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ABSTRACT 

Coastal Wetlands (CW) provide numerous imperative functions and provide an economic base for 

human societies. Therefore, it is imperative to track and quantify both short and long-term changes 

in these systems. In this dissertation, CW dynamics related to hydro-meteorological signals were 

investigated using a series of LANDSAT-derived normalized difference vegetation index (NDVI) 

data and hydro-meteorological time-series data in Apalachicola Bay, Florida, from 1984 to 2015. 

NDVI in forested wetlands exhibited more persistence compared to that for scrub and emergent 

wetlands. NDVI fluctuations generally lagged temperature by approximately three months, and 

water level by approximately two months. This analysis provided insight into long-term CW 

dynamics in the Northern Gulf of Mexico. Long-term studies like this are dependent on optical 

remote sensing data such as Landsat which is frequently partially obscured due to clouds and this 

can that makes the time-series sparse and unusable during meteorologically active seasons. 

Therefore, a multi-sensor, virtual constellation method is proposed and demonstrated to recover 

the information lost due to cloud cover. This method, named Tri-Sensor Fusion (TSF), produces a 

simulated constellation for NDVI by integrating data from three compatible satellite sensors. The 

visible and near-infrared (VNIR) bands of Landsat-8 (L8), Sentinel-2, and the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were utilized to map NDVI 

and to compensate each satellite sensor’s shortcomings in visible coverage area. The quantitative 

comparison results showed a Root Mean Squared Error (RMSE) and Coefficient of Determination 

(R2) of 0.0020 sr-1 and 0.88, respectively between true observed and fused L8 NDVI. Statistical 

test results and qualitative performance evaluation suggest that TSF was able to synthesize the 

missing pixels accurately in terms of the absolute magnitude of NDVI. The fusion improved the 
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spatial coverage of CWs reasonably well and ultimately increases the continuity of NDVI data for 

long term studies.  
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CHAPTER 1: INTRODUCTION 

1.1 Background  

Coastal wetlands (CWs) serve as a buffer zone between the uplands and the sea and include a 

variety of freshwater swamps and marshes, salt marshes, mud flats, mangrove swamps, rocky 

shorelines, sea-grass beds and sandy beaches (Michener et al., 1997). CWs are therefore among 

the most dynamic ecosystems on earth due to the regular interaction between coastal marine 

processes and land-based fluvial (Ericson et al., 2006). They provide valuable ecosystem services 

to millions of people worldwide (Webb et al., 2013) which include shoreline protection from storm 

surge, key commercial and recreational fishing, water quality enhancement by nutrient uptake and 

filtration (Chen et al., 2001). CWs also play a key role in buffering the effects of climate change, 

thereby supporting climate change adaptation and resiliency. CWs also sequester carbon (Y. 

Huang et al., 2010), provide habitats for diverse wetland plants and animals. In fact, vegetated and 

healthy CWs are among the most effective sinks for carbon on the planet (Moomaw et al., 2018). 

Their value to coastal economies and lifestyles is indispensable. However, they are one of those 

ecosystems that are most strongly impacted by even slight changes in the climate, particularly 

through sea level rise (SLR), decreased ground and surface water levels and subsequent deviations 

in hydrologic regimes. They are sensitive to meteorological, climatic and anthropogenic 

influences. Cumulative changes in temperature, precipitation, storm frequency, intensity, 

distribution and timing can have both direct and indirect effects on CWs and inland wetlands. 

Unfortunately, over the past 50 years, vast areas of CWs have been polluted, drowned, or eroded 

and as a result have declined in size and health (White & Kaplan, 2017; Yu et al., 2016).  
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Extreme hydrologic events (EHEs) such as hurricanes, flooding and droughts are increasing in 

frequency and intensity as a result of climate change (Konisky et al., 2016) while CWs are highly 

vulnerable to these types of hazards. Under widely accepted climate change projections, CWs are 

anticipated to experience longer duration and increased depth of inundation due to SLR, changes 

in distribution of freshwater inputs that are influenced by alteration in precipitation patterns and 

increased temperature (Schubel & Hirschberg, 1978). 

However, there are variety of CWs types for example freshwater and salt-water wetlands (Klemas 

et al., 1993). Different types of wetlands adapt to climate change differently. A thorough analysis 

is required to understand the impact of these CWs against the EHEs. Large amounts of information 

including both spatial and temporal data are required in accurately capturing the spatio-temporal 

dynamics of CWs. Remote sensing (RS) has aided major advances in understanding CWs and their 

dynamics by quantifying internal processes and their interaction with spatio-temporal states of the 

atmosphere, land and ocean. For monitoring CWs, RS has many advantages including recurrent 

coverage for CWs to be monitored yearly, seasonally, even daily. It is especially appropriate for 

CWs monitoring in developing countries, where funds are limited and where little information is 

available on the areas, surrounding land uses and wetland losses over time (Ozesmi et al., 2002). 

In these inaccessible and ungauged areas, ground truth data is limited therefore techniques 

developed and refined elsewhere must be applied. Vegetation and water indices are generalizable 

and widely applicable classes of RS abstraction. Modern improvements in sensor design, evolution 

of newer generations of former satellites and advanced data analysis methods are making RS 

systems practical and attractive for monitoring natural and man-induced coastal ecosystem 

changes. Nevertheless, the relatively short durations of observation series, spatial data 
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discontinuity and data uncertainties still pose challenges for capturing the robust long-term trends 

within the ecosystem (Guo et al., 2017). Now it is high time to protect the CWs, which needs 

regular monitoring and mapping of large tracts of CWs, using existing RS data and 

computationally efficient yet cost-effective methods. 

1.2 Coastal Wetland Types 

Coastal wetlands have been classified by the National Oceanic and Atmospheric Administration 

(NOAA) Coastal Change Analysis Program (C-CAP). The C-CAP classified wetlands along the 

eastern seaboard and Gulf coasts of the United States. C-CAP is considered a reliable, integrated 

digital database that enables researchers to track development in coastal regions (Klemas et al., 

1993).  

C-CAP defines eight sub-classes of wetlands under three major classes. Palustrine wetland 

includes Palustrine forested wetland (PFW), Palustrine shrub/scrub wetland (PSW) and Palustrine 

emergent wetland (PEW). Estuarine wetland includes Estuarine forested wetland (EFW), 

Estuarine shrub/scrub wetland (ESW) and Estuarine emergent wetland (EEW). Submerged Lands 

includes both Palustrine aquatic bed and Estuarine aquatic bed. While the Estuarine wetland 

includes both wetlands and deep-water habitats, Palustrine wetland includes only wetland habitats 

(Cowardin et al., 1979). 

