data type that consists of exactly 18 bits,
needed for the representation of the time code syntax element in the
group of video object plane syntax structure of MPEG-4 Visual.

BSDL-1 The Schema for BSDL-1 Extensions defines two new data types:
bs1:byteRange and bs1:bitstreamSegment, both used for referring
to fragments of the original bitstream. Elements of the bs1:byteRange
data type consist of two non-negative integer values. The first value refers
to a location in the current bitstream, represented as a byte offset, where the
fragment begins, and the second value indicates the length, in bytes, of this
fragment. A bs1:bitstreamSegment element has the same functional-
ity, but elements of this data type have a bs1:start and a bs1:length
attribute. This data type only exists for compatibility with gBS Schema, which
imports the Schema for BSDL-1.

The location of the bitstream, referred to by bs1:byteRange
or bs1:bitstreamSegment, is signaled by means of the
bs1:bitstreamURI attribute. This attribute may occur in the root element
of a BSD, thus providing a default value for that particular description, but
it may also occur in a bs1:byteRange or a bs1:bitstreamSegment
construct, thus overwriting the default location of the bitstream referred to.

A final extension defined in the Schema for BSDL-1 Extensions is the
bs1:ignore attribute. Elements in a BSD that carry this attribute will be
ignored by the BSDtoBin process if its value is set to true, either in the BSD
itself, or in the BS Schema by setting its default value to true. This way, it is

80 BSD-driven media resource adaptation

possible to add metadata information to a BSD in such a way that it does not
influence the generation of the (adapted) bitstream itself.

BSDL-2 The most important extension in BSDL-2 is the introduction of sup-
port for XPath, a language for addressing parts of an XML document. Some-
times, the presence of a particular syntax element in a bitstream, its number of
occurrences, or its length, may be dependent on the value of another syntax el-
ement. Such cases can be expressed in a BS Schema using XPath expressions.
BintoBSD needs these expressions for generating correct BSDs.

The bs2:nOccurs attribute is a first attribute that takes an XPath expres-
sion as value. It is used when the number of occurrences of a particular element
depends on the value of another element. If it is absent, its value is supposed to
be one. In order to make sure that the BS Schema is a correct XML Schema for
the produced BSDs, the values for xsd:minOccurs and xsd:maxOccurs
must correspond with all possible values for bs2:nOccurs.

Listing 4.4: Example of the use of bs2:ifNext in BSDL.

<!-- Declaration of byte_stream_nal_unit. -->
<xsd:element name="byte_stream_nal_unit">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="zero_byte" type="xsd:unsignedByte"
fixed="0" minOccurs="0" maxOccurs="unbounded"
bs2:ifNext="000000"/>

<xsd:element name="start_code_prefix_one_3bytes"
type="jvt:StartCodeType" fixed="000001"
minOccurs="0" maxOccurs="1"
bs2:ifNext="000001"/>

<xsd:element ref="jvt:nal_unit"
minOccurs="0" maxOccurs="1"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

Often, elements of a bitstream are conditional. In a BS Schema, this is ex-
pressed by means of the bs2:if or the bs2:ifNext attributes. An element
containing bs2:if only occurs in a BSD if the XPath expression in the at-
tribute evaluates to true. A bs2:ifNext attribute contains a hexadecimal
value or a range of hexadecimal values (two values, separated by white space),
as shown in Listing 4.4 for the parsing of the byte stream nal unit syn-
tax structure in H.264/AVC. In this case, the element will only occur if the
following bytes in the bitstream correspond with the value or range of val-

4.3. Bitstream syntax description languages 81

ues mentioned in the bs2:ifNext attribute. Similar to bs2:nOccurs,
xsd:minOccurs and xsd:maxOccurs ought to have appropriate values,
if the BS Schema is to be employed as a valid XML Schema.

Another attribute defined in the Schema for BSDL-2 Extensions is the
bs2:rootElement attribute in the xsd:schema element. This attribute
tells the BintoBSD process which element of the schema should be used as the
root element of the BSD.

In XML Schema, a number of data types can have an unlimited rep-
resentation size, as can be seen in Table 4.2. The same is true for the
bs1:byteRange data type. In these cases, the BintoBSD process needs
additional information pertaining to the length of the actual syntax elements,
otherwise all remaining bytes in the bitstream are considered to be part of that
element. Because XML Schema does not support such constructs directly, the
use of xsd:annotation/xsd:appinfo inside an xsd:restriction
element is needed.

One of the mechanisms that can be used for limiting the range of unlim-
ited data types is the bs2:length attribute, which may contain an XPath
expression for determining the number of bytes the element consists of. In
Listing 4.5, the use of the bs2:length attribute is shown for determining
the length of a bs1:byteRange data type: an XPath expression is used to
compute the length of a Packetized Elementary Stream packet (PES packet) in
a private stream, which is in its turn part of an MPEG-2 Program Stream.

Listing 4.5: Example of the use of bs2:length in BSDL.

<!-- Declaration of private_stream_1. -->
<xsd:element name="private_stream_1">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="packet_start_code_prefix"
type="mp2:StartCodePrefixType"/>

<xsd:element name="stream_id"
type="mp2:StartCodeSuffixType"/>

<xsd:element name="PES_packet_length" type="b16"/>
<xsd:element name="PES_packet_payload">

<xsd:simpleType>
<xsd:restriction base="bs1:byteRange">

<xsd:annotation>
<xsd:appinfo>

<bs2:length value="../mp2:PES_packet_length"/>
</xsd:appinfo>

</xsd:annotation>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

82 BSD-driven media resource adaptation

</xsd:sequence>
</xsd:complexType>

</xsd:element>

Another way of determining the length of an unlimited data type is the
use of the bs2:startCode or bs2:endCode language features of BSDL.
When the length of an element is restricted using these constructs, the Binto-
BSD process looks for the next occurrence of the hexadecimal pattern or range
that is mentioned in the bs2:value attribute of the bs2:startCode or
bs2:endCode element. This type of parsing is called delimiter-driven pars-
ing, which is the opposite of parsing based on the use of length fields. When
bs2:startCode is used, the start code pattern does not belong to the cur-
rent element; in case of a bs2:endCode, it does. An example of the use of
start codes in BSDL is given in Listing 4.6, used for identifying the beginning
of a picture or a slice in MPEG-1 Video. The end of the payloads is deter-
mined by a number of start code values, which can either fall within a given
range (from 0x00000101 up to 0x000001AF) or correspond with a fixed value
(e.g., 0x00000100). Note that the bs2:length attribute, as discussed in the
previous paragraph, cannot be used in combination with the xsd:length,
bs2:startCode, or bs2:endCode language constructs.

Listing 4.6: Example of the use of bs2:startCode in BSDL.

<!-- Declaration of PictureAndSlicePayloadType. -->
<xsd:simpleType name="PictureAndSlicePayloadType">

<xsd:restriction base="bs1:byteRange">
<xsd:annotation>

<xsd:appinfo>
<bs2:startCode value="00000100"/>
<bs2:startCode value="00000101 000001AF"/>
<bs2:startCode value="000001B8"/>
<bs2:startCode value="000001B3"/>
<bs2:startCode value="000001B7"/>

</xsd:appinfo>
</xsd:annotation>

</xsd:restriction>
</xsd:simpleType>
<!-- Use of the PictureAndSlicePayloadType data type. -->
<xsd:element name="slice_payload"

type="mp1:PictureAndSlicePayloadType"/>

A final construct that belongs to BSDL-2 is bs2:ifUnion. This lan-
guage feature is similar to the well-known switch/case construct in most

4.3. Bitstream syntax description languages 83

programming languages, and is used when an element of a BS Schema is de-
fined using xsd:union. In that case, one type from a list of types, enumer-
ated in the bs2:memberTypes attribute, is allowed to occur. In order to be
able to select the appropriate type, BintoBSD needs the information that occurs
in the bs2:ifUnion elements. The index of the first bs2:ifUnion ele-
ment for which the XPath expression evaluates to true will determine which
element will be selected. If all n expressions evaluate to false, the member
type with position n + 1 is selected. This way, this element is actually treated
as a default type.

Listing 4.7: Example of the use of bs2:ifUnion in BSDL, using simplified XPath
expressions ($SPS refers to the active SPS).

<!-- Declaration of FrameNumType. -->
<xsd:simpleType name="FrameNumType">

<xsd:union memberTypes="b4 b5 ... b15 b16">
<xsd:annotation>

<xsd:appinfo>
<bs2:ifUnion

value="$SPS/jvt:log2_max_frame_num_minus4 = 0"/>
<bs2:ifUnion

value="$SPS/jvt:log2_max_frame_num_minus4 = 1"/>
<!-- ... -->
<bs2:ifUnion

value="$SPS/jvt:log2_max_frame_num_minus4 = 11"/>
<bs2:ifUnion

value="$SPS/jvt:log2_max_frame_num_minus4 = 12"/>
</xsd:appinfo>

</xsd:annotation>
</xsd:union>

</xsd:simpleType>
<!-- Use of the FrameNumType data type. -->
<xsd:element name="frame_num" type="jvt:FrameNumType"/>

Listing 4.7 illustrates the functioning of the bs2:ifUnion construct,
used for describing the value space of the frame num syntax element.
This parameter is conveyed by the slice header() syntax structure of
H.264/AVC. When the first expression evaluates to true, type b4 is selected.

BSDL-0 A number of non-normative extensions are also available in the
Schema for BSDL-0 Extensions. BSDL-0 contains, among other features, the
bs0:implementation and bs0:fillByte language constructs [110].
The first attribute allows the BS Schema author to provide an alternative imple-
mentation of the parsing operations for particular data types, taking the form of

84 BSD-driven media resource adaptation

user-provided Java classes. This language construct can for instance be used to
extend the set of built-in data types that are normatively specified in BSDL-1.

The second non-normative attribute provides a simple byte-alignment
mechanism. It instructs a BintoBSD Parser to move to the next byte-aligned
position and to place the value of the skipped bits in the corresponding BSD.

The non-normative bs0:implementation and bs0:fillByte lan-
guage features were both necessary to describe the Annex B syntax of the first
version of the H.264/AVC specification in BSDL (see Section 4.4). In the
remainder of this dissertation, BSDL refers not only to the normative tools
that are available in BSDL-1 and BSDL-2, but also to the non-normative fea-
tures specified in BSDL-0. Note that the use of the non-normative BSDL-0
constructs in a BS Schema may affect interoperability among different imple-
mentations of the BintoBSD and BSDtoBin processes.

4.3.2 XFlavor

Flavor provides a formal way to specify how data are laid out in a serialized
bitstream [111]. It was initially designed as a declarative language with a C++-
like syntax to describe the bitstream syntax on a bit-per-bit basis. Its aim is to
simplify and speed up the development of software that processes audio-visual
bitstreams by automatically generating the required C++ or Java code to parse
the data, hence allowing the developer to focus on the processing part of the
software. This is possible thanks to the fact that the design of Flavor is based
on the principle of separation between bitstream parsing operations and other
encoding/decoding operations. This separation does not only acknowledge
that the same syntax can be employed by different tool implementations, but
also, and even more importantly, that the same tool can work unchanged with a
different bitstream syntax. For instance, the number of bits used for a specific
quantity can be changed without modifying any part of the decoding algo-
rithms. Finally, unlike the BSD-based approach, a Flavor-based parser does
not generate a persistent description of the parsed data, but only an in-memory
representation in the form of a collection of C++ or Java class objects.

XFlavor is an extension of Flavor, containing tools for generating an XML
description of the entire bitstream syntax and for regenerating an (adapted)
bitstream [103]. Figure 4.3 summarizes the overall method for XML-driven
media content manipulation by relying on XFlavor, illustrating the editing of a
simple character-based bitstream (an extra character ‘X’ is inserted). Explana-
tory notes are given below:

1. the syntax of a particular media format is described using XFlavor4;
4In the remainder of this dissertation, XFlavor is used as an interchangeable term for Flavor.

4.3. Bitstream syntax description languages 85

media format-
specific parser

Flavor
description

Flavorc

Bitgen

transformation

bitstream syntax
description

transformed
bitstream syntax

description

bitstream

adapted
bitstream

P

<bitstream>
<c type="flSChar" bitLen="8">F</c>
<c type="flSChar" bitLen="8">l</c>
<c type="flSChar" bitLen="8">a</c>
<c type="flSChar" bitLen="8">v</c>
<c type="flSChar" bitLen="8">o</c>
<c type="flSChar" bitLen="8">r</c>

</bitstream>

(2)

(3)

(5)

(1)

(4)

(6)

Flavor

XFlavor

<bitstream>
<c type="flSChar" bitLen="8">X</c>
<c type="flSChar" bitLen="8">F</c>
<c type="flSChar" bitLen="8">l</c>
<c type="flSChar" bitLen="8">a</c>
<c type="flSChar" bitLen="8">v</c>
<c type="flSChar" bitLen="8">o</c>
<c type="flSChar" bitLen="8">r</c>

</bitstream>

multimedia
application

W3C XML Schema

<?xml version="1.0"?>
<xsd:schema>
<xsd:include schemaLocation="fltypes.xsd"/>
<xsd:complexType name=“bitstream">

<xsd:sequence>
<xsd:element name="c" type="flSChar"/>

</xsd:sequence>
<xsd:attribute name="aligned" type="xsd:unsignedInt" use="optional"/>

</xsd:complexType>
<xsd:element name=“bitstream" type=“bitstream"/>

</xsd:schema>

usage environment
description

class bitstream {
char(8) c;

};

Java or C++
source classes

Figure 4.3: BSD-driven content (i.e., text) adaptation with XFlavor. Note that all
bitstream data are embedded in the BSDs.

2. the XFlavor description is translated by Flavorc into an XML Schema
(for validation purposes only) and a set of Java or C++ source classes;

3. the source classes, together with a user-provided main() method (see
Chapter 5), are compiled to a media format-specific parser;

4. BSD creation by the format-specific parser, taking as input a particular
bitstream (the BSD is self-containing, i.e. all bitstream data are embed-
ded in the XML description in order to allow different transformations);

5. a BSD is transformed to meet the constraints of a certain usage environ-
ment (not meaningful in the context of this artificial example);

6. Bitgen produces an adapted bitstream, only guided by a transformed
BSD (as the BSD contains all necessary bitstream data).

Listing 4.8: Flavor fragment for a sub-sequence information SEI message.

class Sub_seq_info {
UnsignedExpGolomb sub_seq_layer_num;
UnsignedExpGolomb sub_seq_id;
// first_ref_pic_flag is represented
// with one bit in the bitstream.
bit(1) first_ref_pic_flag;

86 BSD-driven media resource adaptation

bit(1) leading_non_ref_pic_flag;
bit(1) last_pic_flag;
bit(1) sub_seq_frame_num_flag;
if (sub_seq_frame_num_flag)

UnsignedExpGolomb sub_seq_frame_num;
}

Listing 4.9: BSD fragment for a sub-sequence information SEI message.

<sub_seq_info>
<sub_seq_layer_num>

<!-- ue_code refers to the coded bitstream value. -->
<ue_code bitLen="1">1</ue_code>
<!-- ue_value refers to the decoded value. -->
<ue_value bitLen="0">0</ue_value>

</sub_seq_layer_num>
<sub_seq_id>

<ue_code bitLen="1">1</ue_code>
<ue_value bitLen="0">0</ue_value>

</sub_seq_id>
<first_ref_pic_flag bitLen="1">

0
</first_ref_pic_flag>
<leading_non_ref_pic_flag bitLen="1">

0
</leading_non_ref_pic_flag>
<last_pic_flag bitLen="1">

0
</last_pic_flag>
<sub_seq_frame_num_flag bitLen="1">

0
</sub_seq_frame_num_flag>

</sub_seq_info>

An XFlavor fragment is provided in Listing 4.8; it describes the syntax of a
sub-sequence information SEI message. Listing 4.9 contains a corresponding
BSD excerpt, obtained after having parsed a sub-sequence information SEI
message using an XFlavor-driven parser. A value of zero for bitLen im-
plies that this element is ignored by Bitgen (which is functionality similar to
bs1:ignore in BSDL).

BSDL defines a number of restrictions and extensions on top of XML
Schema. The same observation regarding the use of restrictions and extensions
applies to XFlavor, which was designed to be an intuitive and natural extension
and restriction of the typing system of object-oriented languages like C++ and

4.4. BS Schemata for MPEG media formats 87

Java [111]. For instance, in XFlavor, in contrast to C++ and Java, it is not pos-
sible for an author to define functions, which is due to the declarative nature of
XFlavor. However, these design principles of XFlavor will not be discussed in
further detail as this dissertation is mainly about the use of XML-based tech-
nologies for media resource adaptation. For more information regarding this
topic, we would like to refer the interested reader to [111]. Finally, a number
of important language features of XFlavor will also be outlined in more detail
in Chapter 5.

4.3.3 Summary

Although BSDL and XFlavor share the goal to be applicable to any media for-
mat, there are, as discussed by Panis et al. [93], some fundamental differences.
These differences primarily stem from the differing focus of the technologies.

• In XFlavor, bitstream parsing and description is accomplished by the
C++ or Java code generated from the Flavor description. The XML
Schema is used only for validation purposes. Proprietary attributes are
used in the BSD to indicate the binary encoding of the element con-
tent. A drawback of this design is that two elements with the same type
(e.g., encoded on two bits) will require the same verbose declaration in
the BSD. This is in contrast with BSDL, where the binary encoding of
each element is defined once in the BS Schema such that it is no longer
necessary to include this encoding information in the resulting BSD.

• In XFlavor, the complete bitstream data are actually embedded in the
BSD, resulting in potentially verbose descriptions, while BSDL uses a
specific data type to point to a data range in the original bitstream when
it is too verbose to be included in the BSD (using bs1:byteRange).

This is why, unlike XFlavor, BSDL is a description language, rather than
a representation language, and can describe the bitstream at a high syntactical
level instead of at a low-level, bit-per-bit basis. Finally, note that MPEG-21
BSDL is built on top of W3C XML Schema, which is the metadata commu-
nity’s point of view, while XFlavor is built on top of the principles of object-
oriented languages, which is the developers community’s point of view.

4.4 BS Schemata for MPEG media formats

In the previous section, we have learned how MPEG-21 BSDL can be used to
describe the high-level syntax of a particular media format. The resulting doc-
ument is called a BS Schema. In this section, a brief overview is given of the

88 BSD-driven media resource adaptation

most important design characteristics of a number of MPEG-21 BS Schemata
that were developed in the context of this research.

XFlavor descriptions were developed as well. However, the construction
of these descriptions is not discussed for the following two reasons.

1. The construction of the XFlavor descriptions can be considered a rather
rectilinear translation of the tabular representation of the bitstream syn-
tax. Indeed, these tabular representations, typically used in a standards
document, are on par with the design principles of XFlavor.

2. XFlavor is a mature language that targets the description of the entire
bitstream syntax. Consequently, this makes it straightforward to de-
scribe high-level syntax structures using XFlavor (while the low-level
bitstream segments are copied verbatim into the BSD without parsing,
in order not to lose any bitstream data; see Chapter 5).

The mature nature of XFlavor is in contrast to the BSDL schema language
and its underlying tools. These were characterized by a lack of testing in the
context of multiple video coding formats at the time of standardization. This
statement will be supported further in this chapter, as well as in Chapter 5.

4.4.1 Structure of the BS Schemata

In Listing 4.10, a generic template is provided for an MPEG-21 BS Schema
that describes the structure of a typical packet-based media format. The high-
level structure of all media formats, as discussed in this dissertation, is in line
with this template. A Parse Unit (PU) is the fundamental unit of processing for
a BintoBSD Parser: it may either convey coded header data or coded payload
data. For instance, a PU in H.264/AVC equals a NAL unit, while a PU in
MPEG-1 Systems can be mapped to a pack.

Listing 4.10: Generic BS Schema for a packet-based media format.

<xsd:schema>
<xsd:element name="bitstream">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="parse_unit">
<xsd:complexType>

<xsd:choice>
<xsd:element ref="coded_header_data"/>
<xsd:element ref="coded_media_data"/>

</xsd:choice>
</xsd:complexType>

4.4. BS Schemata for MPEG media formats 89

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>

Appendix B contains a number of BS Schemata that describe the high-
level syntax structures of bitstreams compliant with MPEG-{1, 2} Video,
MPEG-{1, 2} Systems, MPEG-4 Visual, and H.264/AVC. The BS Schema
for H.264/AVC is discussed in more detail in Section 4.4.3 as its construction
required the use of several extensions to BSDL. A BS Schema for VC-1 is
outlined in Section 4.5, which gives a complete picture regarding BSD-driven
content adaptation using MPEG-21 BSDL and XFlavor. Finally, the construc-
tion and use of a BS Schema for H.263+ (including its scalability features) and
a preliminary version of SVC is discussed in [34] and [35], respectively.

The main incentive behind the development of our BS Schemata was to test
the expressive power of MPEG-21 BSDL, hence their high level of detail5.
The schemata for the coding formats for instance facilitate the BSD-driven
exploitation of temporal scalability, while the BS Schemata for the container
formats allow to demultiplex the different elementary bitstreams that are stored
in a particular container.

Finally, for the purpose of readability and maintenance, the BS Schemata
closely reflect the design principles and the tabular syntax of the media formats
described. This implies that the names used in most of the XML element dec-
larations in the BS Schemata are in line with the names employed in the corre-
sponding format specifications. Also, this means that optimized BS Schemata
will probably omit some levels in the syntax hierarchy that is used in our BS
Schemata.

4.4.2 Complexity assessment of the BS Schemata

In order to get an estimate of the complexity of the BS Schemata, a number
of measurements are provided in Table 4.3. These measurements relate to the
number of occurrences of the MPEG-21 BSDL language features used in the
different BS Schemata, and in particular to the frequency of the attributes that
may affect the performance of a BintoBSD Parser. The performance behavior
of this parser is discussed at the end of this chapter, as well as in Chapter 5.
The semantics and the use of the context management attributes is explained in
Appendix C. The measurements pertaining to the different coding and storage

5The MPEG-21 DIA specification does not mandate normative BS Schemata.

90 BSD-driven media resource adaptation

Table 4.3: Estimate of the complexity of the MPEG-21 BS Schemata, in terms of the
number of occurrences of certain language features. This complexity describes the
amount of detail in which a particular bitstream may be parsed (and not the complexity
of a particular coding format).

language MPEG-1 MPEG-2 MPEG-4
feature Video Systems Video Systems Visual AVC

W3C XML Schema components
xsd:element 86 79 137 275 91 323
xsd:choice 1 1 1 1 1 1
xsd:union 0 0 0 0 1 3

BSDL-2 language features
bs2:nOccurs 0 0 1 1 0 188
bs2:if 4 0 5 18 22 82
bs2:ifUnion 0 0 0 0 16 29
bs2:ifNext 19 11 26 29 8 6
bs2:length 0 6 0 30 0 0
bs2:startCode 6 6 5 5 3 2

non-normative attributes for context management during BSD generation
bs0:startContext 3 2 4 4 2 32
bs0:stopContext 2 1 3 2 2 34
bs0:partContext 3 18 4 90 16 64
bs0:redefineMarker 1 1 1 2 3 16

other non-normative language features
bs0:implementation 0 0 0 0 0 4
bs0:fillByte 1 1 1 1 1 1

formats are done for the BS Schemata submitted to the MPEG meeting in
Montreux (2006) [47]. The BS Schema used for H.264/AVC does not contain
support for the processing of SEI messages.

4.4.3 Design features of the BS Schema for H.264/AVC

This section provides more details regarding a number of important design fea-
tures of the BS Schema developed for the first version of H.264/AVC [22] [23].
A good understanding of these design characteristics is for instance funda-
mental for gaining a good insight into the BS Schema for the scalable exten-
sions to H.264/AVC. Indeed, the BS Schema for SVC, developed by Davy De
Schrijver, is a (non-trivial) extension of the BS Schema for the first version of
H.264/AVC [35]. It includes, among other features, support for describing the
syntax of the scalability information SEI message, which was previously dis-
cussed in Chapter 3. Further, the BS Schema for H.264/AVC was also used in
the context of several experiments that are discussed in the next two chapters,
aiming at the exploitation of multi-layered temporal scalability in H.264/AVC.
Finally, the BS Schema for H.264/AVC was also used by Peter Lambert for the
XML-based exploitation of ROI scalability in single-layer H.264/AVC [37].

4.4. BS Schemata for MPEG media formats 91

Byte stream NAL unit syntax

Our BS Schema describes the Byte Stream NAL unit syntax of the first ver-
sion of H.264/AVC, up to and including the syntax of the slice header()
structure. As discussed in Chapter 2, the Byte Stream NAL unit format, also
known as the Annex B syntax, introduces a delimiter (i.e., a start code prefix) to
separate the different NAL units in an elementary H.264/AVC bitstream. This
means that the parsing of the high-level syntax of an elementary H.264/AVC
bitstream is mainly driven by start codes, and not by length fields6.

Supported profiles

The BS Schema supports all profiles of the first version of the H.264/AVC
standard - this is, the Baseline, Main, and Extended profile. It also allows
parsing bitstreams that contain progressive and interlaced coded video. How-
ever, the BS Schema for H.264/AVC currently does not have provisions for the
profiles as defined by the FRExt amendment, i.e. the so-called High Profiles.
FRExt for instance introduces a few additional syntax elements in the different
parameter sets.

Parameter set management

The BS Schema for H.264/AVC contains several XPath expressions, primarily
used to get access to information stored in the different types of parameter
sets. These XPath expressions provide support for H.264/AVC bitstreams that
contain multiple SPSs and PPSs. This feature is for example necessary in case
of H.264/AVC bitstreams that support changing macroblock allocation maps, a
bitstream configuration that may occur when FMO is in use. Indeed, a change
in the macroblock allocation map is signaled by sending a new PPS.

Also, our XPath expressions guarantee a correct access to the currently
active SPS and PPS, even when those parameter sets are characterized by
the same identifier. This may for example be the case when a parameter set
is repeatedly sent within an H.264/AVC bitstream for error resilience pur-
poses. The identifier for the PPS that is currently active is stored in the
jvt:pic parameter set id syntax element in a slice header. On the
other hand, the identifier for the SPS that is currently active is stored in the
jvt:seq parameter set id syntax element in the currently activated
PPS.

6Length fields can for instance be used to skip the payload of irrelevant SEI messages, as
the payload length of an SEI message is signaled by a syntax element that precedes the payload
syntax structure (see Figure B.13).

92 BSD-driven media resource adaptation

The semantics and use of our XPath expressions is explained using
an example. The number of bits needed to represent the syntax element
jvt:frame num in the slice header() syntax structure is dependent
on the value of the jvt:log2 max frame num minus4 syntax element in
the SPS that is currently active. As shown in Listing 4.7, the exact number of
bits for the representation of frame num is determined using an xsd:union
construct. The first XPath expression that is employed in this xsd:union
construct is completely provided in Listing 4.11. As explained below, this
XPath expression can be used in the context of H.264/AVC bitstreams con-
taining multiple SPSs and multiple PPSs.

Listing 4.11: First XPath expression used in the xsd:union construct for
frame num (split up in three different parts for readability purposes).

<bs2:ifUnion value="/jvt:bitstream/jvt:byte_stream/
jvt:byte_stream_nal_unit[$PH1][position()=last()]/jvt:nal_unit/
jvt:raw_byte_sequence_payload/jvt:seq_parameter_set_rbsp/
jvt:log2_max_frame_num_minus4 = 0"/>

<!-- Retrieve the active SPS. -->
$PH1 = jvt:nal_unit/jvt:raw_byte_sequence_payload/
jvt:seq_parameter_set_rbsp/jvt:seq_parameter_set_id = $PH2/
jvt:nal_unit/jvt:raw_byte_sequence_payload/
jvt:pic_parameter_set_rbsp/jvt:seq_parameter_set_id

<!-- Retrieve the active PPS. -->
$PH2 = /jvt:bitstream/jvt:byte_stream/jvt:byte_stream_nal_unit
[jvt:nal_unit/jvt:raw_byte_sequence_payload/
jvt:pic_parameter_set_rbsp/jvt:pic_parameter_set_id =
/jvt:bitstream/jvt:byte_stream/jvt:byte_stream_nal_unit
[position()=last()]/jvt:nal_unit/
jvt:raw_byte_sequence_payload/child::*/child::*/
jvt:slice_header/jvt:pic_parameter_set_id][position()=last()]

The XPath expression shown in Listing 4.11 reflects the pointer-based
relationship between a slice header, a PPS, and an SPS. This expression is
used to navigate from within a particular slice header to the value of the
jvt:log2 max frame num minus4 syntax element, conveyed by a par-
ticular SPS. The semantics of the XPath expression is as follows (from a de-
coder point of view). Based on the PPS identifier that is carried by a slice
header, the correct PPS is activated and accessed. This is implemented by
the expression labeled $PH2 (placeholder 2). In a next step, the SPS iden-
tifier, carried by the PPS that is currently active, is used to activate and to
access the correct SPS. This is realized using the expression labeled $PH1

4.4. BS Schemata for MPEG media formats 93

(placeholder 1). Finally, the jvt:log2 max frame num minus4 syntax
element is retrieved from the appropriate SPS to verify whether its value is
equal to zero (implying that frame num is represented with four bits in the
bitstream).

Listing 4.12 shows a simplified XPath expression that can be employed
as the first entry in the xsd:union construct for frame num in case of an
H.264/AVC bitstream that is only using one SPS and one or multiple PPSs.
This XPath expression does no longer contain predicates. The length of the
location step is reduced significantly.

Listing 4.12: Simplified XPath expression used in the xsd:union construct for
frame num.

<bs2:ifUnion value="/jvt:bitstream/jvt:byte_stream/
jvt:byte_stream_nal_unit_sps/jvt:nal_unit_sps/
jvt:raw_byte_sequence_payload_sps/jvt:seq_parameter_set_rbsp/
jvt:log2_max_frame_num_minus4 = 0"/>

MPEG-21 BSDL extensions used

The design of the BS Schema for H.264/AVC, describing its Annex B syn-
tax with a granularity of up to and including the slice header() syntax
structure, required the use of a number of extensions to the MPEG-21 BSDL
specification. At the time of developing this BS Schema, the BSDL reference
software already provided the necessary non-normative means to incorporate
our extensions in the BS Schema for H.264/AVC.

Use of bs0:fillByte. The development of the BS Schema for
H.264/AVC required the use of the bs0:fillByte language construct. This
attribute instructs the BintoBSD Parser, as available in the reference software
package, to search for the next byte-aligned position. The value of the bits
skipped is placed in the BSD. After the transformation of the BSD, the value
of the skipped bits is subsequently used by the BSDtoBin process to add an ap-
propriate amount of padding bits to the output bitstream. Note that the number
of padding bits might have changed due to changes applied to a BSD (in par-
ticular when syntax elements, represented with variable-length coding, were
removed, added, or changed). Zero-valued bits are added to the output bit-
stream in case the number of required output padding bits surpasses the num-
ber of bits skipped by BintoBSD. The use of bs0:fillByte is illustrated
by Listing 4.13.

94 BSD-driven media resource adaptation

Listing 4.13: Use of bs0:fillByte.

<!-- BS Schema fragment. -->
<xsd:simpleType name="Stuffing">

<xsd:restriction base="bs0:fillByte"/>
</xsd:simpleType>
<xsd:element name="bit_stuffing" minOccurs="0" maxOccurs="1"

type="jvt:Stuffing"/>
<!-- BSD fragment. -->
<bit_stuffing>15</bit_stuffing>

The bs0:fillByte attribute allows limiting the overhead of the amount
of XML data produced when describing the high-level syntax of a bitstream.
As such, its use contributes to the scalable nature of BSDs. Without the avail-
ability of the bs0:fillByte language construct, it is necessary to parse the
bitstream to a position that is known for its byte-alignment, despite the fact
that the information processed is not relevant for the purpose of content adap-
tation. This is due to the way parsing is defined for the BintoBSD process:
the instruction to search for a next start code (delimiter-driven parsing) or the
instruction to skip a well-defined number of bytes (length-driven parsing) can
only be sent to a BintoBSD Parser at a byte-aligned position.

Acquiring byte-alignment can be a major challenge in case of high-level
syntax structures (e.g., headers) that are synthesized using syntax elements that
are either optional or that are either represented using variable-length coding.
This is for instance true for most of the headers employed in an H.264/AVC bit-
stream: several high-level parameters are encoded using Exponential Golomb
coding, a variable-length coding scheme. For such syntax structures, byte-
alignment can often only be achieved by parsing the entire syntax structure
(when no bs0:fillByte language construct is available). It is clear that
this approach fails in realizing the idea to create a high-level BSD for a partic-
ular bitstream.

The implementation of the bs0:fillByte language feature, as cur-
rently provided in the reference software package, may also result in a number
of unexpected side effects when doing editing operations on syntax elements
represented by a variable-length coding scheme. More precisely, in case of
a shortage of bits during bitstream regeneration, by default, zero-valued bits
are added to the newly generated bitstream. However, in some cases, it is
mandatory to use padding bits that are having a value of one (or to use other
specific bit patterns, such as the frequently used 0(1)* bit pattern in MPEG-4
Visual and the 1(0)* bit pattern in H.264/AVC). For these cases, the use of the
bs0:fillByte construct may result in the creation of evil bitstreams [24].

4.4. BS Schemata for MPEG media formats 95

The bs0:fillByte attribute maps to byte aligned(), a syntax
function that can be found in the H.264/AVC specification, although the se-
mantics are not completely the same (e.g., byte aligned() is only used
for determining byte-alignment, while bs0:fillByte can also be used to
adjust byte-alignment by inserting additional bits in the bitstream). As shown
in Table 4.3, the use of the non-normative bs0:fillByte language con-
struct was necessary in the BS Schemata for other media formats as well.

Use of bs0:implementation. Besides the use of bs0:fillByte, the
design of the BS Schema for H.264/AVC also required the employment of the
bs0:implementation language construct. This non-normative language
construct adds a programming language dependent extension mechanism to
BSDL. Indeed, the bs0:implementation attribute makes it possible to
rely on procedural objects to perform complex computations or to process
complex data types. Complex means that it is not trivial in practice to ex-
press the computations using BSDL, or to describe the layout of a particular
data type using the aforementioned schema language.

In the BSDL reference software, the procedural objects take the form of
user-provided Java class files. Listing 4.14 illustrates how to address such a
class file from within a BS Schema: the bs0:implementation attribute
takes a path, referring to a particular Java class file, as value. As such, the set
of BSDL-1 built-in data types is extended with support for a new data type
named UnsignedExpGolomb.

Listing 4.14: Use of bs0:implementation.

<!-- BS Schema fragment. -->
<xsd:simpleType name="UnsignedExpGolomb" bs0:implementation=

"datatypes.UnsignedExpGolomb">
<xsd:restriction base="xsd:string"/>

</xsd:simpleType>
<!-- BSD fragment. -->
<xsd:element name="slice_type" type="jvt:UnsignedExpGolomb"/>

The Java classes, residing in the Java class files, have to implement a well-
defined interface.

• A first method, called readSCFromBitstream(), is used by Bin-
toBSD to retrieve a particular number of bits from the bitstream. After
having processed these bits, the resulting value is written to a BSD.

96 BSD-driven media resource adaptation

• A second method, called writeSCToBitstream(), is used by
BSDtoBin to convert a value, stored in the BSD, to a bit pattern that
is subsequently written to the bitstream.

The following Java classes were developed in order to successfully create
a BS Schema for the first version of H.264/AVC.

• UnsignedExpGolomb - This class is used for processing syntax el-
ements that are represented by an Unsigned Exp-Golomb code. For
BintoBSD, the class retrieves a bit string from the bitstream and subse-
quently writes the decoded value to the BSD. For BSDtoBin, the value
in the BSD is transformed by the class into an appropriate bit pattern
that is written to the bitstream in a next step.

Note that the construction of Unsigned Exp-Golomb codes can be de-
scribed using BSDL. However, this approach results in a tremendous
overhead: a separate XML element has to be created for every bit that
is part of the syntax element represented by an Unsigned Exponential
Golomb code. On top of that, it is not trivial to decode or to interpret
the resulting representation of such a syntax element in XML using an
XPath expression.

• SignedExpGolomb - Similar to the UnsignedExpGolomb class,
the SignedExpGolomb class is used for processing syntax elements
represented by a Signed Exp-Golomb code.

• SliceGroupChangeCycleType - This class is used for the pro-
cessing of the jvt:slice group change cycle syntax element,
which is the last syntax element of the slice header() syntax
structure when FMO types 3, 4, or 5 are in use (evolving slice
groups). It determines the number of macroblocks in slice group 0.
The use of the bs0:implementation language construct is neces-
sary because the number of bits needed for the representation of the
jvt:slice group change cycle syntax element has to be com-
puted by evaluating a logarithmic function with base two:

Ceil(Log2(
PicSizeInMapUnits

SliceGroupChangeRate
+ 1)). (4.1)

In the context of bitstream parsing, the logarithmic function with base
two is typically used for determining the number of bits a syntax element
is represented with, the exact number of bits dependent on the value

4.4. BS Schemata for MPEG media formats 97

of another syntax element that is given as argument to the logarithmic
function. However, the logarithmic function is not available in the XPath
1.0 specification.

When the set of input values is limited, the use of a logarithmic func-
tion can be circumvented using the xsd:union language feature and
values that are computed beforehand. However, this is not the case for
the jvt:slice group change cycle syntax element because the
number of input values is dependent on the picture resolution.

Finally, the bs2:length facet only allows expressing the length of a
bitstream segment in terms of a number of bytes. As such, the processing
of jvt:slice group change cycle would still pose a problem
in case a logarithmic function would have been available in XPath 1.0.
Indeed, the first edition of MPEG-21 BSDL does not offer support for
data types that are characterized by a variable bit length.

• CabacAlignmentOneBitType - This class is used for the process-
ing of the jvt:cabac alignment one bit syntax element, which
may occur as the first syntax element in the slice data() syntax
structure when the CABAC entropy coding scheme is in use.

When CABAC is employed, the H.264/AVC standard re-
quires that byte-alignment is achieved after having parsed the
slice header() syntax structure. This is realized by starting
the slice data() syntax structure with an appropriate number
of jvt:cabac alignment one bit syntax elements. The
jvt:cabac alignment one bit syntax element has a length of
one bit, which always has a value of one.

The use of the CabacAlignmentOneBitType class is necessary
when the size of the slice header() structure is changed due to
editing operations on syntax elements represented by a variable-length
coding scheme. During the construction of a bitstream by BSDtoBin,
the CabacAlignmentOneBitType class adds a sufficient number
of one-valued bits to the output bitstream such that a correct transition is
guaranteed between the slice header() and slice data() syn-
tax structures.

Note that bs0:fillByte cannot be used for this purpose, as this at-
tribute does not allow specifying that bits with a value of one have to
be used to achieve byte-alignment; the use of zero-valued padding bits
would lead to evil bitstreams in this particular case.

98 BSD-driven media resource adaptation

• payloadTypeType - This class is used to determine the payload type
of SEI messages. This is something that can also be expressed in BSDL.
However, the employment of this class allows the use of a number of
straightforward XPath expressions, as such improving the readability of
our BS Schema.

• payloadSizeType - Similar to the payloadTypeType class, the
payloadSizeType class is used to determine the payload size of
an SEI message, leading to more elegant XPath expressions in the BS
Schema.

Finally, a NAL unit may carry multiple SEI messages. To detect the dif-
ferent SEI messages in the payload of such a NAL unit, the H.264/AVC stan-
dard mandates the use of a syntax function called more rbsp data(). This
function also needs to be implemented using the bs0:implementation
extension mechanism. However, as this research only focuses on the
use of NAL units containing one SEI message, the implementation of
more rbsp data() will not be discussed in more detail.

4.5 BSD-driven temporal adaptation in VC-1

In the previous sections, we have outlined two languages that enable BSD-
driven adaptation of binary media resources - this is, MPEG-21 BSDL and
XFlavor. In this section, a discussion is provided regarding a performance
evaluation of two practical frameworks for BSD-driven content adaptation,
based on the aforementioned languages: one framework is entirely built on
top of MPEG-21 BSDL while the second framework is completely relying on
the use of XFlavor. Both infrastructures are employed for the adaptation of
VC-1 compliant bitstreams in the temporal domain. The use of VC-1 in the
next series of experiments is justified for the following three reasons:

1. VC-1 is a state-of-the-art video coding format that can be seen as the
main competitor of H.264/AVC in terms of coding efficiency, next to the
Chinese Audio and Video coding Standard (AVS) specification [112];

2. it is demonstrated that MPEG-21 BSDL can be applied in a straightfor-
ward way to VC-1 for the purpose of BSD-driven exploitation of tem-
poral scalability;

3. an insight into the coding structure of VC-1’s Advanced Profile, which
is similar to the coding structure of H.264/AVC (see below), will ease
some of the discussions in the next two chapters.

4.5. BSD-driven temporal adaptation in VC-1 99

A complete overview is provided, involving BSD generation, BSD trans-
formation, and tailored bitstream generation. The performance measurements,
which are also published in [28], are given in terms of computational times, file
sizes, and memory consumption. Our analysis is not intended to be exhaustive:
it is rather to be considered a first acquaintance for the interested reader with
a number of performance bottlenecks in the two different approaches toward
BSD-driven content adaptation, using an emerging video coding format. A
more thorough discussion regarding the identified bottlenecks will be provided
in the subsequent chapters for the MPEG-1 Video and H.264/AVC coding for-
mats, together with a number of appropriate solutions or alternatives.

4.5.1 Video Codec 1

In August 2005, VC-1 reached the Final Committee Draft (FCD) status with
SMPTE’s C24 Technology Committee, in which it is officially referenced
as SMPTE standard 421M [94]. This specification for digital video coding
not only sits at the core of the Windows Media Series [113] (Windows Me-
dia Video 9 is Microsoft’s implementation of VC-17), but it is also included
as a mandatory video compression format for the next-generation of High-
Definition DVDs by both the Blu-Ray Disc Association and the DVD Forum
(together with H.262/MPEG-2 Video and H.264/AVC). Hence, it is likely that
VC-1 will be used in diverse usage environments, thus making it relevant to
gain an insight into techniques that allow to realize an efficient and transparent
customization of VC-1 compliant bitstreams.

SMPTE’s VC-1 is an emerging standard for the coding of digital consumer
video: pictures are represented in the YCbCr color space with 4:2:0 sampling,
using eight bits per color component. The VC-1 specification defines three
profiles.

• The Simple Profile targets low-rate Internet streaming and low-
complexity applications such as video playback on Personal Digital As-
sistants (PDAs). This profile can be considered equivalent to the Simple
Profile of MPEG-4 Visual.

• The Main Profile aims at high-rate Internet applications such as
TV/Video-On-Demand over IP. This profile can be considered equiva-
lent to the Advanced Simple Profile of MPEG-4 Visual.

• The Advanced Profile (AP) focuses on broadcast applications, such as
Digital TV, HD DVD for PC playback, or HDTV. It is the only profile

7http://www.microsoft.com/windows/windowsmedia/forpros/
events/NAB2005/VC-1.aspx.

http://www.microsoft.com/windows/windowsmedia/forpros/events/NAB2005/VC-1.aspx
http://www.microsoft.com/windows/windowsmedia/forpros/events/NAB2005/VC-1.aspx

100 BSD-driven media resource adaptation

that supports interlaced content and the use of slices. This profile can be
considered equivalent to the High Profile of H.264/AVC.

Bitstreams compliant with the AP are self-contained; their decoding is not
dependent on information that has to be conveyed by an external transport
mechanism such as a file container. The latter observation is not true for bit-
streams that are in line with the Simple and Main profile. Their decoding
requires Decoder Initialization Metadata (DIM). These metadata items have to
be made available to a decoder prior to the start of the decoding process. For
instance, the profile and level used have to be communicated to a decoder by
external means in case of the Simple and Main profile, while this information
is readily available for a decoder in case of AP-compliant bitstreams. Hence,
this explains why we have chosen to only describe the high-level structure of
bitstreams that are satisfying the constraints of VC-1’s most sophisticated pro-
file.

A VC-1 bitstream consists of a number of Encapsulated Bitstream Data
Units (EBDUs). These units, which are similar to NAL units in H.264/AVC
or to frame data units in Dirac8, may carry compressed picture data (frame
and slice EBDUs), as well as header information (sequence and entry-point
header EBDUs). A simplified overview of the high-level structure of a VC-1
bitstream, in line with the possibilities of the AP, is provided in Figure 4.4.

