67 research outputs found

    Geospatial methods and tools for natural risk management and communications

    Get PDF
    In the last decade, real-time access to data and the use of high-resolution spatial information have provided scientists and engineers with valuable information to help them understand risk. At the same time, there has been a rapid growth of novel and cutting-edge information and communication technologies for the collection, analysis and dissemination of data, re-inventing the way in which risk management is carried out throughout its cycle (risk identification and reduction, preparedness, disaster relief and recovery). The applications of those geospatial technologies are expected to enable better mitigation of, and adaptation to, the disastrous impact of natural hazards. The description of risks may particularly benefit from the integrated use of new algorithms and monitoring techniques. The ability of new tools to carry out intensive analyses over huge datasets makes it possible to perform future risk assessments, keeping abreast of temporal and spatial changes in hazard, exposure, and vulnerability. The present special issue aims to describe the state-of-the-art of natural risk assessment, management, and communication using new geospatial models and Earth Observation (EO)architecture. More specifically, we have collected a number of contributions dealing with: (1) applications of EO data and machine learning techniques for hazard, vulnerability and risk mapping; (2) natural hazards monitoring and forecasting geospatial systems; (3) modeling of spatiotemporal resource optimization for emergency management in the post-disaster phase; and (4) development of tools and platforms for risk projection assessment and communication of inherent uncertainties

    Utilisation de la télédétection pour l’analyse de la dynamique de la biomasse aérienne sèche totale des forêts et des palmiers à huile d’une plantation mature dans le Bassin du Congo

    Get PDF
    Le stockage de la biomasse aérienne (BA) sèche totale des forêts est indispensable à la lutte contre les changements climatiques. Depuis quelques décennies, il y a une tendance à l’introduction de cultures agro-industrielles, comme les plantations de palmiers à huile, dans les forêts tropicales dans le Bassin du Congo. Ces conversions participent à l’augmentation ou à la diminution des émissions ou absorptions de dioxyde de carbone (CO2) dans l’atmosphère, tout en occasionnant des changements climatiques. Dans cette région, la disponibilité des données de terrain et de télédétection est relativement limitée pour évaluer la BA. L’estimation de la BA des palmiers à huile n’est également pas maitrisée dans le Bassin du Congo. Les incertitudes rapportées dans les études précédentes utilisant la télédétection demeurent encore élevées. Plusieurs approches à fort potentiel restent encore à développer ou à évaluer. À titre d’exemple, l’approche MARS (régressions multivariées par spline adaptative) pour estimer la BA n’a pas encore été testée, notamment avec des données combinées optiques, LiDAR et radar. Les pertes et les gains de la BA dus aux changements des forêts en palmiers à huile dans le Bassin du Congo, particulièrement au Gabon, n’ont pas encore été quantifiés. La présente étude vise alors à contribuer au développement des méthodes d’estimation de