All three Palustrine wetlands consisting of PFW, PSW and PEW- contain tidal and non-tidal 

wetlands in which salinity due to ocean-derived salts is below 0.5 percent. They vary by vegetation 

types and height generally. The forested type is dominated by woody vegetation taller than or equal 

to five meters in height and occur in tidal areas. The scrub type is also dominated by woody 
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vegetation less than five meters in height and are found in tidal areas. Species present range from 

true shrub, young trees and shrubs, to trees that are small or stunted due to environmental 

conditions. The emergent wetland type includes tidal and non-tidal wetlands controlled by 

emergent mosses, persistent emergent vascular plants, and all those wetlands occur in the tidal 

areas with below 0.5 percent salinity. Plants generally remain standing until the next growing 

season (NOAA, 2017).  

Similar to the Palustrine wetland system, all three estuarine wetlands are situated in tidal areas 

where salinity due to ocean-derived salts is equal to or greater than 0.5 percent. The EFW is 

dominated by woody vegetation greater than or equal to five meters in height. The ESW includes 

all tidal wetlands dominated by woody vegetation and other wetlands less than five meters in 

height. The EEW includes erect, rooted, herbaceous hydrophytes (excluding mosses and lichens). 

These wetlands are present for most of the growing seasons in most years. Perennial plants usually 

dominate these wetlands (NOAA, 2017).  

Palustrine aquatic bed contains tidal and non-tidal wetlands and deep-water habitats. This 

ecosystem’s salinity is below 0.5 percent and is controlled by vegetation (i.e. algal mats, rooted 

vascular plant assemblages) growing and forming a continuous cover mainly on or at the surface 

of the water. Estuarine aquatic bed contains tidal wetlands and deep-water habitats where salinity 

is equal or greater than 0.5 percent.  This ecosystem is dominated by plants that grow and form a 

continuous cover principally on or at the surface of the water. These include algal mats, kelp beds, 

and rooted vascular plant assemblages (NOAA, 2017).  
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1.3 Normalized Difference Vegetation Index (NDVI)  

Phenological differences among terrestrial and CWs vegetation types, reflected in temporal 

differences in the Normalized Difference Vegetation Index (NDVI) derived from satellite RS data, 

have been used to map vegetation including land cover at continental scales. Theoretically, NDVI 

is an index used to characterize the reflective and absorptive features of vegetation in the red and 

near-infrared (NIR) portions of the electromagnetic spectrum which is calculated from a 

normalized transform of the NIR and red reflectance ratio. NDVI derived from Landsat has 

reasonable spatial resolution for many applications compared to other freely available satellite 

imagery. Landsat NDVI has many environmental applications including the ability to analyze 

changes in land use, transformation of urban heat islands, and impacts of EHEs. Landsat NDVI 

carries valuable information since 1984 regarding land surface properties for modeling terrestrial 

ecosystems on the global, continental, and regional scales. Such a long-time record is unique in 

the satellite RS community. Nevertheless, there are almost always disturbances in these time 

series, caused by sun glint, cloud contamination, atmospheric variability, and bi-directional effects. 

These disturbances greatly affect the monitoring of terrestrial and CWs ecosystems and show up 

as undesirable noise. Though the most often-used NDVI data sets are the post-processed 16-day 

Maximum Value Composite (MVC) products, they still include undesirable noise. Therefore, there 

is an ongoing requirement for methods for reducing noise and constructing high-quality NDVI 

time series data sets for further analysis in the scientific community to analyze NDVI and conduct 

research.  
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1.4 NDVI Application in Wetland Stress Analysis 

Advances in RS techniques and advanced data analysis schemes are fetching cutting edge research 

methods to real world practice and enabling cost efficient, quantitative environmental analysis 

more accessible. For example, wetland extent mapping, canopy density and closure, leaf area index 

etc., are making the assessment of environmental parameters doable at regional scales. These great 

resources however bring new challenges. Managers responsible for environmental monitoring as 

well as ecosystem modelers are handling large uncertainties in data because of the varieties in 

season, weather, region and vegetation types. Having comprehensive and up to date information 

is crucial to optimize CWs and forest management throughout the season especially before and 

after extreme natural hazards.  

NDVI mapping requires detailed imagery that abstracts a measure of the green vegetation existing 

in their study area. Time series analyses of the trend of greenness in vegetation can play a crucial 

role in identifying vegetation/CWs stress and relate the impact of hydrologic events. Long term 

impacts of extreme events on the ecosystem can range from small to massive, depending on the 

severity and duration of the event. A crucial component to time series analyses is establishing 

baseline characteristics of the study area so that changes can be identified.  One such study was 

about Hurricane Andrew that made landfall in August 1992 in Louisiana. Researchers used 

Advanced Very High Resolution Radiometer (AVHRR) imagery which is coarse resolution to 

evaluate the impacted area of forested wetlands and their changes over time in Louisiana (Ramsey 

III et al., 1997). A time series of AVHRR images were transformed into NDVI time-series. The 

comparative analysis among three study sites in three forested wetland ecosystems validated the 
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anomalous phenology pattern in all sites resulting from the hurricane. NDVI time-series using the 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data showed salt marsh stress and 

recovery in Barataria bay, Gulf of Mexico after the deep-water horizon oil spill. Multifarious 

researches used different sensors or methods for vegetation mapping. Researchers need to select 

the sensor and method based on their goal about wetland stress detection. 

1.5 Cloud Concerns in Optical Sensor Data  

RS data has been used to detect and track the wetland dynamics at the local and regional scales. 

Multiple satellite sensors such as Landsat (Han et al., 2015; B. Tian et al., 2015), Moderate 

Resolution Imaging Spectroradiometer (Landmann et al., 2013), Formosat (B. Tian et al., 2015), 

and AVHRR (Ramsey III et al., 1997) provided processed data in the form of vegetation indices 

for this application.  

Predicting missing data is a challenge for time-series analysis, especially optical sensor-based 

analysis, when the data is derived from satellite imagery. Landsat NDVI is not without the same 

problem. Missing data is inevitable due to the presence of thick clouds (Gordon & Wang, 1994). 