In a VC-1 AP bitstream, the first slice of a frame is conveyed by a frame
EBDU, while the remaining slices of the frame are stored in a separate slice
EBDU. This is similar to the way slices are stored in NAL units in H.264/AVC.
However, in the context of BSD-driven temporal adaptation of VC-1 bit-
streams, using BSDL and XFlavor, a frame EBDU acts as a container for all
the slice EBDUs of a particular frame - this is, in a BSD for an AP bitstream,
a smpte:slice element will be child of a smpte:frame element. This is
for instance illustrated by Listing 4.15, showing a BSD produced by BSDL’s
BintoBSD Parser. Our motivation is twofold:

1. the decision-making of the BSD transformation engine regarding which
frame to drop can be done at the level of a frame, and not at the level of
the slices (i.e., not at the level of the individual EBDUs); and

2. the XSLT stylesheets, which are responsible for dropping certain types
of frames at the level of a BSD, can be kept simple and uniform.

8As such, a parse unit in our generic BS Schema template (see Listing 4.10) corresponds
to an EBDU for VC-1.

4.5. BSD-driven temporal adaptation in VC-1 101
C:\CVS_Repositories\Berg\wdn_wiamis06\pdf\vc-1_generic_zero_byte_aware.xsd 10/18/05 20:38:12

©1998-2003 Altova GmbH http://www.xmlspy.com Page 1Registered to chacha (coca-cola)

bitstream

zero_byte

∞0..

ebdu

∞0..

smpte:end_of_sequence

smpte:slice

bdu_start_code

slice_addr

pic_header_flag

if_pic_header_flag_eq_1

padding

slice_payload

smpte:frame

bdu_start_code

if_interlace_eq_1

ptype

I

P

B

BI

Skipped

padding

frame_payload

smpte:entry_point_header

smpte:sequence_header

Figure 4.4: Simplified overview of the VC-1 bitstream structure. For this BS Schema,
a slice EBDU sits at the same level as a frame EBDU.

Listing 4.15: Simplified BSD produced by BintoBSD. All slices of one particular
picture share the same coding type.

<bitstream bs1:bitstreamURI="./SA10098.vc1">
<encapsulated_bdu>

<sequence_header>
<bdu_start_code>0000010F</bdu_start_code>
<profile>3</profile>
<level>2</level>
<colordiff_format>1</colordiff_format>
<frmrtq_postproc>7</frmrtq_postproc>
<btrtq_postproc>31</btrtq_postproc>
<postprocflag>0</postprocflag>
<max_coded_width>359</max_coded_width>
<max_coded_height>239</max_coded_height>
<!-- ... -->

102 BSD-driven media resource adaptation

</sequence_header>
</encapsulated_bdu>
<encapsulated_bdu>

<entry_point_header>
<bdu_start_code>0000010E</bdu_start_code>
<!-- ... -->

</entry_point_header>
</encapsulated_bdu>
<encapsulated_bdu>

<!-- A frame EBDU. -->
<frame>

<bdu_start_code>0000010D</bdu_start_code>
<ptype>

<I>6</I>
</ptype>
<padding>0</padding>
<frame_payload>143 17753</frame_payload>
<!-- A slice EBDU. -->
<child_ebdu>

<slice>
<bdu_start_code>0000010B</bdu_start_code>
<slice_addr>8</slice_addr>
<pic_header_flag>1</pic_header_flag>
<if_pic_header_flag_eq_1>

<ptype>
<I>6</I>

</ptype>
</if_pic_header_flag_eq_1>
<padding>0</padding>
<slice_payload>17902 62560</slice_payload>

</slice>
</child_ebdu>
<!-- ... -->

</frame
</encapsulated_bdu>
<!-- ... -->

</bitstream>

A sequence-level header contains parameters that are used to decode a se-
quence of compressed pictures. The entry-point header serves two purposes.
First, it is used to signal a random access point: it guarantees that subsequent
pictures can be decoded (closed GOP functionality). Second, it is used to sig-
nal changes in the coding control parameters that are enabled for a particular
entry point segment. In contrast to the parameter sets in H.264/AVC, sequence-
level headers and entry-point headers are immediately activated when retriev-
ing them from an elementary bitstream.

4.5. BSD-driven temporal adaptation in VC-1 103

Further, the VC-1 specification also defines five types of pictures.

• An I picture (intra-coded picture) is coded using information only from
itself; all its macroblocks are intra-coded.

• A P picture is coded using MCP from past reference pictures. It may
contain macroblocks that are inter- or intra-coded.

• A B picture is coded using MCP from past and/or future reference pic-
tures; macroblocks can be inter- or intra-coded.

• A BI picture is a B picture that only contains intra-coded macroblocks.
It cannot be used for predicting other pictures (see further). In other
words, a BI picture is a non-reference I picture.

• A Skipped picture is a P picture that is identical to its reference picture;
its reconstruction is equivalent to copying the reference picture, imply-
ing that no further data are transmitted. This is similar to the use of
pseudo-skipped pictures in H.262/MPEG-2 Video [114] and Non-coded
Video Object Planes (N-VOPs) in MPEG-4 Visual (see also Chapter 6).

B pictures in VC-1 are not used as a reference for subsequent pictures.
They are placed outside the decoding loop, allowing shortcuts to be taken dur-
ing their decoding without causing drift or long-term visual artifacts (temporal
scalability). Intra-coded B pictures (BI pictures) are also allowed in VC-1.
They typically occur at scene changes where it is more economical to code the
data as intra rather than P or B. This picture type is distinguished from true I
pictures by disallowing them to be referenced by other pictures. This allows a
decoder (e.g., on a constrained device) to omit decoding them. It also allows
an encoder to choose a lower quality setting or quantization step size to encode
them. Finally, an AP bitstream offers a trivial form of spatial scalability: the
coded size in pixels can be changed at entry points. This provides an encoder
with the ability to alter the coded picture size and thus the bit rate.

Listing 4.16: XSLT stylesheet for frame dropping in a BSD, produced by BintoBSD
for a particular VC-1 bitstream.

<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:smpte="vc-1">
<xsl:output method="xml" indent="yes"/>
<!-- Match all. -->
<xsl:template name="tplAll" match="@*|node()">

<xsl:copy>

104 BSD-driven media resource adaptation

<xsl:apply-templates select="@*|node()"/>
</xsl:copy>

</xsl:template>
<!-- Match top-level element. -->
<xsl:template match="smpte:bitstream">

<xsl:copy>
<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:template>
<!-- Do nothing for processing instructions. -->
<xsl:template match="processing-instruction()"/>
<!-- Drop B pictures - Overrides tplAll. -->
<xsl:template name="tplB_picture"

match="smpte:encapsulated_bdu
[smpte:frame/smpte:ptype/smpte:B=2]">

<!-- Do nothing. -->
</xsl:template>
<!-- Drop BI pictures - Overrides tplAll. -->
<xsl:template name="tplBI_picture"

match="smpte:encapsulated_bdu
[smpte:frame/smpte:ptype/smpte:BI=14]">

<!-- Do nothing. -->
</xsl:template>
<!-- Drop Skipped pictures - Overrides tplAll. -->
<xsl:template name="tplSkipped_picture"

match="smpte:encapsulated_bdu
[smpte:frame/smpte:ptype/smpte:Skipped=15]">

<!-- Do nothing. -->
</xsl:template>

</xsl:stylesheet>

4.5.2 Performance data

In this section, a number of performance measurements are presented for the
BSDL and XFlavor content adaptation chains. An off line scenario is targeted
that requires the elimination of B pictures, BI pictures, and Skipped pictures
in bitstreams compliant with VC-1’s AP. Other use cases in the compressed
temporal domain can be devised as well, such as content summarization and
scene selection.

An artificial set of test bitstreams was generated from a representative con-
formance test bitstream (SA10098.vc1; AP@L1; 6000 Kbps; 720x480; 30 Hz;
slice coding enabled), using the BSD approach9. This is due to the fact that a

9BSDs can be easily used for straightforward editing operations such as the removal or
duplication of a number of frames.

4.5. BSD-driven temporal adaptation in VC-1 105

Table 4.4: VC-1 bitstream characteristics.

#headers #framesa

#frames #EBDUs sequence entry-point I P B Skipped
150 1866 1 2 1 41 74 34
301 3531 1 2 1 79 150 71
450 5244 1 2 2 119 224 105
601 7084 1 2 2 155 300 144
750 8762 1 3 3 186 374 187
900 10498 1 3 3 225 449 223
1800 20994 1 6 6 450 898 446
2700 31490 1 8 9 675 1347 669
3600 41986 1 12 12 900 1796 892
4500 52482 1 15 15 1125 2245 1115
9000 104962 1 30 30 2250 4490 2230

aThe test bitstreams do not contain BI pictures.

software encoder, able to output elementary bitstreams, was not at our disposal
at the time of doing this research; only a reference decoder and a set of con-
formance bitstreams were available in the public domain. The characteristics
of the test bitstreams used are summarized in Table 4.4.

The measurements were done on a PC having an Intel Pentium M 1.6 GHz
CPU and 512 MB of system memory at its disposal. SAXON810 was used in
order to apply XSLT stylesheets to BSDs. The BSDs are either produced by
BSDL’s BintoBSD Parser or by a parser that is automatically generated using
XFlavor. Version 1.2.1 of the MPEG-21 BSDL reference software was used11,
as well as version 5.1.0 of the Flavorc translator12. The peak heap memory
consumption was registered by relying on JProfiler 4.0.213.

The XSLT stylesheets make it possible to eliminate the descriptions of
B, BI, and Skipped pictures in the XML domain. Such a stylesheet is for
instance provided in Listing 4.16; it allows the transformation of BSDs that
are produced by BSDL’s BintoBSD Parser. A similar stylesheet was used for
the transformation of BSDs created by the XFlavor-based parser. The most
important observations will now be put forward.

10Available online: http://saxon.sourceforge.net/.
11Available online: http://www.enikos.com/mpegarea/.
12Available online: http://flavor.sourceforge.net/.
13Available online: http://www.ej-technologies.com/products/

jprofiler/overview.html.

http://saxon.sourceforge.net/
http://www.enikos.com/mpegarea/
http://flavor.sourceforge.net/
http://www.ej-technologies.com/products/jprofiler/overview.html
http://www.ej-technologies.com/products/jprofiler/overview.html

106 BSD-driven media resource adaptation

Table 4.5: Speeds for BSD generation, BSD transformation (using XSLT), and bit-
stream generation.

BSD generationa BSD transformation bitstream generation
BintoBSD XFlavor BSDL XFlavor BSDtoBin Bitgen

#frames (EBDUs/s) (EBDUs/s) (frames/s) (frames/s) (EBDUs/s) (EBDUs/s)
150 24.4 162.5 316.3 2.5 962.2 42.0
301 15.7 163.7 455.4 0.4 1569.9 41.3
450 11.6 181.8 488.3 n/a 2140.4 n/a
601 9.0 189.5 564.4 n/a 2318.5 n/a
750 7.5 174.2 649.4 n/a 2679.2 n/a
900 6.4 169.0 610.0 n/a 2828.0 n/a

1800 3.3 153.3 771.5 n/a 3531.4 n/a
2700 1.3 164.5 940.0 n/a 3084.2 n/a
3600 n/a 186.2 n/a n/a n/a n/a
4500 n/a 186.1 n/a n/a n/a n/a
9000 n/a 172.6 n/a n/a n/a n/a

aCertain data items are missing due to performance issues, indicated by n/a (not available).

Table 4.5 contains the speeds obtained for the creation of BSDs, their trans-
formation, and for the subsequent construction of adapted VC-1 bitstreams.
Regarding the different BSD generation techniques, it is clear that BSDL’s
BintoBSD Parser cannot be used in practice. This parser is characterized by a
decreasing processing speed and an increasing memory consumption in func-
tion of the bitstream length (see Table 4.5 and Table 4.7). As extensively dis-
cussed in the next chapter, this is due to the fact that the entire BSD needs to
be kept in the system memory to allow the evaluation of arbitrary XPath 1.0
expressions. The speeds obtained by the XFlavor-based parser are satisfactory:
a throughput of at least 153 EBDUs per second can be achieved.

Table 4.5 also summarizes the speeds obtained for the transformation of
the different BSDs and for the derivation of tailored VC-1 bitstreams. The
measurements show that the transformation of XFlavor BSDs fails in this re-
gard. As illustrated by Table 4.6, this is due to the verboseness of the textual
BSDs produced by the XFlavor-based parser: all bitstream data are embedded
in the BSDs in order not to lose any bitstream data and to allow different trans-
formations of the BSDs (see the next chapter for more technical details). On
the other hand, the high-level BSDs that are produced by the BintoBSD Parser
can be transformed at a speed that is faster than real time. BSDL’s format-
agnostic BSDtoBin Parser, built on top of the Simple API for XML (SAX) and
using buffered I/O, also operates at a speed that is faster than real time.

4.6. Conclusions and original contributions 107

Table 4.6: Bitstream and textual BSD sizes, expressed in megabytes (MB).

original file sizes transformed file sizes
#frames bitstream BSDL XFlavor BSDL XFlavor bitstream

150 4.2 0.5 88.7 0.3 27.9 1.3
301 7.7 1.0 161.9 0.5 47.3 2.3
450 10.9 1.5 228.1 0.7 n/a 3.2
601 14.1 2.0 295.1 0.9 n/a 4.0
750 17.5 2.5 366.8 1.1 n/a 4.9
900 21.1 3.0 442.1 1.4 n/a 6.0
1800 42.1 6.0 884.2 2.7 n/a 12.0
2700 63.2 9.1 1326.3 4.1 n/a 18.0
3600 84.2 n/a 1768.5 n/a n/a n/a
4500 105.3 n/a 2210.6 n/a n/a n/a
9000 210.6 n/a 4421.1 n/a n/a n/a

Further, Table 4.7 provides an overview of the memory consumption of
the different tools involved. As previously mentioned, BSDL’s BintoBSD
Parser is characterized by an increasing memory usage, while the XFlavor-
based parser for VC-1 demonstrates an almost constant and low peak memory
usage. The XSLT software also requires an increasing amount of memory:
the XSLT transformation engine needs to build up an entire Document Object
Model (DOM) tree in order to be able to execute the required transformations.
This illustrates the necessity to pay attention to the transformation technology
used in practical situations, an observation that is confirmed by the research
results presented in [16]. Finally, BSDL’s BSDtoBin Parser shows a low and
constant memory usage.

4.6 Conclusions and original contributions

In this chapter, we first introduced the principles of BSD-driven media resource
adaptation. Next, two languages were reviewed for describing the (high-level)
syntax of binary media resources, in particular MPEG-21 BSDL and Flavor,
extended with XML features (XFlavor). Although created from a different
point of view, both languages offer means for exposing the structure of a binary
media resource as an XML-based BSD, and for generating a tailored media
resource using a transformed BSD.

The discussion of the different bitstream syntax description languages em-
phasized the use of BSDL, for reasons mentioned in the text. MPEG-21 BSDL
aims at the creation of a generic software architecture for format-agnostic con-

108 BSD-driven media resource adaptation

Table 4.7: Peak heap memory consumption, expressed in megabyte (MB).

BSD generation BSD transformation bitstream generation
#frames BintoBSD XFlavor XSLT BSDtoBin

150 6.6 0.7 3.2 1.0
301 12.2 0.8 4.8 0.9
450 19.0 0.8 8.9 1.2
601 33.8 0.8 8.7 1.2
750 40.0 0.9 8.6 1.3
900 61.0 0.9 16.9 1.3

1800 65.0 0.9 34.6 1.3
2700 n/a 1.4 43.3 1.4
3600 n/a 1.6 n/a n/a
4500 n/a 1.8 n/a n/a
9000 n/a 1.9 n/a n/a

tent adaptation, and of which the operation is entirely steered by XML-based
technologies. This concept is similar to how XHTML and Cascading Style
Sheet (CSS) documents guide a browser to render a web page. While scalable
media formats (content) are providing a solution for dealing with the hetero-
geneity in present-day terminals and networks (context), BSDL is offering a
format-agnostic solution for the actual adaptation of scalable media resources.
Consequently, BSDL is a solution for dealing with an increasing number of
(scalable) media formats, used in heterogeneous usage environments.

A first original contribution, described in this chapter, consists of testing
the expressive power of BSDL by defining fine-grained BS Schemata for a
number of video coding and container formats: MPEG-1 Video, MPEG-1 Sys-
tems, H.262/MPEG-2 Video, MPEG-2 Systems (Program Streams and Trans-
port Streams), MPEG-4 Visual, H.264/AVC, and VC-1. The design of these
BS Schemata is in line with a generic template for packet-based media for-
mats, which was identified in the course of this research. The development of
a BS Schema for the first version of H.264/AVC, which is at the foundation
of a BS Schema for SVC, can be considered a non-trivial achievement as it
required the use of several non-normative extensions to the MPEG-21 BSDL
schema language. These enhancements were for instance needed to achieve
byte-alignment functionality and to introduce a number of new data types in
BSDL. Note that our BS Schema for H.264/AVC facilitates the exploitation of
different types of temporal scalability in H.264/AVC, as well as of region of
interest extraction (see Chapter 6).

The high-level syntax of most of the aforementioned media formats was
also described using XFlavor. The construction of these syntax descriptions

4.6. Conclusions and original contributions 109

can be considered rather straightforward. This is mainly due to the expressive
power of the language in question, which aims at the description of the entire
bitstream syntax.

Besides testing the expressive power of MPEG-21 BSDL and XFlavor,
we also evaluated their performance in the context of the media formats de-
scribed, targeting applications such as BSD-driven temporal adaptation and
demultiplexing (see for instance the stylesheets in Listing D.6 and Listing D.7
in Appendix D). This performance assessment of BSDL and XFlavor was re-
alized by breaking up the functioning of the different tool chains for media re-
source adaptation in their three fundamental building blocks: BSD generation,
BSD transformation, and tailored bitstream generation using a transformed
BSD. In this chapter, we discussed a representative performance analysis re-
garding the BSD-driven exploitation of temporal scalability in VC-1 compli-
ant bitstreams. This resulted in the identification of a number of bottlenecks,
in particular the slow and memory-consuming generation of BSDs by BSDL’s
BintoBSD Parser, the verbose BSDs produced by XFlavor-based parsers, and
the memory-consuming transformation of BSDs using XSLT.

In Chapter 5, we will demonstrate that the inefficient BSD generation in a
BSDL-based content adaptation chain is a fundamental problem of the Binto-
BSD process, implying that these performance issues cannot merely be solved
by software optimizations. We will also propose an alternative for the efficient
generation of BSDs compliant with MPEG-21 BSDL. This solution is based
on a modification of XFlavor. Finally, in Chapter 6, we will briefly outline a
solution for the efficient transformation of large textual BSDs. Such BSDs do
typically occur in the context of BSD-driven video adaptation.

Our contributions in the domain of BSD-driven media resource adaptation
have led to the following publications.

1. Davy De Schrijver, Wesley De Neve, Koen De Wolf, Peter Lambert,
Davy Van Deursen, Rik Van de Walle. XML-driven Exploitation of
Combined Scalability in Scalable H.264/AVC Bitstreams. Submitted
to 2007 IEEE International Symposium on Circuits and Systems (ISCAS
2007), New Orleans, Louisiana, USA, May 2007.

2. Davy De Schrijver, Wesley De Neve, Koen De Wolf, Robbie De Sutter,
Rik Van de Walle. An Optimized MPEG-21 BSDL Framework for the
Adaptation of Scalable Bitstreams. Accepted for publication in Journal
of Visual Communication & Image Representation.

3. Wesley De Neve, Davy De Schrijver, Davy Van Deursen, Rik Van
de Walle. XML-driven Bitstream Extraction Along the Temporal Axis

110 BFlavor: a new bitstream syntax description tool

of SMPTE’s Video Codec 1. In Proceedings of the 7th International
Workshop on Image Analysis for Multimedia Interactive Services, pages
233–236, Incheon, Korea, April 2006.

4. Wesley De Neve, Sam Lerouge, Peter Lambert, Rik Van de Walle.
A Performance Evaluation of MPEG-21 BSDL in the Context of
H.264/AVC. In Proceedings of SPIE 2004: Signal and Image Process-
ing and Sensors, Volume 5558, pages 555–566, Denver, Colorado, USA,
August 2004.

5. Wesley De Neve, Frederik De Keukelaere, Koen De Wolf, Rik Van de
Walle. Applying MPEG-21 BSDL to the JVT H.264/AVC Specifica-
tion in MPEG-21 Session Mobility Scenarios. In Proceedings of the 5th
International Workshop on Image Analysis for Multimedia Interactive
Services, 4 pages on CD-ROM, Lisboa, Portugal, April 2004.

6. Robbie De Sutter, Sam Lerouge, Wesley De Neve, Peter Lambert, Rik
Van de Walle. Advanced Mobile Multimedia Applications: Using
MPEG-21 and Time-dependent Metadata. In Proceedings of SPIE/IT-
Com 2003, Volume 5241, pages 147–156, Orlando, Florida, USA,
September 2003.

7. Frederik De Keukelaere, Wesley De Neve, Peter Lambert, Boris Rogge,
Rik Van de Walle. MPEG-21 Digital Item Processing Architecture. In
Proceedings of Euromedia 2003, Eurosis, pages 5–9, Plymouth, UK,
April 2003.

Our research in the field of BSD-driven content adaptation also resulted in
a few input contributions to MPEG [46, 47, 49].

Chapter 5

BFlavor: a new bitstream
syntax description tool

It is by logic that we prove, but by intuition that we discover.

Jules Henri Poincaré, (1854-1912).

5.1 Introduction

The two bitstream syntax description languages that were reviewed in the pre-
vious chapter, in particular MPEG-21 BSDL and XFlavor, can be applied inde-
pendently for the purpose of BSD-driven media resource adaptation. However,
as briefly discussed in the previous chapter, both description tools are charac-
terized by several complementary properties. This observation inspired us to
devise a new description tool that harmonizes the two already existing tech-
nologies, by combining their strengths and eliminating their weaknesses. In
particular, the processing efficiency and expressive power provided by XFla-
vor on the one hand, and the ability to create high-level BSDs using BSDL
on the other hand, were our key motives for the development of a novel BSD-
based content adaptation framework.

BFlavor is at the foundation of this harmonized content adaptation frame-
work: it is a new bitstream syntax description tool built on top of XFlavor to
efficiently support BSDL features. Hence the name BFlavor, which is a con-
traction of MPEG-21 BSDL and XFlavor (BSDL + XFlavor)1. Starting from
a description of the high-level syntax of a media format in BFlavor, it is then
possible to automatically generate a format-specific parser that is able to trans-

1http://multimedialab.elis.ugent.be/BFlavor/.

http://multimedialab.elis.ugent.be/BFlavor/

112 BFlavor: a new bitstream syntax description tool

late the syntax of a compliant bitstream into an XML description. In a next
step, this description can be transformed by well-known XML technologies
to reflect an appropriate adaptation of the bitstream. This transformed XML
description can subsequently be used to create a tailored version of the media
resource by relying on a standardized and format-agnostic media processor
(i.e., BSDL’s BSDtoBin).

This chapter is organized as follows: first, we introduce our harmonized
tool for translating the syntax of binary media resources into an XML rep-
resentation, i.e. BFlavor. Next, a number of experiments are described that
were set up to get an estimate of the expressive power and performance of a
BFlavor-based framework for video content adaptation. These tests show that
current solutions for exposing the syntax of a media resource are outperformed
by BFlavor in terms of execution times, memory consumption, and file sizes.
Finally, a number of conclusions are drawn.

5.2 The BFlavor tool chain

BFlavor is a new and harmonized description tool for enabling XML-driven
adaptation of binary media resources in a format-agnostic way. The design
of BFlavor is essentially composed of several extensions to XFlavor, along
with a specification of how each XFlavor language construct is mapped to a
corresponding BSDL-1 feature.

The next sections provide more details with respect to the overall design of
our unified BSD-driven content adaptation chain. An application scenario is
provided, as well as a specification of the fundamentals of BFlavor. This spec-
ification is not intended to be exhaustive, but is detailed enough to understand
the central principles of BFlavor, as well as the motivation for the fundamental
design decisions.

5.2.1 Application scenario

This section describes an application scenario that outlines how BFlavor can be
used in a more comprehensive framework for the adaptation of binary media
resources. BFlavor addresses the same use cases as MPEG-21 BSDL, con-
sequently, the following scenario is adapted from [109]. It involves several
content servers streaming live media resources, e.g. live news feeds, to end
users with different usage environments. These servers are using various cod-
ing formats, e.g. MPEG-1 Video, H.264/AVC, et cetera; they rely on the low-
complexity and memory-efficient nature of a BFlavor-driven parser to translate

5.2. The BFlavor tool chain 113

b
r
o
a
d
b
a
n
d

n
e
t
w
o
r
k

desktop PC

WiFi

30 Hz

30 Hz

cellphone
GPRS

7.5 Hz
7.5 Hz

30 Hz

30 Hz

BFlavor-driven
BSD producer for
MPEG-1 Video

MPEG-1 Video
content producer

media server 1

compressed BSD

MPEG-1 Video

30 Hz

30 Hz

H.264/AVC

compressed BSD

BFlavor-driven
BSD producer
for H.264/AVC

H.264/AVC
content producer

media server n

30 Hz

…

30 Hz

PDA

30 Hz

15 Hz
home gateway

STX + BSDtoBin Parser

1

network gateway
STX + BSDtoBin Parser

2
laptop

: media data : metadata (BSD and/or MPEG-7 descriptions) : input for a BFlavor-based parser

WiFi

15 Hz

PDA

15 Hz

P

I BBB

P

I BBB

Figure 5.1: Use case for BFlavor-driven BSD generation in an on-the-fly fashion.

the high-level syntax of a bitstream into an XML description in an on-the-fly
fashion.

We assume that technology is available that allows a BSD to be frag-
mented, compressed, delivered, and processed in pieces, and this in synchrony
with the different media streams (video and audio). A number of required tech-
nologies have already been standardized. For instance, Binary MPEG format
for XML (BiM; [115]) allows the compression of BSDs, while MPEG-21 DIA
can be employed for the characterization of a usage environment. Other tech-
nologies are the subject of standardization by MPEG at the time of writing,
such as MPEG-21 Digital Item Streaming (MPEG-21 DIS; [116]) for BSD
fragmentation, synchronized delivery, and piece-wise processing.

The high-level architecture for our use case is visualized in Figure 5.1,
showing how BFlavor-driven parsers can complement a BSDL-based adap-
tive multimedia framework. The actual adaptation of the media content takes
place by a format-agnostic content adaptation engine that is deployed on a
home gateway and on an intermediate network node connecting two networks
with different characteristics. Besides an adaptation decision taking module,
the content adaptation engine also comprises a Streaming Transformations for
XML (STX) engine for the transformation of BSDs [117], and BSDL’s format-

114 BFlavor: a new bitstream syntax description tool

neutral BSDtoBin Parser for the construction of a tailored bitstream. The BSD-
Link description tool, which is also part of the MPEG-21 DIA standard, can be
used to convey possible parameter settings to the different modules composing
the content adaptation engine.

The following adaptation scenarios are distinguished:

• Offline adaptation - In (1), an agent, acting on behalf of an end user,
listens to several non-simultaneous live news feeds of different content
providers. Streams of interest are stored on the hard disk of the home
gateway of the end user, together with their BSDs and other relevant
metadata information (e.g., MPEG-7 metadata, possibly embedded in a
BSD by relying on the bs1:ignore language construct of MPEG-21
BSDL). The combined use of a STX engine and a BSDtoBin Parser,
both running on the home gateway, makes it possible for an application
to select the scenes of interest from the different stored news feeds (e.g.,
according to the end user’s preferences), and to customize these data
streams (e.g., frame rate reduction) in case the user wants to watch the
concatenated scenes on a mobile device with limited resources.

• On-the-fly adaptation - In (2), mobile users are connected to the live
media servers by a gateway (e.g., at a hot spot on an airport) that inter-
connects their network [Global Packet Radio Services (GPRS); Wireless
Fidelity (WiFi)] with the broadband network of the media servers. On
the intermediate network node, an adaptation engine is running. It over-
sees the usage environments downstream toward the clients and possibly
changes the frame rate of incoming media streams in real time to make
them suited for playback on the devices of the end users (i.e., to save
bandwidth and to reduce the decoding complexity). For example, the
adjustment of the frame rate can be realized by dropping sub-sequence
layers in case of H.264/AVC bitstreams.

In short, in (1) and (2), the description-driven adaptation is performed on
a gateway in the binary domain and independently from the media resource’s
coding format, rather than during encoding, or decoding and rendering at the
client. Note that this approach only requires the implementation of a single,
format-independent adaptation engine. As such, it is an alternative to imple-
menting and maintaining a separate adaptation module for each media format
encountered. A more thorough discussion on the technical issues that arise
from using BSDs in constrained and streaming environments can be found
in [109]. The BFlavor description tool addresses one of these challenges - the
efficient and real-time generation of BSDs.

5.2. The BFlavor tool chain 115

BFlavor
description

BFlavorc

bitstream adapted
bitstream

transformation

BSDtoBin

transformed
BSD

media format-
specific parser

(1)

(2)
(3)

Java or C++
source classes +
main() method

BSDL-1

(4)

BFlavor

BSDL

BSD

MPEG-21
BS Schema

I bBbP

I
B

P

Figure 5.2: The harmonized tool chain, bridging the gap between BSDL and XFlavor.

5.2.2 Harmonized adaptation architecture

BFlavor allows the automatic generation of a set of source classes for a media
format-specific parser, as well as the automatic generation of a BS Schema
compliant with MPEG-21 BSDL. The intended content adaptation architec-
ture, bridging the gap between XFlavor and BSDL, is depicted in Figure 5.2.
Explanatory notes for this figure are provided below:

1. the syntax of a particular media format is described using BFlavor;

2. generation of an MPEG-21 BS Schema by BFlavorc (the modified Fla-
vorc translator);

3. generation of a set of source classes by the BFlavorc translator, consti-
tuting the core of a parser able to produce XML output that is in line
with the BS Schema generated in step (2);

4. further processing of the XML output of the BFlavor-based parser by a
BSD transformation engine and a standardized BSDtoBin Parser, using
the automatically created BS Schema for binarization purposes.

The XML output of the BFlavor-based parser is equivalent to that pro-
duced by BintoBSD, and hence processable by BSDtoBin. As such, the use
of BFlavor-driven parsers, which are format-specific but generated automati-
cally by a format-independent process, is an alternative to the use of a format-
neutral BintoBSD Parser. This is an important consideration. The current ref-
erence implementation of BintoBSD is characterized by an inefficient behavior
in terms of processing speed and memory consumption. These performance

116 BFlavor: a new bitstream syntax description tool

issues were already briefly demonstrated in the previous chapter and will be
discussed more profoundly in Section 5.3.

Further, a BFlavor-based parser does not need to have a BS Schema at its
disposal to generate a BSD. This is due to the format-specific nature of the
parser. A BS Schema is only required by BSDtoBin for the construction of
an adapted bitstream. Consequently, this allows the automatic creation of BS
Schemata that contain a minimal amount of information such that a BSDtoBin
Parser can convert each element value in a BSD to a bit-level representation.
Such functionality can already be provided by an XML Schema using BSDL-1
datatypes, as BSDL-2 is specific for BintoBSD and not relevant for BSDtoBin.
Thus, BSDtoBin may still be used for generating an adapted bitstream without
requiring BFlavor to support BSDL-2.

Finally, in order to extend a BintoBSD and BSDtoBin Parser with sup-
port for a new media format, for instance, in a distributed adaptive multimedia
framework [109], it is only required to send a BS Schema to the network nodes
that contain these parsers. However, when such a framework involves BFlavor-
based technology for efficient BSD generation, security issues may have to be
taken into account as a BFlavor-driven parser is an executable program.

5.2.3 Definition of BFlavor on top of XFlavor

The definition of BFlavor is outlined in the next paragraphs. Actual exam-
ples are provided wherever possible to illustrate the principles from a practical
point of view. The syntax structures used for the development of BFlavor are
the ones relevant to adaptation (i.e., syntax structures up to and including pic-
ture or slice headers) of bitstreams compliant with MPEG-1 Video, H.263+,
H.264/AVC, and VC-1. The application of BFlavor to MPEG-1 Video and
H.264/AVC is extensively discussed in Section 5.3.

Mapping of XFlavor to MPEG-21 BSDL

This section discusses the translation of the most important language con-
structs of XFlavor into corresponding language features of BSDL. The term
“important” refers to the language constructs of XFlavor that were necessary
to describe the high-level syntax of the aforementioned coding formats.

Variables. Parsable variables are at the core of XFlavor’s design. As shown
in Listing 5.1, these variables include a parse length specification immediately
after their type declaration. Because their value is fetched from the bitstream
itself, it are parsable variables that define the bitstream syntax. Consequently,

5.2. The BFlavor tool chain 117

parsable variables are mapped by the BFlavorc translator to xsd:element
language constructs in BSDL.

Listing 5.1: Syntax fragment in BFlavor, containing parsable and non-parsable vari-
ables, an operator, and a class.

class Example1 {
// totbits is a non-parsable variable.
int totbits = numbits();
if (totbits > 4) {

// e1 is a parsable variable.
bit(2) e1;
bit(e1 + 2) e2;
Example2 ex2;

}
}

Listing 5.2: BS Schema and BSD fragment, corresponding with the syntax fragment
in BFlavor shown in Listing 5.1.

<!-- BS Schema fragment, generated by BFlavorc. -->
<xsd:simpleType name="unionType">

<xsd:union/>
</xsd:simpleType>
<xsd:complexType name="Example1">

<xsd:sequence>
<xsd:sequence minOccurs="0">

<xsd:element name="e1" type="b2"/>
<xsd:element name="e2" type="unionType"/>
<xsd:element name="ex2" type="Example2"/>

</xsd:sequence>
</xsd:sequence>

</xsd:complexType>
<xsd:element name="ex1" type="Example1"/>

<!-- BSD fragment, generated by a BFlavor-based parser. -->
<ex1>

<e1>3</e1>
<e2 xsi:type="b5">14</e2>
<ex2><!-- ... --></ex2>

</ex1>

XFlavor also has non-parsable variables at its disposal. These variables
can be compared to regular variables that are used in traditional programming
languages. They do not obtain their value from the bitstream parsed as they

118 BFlavor: a new bitstream syntax description tool

are typically used in the context of intermediate computations. As such, non-
parsable variables provide similar functionality to BSDL-2 variables, which
take the form of XPath expressions. For example, the number of occurrences
of a particle (bs2:nOccurs attribute), the conditional occurrence of a par-
ticle (the bs2:if and bs2:ifUnion attribute), or the length in bytes of a
particle (the bs2:length facet). Non-parsable variables are not taken into
account by BFlavorc. Indeed, as discussed in the introduction of this section,
the automatically generated BS Schema does not need to support BSDL-2: the
automatically generated BS Schema is only used for binarization purposes by
BSDtoBin, and not for guiding BintoBSD’s bitstream parsing process.

Listing 5.1 and Listing 5.2 illustrate how a syntax fragment in BFlavor can
be translated into a corresponding BS Schema fragment. A known BSDL-
1 datatype is used when it is possible to determine the length of a parsable
variable during the conversion. Otherwise, the type of the parsable variable
is fixed as an empty xsd:union in the BS Schema, meaning that its length
has to be explicitly embedded in the instance document in terms of a number
of bits by using the xsi:type attribute during the BSD generation process.
This approach is inspired by the way BSDL’s xsd:union/bs2:ifUnion
construct is instantiated in a BSD.

Operators. Operators are built-in functions that facilitate certain frequently
appearing data manipulations, such as lengthof(), isidof(), skip-
bits(), nextcode(), numbits(), and nextbits(). These operators
are the only functions that are available in XFlavor. Similar to non-parsable
variables, the different operators are not needed for the BSDtoBin process. As
such, they are ignored during BFlavorc’s translation step. This is for instance
demonstrated in Listing 5.1 and Listing 5.2.

Note that the nextcode() operator can be used to create a format-
specific bitstream extractor (e.g., a tool that drops all bidirectionally coded
pictures in a coded video sequence). However, this approach merges the de-
scription generation and adaptation processes, which are functional units that
will most often be strictly separated from each other in a BSD-based content
adaptation architecture. Indeed, thanks to this separation, a maximum num-
ber of adaptation steps can be achieved by only having to generate a BSD once
(“describe once, transform many times”). Hence, the use of the nextcode()
operator is inappropriate in the context of BSD-driven content adaptation.

Classes. XFlavor was designed to be a natural extension of the typing system
of object-oriented languages like C++ and Java. This means that the bitstream
representation information is placed together with the data declarations in a

5.2. The BFlavor tool chain 119

single place. In C++ and Java, this place is where a class is defined. Hence, all
datastructures are declared as classes in XFlavor.

The equivalent of a class in XML Schema is a complex type, while ob-
jects are essentially equivalent to elements. Therefore, all classes in BFlavor
are mapped to complex types by BFlavorc. Object declarations are translated
into typed element declarations. This is for example shown in Listing 5.1 and
Listing 5.2.

Class arguments. As XFlavor classes cannot have constructors, it is nec-
essary to have a mechanism to pass external information to a class. This is
accomplished using class arguments. Similar to non-parsable variables and
the built-in operators, class arguments are not required for the BSDtoBin pro-
cess and are hence not included in the BSDL-1 schema that is generated by
BFlavorc. This is illustrated in Listing 5.3 and Listing 5.4.

Expected values. XFlavor has the ability to specify expected values for
parsable variables (for example, for bitstream validation). In BFlavor, a range
of expected values is only validated during BSD generation, but not during
the construction of a bitstream (due to the lack of support for ranges by the
xsd:fixed attribute in BSDL). This is shown in Listing 5.3 and Listing 5.4.

Listing 5.3: Syntax fragment in BFlavor, containing the nextbits() operator,
if/while statements, class arguments, a parsable variable with an expected value,
and a one-dimensional array.

// arg1 and arg2 are class arguments.
class Example1 (int arg1, int arg2) {

while (nextbits(8) == 0xFF)
bit(8) ff_byte = 0xFF;

if (nextbits(1) == 1)
bit(1) flag;

if (arg1 == 2)
bit(2) e1;

if (arg2 > 0)
bit(2) e2;

}
class Example2 {
bit(5) e3;
if (e3 < 2) {

bit(1) e4;
Example1 example1 (e3, e4);

}
bit(3) e5 [5];
while (nextbits(16) == 1) {

bit(2) e6;

120 BFlavor: a new bitstream syntax description tool

bit(2) e7;
}

}

Listing 5.4: BS Schema fragment, which is the result of the translation of the syntax
fragment in BFlavor shown in Listing 5.3.

<xsd:complexType name="Example1">
<xsd:sequence>

<xsd:sequence minOccurs="0" maxOccurs="unbounded">
<xsd:element name="ff_byte" type="b8" fixed="255"/>

</xsd:sequence>
<xsd:sequence minOccurs="0">

<xsd:element name="flag" type="b1"/>
</xsd:sequence>
<xsd:sequence minOccurs="0">

<xsd:element name="e1" type="b2"/>
</xsd:sequence>
<xsd:sequence minOccurs="0">

<xsd:element name="e2" type="b2"/>
</xsd:sequence>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="Example2">

<xsd:sequence>
<xsd:element name="e3" type="b5"/>
<xsd:sequence minOccurs="0">

<xsd:element name="e4" type="b1"/>
<xsd:element name="example1" type="Example1"/>

</xsd:sequence>
<xsd:element name="e5" type="b3"

maxOccurs="unbounded"/>
<xsd:sequence minOccurs="0" maxOccurs="unbounded">

<xsd:element name="e6" type="b2"/>
<xsd:element name="e7" type="b2"/>

</xsd:sequence>
</xsd:sequence>

</xsd:complexType>

Flow control. Listing 5.3 and Listing 5.4 illustrate the straightforward trans-
lation of while and if language constructs in BFlavor to corresponding lan-
guage features in BSDL. The translation of a for loop can be found in the
respective BSDs in Appendix A. Because the flow control statements are not
needed for BSDtoBin, they are not taken into account during the conversion

5.2. The BFlavor tool chain 121

step from BFlavor to BSDL (e.g., an if language construct in BFlavor is not
translated into a BS Schema construct using bs2:if).

Map declarations. A map is used in XFlavor to define constant- or variable-
length mappings between bitstream values and object variables. As such, a
map can be used to implement simple Variable-Length Coding tables (VLC
tables), which are often employed for the representation of low-level syntacti-
cal units (motion vector differences, transform coefficients, and so on).

Listing 5.5: A map in BFlavor, describing the ptype syntax element of VC-1.

map ptype_map(int) {
0b0, 0, // P Picture
0b10, 1, // I Picture
0b110, 2, // B Picture
0b1110, 14, // BI Picture
0b1111, 15 // Skipped Picture

}
class Picture {

int(ptype_map) ptype;
}

Listing 5.6: BS Schema and BSD fragment, corresponding to the syntax fragment in
BFlavor shown in Listing 5.5.

<!-- A BS Schema fragment, generated by BFlavorc. -->
<xsd:simpleType name="unionType">

<xsd:union/>
</xsd:simpleType>
<xsd:complexType name="ptype_map">

<xsd:sequence>
<xsd:element name="code" type="unionType"/>
<xsd:element name="value">

<xsd:complexType>
<xsd:simpleContent>

<xsd:extension base="xsd:integer">
<xsd:attribute ref="bs1:ignore"/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>
<!-- Declaration of a Picture. -->
<xsd:complexType name="Picture">

<xsd:sequence>

122 BFlavor: a new bitstream syntax description tool

<xsd:element name="ptype" type="ptype_map"/>
</xsd:sequence>

</xsd:complexType>
<xsd:element name="picture" type="Picture"/>

<!-- A sample BSD, generated by a BFlavor-based parser. -->
<picture>

<ptype>
<!-- Bitstream value. -->
<code xsi:type="b3">6</code>
<!-- Decoded value. -->
<value bs1:ignore="true">2</value>

</ptype>
<picture>

The translation of a map into BSDL is illustrated in Listing 5.5 and List-
ing 5.6. When a map declaration is used to describe the layout of a certain
syntax element, the bitstream value is usually different from the real or de-
coded value. Therefore, a map declaration is translated into an element con-
taining two children: an element with the name code and an element with
the name value. The code element contains the bitstream value, as well as
an xsi:type attribute carrying a length specification. Thus, the code el-
ement is used by a BSDtoBin Parser to write a value with the correct length
to the bitstream. On the other hand, the value element, containing the de-
coded value, is ignored by a BSDtoBin Parser as it contains a bs1:ignore
attribute with the value true. The value of this element is typically used to
steer a BSD transformation engine, which often operates at a semantic level.
A similar approach is applied in the BSDs generated by XFlavor, albeit that
the length specification is initialized to zero in case of the value element (to
make sure that this value is not written to the bitstream by the Bitgen tool).

Note that our approach requires that any transformation tool has to reim-
plement the mapping when the value of the code element is updated. This
means that our current solution duplicates the mapping which already exists in
BFlavor, and it also implies that the transformation process must handle part
of the bitstream parsing process. An alternative is to have BFlavorc output a
class file for the map, after which the BS Schema could refer to this class file
using bs0:implementation. As such, the transformation tool only has
to deal with the decoded value. This solution has not been implemented in
the present version of BFlavorc as an update step was not necessary for the
elements described by a map2.

2Due to the high-level nature of our BSDs, a map was required only for a small number of
syntax elements in VC-1 (e.g., the ptype syntax element).

5.2. The BFlavor tool chain 123

Extensions to XFlavor

BFlavor defines a number of extensions to XFlavor by means of three new ver-
batim codes, two new built-in datatypes, a new built-in operator, and a new
built-in base class. These extensions to XFlavor provide functionality that
mainly corresponds to the advantages of BSDL identified in Chapter 4 (e.g.,
the creation of high-level and compact BSDs).

The root, targetns, and ns verbatim codes. XFlavor’s verbatim code
mechanism allows a developer to insert C++ or Java code in the syntax descrip-
tion of a certain media format. These user code segments are not processed by
the Flavorc translator, but are copied verbatim to the C++ or Java output files
(which are subsequently provided to a C++ or Java compiler). In BFlavor, this
extension mechanism is used to introduce three new verbatim codes. Their use
is illustrated in Listing A.3 in Appendix A:

• The root verbatim code signals the class to start the parsing with,
which makes it possible to automatically create a main() function for
the parser that initiates the BSD generation process. This is not the case
for the original Flavorc translator: it is up to the developer to write a
main() function with semantics that are dependent on the application
targeted (as depicted in Figure 4.3).

• The targetns and ns verbatim codes convey the information with
respect to the different namespaces that are to be used in the intended
BS Schemata and BSDs.