la BA par l’utilisation de la télédétection pour comprendre l’impact des plantations des palmiers à huile sur les variations de la BA des forêts. Au cours de la présente étude, nous avons développé les premiers modèles allométriques d’estimation de la BA des palmiers à huile à l’aide de mesures in situ originales, que nous avons acquises dans le Bassin du Congo. Des modèles de BA des palmiers à huile ont également été établis avec MARS et les régressions linéaires multiples (RLM) en utilisant des indices dérivés de la transformée de Fourier (indices FOTO) à partir d’images satellitaires FORMOSAT-2 et PlanetScope. Finalement, cette thèse propose aussi des modèles MARS qui combinent des données de télédétection optiques (SPOT 7), LiDAR et radar polarimétrique interférométrique (PolInSAR) pour estimer la BA des forêts tropicales. À l’aide des estimations fournies par les modèles construits, la dynamique des BA des forêts et des plantations de palmiers à huile a été analysée. Les résultats ont montré que le modèle allométrique local de BA, utilisant la variable composée formée par le diamètre à hauteur de poitrine, la hauteur et la densité, ou le nombre de feuilles, permettait d’avoir les meilleures estimations (erreur quadratique moyenne relative (%RMSE) = 5,1 %). Un modèle allométrique de BA relativement performant a également été construit en utilisant seulement le diamètre et la hauteur (%RMSE = 8,2 %). Pour l’estimation des BA des palmiers à partir d’images FORMOSAT-2 et PlanetScope, les résultats démontrent que l’approche MARS permet les évaluations les plus précises (%RMSE ≤ 9,5 %). Cela est particulièrement vrai lorsque les images FORMOSAT-2 sont considérées (%RMSE ≤ 6,4 %). Les modèles de régression linéaire multiple donnent aussi des résultats avec des erreurs faibles, mais n’atteignent pas l’approche MARS (%RMSE ≥ 6,6 %). Cette dernière a été utilisée pour développer une série de modèles afin d’estimer les BA des forêts de la région d’étude. Les résultats montrent que le modèle utilisant la variable individuelle de la hauteur médiane de la canopée (RH50) dérivée des données LiDAR a estimé la biomasse avec plus de précision (%RMSE = 28 %). La combinaison de données de télédétection (optique, LiDAR et radar) a réduit de près de 4 % les erreurs d’estimation de la biomasse du modèle exploitant la variable individuelle (RH50). Les analyses de la dynamique de BA due aux remplacements des forêts en palmeraies ont enfin permis de constater que les forêts sont plus des vecteurs de gains de BA que les palmeraies particulièrement pour les forêts matures (512 t ha-1 de plus de BA que les palmeraies, soit un surplus de 88 %). Ce constat est identique pour les forêts secondaires vieilles (168 t ha-1, soit 70 % de surplus de BA que les palmeraies) et les forêts secondaires jeunes-adultes ou inondables (74 t ha-1 de plus que les palmeraies, soit un excédent de 51 %). En revanche, l’installation de plantations de palmiers à huile dans les zones de sols nus ou forêts en repousse pourrait être gagnante en termes de BA, car celles-ci ne présentent que 72 t ha-1 de BA (100 % moins que les palmiers). C’est le cas aussi dans les zones occupées par les forêts secondaires jeunes-adultes avec des BA minimales et des sols nus ou des forêts en repousse avec des BA maximales de 52 t ha-1 (20 t ha-1, soit 38 % de BA de moins que les palmeraies)