In warm coastal regions, water evaporation and frequent storms combine to produce cloud 

coverage and such analysis become more difficult. Cloud coverage hinders scientific research that 

depends on optical RS imagery. Moreover, observations are often incomplete because of sensor 

failure or outliers causing anomalous data. Therefore, it is important to carry out research on the 

filtering and gap filling of time series satellite images.  
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1.6 Machine Learning in Data Fusion and Prediction 

Machine learning is recognized as one of the most promising technique now a days for quantitative 

information retrieval from remotely sensed images (C. Zhang et al., 2018). A series of machine 

learning methods have been evolved, such as support vector machines (SVMs) (Ghamisi et al., 

2015), maximum likelihood (ML) (C. Zhang et al., 2018), neural networks (NNs) (W. Jiang et al., 

2018), random forest (RF) (Berhane et al., 2018), and so on for data prediction. Among the various 

machine learning methods, NN-based classifiers gain superiority in terms of robustness, better 

classification performance and high data error tolerance (W. Jiang et al., 2018). When handling a 

complex dataset, multilayer perceptron (MLP) NNs (Taravat et al., 2015) are required, which 

feature more layers with a full connection between all neurons. MLP is designed to learn the 

nonlinear features, irrespective of their statistical properties, which is widely used in coastal 

wetland classification (Bao & Ren, 2011). Previous researchers successfully used sensor fusion 

among Landsat, MODIS, and Sentinel (Kulawardhana et al., 2007; Roy et al., 2008; Walker et al., 

2012) while a lot of them utilized machine learning (Liu et al., 2018; Seo et al., 2018). 

1.7 Scope of the Study  

The current study performed a long-term CWs persistence analysis and explained the CWs 

dynamics with hydro-meteorological signals fluctuation as a key indicator for climate driven 

variations in CWs ecosystems. RS data collection and data pre-processing were a significant part 

of the research.  Once the data were prepared, a set of research questions were addressed: Which 

CW types are more persistent in the temporal domain? Which hydro-meteorological factor has the 

highest impact on CWs resiliency? Is there a time-lag between the CWs response towards hydro-
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meteorological factors forcing on them? Can Landsat pixels obscured by clouds be recovered? In 

an attempt to compare the resiliency of each wetland types, power spectral density (PSD) and 

cross-power spectral density (CPSD) were developed for each wetland type. All computation was 

derived with regard to seasonality removed time series. Seasonality was defined in the current 

study as monthly mean data over the whole time series. Such long-term study is heavily dependent 

on optical sensor that is subject to data loss due to cloud coverage. 

After observing the limitations imposed on the analysis by cloudy pixels, the study further 

proposed a novel data fusion method using machine learning techniques based on multi-sensor 

data to repair missing NDVI values. The unique and novel method was named tri-sensor fusion 

(TSF). A total of 4 years of time series data were collected for the training and testing of the TSF 

model. While the TSF method improves spatial data coverage with reasonable accuracy, there 

were still missing pixels. Therefore, the current study went a step further and proposed a novel 

data fusion followed by data reconstruction method using RF machine learning techniques based 

on multi-parameter time series data to repair missing NDVI reflectance values. The unique and 

novel method was named Optical Cloud Pixel Recovery (OCPR). High spatio-temporal resolution 

raster-based temperature, precipitation, and spatial locations along with water levels from a nearby 

tide gage and corresponding month were selected as the feature vector (predictor) components 

associated with NDVI (label). To reconstruct cloud contaminated pixel values from the time-

space-spectrum continuum, the RF machine learning tool was utilized. Approximately 30 years of 

time series data were collected for the training and testing of the OCPR model. All of these 

variables contained periods of missing data that were filtered out of the training and test data. RF 

is used to model the data distribution which is adapted to handle missing values. The RF, and linear 
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regression models, was assessed using the root mean square error (RMSE) between the 

reconstructed and the observed NDVI values in the test data set. The result is a robust, functioning 

model that can be used on Landsat as well as other satellite images worldwide, subject to further 

adjustment and testing.  
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CHAPTER 2: ASSESSING THE RESILIENCE OF COASTAL 

WETLANDS TO EXTREME HYDROLOGIC EVENTS USING 

VEGETATION INDICES: A REVIEW  

Tahsin, S., Medeiros, S.C., & Singh, A. (2018). Assessing the Resilience of Coastal Wetlands to 

Extreme Hydrologic Events Using Vegetation Indices: A Review. Remote Sensing, 10(9), 1390. 

2.1 Introduction 

Coastal wetlands (CWs) stand as a highly productive buffer zone between the uplands and the sea 

and include a diverse assemblage of freshwater swamps and marshes, salt marshes, mangrove 

swamps, hyper-saline lagoons, mud flats, rocky shorelines, sandy beaches, and sea-grass beds 

(Hardisky et al., 1986; Michener et al., 1997). CWs provide numerous ecosystem services to 

millions of people worldwide (Webb et al., 2013). Some valuable ecosystem services provided by 

CWs include shoreline protection from storm surge, key commercial and recreational fishing, and 

water quality enhancement by nutrient uptake and filtration (Chen et al., 2001). They also sequester 

carbon (E. B. Barbier et al., 2011; Y. Huang et al., 2010; Langley & Megonigal, 2010) and provide 

habitats for wetland plants and animals. In addition, CWs are among the most productive and 

dynamic ecosystems on earth due to the frequent interaction between land-based fluvial and coastal 

marine processes (Ericson et al., 2006). Their value to coastal economies and lifestyles cannot 

be overstated. However, CWs are very sensitive to meteorological, climatic and anthropogenic 

influences. Cumulative changes in temperature and precipitation, storm frequency, intensity, 

distribution, and timing can have both direct and indirect effects on CWs and interior wetlands 

as well. Unfortunately, over the past 50 years, vast areas of CW have been polluted, drowned, 
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or eroded and as a result have declined in size and health (Guo et al., 2017; Sandhu et al., 2016; 

White & Kaplan, 2017; Yu et al., 2016).  

Extreme hydrologic events (EHEs) such as hurricanes, flooding, and droughts are increasing in 

frequency and/or intensity as a result of climate change (Konisky et al., 2016). CWs are highly 

vulnerable to these types of hazards. Under widely accepted climate change projections, CWs are 

expected to experience increased depth and duration of inundation due to sea level rise (SLR), 

changes in distribution and intensity of fluvial freshwater inputs that are influenced by changes in 

precipitation patterns, and increased temperature (Scavia et al., 2002; Schubel & Hirschberg, 

1978).  

Accurately capturing the spatio-temporal dynamics of CWs requires vast amounts of information. 

In this context, vast indicates quantity in both space and time. Remote sensing (RS) has enabled 

major advances in understanding CWs and their changes by quantifying internal processes and 

their interaction with spatio-temporal states of the atmosphere, land and ocean. For monitoring 

CWs, RS has many advantages. RS data have recurrent coverage for CWs to be monitored 

seasonally or yearly. RS is especially appropriate for CW inventories and monitoring in developing 

countries, where funds are limited and where little information is available on the areas, 

surrounding land uses, and wetland losses over time (Ozesmi et al., 2002). In these inaccessible 

areas, ground truth data is limited therefore techniques developed and refined elsewhere must be 

applied. Vegetation and water indices are prominent examples of generalizable and widely 

applicable classes of remote sensing abstraction. Modern improvements in sensor design and 

advanced data analysis techniques are making RS systems practical and attractive for monitoring 
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natural and man-induced coastal ecosystem changes. Nevertheless, the relatively short durations 

of observation series and their uncertainties still pose challenges for capturing the robust long-term 

trends within the landscape (Abed-Elmdoust et al., 2016; Singh et al., 2015) and ecosystem (Guo 

et al., 2017).  