The hexBinary and byteRange datatypes. BFlavor introduces two ad-
ditional datatypes in XFlavor, in particular the hexBinary and byteRange
datatypes. Their use is illustrated in Listing 5.7 and Listing 5.8.

Listing 5.7: The use of the hexBinary and byteRange datatypes in BFlavor.

// Use of the new hexBinary datatype in BFlavor. The length
// is specified in terms of a number of bytes.
hexBinary(3) startCode;

// Use of the new byteRange datatype in BFlavor.

// Parsing based on the use of start or end codes.
byteRange(3) payload1 = 0x000001 .. 0x000003;

// Parsing based on the use of length fields. The length is

124 BFlavor: a new bitstream syntax description tool

// specified in terms of a number of bytes.
int length = 1500;
byteRange(length) payload2;

Listing 5.8: Translation of the hexBinary and byteRange datatypes in BFlavor
to BSDL.

<xsd:element name="startCode">
<xsd:simpleType>

<xsd:restriction base="xsd:hexBinary">
<xsd:length value="3"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name="payload1">

<xsd:simpleType>
<xsd:restriction base="bs1:byteRange"/>

</xsd:simpleType>
</xsd:element>
<xsd:element name="payload2">

<xsd:simpleType>
<xsd:restriction base="bs1:byteRange"/>

</xsd:simpleType>
</xsd:element>

• The hexBinary datatype is typically used for describing start or end
codes. A variable of this datatype is translated into a simpleType def-
inition, specifying an appropriate restriction to XML Schema’s xsd:-
hexBinary datatype.

• The byteRange datatype is used for referring to a particular bit-
stream segment, addressing the primary disadvantage of XFlavor - this
is, the bad granularity of its BSDs. In other words, thanks to the
byteRange datatype, BFlavor allows the generation of high-level de-
scriptions without losing bitstream data, and hence the creation of de-
scriptions that are much more compact. The datatype byteRange is
translated into a simpleType definition, specifying an appropriate re-
striction to BSDL’s bs1:byteRange datatype.

The align() operator. Byte-alignment is achieved in BFlavor using the
new built-in function align(). It is the counterpart of the non-normative
bs0:fillByte language construct in BSDL. The use of align() is shown
in Listing A.3.

5.3. Performance data 125

The Encoded base class. The class Encoded is a simple built-in base
class from which other classes may be derived. It specifies a well-defined
contract such that BFlavor is able to support an appropriate mapping to BSDL’s
non-normative bs0:implementation extension mechanism.

Listing A.3 and Listing A.4 show how the class UnsignedExpGolomb
is derived from the base class Encoded. UnsignedExpGolomb provides
the necessary information for a BFlavor-based parser to process a syntax ele-
ment represented with an Unsigned Exponential Golomb code. The decoded
value is subsequently placed by the parser in the BSD. After transformation
of the BSD, BSDL’s BSDtoBin Parser converts the BSD value to a bitstream
representation, again using an Unsigned Exponential Golomb code. This in-
formation is provided to BSDtoBin by a procedural object (i.e., a Java class),
which is addressed using bs0:implementation.

5.3 Performance data

5.3.1 Methodology

The widespread MPEG-1 Video standard and the state-of-the-art H.264/AVC
specification were selected as test cases for the validation of the expressive
power and performance of a BFlavor-driven tool chain for video adapta-
tion [118], compared to tool chains that are either based on MPEG-21 BSDL
or XFlavor. In what follows, a description is given of the common settings
used for the two series of conducted experiments: one series of experiments
aims at testing the BSD generation performance only (see Section 5.3.2), while
a second series of experiments targets the overall performance of BSD-based
temporal adaptation in H.264/AVC (see Section 5.3.3).

All experiments were carried out on a PC having an Intel Pentium D 2.8
GHz processor and 1 GB of system memory at its disposal. The operating sys-
tem used was Windows XP Pro SP2, running Sun Microsystems’ Java 2 Run-
time Environment (Standard Edition version 1.5.0 05). Version 1.1.3 of the
MPEG-21 BSDL reference software was employed, as well as version 5.2.0
of the Flavorc translator for generating Java-based parsers and version 8.6.1 of
SAXON for applying XSLT stylesheets to BSDs. A description in BFlavor of
the most important syntax structures of MPEG-1 Video and H.264/AVC was
used to automatically create a Java-based parser for each of the video coding
formats (C++ or C# code could have been generated as well). The maximum
heap memory consumption of the different Java-based programs involved was
registered by relying on JProfiler 4.0.2.

126 BFlavor: a new bitstream syntax description tool

The MPEG-1 Video bitstreams were created using TMPGEnc 2.53, while
the H.264/AVC bitstreams were produced by making use of Joint Model (JM)
9.4. Sub-sequence information SEI messages were added to the H.264/AVC
bitstreams using the flexibility of the MPEG-21 BSDL framework (metadata
injection), since JM 9.4 did not offer support for the creation of such messages.
In particular, XSLT stylesheets were used for automatically adding SEI mes-
sages to the BSDs for the different H.264/AVC bitstreams, after which BSDto-
Bin was employed to create new bitstreams containing these messages. These
enriched bitstreams could then be used for further processing (BSD genera-
tion, BSD transformation, and actual bitstream adaptation). Such a stylesheet
is provided in Appendix D (see Listing D.1).

For the first series of experiments, the progressive City test sequence
(4CIF; 30 Hz; 4:2:0) was encoded at a bit rate of 1.5 Mbps; for the second se-
ries of experiments, the progressive Foreman test sequence (CIF; 300 pictures;
30 Hz; 4:2:0) was used. All H.264/AVC bitstreams are conforming to the An-
nex B syntax and contain one SPS and one PPS, both stored at the start of the
bitstream. The conclusions drawn for MPEG-1 Video also apply to MPEG-2
Video thanks to the similarity in their syntax [79]. All tests were done eleven
times, after which an average was taken of the last ten runs to eliminate the
start-up latency.

5.3.2 BSD generation performance

This section provides a performance comparison of the various tools for BSD
generation - BSDL’s BintoBSD Parser, an XFlavor-based parser, and a BFla-
vor-driven parser. These parsers are able to generate BSDs for bitstreams com-
pliant with MPEG-1 Video or H.264/AVC. Because MPEG-21 DIA does not
mandate any specific BS Schema for a particular media format, the level of
detail of a description is application-dependent for BSDL and BFlavor.

The syntax of the MPEG-1 Video bitstreams is described up to and in-
cluding the picture headers, whilst the syntax of the H.264/AVC bitstreams is
described up to and including the slice headers. These remarks are also true for
XFlavor. However, in contrast to BSDL and BFlavor, the picture and slice data
itself are completely embedded in the resulting BSDs since XFlavor does not
provide a mechanism for hiding syntactical structures within a referenced byte
sequence. The level of detail of the BSDs leaves open applications such as
the exploitation of temporal scalability by picture dropping, the exploitation of
temporal scalability using placeholder pictures (see Chapter 6), shot or scene
selection, correcting wrongly coded syntax elements, et cetera.

3Available online: http://www.tmpg-inc.com/en/index.html.

http://www.tmpg-inc.com/en/index.html

5.3. Performance data 127

Table 5.1: Performance measurements for BSDL, XFlavor, and BFlavor in terms of
execution times and memory consumption needed for the generation of a BSD.

MPEG-21 BSDL XFlavor BFlavor

BDa ET GS MC ET GS PT MC ET GS MC

(s) (s) (PU/s) (MB) (s) (PU/s) (s) (MB) (s) (PU/s) (MB)

1.7 1.3 39.6 1.6 0.6 87.9 0.1 0.7 0.1 368.2 0.7

3.3 2.2 44.9 2.0 1.1 94.8 0.3 0.7 0.2 533.3 0.7

MPEG-1 6.6 4.8 41.6 2.5 2.0 98.2 0.2 0.7 0.3 663.3 0.7

Video 10.0 8.2 36.4 3.4 3.0 99.1 0.5 0.7 0.4 708.2 0.7

60.0 146.5 12.3 12.0 17.6 102.3 2.8 0.7 2.1 877.9 0.7

180.0 1075.7 5.0 38.0 52.7 102.4 8.3 0.7 5.9 916.5 0.7

300.0 2849.9 3.2 64.0 88.7 101.5 13.8 0.7 9.7 923.8 0.7

1.7 8.3 6.1 2.4 0.8 63.8 0.1 0.7 0.1 347.7 0.7

3.3 21.0 4.8 3.2 1.2 84.9 0.3 0.7 0.2 488.5 0.7

H.264/- 6.6 79.6 2.5 4.7 2.3 88.4 0.2 0.7 0.3 621.3 0.7

AVC 10.0 164.0 1.8 6.2 3.3 90.1 0.5 0.7 0.4 685.6 0.7

60.0 4345.6 0.4 28.0 19.4 92.8 2.8 0.7 2.1 877.2 0.7

180.0 >24h N/A N/A 57.3 94.2 7.9 0.7 5.7 943.8 0.7

300.0 >24h N/A N/A 95.9 93.9 12.7 0.7 9.4 954.2 0.7

aThe abbreviations BD, ET, GS, PU, PT, and MC denote Bitstream Duration, Execution
Time, Generation Speed, Parse Unit, Parse Time, and Memory Consumption, respectively.

Performance results are reported in Table 5.1, Figure 5.3, and Figure 5.4
by means of computational times, memory consumption, and file sizes. Note
the use of logarithmic axes for Figure 5.3(b) and Figure 5.4. As previously dis-
cussed, a PU is the fundamental unit of processing for a BSD generator: it de-
notes a picture in case of MPEG-1 Video and a NAL unit in case of H.264/AVC
(each coded picture in our H.264/AVC bitstreams was mapped to one slice).

Execution times and memory consumption

A first observation is that both the BFlavor- and XFlavor-based parsers are able
to process MPEG-1 Video and H.264/AVC bitstreams at a speed that is at least
as fast as the playback speed of the bitstream. For instance, the BFlavor-based
tool parses an MPEG-1 Video bitstream, containing 9000 pictures, at a speed
of about 923 pictures per second, while an H.264/AVC bitstream, containing
9000 NAL units, is parsed at a speed of about 954 NAL units per second.

A similar real-time behavior can be observed for the XFlavor-based parser,
although its parsing speed is lower for both coding formats: the XFlavor-based
parser produces verbose BSDs (illustrated by Figure 5.4 for H.264/AVC), re-

128 BFlavor: a new bitstream syntax description tool

0

300

600

900

1200

0 50 100 150 200 250 300 350

Bitstream duration (s)

S
p

e
e

d
 (

#
p

ic
tu

re
s
/s

)
BSDL XFlavor BFlavor

(a) Generation speed.

0

1

10

100

1000

10000

0 1 10 100 1000
Bitstream duration (s)

E
xe

cu
tio

n
tim

e
(s

)

BSDL
XFlavor
BFlavor

(b) Execution times.

Figure 5.3: BSD generation performance for H.264/AVC.

sulting in a large amount of time needed for writing the BSDs to the hard disk.
This can be deduced from the numbers in the columns labeled PT and ET for
XFlavor (see Table 5.1). The column PT contains the time needed for execut-
ing the parse process only (i.e., BSD generation without writing the resulting
description to a storage device).

The impact of the start-up time and the I/O on the speed of the BFlavor-
based parser stabilizes (see Figure 5.3(a)) when the H.264/AVC bitstreams
have reached a sufficient length (about 1800 pictures, which corresponds to
a bitstream duration of 60 s). The constant BSD generation speed of the
BFlavor- and XFlavor-based BSD producers also reveals that their processing

5.3. Performance data 129

time is linear in function of the number of parse units, which is an important
characteristic in the case of large bitstreams.

From Table 5.1, one can also notice that BSDL’s BintoBSD Parser is less
efficient than the BFlavor- or XFlavor-based parsers in terms of execution
times and memory consumption. The amount of time and memory needed by
the BSDL Parser is especially visible in the numbers obtained for H.264/AVC.
For instance, the BSDL parser needs about 164 s and 6.2 MB of memory to
generate a BSD for an H.264/AVC bitstream with a duration of 10 s, while
this parser needs about 8.2 s and 3.4 MB of memory to generate a BSD for an
MPEG-1 Video bitstream with the same duration. As shown in Table 5.2, this
can be explained by the nature of our BS Schemata, used for discovering the
high-level syntax of MPEG-1 Video or H.264/AVC compliant bitstreams.

• The number of syntax elements that is retrieved from an H.264/AVC bit-
stream is much larger than the amount of syntax elements that is fetched
from an MPEG-1 Video bitstream. This can be derived from the number
of occurrences of the xsd:element and bs2:nOccurs language
constructs in the respective BS Schemata. Note that the number of re-
trieved syntax elements is also dependent on the features offered by the
coded bitstream. For instance, the BS Schema for H.264/AVC contains
support for fetching Video Usability Information (VUI) from an SPS
syntax structure. However, the test bitstreams used did not contain these
metadata items.

• The BS Schema for H.264/AVC contains a lot of XPath expressions,
used as values for the bs2:nOccurs, bs2:if, and bs2:ifUnion
attributes. Most of these XPath expressions are necessary to gain access
to information that is already retrieved from the bitstream, in particular
to information that is stored in the SPS and PPS syntax structures4. Bin-
toBSD needs this information to correctly discover the bitstream syntax.
This observation is in contrast to the one made for the BS Schema for
MPEG-1 Video: it only contains a limited number of straightforward
XPath expressions.

The memory consuming behavior of BSDL’s BintoBSD Parser is due to
the fact that the entire BSD is kept in the system memory. This allows the use
of an XPath engine to evaluate a set of arbitrary XPath 1.0 expressions in an at
run time fashion, i.e. while parsing the bitstream and progressively generating

4The XPath expressions in the BS Schema for H.264/AVC, as used for this series of experi-
ments, take into account the fact that only one SPS and PPS is present in the test bitstreams (see
Section 4.4.3 in Chapter 4)

130 BFlavor: a new bitstream syntax description tool

Table 5.2: Number of occurrences of certain language constructs in the MPEG-21 BS
Schemata for MPEG-1 Video and H.264/AVC.

language MPEG-1 H.264/AVC H.264/AVC
construct Video (no SEI) (with SEIa)
xsd:element 86 362 209
bs2:nOccurs 0 7 5
bs2:if 4 124 48
bs2:ifUnion 0 29 3
bs2:ifNext 10 12 8
bs2:length 0 0 0
bs2:startCode 8 2 2

aSEI messages are used in the second series of experiments.

its BSD. However, this also implies that the internal memory representation
of the bitstream syntax description (i.e., the context) increases linearly for ev-
ery picture (MPEG-1 Video) or NAL unit (H.264/AVC) parsed. The latter
observation is not true for the XFlavor-based and BFlavor-driven BSD produc-
ers. Their peak memory consumption, used for the temporary storage of the
values of parsable and non-parsable variables, is constant (0.7 MB) and inde-
pendent of the number of units parsed when dealing with MPEG-1 Video and
H.264/AVC. Indeed, memory objects, containing information that is no longer
necessary to correctly steer the operation of a BFlavor-driven or XFlavor-based
parser, are either reused, or either destroyed and subsequently removed from
the system memory by the Java garbage collector.

The time consuming behavior of BSDL’s BintoBSD Parser, as available
in the MPEG-21 reference software package, is mainly caused by the XPath
evaluation process.

1. The use of the Xalan XPath engine requires a translation of the internal
Document Object Model (DOM) representation of a BSD to a Docu-
ment Table Model (DTM) representation to allow the evaluation of an
arbitrary set of XPath 1.0 expressions.

2. The increasing number of parse units that is stored in the internal DOM
or DTM representation results in an increasing number of node tests
and predicate evaluations to correctly process an XPath expression. Re-
placing the Xalan XPath engine by another XPath engine such as Saxon
makes it possible to avoid a conversion from a DOM to a DTM represen-
tation. However, this will not result in a constant number of operations

5.3. Performance data 131

(i.e., node tests and predicate evaluations) that needs to be executed dur-
ing the actual evaluation of an XPath expression as the context keeps
growing.

3. The complexity of the XPath expressions, in terms of location steps and
predicates used, also influences the amount of time needed by the XPath
evaluation process. This is especially true for the XPath expressions that
are embedded in the BS Schema for H.264/AVC (e.g., see Listing 4.12).

As such, it is easy to see that the first two observations result in the follow-
ing behavior: the more units parsed, the larger the context, and hence, the more
time needed for evaluating a particular set of XPath expressions in BSDL’s
BintoBSD Parser. Again, the XFlavor- and BFlavor-driven BSD producers are
not characterized by a time consuming behavior during the automatic gener-
ation of a BSD. Indeed, these parsers use class parameters, as well as the []
indexing and . selection operator to gain access to context information.

To summarize, the performance of the reference implementation of
BSDL’s format-agnostic BintoBSD Parser is infeasible. The processing speed
is much slower than real-time and decreases exponentially as the bitstream du-
ration increases. The memory consumption is untenable as well as the BSDL
parser keeps the entire BSD in the system memory to support the at-run evalu-
ation of an arbitrary set of XPath 1.0 expressions. The growing context in the
BSDL Parser is also recognized as a problem by the developers of the MPEG-
21 BSDL specification. For instance, in [109], the authors warn of the potential
for memory overflows in the case of large bitstreams or streaming scenarios.
However, the increasing size of the internal representation of a BSD not only
results in a memory overflow for large bitstreams, it also causes, as shown by
our quantitative analysis, a gradual slow-down in the processing speed of the
BSDL Parser due to an increase of the time needed for the evaluation of XPath
1.0 expressions.

Several solutions and alternatives can be proposed in order to generate
BSDs in a more efficient way.

1. Proprietary (i.e., media format-specific) software can be used for gener-
ating BSDs. However, this alternative to the use of BintoBSD is charac-
terized by a lack of genericity.

2. The BSDL specification can be improved to deal with this fundamental
problem of BintoBSD, for instance, by introducing context management
control operations in the BSDL schema language. These operations can
be employed to guarantee a context with a constant size, implying that

132 BFlavor: a new bitstream syntax description tool

constant and faster BSD generation speeds can be achieved. However,
this solution requires modifications to be made to the standard and cur-
rent implementations of BSDL’s BintoBSD Parser (including modifica-
tions to BS Schemata), as well as an explicit context management by
the author of a BS Schema. This solution is discussed in more detail in
Appendix C.

3. Engines can be used that are able to evaluate XPath expressions in a
streaming fashion, making it possible to deal with large XML docu-
ments. Such streaming XPath engines are already described in the scien-
tific literature [119] [120]. However, most of them are still experimental
(e.g., no support for the entire XPath 1.0 specification), or they are not
publicly available for experimentation.

On the other hand, as clearly shown by the measurements in Table 5.1,
Figure 5.3, and Figure 5.4, BFlavor does offer a working and practical solution
for a known challenge [24] [109] [121], i.e. the memory-efficient and real-
time generation of BSDL compliant BSDs, by sacrificing a minimal amount of
genericity.

BSD sizes

Figure 5.4 illustrates that the BSDs, generated by BSDL’s BintoBSD tool and
the BFlavor-driven parser, are compact compared to the BSDs created by the
XFlavor-based parser. Indeed, the BSDs as generated by XFlavor are verbose
(e.g., a textual BSD size of 181 MB for an H.264/AVC bitstream of 11 MB),
because all bitstream data are embedded in the BSD in order not to loose cru-
cial information : every four bytes in the payload are mapped to a 32-bits
integer, the value of which is written to the resulting BSD (see Listing A.2 and
Listing A.6). As such, the BSDs of BSDL and BFlavor fulfill the goal to act
as an additional metadata layer on top of a (scalable) media resource.

Note that the BSDs, produced by BFlavor, are typically smaller than the
ones created by BSDL’s BintoBSD process, although the same syntax is de-
scribed. This is due to the fact that BFlavor generates simplified BS Schemata,
and hence, also simplified BSDs. Indeed, in contrast to our manually created
BS Schemata, supporting BSDL-1 and BSDL-2 and aiming at readability, a BS
Schema generated by BFlavorc does not contain, e.g., explicit element decla-
rations to associate a bs2:if attribute with. Instead, an xsd:sequence
statement is used then, which is not instantiated in the output BSD. This is for
instance clarified in Listing 5.3 and Listing 5.4 for the automatic translation of
the different if statements.

5.3. Performance data 133

1

10

100

1000

10000

100000

1000000

50 100 200 300 1800
Bitstream length (#pictures)

Fi
le

 s
iz

e
(K

B
)

BSD BFlavor BSD BSDL
BSD XFlavor Bitstream

(a) Uncompressed BSD sizes.

1

10

100

1000

10000

100000

50 100 200 300 1800
Bitstream length (#pictures)

Fi
le

 s
iz

e
(K

B
)

BSD BFlavor BSD BSDL
BSD XFlavor Bitstream

(b) Compressed BSD sizes.

Figure 5.4: BSD sizes for H.264/AVC.

In Figure 5.4, the sizes of the different encoded bitstreams are given as
well. These numbers are rather informative. For instance, in the context of
scalable video coding, one of the target applications of BSD-based media con-
tent adaptation, bitstreams will typically be encoded at the highest quality pos-
sible (in terms of spatial, temporal, and Signal-to-Noise Ratio quality), and
hence, at a higher bit rate than the one used in this research (1.5 Mbps due to
the use of MPEG-1 Video). As such, a maximum degree of freedom can be
achieved when child bitstreams have to be extracted. Nonetheless, it is inter-
esting to see that in the case of BSDL and BFlavor, the ratio, defined as the
division of the uncompressed BSD size by the bitstream size, is about 10% for
MPEG-1 Video, while this ratio has a value of about 1461% for XFlavor.

134 BFlavor: a new bitstream syntax description tool

Finally, Figure 5.4 also shows that the resulting BSDs can be compressed
efficiently when using the default text compression algorithm of WinRAR 3.5.
The overhead drops to less than 1% in case of BSDL and BFlavor; it remains
about 155% in case of XFlavor. It is expected that the obtained compression
ratios are a good indication for those achieved by tools built on top of BiM5.
At the time this research was performed, the BSDs could not be compressed
with the reference software for BiM, due to the lack of support for a number
of BSDL-2 language features.

5.3.3 Temporal adaptation performance

In this section, the use of BSDL and BFlavor is discussed for the BSD-driven
exploitation of multi-layered temporal scalability in the first version of the
H.264/AVC standard. XFlavor is not used in this second series of experiments:
as previously shown, its BSDs are too verbose and the language does not ex-
plicitly target the adaptation of scalable bitstreams.

Performance results are presented for two use cases: a download-and-play
scenario and a simulstore-based streaming scenario. The streaming scenario
was outlined in more detail in Section 5.2.1. In both test cases, the goal is to
make use of H.264/AVC bitstreams with CIF resolution, having provisions for
the exploitation of multi-layered temporal scalability such that three different
usage environments can be targeted: a laptop able to process video data at 30
Hz, a portable entertainment device able to process video data at 15 Hz, and
a cellphone able to process video data at 7.5 Hz. The generated bitstreams
fulfill the requirements as imposed by the sub-sequence coding technique and
are compatible with H.264/AVC’s widely used Main Profile. Regarding the
streaming scenario, three slices per picture are used for improved error robust-
ness while the download-and-play scenario only uses one slice per picture.

Experiments were carried out for H.264/AVC bitstreams having one
of the following four coding patterns (the index denotes the number of
the sub-sequence layer the picture belongs to): I0p2P1p2P0, I0b2B1b2P0,
I0p3P2p3P1p3P2p3P0, and I0b3B2b3B1b3B2b3P0. The I0b2B1b2P0 coding
structure, enabling three-level temporal scalability, is visualized in Fig-
ure 3.11 in Chapter 3. Figure 3.9 contains in its turn a visualization of the
I0b3B2b3B1b3B2b3P0 coding structure.

For bitstreams that do not carry sub-sequence information SEI messages,
the syntax elements frame num and nal ref idc are used to guide the
BSD transformation process. This information is available in H.264/AVC’s

5Besides functionality for lossless compression of XML documents, BiM also offers support
for features such as random access and streaming of the binarized documents.

5.3. Performance data 135

VCL and NAL. For bitstreams containing sub-sequence information SEI mes-
sages, the sub-sequence layer identification information (stored in the syntax
element sub seq layer num) and the value of nal unit type are used
to guide the transformation process (see Listing D.2 in Appendix D). This in-
formation only needs to be retrieved from H.264/AVC’s NAL.

The results in Figure 5.5 and Table 5.3 will be discussed mainly from the
most challenging scenario’s point of view, i.e. the streaming scenario. This dis-
cussion also emphasizes the BSD generation process as BFlavor only affects
the first step in a BSD-driven content adaptation chain. Because the values,
as obtained for the different metrics, are almost all independent from a partic-
ular coding pattern chosen, they were averaged out over the different coding
structures used.

Indeed, the coding pattern only has a clear impact on the amount of data
dropped: obviously, the bit rate reduction is higher when exploiting temporal
scalability in case of a coding structure that embeds P slice coded pictures
instead of B slice coded pictures. For example, when downsampling the frame
rate of a bitstream from 30 Hz to 7.5 Hz in case of the streaming scenario, the
file size drops to 56.9% for the I0p3P2p3P1p3P2p3P0 coding structure and to
70.1% for the I0b3B2b3B1b3B2b3P0 coding pattern.

BSD generation without using SEI

The amount of time needed by BSDL’s BintoBSD Parser for the generation of a
BSD is unacceptably high: 259 s and 1855 s on the average for the download-
and-play and streaming scenario, respectively. This can be explained by the
fact that H.264/AVC’s syntax is described with a rather fine granularity; the
resulting BSDs contain information up to and including the slice header syntax
structure. As a consequence, a lot of XPath expressions have to be executed to
correctly guide BSDL’s BintoBSD Parser. Moreover, the detailed analysis of
the H.264/AVC bitstreams also results in a quick growth of the context. On the
other hand, the BFlavor-based parser creates an equivalent BSD in less than
one second.

The BSDs, created by BSDL’s BintoBSD Parser, are also more verbose
compared to the BSDs produced by our BFlavor-driven parser: for the stream-
ing scenario, the average size of a full BSD is 1263.8 KB for BFlavor and
1958.3 KB for BSDL. As previously explained, this is due to the fact that BFla-
vor uses simplified BS Schemata and BSDs. Besides the exploitation of tem-
poral scalability by dropping particular sub-sequence layers, the level of detail
of the BSDs also enables the exploitation of temporal scalability using place-
holder slices (see Chapter 6). To conclude, the BSD granularity represents a

136 BFlavor: a new bitstream syntax description tool

0.20.2

258.9

61.7

0

100

200

300

400

500

no SEI SEI

E
xe

cu
tio

n
tim

e
(s

)
BFlavor BSDL

(a) Download-and-play scenario.

0.30.4

1854.6

129.2
0

1000

2000

3000

no SEI SEI

E
xe

cu
tio

n
tim

e
(s

)

BFlavor BSDL

(b) Streaming scenario.

Figure 5.5: Execution times for BSD generation.

worst-case scenario for BSD generation in the context of the H.264/AVC video
coding format.

BSD generation using SEI

When using sub-sequence information SEI messages for the exploitation of
temporal scalability, it is no longer necessary to interpret information from
H.264/AVC’s VCL; one can entirely rely on the information as available in
the NAL. In other words, the sub-sequence information SEI messages assist
in abstracting the complexity of the coding format described, facilitating a BS
Schema that is much simpler (as indicated by the frequency of certain BSDL

5.3. Performance data 137

Table 5.3: Summarized performance results for the download-and-play and streaming
scenario. BSD generation, transformation, and bitstream reconstruction are expressed
in terms of seconds. The sizes of the textual and binarized BSDs are provided in KB.

frame BSD gen. BSD trans. BSD size BSDtoBin
tool scenario SEI rate avg. stdev. avg. stdev. text. bin. avg. stdev.

30 0.236 0.012 - - 423.5 8.0 - -
no 15 - - 0.453 0.002 239.8 5.0 2.895 0.163

download- 7.5 - - 0.443 0.006 123.5 3.5 2.241 0.075
and-play 30 0.242 0.008 - - 402.0 6.0 - -

yes 15 - - 0.485 0.000 210.5 3.0 2.180 0.166
BFlavor 7.5 - - 0.484 0.000 126.8 2.0 1.781 0.073

30 0.356 0.007 - - 1263.8 17.3 - -
no 15 - - 0.773 0.006 712.3 10.0 4.155 0.176

streaming 7.5 - - 0.727 0.009 363.8 6.0 3.003 0.097
30 0.292 0.010 - - 637.8 11.5 - -

yes 15 - - 0.635 0.007 331.8 6.0 2.545 0.184
7.5 - - 0.613 0.002 171.8 4.0 2.012 0.075
30 258.878 13.340 - - 654.9 8.0 - -

no 15 - - 0.562 0.001 351.8 5.4 3.017 0.162
download- 7.5 - - 0.521 0.006 189.5 3.6 2.361 0.083
and-play 30 61.677 0.213 - - 481.4 5.6 - -

yes 15 - - 0.494 0.004 244.0 4.0 2.651 0.161
BSDL 7.5 - - 0.485 0.001 125.0 2.8 2.273 0.070

30 1854.571 97.689 - - 1958.3 18.1 - -
no 15 - - 0.941 0.009 1047.5 10.6 4.317 0.190

streaming 7.5 - - 0.818 0.009 560.8 6.3 3.144 0.105
30 129.210 0.368 - - 793.8 11.7 - -

yes 15 - - 0.651 0.003 401.0 7.3 2.973 0.186
7.5 - - 0.620 0.002 204.0 4.5 2.469 0.072

language constructs in Table 5.2). This can also be derived from the cost
needed for generating a BSD: the amount of time has dropped significantly
in case of the BSDL Parser (from 1855 s on the average to 129 s on the aver-
age for the streaming scenario), mainly because of a smaller context and the
fact that less XPath expressions have to be evaluated.

The uncompressed or textual BSDs are also smaller compared to the BSDs
generated in the previous approach. However, the former high-level BSDs
do no longer allow the exploitation of temporal scalability using placeholder
slices as this technique requires the complete parsing of every slice header
(to know the boundary between the slice header() and slice data()
syntax structures). The granularity of the BSDs represents a best-case scenario
for BSD generation for H.264/AVC when aiming at the exploitation of tempo-
ral scalability by the removal of particular sub-sequence layers. Nonetheless,
the performance of BSDL’s BintoBSD process is still unacceptable due to a
context of which the growth cannot be controlled.

Finally, the presence of the sub-sequence information SEI messages has

138 BFlavor: a new bitstream syntax description tool

little impact on the size of the compressed bitstreams, whilst those content
adaptation hints are well suited for enabling fast and intelligent BSD-driven
exploitation of temporal scalability in H.264/AVC bitstreams. For example,
for the I0b3B2b3B1b3B2b3P0 coding pattern in the streaming scenario, the bit-
stream size without SEI is 332.9 KB while the size of the bitstream enriched
with SEI amounts to 335.7 KB (an increase of the file size of about 0.84%).

BSD transformation and bitstream reconstruction

The transformation of all BSDs, using XSLT, can be done in less than one
second. Adapted bitstreams can also be generated very quickly, using the
BSDtoBin Parser as available in the BSDL reference software. In contrast to
BSDL’s BintoBSD Parser, this reverse process does not require the evaluation
of XPath expressions. Indeed, the BSDtoBin Parser only needs to take care of
the selection of appropriate data packets from the original bitstream (by per-
forming look-ups in the transformed BSD) and of the appropriate binarization
technique (by doing look-ups in the transformed BSD and/or the BS Schema).
Finally, the execution times of the BSD transformation and bitstream recon-
struction processes are positively affected by the smaller sizes of the BSDs as
produced in the best-case scenario.

5.3.4 Concluding remark

BSDL’s BintoBSD and BSDtoBin Parser are characterized by the same asym-
metric relation in terms of computational complexity as a typical encoder and
decoder pair for the compression of digital video: where the complexity of an
encoder is at large determined by the motion estimation process, the complex-
ity of BintoBSD is at large determined by the XPath evaluation process. As
such, the computation of a motion vector by an encoder can be compared to
the evaluation of an XPath expression by BSDL’s BintoBSD Parser. On the
other hand, the complexity of a decoder is limited as a motion vector is readily
available for the construction of a motion-compensated picture. The same is
true for BSDtoBin, where the result of the evaluation of an XPath expression
is stored in a BSD, which is readily available for the generation of an adapted
bitstream using BSDtoBin.

Exploring the analogy further, the time- and memory-consuming behavior
of BSDL’s BintoBSD Parser can even be put on par with the behavior of an
encoder that would perform motion estimation on an increasing number of ref-
erence pictures, and where these pictures are never removed from the encoder’s
decoded picture buffer.

5.4. Conclusions and original contributions 139

5.4 Conclusions and original contributions

The initial version of the MPEG-21 BSDL specification is characterized by a
fundamental performance problem pertaining to the automatic generation of
BSDs for elementary video bitstreams. Indeed, real-life implementations of
the format-agnostic BintoBSD process are required to keep the entire BSD in
the system memory. This allows the evaluation of a set of arbitrary XPath
1.0 expressions in an at run time fashion, i.e. while parsing the bitstream and
progressively generating its BSD. Consequently, this requirement results in an
increasing memory usage and a decreasing processing speed for a BintoBSD
Parser during the generation of an XML description for the high-level structure
of a binary media resource.

Several solutions can be proposed to improve the performance behavior of
BSDL’s BintoBSD process. In this chapter, we have introduced an alternative
to the use of BSDL’s format-agnostic BintoBSD Parser, i.e., BFlavor. This new
description tool is built on top of XFlavor in order to efficiently support MPEG-
21 BSDL features. Its design is essentially composed of several extensions to
XFlavor, along with a specification of how each XFlavor language construct is
mapped to a corresponding BSDL-1 feature.

BFlavor harmonizes BSDL and XFlavor by combining their strengths and
eliminating their weaknesses. More precisely, the processing efficiency and
expressive power of XFlavor, together with the ability of BSDL to create high-
level BSDs, were our key motives for the development of this new bitstream
syntax description tool. As such, the way in which a BFlavor-based BSD gen-
erator is created (automatic and programming language-agnostic code genera-
tion) can be seen as a trade off between the use of format-agnostic BSD pro-
ducers on the one hand, and the employment of dedicated and efficient parsers
on the other hand. The summary overview in Table 5.4 highlights the major
differences and similarities between BSDL, XFlavor, and BFlavor.

To get an estimate of the expressive power and performance of a BFlavor-
driven content adaptation chain, several experiments were conducted.

• A first series of experiments targeted a performance analysis of MPEG-
21 BSDL, XFlavor, and BFlavor in the context of the automatic gen-
eration of BSDs for the MPEG-1 Video and H.264/AVC video coding
formats. The BFlavor-based BSD producers achieved similar or signif-
icantly better results than their counterparts on all metrics applied (exe-
cution times, peak memory consumption, and file sizes).

• A second series of experiments focused on the use of MPEG-21 BSDL
and BFlavor for the exploitation of multi-layered temporal scalability

140 BFlavor: a new bitstream syntax description tool

in H.264/AVC. Special attention was paid to the combined use of sub-
sequences and sub-sequence information SEI messages. These SEI mes-
sages allow to abstract the complexity of the coding format described.
Also, for this first series of experiments, BFlavor was the only tool to of-
fer an elegant and practical (i.e., real-time) solution for the BSD-driven
adaptation of H.264/AVC bitstreams in the temporal domain.

In short, we have shown in this chapter that BFlavor is an efficient and har-
monized description tool for enabling XML-driven adaptation of binary media
resources in a format-neutral way.

Finally, we would like to draw the attention of the interested reader to
Appendix C and Appendix E.

• Appendix C describes a number of enhancements to the BSDL schema
language that allow a BintoBSD Parser to achieve an efficient context
management during the generation of a BSD. These extensions were
developed by Davy De Schrijver in the context of his research in the
domain of BSD-driven content adaptation [32].

• Appendix E contains a brief overview of the second amendment to the
MPEG-21 DIA specification, to which Multimedia Lab actively con-
tributed (see for instance [43], [45], and [47]). This amendment to DIA,
which is still under development at the time of writing, contains a num-
ber of tools that improve the expressive power of BSDL. These tools
offer a standardized solution for a number of issues as identified in the
previous chapter (e.g., support for Exponential Golomb codes). On the
other hand, the amendment to MPEG-21 DIA also contains a number
of features that allow more efficient implementations of the BintoBSD
process.

The research results that are presented in this chapter are also discussed in
the following publications.

1. Davy Van Deursen, Wesley De Neve, Davy De Schrijver, Sarah
De Bruyne, Rik Van de Walle. Automatic Generation of generic Bit-
stream Syntax Descriptions. Submitted to 2007 IEEE International
Symposium on Broadband Multimedia Systems and Broadcasting (IEEE
BMS 2007), Orlando, Florida, USA, March 2007.

2. Wesley De Neve, Davy Van Deursen, Davy De Schrijver, Sam Lerouge,
Koen De Wolf, Rik Van de Walle. BFlavor: a harmonized approach to
media resource adaptation, inspired by MPEG-21 BSDL and XFlavor.

5.4. Conclusions and original contributions 141

EURASIP Signal Processing - Image Communication, 21(10):862-889,
November 2006.

3. Davy De Schrijver, Chris Poppe, Sam Lerouge, Wesley De Neve,
Rik Van de Walle. Bitstream Syntax Descriptions for Scalable Video
Codecs. Multimedia Systems Journal, 11(5):403-421, June 2006.

4. Davy De Schrijver, Wesley De Neve, Koen De Wolf, Stijn Notebaert,
Rik Van de Walle. XML-Based Customization Along the Scalability
Axes of H.264/AVC Scalable Video Coding. In Proceedings of 2006
IEEE International Symposium on Circuits and Systems (ISM 2006),
pages 465–468, Island of Kos, Greece, May 2006.

5. Davy Van Deursen, Davy De Schrijver, Wesley De Neve, Rik Van
de Walle. A Real-Time XML-based Adaptation System for Scalable
Video Formats. In Lecture Notes in Computer Science - Advances in
Multimedia Information Processing - PCM 2006, Volume 4261, pages
343–353, October 2006.

6. Davy Van Deursen, Wesley De Neve, Davy De Schrijver, Rik Van
de Walle. BFlavor: an Optimized XML-based Framework for Multime-
dia Content Customization. In Proceedings of the 25th Picture Coding
Symposium, 6 pages on CD-ROM, Beijing, China, April 2006.

7. Davy De Schrijver, Wesley De Neve, Koen De Wolf, Rik Van de Walle.
Generating MPEG-21 BSDL Descriptions Using Context-related At-
tributes. In Proceedings of the 7th IEEE International Symposium on
Multimedia, pages 79–86, Irvine, California, USA, December 2005.

8. Wesley De Neve, Davy Van Deursen, Davy De Schrijver, Koen De Wolf,
Rik Van de Walle. Using Bitstream Structure Descriptions for the Ex-
ploitation of Multi-layered Temporal Scalability in H.264/AVC’s Base
Specification. In Lecture Notes in Computer Science - Advances in Mul-
timedia Information Processing - PCM 2005, Volume 3767, pages 641–
652, October 2005.

142 BFlavor: a new bitstream syntax description tool
Ta

bl
e

5.
4:

O
ve

rv
ie

w
of

th
e

de
si

gn
ch

ar
ac

te
ri

st
ic

s
of

M
PE

G
-2

1
B

SD
L

,X
Fl

av
or

,
an

d
B

Fl
av

or
.

N
ot

e
th

at
B

SD
L

,X
Fl

av
or

,
an

d
B

Fl
av

or
ar

e
fo

rm
at

-a
gn

os
tic

:
th

ei
r

vo
ca

bu
la

ry
is

no
tl

im
ite

d
to

on
e

pa
rt

ic
ul

ar
m

ed
ia

fo
rm

at
,a

s
is

th
e

ca
se

fo
rM

PM
L

.

C
ri

te
ri

on
M

PE
G

-2
1

B
SD

L
X

Fl
av

or
B

Fl
av

or
C

1.
L

an
gu

ag
e

D
ev

el
op

er
s

Ph
ili

ps
R

es
ea

rc
h

C
ol

um
bi

a
U

ni
ve

rs
ity

G
he

nt
U

ni
ve

rs
ity

Fo
un

da
tio

n
W

3C
X

M
L

Sc
he

m
a

C
++

/J
av

a
X

Fl
av

or
(r

es
tr

ic
tio

ns
,

(r
es

tr
ic

tio
ns

,
(r

es
tr

ic
tio

ns
,

ex
te

ns
io

ns
)

ex
te

ns
io

ns
)

ex
te

ns
io

ns
)

C
om

m
un

ity
m

et
ad

at
a

de
ve

lo
pe

rs
m

et
ad

at
a

an
d

de
ve

lo
pe

rs
Fo

rm
at

-a
gn

os
tic

ye
s

ye
s

ye
s

Pu
rp

os
e

to
ab

st
ra

ct
m

ed
ia

to
ab

st
ra

ct
to

ab
st

ra
ct

m
ed

ia
co

nt
en

ta
da

pt
at

io
n

bi
ts

tr
ea

m
pa

rs
in

g
co

nt
en

ta
da

pt
at

io
n

Sc
he

m
a-

de
pe

nd
en

t
ye

s
(e

.g
.,

bi
ts

tr
ea

m
no

(o
nl

y
va

lid
at

io
n)

ye
s

(e
.g

.,
bi

ts
tr

ea
m

re
co

ns
tr

uc
tio

n)
re

co
ns

tr
uc

tio
n)

Fl
ow

co
nt

ro
l

B
SD

L
-s

pe
ci

fic
at

tr
ib

ut
es

C
++

/J
av

a-
ba

se
d

flo
w

C
++

/J
av

a-
ba

se
d

flo
w

(b
s
2
:
i
f

,b
s
2
:
i
f
N
e
x
t

,
co

nt
ro

l[
i
f

-e
l
s
e

,
co

nt
ro

l[
i
f

-e
l
s
e

,
b
s
2
:
n
O
c
c
u
r
s

,b
s
2
:
i
f
U
n
i
o
n

)
(d
o

-)
w
h
i
l
e

,f
o
r

,
(d
o

-)
w
h
i
l
e

,f
o
r

,
an

d
an

X
M

L
Sc

he
m

a
s
w
i
t
c
h

-c
a
s
e

]
s
w
i
t
c
h

-c
a
s
e

]
el

em
en

t(
x
s
d
:
c
h
o
i
c
e

)
C

on
te

xt
ac

ce
ss

X
Pa

th
1.

0
cl

as
s

ar
gu

m
en

ts
,

cl
as

s
ar

gu
m

en
ts

,
[
]

op
er

at
or

,
[
]

op
er

at
or

,
.

op
er

at
or

.
op

er
at

or

5.4. Conclusions and original contributions 143
C

ri
te

ri
on

M
PE

G
-2

1
B

SD
L

X
Fl

av
or

B
Fl

av
or

V
ar

ia
bl

es
B

SD
L

-2
va

ri
ab

le
s

pa
rs

ab
le

va
ri

ab
le

s,
pa

rs
ab

le
va

ri
ab

le
s,

no
n-

pa
rs

ab
le

va
ri

ab
le

s
no

n-
pa

rs
ab

le
va

ri
ab

le
s

V
ar

ia
bl

e-
le

ng
th

co
di

ng
(E

xp
-G

ol
om

b,
C

AV
L

C
,

w
ea

k
st

ro
ng

st
ro

ng
C

A
B

A
C

)
B

its
tr

ea
m

va
lid

at
io

n
po

ss
ib

le
(x
s
d
:
f
i
x
e
d

)
po

ss
ib

le
(=

op
er

at
or

)
po

ss
ib

le
(=

op
er

at
or

)
C

2.
B

SD
St

ru
ct

ur
in

g
X

M
L

X
M

L
X

M
L

G
ra

nu
la

ri
ty

hi
gh

-l
ev

el
lo

w
-l

ev
el

hi
gh

-l
ev

el
C

3.
B

SD
ge

ne
ra

tio
n

To
ol

us
ed

B
in

to
B

SD
Pa

rs
er

v1
.1

.3
Ja

va
-b

as
ed

pa
rs

er
Ja

va
-b

as
ed

pa
rs

er
ge

ne
ra

te
d

by
Fl

av
or

c
ge

ne
ra

te
d

by
a

v5
.2

.0
m

od
ifi

ed
ve

rs
io

n
of

Fl
av

or
c

v5
.2

.0
Pr

oc
es

si
ng

sp
ee

d
sl

ow
fa

st
fa

st
M

em
or

y
co

ns
um

pt
io

n
in

cr
ea

si
ng

(D
O

M
,D

T
M

)
lo

w
an

d
co

ns
ta

nt
lo

w
an

d
co

ns
ta

nt
C

4.
C

us
to

m
iz

ed
bi

t-
st

re
am

ge
ne

ra
tio

n
To

ol
us

ed
B

SD
to

B
in

Pa
rs

er
v1

.1
.3

B
itg

en
v5

.2
B

SD
to

B
in

Pa
rs

er
v1

.1
.3

Pr
oc

es
si

ng
sp

ee
d

fa
st

fa
st

fa
st

M
em

or
y

co
ns

um
pt

io
n

lo
w

(S
A

X
)

lo
w

lo
w

(S
A

X
)

144 Enhanced BSD-driven adaptation

Chapter 6

Enhanced BSD-driven
adaptation

We adore chaos because we love to produce order.