    Validation of a forage production index (FPI) derived from MODIS fcover time-series using high-resolution satellite imagery: methodology, results and opportunities

    Get PDF
    An index-based insurance solution was developed to estimate and monitor near real-time forage production using the indicator Forage Production Index (FPI) as a surrogate of the grassland production. The FPI corresponds to the integral of the fraction of green vegetation cover derived from moderate spatial resolution time series images and was calculated at the 6 km x 6 km scale. An upscaled approach based on direct validation was used that compared FPI with field-collected biomass data and high spatial resolution (HR) time series images. The experimental site was located in the Lot and Aveyron departments of southwestern France. Data collected included biomass ground measurements from grassland plots at 28 farms for the years 2012, 2013 and 2014 and HR images covering the Lot department in 2013 (n = 26) and 2014 (n = 22). Direct comparison with ground-measured yield led to good accuracy (R-2 = 0.71 and RMSE = 14.5%). With indirect comparison, the relationship was still strong (R-2 ranging from 0.78 to 0.93) and informative. These results highlight the effect of disaggregation, the grassland sampling rate, and irregularity of image acquisition in the HR time series. In advance of Sentinel-2, this study provides valuable information on the strengths and weaknesses of a potential index-based insurance product from HR time series images

    Crop Phenology Modelling Using Proximal and Satellite Sensor Data

    Full text link
    peer reviewedUnderstanding crop phenology is crucial for predicting crop yields and identifying potential risks to food security. The objective was to investigate the effectiveness of satellite sensor data, compared to field observations and proximal sensing, in detecting crop phenological stages. Time series data from 122 winter wheat, 99 silage maize, and 77 late potato fields were analyzed during 2015–2017. The spectral signals derived from Digital Hemispherical Photographs (DHP), Disaster Monitoring Constellation (DMC), and Sentinel-2 (S2) were crop-specific and sensor-independent. Models fitted to sensor-derived fAPAR (fraction of absorbed photosynthetically active radiation) demonstrated a higher goodness of fit as compared to fCover (fraction of vegetation cover), with the best model fits obtained for maize, followed by wheat and potato. S2-derived fAPAR showed decreasing variability as the growing season progressed. The use of a double sigmoid model fit allowed defining inflection points corresponding to stem elongation (upward sigmoid) and senescence (downward sigmoid), while the upward endpoint corresponded to canopy closure and the maximum values to flowering and fruit development. Furthermore, increasing the frequency of sensor revisits is beneficial for detecting short-duration crop phenological stages. The results have implications for data assimilation to improve crop yield forecasting and agri-environmental modeling

    Combining Multitemporal Microwave and Optical Remote Sensing Data. Mapping of Land Use / Land Cover, Crop Type, and Crop Traits

    Get PDF
    Humanity has changed the earth’s surface to a dramatic extent. This is especially true for the area used for agricultural production. Against the background of a growing world population and the associated increased demand for food, it is precisely this area that will become even more important in the future. In order not to have to allocate even more land to agricultural use, optimization and intensification is the only way out of the dilemma. In this context, precise Geoinformation of the agriculturally used area is of central importance. It is utilized for improving land use, producing yield forecasts for more stable food security, and optimizing agricultural management. Rapid developments in the field of satellite-based remote sensing sensors make it possible to monitor agricultural areas with increased spatial, spectral and temporal resolution. However, to retrieve the needed information from this data, new methods are needed. Furthermore, the quality of the data has to be verified. Only then can the presented geodata help to grow crops more sustainably and more efficiently. This thesis develops new approaches for monitoring agricultural areas using the technology of microwave remote sensing in combination with optical remote sensing and existing geodata. It is framed by the overall objective to obtain knowledge on how this combination of data can provide the necessary geoinformation for land use studies, precision farming, and agricultural monitoring systems. Hundreds of remote sensing images from more than eight different satellites were analyzed in six research studies from two different Areas of Interest (AOIs). The studies guide through various spatial scales. First, the general Land Use / Land Cover (LULC) on a regional level in a multi-sensor scenario is derived, evaluating different sensor combinations of varying resolutions. Next, an innovative method is proposed, through which the high geometric accuracy of radar-imaging satellite sensors is exploited to update the spatial accuracy of any external geodata of lower spatial accuracy. Such external data is then used in the next two studies, which focus on cost-effective crop type mapping using Synthetic Aperture Radar (SAR) images. The resulting enhanced LULC maps present the annually changing crop types of the region alongside external, official geoinformation that is not retrievable from remote sensing sensors. The last two research studies deal with a single maize field, on which high resolution optical WorldView-2 images and experimental bistatic SAR observations from TanDEM-X are assessed and combined with ground measurements. As a result, this thesis shows that, depending on the AOI and the application, different resolution demands need to be fulfilled before LULC, crop type, and crop traits mapping can be performed with adequate accuracy. The spatial resolution needs to be adapted to the particularities of the AOI. Evaluation of the sensors showed that SAR sensors proved beneficial for the study objective. Processing the SAR images is complicated, and the images are unintuitive at first sight. However, the advantage of SAR sensors is that they work even in cloudy conditions. This results in an increased temporal resolution, which is particularly important for monitoring the highly dynamic agricultural area. Furthermore, the high geometric accuracy of the SAR images proved ideal for implementing the Multi-Data Approach (MDA). Thus information-rich external geodata could be used to lower the remote sensing resolution needs, improve the accuracy of the LULC-maps, and to provide enhanced LULC-maps. The first study of the maize field demonstrates the potential of the WorldView-2 data in predicting in-field biomass variations, and its increased accuracy when fused with plant height measurements. The second study shows the potential of the TanDEM-X Constellation (TDM) to retrieve plant height from space. LULC, crop type and information on the spatial distribution of biomass can thus be derived efficiently and with high accuracy from the combination of SAR, optical satellites and external geodata. The shown analyses for acquiring such geoinformation represent a high potential for helping to solve the future challenges of agricultural production