Here we present a literature review of contemporary RS platforms and their associated index 

products to investigate CW dynamics. RS technology has been used in both coastal and inland 

wetland research areas such as land use/cover changes, wetland classification (Barbier et al., 2011; 

Chen et al., 2001; Ericson et al., 2006; Y. Huang et al., 2010; Langley & Megonigal, 2010) and 

hydrologic processes in wetlands (Day et al., 2008; Nicholls & Cazenave, 2010; Wilcox & 

Whillans, 1999). However, the existing work is curated to synthesize the most relevant and current 

trends in RS technology for CW change detection, particularly in response to EHE impacts 

utilizing RS derived vegetation indices. Therefore, the objectives of this paper are to: (1) present 

an overview of the threats from EHEs on CWs; (2) highlight different types of RS tools to monitor 

CW changes using RS-derived indices due to hurricanes, droughts and floods; (3) present 

contemporary RS approaches (using lower level sensor data rather than abstracted indices) to 

monitor EHE impacts on CWs and (4) provide suggestions for future research in this area.   

2.2 Threat Profile for Extreme Hydrologic Events on Coastal Wetlands  

Coastal wetlands collectively include marshes, mangroves, forested wetlands, and estuaries. 

Survival of CWs depends largely on their ability to adapt and recover from EHEs and in addition 

to acute and long-term anthropogenic impacts. Once again, the EHEs referenced here include 

coastal flood/storm surge, hurricane, and drought that cause geophysical changes to the landscape.  
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The particular changes driven by EHEs include geomorphology (sediment deposition and erosion), 

geochemical (concentration or dilution of salinity), and biologic (damage and destruction of 

vegetation, transport and deposition of invasive species). Wilcox, 1999 (Wilcox & Whillans, 1999) 

found that local scale geomorphic changes such as sedimentation altered wetland hydro-period and 

internal creek depth. Day et al. (Day et al., 2008) provided a hierarchy of hydrologic pulse events 

ranging from daily tides, weekly sediment deposition to long term river channel major changes 

that affected the sustainability of various CWs. Meteorological changes in wetlands such as area 

change, topographical alteration along with sea level rise, storms, sedimentation, and changing 

freshwater input can directly impact coastal and estuarine wetlands. The synergistic biological 

processes can also influence these physical impacts and geomorphological changes to CWs 

resulting in unanticipated outcomes for the ecosystem (Day et al., 2008). 

A 2002 review of the marine resource literature summarized the potential impacts of natural events 

on coastal wetlands, shorelines, and estuaries (Scavia et al., 2002). The assessment considered 

several key visible effects of climate change such as SLR, alterations in precipitation patterns and 

subsequent delivery of freshwater, increased ocean temperature, and changes in frequency and 

intensity of coastal storms. Global sea levels are documented to have continuously risen through 

the 20th century and this is projected to accelerate through the 21st century due to global warming. 

The increase in water temperature along with changes in freshwater delivery and coastal hydro-

periods have the potential to alter the trophic state of CW (Nicholls & Cazenave, 2010). Although 

these impending impacts from climate change will vary in magnitude across CW types, the 

synergistic intensification of these impacts could trigger other ecosystem stresses such as coastal 

pollution, habitat destruction, and irrecoverable physical damage (Scavia et al., 2002).  
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Tahsin et al. (Tahsin et al., 2016) conducted a study in 2016 of the CW system in Apalachicola 

Bay, Florida. This area has experienced several tropical cyclones and droughts in 2005, 2009 and 

2012-2013. Another study was conducted to evaluate the impact of hurricane Andrew on CWs in 

Louisiana (Cahoon et al., 1995). Both of these studies suggest that marshes and forested wetlands 

that are less salt tolerant are particularly vulnerable to storm surge impacts. During Hurricane 

Andrew in Louisiana, large amounts of sediment moved into marshes and low salinity areas and 

suppressed vegetation. Salinity introduced into fresh water ecosystem zones from the storm surge 

resulted in salt burn (Cahoon et al., 1995). Similar vegetation suppression was observed in 

Apalachicola Bay during the hurricane season of 2004-2005 (Tahsin et al., 2016). Although 

freshwater wetland plants re-establish in three months to a year, more frequent and larger 

magnitude storms are likely to dampen recovery of these freshwater wetlands and threaten their 

long-term resilience (Cahoon et al., 1995). 

Table 2.1 summarizes potential threats posed by EHEs and also documents recommended methods 

against the threats. Note that anthropogenic disturbances are not considered in this study and will 

be a subject of future research. EHEs were arranged according to the change type occurred in 

landscape.  
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Table 2.1: Summary of Threats in Coastal Wetlands and Recommended Actions for 
Recovery 

Threat Types Brief Description Recommended methods 

Extreme events- Meteorological Changes 

Wetland acreage decrease SLR (Assembled with 
human activities) 

Wetland protection, 
restoration (removing exotic 
plants, removing bulkheads 
and fill, elevation grading, 
creating flushing channels, 

and planting native 
vegetation) and 

improvement of stressed 
systems (Klemas, 2013b) 

Wetland shrinkage SLR converts CW into open 
water 

Artificial wetland creation, 
conservation of potential 
migration areas (Kentula, 

2015) 

Surface elevation of CW 
cannot keep pace with SLR 

SLR threatens coastal salt-
marshes and mangrove 

forests  

Coastal climate change 
adaptation policy and 

expansion of monitoring 
(Webb et al., 2013) 

Topographically alteration 
in the Watershed 

Alterations can damage the 
natural hydrology of 

watershed area, including 
concentration pits, terraces, 

diversions, stream 
channelization, ditches, and 

others. 