M. C. Escher (1898-1972).

6.1 Introduction

In the context of digital video coding, it is important to separate the concept
of what is encoded in an elementary video bitstream, which is essentially a
compact set of instructions to tell a decoder how to decode the video data,
from the concept of what is the decision-making process of an encoder. The
latter process is not described in a video coding standard, since it is not relevant
to achieving interoperability. Consequently, an encoder has a large amount of
freedom about how to decide what to tell a decoder to do.

In this chapter, we show how the aforementioned freedom can also be ex-
ploited by a content adaptation engine to offer a solution for a number of issues
that may occur after the BSD-driven adaptation of elementary video bitstreams
in the coded domain. These issues, such as synchronization and conformance
problems, may prevent the correct processing of an adapted bitstream by a
multiplexer, which is logic responsible for the synchronization and optimized
storage of multiple bitstreams in a file container. For instance, after the dis-
posal of particular pictures in certain classes of elementary video bitstreams
(see below), a multiplexer might synchronize the remaining pictures with the
wrong audio samples when no precautions are taken. Obviously, this behavior
cannot be tolerated in an adaptive multimedia environment.

146 Enhanced BSD-driven adaptation

This chapter outlines two methods that can be considered improvements of
already existing approaches for BSD-based content adaptation, targeting the
exploitation of temporal and ROI scalability. Our enhanced techniques allow
to conceal a number of unwanted side-effects for decoders and multiplexers.
These side-effects stem from a (BSD-driven) content adaptation step in the
compressed domain. Both approaches are studied in more detail in the context
of the H.264/AVC standard. The enhanced exploitation of temporal scalability
is briefly discussed for a number of other video coding formats as well.

6.2 Enhanced exploitation of temporal scalability

The traditional view of temporal scalability is to remove certain coded pic-
tures from a bitstream while still obtaining a decodable remaining sequence of
pictures. This approach is typically applied when using BSD-based bitstream
thinning, after which the remaining pictures often have to be synchronized by
a multiplexer with the samples of a corresponding audio stream.

Functionality for synchronization purposes is for instance needed in the
context of a digital media archive. This archive may contain fully scalable
media resources of different media types, allowing to minimize the storage
requirements on the one hand (no simulstore) and to take into account the
characteristics of different usage environments on the other hand. BSD-driven
content adaptation is employed to deal with the different scalable media for-
mats, used to represent still images (e.g. JPEG 2000; [107]), audio resources
(e.g., MPEG-4 BSAC; [109]), and video resources (e.g., MPEG-4 SVC; [35]).
After an appropriate adaptation of the different types of media resources, they
are assembled and stored by a multiplexer in a single data container, which is
subsequently delivered to the client who queried the media archive.

However, after the BSD-driven disposal of certain pictures in an ele-
mentary video bitstream, it is sometimes impossible for a multiplexer to
(re)synchronize the remaining pictures with the samples of a corresponding
audio stream. In particular, BSD-based content adaptation may for example
lead to synchronization problems for the following two types of elementary
bitstreams: video bitstreams that are characterized by a varying coding pat-
tern and a fixed picture rate, as well as video bitstreams that rely on the use of
relative per-picture timestamps (e.g., to support a variable picture rate).

For such bitstreams, the BSD-driven exploitation of temporal scalability,
for example implemented by dropping B pictures, will respectively result in
bitstreams with a variable picture rate and in bitstreams with wrongly timed
pictures. Consequently, for a multiplexer, it is impossible to process the result-
ing adapted bitstreams in a correct manner, due to missing or incorrect timing

6.2. Enhanced exploitation of temporal scalability 147

I1 ...

time

B2 B3 P4 B5 P6

t0 t1 t2 t3 t4 t5 t6

I1 ...

time

P4 P6

t0 t1 t2 t3 t4 t5 t6

I1 ...

time

P4 P6

t0 t1 t2 t3 t4 t5 t6

(1)

(2)

(3)

Figure 6.1: Traditional view of temporal scalability.

information. This situation is for instance shown in Figure 6.1. Explanatory
notes for this figure are provided below.

1. B pictures are eliminated in an elementary video bitstream that is char-
acterized by a fixed picture rate and a varying coding pattern. The bit-
stream is coded using an irregular coding structure for the purpose of
coding efficiency (e.g., an intra coded picture only occurs at the start of
a shot). This bitstream does not convey per-picture timing information.

2. The disposal of B pictures in the elementary video bitstream leads to the
creation of gaps in the time line of this adapted bitstream.

3. The gaps in the time line cannot be detected by a multiplexer. As such,
the multiplexer incorrectly times the remaining pictures, resulting in an
increased playback rate (i.e., the remaining pictures are shown too fast).
Consequently, the increased playback speed leads to an increasing time
shift (drift) between the playback of the elementary video bitstream and
the corresponding audio bitstream.

148 Enhanced BSD-driven adaptation

For elementary bitstreams that are characterized by a regular coding pat-
tern and a fixed picture rate (e.g., IbbPbb. . .), as well as for bitstreams that rely
on the use of absolute per-picture timestamps, the BSD-driven exploitation of
temporal scalability usually produces bitstreams that can be processed by a
multiplexer in a correct way. Indeed, after the temporal adaptation step, cor-
rect timing information is still available, taking the form of a lower but fixed
picture rate for the first type of bitstreams, and taking the form of absolute
timestamps for the second category of bitstreams1.

With respect to elementary bitstreams that are either characterized by a
varying coding pattern and a fixed picture rate (e.g., video bitstreams stored
on commercial movie DVDs), or that rely on the use of relative timestamps,
we propose to implement the BSD-driven exploitation of temporal scalability
by replacing coded pictures with placeholder pictures. The definition of place-
holder pictures, which act as special instructions that can be sent to a decoder,
is outlined in the next section from a format-agnostic point of view.

6.2.1 Placeholder pictures

A placeholder or dummy picture is defined as a picture that is identical to a par-
ticular reference picture, or that is constructed by relying on a well-defined in-
terpolation process between different reference pictures (e.g., using a weighted
average between the co-located pixels in the different reference pictures; see
also Section 6.2.3). This means that only a limited amount of information has
to be stored or transmitted to signal placeholder pictures to a receiving decoder.
As such, placeholder pictures can for example be used by encoders for achiev-
ing bit rate savings when the content of successive pictures is very similar.
Additionally, these pictures can also be used for synchronization purposes, as
they typically introduce an additional delay. Hence, placeholder pictures are
sometimes referred to as skipped or delay pictures as well.

In this research, placeholder pictures are used to fill in the gaps that are cre-
ated in a bitstream due to the disposal of certain pictures. This approach makes
it straightforward to maintain synchronization with other media streams in a
particular container format: the total number of pictures remains the same af-
ter the adaptation step. In other words, the exploitation of temporal scalability,
using placeholder pictures, offers a solution for the aforementioned synchro-
nization problems by shielding the systems layer from a number of unwanted
side-effects. These side-effects stem from the BSD-driven content adaptation
step that is executed at the level of the video coding layer.

1Elementary bitstreams often do not carry explicit timing information; this task is typically
assigned to the systems layer (e.g., file formats, network protocols), and not to the coding layer.

6.2. Enhanced exploitation of temporal scalability 149

I1 ...

time

B2 B3 P4 B5 P6

t0 t1 t2 t3 t4 t5 t6

I1 ...

time

P4 P6

t0 t1 t2 t3 t4 t5 t6

(1)

(2)

placeholder
for B2

placeholder
for B3

placeholder
for B5

Figure 6.2: Exploitation of temporal scalability by replacing B pictures with place-
holder pictures.

Figure 6.2 illustrates our filling technique: temporal scalability is imple-
mented by replacing B pictures with placeholder pictures. Dependent on the
coding format, the placeholder pictures may for instance signal to a decoder to
output the previous picture in display order. Finally, from a bitstream perspec-
tive, the exploitation of temporal scalability, using placeholder pictures, can be
seen as a substitution operation. This is in contrast to the traditional point of
view of temporal scalability, which can be considered a removal operation2.

6.2.2 Placeholder pictures in MPEG-21 BSDL

In order to support the exploitation of temporal scalability using placeholder
pictures, additional intelligence needs to be introduced in a BSDL-based con-
tent adaptation chain (as visualized in Figure 4.2 in Chapter 4). The required
modifications are primarily applied at the level of the BSD transformation (for
the purpose of transforming the description of a certain picture into the de-
scription of a placeholder picture) and, dependent on the coding format used,
at the level of the BS Schema (to allow a correct binarization of placeholder
pictures by BSDtoBin). This will be outlined further in this section.

The operational flow regarding BSD-driven exploitation of temporal scal-
ability, using placeholder pictures, is as follows (discussed from a format-
independent point of view).

2As a side note, the injection of SEI messages into an H.264/AVC bitstream, using MPEG-
21 BSDL, can be seen as an addition operation.

150 Enhanced BSD-driven adaptation

BS Schema

BSDBintoBSD Parseroriginal bitstream
[bitstream_30hz.mpg]I b B b P

<!-------------------------- BS Schema ---------------------------->
<xsd:schema>

<xsd:element name="bitstream">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="parse_unit">

<xsd:complexType>
<xsd:choice>

<xsd:element ref="coded_header_data"/>
<xsd:element ref="I_picture"/>
<xsd:element ref="P_picture"/>
<xsd:element ref="B_picture"/>

</xsd:choice>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>

<!------------------------ BSD ----------------------->
<bitstream

bs1:bitstreamURI="bitstream_30hz.mpg">
<header_data>0 24</header_data>
<I_picture>24 2637</I_picture>
<B_picture>2661 746</B_picture>
<B_picture>3407 903</B_picture>
<P_picture>4310 1157</P_picture>

</bitstream>

Figure 6.3: BSD generation.

1. Given a bitstream and a BS Schema describing its coding format at a
certain granularity, a BSD is created for the bitstream using a format-
agnostic BintoBSD Parser. This process is illustrated in Figure 6.3, and
is similar to the BSD generation step in a traditional BSDL-based con-
tent adaptation chain.

2. A stylesheet (e.g., implemented using XSLT) is employed for iterating
through the descriptions of the different parse units in the BSD. Descrip-
tions of certain pictures are transformed into descriptions of placeholder
pictures. For instance, descriptions of bidirectionally coded pictures can
be replaced by descriptions representing a placeholder or skipped pic-
ture. This BSD transformation process is shown in Figure 6.4.

3. An adapted bitstream is generated by BSDL’s BSDtoBin process, using
the transformed BSD, the original bitstream, and, dependent on the cod-
ing format used, an extended BS Schema (see further). This process is
visualized in Figure 6.5. The resulting bitstream may subsequently be
provided to a multiplexer, which, for example, synchronizes the pictures
with the corresponding samples of the original audio stream.

As discussed in more detail in the next section, for a number of video cod-
ing formats, the BS Schema has to include an explicit syntax description of a

6.2. Enhanced exploitation of temporal scalability 151

transformed
BSD

bandwidth,
display size,
…

BSD

<!--------------- transformed BSD ------------->
<bitstream

bs1:bitstreamURI="bitstream_30hz.mpg">
<header_data>0 24</header_data>
<I_picture>24 2637</I_picture>
<S_picture><!-- ... --></S_picture>
<S_picture><!-- ... --></S_picture>
<P_picture>4310 1157</P_picture>

</bitstream>

<!------------------------ BSD ----------------------->
<bitstream

bs1:bitstreamURI="bitstream_30hz.mpg">
<header_data>0 24</header_data>
<I_picture>24 2637</I_picture>
<B_picture>2661 746</B_picture>
<B_picture>3407 903</B_picture>
<P_picture>4310 1157</P_picture>

</bitstream>

BSD transformation

Figure 6.4: BSD transformation: descriptions of B pictures (denoted by B picture
in the figure) are translated to descriptions of skipped pictures (denoted by
S picture in the figure) in the XML domain.

placeholder picture. This extended BS Schema enables the BSDtoBin process
to generate an adapted bitstream containing this type of pictures. The need for
an extended BS Schema can be explained by the fact that some video coding
formats need a number of low-level syntax elements for the construction of a
placeholder picture (e.g., a flag at the level of the macroblock layer that sig-
nals to a decoder that all macroblocks of a particular picture or slice are to be
considered as skipped).

The part of the BS Schema that describes the syntax of a placeholder pic-
ture is only used by a BSDtoBin Parser for binarization purposes; it is not used
by the BintoBSD proces as this particular BS Schema fragment is too low-
level on the one hand (it contains information that resides at the macroblock
layer), and too specific on the other hand (this syntax fragment can only be
used for the description of placeholder pictures, and not for the discovery of
the syntax of arbitrary coded pictures). Nonetheless, for practical reasons, the
extended BS Schema will in most cases also be used by a BintoBSD Parser for
the creation of a BSD for a particular video bitstream.

6.2.3 BSD-based construction of placeholder pictures

In this section, the creation of placeholder pictures is outlined in more detail
for a number of well-known coding formats: MPEG-1 Video, H.262/MPEG-
2 Video, MPEG-4 Visual, VC-1, and H.264/AVC. This discussion is mainly

152 Enhanced BSD-driven adaptation

transformed
BSD BSDtoBin Parser adapted bitstream

[bitstream_15hz.mpg]

extended BS
Schema

<!---------------- transformed BSD --------------->
<bitstream

bs1:bitstreamURI="bitstream_30hz.mpg">
<header_data>0 24</header_data>
<I_picture>24 2637</I_picture>
<S_picture><!-- ... --></S_picture>
<S_picture><!-- ... --></S_picture>
<P_picture>4310 1157</P_picture>

</bitstream>

original bitstream
[bitstream_30hz.mpg]I b B b P I SS S P

<!------------------- extended BS Schema --------------------->
<xsd:schema>

<xsd:element name="bitstream">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="parse_unit">

<xsd:complexType>
<xsd:choice>

<xsd:element ref="coded_header_data"/>
<xsd:element ref="I_picture"/>
<xsd:element ref="P_picture"/>
<xsd:element ref="B_picture"/>
<xsd:element ref="S_picture"/>

</xsd:choice>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>

Figure 6.5: Adapted bitstream generation by BSDtoBin, eventually using an extended
BS Schema for a correct binarization of placeholder pictures.

conducted from a syntax point of view. Special attention is paid to the cre-
ation of placeholder pictures in H.264/AVC. The motivation for this decision
is twofold. First, H.264/AVC is gaining momentum as the preferred solution
for digital video coding, and second, its technical design is the most challeng-
ing one for our BSD-based substitution technique.

MPEG-1 Video and H.262/MPEG-2 Video

Signaling a placeholder picture in H.262/MPEG-2 Video can be realized by us-
ing so-called pseudo-skipped pictures. A pseudo-skipped picture, introduced
by Lee et al. in [114] for rate control purposes, is an artificial B picture that
consists of multiple slices (one slice for each row). As shown in Figure 6.6,
every skipped slice contains two macroblocks that mark the beginning and
the end of the slice. In-between macroblocks are automatically considered as
skipped by a decoder. The macroblocks at the start and the end of the slice
are coded in backward or forward motion compensated mode, as well as with
zero-valued motion vectors and quantized transform coefficients.

H.262/MPEG-2 Video can be considered a superset of MPEG-1 Video. As
such, the creation of placeholder pictures in MPEG-1 Video is similar: only a

6.2. Enhanced exploitation of temporal scalability 153

1 2 n-1 n

1

2

m-1

m

macroblock number

sl
ic

e
nu

m
be

r

skipped macroblocks

Figure 6.6: Format of a pseudo-skipped picture in H.262/MPEG-2 Video [114].

limited number of minor syntactical differences are to be taken into account at
the macroblock layer. Also, the more flexible definition of a slice in MPEG-1
Video allows for a few optimizations since an entire picture can be coded as a
single slice. This is not allowed in H.262/MPEG-2 Video: all macroblock rows
must start and end with at least one slice (therefore, H.262/MPEG-2 Video
cannot be seen as a strict superset of MPEG-1 Video).

A BSD fragment describing a placeholder picture in MPEG-1 Video is
depicted in Listing 6.1. This BSD excerpt describes the syntax of a pseudo-
skipped picture in MPEG-1 Video, having CIF resolution. Every macroblock
row is coded as one slice. Furthermore, each macroblock is coded in backward
motion compensated mode, signaling to a decoder that the pseudo-skipped
picture is to be replaced by the next (reference) picture in output order. Dur-
ing the BSD transformation step, a stylesheet can be used for transforming
the description of a B picture into the description of a placeholder picture.
The BSD fragment in Listing 6.1 illustrates a resolution dependency in the
number of slices and the macroblock address increment for the last mac-
roblock of a particular slice. This increment is encoded by making use of
a variable-length code (the number of macroblocks skipped is equal to the
decoded value of macroblock address increment minus one). As
such, the number of bits used to represent this increment is dependent on the
spatial resolution of the video bitstream (e.g., the bitstream value of 18 for
macroblock address increment in the BSD in Listing 6.1 is decoded
to 21, signaling to a compliant decoder that 20 macroblocks are to be consid-
ered as skipped - CIF video has 18 rows of 22 macroblocks).

154 Enhanced BSD-driven adaptation

The corresponding BS Schema fragment, which is only used by the BSD-
toBin process, can be found in Listing 6.2. This BS Schema excerpt is also
resolution-dependent, similar to the BSD fragment as presented in Listing 6.1.
Similar descriptions and stylesheets are employed for bitstreams compliant
with the H.262/MPEG-2 Video standard.

The resolution dependencies in the BSD and BS Schema excerpts (indi-
cated by a bold font) could for instance be dealt with by making use of pa-
rameterized stylesheets and parameterized BS Schemata. Furthermore, the
exploitation of temporal scalability in MPEG-1 Video and H.262/MPEG-2
Video, using placeholder pictures, also requires some knowledge, although
limited, about a number of low-level syntax structures in both coding formats.

Listing 6.1: BSD fragment describing a pseudo-skipped picture in MPEG-1 Video,
having CIF resolution.

<pu>
<pseudo_skipped_picture_352x288>

<picture_header>
<picture_start_code>00000100</picture_start_code>
<temporal_reference>1</temporal_reference>
<!-- B picture -->
<picture_coding_type>3</picture_coding_type>
<vbv_delay>39360</vbv_delay>
<forward_motion_info>

<full_pel_forward_vector>0</full_pel_forward_vector>
<forward_f_code>7</forward_f_code>

</forward_motion_info>
<backward_motion_info>

<full_pel_backward_vector>0</full_pel_backward_vector>
<backward_f_code>7</backward_f_code>

</backward_motion_info>
<extra_bit_picture>0</extra_bit_picture>
<bit_stuffing>0</bit_stuffing>

</picture_header>
<!-- First slice. -->
<slice_row_352x288>

<slice_start_code>00000101</slice_start_code>
<quantiser_scale_code>1</quantiser_scale_code>
<extra_bit_slice>0</extra_bit_slice>
<first_macroblock>

<macroblock_address_increment>
1

</macroblock_address_increment>
<macroblock_type>2</macroblock_type>
<motion_horizontal_backward_code>

1
</motion_horizontal_backward_code>

6.2. Enhanced exploitation of temporal scalability 155

<motion_vertical_backward_code>
1

</motion_vertical_backward_code>
</first_macroblock>
<last_macroblock>

<macroblock_address_increment>
18

</macroblock_address_increment>
<macroblock_type>2</macroblock_type>
<motion_horizontal_backward_code>

1
</motion_horizontal_backward_code>
<motion_vertical_backward_code>

1
</motion_vertical_backward_code>

</last_macroblock>
<bit_stuffing>0</bit_stuffing>

</slice_row_352x288>
<!-- ... -->
<!-- Last slice. -->
<slice_row_352x288>

<slice_start_code>00000112</slice_start_code>
<quantiser_scale_code>1</quantiser_scale_code>
<extra_bit_slice>0</extra_bit_slice>
<first_macroblock>

<macroblock_address_increment>
1

</macroblock_address_increment>
<macroblock_type>2</macroblock_type>
<motion_horizontal_backward_code>

1
</motion_horizontal_backward_code>
<motion_vertical_backward_code>

1
</motion_vertical_backward_code>

</first_macroblock>
<last_macroblock>

<macroblock_address_increment>
18

</macroblock_address_increment>
<macroblock_type>2</macroblock_type>
<motion_horizontal_backward_code>

1
</motion_horizontal_backward_code>
<motion_vertical_backward_code>

1
</motion_vertical_backward_code>

</last_macroblock>
<bit_stuffing>0</bit_stuffing>

156 Enhanced BSD-driven adaptation

</slice_row_352x288>
</pseudo_skipped_picture_352x288>

</pu>

Listing 6.2: BS Schema fragment describing a pseudo-skipped picture in MPEG-1
Video, having CIF resolution.

<xsd:element name="pseudo_skipped_picture_352x288">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="mp1:picture_header"/>
<xsd:element ref="mp1:slice_row_352x288"

bs2:nOccurs="18"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="slice_row_352x288">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="slice_start_code"
type="mp1:StartCodeType"/>

<xsd:element name="quantiser_scale_code" type="b5"/>
<xsd:element name="extra_bit_slice" type="b1"

fixed="0"/>
<xsd:element name="first_macroblock">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="macroblock_address_increment"
fixed="1" type="b1"/>

<!-- macroblock_type is a bitstring equal to 010
(bkwd, not-coded). -->

<xsd:element name="macroblock_type"
fixed="2" type="b3"/>

<xsd:element name="motion_horizontal_backward_code"
fixed="1" type="b1"/>

<xsd:element name="motion_vertical_backward_code"
fixed="1" type="b1"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="last_macroblock">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="macroblock_address_increment"
fixed="18" type="b10"/>

<!-- macroblock_type is a bitstring equal to 010
(bkwd, not-coded). -->

<xsd:element name="macroblock_type"

6.2. Enhanced exploitation of temporal scalability 157

fixed="2" type="b3"/>
<xsd:element name="motion_horizontal_backward_code"

fixed="1" type="b1"/>
<xsd:element name="motion_vertical_backward_code"

fixed="1" type="b1"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<!-- Get back byte-aligned. -->
<xsd:element name="bit_stuffing"

type="mp1:Stuffing" minOccurs="0"/>
<!-- Look for the start of the next start code. -->
<xsd:element name="stuffing_byte" type="xsd:unsignedByte"

minOccurs="0" maxOccurs="unbounded"
bs2:ifNext="00000000"/>

<xsd:element name="stuffing_byte" type="xsd:unsignedByte"
minOccurs="0" maxOccurs="1"
bs2:ifNext="00000001"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

MPEG-4 Visual and Video Codec 1

In MPEG-4 Visual, the description of any coded Video Object Plane (VOP),
regardless of its coding type, can be transformed into the description of a non-
coded VOP (N-VOP), i.e. a placeholder picture, by setting the value of the
vop coded flag in the VOP header to zero and by stripping all further in-
formation for that particular VOP. This two-step process, which needs to be
implemented by the stylesheet that is responsible for the transformation of the
BSD, is illustrated in Listing 6.3. An N-VOP instructs a decoder to output the
most recent decoded I- or P-VOP for which the vop coded flag is equal to
one, preceding the N-VOP in question in output order.

Listing 6.3: Description of a B-VOP and an N-VOP, i.e. a placeholder picture.

<!-- Description of a B-VOP. -->
<pu>

<video_object_plane>
<vop_start_code>000001B6</vop_start_code>
<vop_coding_type>2</vop_coding_type>
<modulo_time_base>0</modulo_time_base>
<marker_bit>1</marker_bit>
<vop_time_increment xsi:type="b5">2</vop_time_increment>
<marker_bit>1</marker_bit>

158 Enhanced BSD-driven adaptation

<vop_coded>1</vop_coded>
<vop_stuffing>0</vop_stuffing>
<vop_payload>47 5746</vop_payload>

</video_object_plane>
</pu>
<!-- Description of an N-VOP. -->
<pu>

<video_object_plane>
<vop_start_code>000001B6</vop_start_code>
<vop_coding_type>2</vop_coding_type>
<modulo_time_base>0</modulo_time_base>
<marker_bit>1</marker_bit>
<vop_time_increment xsi:type="b5">2</vop_time_increment>
<marker_bit>1</marker_bit>
<vop_coded>0</vop_coded>
<vop_stuffing>0</vop_stuffing>

</video_object_plane>
</pu>

In the context of MPEG-4 Visual, the presence of placeholder pictures can
for instance be detected by MP4Box, which is multiplexer software developed
by the GNU Project on Advanced Content (GPAC)3. In a next step, MP4Box
is able to make use of the means of the MP4 file format to create a media
container for storing a video bitstream with a variable picture rate (by removing
the placeholder pictures from the elementary bitstream and by adjusting the
time duration of the remaining pictures). For example, using Figure 6.1, the
time duration of picture I1 would be adjusted from [t0, t1] to [t0, t3], the time
duration of picture P4 would be adjusted from [t3, t4] to [t3, t5], et cetera.

SMPTE’s VC-1 specification provides an own picture type for signaling
a placeholder picture, i.e. a Skipped picture (see Section 4.5 of Chapter 4).
Therefore, it can be considered straightforward to translate the description of
an arbitrary picture into the description of a Skipped picture (taking into ac-
count inter-picture dependencies). A BSD fragment, containing the description
of a Skipped picture in VC-1, is shown in Listing 6.4.

Listing 6.4: BSD excerpt describing a Skipped picture in VC-1.

<encapsulated_bdu>
<frame>

<bdu_start_code>0000010D</bdu_start_code>
<ptype>

<Skipped>15</Skipped>
</ptype>

3Available online: http://gpac.sourceforge.net/.

http://gpac.sourceforge.net/

6.2. Enhanced exploitation of temporal scalability 159

<skipped_picture_info>
<if_pulldown_not_0>

<if_interlace_eq_0_or_psf_eq_1>
<rptfrm>0</rptfrm>

</if_interlace_eq_0_or_psf_eq_1>
<if_interlace_not_0_and_psf_not_1>

<tff>1</tff>
<rff>0</rff>

</if_interlace_not_0_and_psf_not_1>
</if_pulldown_not_0>

</skipped_picture_info>
</frame>

</encapsulated_bdu>

Finally, to support the exploitation of temporal scalability in MPEG-4 Vi-
sual and VC-1, using placeholder pictures, it is not necessary to embed addi-
tional information in the respective BS Schemata. This is due to the inherent
support for skipped pictures in both specifications. Furthermore, in contrast
to MPEG-1 Video and H.262/MPEG-2 Video, both standards also allow the
creation of resolution-independent descriptions of placeholder pictures.

H.264/AVC

In the context of MPEG-1 Video and H.262/MPEG-2 Video, the generic na-
ture of the proposed BSD-driven substitution approach is constrained by a res-
olution dependency with respect to the creation of placeholder pictures. For
H.264/AVC, a number of additional dependencies have to be taken into ac-
count when exploiting temporal scalability using placeholder pictures. Indeed,
besides the picture resolution and the number of macroblocks used in a slice,
it also necessary to be aware of coding parameters such as the entropy coding
scheme used, the slice type employed, and whether or not a slice is used as a
reference for the reconstruction of other slices. Further, the H.264/AVC syntax
also allows the construction of two types of placeholder pictures, each having
different semantics for an H.264/AVC decoder.

• A picture consisting of skipped B slices signals to an H.264/AVC de-
coder to output a picture that is constructed by applying a weighted in-
terpolation between a previous and a next picture in output order. More
precisely, the interpolated picture is computed based on the relative tem-
poral positions of two (decoded) reference pictures, where the first refer-
ence picture is located at index 0 in list 0 and where the second reference

160 Enhanced BSD-driven adaptation

Figure 6.7: Weighted filtering by an H.264/AVC decoder.

picture can be found at index 0 in list 1 in the decoded picture buffer4.

This weighted filtering process is for instance illustrated in Figure 6.7. It
visualizes the output produced by the H.264/AVC reference software de-
coder for the hierarchical coding structure depicted in Figure 3.9, and in
which all B slice coded pictures in the temporal enhancement layers are
replaced by pictures consisting of skipped B slices. As such, weighted
filtering is applied between the picture labeled “1” and the picture la-
beled “9” of the base layer.

• A picture consisting of skipped P slices instructs an H.264/AVC decoder
to output the decoded reference picture that is located at index 0 in list
0 in the decoded picture buffer. This is usually the most recent decoded
reference picture that was added to the decoded picture buffer. As such,
the pictures in the temporal enhancement layers in Figure 3.9 are re-
placed by picture “9” in case the B slice coded pictures are substituted
for pictures consisting of skipped P slices.

The creation of placeholder slices in H.264/AVC will be exemplified with
the translation of the syntax of a non-reference B slice into the syntax of a non-
reference skipped P slice (as explained in Chapter 2, slices, and not pictures,
are the fundamental unit of processing in H.264/AVC’s VCL). This conversion
process is clarified in Listing 6.5 and Listing 6.6. The idea is to keep the
creation of placeholder slices as simple as possible, minimizing the impact
on the different decoding processes, such as the reference picture and display

4According to certain rules, decoded reference pictures are organized by an encoder and a
decoder in two lists in the decoded picture buffer: list 0 and list 1. P slices are only allowed to
refer to pictures in list 0 for their reconstruction, while B slices are allowed to refer to pictures
in both lists for their reconstruction.

6.2. Enhanced exploitation of temporal scalability 161

order management, the operation of the deblocking filter, et cetera. As such,
the construction of skipped slices in an H.264/AVC bitstream is realized with
a limited number of changes at the level of the different parameter sets and the
slice header() syntax structures (see below).

Listing 6.5: BSD fragment for a non-reference B slice in H.264/AVC.

<byte_stream_nal_unit>
<start_code_prefix_one_3bytes>

000001
</start_code_prefix_one_3bytes>
<nal_unit>

<forbidden_zero_bit>0</forbidden_zero_bit>
<nal_ref_idc>0</nal_ref_idc>
<nal_unit_type>1</nal_unit_type>
<raw_byte_sequence_payload>

<coded_slice_of_a_non_IDR_picture>
<slice_layer_without_partitioning_rbsp>

<slice_header>
<first_mb_in_slice>466</first_mb_in_slice>
<slice_type>1</slice_type>
<pic_parameter_set_id>0</pic_parameter_set_id>
<frame_num xsi:type="b5">2</frame_num>
<if_pic_order_cnt_type_eq_0>

<pic_order_cnt_lsb xsi:type="b7">
2

</pic_order_cnt_lsb>
</if_pic_order_cnt_type_eq_0>
<if_slice_type_eq_B>

<direct_spatial_mv_pred_flag>
1

</direct_spatial_mv_pred_flag>
</if_slice_type_eq_B>
<if_slice_type_eq_P_or_SP_or_B>

<num_ref_idx_active_override_flag>
0

</num_ref_idx_active_override_flag>
</if_slice_type_eq_P_or_SP_or_B>
<ref_pic_list_reordering>

<if_slice_type_not_I_and_not_SI>
<ref_pic_list_reordering_flag_l0>

0
</ref_pic_list_reordering_flag_l0>

</if_slice_type_not_I_and_not_SI>
<if_slice_type_eq_B>

<ref_pic_list_reordering_flag_l1>
0

</ref_pic_list_reordering_flag_l1>
</if_slice_type_eq_B>

162 Enhanced BSD-driven adaptation

</ref_pic_list_reordering>
<slice_qp_delta>-8</slice_qp_delta>
<if_deblocking_filter_control_present_flag_not_0>

<disable_deblocking_filter_idc>
1

</disable_deblocking_filter_idc>
</if_deblocking_filter_control_present_flag_not_0>

</slice_header>
<slice_data>

<bit_stuffing>5</bit_stuffing>
<slice_payload>20465 15</slice_payload>

</slice_data>
</slice_layer_without_partitioning_rbsp>

</coded_slice_of_a_non_IDR_picture>
</raw_byte_sequence_payload>

</nal_unit>
</byte_stream_nal_unit>

Listing 6.6: BSD fragment for a skipped P slice in H.264/AVC.

<byte_stream_nal_unit>
<start_code_prefix_one_3bytes>

000001
</start_code_prefix_one_3bytes>
<nal_unit>

<forbidden_zero_bit>0</forbidden_zero_bit>
<nal_ref_idc>0</nal_ref_idc>
<nal_unit_type>1</nal_unit_type>
<raw_byte_sequence_payload>

<coded_slice_of_a_skipped_non_IDR_picture>
<skipped_slice_layer_without_partitioning_rbsp>

<slice_header>
<first_mb_in_slice>466</first_mb_in_slice>
<slice_type>5</slice_type>
<pic_parameter_set_id>0</pic_parameter_set_id>
<frame_num xsi:type="b5">2</frame_num>
<if_pic_order_cnt_type_eq_0>

<pic_order_cnt_lsb xsi:type="b7">
2

</pic_order_cnt_lsb>
</if_pic_order_cnt_type_eq_0>

<if_slice_type_eq_P_or_SP_or_B>
<num_ref_idx_active_override_flag>

0
</num_ref_idx_active_override_flag>

</if_slice_type_eq_P_or_SP_or_B>
<ref_pic_list_reordering>

6.2. Enhanced exploitation of temporal scalability 163

<if_slice_type_not_I_and_not_SI>
<ref_pic_list_reordering_flag_l0>

0
</ref_pic_list_reordering_flag_l0>

</if_slice_type_not_I_and_not_SI>

</ref_pic_list_reordering>
<slice_qp_delta>0</slice_qp_delta>
<if_deblocking_filter_control_present_flag_not_0>

<disable_deblocking_filter_idc>
1

</disable_deblocking_filter_idc>
</if_deblocking_filter_control_present_flag_not_0>

</slice_header>
<skipped_slice_data>

<!-- This slice contains 233 skipped
macroblocks. -->

<mb_skip_run>233</mb_skip_run>
<rbsp_trailing_bits>

<rbsp_stop_one_bit>1</rbsp_stop_one_bit>
<rbsp_alignment_zero_bit>

0
</rbsp_alignment_zero_bit>

</rbsp_trailing_bits>
</skipped_slice_data>

</skipped_slice_layer_without_partitioning_rbsp>
</coded_slice_of_a_skipped_non_IDR_picture>

</raw_byte_sequence_payload>
</nal_unit>

</byte_stream_nal_unit>

The following six guidelines are taken into account during the mapping of
the syntax of a B slice to the syntax of a skipped P slice. An example stylesheet
is shown in Listing D.4 in Appendix D. The process that is responsible for the
transformation of the description of a B slice into the description of a skipped
B slice omits the second and the fourth step.

1. The nal ref idc syntax element is not changed, implying that the
property whether a slice is used as a reference or not is maintained. This
is a first step in keeping the management of reference pictures consistent
in case such pictures are involved in the conversion process.

2. The value of the slice type syntax element is changed in order to
signal a P slice (emphasized by a bold font in Listing 6.6).

3. The frame num syntax element is merely copied to the target slice
header (no reference pictures are removed), as well as all information

164 Enhanced BSD-driven adaptation

related to the display order management (slices are only replaced by
skipped ones), all information pertaining to the deblocking filter, and all
information concerning memory management control operations.

4. The parameters related to B slices, used in the management of the ref-
erence lists and the reconstruction of a slice (weighted prediction), are
dropped (denoted by white space in Listing 6.6).

5. To save a number of extra bits, the value of slice qp delta is ini-
tialized to zero as this value is not used during the reconstruction of a
skipped slice (indicated by a bold font in Listing 6.6).

6. Finally, slice data() is replaced by a new syntax structure that sig-
nals to a decoder that all macroblocks of the corresponding slice are
coded as skipped (stressed by a bold font in Listing 6.6).

A BS Schema fragment, describing the syntax of a skipped slice in
H.264/AVC, is provided in Listing 6.7. This BS Schema excerpt is required
in order to achieve a correct binarization of the slice data. Note that the BSD-
driven exploitation of temporal scalability, using placeholder pictures, is only
allowed when CAVLC entropy coding is in use. For CABAC requires the
use of a context-adaptive coded syntax element to communicate a skipped
macroblock run, something that cannot be expressed in the current version of
MPEG-21 BSDL (when CAVLC entropy coding is in use, the mb skip run
syntax element, indicating the number of skipped macroblocks, is represented
using Unsigned Exponential Golomb coding). This issue could be solved by
temporarily changing the entropy coding scheme used5.

Finally, due to the required complexity for signaling a skipped picture
using the H.264/AVC syntax, a rather complex analysis step is needed by a
multiplexer to detect the presence of this type of pictures in an elementary
H.264/AVC bitstream. On top of that, when CABAC is in use, the multiplexer
also needs to be aware of this entropy coding scheme in order to perform a
correct bitstream analysis. This is in contrast to MPEG-4 Visual and VC-1,
where the detection of placeholder pictures only requires checking the value
of the vop coded and ptype syntax elements, respectively.

Listing 6.7: BS Schema fragment for skipped slices in H.264/AVC.

<xsd:element name="raw_byte_sequence_payload">
<xsd:complexType>

5In an H.264/AVC bitstream, the entropy coding scheme can be changed by sending a new
PPS, containing an appropriate value for the entropy coding mode flag syntax element.

6.2. Enhanced exploitation of temporal scalability 165

<xsd:choice>
<xsd:element name="unspecified" type="jvt:PayloadType"

minOccurs="0"
bs2:if="../jvt:nal_unit_type = 0"/>

<xsd:element name="coded_slice_of_a_non_IDR_picture"
minOccurs="0"
bs2:if="../jvt:nal_unit_type = 1">

<xsd:complexType>
<xsd:sequence>

<xsd:element
ref="jvt:slice_layer_without_partitioning_rbsp"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<!-- The following entry is only taken during the

regeneration of a bitstream using BSDtoBin. -->
<xsd:element

name="coded_slice_of_a_skipped_non_IDR_picture"
minOccurs="0"
bs2:if="../jvt:nal_unit_type = 1">

<xsd:complexType>
<xsd:sequence>

<xsd:element
ref="jvt:skipped_slice_layer_without_partitioning_rbsp"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<!-- Other NAL unit types. -->

</xsd:choice>
</xsd:complexType>

</xsd:element>
<xsd:element

name="skipped_slice_layer_without_partitioning_rbsp">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="jvt:slice_header"/>
<xsd:element ref="jvt:skipped_slice_data"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="skipped_slice_data">

<xsd:complexType>
<xsd:sequence>

<xsd:element
name="mb_skip_run" type="jvt:UnsignedExpGolomb"/>

<xsd:element ref="jvt:rbsp_trailing_bits"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

166 Enhanced BSD-driven adaptation

Table 6.1: Properties of different versions of The New World movie trailer.

coding pattern picture rate resolution #slices/ #NALUs duration NALU rate sizeo
a

ID (Hz) picture (s) (NALUs/s) (MB)
TNWv,1 varying 23.98 848x352 5 17819 148 120.4 37.4
TNWv,2 varying 23.98 1280x544 7 24945 148 168.5 110.0
TNWv,3 varying 23.98 1904x800 9 32071 148 216.7 163.0
TNWf,1 IbBbBbBbP. . . 23.98 848x352 5 17808 148 120.3 42.9
TNWf,2 IbBbBbBbP. . . 23.98 1280x544 5 17808 148 120.3 78.7
TNWf,3 IbBbBbBbP. . . 23.98 1904x800 5 17808 148 120.3 126.0

aLabel sizeo stands for original file size. TNWv,1 (TNWf,1) denotes an instance of the
movie trailer using a varying (fixed) coding pattern.

6.3 Performance of temporal adaptation in H.264/AVC

In this section, we discuss a number of experiments that target the adaptation
of elementary H.264/AVC bitstreams in the temporal domain. The purpose of
our experiments is twofold.

1. A first goal is to test the expressive power and performance of an entire
BSD-driven content adaptation chain for a set of real-world H.264/AVC
bitstreams. In the experiments that were outlined in the previous chap-
ter, bitstreams were used with a limited duration of ten seconds, due
to performance issues with the BintoBSD Parser that is available in the
MPEG-21 reference software package. However, in this series of exper-
iments, optimized BSD producers are used, which allow the processing
of bitstreams with an arbitrary duration.

2. A second goal of this series of experiments is to evaluate the perfor-
mance of the exploitation of temporal scalability in H.264/AVC bit-
streams, using the enhanced content adaptation chain that we have pro-
posed in Section 6.2.2. For example, the BSD transformation step, used
to translate the descriptions of certain pictures into descriptions of place-
holder pictures, can be considered more complex than a BSD transfor-
mation step that only involves the removal of the descriptions of partic-
ular pictures.

6.3.1 Methodology

Our experiments aim at the temporal adaptation of two different classes of
H.264/AVC bitstreams, both having a fixed picture rate of 23.98 Hz: on the
one hand bitstreams with a varying coding pattern, and on the other hand bit-

6.3. Performance of temporal adaptation in H.264/AVC 167

streams with a regular coding structure. The test bitstreams used are all dif-
ferent instances of a single movie trailer, called The New World. The most
important properties of these bitstreams are provided in Table 6.1.

• The first class of bitstreams was downloaded from a well-known media
content site6, where they are deployed in a real-world simulstore sce-
nario. These bitstreams are characterized by a varying coding pattern.
More precisely, a P slice coded picture is mostly alternated with a non-
reference B slice coded picture. Furthermore, every bitstream contains
one SPS and one PPS, as well as one buffering period SEI message.
These syntax structures are stored at the start of the test bitstreams.

• The second class of bitstreams was encoded with the H.264/AVC ref-
erence software (JM 10.2), using a hierarchical coding pattern. This
coding structure, which is visualized in Figure 3.9, contains four tempo-
ral levels; it is based on the use of hierarchical B pictures. A QP of 20
was used for the coding of the slices in the base layer; for every temporal
enhancement layer, the value of the QP was increased with 2.

The performance analysis was done by breaking up the BSD-based con-
tent adaptation chain in its three fundamental building blocks: BSD genera-
tion, BSD transformation, and adapted bitstream construction. The focus is
put on the real-time adaptation of H.264/AVC bitstreams in the temporal do-
main. Real-time means that every building block is able to achieve a through-
put that is at least as fast as the playback speed of the original media resource.
These building blocks may for instance run in a pipelined fashion on different
processing nodes in a networked multimedia environment.

For the BSD generation step in this series of experiments, a BFlavor-driven
parser is employed for the automatic creation of BSDs, as well as an optimized
BintoBSD Parser. This optimized BintoBSD Parser uses the context man-
agement attributes that are briefly explained in Appendix C. These attributes,
which are defined on top of BSDL-2, provide BintoBSD with the means to
create a BSD with a constant and minimal memory consumption on the one
hand, and with a constant generation speed on the other hand.

Further, Streaming Transformations for XML (STX; [117]) are introduced
as a new BSD transformation technology. STX is intended to be a high-speed,
low memory consumption alternative to XSLT as it does not require the con-
struction of a complete in-memory tree7. As such, STX is suitable for the

6Available online: http://www.apple.com/trailers/.
7The use of STX is similar to the use of the context management attributes in BSDL: the

author is responsible for keeping track what information needs to buffered (STX) or stored in
the context (BSDL) for further processing.

http://www.apple.com/trailers/

168 Enhanced BSD-driven adaptation

Table 6.2: BSD generation using an optimized BintoBSD Parser and BFlavor.

BintoBSDm Parsera BFlavor
ID throughput MC BSD BSDc throughput MC BSD BSDc

(NALUs/s) (MB) (MB) (KB) (NALUs/s) (MB) (MB) (KB)
TNWv,1 136.0 1.7 35.0 352 1362.5 0.7 24.1 314
TNWv,2 122.3 1.7 45.9 498 829.1 0.7 31.6 352
TNWv,3 115.4 1.7 59.8 607 736.0 0.7 41.1 536
TNWf,1 124.5 1.7 44.3 326 1164.3 0.7 28.9 308
TNWf,2 109.8 1.7 44.2 335 777.5 0.7 29.0 317
TNWf,3 97.1 1.7 44.3 332 532.7 0.7 29.0 314

aBintoBSDm denotes the optimized BintoBSD Parser, MC stands for peak heap Memory
Consumption, and BSDc for compressed BSD size.

transformation of large XML documents with a repetitive structure. As shown
in Listing 4.10 in Chapter 4, these characteristics are typical for BSDs that
describe the high-level structure of elementary video bitstreams. Indeed, sev-
eral publications have shown that XSLT, as well as a hybrid combination of
STX/XSLT, are both unusable in the context of XML-driven video adaptation,
due to a respective high memory consumption (see Section 4.5 in Chapter 4)
and a high overhead in terms of execution times [27, 38]8.