    Investigation of Coastal Vegetation Dynamics and Persistence in Response to Hydrologic and Climatic Events Using Remote Sensing

    Get PDF
    Coastal Wetlands (CW) provide numerous imperative functions and provide an economic base for human societies. Therefore, it is imperative to track and quantify both short and long-term changes in these systems. In this dissertation, CW dynamics related to hydro-meteorological signals were investigated using a series of LANDSAT-derived normalized difference vegetation index (NDVI) data and hydro-meteorological time-series data in Apalachicola Bay, Florida, from 1984 to 2015. NDVI in forested wetlands exhibited more persistence compared to that for scrub and emergent wetlands. NDVI fluctuations generally lagged temperature by approximately three months, and water level by approximately two months. This analysis provided insight into long-term CW dynamics in the Northern Gulf of Mexico. Long-term studies like this are dependent on optical remote sensing data such as Landsat which is frequently partially obscured due to clouds and this can that makes the time-series sparse and unusable during meteorologically active seasons. Therefore, a multi-sensor, virtual constellation method is proposed and demonstrated to recover the information lost due to cloud cover. This method, named Tri-Sensor Fusion (TSF), produces a simulated constellation for NDVI by integrating data from three compatible satellite sensors. The visible and near-infrared (VNIR) bands of Landsat-8 (L8), Sentinel-2, and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were utilized to map NDVI and to compensate each satellite sensor\u27s shortcomings in visible coverage area. The quantitative comparison results showed a Root Mean Squared Error (RMSE) and Coefficient of Determination (R2) of 0.0020 sr-1 and 0.88, respectively between true observed and fused L8 NDVI. Statistical test results and qualitative performance evaluation suggest that TSF was able to synthesize the missing pixels accurately in terms of the absolute magnitude of NDVI. The fusion improved the spatial coverage of CWs reasonably well and ultimately increases the continuity of NDVI data for long term studies

    REMOTE SENSING DATA ANALYSIS FOR ENVIRONMENTAL AND HUMANITARIAN PURPOSES. The automation of information extraction from free satellite data.