New Wetland Creation; 

Channel Excavation or 
Backfill (Kentula, 2015). 
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Geomorphological Changes 

Alteration of CW’s 
geomorphology 

Intense and frequent 
hurricanes, SLR, changes in 

sediment, nutrient inputs 
and freshwater 

Changes in human behavior 
for dependency on wetland 

(Chen et al., 2001) 

Sediment accumulation Culturally-accelerated 
sedimentation alters the 

natural depths and hydro-
periods of 

wetlands 

Filled Wetland Construction 
(Wilcox & Whillans, 1999); 

 

Biological Changes 

Invasive species Intrusion of invasive species 
can reduce habitat diversity 

Biological Removal; 

Prescribed burn;  (Wilcox & 
Whillans, 1999) 

 

2.3 Remote Sensing Vegetation Indices Used to Monitor EHEs Impacts 

Scientists and engineers have developed indices for quantitatively and qualitatively evaluating 

vegetation cover, vigor, and growth dynamics using spectral measurements. Vegetation indices 

(VI) have been derived using multiple airborne and satellite platforms, including a recent increase 

in the use of data acquired by Unmanned Aerial Systems (UAs). To the best of authors’ knowledge, 

there is no integrated mathematical expression to unify all VIs because of the use of different light 

spectra combinations, platforms, and resolutions. Therefore, customized algorithms tried over a 

variety of applications expressed in specific mathematical frameworks have been developed. To 

obtain proxy quantifications of the vegetation surface, the frameworks often use visible light 
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reflectance, mainly red and green spectral regions, from vegetation, and combine it with nonvisible 

spectra such as near infrared (Xue & Su, 2017). However, while each VI is developed using 

specific techniques, the end user (ecologist, coastal engineer, geographer) bases their decision on 

the attributes of their particular use case such as target, spatial and temporal resolution 

requirements, and desired deliverables (see Table 2.2). Therefore, remote sensing scientists and 

engineers would be well served by involving end users in research projects from the start in order 

to identify and meet their needs. 

Table 2.2 List of Remote Sensing (RS) systems derived vegetation indices (Via) used in past 
studies on coastal wetland (CW) resiliency under extreme hydrologic events (EHEs) driven 

impacts 

Index RS System/ 

Images  

Spatial 
Resolution 
(m) 

Research Topics Image used References 

EHE – Hurricane 

NDVI Landsat-5 30 m 

 

 

Impacts of Hurricane 
Katrina at 2005 at coastal 
vegetation at Weeks Bay 
Reserve and surrounding 
area of coastal AL 

3 Images 

-before landfall,  

-after landfall, 

-8 months after 
landfall  

(Rodgers et 
al., 2009) 

NDVI MODIS-
Terra 

1 km Recovery rate of 
mangrove after the two 
major hurricanes in 
South Florida 

10 years (2001 to 
2010) time series  

(Y. Wang, 
2012) 
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Index RS System/ 

Images  

Spatial 
Resolution 
(m) 

Research Topics Image used References 

NDVI AVHRR 1.1 km To assess the impacted 
area of forested wetlands 
at Louisiana 

2 years (1991-
1993) time-series 
between June and 
November, plus a 

Composite image 
during 1993 June 

(Ramsey 
III et al., 
2001) 

SR, 
NDVI, 
ARVI, 
SAVI, 
SARVI, 
EVI 

Landsat -
MSS, TM, 
ETM+, OLI;  

ASTER; 
AVHRR; 
MODIS; 
SPOT; 
SENTINEL
-2 MSI 

Multiple  

(30 m 

15 m,  

1.1 km 

1 km 

10 m 

20 m) 

Biomass mapping of a 
marsh CW 

 (Mo et al., 
2018) 

NDVI Landsat 5 
and 7 

30 m CW resilience under 
EHEs from 1984 to 2015 
at Apalachicola Bay 

30-year time-
series  

(Tahsin et 
al., 2016) 

EVI MODIS 1 km The temporal severity of 
disturbance caused by 
hurricane Maria 
compared to other events 

17-year (2000-
2017) time-series 

(Feng et al., 
2018) 

EVI MODIS-
Terra and 
Aqua 

250 m Hurricane Dean (August 
2007) damage map to the 
forests in the Yucatán 
Peninsula of Mexico 

Pre-hurricane EVI 
composites: 

20 July (Aqua),  

28 July (Terra),  

(Rogan et 
al., 2011) 
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Index RS System/ 

Images  

Spatial 
Resolution 
(m) 

Research Topics Image used References 

5 August (Aqua), 

13 August (Terra).  

 

Post-hurricane 
composites: 

21 August (Aqua), 
29 August (Terra), 
6 September 
(Aqua),  

14 September 
(Terra)  

22 September 
(Aqua). 

mNDVI AVIRIS 20 m To investigate the ability 
of the saltmarshes in 
Barataria Bay, 
Louisiana, USA, to 
recover hurricane Isaac 
in 2012 

3 images   

-14 September 
2010 (Deepwater 
Horizon oil spill) 

-15 August 2011 

-19 October 2012 

(Hurricane Isaac) 

(Khanna et 
al., 2017) 

NDII MODIS 1 km Identify and estimate 
forest damage impacted 
by Hurricane Katrina 

3 years (2003-
2006) time series 

of vegetation 
indices Total 24 
images were 
available 

(Wang et 
al., 2010) 
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Index RS System/ 

Images  

Spatial 
Resolution 
(m) 

Research Topics Image used References 

EHE – Drought 

VCI AVHRR 1.1 km Detect drought onset and 
measure the intensity, 
duration, and impact of 
drought 

5-year (1985–
1990) time-series 

(Kogan, 
1995) 

VCI, 
PDSI, 
SPI, 
percent 
normal, 
deciles 

AVHRR 8 km Monitoring drought at 
Texas 

Images of 18 
growing-seasons 
(March to August 
1982–1999) 

(Quiring & 
Ganesh, 
2010) 

NDVI MODIS 250 m agricultural drought 
monitoring and early 
warning system for the 
farmers 

10 years (2002-
2012) monthly  

(Sruthi & 
Aslam, 
2015) 

NDVI, 
EVI, 
NDWI, 
LST. 

MODIS 1 km and 0.5 
km 

impacts of the 
2009/2010 drought in 
southwestern China on 
vegetation 

 

4 sets of 11 years 
(2000-2011) time-
series  

(Zhang et 
al., 2017) 

VIUPD
derived 
VCI 

MODIS 250 m longer-term drought 
monitoring, such as 
agricultural droughts 

2011 (April–
October)  

 

(Jiao et al., 
2016) 
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EHE – Flood 

N/A K-band 
radar images 

N/A standing water is present 
beneath the vegetation 
canopies 

 (Waite & 
Macdonald
, 1971) 

  

N/A SAR N/A Flood detection in 
wetland with a limited 
number of scenes 

limited scenes 
after 29 August 
2005 

(Kiage et 
al., 2005; 
Rykhus & 
Lu, 2005) 

N/A IRS LISS 
III, 1999 and 
Landsat 
TM, 1995 

Multiple  

(2.5 m; 

30 m)  

mapping the flood-
affected areas in Koa 
catchment, Bihar 

Landsat TM: 

-27 May 1995 

-18 October 1995 

 

IRS-1C LISS III: 

-March 1999 

-December 1999 

 

(Jain et al., 
2005) 

NDWI Landsat 
TM, ETM+ 

30 m to identify flood 
inundated in New South 
Wales 

21 years (1989–
2010) time-series 
data: Landsat 5 
TM and Landsat 7 
ETM+ images  