The performance data were obtained on a PC with an Intel Pentium IV
2.61 GHz CPU and 512 MB of memory. The time measurements were done
eleven times, after which an average was taken of the last ten runs in order
to take into account the start-up period of the different programs involved.
BSDs were compressed using WinRAR 3.0’s default text compression algo-
rithm. The anatomy of the H.264/AVC bitstreams was described up to and
including the syntax elements of the slice headers, once in MPEG-21 BSDL
and once in BFlavor. The STX engine used was the Joost STX processor (ver-
sion 2005-05-21)9.

6.3.2 BSD generation

Table 6.2 summarizes the results that were obtained during the generation of
BSDs for the two classes of test bitstreams. The BFlavor-based parser outper-
forms the optimized BintoBSD Parser on the three metrics applied.

8STX can also be used in streaming scenarios, which is in contrast to XSLT.
9Available online: http://stx.sourceforge.net/.

http://stx.sourceforge.net/

6.3. Performance of temporal adaptation in H.264/AVC 169

• Execution times. The BFlavor-driven parser is faster than real time for
all bitstreams used. Indeed, for both classes of bitstreams, the mini-
mum throughput of the parser (532.7 NALUs/s) is higher than the maxi-
mum required playback speed (216.7 NALUs/s). Such real-time behav-
ior cannot be observed for the optimized BintoBSD Parser. TNWv,1 and
TNWf,1 are the only bitstreams that can be processed in real time by
BintoBSDm.

• Memory consumption. The BFlavor-driven parser, as well as the opti-
mized BintoBSD Parser, are characterized by a low memory footprint.
Both parsers need less than 2 MB of system memory to generate a BSD
for all the bitstreams in the test set.

• Textual BSD sizes. The BFlavor-driven parser produces textual BSDs
that are smaller than those created by the optimized BintoBSD Parser.
This is due to the design of our manually created BS Schema (usable by
a BintoBSD and BSDtoBin Parser), which is less optimized than BFla-
vor’s automatically generated BS Schema (only to be used by a BSDto-
Bin Parser) for the purpose of readability.

Further, from Table 6.2, we can see a significant difference in throughput
of the BFlavor-driven parser and the optimized BintoBSD Parser. This obser-
vation can be explained by the fact that BFlavor is at large I/O bound, while
the parsing speed of BintoBSDm is determined by its internal use of XPath
and by the amount of I/O operations needed for reading a coded bitstream and
for writing a BSD. For example, from a profiling of BintoBSDm for the pars-
ing of TNWf,1, we learned that about 40% of its execution time is spent to
I/O operations, while about 10% of its execution time is dedicated to the eval-
uation of XPath expressions. In this context, it is important to note that the
implementation of the I/O model of XFlavor/BFlavor (based on the exchange
and processing of integers) can be considered much more efficient than the I/O
model of BintoBSDm (based on the exchange and processing of byte arrays,
of which the use may require a lot of conversion steps).

Finally, from Table 6.2, we can also observe that the throughput of the
BFlavor-driven parser and the optimized BintoBSD Parser decreases when the
file size of the bitstream parsed increases. The numbers in this table make clear
that the decrease in throughput is more significant for the BFlavor-based parser
than for the optimized BintoBSD Parser. For example, when comparing the
parsing speeds achieved for TNWf,1 and TNWf,3, the throughput decreases
with 54% for BFlavor and with 22% for BintoBSDm, while the file size of
TNWf,3 is three times bigger than the file size of TNWf,1. It is likely that

170 Enhanced BSD-driven adaptation

Table 6.3: BSD transformation using STX and adapted bitstream construction using
BSDL’s format-neutral BSDtoBin Parser.

BSD transformation bitstream construction
ID operation throughput MC BSD BSDc throughput MC sizea

(NALUs/s) (MB) (MB) (KB) (NALUs/s) (MB) (MB)
TNWv,1 remove B 1009.5 1.2 14.5 168 606.1 1.9 26.5
TNWv,2 remove B 1092.1 1.2 19.1 232 552.7 1.9 73.7
TNWv,3 remove B 1085.7 1.2 25.0 293 399.2 1.9 109.0
TNWv,1 remove P + B 1354.7 1.2 2.1 31 401.1 2.3 5.7
TNWv,2 remove P + B 1408.2 1.2 3.8 57 290.8 3.7 19.7
TNWv,3 remove P + B 1399.6 1.2 5.6 78 150.6 4.6 32.6
TNWv,1 replace Ba 619.5 2.7 27.8 226 606.1 1.9 26.6
TNWv,2 replace B 661.7 2.8 36.4 309 559.3 1.9 73.9
TNWv,3 replace B 648.3 2.6 47.5 385 554.9 1.9 109.0
TNWv,1 replace P + Bb 513.4 1.3 28.9 118 592.0 2.6 5.9
TNWv,2 replace P + B 550.1 1.3 37.8 190 620.5 4.0 19.9
TNWv,3 replace P + B 548.0 1.3 49.1 230 522.3 4.5 33.0
TNWf,3 remove ELc 3 835.3 1.2 21.5 159 406.2 2.0 98.4
TNWf,3 remove EL 2 + 3 980.0 1.2 11.0 81 361.2 2.3 65.2
TNWf,3 remove EL 1 + 2 + 3 1098.0 1.3 5.8 41 264.3 2.2 38.6
TNWf,3 replace EL 3 536.5 1.7 36.9 194 515.2 2.1 98.5
TNWf,3 replace EL 2 + 3 444.5 1.3 33.5 121 554.7 2.3 65.3
TNWf,3 replace EL 1 + 2 + 3 447.2 1.3 33.1 84 537.2 2.2 38.8

aNon-reference B slices are replaced by non-reference skipped P slices.
bNon-reference P and B slices are replaced by non-reference skipped P slices.
cEL stands for enhancement layer, BSDc for compressed BSD size, and sizea for adapted

bitstream size.

the XPath dependency of the optimized BintoBSD Parser explains the smaller
influence of the file size on the time needed to process a particular bitstream
by BintoBSDm.

To summarize, for this series of tests, the BFlavor-based parser is able to
generate a BSD in real time. Its performance is determined by the file size
of the input bitstream (i.e., its bit rate) and by the file size of the BSD that is
to be written to the hard disk. On the other hand, our current implementation
of BSDL’s BintoBSD process can only be used for offline BSD generation; it
cannot be used for real-time BSD generation. The performance of this parser is
determined by the file size of the input bitstream, the amount of XPath expres-
sions in the BS Schema used, and the file size of the BSD that is to be written
to the hard disk. However, it is expected that the current implementation of
BintoBSD can be significantly improved in terms of its I/O handling.

6.3. Performance of temporal adaptation in H.264/AVC 171

6.3.3 BSD transformation and adapted bitstream construction

In the context of this research, a number of stylesheets were implemented using
STX. These stylesheets are responsible for the transformation of the BSDs,
generated by the optimized BintoBSD Parser. The adapted bitstreams were
constructed by relying on an optimized version of BSDL’s BSDtoBin Parser,
making use of buffered I/O instead of byte-based output streams.

In what follows, the semantics and performance of three different transfor-
mation steps are outlined in more detail: the exploitation of temporal scalabil-
ity by dropping slices; the enhanced exploitation of temporal scalability using
skipped slices; and the creation of video skims (i.e., video summaries). The
latter application relies on the use of placeholder pictures in order to be able to
synchronize a number of representative key pictures with an audio stream.

Exploiting temporal scalability by dropping slices

For the first set of test bitstreams (i.e., bitstreams with a varying coding pat-
tern), two STX stylesheets were developed to drop P and/or B slice coded
pictures. The adaptation operations are respectively denoted ‘remove B’ and
‘remove P + B’ in Table 6.3. The disposal of the pictures in question was
guided by relying on the values of the nal ref idc and/or slice type
syntax elements. However, the adapted bitstreams, produced by BSDtoBin af-
ter the BSD transformation step, can no longer be processed by a multiplexer
in a correct way. This is due to an incorrect timing of the remaining pictures.
Note that a compliant H.264/AVC decoder can still decode the adapted bit-
streams, as such a decoder is unaware of information in the systems layer.

For the second class of bitstreams (i.e., bitstreams with a fixed and hier-
archical coding pattern), three STX stylesheets were written for the removal
of the different temporal enhancement layers. The corresponding adaptation
operations are denoted ‘remove EL 3’, ‘remove EL 2 + 3’, and ‘remove EL
1 + 2 + 3’ in Table 6.3. As layer numbers are not explicitly embedded in the
elementary bitstream syntax, the decision-making process for the disposal of
certain pictures was implemented by checking the values of the following syn-
tax elements: nal ref idc, slice type, and/or frame num. The value
of the gaps in frame num value allowed flag syntax element in the
SPS syntax structure was modified to one, signaling to a decoder that reference
pictures were dropped intentionally (such pictures are used in the first and the
second enhancement layer). An example STX stylesheet, used for the removal
of the second and third temporal enhancement layer, is provided in Listing D.3
in Appendix D. Thanks to the use of a dyadic coding structure, the adapted
bitstreams can be further processed by a multiplexer in a correct way.

172 Enhanced BSD-driven adaptation

As shown in Table 6.3, the implementation of the different removal op-
erations can be done efficiently in terms of processing time and memory con-
sumption needed, first at the level of a BSD by making use of STX, and second
at the level of the coded H.264/AVC bitstream by making use of BSDL’s BSD-
toBin Parser. In particular, the BSD transformation step, implemented using
STX, is characterized by a constant and low memory usage, which is in con-
trast to the memory-consuming nature of XSLT.

Further, one can also observe that the BSDtoBin Parser is characterized
by a decreasing throughput for the construction of the adapted bitstreams. For
example, for bitstream TNWf,3, the throughput decreases from 406 NALUs/s
for the construction of a bitstream without the third enhancement layer, to
264 NALUs/s for a bitstream that only contains the base layer. This is due
to the fact that the base layer contains more coded bitstream data than the
temporal enhancement layers: the base layer is composed of I and P slice
coded pictures, while the enhancement layers consist of B slice coded pictures
(I and P slices usually contain more coded data than B slices, which implies
that their processing requires more I/O operations).

Exploiting temporal scalability using skipped slices

A number of STX stylesheets were developed for the enhanced exploitation
of temporal scalability in the two different sets of elementary H.264/AVC bit-
streams.

For the first class of bitstreams, skipped P slices were used as a substitute
for B slices on the one hand, and as a replacement for P and B slices on the
other hand. These adaptation operations are respectively denoted ‘replace B’
and ‘replace P + B’ in Table 6.3. A STX stylesheet for replacing B slices
by skipped P slices is provided in Listing D.4 in Appendix D. The resulting
bitstreams can be further processed by a multiplexer as the total number of
pictures remains unchanged.

For the second class of bitstreams, the removal of the pictures in the third
enhancement layer was implemented by using skipped B slices as a substitute
for the non-reference B slices. The use of skipped P slice coded pictures,
which instruct a decoder to output the decoded picture at position 0 in list 0
in the decoded picture buffer, would lead to a wrong output order in this case,
i.e. I0B4B3B4B2B4B4B4P1 (decoding order: I0P1B2B3B4B4B4B4B4). This
is due to the fact that B4 is the most recent decoded picture in the decoded
picture buffer (see Figure 3.9). Consequently, the use of skipped B slices in
the third enhancement layer implies that a non-reference B slice coded picture
is replaced by a picture that is the result of an interpolation process between

6.3. Performance of temporal adaptation in H.264/AVC 173

the previous and the next picture in output order. It is clear that the quality
of the reconstructed picture (e.g., in terms of ghosting artifacts) depends on
the amount of motion in the video sequence and on the distance between the
reference pictures.

Skipped P slices were used as a substitute for B slices when two or more
enhancement layers are involved in the adaptation process. This approach
makes it possible to obtain a correct output order after the adaptation step,
e.g. I0B2B2B2B2B2B2B2P1 in case two enhancement layers are adjusted (de-
coding order: I0P1B2B2B2B2B2B2B2).

Note that the enhanced exploitation of temporal scalability can be consid-
ered rather academic for the second class of bitstreams. Indeed, thanks to the
dyadic coding structure of the elementary video bitstreams, the removal of one
or more temporal enhancement layers results in adapted bitstreams that are still
characterized by a fixed but lower picture rate. Such bitstreams can be merely
processed by a multiplexer.

Performance data are provided in Table 6.3. The results show that the dif-
ferent BSD transformation steps can be executed in real time and with a limited
memory consumption. A similar observation can be made for the behavior of
BSDL’s BSDtoBin Parser, which is used for the construction of tailored bit-
streams (placeholder pictures are taken into account in the throughput compu-
tations). Also, as shown in the column with label sizea, the bitstream overhead
of the skipped slices is typically less than or equal to 0.4 MB. For example,
comparing line 1 and line 7 in Table 6.3, the overhead of the skipped slices is
0.1 MB (26.6 MB - 26.5 MB).

Creation of video skims by key frame selection

In the previous sections, we have studied two different adaptation techniques
that operate along the temporal axis of H.264/AVC bitstreams, i.e. the ex-
ploitation of temporal scalability by dropping particular slices on the one hand
and the enhanced exploitation of temporal scalability by using skipped slices
on the other hand. In this section, a third approach is discussed towards the
temporal adaptation of H.264/AVC bitstreams. In particular, an outline is pro-
vided regarding the BSD-based creation of video skims, which are compact
abstractions of long video sequences. The major goal of this experiment was
to investigate a number of challenges that may occur during the BSD-driven
creation of video skims. For instance, think about the automatic generation of
shot detection information, embedding additional metadata in a BSD, synchro-
nization of representative key pictures with a corresponding audio stream, and
so on.

174 Enhanced BSD-driven adaptation

Video skims are typically created by filtering out representative pictures
from a coded bitstream. The production of such summaries can for example
be implemented by selecting key pictures that are located near the beginning
of a shot (i.e., by selecting I slice coded pictures). Therefore, bitstreams were
created with similar properties to the second class of test bitstreams, but using
the IbBbBbBb coding pattern instead of the IbBbBbBbP. . . coding structure.
The former coding pattern offers random access at regular picture intervals
since every picture in the base layer consists entirely of I slices.

First, a proof-of-concept STX stylesheet was implemented that marks the
key pictures in the BSD that are located near the start of a shot. This stylesheet
is guided by the shot detection information produced by the IBM MPEG-7
Annotation Tool10. Note that the shot detection information could not be used
directly: a picture that sits at the start of a shot does not always coincide with
a key picture in the coded bitstream, thus requiring a manual mapping from a
picture that denotes the beginning of a shot to a nearby key picture.

As shown in Listing 6.8, the STX stylesheet, which can be found in List-
ing D.8 in Appendix D, embeds the information about the different shots as
a number of additional attributes in a BSD11: the shot attribute indicates
whether or not a NAL unit belongs to an I slice coded picture that is positioned
near the start of a shot, while the pic cnt attribute acts as a counter that is
incremented for every picture in bitstream order (for debugging purposes).

Listing 6.8: Embedding shot information as additional attributes in a BSD.

<bitstream xmlns="h264_avc" xmlns:jvt="h264_avc"
bitstreamURI="the_new_world_h480p_IbBbBbBb.h264">

<byte_stream>
<byte_stream_nal_unit pic_cnt="0" shot="false">

<!-- Sequence Parameter Set. -->
</byte_stream_nal_unit>
<byte_stream_nal_unit pic_cnt="0" shot="false">

<!-- Picture Parameter Set. -->
</byte_stream_nal_unit>
<byte_stream_nal_unit pic_cnt="1" shot="true">

<!-- First coded slice of I_0 (an IDR picture). -->
</byte_stream_nal_unit>
<!-- ... -->
<byte_stream_nal_unit pic_cnt="2" shot="false">

<!-- First coded slice of I_1 (a non-IDR picture). -->
</byte_stream_nal_unit>
<!-- ... -->

10Available online: http://www.alphaworks.ibm.com/tech/videoannex.
11More complex metadata can be added to a BSD using BSDL’s bs1:ignore language

feature.

http://www.alphaworks.ibm.com/tech/videoannex

6.4. Enhanced exploitation of ROI scalability 175

<byte_stream_nal_unit pic_cnt="3" shot="false">
<!-- First coded slice of B_2 (a non-IDR picture). -->

</byte_stream_nal_unit>
<!-- Remaining byte stream NAL units in decoding order. -->

</byte_stream>
</bitstream>

The resulting BSD is subsequently provided as input to a second STX
stylesheet. This stylesheet filters out the representative I slice coded pictures
and translates all remaining I and B slices into skipped P slices in order to
maintain synchronization with the original audio stream (relying on similar
logic as used by the stylesheet shown in Listing D.4 in Appendix D). Note that
the employment of two separate stylesheets is in line with the needs of a real-
world adaptation scenario. For example, the first stylesheet could be executed
on a content server, while the second stylesheet could be executed on a content
adaptation node in an active content delivery network.

Finally, the creation of a video skim also results in an adapted bitstream
with a file size that is significantly smaller than the size of the original bit-
stream. For example, when TNWf,1 is used with the IbBbBbBb coding pat-
tern, the file size can be reduced from 44.7 MB to 4.40 MB. Consequently, this
adaptation technique could be of particular interest for the repurposing of con-
tent for constrained usage environments. For instance, an audio stream could
be enriched with a limited number of representative pictures that are automat-
ically extracted from a coded video bitstream.

6.4 Enhanced exploitation of ROI scalability

ROI coding can be accomplished in an H.264/AVC bitstream by making use
of FMO type 2. As discussed in Chapter 3, this coding feature allows the
specification of rectangular areas of interest in a picture, giving an encoder the
possibility to make a distinction between a background, i.e. the part of the
video pane that does not belong to the ROI, and a foreground, i.e. the ROI.
For example, in order to deal with bandwidth fluctuations in an online coding
scenario, an encoder may dynamically adjust the bit budget that is assigned to
the background, while maintaining the bit rate for the foreground.

In an offline scenario, bit rate savings can be achieved, as well as a trivial
form of spatial scalability, by extracting a ROI from an elementary H.264/AVC
bitstream. This observation is especially true when the foreground and the
background are encoded using the same quality settings (see Table 3.1).

The extraction of a ROI, also known as the exploitation of ROI scalability,

176 Enhanced BSD-driven adaptation

original bitstream BintoBSD BSD

filter(s)

transformed
BSDBSDtoBinadapted bitstream

steering of
transformation

process

<bitstream>
<header>0 24</header>
<slice firstMB="67">2661 746</slice>
<slice firstMB="67">3407 903</slice>

</bitstream>

<bitstream>
<header>0 24</header>
<slice firstMB="67">24 2637</slice>
<slice firstMB="0">2661 746</slice>
<slice firstMB="67">3407 903</slice>
<slice firstMB="0">4310 857</slice>

</bitstream>

<stx:transform>
<stx:if test="$firstMB in ROI">

<stx:copy select="."/>
</stx:if>

</stx:transform>

Figure 6.8: BSD-driven ROI extraction [37].

can be implemented by the disposal of slices that are part of the background.
For this purpose, it is necessary to determine whether a particular slice is part of
the slice group that constitutes the foreground, or whether this slice belongs to
the slice group that constitutes the background. This question can be answered
by examining the value of the first mb in slice syntax element.

The first mb in slice syntax element, which is present in every slice
header, conveys the macroblock address of the first macroblock that is part of
the slice. Consequently, a slice belongs to the foreground, i.e. the ROI, when
the value of the first mb in slice parameter falls within the range of
macroblock coordinates of the ROI. These coordinates, which may be updated
in the course of time, are signaled in the bitstream by a number of syntax ele-
ments in the PPS syntax structure. In a BSD-driven content adaptation frame-
work, this decision-making process can be implemented by a stylesheet written
in XSLT or STX (see Figure 6.8).

However, a bitstream that is obtained after the exploitation of ROI scala-
bility, is no longer compliant with the first version of the H.264/AVC standard.
Indeed, the H.264/AVC specification mandates that all slice groups need to be
present in an H.264/AVC bitstream12. This implies that an H.264/AVC com-
pliant decoder cannot guarantee the correct decoding of a bitstream in which
the background data have been dropped.

Thanks to the independent nature of slices in H.264/AVC, a compliant
H.264/AVC decoder only needs a small number of modifications to guaran-

12The SVC specification, currently under development, proposes to relax this requirement.

6.4. Enhanced exploitation of ROI scalability 177

tee the correct decoding of a bitstr(eam in which the background information
has been removed. Despite this observation, the creation of invalid bitstreams
may be considered a disadvantage of the extraction procedure described above.
Therefore, in order to remain compliant with the H.264/AVC specification, it is
proposed to eliminate the background in an FMO type 2 encoded bitstream by
replacing the background slices with skipped P slices. These skipped P slices
instruct a decoder to show the background of the decoded reference picture
that is positioned at index 0 in list 013. Consequently, this technique allows the
valid exploitation of ROI scalability in H.264/AVC bitstreams.

However, after the extraction of the ROI, the input for the decoder, as well
as the corresponding output, is a video sequence at full resolution, containing
the background and the foreground. In other words, while the coded data that
represent the non-ROI parts of the video sequence were discarded or substi-
tuted by placeholder slices, the video pane of the output of the decoder still
has the same resolution as the original video sequence.

The aforementioned issue can be solved by relying on the use of frame
cropping parameters, which are optionally conveyed by an SPS. By specifying
a rectangular region in terms of luma sample coordinates, these syntax ele-
ments are able to describe which decoded picture samples are to be outputted
by the decoding process. As such, this allows the content adaptation process
to map the frame cropping offsets to the area of the ROI [122]. Consequently,
it is now possible to create a better match between the output of the decoder
and the display capabilities of the target device (e.g., a mobile device with a
limited screen resolution). Note that the decoder still has to process the slice
group that constitutes the non-ROI. However, as these slices are essentially
coded as skipped P slices, the decoding can be considered fairly easy.

Finally, the listing below summarizes the different steps that need to be im-
plemented in order to exploit ROI scalability in a valid way in the first version
of the H.264/AVC standard.

• FMO type 2 is used for the coding of one or more ROIs in an H.264/AVC
elementary video bitstream.

• BSDL and STX are used for the extraction of one or more multiple ROIs.

• In order to obtain a valid bitstream after ROI extraction, skipped P slices
are used as a substitute for the background slices.

• Frame cropping information, conveyed by an SPS, is used for the appro-
priate rendering of the extracted ROI.

13We suppose that the background of the first picture is not dropped by a content adaptation
engine.

178 Enhanced BSD-driven adaptation

6.5 Conclusions and original contributions

A placeholder picture can be defined as a picture that is identical to a certain
reference picture, or that is constructed by relying on a well-defined interpola-
tion process between different reference pictures. In this chapter, we proposed
to make use of placeholder pictures to fill in the gaps that are created in a
bitstream due to the removal of certain pictures (temporal scalability). This
approach makes it for instance straightforward for a multiplexer to achieve
synchronization with other media streams in a particular container format, es-
pecially when a varying coding pattern is in use.

The construction of placeholder pictures was outlined for several video
coding formats, namely MPEG-1 Video, H.262/MPEG-2 Video, MPEG-4 Vi-
sual, VC-1, and H.264/AVC. We subsequently discussed the use of these pic-
tures in a BSD-driven video adaptation framework, providing more details
regarding the required modifications. The use of placeholder pictures was
stressed for H.264/AVC as the technical design of this specification is the most
challenging one for our substitution technique. In this context, it is interesting
to note that the BSD-driven approach was used to translate I slices, P slices,
and B slices to skipped P slices and skipped B slices, operations that are en-
tirely expressed in the XML domain.

In a next step, we introduced a real-time work flow for the BSD-driven
adaptation of H.264/AVC bitstreams in the temporal domain. The key tech-
nologies used were BFlavor for the efficient generation of BSDs, STX for
the efficient transformation of BSDs, and BSDL’s format-neutral BSDtoBin
Parser for the efficient construction of tailored bitstreams. Our approach was
validated in several use cases, involving the exploitation of temporal scalabil-
ity by dropping slices, the exploitation of temporal scalability by relying on
placeholder slices, and the creation of video skims. The latter application is
made possible by enriching a BSD with additional metadata to steer the BSD
transformation process. As an example, an overall pipelined throughput of 264
NALU/s was achieved when exploiting temporal scalability in a High Defini-
tion H.264/AVC bitstream by the disposal of all slices in the three temporal
enhancement layers, together with a combined memory use of less than 5 MB.
The proposed adaptation chain can be considered completely I/O bound.

Finally, we outlined how placeholder slices can be used to fill up the gaps
that are created in FMO type 2 encoded H.264/AVC bitstreams due to the re-
moval of certain background slices. Also, a brief discussion was provided
regarding the use of the optional frame cropping parameters in an SPS to assist
in an appropriate rendering of the extracted ROI. This overall approach makes
it possible to obtain valid H.264/AVC bitstreams after the extraction of an ROI,

6.5. Conclusions and original contributions 179

which can be decoded without requiring to modify compliant H.264/AVC de-
coders.

Our contributions in this research domain can be found in the following
publications.

1. Peter Lambert, Dieter Van de Walle, Wesley De Neve, Rik Van de Walle.
ROI Scalability in H.264/AVC’s Base Specification. Submitted to Visual
Communications and Image Processing 2007 (VCIP 2007), San Jose,
California, USA, February 2007.

2. Sarah De Bruyne, Wesley De Neve, Koen De Wolf, Davy De Schrijver,
Piet Verhoeve, Rik Van de Walle. Temporal Video Segmentation on
H.264/AVC Compressed Bitstreams. Accepted for publication in Pro-
ceedings of the International MultiMedia Modeling Conference, MMM
2007, published by Springer-Verlag in the Lecture Notes in Computer
Science series, January 2007.

3. Davy De Schrijver, Wesley De Neve, Davy Van Deursen, Sarah
De Bruyne, Rik Van de Walle. Exploitation of Interactive Region of
Interest Scalability in Scalable Video Coding by Using an XML-driven
Adaptation Framework. In Proceedings of the 2nd International Con-
ference on Automated Production of Cross Media Content for Multi-
channel Distribution, pages 223–231, Leeds, UK, December 2006.

4. Wesley De Neve, Davy De Schrijver, Davy Van Deursen, Peter Lambert,
Rik Van de Walle. Real-Time BSD-driven Adaptation Along the Tem-
poral Axis of H.264/AVC Bitstreams. In Lecture Notes in Computer
Science - Advances in Multimedia Information Processing - PCM 2006,
Volume 4261, pages 133–143, October 2006.

5. Peter Lambert, Davy De Schrijver, Davy Van Deursen, Wesley De Neve,
Yves Dhondt, Rik Van de Walle. A Real-time Content Adaptation
Framework for Exploiting ROI Scalability in H.264/AVC. In Lecture
Notes in Computer Science - Advanced Concepts for Intelligent Vision
Systems - ACIVS 2006, Volume 4179, pages 442–453, September 2006.

6. Davy De Schrijver, Wesley De Neve, Davy Van Deursen, Jan De Cock,
Rik Van de Walle. On an Evaluation of Transformation Languages in a
Fully XML-driven Framework for Video Content Adaptation. In Pro-
ceedings of the 2006 International Conference on Innovative Comput-
ing, Information and Control (ICICIC 2006), Volume 3, pages 213–216,
Beijing, China, August 2006.

180 Conclusions

7. Peter Lambert, Wesley De Neve, Davy De Schrijver, Yves Dhondt, Rik
Van de Walle. Using Placeholder Slices and MPEG-21 BSDL for ROI
Extraction in H.264/AVC FMO-encoded Bitstreams. In Proceedings of
International Conference on Signal Processing and Multimedia Appli-
cations (SIGMAP 2006), pages 9–16, Setúbal, Portugal, August 2006.

8. Sarah De Bruyne, Koen De Wolf, Wesley De Neve, Piet Verhoeve, Rik
Van de Walle. Shot Boundary Detection Using Macroblock Prediction
Type Information. In Proceedings of the 7th International Workshop
on Image Analysis for Multimedia Interactive Services, pages 205–208,
Incheon, Korea, April 2006.

9. Wesley De Neve, Davy De Schrijver, Dieter Van de Walle, Peter Lam-
bert, Rik Van de Walle. Description-based Substitution Methods for
Emulating Temporal Scalability in State-of-the-Art Video Coding For-
mats. In Proceedings of the 7th International Workshop on Image Anal-
ysis for Multimedia Interactive Services, pages 83–86, Incheon, Korea,
April 2006.

10. Wesley De Neve, Koen De Wolf, Davy De Schrijver, Rik Van de Walle.
Using MPEG-4 Scene Description for Offering Customizable and Inter-
active Multimedia Presentations. In Proceedings of the 6th Workshop
on Image Analysis for Multimedia Interactive Services, 4 pages on CD-
ROM, Montreux, Switzerland, April 2005.

Chapter 7

Conclusions

We shall not cease from exploration, and the end of all our
exploring will be to arrive where we started and know the place
for the first time.

Thomas S. Eliot (1888-1965), Little Gidding (1942).

The last decade has witnessed a significant number of innovative develop-
ments in the multimedia ecosystem. Advanced media formats have emerged
for the efficient representation, storage, and composition of digital media re-
sources. New network technologies have been devised, wired and wireless,
providing access to audio-visual information services such as online music
stores, movie download services, and video blogs. A plethora of networked
mobile devices has popped up as well, ranging from cell phones to personal
entertainment devices, often having sufficient processing power for the play-
back of multimedia presentations. From these observations, it is clear that the
multimedia landscape is characterized by a vast diversity in terms of media
formats, network capabilities, and device properties.

The ever-increasing heterogeneity in the multimedia consumption chain
poses a number of new challenges. One such challenge is the realization of the
Universal Multimedia Access paradigm, which is the notion that multimedia
content should be accessible at any place, at any time, and with any device. As
acknowledged by MPEG, the successful realization of ubiquitous and seamless
access to multimedia content requires an appropriate reaction from different
knowledge domains.

• The answer of MPEG’s coding community consists of the specification

182 Conclusions

of scalable or layered coding schemes. Indeed, the picture rate and spa-
tial resolution of scalable video resources can for instance be adapted in
a straightforward way to meet the different constraints that are imposed
by a particular usage context (e.g., limitations in terms of available band-
width and screen resolution).

• The answer of MPEG’s metadata community consists of the develop-
ment of a number of description tools. These tools are for example used
to describe the properties of media resources and the capabilities of us-
age environments. The resulting descriptions enable the construction of
a format-agnostic content adaptation system that is able to maximize the
user experience, for the consumption of a particular multimedia presen-
tation in a well-defined usage environment.

The research presented in this dissertation is in line with the vision of both
communities within MPEG. It essentially investigates and improves the use of
a description tool in the context of digital video adaptation.

In Chapter 2, we have outlined the most important concepts and design
principles of the state-of-the-art H.264/AVC standard. This specification in-
corporates the latest advances in standard video coding technology. As shown
by our experiments, as well as by other scientific and technical sources,
H.264/AVC provides up to 50% bit rate savings for equivalent perceptual qual-
ity relative to the performance of prior video coding standards.

The design of the H.264/AVC standard is, besides efficiency, also char-
acterized by a flexibility for use over a broad variety of network types and
application domains. In this context, we have studied four content adaptation
tools that are part of the initial version of the H.264/AVC specification:

• switching pictures for bitstream switching;

• flexible macroblock ordering for ROI coding;

• data partitioning for realizing coarse grain quality scalability;

• sub-sequences and sub-sequence layers for achieving multi-layered tem-
poral scalability.

These adaptivity provisions, which provide basic means to take into ac-
count the constraints of different usage environments, were described in more
detail in Chapter 3. The emphasis was put on providing a complete and de-
tailed overview regarding the implementation of multi-layered temporal scala-
bility in H.264/AVC bitstreams. As such, this overview includes an extensive

183

discussion with respect to the use of sub-sequences and sub-sequence layers,
coding patterns based on hierarchical B pictures, and SEI messages for com-
municating the bitstream structure to a bitstream extractor or decoder. Sub-
sequences constrain H.264/AVC’s coding flexibility in a minimal way to allow
meaningful adaptations in the temporal domain.

More powerful adaptivity features and SEI messages are incorporated in a
newly developed amendment to the H.264/AVC specification, which is com-
monly referred to as H.264/AVC Scalable Video Coding (SVC). This amend-
ment includes explicit support for spatial and quality scalability; temporal
adaptivity tools are inherited from the first version of the H.264/AVC standard.

The principles of BSD-driven content adaptation were introduced in Chap-
ter 4. A BSD acts as an intermediate layer between a binary media resource
and a content adaptation engine, allowing the development of format-agnostic
logic for the adaptation of binary media resources. Two different approaches
for BSD-driven content adaptation were studied in more detail: a standardized
framework driven by BSDL and a framework based on the use of XFlavor.

Furthermore, the high-level structure of a number of common video coding
and container formats was described using MPEG-21 BSDL and XFlavor. The
development of a BS Schema for the first version of H.264/AVC, which is
at the foundation of a BS Schema for SVC, was discussed in more detail.
The construction of this BS Schema exposed a few shortcomings in MPEG-
21 BSDL, requiring the use of several non-normative extensions to the BSDL
schema language in order to solve the discovered issues.

Besides testing the expressive power of MPEG-21 BSDL and XFlavor, we
also evaluated their performance in the context of a number of media formats,
targeting applications such as BSD-driven temporal adaptation and demulti-
plexing. Performance data were particularly provided for a series of experi-
ments targeting the BSD-driven adaptation of VC-1 bitstreams in the temporal
domain. Our analysis resulted in the identification of a number of performance
bottlenecks that are listed below.

• The slow and memory-consuming generation of BSDs by BSDL’s Bin-
toBSD Parser, which is due to the storage of an entire BSD in the system
memory to support the evaluation of arbitrary XPath 1.0 expressions.
These expressions are embedded in an MPEG-21 BS Schema to steer
the parsing behavior of a BintoBSD Parser.

• The verbose BSDs produced by XFlavor-based parsers, as the XFlavor
language does not have means for referring to a particular bitstream seg-
ment from within a BSD.

• The memory-consuming transformation of BSDs using XSLT.

184 Conclusions

In Chapter 5, we have proposed BFlavor to solve the aforementioned short-
comings of BSDL and XFlavor. This new description tool is the result of a
cross-fertilization between BSDL and XFlavor: it harmonizes both approaches
towards XML-driven content adaptation by combining their strengths and by
eliminating their weaknesses. In particular, the processing efficiency and ex-
pressive power of XFlavor, together with the ability of BSDL to create high-
level BSDs, were our key motives for the development of BFlavor. As such,
the use of BFlavor-driven BSD producers, which are format-specific but gener-
ated automatically by a format-independent process, is an efficient alternative
to the use of BSDL’s format-neutral but inefficient BintoBSD Parser.

The expressive power and performance of a BFlavor-driven content adap-
tation chain, compared to tool chains that are either completely based on BSDL
or XFlavor, were illustrated by several experiments. One series of experiments
targeted the exploitation of multi-layered temporal scalability in H.264/AVC,
relying on the combined use of sub-sequences and SEI messages. BFlavor
was the only tool to offer an elegant and practical solution for the BSD-driven
adaptation of H.264/AVC bitstreams in the temporal domain.

In Chapter 6, we have outlined the BSD-based construction of placeholder
slices and pictures for several video coding formats. These artificial syntax
structures allow to eliminate a number of unwanted side-effects that may re-
sult from a BSD-driven content adaptation step in the compressed domain.
The use of placeholder slices and pictures was discussed in more detail in the
context of the BSD-based exploitation of temporal and ROI scalability in the
first version of the H.264/AVC standard, respectively providing a solution for
synchronization and conformance issues.

Furthermore, Chapter 6 also introduced a real-time work flow for the BSD-
driven adaptation of H.264/AVC bitstreams in the temporal domain. The key
technologies used were BFlavor for the generation of BSDs, STX for the trans-
formation of BSDs, and BSDL’s format-neutral BSDtoBin Parser for the cre-
ation of adapted bitstreams. Extensive performance data were provided for
several use cases, involving the exploitation of temporal scalability by drop-
ping slices, the exploitation of temporal scalability by relying on placeholder
slices, and the creation of video skims. The latter are made possible by enrich-
ing a BSD with additional metadata to steer the BSD transformation process.

In this dissertation, we have shown that BSD-driven media resource adap-
tation can be made possible in an efficient way, using a feasible amount of
system memory and processing time. However, an important question remains
to be answered: will BSD-driven content adaptation ever be used in real-world
multimedia applications for the purpose of format-agnostic content adapta-
tion? A positive answer to this question is dependent on several factors.

185

1. Compelling application scenarios: From the research presented in this
dissertation and in the scientific literature, it is clear that the implemen-
tation of BSD-driven content adaptation comes with a substantial com-
plexity. This complexity has to be justified by applications that obvi-
ously benefit from format-agnostic manipulation of media content. Such
scenarios have to involve the use of several scalable media formats to
justify the employment of a format-independent content adaptation en-
gine. A possible scenario that can be thought of is the user-centered dis-
semination of media resources stored in a digital media archive, using
different (near-lossless) scalable coding formats for the representation
of still images, audio resources, and video resources.

2. Adoption of scalable coding formats: A significant number of scal-
able coding formats exists. However, thus far, scalable coding formats
are rarely used in practice for mainstream applications, for reasons iden-
tified in the introduction of this dissertation. It is clear that a widespread
adoption of scalable coding formats is key to a successful deployment
of BSD-driven media resource adaptation.

3. Textual BSD sizes: In this research, we have shown that BSD-driven
content adaptation can be made possible in an efficient way, in terms
of memory consumption and processing time needed. However, the re-
quired level of detail for a BSD in order to facilitate certain types of
adaptations, and hence its textual size, might pose a problem for partic-
ular applications (e.g., in terms of required storage space or bandwidth
consumption). Efficient and schema-aware binarization techniques do
exist for dealing with verbose BSDs. However, these solutions intro-
duce an additional complexity in the adaptation system.

4. Semantic metadata: Another facet that may increase the interest for
description-driven content adaptation consists of linking semantic meta-
data to BSDs. This approach allows to extend the scope of the BSD-
driven content adaptation process from the structural level (e.g., ex-
ploitation of temporal scalability) to the semantic level (e.g., disposal
of violent scenes). Such means are already available in MPEG-21 DIA,
but their full potential has not been investigated thoroughly yet.

To conclude this dissertation, we hope that we have convinced the reader
that this dissertation, although limited in its scope, contributed to bridging the
gap between content and context, supporting the vision that the user, and not
the terminal and the network, is to be considered the real point of attention in
the multimedia consumption chain.

186 Syntax and BSD fragments for H.264/AVC

Appendix A

Syntax and BSD fragments
for H.264/AVC

A.1 Introduction

In this appendix, a number of H.264/AVC syntax structures are listed, de-
scribed in MPEG-21 BSDL, XFlavor, and BFlavor. Due to the length of these
syntax descriptions, only a limited number of syntax structures are shown (the
BS Schema for H.264/AVC for instance contains about 1200 lines of text). A
few BSD fragments are provided as well.

A.2 Syntax fragments

Listing A.1: Excerpt from the manually written BS Schema for H.264/AVC.

<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:bs0="urn:mpeg:mpeg21:2003:01-DIA-BSDL0-NS"
xmlns:bs1="urn:mpeg:mpeg21:2003:01-DIA-BSDL1-NS"
xmlns:bs2="urn:mpeg:mpeg21:2003:01-DIA-BSDL2-NS"
xmlns:jvt="h264_avc" targetNamespace="h264_avc"
elementFormDefault="qualified"
bs2:rootElement="jvt:bitstream">

<xsd:simpleType name="Stuffing">
<xsd:restriction base="bs0:fillByte"/>

</xsd:simpleType>
<xsd:simpleType name="UnsignedExpGolomb"

bs0:implementation="datatypes.UnsignedExpGolomb">
<xsd:restriction base="xsd:string"/>

</xsd:simpleType>

188 Syntax and BSD fragments for H.264/AVC

<xsd:element name="seq_parameter_set_rbsp">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="profile_idc"

type="xsd:unsignedByte"/>
<xsd:element name="constraint_set0_flag" type="b1"/>
<xsd:element name="constraint_set1_flag" type="b1"/>
<xsd:element name="constraint_set2_flag" type="b1"/>
<xsd:element name="reserved_zero_5bits" type="b5"

fixed="0"/>
<xsd:element name="level_idc" type="xsd:unsignedByte"/>
<xsd:element name="seq_parameter_set_id"

type="jvt:UnsignedExpGolomb"/>
<xsd:element name="log2_max_frame_num_minus4"

type="jvt:UnsignedExpGolomb"/>
<!-- ... -->

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="pic_parameter_set_rbsp">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="pic_parameter_set_id"
type="jvt:UnsignedExpGolomb"/>

<xsd:element name="seq_parameter_set_id"
type="jvt:UnsignedExpGolomb"/>

<xsd:element name="entropy_coding_mode_flag"
type="b1"/>

<!-- ... -->
</xsd:sequence>

<xsd:complexType>
</xsd:element>
<xsd:element name="sub_seq_layer_characteristics">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="num_sub_seq_layers_minus1"
type="jvt:UnsignedExpGolomb"/>

<xsd:element
name="statistics_forloop" maxOccurs="unbounded"
bs2:nOccurs="./jvt:num_sub_seq_layers_minus1 + 1"/>
<xsd:complexType>

<xsd:sequence>
<xsd:element

name="accurate_statistics_flag" type="b1"/>
<xsd:element name="average_bit_rate"

type="b16"/>
<xsd:element name="average_frame_rate"

type="b16"/>
</xsd:sequence>

A.2. Syntax fragments 189

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="sub_seq_info">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="sub_seq_layer_num"
type="jvt:UnsignedExpGolomb"/>

<xsd:element name="sub_seq_id"
type="jvt:UnsignedExpGolomb"/>

<xsd:element name="first_ref_pic_flag" type="b1"/>
<xsd:element name="leading_non_ref_pic_flag"

type="b1"/>
<xsd:element name="last_pic_flag" type="b1"/>
<xsd:element name="sub_seq_frame_num_flag"

type="b1"/>
<xsd:element

name="sub_seq_frame_num_flag" minOccurs="0"
bs2:if="./jvt:sub_seq_frame_num_flag = 1"
type="jvt:UnsignedExpGolomb"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="slice_header">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="first_mb_in_slice"
type="jvt:UnsignedExpGolomb"/>

<xsd:element name="slice_type"
type="jvt:UnsignedExpGolomb"/>

<xsd:element name="pic_parameter_set_id"
type="jvt:UnsignedExpGolomb"/>

<xsd:element name="frame_num"
type="jvt:FrameNumType"/>

<xsd:element name="bit_stuffing" minOccurs="0"
type="jvt:Stuffing"/>

<xsd:element name="slice_payload"
type="jvt:PayloadType"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<!-- ... -->

</xsd:schema>

190 Syntax and BSD fragments for H.264/AVC

Listing A.2: Excerpt from a syntax description in XFlavor for H.264/AVC.

class UnsignedExpGolomb {
// The expressive power of XFlavor allows the processing of
// syntax elements that are represented with Unsigned and
// Signed Exponential Golomb coding. This is in contrast to
// MPEG-21 BSDL: an external procedural object is required -
// this is, a Java class - to process these syntax elements.
int leadingzeros = 0;
while (nextbits(leadingzeros + 1) == 0)

leadingzeros++;
int length = leadingzeros * 2 + 1;
bit(length) ue_code;
int value = ue_code - 1;
// Use of a verbatim code to write the decoded value to the
// BSD (for debugging purposes).
%g.j{XML.WriteXmlElement("<ue_value bitLen="0">" +

value + "</ue_value>");%g.j}
}

class Seq_parameter_set_rbsp {
// profile_idc is a parsable variable: it contains a parse
// length specification.
bit(8) profile_idc;
bit(1) constraint_set0_flag;
bit(1) constraint_set1_flag;
bit(1) constraint_set2_flag;
bit(5) reserved_zero_5bits;
bit(8) level_idc;
UnsignedExpGolomb seq_parameter_set_id;
UnsignedExpGolomb log2_max_frame_num_minus4;
//...