    Get PDF
    This work is aimed at investigating technical possibilities to provide information on environmental parameters that can be used for risk management. The World food Program (WFP) is the United Nations Agency which is involved in risk management for fighting hunger in least-developed and low-income countries, where victims of natural and manmade disasters, refugees, displaced people and the hungry poor suffer from severe food shortages. Risk management includes three different phases (pre-disaster, response and post disaster) to be managed through different activities and actions. Pre disaster activities are meant to develop and deliver risk assessment, establish prevention actions and prepare the operative structures for managing an eventual emergency or disaster. In response and post disaster phase actions planned in the pre-disaster phase are executed focusing on saving lives and secondly, on social economic recovery. In order to optimally manage its operations in the response and post disaster phases, WFP needs to know, in order to estimate the impact an event will have on future food security as soon as possible, the areas affected by the natural disaster, the number of affected people, and the effects that the event can cause to vegetation. For this, providing easy-to-consult thematic maps about the affected areas and population, with adequate spatial resolution, time frequency and regular updating can result determining. Satellite remote sensed data have increasingly been used in the last decades in order to provide updated information about land surface with an acceptable time frequency. Furthermore, satellite images can be managed by automatic procedures in order to extract synthetic information about the ground condition in a very short time and can be easily shared in the web. The work of thesis, focused on the analysis and processing of satellite data, was carried out in cooperation with the association ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action), a center of research which works in cooperation with the WFP in order to provide IT products and tools for the management of food emergencies caused by natural disasters. These products should be able to facilitate the forecasting of the effects of catastrophic events, the estimation of the extension and location of the areas hit by the event, of the affected population and thereby the planning of interventions on the area that could be affected by food insecurity. The requested features of the instruments are: • Regular updating • Spatial resolution suitable for a synoptic analysis • Low cost • Easy consultation Ithaca is developing different activities to provide georeferenced thematic data to WFP users, such a spatial data infrastructure for storing, querying and manipulating large amounts of global geographic information, and for sharing it between a large and differentiated community; a system of early warning for floods, a drought monitoring tool, procedures for rapid mapping in the response phase in a case of natural disaster, web GIS tools to distribute and share georeferenced information, that can be consulted only by means of a web browser. The work of thesis is aimed at providing applications for the automatic production of base georeferenced thematic data, by using free global satellite data, which have characteristics suitable for analysis at a regional scale. In particular the main themes of the applications are water bodies and vegetation phenology. The first application aims at providing procedures for the automatic extraction of water bodies and will lead to the creation and update of an historical archive, which can be analyzed in order to catch the seasonality of water bodies and delineate scenarios of historical flooded areas. The automatic extraction of phenological parameters from satellite data will allow to integrate the existing drought monitoring system with information on vegetation seasonality and to provide further information for the evaluation of food insecurity in the post disaster phase. In the thesis are described the activities carried on for the development of procedures for the automatic processing of free satellite data in order to produce customized layers according to the exigencies in format and distribution of the final users. The main activities, which focused on the development of an automated procedure for the extraction of flooded areas, include the research of an algorithm for the classification of water bodies from satellite data, an important theme in the field of management of the emergencies due to flood events. Two main technologies are generally used: active sensors (radar) and passive sensors (optical data). Advantages for active sensors include the ability to obtain measurements anytime, regardless of the time of day or season, while passive sensors can only be used in the daytime cloud free conditions. Even if with radar technologies is possible to get information on the ground in all weather conditions, it is not possible to use radar data to obtain a continuous archive of flooded areas, because of the lack of a predetermined frequency in the acquisition of the images. For this reason the choice of the dataset went in favor of MODIS (Moderate Resolution Imaging Spectroradiometer), optical data with a daily frequency, a spatial resolution of 250 meters and an historical archive of 10 years. The presence of cloud coverage prevents from the acquisition of the earth surface, and the shadows due to clouds can be wrongly classified as water bodies because of the spectral response very similar to the one of water. After an analysis of the state of the art of the algorithms of automated classification of water bodies in images derived from optical sensors, the author developed an algorithm that allows to classify the data of reflectivity and to temporally composite them in order to obtain flooded areas scenarios for each event. This procedure was tested in the Bangladesh areas, providing encouraging classification accuracies. For the vegetation theme, the main activities performed, here described, include the review of the existing methodologies for phenological studies and the automation of the data flow between inputs and outputs with the use of different global free satellite datasets. In literature, many studies demonstrated the utility of the NDVI (Normalized Difference Vegetation Index) indices for the monitoring of vegetation dynamics, in the study of cultivations, and for the survey of the vegetation water stress. The author developed a procedure for creating layers of phenological parameters which integrates the TIMESAT software, produced by Lars Eklundh and Per Jönsson, for processing NDVI indices derived from different satellite sensors: MODIS (Moderate Resolution Imaging Spectroradiometer), AVHRR (Advanced Very High Resolution Radiometer) AND SPOT (Système Pour l'Observation de la Terre) VEGETATION. The automated procedure starts from data downloading, calls in a batch mode the software and provides customized layers of phenological parameters such as the starting of the season or length of the season and many others

    Remote Sensing

    Get PDF
    This dual conception of remote sensing brought us to the idea of preparing two different books; in addition to the first book which displays recent advances in remote sensing applications, this book is devoted to new techniques for data processing, sensors and platforms. We do not intend this book to cover all aspects of remote sensing techniques and platforms, since it would be an impossible task for a single volume. Instead, we have collected a number of high-quality, original and representative contributions in those areas
    • …
    corecore