(Thomas et 
al., 2015) 

mNDW

I 

LANDSAT 30 m spectral analysis for 
flooded area prediction 

 (Ho et al., 
2010) 
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More than 100 VIs are currently in use (Xue & Su, 2017). Again, with the use of high resolution 

spectral instrumentation in remote sensing, the number of available channels is increasing, while 

their bandwidth is getting narrower (Honkavaara et al., 2013). One index calculated from 

multispectral information is the normalized ratio between the red (R) and near infrared (NIR) 

bands, known as the Normalized Difference Vegetation Index (NDVI) (Karnieli et al., 2010), that 

characterizes canopy growth or vigor. Among the earliest basic VIs, Ratio Vegetation Index (RVI), 

Difference Vegetation Index (DVI), and NDVI depend on R and NIR bands, while Perpendicular 

Vegetation Index (PVI) depends on soil reflectance and vegetation reflectivity. These VIs have 

limitations, mainly attributed to sensitivities to sparse vegetation (RVI, PVI); soil background 

(DVI, NDVI, PVI) (Major et al., 1990); and atmospheric effects (NDVI). Later, new VIs was 

developed to address different issues. For example, Atmospherically Resistant Vegetation Index 

(ARVI) has been developed to account for atmospheric effects and Transformed Soil-Adjusted 

Vegetation Index (TSAVI), Soil-Adjusted Vegetation Index (SAVI), and modified SAVI 

(MSAVI) were established to account for the effect of soil background. Different environments 

have their own complex characteristics so for practical applications; the suitability of a particular 

VI must be scrutinized for the target scenario. To assist in that determination, we present a review 

of recent studies on VIs used to monitor EHE driven impacts such as hurricane, drought and flood 

in CWs. There is also a category of studies that used RS spectral information or primary data 

directly to identify EHE impacts, which will be discussed in the following section. 
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2.3.1 Vegetation indices to assess hurricane impacts in coastal wetlands 

2.3.1.1 Normalized Difference Vegetation Index Derived Studies 

Extreme hydrologic events play a central role in the dynamics of CWs. NDVI is one of the most 

widely used VIs to monitor plant growth and vegetation cover and thus it is a good candidate to 

assess long term CW changes. Both medium (LANDSAT (Rodgers et al., 2009)) and coarse 

resolution (Advanced Very High Resolution Radiometer (AVHRR)) (Ramsey III et al., 1997), 

MODIS (Ramsey et al., 2011)) satellite remote sensors have been used successfully in the past 

providing CW changes or recovery from hurricanes. For example, medium resolution Landsat 5 

NDVI data were obtained to investigate coastal vegetation changes before and after Hurricane 

Katrina in 2005 for the Weeks Bay Natural Estuarine Research Reserve (NERR) and surrounding 

areas of coastal Alabama. Three NDVI images for selected dates before landfall (March 24, 2005), 

after landfall (September 16, 2005), and 8 months after landfall (April 28, 2006) showed that the 

NDVI values of coastal emergent wetland continued to decrease by 27% from September 2005 to 

April 2006 indicating prolonged hurricane damage in the study area (Rodgers et al., 2009). NDVI 

is often used to determine the effects of hurricanes on CW, including mangrove ecosystems that 

can vary from minor defoliation of a few trees to disastrous blow-down of an entire stand. An 

NDVI time series from 2001 to 2010 with an 8-day interval derived from the coarse resolution 

satellite image MODIS Terra to detect the recovery rate of mangrove after the two major 

hurricanes in South Florida. They found that it took around 2 to 3 years for mangrove ecosystem 

to recover to their phonological tempos (Y. Wang, 2012).  



 

25 
 

In August 1992, Hurricane Andrew made landfall in Louisiana and provided researchers the 

opportunity to use the coarse resolution AVHRR imagery to assess the impacted area of forested 

wetlands in Louisiana (Ramsey III et al., 1997). To better understand the phenology, a time series 

of AVHRR images were transformed into NDVI. The comparative analysis among three study 

sites (Site 1: a fairly open canopy; Site 2, a hardwood area; and Site 3, a hardwood area with the 

highest canopy closure) in the Atchafalaya Basin validated the anomalous phenology pattern of all 

sites in 1992 resulting from the hurricane. The differences in damage across three sites were 

correlated with the forest canopy structure. A recent study using VIs at multiple spatial resolutions, 

closely monitored the vulnerability of coastal marshes in Louisiana (Mo et al., 2018). They found 

that linear models derived from NDVI and Enhanced vegetation index (EVI) are most effective 

for assessing Leaf Area Index (LAI). They studied various optical remote sensors including 

Landsat MSS, TM, ETM+, and OLI; ASTER; AVHRR; MODIS; SPOT, and SENTINEL-2 

multispectral instrument (MSI) derived VIs such as Simple Ratio (SR), NDVI, ARVI, SAVI, Soil 

and Atmosphere Resistant Vegetation Index (SARVI), and EVI. The study also highlighted the 

effect of spatial resolution on biomass mapping of CW and found that sensors with high spatial 

resolution are preferred for mapping biomass in areas with dense water networks and areas along 

shorelines.  

2.3.1.1.1 A Case-study of CW dynamics: 30-year Landsat NDVI time-series analysis to 

monitor EHE impacts 

The health and vigor of the vegetation in the lower marshes of Apalachicola Bay have been 

detectably altered as a result of hurricanes and droughts. These changes were illustrated in an 
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analysis of 15 years of NDVI data for this region.  Tahsin et al. derived NDVI derived using 

Landsat 5,7 and 8 sensors from 2000 to 2015 and investigated the external stresses incurred by 

hurricanes and droughts on Saltwater Wetland (SWW), Freshwater Forested Wetland (FFW), and 

Freshwater Emergent Wetland (FEW) ecosystems using both annual averaged and monthly NDVI 

from 1984 to 2000. The CW ecosystem boundary was consolidated from the 23 wetland 

classifications of the National Oceanic and Atmospheric Administration (NOAA) Coastal Change 

Analysis Program (C-CAP) down to 3 the classes of wetlands mentioned above. Probability 

density functions (PDF) and NDVI difference computations against each year showed that SWW 

was more resilient than the other two ecosystems (Tahsin et al., 2016).  