}

class Pic_parameter_set_rbsp {
UnsignedExpGolomb pic_parameter_set_id;
UnsignedExpGolomb seq_parameter_set_id;
bit(1) entropy_coding_mode_flag;
//...

}

class Sub_seq_layer_characteristics {
UnsignedExpGolomb num_sub_seq_layers_minus1;
// layer is a non-parsable variable: it does not
// contain a parse length specification.
int layer;
for (layer = 0; layer <

num_sub_seq_layers_minus1.value + 1; layer++) {
bit(1) accurate_statistics_flag;
bit(16) average_bit_rate;

A.2. Syntax fragments 191

bit(16) average_frame_rate;
}

}

class Sub_seq_info {
UnsignedExpGolomb sub_seq_layer_num;
UnsignedExpGolomb sub_seq_id;
bit(1) first_ref_pic_flag;
bit(1) leading_non_ref_pic_flag;
bit(1) last_pic_flag;
bit(1) sub_seq_frame_num_flag;
if (sub_seq_frame_num_flag)

UnsignedExpGolomb sub_seq_frame_num;
}

// sps, pps, nal_unit_type, and nal_ref_idc are class
// parameters.
class Slice_header(Seq_parameter_set_rbsp sps,

Pic_parameter_set_rbsp pps,
int nal_unit_type,
int nal_ref_idc) {

UnsignedExpGolomb first_mb_in_slice;
UnsignedExpGolomb slice_type;
UnsignedExpGolomb pic_parameter_set_id;
// Note the elegant computation of the length of frame_num
// in terms of a number of bits. This is in contrast to the
// use of xsd:union/bs2:ifUnion in MPEG-21 BSDL in order to
// express this calculation.
bit(sps.log2_max_frame_num_minus4.value + 4) frame_num;
// numbits() is a built-in operator of XFlavor. It is used to
// obtain the total number of bits read/written so far
bit(8 - (numbits() % 8)) stuffbits;
// XFlavor_Payload is an own-developed class that stores the
// the remaining bitstream data in the BSD. Every four bytes
// in the payload are mapped to an unsigned 32-bits integer.
// Such an approach is necessary to separate the BSD
// generation and transformation processes.
XFlavor_Payload payload;

}

// ...

Listing A.3: Excerpt from a syntax description in BFlavor for H.264/AVC.

// The base class Encoded, providing a mapping to
// bs0:implementation.
// class Encoded {
// // Data member value contains the decoded value that is to

192 Syntax and BSD fragments for H.264/AVC

// // be placed in the instance document at BSD generation
// // time.
// int value;
// }

// Use of the newly introduced verbatim codes.
%targetns{h264_avc%targetns}
%ns{jvt%ns}
%root{bitstream%root}

// The class UnsignedExpGolomb is derived from the base class
// Encoded. Syntax elements represented with Unsigned
// Exponential Golomb coding are parsed by a BFlavor-based
// parser. BSDtoBin relies on an external procedural object to
// binarize such elements as the first version of MPEG-21 BSDL
// does not have built-in support for this datatype.
class UnsignedExpGolomb extends Encoded {

int length = 0;
int leadingzeros = 0;
while (nextbits(leadingzeros + 1) == 0)
leadingzeros++;

length = leadingzeros * 2 + 1;
bit(length) ue_code;
// value is defined in the base class Encoded.
value = ue_code - 1;

}

class Seq_parameter_set_rbsp {
bit(8) profile_idc;
bit(1) constraint_set0_flag;
bit(1) constraint_set1_flag;
bit(1) constraint_set2_flag;
bit(5) reserved_zero_5bits;
bit(8) level_idc;
UnsignedExpGolomb seq_parameter_set_id;
UnsignedExpGolomb log2_max_frame_num_minus4;
//...

}

class Pic_parameter_set_rbsp {
UnsignedExpGolomb pic_parameter_set_id;
UnsignedExpGolomb seq_parameter_set_id;
bit(1) entropy_coding_mode_flag;
//...

}

class Sub_seq_info {
UnsignedExpGolomb sub_seq_layer_num;
UnsignedExpGolomb sub_seq_id;

A.2. Syntax fragments 193

bit(1) first_ref_pic_flag;
bit(1) leading_non_ref_pic_flag;
bit(1) last_pic_flag;
bit(1) sub_seq_frame_num_flag;
if (sub_seq_frame_num_flag)

UnsignedExpGolomb sub_seq_frame_num;
}

class Sub_seq_layer_characteristics {
UnsignedExpGolomb num_sub_seq_layers_minus1;
int layer;
for (layer = 0; layer <

num_sub_seq_layers_minus1.value + 1; layer++) {
bit(1) accurate_statistics_flag;
bit(16) average_bit_rate;
bit(16) average_frame_rate;

}
}

class Slice_header(Seq_parameter_set_rbsp sps,
Pic_parameter_set_rbsp pps,
int nal_unit_type,
int nal_ref_idc) {

UnsignedExpGolomb first_mb_in_slice;
UnsignedExpGolomb slice_type;
UnsignedExpGolomb pic_parameter_set_id;
bit(sps.log2_max_frame_num_minus4.value + 4) frame_num;

// Use of the newly introduced operator align().
align();

// Skip the remaining bitstream data, i.e. create a reference
// to the bitstream segment skipped. This approach is similar
// to the one used in MPEG-21 BSDL; it makes it possible to
// obtain compact BSDs.
byteRange (3) payload[2] = {0x000000, 0x000001};

}

// ...

Listing A.4: Excerpt from a syntax description in MPEG-21 BSDL for H.264/AVC,
automatically generated using the BFlavorc translator (i.e., the enhanced version of
the Flavorc translator).

<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:bs0="urn:mpeg:mpeg21:2003:01-DIA-BSDL0-NS"
xmlns:bs1="urn:mpeg:mpeg21:2003:01-DIA-BSDL1-NS"

194 Syntax and BSD fragments for H.264/AVC

xmlns:jvt="h264_avc" targetNamespace="h264_avc"
elementFormDefault="qualified">

<xsd:simpleType name="UnsignedExpGolomb"
bs0:implementation="UnsignedExpGolomb">

<xsd:restriction base="xsd:string"/>
</xsd:simpleType>
<xsd:complexType name="Seq_parameter_set_rbsp">

<xsd:sequence>
<xsd:element name="profile_idc" type="b8"/>
<xsd:element name="constraint_set0_flag" type="b1"/>
<xsd:element name="constraint_set1_flag" type="b1"/>
<xsd:element name="constraint_set2_flag" type="b1"/>
<xsd:element name="reserved_zero_5bits" type="b5"/>
<xsd:element name="level_idc" type="b8"/>
<xsd:element name="seq_parameter_set_id"

type="jvt:UnsignedExpGolomb"/>
<xsd:element name="log2_max_frame_num_minus4"

type="jvt:UnsignedExpGolomb"/>
<!-- ... -->

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="Pic_parameter_set_rbsp">

<xsd:sequence>
<xsd:element name="pic_parameter_set_id"

type="jvt:UnsignedExpGolomb"/>
<xsd:element name="seq_parameter_set_id"

type="jvt:UnsignedExpGolomb"/>
<xsd:element name="entropy_coding_mode_flag" type="b1"/>
<!-- ... -->

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="Sub_seq_info">

<xsd:sequence>
<xsd:element name="sub_seq_layer_num"

type="jvt:UnsignedExpGolomb"/>
<xsd:element name="sub_seq_id"

type="jvt:UnsignedExpGolomb"/>
<xsd:element name="first_ref_pic_flag" type="b1"/>
<xsd:element name="leading_non_ref_pic_flag" type="b1"/>
<xsd:element name="last_pic_flag" type="b1"/>
<xsd:element name="sub_seq_frame_num_flag" type="b1"/>
<xsd:sequence minOccurs="0">

<xsd:element name="sub_seq_frame_num"
type="jvt:UnsignedExpGolomb"/>

</xsd:sequence>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="Sub_seq_layer_characteristics">

<xsd:sequence>

A.3. BSD fragments 195

<xsd:element name="num_sub_seq_layers_minus1"
type="jvt:UnsignedExpGolomb"/>

<xsd:sequence minOccurs="0" maxOccurs="unbounded">
<xsd:element name="accurate_statistics_flag"

type="b1"/>
<xsd:element name="average_bit_rate" type="b16"/>
<xsd:element name="average_frame_rate" type="b16"/>

</xsd:sequence>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="Slice_header">

<xsd:sequence>
<xsd:element name="first_mb_in_slice"

type="jvt:UnsignedExpGolomb"/>
<xsd:element name="slice_type"

type="jvt:UnsignedExpGolomb"/>
<xsd:element name="pic_parameter_set_id"

type="jvt:UnsignedExpGolomb"/>
<xsd:element name="frame_num" type="jvt:unionType"/>
<xsd:element name="stuffbits" type="bs0:fillByte"/>
<xsd:element name="payload" type="jvt:Payload"/>

</xsd:sequence>
</xsd:complexType>
<!-- ... -->

</xsd:schema>

A.3 BSD fragments

Listing A.5: Excerpt from a BSD for an H.264/AVC bitstream, generated by a Bin-
toBSD Parser. For the syntax structures shown, there are no differences with the BSD
that is generated by a BFlavor-driven parser.

<bitstream
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="h264_avc h264_avc_bsdl.xsd"
bs1:bitstreamURI="foreman_SEI.h264"
xmlns="h264_avc" xmlns:jvt="h264_avc">
<!-- ... -->
<byte_stream_nal_unit>

<zero_byte>0</zero_byte>
<startcode>000001</startcode>
<nal_unit>

<forbidden_zero_bit>0</forbidden_zero_bit>
<nal_ref_idc>0</nal_ref_idc>
<nal_unit_type>6</nal_unit_type>

196 Syntax and BSD fragments for H.264/AVC

<raw_byte_sequence_payload>
<sei_rbsp>

<sei_message>
<last_payload_type_byte>10</last_payload_type_byte>
<last_payload_size_byte>1</last_payload_size_byte>
<sei_payload>

<sub_seq_info>
<sub_seq_layer_num>0</sub_seq_layer_num>
<sub_seq_id>0</sub_seq_id>
<first_ref_pic_flag>0</first_ref_pic_flag>
<leading_non_ref_pic_flag>

0
</leading_non_ref_pic_flag>
<last_pic_flag>0</last_pic_flag>
<sub_seq_frame_num_flag>

0
</sub_seq_frame_num_flag>

</sub_seq_info>
<stuffbits>2</stuffbits>

</sei_payload>
</sei_message>
<rbsp_stop_one_bit>1</rbsp_stop_one_bit>
<stuffbits>0</stuffbits>

</sei_rbsp>
</raw_byte_sequence_payload>

</nal_unit>
</byte_stream_nal_unit>
<byte_stream_nal_unit>

<startcode>000001</startcode>
<nal_unit>

<forbidden_zero_bit>0</forbidden_zero_bit>
<nal_ref_idc>3</nal_ref_idc>
<nal_unit_type>5</nal_unit_type>
<raw_byte_sequence_payload>

<slice_layer_without_partitioning_rbsp>
<slice_header>

<first_mb_in_slice>0</first_mb_in_slice>
<slice_type>7</slice_type>
<pic_parameter_set_id>0</pic_parameter_set_id>
<frame_num xsi:type="b4">0</frame_num>
<stuffbits>15</stuffbits>
<payload>37 72300</payload>

</slice_header>
</slice_layer_without_partitioning_rbsp>

</raw_byte_sequence_payload>
</nal_unit>

</byte_stream_nal_unit>
<!-- ... -->

</bitstream>

A.3. BSD fragments 197

Listing A.6: Excerpt from a BSD for an H.264/AVC bitstream, generated by an
XFlavor-based parser.

<bitstream
xmlns="http://www.ee.columbia.edu/flavor"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<!-- ... -->
<byte_stream_nal_unit>

<zero_byte bitLen="8">0</zero_byte>
<startcode bitLen="24">1</startcode>
<nal_unit>

<forbidden_zero_bit bitLen="1">0</forbidden_zero_bit>
<nal_ref_idc bitLen="2">0</nal_ref_idc>
<nal_unit_type bitLen="5">6</nal_unit_type>
<raw_byte_sequence_payload>

<sei_rbsp>
<sei_message>

<last_payload_type_byte bitLen="8">
10

</last_payload_type_byte>
<last_payload_size_byte bitLen="8">

1
</last_payload_size_byte>
<sei_payload>

<sub_seq_info>
<sub_seq_layer_num>

<ue_code bitLen="1">1</ue_code>
<ue_value bitLen="0">0</ue_value>

</sub_seq_layer_num>
<sub_seq_id>

<ue_code bitLen="1">1</ue_code>
<ue_value bitLen="0">0</ue_value>

</sub_seq_id>
<first_ref_pic_flag bitLen="1">

0
</first_ref_pic_flag>
<leading_non_ref_pic_flag bitLen="1">

0
</leading_non_ref_pic_flag>
<last_pic_flag bitLen="1">0</last_pic_flag>
<sub_seq_frame_num_flag bitLen="1">

0
</sub_seq_frame_num_flag>

</sub_seq_info>
<stuffbits bitLen="3">2</stuffbits>

</sei_payload>
</sei_message>
<rbsp_stop_one_bit bitLen="1">1</rbsp_stop_one_bit>
<stuffbits bitLen="1">0</stuffbits>

</sei_rbsp>

198 Syntax and BSD fragments for H.264/AVC

</raw_byte_sequence_payload>
</nal_unit>

</byte_stream_nal_unit>
<byte_stream_nal_unit>

<startcode bitLen="24">1</startcode>
<nal_unit>

<forbidden_zero_bit bitLen="1">0</forbidden_zero_bit>
<nal_ref_idc bitLen="2">3</nal_ref_idc>
<nal_unit_type bitLen="5">5</nal_unit_type>
<raw_byte_sequence_payload>

<slice_layer_without_partitioning_rbsp>
<slice_header>

<first_mb_in_slice>
<ue_code bitLen="1">1</ue_code>
<ue_value bitLen="0">0</ue_value>

</first_mb_in_slice>
<slice_type>

<ue_code bitLen="7">8</ue_code>
<ue_value bitLen="0">7</ue_value>

</slice_type>
<pic_parameter_set_id>

<ue_code bitLen="1">1</ue_code>
<ue_value bitLen="0">0</ue_value>

</pic_parameter_set_id>
<frame_num bitLen="11">0</frame_num>
<stuffbits bitLen="6">15</stuffbits>
<payload>

<payload bitLen="32">453763072</payload>
<!-- ... -->

</payload>
</slice_header>

</slice_layer_without_partitioning_rbsp>
</raw_byte_sequence_payload>

</nal_unit>
</byte_stream_nal_unit>
<!-- ... -->

</bitstream>

Appendix B

BS Schemata for MPEG
media formats

B.1 Introduction

This appendix provides a visualization of a number of BS Schemata1, describ-
ing the most important syntax structures of MPEG-1 Video, MPEG-1 Systems,
H.262/MPEG-2 Video, MPEG-2 Systems, MPEG-4 Visual, and H.264/AVC.
For each of these formats, a brief explanation is provided regarding the use
of the context management attributes. These attributes, which are outlined in
Appendix C, allow an efficient generation of BSDs using a format-unaware
BintoBSD Parser.

B.2 Features BS Schemata

B.2.1 MPEG-1 Video

The level of detail of the BS Schema for MPEG-1 Video allows discovering
the slices of a picture in an elementary MPEG-1 Video bitstream. Sequence
headers, group of pictures headers, and pictures are embedded in an abstract
parse unit pu. This is clarified by Figure B.1 (see Section B.3 in this appendix).
The context management is mainly done at the level of a pu, which is the
fundamental unit of parsing for a BintoBSD Parser in the context of the MPEG-
1 Video coding format.

1The visualizations were created using XMLSpy (http://www.altova.com/).

http://www.altova.com/

200 BS Schemata for MPEG media formats

B.2.2 MPEG-1 Systems

The level of detail of the BS Schema for MPEG-1 Systems allows identifying
the packs in a compliant bitstream. This is clarified by Figure B.2. The parsing
of the Packetized Elementary Stream packets (PES packets) is implemented
using BSDL’s bs2:length facet. Parsing based on searching for system
start codes is not reliable due to their possible emulation in the payload of a
PES packet. The context management is mainly done at the level of a pack,
the fundamental unit of parsing in the context of MPEG-1 Systems.

B.2.3 H.262/MPEG-2 Video

The level of detail of the BS Schema for H.262/MPEG-2 Video allows discov-
ering the slices of a picture in an elementary H.262/MPEG-2 Video bitstream.
Sequence headers, sequence extensions, group of pictures headers, and pic-
tures are embedded in an abstract parse unit pu. This is clarified by Figure B.3.
The context management is mainly done at the level of this fundamental unit
of parsing for a BintoBSD Parser (in the context of the H.262/MPEG-2 Video
format).

Note the large similarity between the BS Schema for MPEG-1 Video
and the BS Schema for H.262/MPEG-2 Video. This is due to the fact that
the syntax of MPEG-1 Video can be considered a subset of the syntax of
H.262/MPEG-2 Video. Besides a different slice definition and a number of
minor differences at the macroblock level, the H.262/MPEG-2 Video speci-
fication also has tools for dealing with interlaced video and scalable video.
However, the scalable coding tools of H.262/MPEG-2 Video are not used in
practice.

B.2.4 MPEG-2 Systems

The level of detail of the BS Schema for MPEG-2 Systems allows discovering
the packs in an MPEG-2 Program Stream on the one hand, and retrieving the
transport packets from an MPEG-2 Transport Stream on the other hand. This
is clarified by Figure B.4, Figure B.5, Figure B.6, and Figure B.7. Again, note
the similarity between an MPEG-1 Systems stream and an MPEG-2 Program
Stream. The context management is mainly done at the level of a pack for
MPEG-2 Program Streams and at the level of a transport packet for MPEG-2
Transport Streams.

B.3. Visualization of the BS Schemata 201

B.2.5 MPEG-4 Visual

The level of detail of the BS Schema for MPEG-4 Visual allows discovering
the Video Object Planes (VOPs) in bitstreams compliant with the Advanced
Simple Profile (ASP). Similar to MPEG-1 Video and H.262/MPEG-2 Video,
the different headers are embedded in an abstract parse unit pu. This is clari-
fied by Figure B.8. The context management is mainly done at the level of this
fundamental unit of parsing for a BintoBSD Parser.

B.2.6 H.264/AVC

The level of detail of the BS Schema for the first version of H.264/AVC allows
parsing all syntax elements up to and including the slice header syntax
structure. The most important syntax structures of H.264/AVC are illustrated
by Figure B.9, Figure B.10, Figure B.11, Figure B.12, Figure B.13, and Fig-
ure B.14. Note that this BS Schema is at the foundation of a BS Schema that
describes the high-level syntax of bitstreams compliant with the SVC amend-
ment of H.264/AVC.

Further, although the design of the BS Schema is in line with the generic
template as discussed in Chapter 4, the context management in the BS Schema
for MPEG-4 AVC can be considered complex due to the pointer-based rela-
tionship between a slice header, a PPS, and an SPS on the one hand, and due
to the possible occurrence of multiple PPSs and SPSs in an H.264/AVC bit-
stream on the other hand.

B.3 Visualization of the BS Schemata

202 BS Schemata for MPEG media formats

C
:\C

V
S

_R
ep

os
ito

rie
s\

B
er

g\
w

dn
_h

26
4_

av
c\

de
sc

_b
sd

l\m
pe

g_
m

on
tre

ux
\p

ac
ka

ge
\B

S
 S

ch
em

at
a\

m
pe

g-
1_

vi
de

o_
m

on
tre

ux
.x

sd
07

/1
6/

06
 1

4:
26

:4
2

©
19

98
-2

00
3

A
lto

va
 G

m
bH

ht

tp
://

w
w

w
.x

m
ls

py
.c

om
P

ag
e

1
R

eg
is

te
re

d
to

 c
ha

ch
a

(c
oc

a-
co

la
)

 M
P

EG
1_

vi
de

o

 bi
t_

st
uf

fin
g

 vi
de

o_
se

qu
en

ce

∞
0.

.

 st
uf

fin
g_

by
te ∞

0.
.

 st
uf

fin
g_

by
te

pu

∞
0.

.

 m
p1

:p
ic

tu
re

 m
p1

:p
ic

tu
re

_h
ea

de
r

 m
p1

:e
xt

en
si

on
_a

nd
_u

se
r_

da
ta ∞

0.
.

 m
p1

:p
ic

tu
re

_d
at

a
 m

p1
:s

lic
e ∞

0.
.

 m
p1

:s
eq

ue
nc

e_
he

ad
er

 m
p1

:g
ro

up
_o

f_
pi

ct
ur

es
_h

ea
de

r

 se
qu

en
ce

_e
nd

_c
od

e

Fi
gu

re
B

.1
:

E
xc

er
pt

of
a

B
S

Sc
he

m
a

fo
rt

he
hi

gh
-l

ev
el

sy
nt

ax
of

M
PE

G
-1

V
id

eo
.

B.3. Visualization of the BS Schemata 203
C

:\C
V

S
_R

ep
os

ito
rie

s\
B

er
g\

w
dn

_h
26

4_
av

c\
de

sc
_b

sd
l\m

pe
g_

m
on

tre
ux

\p
ac

ka
ge

\B
S

 S
ch

em
at

a\
m

pe
g-

1_
sy

st
em

s_
m

on
tre

ux
.x

sd
07

/1
6/

06
 1

4:
40

:2
2

©
19

98
-2

00
3

A
lto

va
 G

m
bH

ht

tp
://

w
w

w
.x

m
ls

py
.c

om
P

ag
e

1
R

eg
is

te
re

d
to

 c
ha

ch
a

(c
oc

a-
co

la
)

 is
o1

11
72

_s
tr

ea
m

 m
p1

:p
ac

k ∞
0.

.

 m
p1

:p
ac

k_
he

ad
er

 PE
S_

pa
ck

et

∞
0.

.

 m
p1

:r
es

er
ve

d_
st

re
am

 m
p1

:p
riv

at
e_

st
re

am
_1

 m
p1

:p
ad

di
ng

_s
tr

ea
m

 m
p1

:p
riv

at
e_

st
re

am
_2

 m
p1

:a
ud

io
_s

tr
ea

m

 m
p1

:v
id

eo
_s

tr
ea

m

 pa
ck

et
_s

ta
rt

_c
od

e_
pr

ef
ix

 st
re

am
_i

d

 PE
S_

pa
ck

et
_l

en
gt

h

 PE
S_

pa
ck

et
_p

ay
lo

ad

 m
p1

:r
es

er
ve

d_
st

re
am

 is
o_

11
17

2_
en

d_
co

de

Fi
gu

re
B

.2
:

E
xc

er
pt

of
a

B
S

Sc
he

m
a

fo
rt

he
hi

gh
-l

ev
el

sy
nt

ax
of

M
PE

G
-1

Sy
st

em
s.

204 BS Schemata for MPEG media formats

C
:\C

V
S

_R
ep

os
ito

rie
s\

B
er

g\
w

dn
_h

26
4_

av
c\

de
sc

_b
sd

l\m
pe

g_
m

on
tre

ux
\p

ac
ka

ge
\B

S
 S

ch
em

at
a\

m
pe

g-
2_

vi
de

o_
m

on
tre

ux
.x

sd
07

/1
6/

06
 1

4:
45

:3
4

©
19

98
-2

00
3

A
lto

va
 G

m
bH

ht

tp
://

w
w

w
.x

m
ls

py
.c

om
P

ag
e

1
R

eg
is

te
re

d
to

 c
ha

ch
a

(c
oc

a-
co

la
)

 M
P

EG
2_

vi
de

o

 bi
t_

st
uf

fin
g

 vi
de

o_
se

qu
en

ce

∞
0.

.

 st
uf

fin
g_

by
te ∞

0.
.

 st
uf

fin
g_

by
te

pu

∞
0.

.

 m
p2

:p
ic

tu
re

 m
p2

:p
ic

tu
re

_h
ea

de
r

 m
p2

:p
ic

tu
re

_c
od

in
g_

ex
te

ns
io

n

 m
p2

:e
xt

en
si

on
_a

nd
_u

se
r_

da
ta ∞

0.
.

 m
p2

:p
ic

tu
re

_d
at

a
 m

p2
:s

lic
e ∞

0.
.

 m
p2

:s
eq

ue
nc

e_
he

ad
er

 m
p2

:s
eq

ue
nc

e_
ex

te
ns

io
n

 m
p2

:g
ro

up
_o

f_
pi

ct
ur

es
_h

ea
de

r

 se
qu

en
ce

_e
nd

_c
od

e

Fi
gu

re
B

.3
:

E
xc

er
pt

of
a

B
S

Sc
he

m
a

fo
rt

he
hi

gh
-l

ev
el

sy
nt

ax
of

M
PE

G
-2

V
id

eo
.

C
:\C

V
S

_R
ep

os
ito

rie
s\

B
er

g\
w

dn
_h

26
4_

av
c\

de
sc

_b
sd

l\m
pe

g_
m

on
tre

ux
\p

ac
ka

ge
\B

S
 S

ch
em

at
a\

m
pe

g-
2_

sy
st

em
s_

m
on

tre
ux

.x
sd

07
/1

6/
06

 1
4:

50
:5

4

©
19

98
-2

00
3

A
lto

va
 G

m
bH

ht

tp
://

w
w

w
.x

m
ls

py
.c

om
P

ag
e

1
R

eg
is

te
re

d
to

 c
ha

ch
a

(c
oc

a-
co

la
)

 M
P

EG
2_

sy
st

em
s

 m
p2

:M
P

EG
2_

tr
an

sp
or

t_
st

re
am

 m
p2

:M
P

EG
2_

pr
og

ra
m

_s
tr

ea
m

Fi
gu

re
B

.4
:

O
ve

ra
ll

st
ru

ct
ur

e
of

th
e

B
S

Sc
he

m
a

fo
rM

PE
G

-2
Sy

st
em

s.

B.3. Visualization of the BS Schemata 205
C

:\C
V

S
_R

ep
os

ito
rie

s\
B

er
g\

w
dn

_h
26

4_
av

c\
de

sc
_b

sd
l\m

pe
g_

m
on

tre
ux

\p
ac

ka
ge

\B
S

 S
ch

em
at

a\
m

pe
g-

2_
sy

st
em

s_
m

on
tre

ux
.x

sd
07

/1
6/

06
 1

4:
55

:1
9

©
19

98
-2

00
3

A
lto

va
 G

m
bH

ht

tp
://

w
w

w
.x

m
ls

py
.c

om
P

ag
e

1
R

eg
is

te
re

d
to

 c
ha

ch
a

(c
oc

a-
co

la
)

 M
P

EG
2_

tr
an

sp
or

t_
st

re
am

 m
p2

:t
ra

ns
po

rt
_p

ac
ke

t_
de

ta
ile

d ∞
0.

.

 sy
nc

_b
yt

e

 tr
an

sp
or

t_
er

ro
r_

in
di

ca
to

r

 pa
yl

oa
d_

un
it_

st
ar

t_
in

di
ca

to
r

 tr
an

sp
or

t_
pr

io
rit

y

PI
D

 tr
an

sp
or

t_
sc

ra
m

bl
in

g_
co

nt
ro

l

 ad
ap

ta
tio

n_
fie

ld
_c

on
tr

ol

 co
nt

in
ui

ty
_c

ou
nt

er

 m
p2

:a
da

pt
at

io
n_

fie
ld

 vi
de

o_
st

re
am

 pa
ck

et
_s

ta
rt

_c
od

e_
pr

ef
ix

 st
re

am
_i

d

 au
di

o_
st

re
am

 da
ta

_b
yt

e

 da
ta

_b
yt

e

Fi
gu

re
B

.5
:

E
xc

er
pt

of
a

B
S

Sc
he

m
a

fo
rt

he
hi

gh
-l

ev
el

sy
nt

ax
of

an
M

PE
G

-2
Tr

an
sp

or
tS

tr
ea

m
.

206 BS Schemata for MPEG media formats

C:\CVS_Repositories\Berg\wdn_h264_avc\desc_bsdl\mpeg_montreux\package\BS Schemata\mpeg-2_systems_montreux.xsd 08/06/06 02:37:13

©1998-2003 Altova GmbH http://www.xmlspy.com Page 1Registered to chacha (coca-cola)

 MPEG2_program_stream

 mp2:pack

∞0..

 mp2:pack_header

 mp2:PES_packet

∞0..

 MPEG_program_end_code

Figure B.6: Excerpt of a BS Schema for the high-level syntax of an MPEG-2 Program
Stream.

B.3. Visualization of the BS Schemata 207

C:\CVS_Repositories\Berg\wdn_h264_avc\desc_bsdl\mpeg_montreux\package\BS Schemata\mpeg-2_systems_montreux.xsd 08/06/06 02:40:10

©1998-2003 Altova GmbH http://www.xmlspy.com Page 1Registered to chacha (coca-cola)

 PES_packet

 mp2:program_stream_map

 mp2:private_stream_1

 mp2:padding_stream

 mp2:private_stream_2

 packet_start_code_prefix

 stream_id

 PES_packet_length

 PES_packet_payload

 mp2:audio_stream

 mp2:video_stream

 mp2:ECM_stream

 mp2:EMM_stream

 mp2:DSMCC_13818-6_stream

 mp2:ISO-IEC_13522_stream

 mp2:ITU-T_Rec_H-222-1_type_A

 mp2:ITU-T_Rec_H-222-1_type_B

 mp2:ITU-T_Rec_H-222-1_type_C

 mp2:ITU-T_Rec_H-222-1_type_D

 mp2:ITU-T_Rec_H-222-1_type_E

 mp2:ancillary_stream

 mp2:ISO-IEC_14496-1_SL-packeti...

 mp2:ISO-IEC_14496-1_FlexMux_st...

 mp2:reserved_data_stream

 mp2:program_stream_directory

Figure B.7: Excerpt of a BS Schema for the high-level syntax of an MPEG-2 Program
Stream, illustrating the structure of a PES packet.

208 BS Schemata for MPEG media formats

C:\CVS_Repositories\Berg\wdn_h264_avc\desc_bsdl\mpeg_montreux\package\BS Schemata\mpeg-4_visual_montreux.xsd 07/16/06 15:04:22

©1998-2003 Altova GmbH http://www.xmlspy.com Page 1Registered to chacha (coca-cola)

bitstream pu

∞0..

 m4v:video_object

 m4v:video_object_layer

 m4v:visual_object_sequence

 m4v:user_data

 m4v:group_of_video_object_plane

 m4v:visual_object

 m4v:video_object_plane

 vop_start_code

 vop_coding_type

 modulo_time_base

 modulo_time_base

∞0..

 marker_bit

 vop_time_increment

 marker_bit

 vop_coded

 vop_stuffing

 vop_payload

 visual_object_sequence_end_code

Figure B.8: Excerpt of a BS Schema for the high-level syntax of MPEG-4 Visual.

B.3. Visualization of the BS Schemata 209

C
:\C

V
S

_R
ep

os
ito

rie
s\

B
er

g\
w

dn
_h

26
4_

av
c\

de
sc

_b
sd

l\h
26

4_
av

c_
m

pe
g_

ba
ng

ko
k_

sk
ip

pe
d_

pi
ct

ur
es

_w
ith

_s
ei

.x
sd

07
/1

6/
06

 1
5:

14
:2

6

©
19

98
-2

00
3

A
lto

va
 G

m
bH

ht

tp
://

w
w

w
.x

m
ls

py
.c

om
P

ag
e

1
R

eg
is

te
re

d
to

 c
ha

ch
a

(c
oc

a-
co

la
)

bi
ts

tr
ea

m
 by

te
_s

tr
ea

m
 jv

t:
by

te
_s

tr
ea

m
_n

al
_u

ni
t ∞

1.
.

 ze
ro

_b
yt

e ∞
0.

.

 st
ar

t_
co

de
_p

re
fix

_o
ne

_3
by

te
s

 jv
t:

na
l_

un
it

 fo
rb

id
de

n_
ze

ro
_b

it

 na
l_

re
f_

id
c

 na
l_

un
it_

ty
pe

 jv
t:

ra
w

_b
yt

e_
se

qu
en

ce
_p

ay
lo

ad

un
sp

ec
ifi

ed

 co
de

d_
sl

ic
e_

of
_a

_n
on

_I
D

R
_p

ic
tu

re

 co
de

d_
sl

ic
e_

of
_a

_s
ki

pp
ed

_n
on

_I
D

...

 co
de

d_
sl

ic
e_

da
ta

_p
ar

tit
io

n_
a

 co
de

d_
sl

ic
e_

da
ta

_p
ar

tit
io

n_
b

 co
de

d_
sl

ic
e_

da
ta

_p
ar

tit
io

n_
c

 co
de

d_
sl

ic
e_

of
_a

n_
ID

R
_p

ic
tu

re

 jv
t:

se
i_

rb
sp

 jv
t:

se
q_

pa
ra

m
et

er
_s

et
_r

bs
p

 jv
t:

pi
c_

pa
ra

m
et

er
_s

et
_r

bs
p

 jv
t:

ac
ce

ss
_u

ni
t_

de
lim

ite
r_

rb
sp

 jv
t:

en
d_

of
_s

eq
_r

bs
p

 jv
t:

en
d_

of
_s

tr
ea

m
_r

bs
p

 jv
t:

fil
le

r_
da

ta
_r

bs
p

re
se

rv
ed

un
sp

ec
ifi

ed

Fi
gu

re
B

.9
:

E
xc

er
pt

of
a

B
S

Sc
he

m
a

fo
rt

he
hi

gh
-l

ev
el

sy
nt

ax
of

H
.2

64
/A

V
C

.

210 BS Schemata for MPEG media formats

C:\CVS_Repositories\Berg\wdn_h264_avc\desc_bsdl\h264_avc_mpeg_bangkok_skipped_pictures_with_sei.xsd 07/16/06 15:18:30

©1998-2003 Altova GmbH http://www.xmlspy.com Page 1Registered to chacha (coca-cola)

 seq_parameter_set_rbsp

 profile_idc

 constraint_set0_flag

 constraint_set1_flag

 constraint_set2_flag

 reserved_zero_5bits

 level_idc

 seq_parameter_set_id

 log2_max_frame_num_minus4

 pic_order_cnt_type

 if_pic_order_cnt_type_eq_0

 if_pic_order_cnt_type_eq_1

 num_ref_frames

 gaps_in_frame_num_value_allow...

 pic_width_in_mbs_minus1

 pic_height_in_map_units_minus1

 frame_mbs_only_flag

 if_frame_mbs_only_flag_eq_0

 direct_8x8_inference_flag

 frame_cropping_flag

 if_frame_cropping_flag_not_0

 vui_parameters_present_flag

 if_vui_parameters_present_flag_n...

 jvt:rbsp_trailing_bits

Figure B.10: BS Schema for the SPS syntax of H.264/AVC.

B.3. Visualization of the BS Schemata 211

C
:\C

V
S

_R
ep

os
ito

rie
s\

B
er

g\
w

dn
_h

26
4_

av
c\

de
sc

_b
sd

l\h
26

4_
av

c_
m

pe
g_

ba
ng

ko
k_

sk
ip

pe
d_

pi
ct

ur
es

_w
ith

_s
ei

.x
sd

07
/1

6/
06

 1
5:

20
:4

3

©
19

98
-2

00
3

A
lto

va
 G

m
bH

ht

tp
://

w
w

w
.x

m
ls

py
.c

om
P

ag
e

1
R

eg
is

te
re

d
to

 c
ha

ch
a

(c
oc

a-
co

la
)

 pi
c_

pa
ra

m
et

er
_s

et
_r

bs
p

 pi
c_

pa
ra

m
et

er
_s

et
_i

d

 se
q_

pa
ra

m
et

er
_s

et
_i

d

 en
tr

op
y_

co
di

ng
_m

od
e_

fla
g

 pi
c_

or
de

r_
pr

es
en

t_
fla

g

 nu
m

_s
lic

e_
gr

ou
ps

_m
in

us
1

 if_
nu

m
_s

lic
e_

gr
ou

ps
_m

in
us

1_
gt

_0

 sl
ic

e_
gr

ou
p_

m
ap

_t
yp

e

 if_
sl

ic
e_

gr
ou

p_
m

ap
_t

yp
e_

eq
_0

 if_
sl

ic
e_

gr
ou

p_
m

ap
_t

yp
e_

eq
_2

 jv
t:

to
p_

le
ft_

m
b_

an
d_

bo
tt

om
_r

ig
ht

...
 to

p_
le

ft_
iG

ro
up

 bo
tt

om
_r

ig
ht

_i
G

ro
up

 if_
sl

ic
e_

gr
ou

p_
m

ap
_t

yp
e_

eq
_3

_o
r..

.

 if_
sl

ic
e_

gr
ou

p_
m

ap
_t

yp
e_

eq
_6

 nu
m

_r
ef

_i
dx

_l
0_

ac
tiv

e_
m

in
us

1

 nu
m

_r
ef

_i
dx

_l
1_

ac
tiv

e_
m

in
us

1

 w
ei

gh
te

d_
pr

ed
_f

la
g

 w
ei

gh
te

d_
bi

pr
ed

_i
dc

 pi
c_

in
it_

qp
_m

in
us

26

 pi
c_

in
it_

qs
_m

in
us

26

 ch
ro

m
a_

qp
_i

nd
ex

_o
ffs

et

 de
bl

oc
ki

ng
_f

ilt
er

_c
on

tro
l_

pr
es

en
t..

.

 co
ns

tra
in

ed
_i

nt
ra

_p
re

d_
fla

g

 re
du

nd
an

t_
pi

c_
cn

t_
pr

es
en

t_
fla

g

 jv
t:

rb
sp

_t
ra

ili
ng

_b
its

 rb
sp

_s
to

p_
on

e_
bi

t

 rb
sp

_a
lig

nm
en

t_
ze

ro
_b

it

Fi
gu

re
B

.1
1:

B
S

Sc
he

m
a

fo
rt

he
PP

S
sy

nt
ax

of
H

.2
64

/A
V

C
.

212 BS Schemata for MPEG media formats

C
:\C

V
S

_R
ep

os
ito

rie
s\

B
er

g\
w

dn
_h

26
4_

av
c\

de
sc

_b
sd

l\h
26

4_
av

c_
m

pe
g_

ba
ng

ko
k_

sk
ip

pe
d_

pi
ct

ur
es

_w
ith

_s
ei

.x
sd

07
/1

6/
06

 1
5:

28
:3

9

©
19

98
-2

00
3

A
lto

va
 G

m
bH

ht

tp
://

w
w

w
.x

m
ls

py
.c

om
P

ag
e

1
R

eg
is

te
re

d
to

 c
ha

ch
a

(c
oc

a-
co

la
)

 sl
ic

e_
la

ye
r_

w
ith

ou
t_

pa
rt

iti
on

in
g_

r..
.

 jv
t:

sl
ic

e_
he

ad
er

 fir
st

_m
b_

in
_s

lic
e

 sl
ic

e_
ty

pe

 pi
c_

pa
ra

m
et

er
_s

et
_i

d

 fr
am

e_
nu

m

 if_
fr

am
e_

m
bs

_o
nl

y_
fla

g_
eq

_0
 fie

ld
_p

ic
_f

la
g

 if_
fie

ld
_p

ic
_f

la
g_

no
t_

0

 if_
na

l_
un

it_
ty

pe
_e

q_
5

 if_
pi

c_
or

de
r_

cn
t_

ty
pe

_e
q_

0

 if_
pi

c_
or

de
r_

cn
t_

ty
pe

_e
q_

1_
an

d_
...

 if_
re

du
nd

an
t_

pi
c_

cn
t_

pr
es

en
t_

fla
...

 if_
sl

ic
e_

ty
pe

_e
q_

B

 if_
sl

ic
e_

ty
pe

_e
q_

P_
or

_S
P

_o
r_

B

 jv
t:

re
f_

pi
c_

lis
t_

re
or

de
rin

g

 if_
w

ei
gh

te
d_

pr
ed

_f
la

g_
no

t_
0_

an
d.

..

 if_
na

l_
re

f_
id

c_
no

t_
0

 if_
en

tr
op

y_
co

di
ng

_m
od

e_
fla

g_
no

t..
.

 sl
ic

e_
qp

_d
el

ta

 if_
sl

ic
e_

ty
pe

_e
q_

SP
_o

r_
SI

 if_
de

bl
oc

ki
ng

_f
ilt

er
_c

on
tro

l_
pr

es
e.

..

 if_
nu

m
_s

lic
e_

gr
ou

ps
_m

in
us

1_
gt

_0
 if_

sl
ic

e_
gr

ou
p_

m
ap

_t
yp

e_
ge

_3
_a

...
 sl

ic
e_

gr
ou

p_
ch

an
ge

_c
yc

le

 jv
t:

sl
ic

e_
da

ta

 if_
en

tr
op

y_
co

di
ng

_m
od

e_
fla

g_
no

t..
.

 bi
t_

st
uf

fin
g

 sl
ic

e_
pa

yl
oa

d

Fi
gu

re
B

.1
2:

B
S

Sc
he

m
a

fo
rt

he
sl

ic
e

sy
nt

ax
of

H
.2

64
/A

V
C

.

B.3. Visualization of the BS Schemata 213

C:\CVS_Repositories\Berg\wdn_h264_avc\desc_bsdl\h264_avc_mpeg_bangkok_skipped_pictures_with_sei.xsd 08/06/06 14:56:36

©1998-2003 Altova GmbH http://www.xmlspy.com Page 1Registered to chacha (coca-cola)

 sei_rbsp

 jvt:sei_message

payloadType

 ff_byte

∞0..

 last_payload_type_byte

payloadType

payloadSize

 ff_byte

∞0..

 last_payload_size_byte

payloadSize

 jvt:sei_payload

 jvt:sei_message

∞0..

Figure B.13: BS Schema for the high-level SEI syntax of H.264/AVC.

214 BS Schemata for MPEG media formats

C:\CVS_Repositories\Berg\wdn_h264_avc\desc_bsdl\h264_avc_mpeg_bangkok_skipped_pictures_with_sei.xsd 08/06/06 14:59:50

©1998-2003 Altova GmbH http://www.xmlspy.com Page 1Registered to chacha (coca-cola)

 sei_payload

 jvt:buffering_period

 jvt:pic_timing

 jvt:pan_scan_rect

 jvt:filler_payload

 jvt:user_data_registered_itu_t_t35...

 jvt:user_data_unregistered

 jvt:recovery_point

 jvt:dec_ref_pic_marking_repetition

 jvt:spare_pic

 jvt:scene_info

 jvt:sub_seq_info

 sub_seq_layer_num

 sub_seq_id

 first_ref_pic_flag

 leading_non_ref_pic_flag

 last_pic_flag

 sub_seq_frame_num_flag

 if_sub_seq_frame_num_flag_eq_1 sub_seq_frame_num

 jvt:sub_seq_layer_characteristics

 jvt:sub_seq_characteristics

 jvt:full_frame_freeze

 jvt:full_frame_freeze_release

 jvt:full_frame_snapshot

 jvt:progressive_refinement_segme...

 jvt:progressive_refinement_segme...

 jvt:motion_constrained_slice_gro...

 jvt:film_grain_characteristics

 jvt:deblocking_filter_display_prefe...

 jvt:reserved_sei_message

 align_sei_payload_flag

 align_sei_payload

Figure B.14: BS Schema fragment containing the different SEI messages that can be
used in H.264/AVC (including the SEI messages specified by the FRExt amendment).

Appendix C

Context management for
BSDL’s BintoBSD

C.1 Introduction

BSDL’s BintoBSD process is responsible for translating the high-level struc-
ture of a binary media resource into an XML description. This description
can then be used for further processing. However, as discussed in Chapter 4
and Chapter 5, this format-agnostic translation process is characterized by an
increasing memory usage and a decreasing processing speed in terms of the
number of parse units processed.

One solution for the performance issues of the BintoBSD process, which
can be considered fundamental in the context of video bitstreams, is to enhance
the MPEG-21 BSDL standard. The development of such extensions was ad-
dressed by the Multimedia Lab research group, resulting in the definition of
five additional attributes on top of the initial version of the BSDL specifica-
tion1. These attributes are discussed in more detail in the next section.

C.2 BSD generation using context management

The in-memory representation of a BSD, which is commonly referred to as
the context, is needed by the BintoBSD process for the correct evaluation of
an arbitrary set of XPath 1.0 expressions. These XPath expressions, residing
in a BS Schema, for instance provide support for features such as conditional
parsing and loop constructs.

1As part of the first version of the MPEG-21 DIA standard.

216 Context management for BSDL’s BintoBSD

Four new attributes are introduced in BSDL to keep the context minimal
during the execution of the BintoBSD process, while still guaranteeing a cor-
rect evaluation of the different XPath expressions embedded in a BS Schema
(on the condition that the attributes are correctly used by a BS Schema author).
These four attributes are bs0:startContext, bs0:stopContext,
bs0:partContext, and bs0:redefineMarker; they can be used by
a BS Schema author to prune the parts of the in-memory tree representation of
a BSD that are no longer required for the evaluation of XPath expressions.

A fifth new attribute, named bs0:defaultTreeInMemory, is defined
for the purpose of compatibility with already existing BS Schemata and imple-
mentations of the BintoBSD process.

A brief explanation of the semantics of the five newly defined attributes is
provided below. Their use is illustrated with an example presented further in
this section.

• bs0:startContext: this attribute signals to a BintoBSD Parser that
the element, to which the attribute belongs, is needed to evaluate a forth-
coming XPath expression. Consequently, a BintoBSD Parser will add
this element to the in-memory representation of the BSD. In a later phase
of the BSD generation process, a unique marker can be used to remove
the element from the context. This marker is provided as a value for the
bs0:startContext attribute.

• bs0:stopContext: this attribute is the counterpart of the
bs0:startContext attribute: it allows to reduce the size of the in-
memory representation of the BSD. Indeed, this attribute contains a list
of markers, which denote the elements that have to be removed from the
context.

• bs0:partContext: the purpose of this attribute is similar to
the purpose of the bs0:startContext attribute: both attributes
contribute to the size of the context. However, in contrast to
bs0:startContext, it does not take a marker as value.

Indeed, the bs0:partContext attribute can only have one out of
two possible values: true or false. A value of true implies that the
element, to which the attribute belongs, needs to be added to the context.
A value of false, which is the default value for this attribute in the case
it is missing for a particular element, signals to a BintoBSD Parser that
it is not necessary to add the corresponding element to the in-memory
representation of a BSD.

C.2. BSD generation using context management 217

As bs0:partContext does not have a marker as value, it is not pos-
sible to explicitly remove the element it is associated with from the con-
text. This can only be achieved by the removal of an ancestor element
using bs0:stopContext.

The bs0:partContext attribute will typically be used when its as-
sociated element is needed in the location step of an XPath expression.
As such, this attribute allows to achieve a limited memory consumption
without having to employ an abundant number of markers.

• bs0:redefineMarker: this attribute can be used to rename an al-
ready existing marker, giving the author of a BS Schema advanced con-
trol pertaining to the in-memory representation of a BSD.

• bs0:defaultTreeInMemory: this attributes can have one out of
two possible values: true or false. A value of false means that
the context management attributes are in use - by default, nothing will be
added to the context by a BintoBSD Parser, unless otherwise instructed
by the context management attributes. A value of true means that the
entire BSD needs to be stored in memory.

To test the expressive power of the context management attributes, they
were employed in the different BS Schemata discussed in Annex B. Their use
is also illustrated in Listing C.1, which contains a further development of the
generic BS Schema template that was introduced in Chapter 4. The listing
shows that the context management is typically done at the level of the funda-
mental unit of parsing for a BintoBSD Parser (e.g., a NAL unit for H.264/AVC,
an EBDU for VC-1, et cetera).

Listing C.1: Generic BS Schema for a packet-based media format, annotated with
context management attributes.

<xsd:schema bs0:defaultTreeInMemory="false">
<xsd:element name="bitstream" bs0:startContext="’bitstream’">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="parse_unit"
bs0:startContext="’pu’" bs0:stopContext="’old_pu’">
<xsd:complexType>

<xsd:choice>
<xsd:element ref="coded_header_data"/>
<xsd:element ref="coded_media_data"/>

</xsd:choice>
</xsd:complexType>

</xsd:element>

218 Context management for BSDL’s BintoBSD

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="coded_header_data"

bs0:redefineMarker="’header_pu’ ’old_pu’ ’pu’ ’header_pu’">
<!-- ... -->

</xsd:element>
<xsd:element name="coded_media_data"

bs0:redefineMarker="’data_pu’ ’old_pu’ ’pu’ ’data_pu’">
<!-- ... -->

</xsd:element>
</xsd:schema>

Figure C.1 contains the typical evolution of the tree-based in-memory rep-
resentation of a BSD when using the context management approach proposed
in Listing C.1. The boxes represent nodes, while the labels outside the boxes
represent markers.

1. Layout of the context after having processed a first parse unit conveying
coded header data.

2. Layout of the context after having processed a second parse unit con-
taining coded media data.

3. Layout of the context after having processed a third parse unit carrying
coded media data. Note how the marker for the first unit containing
media data is renamed from data pu to old pu. This signals to a
BintoBSD Parser that this data unit may be removed from the context
when processing a next parse unit.

4. Layout of the context after having processed a fourth parse unit trans-
porting coded media data. The dashed lines denote a node that is re-
moved from the context.

For a more extensive overview regarding the development and use of the
context management attributes, we would like to refer the interested reader
to [21,28,32,35]. A preliminary performance assessment regarding the use of
the context management attributes, compared to the use of BFlavor for BSD
generation for H.264/AVC bitstreams, can be found in Chapter 6. Similar
performance results can be found in [28] for bitstreams that are compliant with
VC-1.

C.2. BSD generation using context management 219
bi

ts
tre

am

pa
rs

e_
un

it

co
de

d_
he

ad
er

_d
at

a

bi
ts

tre
am

he
ad

er
_p

u

bi
ts

tre
am

pa
rs

e_
un

it

co
de

d_
he

ad
er

_d
at

a

pa
rs

e_
un

it

co
de

d_
m

ed
ia

_d
at

a

bi
ts

tre
am

he
ad

er
_p

u
da

ta
_p

u

bi
ts

tre
am

pa
rs

e_
un

it

co
de

d_
he

ad
er

_d
at

a

pa
rs

e_
un

it

co
de

d_
m

ed
ia

_d
at

a

bi
ts

tre
am

he
ad

er
_p

u
ol

d_
pu

pa
rs

e_
un

it

co
de

d_
m

ed
ia

_d
at

ada
ta

_p
u

bi
ts

tre
am

pa
rs

e_
un

it

co
de

d_
he

ad
er

_d
at

a

pa
rs

e_
un

it

co
de

d_
m

ed
ia

_d
at

a

bi
ts

tre
am

he
ad

er
_p

u
ol

d_
pu

pa
rs

e_
un

it

co
de

d_
m

ed
ia

_d
at

aol
d_

pu
pa

rs
e_

un
it

co
de

d_
m

ed
ia

_d
at

ada
ta

_p
u

(1
)

(2
)

(3
)

(4
)

Fi
gu

re
C

.1
:

Ty
pi

ca
le

vo
lu

tio
n

of
th

e
co

nt
ex

tw
he

n
us

in
g

co
nt

ex
tm

an
ag

em
en

ta
ttr

ib
ut

es
.

220 Stylesheets for BSD transformation

Appendix D

Stylesheets for BSD
transformation

D.1 Introduction

In the context of this research, several stylesheets have been developed for
the purpose of transforming or manipulating XML-based BSDs. A number
of these stylesheets were initially written using XSLT. However, XSLT cannot
be used in practice for the manipulation of large BSDs (i.e., BSDs with a size
typically larger than 50 MB) due to its memory-consuming nature. This be-
came particularly visible once the performance problems of BSDL’s BintoBSD
Parser were circumvented or solved, allowing the processing of larger elemen-
tary video bitstreams, and hence allowing the creation of verbose BSDs. As
such, the more efficient generation of BSDs resulted in a shift of the perfor-
mance bottleneck in the BSD-driven content adaptation chain from the BSD
creation process, either using BFlavor or an optimized BintoBSD Parser, to the
BSD transformation step, using XSLT.

A first attempt to obtain a more efficient BSD transformation process con-
sisted of the employment of a hybrid transformation approach, based on the
combined use of STX and XSLT logic in a single STX stylesheet (see for in-
stance Listing D.5 in the next section). The code written in STX is used for
iterating through the descriptions of the different parse units in a BSD and for
passing them to the XSLT logic. This XSLT code is subsequently used for
performing a more detailed analysis of the description of a parse unit. For in-
stance, in case the XSLT logic detects a description of a bidirectionally coded
picture, it might decide to remove or adapt this description.

The hybrid approach, as described above, makes it possible to acquire a
low memory footprint during the processing of a BSD, as well as a straightfor-

222 Stylesheets for BSD transformation

ward reuse of the logic that was previously written in XSLT. However, for our
purposes, this work flow was not able to operate in real time when making use
of the Joost STX engine, which was, at the time of writing, the only engine
available for the execution of STX stylesheets. The inefficient performance
behavior is due to the fact that XSLT code is to be executed for every parse
unit described in a BSD. This implies that the STX run-time needs to initialize
and call an XSLT engine for every parse unit. For instance, in order to trans-
form a BSD in real time for an H.264/AVC bitstream that is characterized by a
throughput of 120 NAL units per second, the STX engine needs to be able to
call an XSLT engine 120 times per second.

A second attempt to transform BSDs in a more efficient way, consisted of
the use of stylesheets that were entirely written in STX1. This approach effec-
tively allows a memory-efficient, streaming-based transformation of verbose
BSDs in real time.

A number of relevant and representative stylesheets are listed in the next
section of this appendix. The structure of the stylesheets is in line with the
generic BS Schema template presented in Listing 4.10 in Chapter 4. Note that
the BSD transformations can also be implemented by using software that is
written on top of a DOM or SAX API. However, this approach was not fol-
lowed since MPEG-21 DIA envisions a generic content adaptation framework
that is entirely steered by XML technologies. However, it is noteworthy that
SAX filters can be easily updated in order to reflect changes in an adaptive
multimedia framework (e.g., to anticipate a varying bandwidth). Such func-
tionality is for example necessary for the purpose of dynamic content adapta-
tion. The use of SAX filters is in contrast to the use of stylesheets, which are
characterized by a rather static nature: their behavior cannot easily be changed
in a dynamic way. For a more detailed overview regarding the efficiency of dif-
ferent BSD transformation technologies, we would like to refer the interested
reader to [16], [27], [28], and [38].

D.2 XSLT, STX, and XSLT/STX stylesheets

Listing D.1: XSLT stylesheet for adding SEI messages to an elementary H.264/AVC
bitstream with a coding structure as visualized in Figure 3.9.

<xsl:stylesheet xmlns:jvt="h264_avc">
<xsl:output method="xml" indent="yes"/>
<!-- Match all. -->

1The STX specification could not be referenced normatively from the DIA standard as this
document is not a standard. This is in contrast to XSLT, which is a W3C recommendation.

D.2. XSLT, STX, and XSLT/STX stylesheets 223

<xsl:template name="tplAll" match="@*|node()">
<xsl:copy>

<xsl:apply-templates select="@*|node()"/>
</xsl:copy>

</xsl:template>
<!-- Do nothing for processing instructions. -->
<xsl:template match="processing-instruction()"/>
<xsl:template name="set_gap_in_frame_num"

match="jvt:byte_stream_nal_unit_sps/jvt:nal_unit_sps/
jvt:raw_byte_sequence_payload_sps/
jvt:seq_parameter_set_rbsp/
jvt:gaps_in_frame_num_value_allowed_flag">

<!-- Adjust gaps_in_frame_num_value_allowed_flag. -->
<gaps_in_frame_num_value_allowed_flag>

1
</gaps_in_frame_num_value_allowed_flag>

</xsl:template>
<!-- Template for adding SEI messages to the IDR pictures in

the base layer. -->
<xsl:template name="layer0_IDR"

match="jvt:byte_stream_nal_unit[jvt:nal_unit[
jvt:raw_byte_sequence_payload[
jvt:coded_slice_of_an_IDR_picture[
jvt:slice_layer_without_partitioning_rbsp
[jvt:slice_header
[jvt:first_mb_in_slice = 0 and
jvt:slice_type=7]]]]]]">

<byte_stream_nal_unit>
<zero_byte>0</zero_byte>
<start_code_prefix_one_3bytes>

000001
</start_code_prefix_one_3bytes>
<nal_unit>

<forbidden_zero_bit>0</forbidden_zero_bit>
<nal_ref_idc>0</nal_ref_idc>
<nal_unit_type>6</nal_unit_type>
<raw_byte_sequence_payload>

<sei_rbsp>
<sei_message>

<last_payload_type_byte>
10

</last_payload_type_byte>
<last_payload_size_byte>

1
</last_payload_size_byte>
<sei_payload>

<sub_seq_info>
<sub_seq_layer_num>0</sub_seq_layer_num>

224 Stylesheets for BSD transformation

<sub_seq_id>0</sub_seq_id>
<!-- The values below are not correct. -->
<first_ref_pic_flag>0</first_ref_pic_flag>
<leading_non_ref_pic_flag>

0
</leading_non_ref_pic_flag>
<last_pic_flag>0</last_pic_flag>
<sub_seq_frame_num_flag>

0
</sub_seq_frame_num_flag>

</sub_seq_info>
</sei_payload>

</sei_message>
<rbsp_trailing_bits>

<rbsp_stop_one_bit>1</rbsp_stop_one_bit>
<rbsp_alignment_zero_bit>

0
</rbsp_alignment_zero_bit>

</rbsp_trailing_bits>
</sei_rbsp>

</raw_byte_sequence_payload>
</nal_unit>

</byte_stream_nal_unit>
<xsl:copy>

<xsl:apply-templates select="@*|node()"/>
</xsl:copy>

</xsl:template>
<!-- Template for adding SEI messages to the P pictures

in the base layer. -->
<!-- Template for adding SEI messages to the B pictures

in the first enhancement layer. -->
<xsl:template name="layer1"

match="jvt:byte_stream_nal_unit[jvt:nal_unit[
jvt:raw_byte_sequence_payload[
jvt:coded_slice_of_a_non_IDR_picture[
jvt:slice_layer_without_partitioning_rbsp[
jvt:slice_header
[jvt:first_mb_in_slice = 0 and
jvt:frame_num mod 4 = 2]]]]]]">

<byte_stream_nal_unit>
<zero_byte>0</zero_byte>

<start_code_prefix_one_3bytes>
000001

</start_code_prefix_one_3bytes>
<nal_unit>

<forbidden_zero_bit>0</forbidden_zero_bit>
<nal_ref_idc>0</nal_ref_idc>
<nal_unit_type>6</nal_unit_type>
<raw_byte_sequence_payload>

D.2. XSLT, STX, and XSLT/STX stylesheets 225

<sei_rbsp>
<sei_message>

<last_payload_type_byte>
10

</last_payload_type_byte>
<last_payload_size_byte>

1
</last_payload_size_byte>
<sei_payload>

<sub_seq_info>
<sub_seq_layer_num>1</sub_seq_layer_num>
<xsl:element name="sub_seq_id">

<xsl:value-of select="floor(jvt:nal_unit/
jvt:raw_byte_sequence_payload/
jvt:coded_slice_of_a_non_IDR_picture/
jvt:slice_layer_without_partitioning_rbsp/
jvt:slice_header/jvt:frame_num div 4)"/>

</xsl:element>
<!-- The values below are not correct. -->
<first_ref_pic_flag>0</first_ref_pic_flag>
<leading_non_ref_pic_flag>

0
</leading_non_ref_pic_flag>
<last_pic_flag>0</last_pic_flag>
<sub_seq_frame_num_flag>

0
</sub_seq_frame_num_flag>

</sub_seq_info>
</sei_payload>

</sei_message>
<rbsp_trailing_bits>

<rbsp_stop_one_bit>1</rbsp_stop_one_bit>
<rbsp_alignment_zero_bit>

0
</rbsp_alignment_zero_bit>

</rbsp_trailing_bits>
</sei_rbsp>

</raw_byte_sequence_payload>
</nal_unit>

</byte_stream_nal_unit>
<xsl:copy>

<xsl:apply-templates select="@*|node()"/>
</xsl:copy>

</xsl:template>
<!-- Template for adding SEI messages to the B pictures

in the second enhancement layer. -->
<!-- Template for adding SEI messages to the B pictures

in the third enhancement layer. -->
</xsl:stylesheet>

226 Stylesheets for BSD transformation

Listing D.2: XSLT stylesheet for the SEI-based disposal of the second and third
temporal enhancement layer in an elementary H.264/AVC bitstream, having a coding
structure as visualized in Figure 3.9.

<xsl:stylesheet xmlns:jvt="h264_avc">
<xsl:output method="xml" indent="yes"/>
<!-- Match all. -->
<xsl:template name="tplAll" match="@*|node()">

<xsl:copy>
<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:template>
<!-- Do nothing for processing instructions. -->
<xsl:template match="processing-instruction()"/>
<!-- Template for deleting pictures. -->
<xsl:template name="deletePicture"

match="jvt:byte_stream_nal_unit
[jvt:nal_unit[jvt:nal_unit_type != 6]]">

<xsl:if test="preceding-sibling::
jvt:byte_stream_nal_unit

[position() <= 3]
/jvt:nal_unit/
jvt:raw_byte_sequence_payload/
jvt:sei_rbsp/jvt:sei_message/
jvt:sei_payload/jvt:sub_seq_info/
jvt:sub_seq_layer_num <= 1">

<xsl:copy>
<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:if>

</xsl:template>
<!-- Template for deleting redundant SEI messages. -->
<xsl:template name="deleteSEI"

match="jvt:byte_stream_nal_unit[
jvt:nal_unit[jvt:raw_byte_sequence_payload[
jvt:sei_rbsp[jvt:sei_message[jvt:sei_payload[
jvt:sub_seq_info[
jvt:sub_seq_layer_num >= 2]]]]]]]"/>

</xsl:stylesheet>

Listing D.3: STX stylesheet for the removal of the second and third temporal en-
hancement layer in an elementary H.264/AVC bitstream, having a coding structure as
visualized in Figure 3.9.

<stx:transform
xmlns:stx="http://stx.sourceforge.net/2002/ns"
xmlns:sf="http://stx.sourceforge.net/2003/functions"
pass-through="all" output-method="xml"

D.2. XSLT, STX, and XSLT/STX stylesheets 227

xmlns:jvt="h264_avc" strip-space="yes">
<!-- Declaration of global variables. -->
<stx:variable name="copy_nal_unit" select="false()"/>
<stx:variable name="slice_type" select="0"/>
<!-- Declaration of buffers. -->
<stx:buffer name="nal_unit"/>
<!-- Put a complete NAL unit in a buffer, modify this NAL

unit if needed, and eventually copy the result to the
output stream. -->

<stx:template match="jvt:byte_stream_nal_unit">
<stx:result-buffer name="nal_unit" clear="yes">

<!-- Copy everything from the source stream into the
buffer. -->

<stx:copy>
<!-- Process other templates. -->
<stx:process-children/>

</stx:copy>
</stx:result-buffer>
<stx:if test="$copy_nal_unit">

<stx:process-buffer group="empty" name="nal_unit"/>
</stx:if>

</stx:template>
<!-- Adjust gaps_in_frame_num_value_allowed_flag. -->
<stx:template

match="jvt:gaps_in_frame_num_value_allowed_flag">
<stx:element name="gaps_in_frame_num_value_allowed_flag"

namespace="h264_avc">1</stx:element>
</stx:template>
<!-- Check nal_ref_idc; take appropriate action. -->
<stx:template match="jvt:nal_unit_type">

<stx:assign name="copy_nal_unit" select="true()"/>
<stx:copy>

<stx:value-of select="."/>
</stx:copy>
<stx:if test=". != 7">

<stx:process-siblings group="removeLayer_2_and_3"/>
</stx:if>

</stx:template>
<!-- Check whether a slice has to be kept or needs to be

thrown away. -->
<stx:group name="removeLayer_2_and_3">

<stx:template match="jvt:slice_type" public="no">
<stx:copy>

<stx:value-of select="."/>
</stx:copy>
<stx:assign name="slice_type" select="."/>

</stx:template>
<stx:template match="jvt:frame_num" public="no">

<stx:copy>

228 Stylesheets for BSD transformation

<stx:value-of select="."/>
</stx:copy>
<!-- Check whether the current slice belongs to the

second or the third enhancement layer. -->
<stx:if test="($slice_type = 1 or $slice_type = 6) and

(. mod 4 != 2)">
<stx:assign name="copy_nal_unit" select="false()"/>

</stx:if>
</stx:template>

</stx:group>
<!-- The empty group, which is used to copy something to

the output stream. -->
<stx:group name="empty"/>

</stx:transform>

Listing D.4: STX stylesheet for replacing B slices by skipped P slices in an elemen-
tary H.264/AVC bitstream.

<stx:transform
xmlns:stx="http://stx.sourceforge.net/2002/ns"
xmlns:sf="http://stx.sourceforge.net/2003/functions"
pass-through="all" output-method="xml"
xmlns:jvt="h264_avc" strip-space="yes">

<!-- Declaration of global variables. -->
<stx:variable name="copy_nal_unit" select="false()"/>
<stx:variable name="nal_ref_idc" select="0"/>
<stx:variable name="first_mb_in_slice" select="0"/>
<stx:variable name="slice_type" select="-1"/>
<!-- Declaration of buffers. -->
<stx:buffer name="nal_unit"/>
<stx:buffer name="payload"/>
<!-- Put a complete NAL unit in a buffer, modify this NAL

unit if needed, and eventually copy the result to the
output stream. -->

<stx:template match="jvt:byte_stream_nal_unit">
<stx:result-buffer name="nal_unit" clear="yes">

<!-- Copy everything from the source stream into the
buffer. -->

<stx:copy>
<!-- Process other templates. -->
<stx:process-children/>

</stx:copy>
</stx:result-buffer>
<stx:process-buffer group="empty" name="nal_unit"/>

</stx:template>
<!-- Check nal_ref_idc; take appropriate action. -->

<stx:template match="jvt:nal_ref_idc">
<stx:assign name="slice_type" select="-1"/>

D.2. XSLT, STX, and XSLT/STX stylesheets 229

<stx:assign name="nal_ref_idc" select="."/>
<stx:copy>

<stx:value-of select="."/>
</stx:copy>
<stx:if test=". = 0">

<stx:process-siblings group="nonReference"/>
</stx:if>

</stx:template>
<!-- Group that processes non-reference NAL units. -->
<stx:group name="nonReference">

<stx:template match="jvt:raw_byte_sequence_payload"
public="no">

<!-- Keep the payload in a separate buffer for further
processing. -->

<stx:result-buffer name="payload" clear="yes">
<stx:copy>

<stx:process-children group="empty"/>
</stx:copy>

</stx:result-buffer>
<!-- Retrieve relevant information from the payload. -->
<stx:process-buffer name="payload"

group="parse_payload_buffer"/>
<stx:if test="$slice_type = 1 or $slice_type = 6">

<stx:process-buffer name="payload"
group="BtoskippedP"/>

</stx:if>
<stx:else>

<stx:process-buffer name="payload" group="empty"/>
</stx:else>

</stx:template>
</stx:group>
<!-- Group that retrieves relevant information from the

payload of a NAL unit. -->
<stx:group name="parse_payload_buffer" pass-through="none">

<!-- Remember the macroblock number of the first macroblock
of the slice. -->

<stx:template match="jvt:first_mb_in_slice" public="no">
<stx:assign name="first_mb_in_slice" select="."/>

</stx:template>
<!-- Remember the slice type of the current slice. -->
<stx:template match="jvt:slice_type" public="no">

<stx:assign name="slice_type" select="."/>
</stx:template>

</stx:group>
<!-- Group that translates the syntax of B slices into

skipped P slices. -->
<stx:group name="BtoskippedP">

<!-- Two templates to rename syntax elements (note the
"process-children" construction). -->

230 Stylesheets for BSD transformation

<stx:template match="jvt:coded_slice_of_a_non_IDR_picture"
public="no">

<stx:element
name="coded_slice_of_a_skipped_non_IDR_picture"
namespace="h264_avc">

<stx:process-children group="BtoskippedP"/>
</stx:element>

</stx:template>
<stx:template

match="jvt:slice_layer_without_partitioning_rbsp"
public="no">

<stx:element
name="skipped_slice_layer_without_partitioning_rbsp"
namespace="h264_avc">

<stx:process-children group="BtoskippedP"/>
</stx:element>

</stx:template>
<!-- Change the slice type. -->
<stx:template match="jvt:slice_type" public="no">

<stx:element name="slice_type" namespace="h264_avc">
0

</stx:element>
</stx:template>
<!-- Change the slice_qp_delta: this saves a number of

bits. -->
<stx:template match="jvt:slice_qp_delta" public="no">

<stx:element name="slice_qp_delta" namespace="h264_avc">
0

</stx:element>
</stx:template>
<!-- Every syntax element regarding B slices can be

dropped. -->
<stx:template match="jvt:if_slice_type_eq_B" public="no">
</stx:template>
<!-- Replace the coded slice data with skipped slice

data. -->
<stx:template match="jvt:slice_data" public="no">

<stx:element name="skipped_slice_data"
namespace="h264_avc">

<stx:if test="$first_mb_in_slice = 0 or
$first_mb_in_slice = 233 or
$first_mb_in_slice = 466 or
$first_mb_in_slice = 699">

<stx:element name="mb_skip_run" namespace="h264_avc">
233

</stx:element>
</stx:if>
<stx:else>

<stx:element name="mb_skip_run" namespace="h264_avc">

D.2. XSLT, STX, and XSLT/STX stylesheets 231

234
</stx:element>

</stx:else>
<stx:element name="rbsp_trailing_bits"

namespace="h264_avc">
<stx:element name="rbsp_stop_one_bit"

namespace="h264_avc">
<stx:value-of select="1"/>

</stx:element>
<stx:element name="rbsp_alignment_zero_bit"

namespace="h264_avc">
<stx:value-of select="0"/>

</stx:element>
</stx:element>

</stx:element>
</stx:template>

</stx:group>
<!-- The empty group, which is used to copy something to

the output stream. -->
<stx:group name="empty"/>

</stx:transform>

Listing D.5: A hybrid STX stylesheet for the removal of non-reference B slice coded
pictures in an elementary H.264/AVC bitstream.

<stx:transform
xmlns:stx="http://stx.sourceforge.net/2002/ns"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:jvt="h264_avc" xmlns="h264_avc"

strip-space="yes" output-method="xml">
<!-- Declaration of variables. -->
<stx:variable name="xslt"

select="’http://www.w3.org/1999/XSL/Transform’"/>
<!-- Declaration of a buffer that contains XSLT code. -->
<stx:buffer name="xslt_code_buffer">

<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jvt = "h264_avc" xmlns = "h264_avc">

<xsl:output method="xml" indent="yes"/>
<!-- Default template: the identity transformation. -->
<xsl:template name="tplAll" match="@*|node()">

<xsl:copy>
<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:template>
<!-- Check whether the current slice is a non-reference

b slice. -->

232 Stylesheets for BSD transformation

<xsl:template name="tplSlice"
match="jvt:byte_stream_nal_unit[
jvt:nal_unit[
jvt:nal_ref_idc = 0 and
jvt:raw_byte_sequence_payload[
jvt:coded_slice_of_a_non_IDR_picture[
jvt:slice_layer_without_partitioning_rbsp[
jvt:slice_header[jvt:slice_type = 6]]]]]]"/>

</xsl:stylesheet>
</stx:buffer>
<!-- STX template, implementing the identity

transformation. -->
<stx:template match="@*|node()">

<stx:copy>
<stx:process-children/>

</stx:copy>
</stx:template>
<!-- STX template, responsible for calling the embedded

XSLT stylesheet. -->
<stx:template match="jvt:byte_stream_nal_unit">

<stx:if test="filter-available($xslt)">
<stx:process-self filter-method="{$xslt}"

filter-src="buffer(xslt_code_buffer)"/>
</stx:if>
<stx:else>

<stx:message>
Cannot invoke an XSLT transformation.

</stx:message>
</stx:else>

</stx:template
</stx:transform>

Listing D.6: A hybrid XSLT/STX stylesheet for the removal of audio packets in an
MPEG-2 Program Stream (stored in a private stream).

<stx:transform
xmlns:stx="http://stx.sourceforge.net/2002/ns"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:mp2="MPEG2"
strip-space="yes"
output-method="xml">

<!-- Declaration of variables. -->
<stx:variable name="pack_count" select="0"/>
<stx:variable name="xslt"

select="’http://www.w3.org/1999/XSL/Transform’"/>
<!-- Declaration of a buffer that contains XSLT code. -->
<stx:buffer name="xslt_code_buffer">

<xsl:stylesheet>

D.2. XSLT, STX, and XSLT/STX stylesheets 233

<xsl:template name="tplAll" match="node()">
<xsl:copy>

<xsl:apply-templates select="node()"/>
</xsl:copy>

</xsl:template>
<!-- Check whether audio or padding streams

are available. -->
<xsl:template match="mp2:pack[

count(mp2:PES_packet/mp2:private_stream_1) > 0 or
count(mp2:PES_packet/mp2:private_stream_2)]">

<!-- Do nothing. -->
</xsl:template>

</xsl:stylesheet>
</stx:buffer>
<!-- Default STX template. -->
<stx:template match="@*|node()">

<stx:copy>
<stx:process-children/>

</stx:copy>
</stx:template>
<!-- An XSLT stylesheet is applied for every pack. -->
<stx:template match="mp2:pack">

<stx:if test="filter-available($xslt)">
<stx:process-self filter-method="{$xslt}"

filter-src="buffer(xslt_code_buffer)"/>
<stx:assign name="pack_count" select="$pack_count + 1"/>
<stx:message>

Pack <stx:value-of select="$pack_count"/> processed.
</stx:message>

</stx:if>
<stx:else>

<stx:message>
Cannot invoke an XSLT transformation.

</stx:message>
</stx:else>

</stx:template>
</stx:transform>

Listing D.7: A STX stylesheet for the extraction of an elementary video bitstream
from an MPEG-2 Systems Program Stream (only containing PES packets with video
data).

<stx:transform
xmlns:stx="http://stx.sourceforge.net/2002/ns"
xmlns:mp2="MPEG2"
strip-space="yes"
output-method="xml">

<!-- Declaration of variables. -->

234 Stylesheets for BSD transformation

<stx:variable name="pack_count" select="0"/>
<!-- Templates. -->

<stx:template match="@*|node()">
<stx:copy>

<stx:process-children/>
</stx:copy>

</stx:template>
<stx:template match="mp2:pack/mp2:pack_header">

<stx:assign name="pack_count" select="$pack_count + 1"/>
<stx:message>

Pack <stx:value-of select="$pack_count"/> processed.
</stx:message>
<!-- Do nothing. -->

</stx:template>
<stx:template match="mp2:pack/mp2:PES_packet/

mp2:video_stream/mp2:packet_start_code_prefix"/>
<stx:template match="mp2:pack/mp2:PES_packet/

mp2:video_stream/mp2:stream_id"/>
<stx:template match="mp2:pack/mp2:PES_packet/

mp2:video_stream/mp2:PES_packet_length"/>
<stx:template match="mp2:pack/mp2:PES_packet/

mp2:video_stream/mp2:filler"/>
<stx:template match="mp2:pack/mp2:PES_packet/

mp2:video_stream/mp2:PES_scrambling_control"/>
<stx:template match="mp2:pack/mp2:PES_packet/

mp2:video_stream/mp2:PES_priority"/>
<stx:template match="mp2:pack/mp2:PES_packet/

mp2:video_stream/mp2:data_alignment_indicator"/>
<stx:template match="mp2:pack/mp2:PES_packet/

mp2:video_stream/mp2:copyright"/>
<stx:template match="mp2:pack/mp2:PES_packet/

mp2:video_stream/mp2:original_or_copy"/>
<stx:template match="mp2:pack/mp2:PES_packet/

mp2:video_stream/mp2:PTS_DTS_flag"/>
<stx:template match="mp2:pack/mp2:PES_packet/

mp2:video_stream/mp2:ESCR_flag"/>
<stx:template match="mp2:pack/mp2:PES_packet/

mp2:video_stream/mp2:ES_rate_flag"/>
<stx:template match="mp2:pack/mp2:PES_packet/

mp2:video_stream/mp2:DSM_trick_mode_flag"/>
<stx:template match="mp2:pack/mp2:PES_packet/

mp2:video_stream/mp2:additional_copy_info_flag"/>
<stx:template match="mp2:pack/mp2:PES_packet/

mp2:video_stream/mp2:PES_CRC_flag"/>
<stx:template match="mp2:pack/mp2:PES_packet/

mp2:video_stream/mp2:PES_extension_flag"/>
<stx:template match="mp2:pack/mp2:PES_packet/

mp2:video_stream/mp2:PES_header_data_length"/>
<stx:template match="mp2:pack/mp2:PES_packet/

D.2. XSLT, STX, and XSLT/STX stylesheets 235

mp2:video_stream/mp2:PES_header_data_payload"/>
</stx:transform>

Listing D.8: A proof-of-concept STX stylesheet for adding shot information to a
BSD.

<stx:transform
xmlns:stx="http://stx.sourceforge.net/2002/ns"
xmlns:sf="http://stx.sourceforge.net/2003/functions"
xmlns:jvt="h264_avc"
pass-through="all"
output-method="xml"
strip-space="no">

<!-- Declaration of variables. -->
<!-- A boolean indicating whether the current NAL unit is

allowed to be copied (only for dropping). -->
<stx:variable name="copy_nal_unit" select="false()"/>
<!-- A variable for keeping track of the total number of

NAL units in the bitstream. -->
<stx:variable name="nalu_count" select="0"/>
<!-- A variable for keeping track of the number of pictures

in the bitstream. -->
<stx:variable name="pic_count" select="0"/>
<!-- A boolean indicating whether a new picture has been

found. -->
<stx:variable name="pic_found" select="false()"/>
<!-- A variable that contains the number of slices per

picture. -->
<stx:variable name="max_slices_per_picture" select="5"/>
<!-- A variable for keeping track of the number of slices

parsed of the current picture. -->
<stx:variable name="slice_count" select="0"/>
<!-- Boolean indicating whether a picture has been found

that marks the beginning of a shot. -->
<stx:variable name="shot_pic_found" select="false()"/>
<!-- A variable containing a list of picture numbers.

Each number identifies an I slice coded picture
that is located near the start of a shot (before
or after the beginning of a shot). -->

<stx:variable name="shots" select="(1,50,66,106,154,210,290,
306,346,362,378,426,434,466,482,498,514,554,602,618,666,
690,722,738,770,786,794,810,946,994,1034,1082,1114,1154,
1186,1250,1290,1338,1386,1394,1426,1442,1458,1474,1490,
1506,1546,1594,1610,1626,1634,1698,1714,1754,1770,1786,
1802,1818,1834,1850,1890,1906,1922,1954,1970,2010,2058,
2106,2114,2146,2178,2226,2234,2250,2266,2282,2298,2314,
2330,2370,2418,2434,2474,2522,2570,2610,2626,2642,2690,
2730,2746,2762,2778,2794,2834,2866,2882,2930,2946,2986,

236 Stylesheets for BSD transformation

3034,3066,3106,3154,3186,3210,3242,3274,3290,3330,3378,
3434,3498)"/>

<!-- Declaration of buffers. -->
<!-- A buffer for the storage of a complete NAL unit. -->
<stx:buffer name="nal_unit"/>
<!-- A buffer for the storage of the payload of a NAL unit;

all transformations are done in this buffer. -->
<stx:buffer name="payload"/>
<!-- Put a complete NAL unit in a buffer; modify if needed;

and write the result to the output stream. -->
<stx:template match="jvt:byte_stream_nal_unit">

<stx:result-buffer name="nal_unit" clear="yes">
<stx:assign name="nalu_count" select="$nalu_count + 1"/>
<stx:message>

NALU <stx:value-of select="$nalu_count"/> processed.
</stx:message>
<!-- Copy everything from the source stream into the

buffer. -->
<stx:copy>

<!-- Determine whether other templates generate a match
during the copy operation to the buffer. -->

<stx:process-children/>
</stx:copy>

</stx:result-buffer>
<stx:process-buffer name="nal_unit"

group="add_picture_and_shot_info"/>
</stx:template>
<!-- Check the value of first_mb_in_slice syntax element;

take appropriate action. -->
<stx:template match="jvt:first_mb_in_slice">

<stx:copy>
<stx:value-of select="."/>

</stx:copy>
<stx:if test=". = 0">

<stx:assign name="pic_count" select="$pic_count + 1"/>
<stx:message>

Picture <stx:value-of select="$pic_count"/> processed.
</stx:message>
<stx:assign name="pic_found" select="true()"/>

</stx:if>
<stx:else>

<stx:assign name="pic_found" select="false()"/>
</stx:else>

</stx:template>
<!-- Group for processing byte_stream_nal_units that contain

the first macroblocks of a picture. -->
<stx:group name="add_picture_and_shot_info">

<stx:template match="jvt:byte_stream_nal_unit"
public="no">

D.2. XSLT, STX, and XSLT/STX stylesheets 237

<stx:element name="byte_stream_nal_unit"
namespace="h264_avc">

<stx:attribute name="pic_cnt" select="$pic_count"/>
<stx:if test="$pic_count = $shots">

<stx:attribute name="shot" select="’true’"/>
<stx:assign name="shot_pic_found" select="true()"/>
<stx:assign name="slice_count"

select="$slice_count + 1"/>
<stx:message>Slice

<stx:value-of select="$slice_count"/>
of shot picture
<stx:value-of select="$pic_count"/>
processed.

</stx:message>
</stx:if>
<stx:else>

<stx:attribute name="shot" select="’false’"/>
<stx:assign name="shot_pic_found" select="false()"/>
<stx:assign name="slice_count" select="0"/>

</stx:else>
<stx:process-children

group="add_picture_and_shot_info"/>
</stx:element>

</stx:template>
</stx:group>
<!-- The empty group, which is used to copy something to the

output stream. -->
<stx:group name="empty"/>

</stx:transform>

238 A prospective view of DIA Amendment 2

Appendix E

A prospective view of DIA
Amendment 2

E.1 Introduction

In this dissertation, several issues were identified pertaining to BSD-based con-
tent adaptation using MPEG-21 BSDL. Some of these problems emerged dur-
ing the development of BS Schemata for a number of media formats and are
due to a lack of expressive power of MPEG-21 BSDL (see Chapter 4). Other
shortcomings turned up during the use of BSDL’s format-agnostic BintoBSD
process for translating the structure of coded video bitstreams into an XML
description, and are performance related (see Chapter 5).

The aforementioned issues were reported to the Multimedia Description
Schemes (MDS) sub-group of MPEG. A solution for improving the perfor-
mance of the BintoBSD process, based on the use of context management
attributes (see Appendix C), was proposed, as well as a solution for dealing
with start code emulation prevention bytes, used by coding formats such as
VC-1 and H.264/AVC (see Chapter 2).

Other interested parties contributed to MPEG-21 BSDL as well. As a re-
sult, a number of extensions to MPEG-21 BSDL are included in the second
amendment to the MPEG-21 DIA standard [123]. This amendment also incor-
porates several enhancements to other DIA tools.

E.2 BSDL features in DIA Amendment 2

This section highlights several potential features of DIA Amendment 2 that
are relevant in the context of this research. Note that this new set of extensions

240 A prospective view of DIA Amendment 2

to DIA was still under development at the time of writing (summer of 2006).
As such, this appendix only reflects the spirit of this amendment regarding the
newly standardized BSDL features. For a complete and accurate overview, we
would like to refer the interested reader to the standards document itself.

E.2.1 Extensions to BSDL-2

In the second amendment to MPEG-21 DIA, BSDL-2 is extended with the
following tools.

• Context management. The five attributes, which are discussed in more
detail in Appendix C, are incorporated in BSDL-2. Using these at-
tributes, it is possible for the BintoBSD process to achieve a minimal
memory consumption and a constant BSD generation speed on the one
hand, while still allowing the use of the entire XPath 1.0 specification
on the other hand.

• Detection of start code emulation prevention bytes. An attribute is
added to BSDL-2 that specifies the removal of start code emulation pre-
vention bytes from the bitstream processed, guaranteeing a correct ana-
lysis of the syntax elements parsed. In other words, the employment of
this attribute guarantees the creation of a correct BSD for the bitstream
processed. The use of this attribute is illustrated in Listing E.1 for the
H.264/AVC video coding format: during BSD generation, every coding
pattern in the input bitstream, taking the form of 0x000003 and starting
at a byte-aligned position, is replaced by the 0x0000 byte string in order
to guarantee a correct parsing behavior.

Listing E.1: Use of bs2:removeEmPrevByte.

<xsd:schema bs2:removeEmPrevByte="000003 0000">

• User-defined XPath variables. User-defined XPath variables allow to
cache frequently used node sets (e.g., the parameter sets in H.264/AVC)
as object arrays. They are introduced to simplify the notation of XPath
expressions on the one hand and to speed up their evaluation on the
other hand by reducing the number of predicates and the length of the
location steps. For example, the use of XPath variables allows to signif-
icantly simplify the XPath expressions employed in the BS Schema for
H.264/AVC. Indeed, the XPath expression provided in Listing 4.11 of
Chapter 4 can be rewritten to the expression shown in Listing E.2.

E.2. BSDL features in DIA Amendment 2 241

Listing E.2: User-defined XPath variables.

$seq_parameter_set_rbsp[$pic_parameter_set_rbsp
[../jvt:pic_parameter_set_id + 1]/
jvt:seq_parameter_set_id + 1]/
jvt:log2_max_frame_num_minus4

• ECMAScript. The vendor-neutral ECMAScript standard is used to
provide a platform-independent extension mechanism to BSDL. This
extension mechanism allows adding user-defined datatypes (i.e., non-
normative datatypes) and user-defined functions to BSDL. Also, the
normative support for ECMAScript eliminates the need for the non-
normative bs0:implementation attribute.

• Support for syntax elements with a dependent bit length. The length
of a particular syntax element, expressed in terms of a number of bits,
may be dependent on the value of another syntax element. For exam-
ple, the length of the jvt:slice group change cycle syntax el-
ement, which is optionally conveyed by the slice header() syntax
structure in an H.264/AVC bitstream, is dependent on the value of three
other syntax elements (two of these syntax elements are part of an SPS,
a third syntax element is part of a PPS).

The support for syntax elements with a dependent bit length, together
with the newly introduced support for a logarithmic function with
base two, makes the use of the SliceGroupChangeCycleType
class unnecessary. This class was previously discussed in
Section 4.4.3. The computation of the bit length of the
jvt:slice group change cycle syntax element, using the
newly defined BSDL-2 features, is outlined in more detail in List-
ing E.3 ($PicSizeInMapUnits and $SliceGroupChangeRate
are placeholders for XPath expressions).

Further, Listing E.4 contains a simplified notation, made possible by
the new BSDL features, that can be used for the computation of the bit
length of the frame num syntax element. This notation is an alternative
to the use of an xsd:union/bs2:ifUnion language construct for
describing the value space of frame num (see Listing 4.7).

Listing E.3: Computation of the bit length of
jvt:slice group change cycle.

<xsd:element name="slice_group_change_cycle">

242 A prospective view of DIA Amendment 2

<xsd:simpleType>
<xsd:restriction base="bs1:bitstreamSegment">

<xsd:annotation>
<xsd:appinfo>

<bs2:bitsLength
value="ceiling(bs2:log2($PicSizeInMapUnits

div ($SliceGroupChangeRate + 1))"/>
</xsd:appinfo>

</xsd:annotation>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

Listing E.4: Computation of the bit length of jvt:frame num.

<xsd:element name="frame_num">
<xsd:simpleType>

<xsd:restriction base="bs1:bitstreamSegment">
<xsd:annotation>

<xsd:appinfo>
<bs2:bitsLength

value="$seq_parameter_set_rbsp/
jvt:log2_max_frame_num_minus4 + 4))"/>

</xsd:appinfo>
</xsd:annotation>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

Finally, in [19], it is discussed how BFlavor is extended with support for the
detection of start code emulation prevention bytes. This paper also introduces
a second important extension to BFlavor, offering a solution for the problem
of keeping track of multiple parameter sets that are not immediately activated
after retrieving them from an H.264/AVC bitstream.

E.2.2 Extensions to BSDL-1

In the second amendment to MPEG-21 DIA, BSDL-1 is extended with the
following features.

• Byte alignment. Several datatypes are added to BSDL-1 that enable
reading a value from the input bitstream and writing padding bits to
the output bitstream until this bitstream is aligned on a one byte (using

E.2. BSDL features in DIA Amendment 2 243

bs1:align8), two byte (using bs1:align16), or four byte (using
bs1:align32) boundary. More precisely, BintoBSD reads bits from
the input bitstream until it is aligned on respectively a one byte, two
byte, or four byte boundary and instantiates an element with the value
read from the bitstream. When the bitstream is already correctly aligned,
BintoBSD does not read any bits but instantiates an empty element.