Using the same data set, we generated Figure 2.1 to demonstrate the spatial NDVI variability 

averaged annually, from 2001 to 2015. Low NDVI values represent wetland with less greenness; 

high NDVI values represent wetland with more greenness. While 2002 was a regular non-event 

year, 2004 and 2005 had significant storm surges from Hurricanes Frances, Ivan and Dennis. 2012 

was classified as a drought year (Hatter, 2015). The mean annual NDVI values in the study area 

were found to be 0.52, 0.49, 0.34 and 0.41 in 2002, 2004, 2005 and 2012, respectively. The 

aftermath of each hurricane mentioned above was observed for a year from the month it made 

landfall. 2004 and especially 2005 showed the least greenness or most stress for CW in 

Apalachicola Bay due to repeated hurricane strikes. Drought also impacted the average NDVI 

range in 2012-2013.  
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Figure 2.1: Temporal pattern of annual averaged NDVI from 2001 to 2015. Low NDVIs 

were observed during 2003-2005 (known hurricane years), 2009 (known hurricane year) 

and 2012-2013 (known drought and tropical storm years) 

In this paper, we extended the Apalachicola Bay NDVI time-series back by an additional fifteen 

years from 1984 to 1999; bring the temporal extent of the data to 30 years. The data are similar 

except that the ecosystems were previously reclassified into three classes, based on the relatively 

minor differences between the two freshwater classes; they were now reclassified into two: 

saltwater wetland (SW) and freshwater wetlands (FW). FWs are the dominant type in the study 
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area and are characterized by woody vegetation that is 6 m tall or taller. All hydro period regimes 

were included except sub tidal. This rough categorization is important since each wetland type has 

different “typical” NDVI ranges. To illustrate this, the monthly average NDVI were computed for 

both wetland types from 1984 to 2015 and the results are shown in  

 

Figure 2.2: Boxplots of 30 Years of Vegetation Dynamics (NDVI) at Apalachicola Bay for 
the Freshwater Wetland (FW) (a) and Saltwater Wetland (SW). Horizontal line (red line) 
in a and b, in each box indicates median demarcating 50% data either above or below the 
median whereas the dashed (brown) horizontal lines represent the average 25th and 75th 
percentiles for the two types of the wetlands studied here (corresponding percentile values 

are written inside parenthesis adjacent to the dashed brown lines) 

Figure 2.2 shows the extension of the previous work to include 30 years of CW dynamics at 

Apalachicola Bay during repeated EHEs. 25th percentile NDVI values were calculated for both 

FW and SW which are 0.33 and 0.24, respectively. Figure 2.2 also note that the data ranging from 

2000-2015 has all months of data from January to December while data ranging from 1984-2000 

has several months of missing data in each year. The data gaps caused by cloudy/missing data may 
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have resulted in a narrower range of box plots for some years from 1984 to 2000. For example, 

1992 has only 6 months of data for both FW and SW. 

The time series in Figure 2.2 indicates that NDVI of both FW and SW were below the 25th 

percentile range during 1985, 1994, 1995, 1996, 2005, 2007, 2009, 2011-2012, 2013 suggesting 

wetland stresses in those years. Apalachicola Bay was impacted by Hurricane Elena, Hurricane 

Dennis, Hurricane Claudette in 1985, 2005 and 2013, respectively. Tropical storms followed by 

flood impacted Apalachicola Bay during 1994-1996, and droughts were intermittently observed 

from 2011-2013 (Leitman et al., 2016). Note that Tahsin et al. (Tahsin et al., 2016) reported similar 

findings regarding NDVI dynamics showing drops at 2005, 2009 and 2011- 2012.  

2.3.1.2 Enhanced Vegetation Index Studies 

EVI is a vegetation index that enhances the vegetation signal in areas with high biomass. Using 

MODIS Near InfraRed (NIR), Red (R) and BLUE (B) surface reflectance, EVI can be expressed 

as equation 2.1. 

                                                          𝑬𝑬𝑬𝑬𝑬𝑬 =  G×(NIR-R)
(NIR+ a×R – b×B +L)                    (2.1) 

The coefficients adopted in the MODIS-EVI algorithm are; L (Canopy background adjustment 

factor) =1, a = 6, b = 7.5, and G (gain factor) = 2.5 (Justice et al., 1998). A time series of MODIS 

EVI (from 2000 to 2017) was produced over Puerto Rico to determine the severity of the 

disturbance caused by Hurricane Maria compared to other events over the same period (Feng et 

al., 2018). Analysis of the MODIS EVI vegetation index demonstrated a steep decline in vegetation 

greenness outside of the historical range since 2000 when compared with September 13th (post 
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Hurricane Irma), with a much steeper decline in at September 29th (post Hurricane Maria). Wang 

and D’Sa in 2010 (Wang & D’Sa, 2010) revealed the usefulness of MODIS EVI product for long-

term CW monitoring after a hurricane disturbance in Mexico. Also, the EVI product can detect 

both disturbed and non-disturbed CW by the hurricanes. Using MODIS EVI product again, another 

study mapped Hurricane Dean (August 2007) damage to the forests in the Yucatán Peninsula of 

Mexico using a two-step vetting procedure. Capitalizing on the favorable timing of the MODIS 

Aqua EVI compositing, relative to the hurricane event, they revealed highest damage detection 

ranging from 95% (Saffir–Simpson hurricane wind scale zone 5) to 87% (zone 3) (Rogan et al., 

2011). A comparative study between MODIS and Landsat TM VIs illustrated that Landsat TM-

derived NDVI imagery was more sensitive to terrain properties than EVI. However, both indices 

either under or over-estimated VI values in areas of steep topography, especially when the sun 

elevation angle was less than 40◦ (TM images). An additional limitation of TM imagery is that 

fewer cloud-free images are typically available compared to MODIS composite images. Also, 

MODIS NDVI outperforms MODIS EVI in areas of steep topography particularly during seasons  

with poor viewing geometry (Matsushita et al., 2007; Sesnie et al., 2012).  

2.3.1.3 Soil Adjusted Vegetation Index (SAVI) Studies 

SAVI was developed as a modification of NDVI to account for the influence of soil brightness 

when vegetative cover is low (Huete, 1988). In response to the need for effective restoration of 

threatened estuarine wetlands in the Gulf Coast, a study for mapping biophysical health of the area 

was initiated. The study used multiple VIs consisting NDVI, EVI, SAVI, Chlorophyll Index 

(CIred), Wide Dynamic Range Vegetation Index (WDRVI), and Visible Atmospheric Resistant 
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Index (VARI) utilizing reflectance at Red and NIR bands for MODIS. Another study aimed to 

generate a remote sensing model of coastal marsh aboveground biomass density to represent 

nationally diverse tidal marshes within the conterminous United States (Byrd et al., 2018). Using 

the random forest machine learning algorithm, imagery from multiple sensors including Sentinel-

1 C-band SAR, Landsat, and the National Agriculture Imagery Program (NAIP), the model 

performance was improved. SAVI was identified as the most important VI among the six Landsat 

VIs that successfully predicted biomass density for a range of marsh plants. 