BSDtoBin encodes the indicated lexical value on the number of bits re-
quired such that the output bitstream is aligned on a one byte, two byte,
or four byte boundary. For an empty element, BSDtoBin uses the default
or fixed value declared in the BS Schema, if relevant. Lastly, BSDtoBin
does not write any bits if the bitstream is already correctly aligned.

Listing E.5 illustrates the use of the bs1:align8 data type,
which is a standardized solution for the use of the non-normative
CabacAlignmentOneBitType class discussed in Section 4.4.3.

Listing E.5: Use of bs1:align8.

<xsd:element name="cabac_alignment_one_bit" minOccurs="0"
maxOccurs="1" fixed="255" type="bs1:align8"/>

• Emulation prevention bytes. An attribute is added to BSDL-1 that
instructs the BSDtoBin process to insert start code emulation prevention
bytes at appropriate places in a bitstream. This prevents a BSDtoBin
Parser from generating evil bitstreams (in this case, bitstreams with false
start codes). The use of this attribute is illustrated in Listing E.6 for the
H.264/AVC video coding format.

Listing E.6: Use of bs1:insertEmPrevByte.

<xsd:element name="bitstream">
<xsd:complexType>

<xsd:sequence>
<!-- ... -->

</xsd:sequence>
<xsd:attribute ref="bs1:insertEmPrevByte" default=
"000000 00000300 000001 00000301
000002 00000302 000003 00000303"

</xsd:complexType>
</xsd:element>

244 A prospective view of DIA Amendment 2

• Exp-Golomb codes. The set of built-in BSDL-1 datatypes is ex-
tended with normative support for Signed and Unsigned Exponentional
Golomb codes, making the use of the UnsignedExpGolomb and
SignedExpGolomb classes unnecessary.

• ECMAScript. Because ECMAScipt is used to extend the set of built-in
BSDL-1 datatypes, the BSDtoBin process needs to have support for this
scripting language for the purpose of binarization.

• Enhanced bs1:byteRange and bs1:bitstreamSegment
datatypes. These built-in datatypes are extended with two new
attributes: addressMode and addressUnit. The value of the
addressUnit property specifies whether the length of a bitstream
segment is given in terms of bits or bytes. According to the value of
the addressMode property, the offset is relative to the start of the
bitstream or to the start of the bitstream segment described by the parent
element.

E.2.3 Profiles

In the second amendment to MPEG-21 DIA, ECMAScript is employed for the
implementation of user-defined functions and datatypes, while XPath 2.0 is
proposed for the implementation of XPath variables. These tools represent a
significant implementation cost, which may not be acceptable for a use case
such as on-the-fly content adaptation by a streaming server. Therefore, a num-
ber of profiles are defined for the BintoBSD and BSDtoBin Parsers in order
to meet the constraints of different use cases. Moreover, by defining profiles
that are restricting the use of XPath, the BintoBSD process can be simplified
as well (regardless of the newly introduced extensions).

Profiles for BintoBSD

BSDL-2 uses XPath 1.0 for constraints specified in BSDL-2 language features
such as bs2:nOccurs, bs2:if, bs2:length, and bs2:ifUnion.
Consequently, a BintoBSD Parser needs to include an XPath 1.0 processor,
which represents a significant implementation cost for constrained execution
environments. However, a number of media formats may be parsed without
the need for XPath expressions. Therefore, a first profile is defined for Binto-
BSD that excludes the use of XPath, while still allowing the use of variables,
resulting in expressions such as bs2:nOccurs="$number".

Furthermore, by excluding the use of location paths in XPath expressions,
it is also possible to significantly reduce the complexity and memory footprint

E.2. BSDL features in DIA Amendment 2 245

of an XPath processor. This approach prevents a BintoBSD processor from
having to store a partially instantiated BSD.

In short, the following profiles are defined for BintoBSD:

• In the Simple Profile, the use of the BSDL-2 language features
bs2:nOccurs, bs2:if, bs2:ifUnion, and bs2:length is re-
stricted to the use of lexical values (i.e., constants) and variables (taking
the form of $var expressions). A BintoBSD processor does not have
to include an XPath processor, nor does it need to handle a partially
instantiated BSD in memory during the parsing process.

• In the Baseline Profile, the use of location steps in XPath expressions
is prohibited. A BintoBSD Parser only needs to implement a subset of
an XPath processor and does not need to handle a partially instantiated
BSD in memory during the parsing process.

• The Main Profile contains all tools available in the first version of
BSDL-2, including the new extensions of Amendment 2, but excluding
the support for XPath 2.0 and ECMAScript.

• The Extended Profile supports XPath 2.0 and the use of ECMAScript
for the implementation of user-defined functions and datatypes. The
latter tools are incorporated in the second amendment to DIA.

Profiles for BSDtoBin

XPath expressions are not used by the language features of BSDL-1. Hence, it
is not necessary to define profiles for BSDtoBin that aim at a restricted use of
XPath. However, ECMAScript may still be employed for the implementation
of user-defined datatypes.

To summarize, the following profiles are defined for BSDtoBin:

• The Main Profile contains all tools that are available in the first version
of BSDL-1, including the new extensions of Amendment 2, but exclud-
ing the support for ECMAScript.

• The Extended Profile supports the use of ECMAScript for the imple-
mentation of user-defined datatypes.

Signaling of profiles

To signal the required profile in a BS Schema and BSD, two new attributes are
defined: one at the level of a BS Schema for BintoBSD and one at the level of
a BSD for BSDtoBin. This is illustrated in Listing E.7.

246 A prospective view of DIA Amendment 2

Listing E.7: Profile signaling.

<!-- Profile signaling in a BS Schema. -->
<xsd:schema bs2:requiredProfile="simple">

<!-- Profile signaling in a BSD. -->
<bitstream bs1:requiredProfile="simple">

References

[1] Multimedia Description Schemes Sub-group. White paper on MPEG-21
Digital Item Adaptation. MPEG-document ISO/IEC JTC1/SC29/WG11
N8083, Moving Picture Experts Group (MPEG), Montreux, Switzerland,
April 2006. Available on http://www.chiariglione.org/mpeg/
technologies/mp21-dia/index.htm.

[2] ITU-T and ISO/IEC JTC 1. Generic coding of moving pictures and associated
audio information – Part 2: Video. ITU-T Rec. H.262 - ISO/IEC 13818-2
(MPEG-2 Video), November 1994.

[3] ITU-T. Video coding for low bit rate communication. ITU-T Rec. H.263;
version 1, Nov. 1995; version 2, Jan. 1998; version 3, Nov. 2000.

[4] ISO/IEC JTC 1. Information technology – Coding of audio-visual objects –
Part 2: Visual. ISO/IEC 14496-2 (MPEG-4 Visual version 1), April 1999;
Amd. 1 (ver. 2), Feb., 2000; Amd. 2, 2001; Amd. 3, 2001; Amd. 4 (Streaming
Video Profile), 2001; Amd. 1 to 2nd ed. (Studio Profile), 2001; Amd. 2 to 2nd
ed., 2003.

[5] Gary J. Sullivan and Thomas Wiegand. SVC Requirements Specified by VCEG
(ITU-T SG16 Q.6). JVT-document JVT-N027, Hong Kong, China, Joint Video
Team of ISO/IEC JTC1/SC29/WG11 and ITU-T SG16/Q.6, January 2005.
Available on http://ftp3.itu.int/av-arch/jvt-site.

[6] Ian Burnett, Rik Van de Walle, Keith Hill, Jan Bormans, and Fernando Pereira.
MPEG-21: Goals and Achievements. IEEE Multimedia, 10:60–70, October-
December 2003.

[7] Anthony Vetro, Charilaos Christopoulos, and Touradj Ebrahimi. Universal
Multimedia Access. IEEE Signal Processing Mag., 20(2):16–16, March 2003.

[8] ISO/IEC JTC 1. Information technology – Multimedia Framework (MPEG-21)
– Part 7: Digital Item Adaptation. ISO/IEC 21000-7:2004, 2004.

[9] Tim Bray, Jean Paoli, C.M. Sperberg-McQueen, Eve Maler, and François
Yergeau. Extensible Markup Language (XML) 1.0 (third edition). W3C Rec-
ommendation, W3C, February 2004.

http://www.chiariglione.org/mpeg/technologies/mp21-dia/index.htm
http://www.chiariglione.org/mpeg/technologies/mp21-dia/index.htm
http://ftp3.itu.int/av-arch/jvt-site

248 REFERENCES

[10] Fernando Pereira. Content and context: two worlds to bridge. In Proceedings
of the Fourth International Workshop on Content-Based Multimedia Indexing
(CBMI 2005), Riga, Latvia, June 2005.

[11] Wesley De Neve, Davy Van Deursen, Davy De Schrijver, Sam Lerouge, Koen
De Wolf, and Rik Van de Walle. BFlavor: a harmonized approach to media re-
source adaptation, inspired by MPEG-21 BSDL and XFlavor. EURASIP Signal
Processing - Image Communication, 21(10):862–889, November 2006.

[12] Wesley De Neve, Davy Van Deursen, Davy De Schrijver, Koen De Wolf, and
Rik Van de Walle. Using Bitstream Structure Descriptions for the Exploitation
of Multi-layered Temporal Scalability in H.264/MPEG-4 AVC’s Base Specifi-
cation. Lecture Notes in Computer Science - Advances in Multimedia Informa-
tion Processing - PCM 2005, 3767:641–652, October 2005.

[13] Wesley De Neve, Davy De Schrijver, Davy Van Deursen, Peter Lambert, and
Rik Van de Walle. Real-Time BSD-driven Adaptation Along the Temporal
Axis of H.264/AVC Bitstreams. Lecture Notes in Computer Science - Advances
in Multimedia Information Processing - PCM 2006, 4261:133–143, October
2006.

[14] Peter Lambert, Wesley De Neve, Philippe De Neve, Ingrid Moerman, Piet De-
meester, and Rik Van de Walle. Rate-Distortion Performance of H.264/AVC
Compared to State-of-the-Art Video Codecs. IEEE Transactions on Circuits
and Systems for Video Technology, 16(1):134–140, January 2006.

[15] Peter Lambert, Wesley De Neve, Yves Dhondt, and Rik Van de Walle. Flexi-
ble macroblock ordering in H.264/AVC. Journal of Visual Communication &
Image Representation, 17:358–375, January 2006.

[16] Davy De Schrijver, Chris Poppe, Sam Lerouge, Wesley De Neve, and Rik
Van de Walle. MPEG-21 Bitstream Syntax Descriptions for Scalable Video
Codecs. Multimedia Systems Journal, 11(5):403–421, June 2006.

[17] Peter Lambert, Davy De Schrijver, Davy Van Deursen, Wesley De Neve, Yves
Dhondt, and Rik Van de Walle. A Real-time Content Adaptation Framework
for Exploiting ROI Scalability in H.264/AVC. In Lecture Notes in Computer
Science - Advanced Concepts for Intelligent Vision Systems - ACIVS 2006, vol-
ume 4179, pages 442–453, September 2006.

[18] Stefaan Mys, Peter Lambert, Wesley De Neve, Piet Verhoeve, and Rik Van de
Walle. SNR Scalability in H.264/AVC Using Data Partitioning. Lecture Notes
in Computer Science - Advances in Multimedia Information Processing - PCM
2006, 4261:333–343, October 2006.

[19] Davy Van Deursen, Davy De Schrijver, Wesley De Neve, and Rik Van de Walle.
A Real-Time XML-based Adaptation System for Scalable Video Formats. Lec-
ture Notes in Computer Science - Advances in Multimedia Information Process-
ing - PCM 2006, 4261:343–353, October 2006.

REFERENCES 249

[20] Sarah De Bruyne, Wesley De Neve, Koen De Wolf, Davy De Schrijver, Piet
Verhoeve, and Rik Van de Walle. Temporal Video Segmentation on H.264/AVC
Compressed Bitstreams. In Accepted for publication in Proceedings of the
13th International MultiMedia Modeling Conference (MMM 2007), Singapore,
January 2007.

[21] Davy De Schrijver, Wesley De Neve, Koen De Wolf, Robbie De Sutter, and
Rik Van de Walle. An Optimized MPEG-21 BSDL Framework for the Adap-
tation of Scalable Bitstreams. Accepted for publication in Journal of Visual
Communication & Image Representation.

[22] Wesley De Neve, Frederik De Keukelaere, Koen De Wolf, and Rik Van de
Walle. Applying MPEG-21 BSDL to the JVT H.264/AVC Specification in
MPEG-21 Session Mobility Scenarios. In Proceedings of the 5th International
Workshop on Image Analysis for Multimedia Interactive Services, page 4 pp,
Lisboa, Portugal, April 2004.

[23] Wesley De Neve, Peter Lambert, Sam Lerouge, and Rik Van de Walle. As-
sessment of the Compression Efficiency of the MPEG-4 AVC Specification.
In Proceedings of SPIE/Electronic Imaging 2004, volume 5308, pages 1082–
1093, San Jose, California, USA, January 2004.

[24] Wesley De Neve, Sam Lerouge, Peter Lambert, and Rik Van de Walle. A
Performance Evaluation of MPEG-21 BSDL in the Context of H.264/AVC. In
Proceedings of SPIE Annual Meeting 2004: Signal and Image Processing and
Sensors, volume 5558, pages 555–566, Denver, Colorado, USA, August 2004.

[25] Wesley De Neve, Koen De Wolf, Davy De Schrijver, and Rik Van de Walle. Us-
ing MPEG-4 scene description for offering customizable and interactive mul-
timedia presentations. In Proceedings of the 6th International Workshop on
Image Analysis for Multimedia Interactive Services, pages 4 on CD–rom, Mon-
treux, Switzerland, April 2005.

[26] Wesley De Neve, Dieter Van Rijsselbergen, Charles Hollemeersch, Jan
De Cock, Stijn Notebaert, and Rik Van de Walle. GPU-Assisted Decoding
of Video Samples Represented in the YCoCg-R Color Space. In Proceedings
of the 13th ACM International Conference on Multimedia, pages 447–450, Sin-
gapore, November 2005.

[27] Wesley De Neve, Davy De Schrijver, Dieter Van de Walle, Peter Lambert,
and Rik Van de Walle. Description-Based Substitution Methods for Emulat-
ing Temporal Scalability in State-of-the-Art Video Coding Formats. In Pro-
ceedings of the 7th International Workshop on Image Analysis for Multimedia
Interactive Services, pages 83–86, Incheon, Korea, April 2006. Korea Informa-
tion Science Society.

[28] Wesley De Neve, Davy De Schrijver, Davy Van Deursen, and Rik Van de Walle.
XML-Driven Bitstream Extraction Along the Temporal Axis of SMPTE’s
Video Codec 1. In Proceedings of the 7th International Workshop on Image

250 REFERENCES

Analysis for Multimedia Interactive Services, pages 233–236, Incheon, Korea,
April 2006. Korea Information Science Society.

[29] Frederik De Keukelaere, Wesley De Neve, Peter Lambert, Boris Rogge, and
Rik Van de Walle. MPEG-21 Digital Item Processing Architecture. In S. Fur-
nell and P. Dowland, editors, Proceedings of Euromedia 2003, pages 5–9, Ply-
mouth, April 2003. Eurosis.

[30] Robbie De Sutter, Sam Lerouge, Wesley De Neve, Peter Lambert, and Rik
Van de Walle. Advanced Mobile Multimedia Applications: using MPEG-21
and time-dependent Metadata. In Proceedings of SPIE/ITCom 2003, volume
5241, pages 147–156, Orlando, USA, September 2003.

[31] Koen De Wolf, Robbie De Sutter, Wesley De Neve, and Rik Van de Walle.
Comparison of prediction schemes with motion information reuse for low com-
plexity spatial scalability. In Proceedings of SPIE/Visual Communications
and Image Processing (VCIP 2005), volume 5960, pages 1911–1920, Beijing,
China, June 2005. SPIE.

[32] Davy De Schrijver, Wesley De Neve, Koen De Wolf, and Rik Van de Walle.
Generating MPEG-21 BSDL Descriptions Using Context-Related Attributes.
In Proceedings of the 7th IEEE International Symposium on Multimedia, pages
79–86, Irvine, USA, December 2005.

[33] Sarah De Bruyne, Koen De Wolf, Wesley De Neve, Piet Verhoeve, and Rik
Van de Walle. Shot Boundary Detection Using Macroblock Prediction Type
Information. In Proceedings of the 7th International Workshop on Image Anal-
ysis for Multimedia Interactive Services, pages 205–208, Incheon, Korea, April
2006. Korea Information Science Society.

[34] Davy Van Deursen, Wesley De Neve, Davy De Schrijver, and Rik Van de Walle.
BFlavor: an Optimized XML-based framework for Multimedia Content Cus-
tomization. In Proceedings of the 25th Picture Coding Symposium, pages 6 on
CD–rom, Beijing, China, April 2006.

[35] Davy De Schrijver, Wesley De Neve, Koen De Wolf, Stijn Notebaert, and
Rik Van de Walle. XML-Based Customization Along the Scalability Axes
of H.264/AVC Scalable Video Coding. In Proceedings of 2006 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS 2006), pages 465–468,
Island of Kos, Greece, May 2006.

[36] Koen De Wolf, Davy De Schrijver, Wesley De Neve, and Rik Van de Walle.
Adaptive Residual Interpolation: A Tool For Efficient Spatial Scalability In
Digital Video Coding. In H.R. Arabnia, editor, Proceedings of the 2006 Inter-
national Conference on Image Processing, Computer Vision & Pattern Recog-
nition (IPCV’06), volume 1, pages 131–137, Las Vegas, Nevada, USA, June
2006.

REFERENCES 251

[37] Peter Lambert, Wesley De Neve, Davy De Schrijver, Yves Dhondt, and Rik
Van de Walle. Using Placeholder Slices and MPEG-21 BSDL for ROI Ex-
traction in H.264/AVC FMO-encoded Bitstreams. In Proceedings of In-
ternational Conference on Signal Processing and Multimedia Applications
(SIGMAP 2006), pages 9–16, Setúbal, Portugal, August 2006.

[38] Davy De Schrijver, Wesley De Neve, Davy Van Deursen, Jan De Cock, and Rik
Van de Walle. On an Evaluation of Transformation Languages in a Fully XML-
driven Framework for Video Content Adaptation. In Proceedings of the 2006
International Conference on Innovative Computing, Information and Control
(ICICIC 2006), volume 3, pages 213–216, Beijing, China, August 2006.

[39] Dieter Van Rijsselbergen, Wesley De Neve, and Rik Van de Walle. GPU-driven
Recombination and Transformation of YCoCg-R Video Samples. In Proceed-
ings of the Fourth IASTED International Conference on Circuits, Signals, and
Systems (IASTED CSS 2006), pages 21–26, San Franciso, California, USA,
November 2006.

[40] Davy De Schrijver, Wesley De Neve, Davy Van Deursen, Sarah De Bruyne, and
Rik Van de Walle. Exploitation of Interactive Region of Interest Scalability in
Scalable Video Coding by Using an XML-driven Adaptation Framework. In
Proceedings of the 2nd International Conference on Automated Production of
Cross Media Content for Multi-channel Distribution, pages 223–231, Leeds,
UK, December 2006.

[41] Jeroen Bekaert, Patrick Hochstenbach, Wesley De Neve, Herbert Van de Som-
pel, and Rik Van de Walle. Suggestions concerning MPEG-21 Digital Item
Declaration. MPEG-document ISO/IEC JTC1/SC29/WG11 m9755, Moving
Picture Experts Group (MPEG), Trondheim, Norway, July 2003.

[42] Frederik De Keukelaere, Wesley De Neve, Robbie De Sutter, and Rik Van
de Walle. Suggestions concerning MPEG-21 Digital Item Method Opera-
tions and their implementation. MPEG-document ISO/IEC JTC1/SC29/WG11
m9754, Moving Picture Experts Group (MPEG), Trondheim, Norway, July
2003.

[43] Davy De Schrijver, Wesley De Neve, and Rik Van de Walle. Context-related
attributes for MPEG-21 BSDL. MPEG-document ISO/IEC JTC1/SC29/WG11
m12217, Moving Picture Experts Group (MPEG), Poznan, Poland, July 2005.

[44] Davy De Schrijver, Wesley De Neve, Frederik De Keukelaere, and Rik Van
de Walle. BNB comments on 21000-7 PDAM/2. MPEG-document
ISO/IEC JTC1/SC29/WG11 m12824, Moving Picture Experts Group (MPEG),
Bangkok, Thailand, January 2006.

[45] Davy De Schrijver, Wesley De Neve, Frederik De Keukelaere, and Rik Van
de Walle. Proposal for additional extensions to MPEG-21 BSDL. MPEG-
document ISO/IEC JTC1/SC29/WG11 m12825, Moving Picture Experts
Group (MPEG), Bangkok, Thailand, January 2006.

252 REFERENCES

[46] Wesley De Neve, Davy De Schrijver, Davy Van Deursen, Frederik De Keuke-
laere, and Rik Van de Walle. An MPEG-21 BS Schema for the first version of
H.264/MPEG-4 AVC. MPEG-document ISO/IEC JTC1/SC29/WG11 m12823,
Moving Picture Experts Group (MPEG), Bangkok, Thailand, January 2006.

[47] Wesley De Neve, Davy De Schrijver, Davy Van Deursen, Frederik De Keuke-
laere, and Rik Van de Walle. MPEG-21 BS Schemata for MPEG-{1, 2} Video
and Systems, MPEG-4 Visual, and H.264/MPEG-4 AVC. MPEG-document
ISO/IEC JTC1/SC29/WG11 m13213, Moving Picture Experts Group (MPEG),
Montreux, Switzerland, April 2006.

[48] Sylvain Devillers, Davy De Schrijver, Wesley De Neve, and Joe Thomas-
Kerr. Report of CE on BSDL extensions. MPEG-document ISO/IEC
JTC1/SC29/WG11 m13637, Moving Picture Experts Group (MPEG), Klagen-
furt, Austria, July 2006.

[49] Davy De Schrijver, Wesley De Neve, Davy Van Deursen, Saar De Zutter,
and Rik Van de Walle. An MPEG-21 BS Schema for the scalable ex-
tension of H.264/MPEG-4 AVC version 6 (Joint Scalable Video Model 6).
MPEG-document ISO/IEC JTC1/SC29/WG11 m13963, Moving Picture Ex-
perts Group (MPEG), Hangzhou, China, October 2006.

[50] ITU-T. Codec for videoconferencing using primary digital group transmission.
ITU-T Rec. H.120; version 1, 1984; version 2, 1988; version 3, 1993.

[51] ITU-T. Video Codec for Audiovisual Services at px64 kbit/s. ITU-T Rec.
H.261; version 1, Nov. 1990; version 2, Mar. 1993.

[52] ISO/IEC JTC 1. Information technology – Coding of moving pictures and
associated audio for digital storage media at up to about 1.5 Mbit/s – Part 2:
Video. ISO/IEC 11172-2:1993, March 1993.

[53] Gary J. Sullivan and Thomas Wiegand. Video Compression - From Concepts to
the H.264/AVC Standard. Proc. the IEEE, Special Issue on Advances in Video
Coding and Delivery, 93(1):18–31, January 2005.

[54] Iain E. G. Richardson. Video Codec Design: Developing Image and Video
Compression Systems. John Wiley & Sons, LTD, 2002.

[55] Joint Video Team (JVT) of ITU-T and ISO/IEC JTC 1. Advanced Video Cod-
ing: ITU-T Rec. H.264 and ISO/IEC 14496-10, version 1: May 2003, version
2: March 2004, version 3: July 2004, version 4: January 2005.

[56] Thomas Wiegand, Gary J. Sullivan, Gisle Bjøntegaard, and Ajay Luthra.
Overview of the H.264/AVC Video Coding Standard. IEEE Trans. Circuits
Syst. Video Technol., 13(7):560–576, July 2003.

[57] Special Issue on the H.264/AVC Video Coding Standard, IEEE Trans. Circuits
Syst. Video Technol., 13 (7) (2003).

[58] Special issue on the emerging H.264/AVC video coding standard, Journal of
Visual Communication & Image Representation, 17 (2) (2006).

REFERENCES 253

[59] Gary J. Sullivan. The H.264/MPEG-4 AVC video coding standard and its de-
ployment status. In Proceedings of SPIE/Visual Communications and Image
Processing (VCIP 2005), volume 5960, pages 709–719, Beijing, July 2005.
SPIE.

[60] Gary J. Sullivan, Pankaj Topiwala, and Ajay Luthra. The H.264/AVC Advanced
Video Coding Standard: Overview and Introduction to the Fidelity Range Ex-
tensions. In Proceedings of SPIE annual meeting 2004: Signal and Image
Processing and Sensors, volume 5558, pages 454–474, Denver, August 2004.

[61] Detlev Marpe, Steve Gordon, and Thomas Wiegand. H.264/MPEG4-AVC Fi-
delity Range Extensions: Tools, Profiles, Performance, and Application Areas.
In IEEE International Conference on Image Processing (ICIP’05), Genova,
Italy, September 2005.

[62] Henrique Malvar and Gary J. Sullivan. YCoCg-R: A Color Space with RGB
Reversibility and Low Dynamic Range. JVT-document JVT-I014, Trond-
heim, Norway, Joint Video Team of ISO/IEC JTC1/SC29/WG11 and ITU-T
SG16/Q.6, July 2003. Available on http://ftp3.itu.int/av-arch/
jvt-site.

[63] Iain E. G. Richardson. H.264 and MPEG-4 Video Compression: Video Coding
for Next-generation Multimedia. John Wiley & Sons, LTD, 2003.

[64] Mathias Wien. Variable Block-Size Transforms for Hybrid Video Coding. Ph.D.
dissertation, Rheinisch-Westfälischen Technischen Hochschule Aachen, 2004.

[65] Markus Flierl and Bernd Girod. Generalized B Pictures and the Draft
H.264/AVC Video-Compression Standard. IEEE Trans. Circuits Syst. Video
Technol., 13(7):587–597, July 2003.

[66] Marta Karczewicz and Ragip Kurceren. The SP- and SI-frames design for
H.264/AVC. IEEE Trans. Circuits Syst. Video Technol., 13(7):637–644, July
2003.

[67] Stephan Wenger and Michael Horowitz. Flexible MB ordering - A new er-
ror resilience tool for IP-based video. In International Workshop on Digital
Communications (IWDC 2002), Capri, Italy, September 2002.

[68] Yves Dhondt, Peter Lambert, Stijn Notebaert, and Rik Van de Walle. Flexible
macroblock ordering as a content adaptation tool in H.264/AVC. In Proceed-
ings of the SPIE/Optics East conference, page 9 pp, Boston, October 2005.

[69] Solomon W. Golomb. Run-length encodings. IEEE Trans. Inform. Theory,
12(3):399–401, July 1966.

[70] Thomas Wiegand, Heiko Schwarz, Anthony Joch, Faouzi Kossentini, and
Gary J. Sullivan. Rate-Constrained Coder Control and Comparison of Video
Coding Standards. IEEE Trans. Circuits Syst. Video Technol., 13(7):688–703,
July 2003.

http://ftp3.itu.int/av-arch/jvt-site
http://ftp3.itu.int/av-arch/jvt-site

254 REFERENCES

[71] Requirements for AVC Codec. JVT-document JVT-C156, Fairfax, Vir-
ginia, USA, Joint Video Team of ISO/IEC JTC1/SC29/WG11 and ITU-T
SG16/Q.6, May 2002. Available on http://ftp3.itu.int/av-arch/
jvt-site.

[72] Siwei Ma, Wen Gao, Yan Lu, and Hanqing Lu. Proposed draft description of
rate control on JVT standard. JVT-document JVT-F086, Awaji, Japan, Joint
Video Team of ISO/IEC JTC1/SC29/WG11 and ITU-T SG16/Q.6, December
2002. Available on http://ftp3.itu.int/av-arch/jvt-site.

[73] Peter Lambert. FMO-Based Error Resilience and Adaptivity in H.264/AVC.
Ph.D. dissertation, Ghent University, 2007.

[74] Thomas Wedi and Yoshiichiro Kashiwagi. Subjective quality evaluation of
H.264/AVC FRExt for HD movie content. JVT-document JVT-L033, Red-
mon, Washington, USA, Joint Video Team of ISO/IEC JTC1/SC29/WG11
and ITU-T SG16/Q.6, July 2004. Available on http://ftp3.itu.int/
av-arch/jvt-site.

[75] Thomas Stockhammer and Miska M. Hannuksela. H.264/AVC Video for Wire-
less Transmission. IEEE Wireless Commun. Mag., 12(4):6–13, August 2005.

[76] Yves Dhondt, Stefaan Mys, Peter Lambert, and Rik Van de Walle. An evalu-
ation of flexible macroblock ordering in error-prone environments. In Susanto
Rahardja, JongWon Kim, Qi Tian, and Chang Wen Chen, editors, Proceedings
of the SPIE/Optics East Conference, volume 6391, page 10 pp., Boston, 10
2006.

[77] Stephan Wenger and Michael Horowitz. FMO 101. JVT-document JVT-
D063, Klagenfurt, Austria, Joint Video Team of ISO/IEC JTC1/SC29/WG11
and ITU-T SG16/Q.6, July 2002. Available on http://ftp3.itu.int/
av-arch/jvt-site.

[78] Stefaan Mys, Yves Dhondt, Dieter Van de Walle, Davy De Schrijver, and
Rik Van de Walle. A performance evaluation of the data partitioning tool in
h.264/avc. In Susanto Rahardja, JongWon Kim, Qi Tian, and Chang Wen Chen,
editors, Proceedings of the SPIE/Optics East Conference, volume 6391, page
10 pp., Boston, 10 2006.

[79] Barry G. Haskell, Atul Puri, and Arun N. Netravali, editors. Digital Video: An
Introduction to MPEG-2. Springer, December 1996.

[80] Dong Tian, Miska M. Hannuksela, and Moncef Gabbouj. Sub-sequence video
coding for improved temporal scalability. In Proceedings 2005 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS 2005), pages 6074–6077,
Kobe, Japan, May 2005.

[81] Miska M. Hannuksela. Enhanced concept of a GOP. JVT-document JVT-
B042, Geneva, Switzerland, Joint Video Team of ISO/IEC JTC1/SC29/WG11
and ITU-T SG16/Q.6, January 2002. Available on http://ftp3.itu.
int/av-arch/jvt-site.

http://ftp3.itu.int/av-arch/jvt-site
http://ftp3.itu.int/av-arch/jvt-site
http://ftp3.itu.int/av-arch/jvt-site
http://ftp3.itu.int/av-arch/jvt-site
http://ftp3.itu.int/av-arch/jvt-site
http://ftp3.itu.int/av-arch/jvt-site
http://ftp3.itu.int/av-arch/jvt-site
http://ftp3.itu.int/av-arch/jvt-site
http://ftp3.itu.int/av-arch/jvt-site

REFERENCES 255

[82] Ville-Pekka Limnell, Dong Tian, Miska M. Hannuksela, and Moncef Gabbouj.
Quality Scalability in H.264/AVC Video Coding. In Proceedings of SPIE/Vi-
sual Communications and Image Processing (VCIP 2005), pages 559–567,
Beijing, China, July 2005.

[83] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand. Hierarchical B pictures.
JVT-document JVT-P014, Poznan, Poland, Joint Video Team of ISO/IEC
JTC1/SC29/WG11 and ITU-T SG16/Q.6, July 2005. Available on http:
//ftp3.itu.int/av-arch/jvt-site.

[84] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand. Analysis of Hierarchical
B Pictures and MCTF. In Proceedings of the IEEE International Conference
on Multimedia & Expo (ICME 2006), Toronto, Canada, July 2006.

[85] Jens-Rainer Ohm. Advances in scalable video coding. Proc. IEEE, 93(1):42–
56, January 2005.

[86] Julien Reichel, Heiko Schwarz, and Mathias Wien. Scalable Video Coding -
Joint Draft 4. JVT-document JVT-Q201, Nice, France, Joint Video Team of
ISO/IEC JTC1/SC29/WG11 and ITU-T SG16/Q.6, October 2005. Available
on http://ftp3.itu.int/av-arch/jvt-site.

[87] Julien Reichel, Heiko Schwarz, and Mathias Wien. Joint Scalable Video
Model JSVM-4. JVT-document JVT-Q202, Nice, France, Joint Video Team
of ISO/IEC JTC1/SC29/WG11 and ITU-T SG16/Q.6, October 2005. Available
on http://ftp3.itu.int/av-arch/jvt-site.

[88] ISO/IEC JTC 1. Information technology – JPEG 2000 image coding system:
Core coding system.

[89] ISO/IEC JTC 1. Information technology – Coding of audio-visual objects –
Part 3: Audio.

[90] Debargha Mukherjee, Eric Delfosse, Jae-Gon Kim, and Yong Wang. Optimal
Adaptation Decision-Taking for Terminal and Network Quality-of-Service.
IEEE Trans. Multimedia, 7(3):454–462, June 2005.

[91] João Magalhães and Fernando Pereira. Using MPEG standards for multime-
dia customization. Signal Processing: Image Communication, 19(5):437–456,
May 2004.

[92] Sam Lerouge, Peter Lambert, and Rik Van de Walle. Multi-criteria Optimiza-
tion for Scalable Bitstreams. In Proceedings of the 8th International Workshop
on Visual Content Processing and Representation, pages 122–130, Madrid,
Spain, September 2003. Springer.

[93] Gabriel Panis, Andreas Hutter, Joerg Heuer, Hermann Hellwagner, Harald
Kosch, Christian Timmerer, Sylvain Devillers, and Myriam Amielh. Bitstream
syntax description: a tool for multimedia resource adaptation within MPEG-21.
Signal Processing: Image Communication, 18(8):721–747, September 2003.

http://ftp3.itu.int/av-arch/jvt-site
http://ftp3.itu.int/av-arch/jvt-site
http://ftp3.itu.int/av-arch/jvt-site
http://ftp3.itu.int/av-arch/jvt-site

256 REFERENCES

[94] SMPTE. Standard for Television: VC-1 Compressed Video Bitstream Format
and Decoding Process. SMPTE 421M-2006, 2006.

[95] ISO/IEC JTC 1. Information technology – Generic coding of moving pictures
and associated audio information – Part 1: Systems. ISO/IEC 13818-1:2000,
2000.

[96] David C. Fallside and Priscilla Walmsley. XML Schema part 0: Primer (second
edition). W3C Recommendation, W3C, October 2004.

[97] James Clark and Steve DeRose. XML Path Language (Version 1.0). W3C
Recommendation, W3C, November 1999.

[98] James Clark. XSL Transformations (XSLT) version 1.0. W3C Recommenda-
tion, W3C, November 1999.

[99] B.S. Manjunath, Philippe Salembier, and Thomas Sikora. Introduction to
MPEG-7: Multimedia Content Description Interface. Wiley, New Jersey, 2003.

[100] Sam Lerouge. Personalizing Quality Aspects for Video Communication in
Constrained, Heterogeneous Environments. Ph.D. dissertation, Ghent Univer-
sity, 2005. Available on http://www.firw.ugent.be/doctoraat/
doctoraten/documenten/tekst/Lerouge_PhD.pdf.

[101] Kal Ahmed, Danny Ayers, Mark Birbeck, Jay Cousins, David Dodds, Josh
Lubell, Miloslav Nic, Daniel Rivers-Moore, Andrew Watt, Robert Worden, and
Ann Wrightson. XML Meta Data. Wrox, 2001.

[102] Joseph Thomas-Kerr, Ian Burnett, and Christian Ritz. Format-independent
Multimedia Streaming. In Proceedings of IEEE International Conference on
Multimedia & Expo (ICME 2006), Toronto, Canada, July 2006.

[103] Danny Hong and Alexandros Eleftheriadis. XFlavor: Bridging Bits and Objects
in Media Representation. In Proceedings of the IEEE International Conference
on Multimedia & Expo (ICME 2002), Lausanne, Switzerland, August 2002.
Available on http://flavor.sourceforge.net/.

[104] Xiaoming Sun, Chang-Su Kim, and C.-C. Jay Kuo. MPEG video markup
language and its applications to robust video transmission. Journal of Visual
Communication and Image Representation, 16(4-5):589–620, August-October
2005.

[105] Ian Burnett, Fernando Pereira, Rik Van de Walle, and Rob Koenen, editors. The
MPEG-21 Book. Wiley, March 2006.

[106] Special Issue on MPEG-21, IEEE Trans. Multimedia 7 (3) (2005).

[107] Myriam Amielh and Sylvain Devillers. Bitstream Syntax Description Lan-
guage: Application of XML-Schema to Multimedia Content Adaptation. In
WWW2002: The Eleventh International World Wide Web Conference, Hon-
olulu, Hawaii, May 2002. Available on http://www2002.org/CDROM/
alternate/334/.

http://www.firw.ugent.be/doctoraat/doctoraten/documenten/tekst/Lerouge_PhD.pdf
http://www.firw.ugent.be/doctoraat/doctoraten/documenten/tekst/Lerouge_PhD.pdf
http://flavor.sourceforge.net/
http://www2002.org/CDROM/alternate/334/
http://www2002.org/CDROM/alternate/334/

REFERENCES 257

[108] Gauthier Lafruit, Eric Delfosse, Roberto Osorio, Wolfgang van Raemdonck,
Vissarion Ferentinos, and Jan Bormans. View-Dependent, Scalable Texture
Streaming in 3-D QoS With MPEG-4 Visual Texture Coding. IEEE Trans.
Circuits Syst. Video Technol., 14(7):1021–1031, July 2004.

[109] Sylvain Devillers, Christian Timmerer, Joerg Heuer, and Hermann Hellwagner.
Bitstream Syntax Description-Based Adaptation in Streaming and Constrained
Environments. IEEE Trans. Multimedia, 7(3):463–470, June 2005.

[110] Sylvain Devillers and Eric Delfosse. Non-normative features for BSDL and
update on reference software. MPEG-document ISO/IEC JTC1/SC29/WG11
M9804, Moving Picture Experts Group (MPEG), Trondheim, Norway, July
2003.

[111] Alexandros Eleftheriadis. Flavor: A Language for Media Representation. In
ACM Multimedia Conf., pages 1–9, Seattle, WA, November 1997. Available
on http://flavor.sourceforge.net/.

[112] Yu Lu, Feng Yi, Jie Dong, and Cixun Zhang. Overview of AVS-video: tools,
performance and complexity. In Proceedings of SPIE/Visual Communications
and Image Processing (VCIP 2005), volume 5960, pages 679–690, Beijing,
China, June 2005. SPIE.

[113] Sridhar Srinivasan, Pohsiang (John) Hsu, Tom Holcomb, Kunal Mukerjee,
Shankar L. Regunathan, Bruce Lin, Jie Liang, Ming-Chieh Lee, and Jordi
Ribas-Corbera. Windows Media Video 9: overview and applications. Signal
Processing: Image Communication, 19(9):851–875, October 2004.

[114] Youngsun Lee, Jinwhan Lee, Hyunsik Chang, and Jae Yeal Nam. A New Scene
Change Control Scheme based on Pseudo-skipped Picture. In Proceedings of
SPIE/Visual Communications and Image Processing, volume 3024, pages 159–
166, San Jose, CA, USA, January 1997. SPIE.

[115] ISO/IEC JTC 1. Information technology – MPEG systems technologies – Part
1: Binary MPEG format for XML. ISO/IEC 23001-1:2006, 2006.

[116] Gerrard Drury and Joseph Thomas-Kerr. ISO/IEC 21000-18 CD MPEG-
21 Digital Item Streaming. MPEG-document ISO/IEC JTC1/SC29/WG11
N7739, Moving Picture Experts Group (MPEG), Nice, France, Octo-
ber 2005. Available on http://www.chiariglione.org/mpeg/
working_documents.htm.

[117] Petr Cimprich et al. Streaming Transformations for XML (STX). Technical
report, Available on http://stx.sourceforge.net/documents/
spec-stx-20040701.html, 2004.

[118] Shih-Fu Chang and Anthony Vetro. Video adaptation: Concepts, technology,
and open issues. Proc. IEEE, 93(1):145–158, January 2005.

[119] Makoto Onizuka. Light-weight XPath processing of XML stream with deter-
ministic automata. In Proceedings of the Twelfth International Conference on

http://flavor.sourceforge.net/
http://www.chiariglione.org/mpeg/working_documents.htm
http://www.chiariglione.org/mpeg/working_documents.htm
http://stx.sourceforge.net/documents/spec-stx-20040701.html
http://stx.sourceforge.net/documents/spec-stx-20040701.html

258 REFERENCES

Information and Knowledge Management, pages 342–349, New Orleans, LA,
USA, 2003. ACM Press.

[120] Charles Barton, Philippe Charles, Deepak Goyal, Mukund Raghavachari, Mar-
cus Fontoura, and Vanja Josifovski. Streaming XPath Processing with Forward
and Backward Axes. In Proceedings of the 19th International Conference on
Data Engineering, pages 455–467, Bangalore, India, 2003.

[121] Toni Zgaljic, Nikola Sprljan, and Ebroul Izquierdo. Bitstream Syntax Descrip-
tion Based Adaptation of Scalable Video. In Proceedings of the European
Workshop on the Integration of Knowledge, Semantic and Digital Media Tech-
nologies (EWIMT), London, UK, 2005.

[122] Peter Lambert, Dieter Van de Walle, Wesley De Neve, and Rik Van de Walle.
ROI Scalability in H.264/AVC’s Base Specification. In Submitted to Visual
Communications and Image Processing 2007 (VCIP 2007), San Jose, Califor-
nia, USA, February 2007.

[123] ISO/IEC JTC 1. Dynamic and distributed adaptation. ISO/IEC 21000-
7:2004/Amd.2 (work in progress), 2006.

	Introduction
	Context
	Scalable video coding
	MPEG-21 Digital Item Adaptation

	Outline

	The H.264/AVC standard
	Introduction
	History of the standardization process
	The first version of H.264/AVC
	The Fidelity Range Extensions
	The scalable extensions to H.264/AVC

	Profiles
	Technical design features
	The network abstraction layer
	The video coding layer

	Rate-distortion performance
	RD performance of the first version of H.264/AVC
	RD performance of H.264/AVC FRExt

	Conclusions and original contributions

	Adaptivity provisions in H.264/AVC
	Introduction
	Switching pictures for bitstream switching
	Background
	Switching pictures

	FMO for region of interest coding
	Data partitioning for SNR scalability
	Multi-layered temporal scalability
	Background
	Conventional temporal scalability
	Sub-sequences and sub-sequence layers
	The sub-sequence concept in H.264/AVC
	Summary

	The scalable extensions to H.264/AVC
	Design philosophy and technical features
	Bitstream structure

	Conclusions and original contributions

	BSD-driven media resource adaptation
	Introduction
	Principles of BSD-based content adaptation
	Bitstream syntax description languages
	MPEG-21 BSDL
	XFlavor
	Summary

	BS Schemata for MPEG media formats
	Structure of the BS Schemata
	Complexity assessment of the BS Schemata
	Design features of the BS Schema for H.264/AVC

	BSD-driven temporal adaptation in VC-1
	Video Codec 1
	Performance data

	Conclusions and original contributions

	BFlavor: a new bitstream syntax description tool
	Introduction
	The BFlavor tool chain
	Application scenario
	Harmonized adaptation architecture
	Definition of BFlavor on top of XFlavor

	Performance data
	Methodology
	BSD generation performance
	Temporal adaptation performance
	Concluding remark

	Conclusions and original contributions

	Enhanced BSD-driven adaptation
	Introduction
	Enhanced exploitation of temporal scalability
	Placeholder pictures
	Placeholder pictures in MPEG-21 BSDL
	BSD-based construction of placeholder pictures

	Performance of temporal adaptation in H.264/AVC
	Methodology
	BSD generation
	BSD transformation and adapted bitstream construction

	Enhanced exploitation of ROI scalability
	Conclusions and original contributions

	Conclusions
	Syntax and BSD fragments for H.264/AVC
	Introduction
	Syntax fragments
	BSD fragments

	BS Schemata for MPEG media formats
	Introduction
	Features BS Schemata
	MPEG-1 Video
	MPEG-1 Systems
	H.262/MPEG-2 Video
	MPEG-2 Systems
	MPEG-4 Visual
	H.264/AVC

	Visualization of the BS Schemata

	Context management for BSDL's BintoBSD
	Introduction
	BSD generation using context management

	Stylesheets for BSD transformation
	Introduction
	XSLT, STX, and XSLT/STX stylesheets

	A prospective view of DIA Amendment 2
	Introduction
	BSDL features in DIA Amendment 2
	Extensions to BSDL-2
	Extensions to BSDL-1
	Profiles