2.3.1.4 Other VIs Derived Studies 

Among other VIs, a recent study by Khanna et al. used a modified NDVI (mNDVI) to evaluate 

the recovery of the salt marshes in Barataria Bay, Louisiana, USA, after Hurricane Isaac in 2012 

and the Deepwater Horizon oil spill in 2010 (Khanna et al., 2017). In 2012, after Hurricane Isaac, 

there was a significant loss of green vegetation to water, soil and non-photosynthetic vegetation 

(NPV) in both oiled and oil-free sites. Also, vegetation in narrow stands of the Bay was 

considerably more stressed than vegetation in block stands. Another study developed an approach 

for identifying and estimating forest damage from Hurricane Katrina (Wang et al., 2010). The 

statistical analysis and comparison with the damage severity revealed that Normalized Difference 

Infrared Index (NDII) was an optimal indicator for detecting hurricane-induced forest damage 

among the five commonly used VIs, including NDVI, EVI, NDII, LAI and Fraction of 

Photosynthetically Active Radiation (FPAR). 
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2.3.2 RS systems and indices to monitor drought impacts 

According to the American Meteorological Society, a meteorological drought is defined by the 

magnitude (with respect to normal) and duration (e.g., weekly, monthly, seasonal, or annual time 

scales) of a precipitation deficit (Orville, 1990). Many drought indices have been developed for 

monitoring drought conditions due to their importance in assessing agricultural and wildfire risks 

(Quiring, 2009). Satellite image-based drought indices such as the NDVI-based Vegetation 

Condition Index (VCI), have proven to be useful for detecting drought onset and measuring the 

intensity, duration, and impact of drought in regions around the world (Ji & Peters, 2003; Kogan, 

1995; Seiler et al., 2000). Mo et al. (Mo et al., 2017) used Landsat-derived NDVI and field‐based 

environmental data during the past 30 years to study the drought‐associated phonological changes 

of Louisiana coastal marshes. They found correlation between drought in southeast Louisiana and 

La Niña. They also pointed out the sensitivity of saline marshes to drought. Another study applied 

change analysis method using high-resolution IKONOS and WorldView-2 satellite imagery to 

identify the annual rates of change from mudflat to vegetation in a coastal wetland (Tidal march) 

restoration area. Not only the effects of wet years and drought, the trends of the vegetation in that 

tidal marsh area were likely influenced by a combination of other factors such as sedimentation 

rates (Chapple & Dronova, 2017). 

A number of researches used satellite image-derived VIs for drought monitoring other than coastal 

wetlands that paved the path to use the VIs for drought monitoring in CWs as well. For example, 

the combination of MODIS derived NDVI as well as Land surface temperature (LST) provided 

very useful information for agricultural drought monitoring and early warning system for farmers 
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(Sruthi & Aslam, 2015). Zhang et al. (Zhang et al., 2017) examined the impacts of the 2009/2010 

drought in southwestern China on vegetation by calculating the standardized anomalies of NDVI, 

EVI, Normalized Difference Water Index (NDWI), and LST. The indices were derived by MODIS 

satellite images. The results implied that the NDVI, EVI, and NDWI declined, while LST 

increased in the 2009/2010 drought-stricken vegetated areas during the drought period. Zi and 

Peters, (Ji & Peters, 2003) established that while NDVI is a useful variable for monitoring 

vegetation conditions, the nature of the relationship between the NDVI and drought conditions 

varies based on the seasonal timing and variations in vegetation and soil type (Ji & Peters, 2003).  

2.3.3 RS systems and indices to monitor flood impacts 

Flood impacts resulting from heavy rainfall, storm surge and drainage system failures are regularly 

experienced in coastal and inland areas. Remote sensing has played an important role in 

characterizing these hazards and assessing their effects. Waite and MacDonald first spotlighted 

flooded forests during “leaf off” conditions in Arkansas where they showed up as anomalously 

bright areas on K-band Radio Detection and Ranging (Radar) images (Waite & Macdonald, 1971). 

During that time, many studies relied on the fact that when standing water is present beneath the 

vegetation canopies, the radar backscattering signal changes with water level, depending on 

vegetation type and structure. Therefore, they used SAR backscatter to monitor temporal variations 

in the hydrological conditions of wetlands, including floods (Bourgeau-Chavez et al., 2005; Costa, 

2004; Costa et al., 2002; Grings et al., 2006; Hess et al., 1995; Kiage et al., 2005). Previous studies 

using satellite SAR imagery over coastal Louisiana were focused on flood detection in wetlands 

with a limited number of scenes (Kiage et al., 2005; Rykhus & Lu, 2005). A study on the Louisiana 
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coast investigated the feasibility of using Radarsat-1 SAR imagery to detect flooded areas in 

coastal Louisiana after Hurricane Lili, October 2002. Arithmetic differencing and multi-temporal 

enhancement techniques were employed to detect flooding and investigate relationships between 

backscatter and water level changes (Kiage et al., 2005).  

Jain et al. (Jain et al., 2005) mapped the flood-affected areas in Koa catchment, Bihar  in India 

using remote sensing satellite data (IRS LISS III, 1999 and Landsat TM, 1995). They derived 

water indices using image processing techniques and indicated that a NDWI based approach was 

able to identify flood inundation. NDWI derived from Landsat TM and ETM+ images were also 

used to map the inundation in New South Wales, Australia (Thomas et al., 2015). Another study 

generated a flood inundation map using a geomorphologic approach employing Shuttle Radar 

Topographic Mission (SRTM) DEM and satellite image data (ASTER and Landsat). They 

integrated both landform classification and spectral analysis for flooded area prediction by 

applying modified NDWI (MNDWI) and elevation range to assess flood inundation condition of 

an alluvial plain in central Vietnam (Ho et al., 2010). The study suggested that the extraction of 

moist soil by MNDWI can help to detect flooded sites; results were also compared with the 

landform classification map, SRTM DEM elevation ranges and land cover classification (Ho et 

al., 2010). 

2.4 Satellite/Airborne Imagery and Remote Sensors Primary Data for Assessing the 

Impacts of Extreme Hydrologic Events 

In addition to abstracted indices, the primary data generated by aerial and remote sensors have 

been used to develop flood maps. Different techniques for flood mapping using active and passive 
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RS systems have been developed and applied in several studies. Flood mapping of hurricane storm 

surge or inland flooding by passive RS systems includes identifying the water verses non-water 

areas and determining flooded area during the flood event. Table 2.3 lists the satellites used in past 

studies to identify EHE impacts on CWs based on spectral reflectance or primary data obtained 

from corresponding RS system. The order of satellites in Table 2.3 is presented based on spatial 

resolution (high/medium/low). Active sensors such as RADARSAT-1 are usually classified as 

medium resolution and therefore are placed in that resolution category (Chaouch et al., 2012). The 

advantages and disadvantages of each sensor are discussed briefly at the end of each category.  

Table 2.3: Remote sensors used in past studies on CW resilience under EHEs 

Satellite Sensor Date/Decom
mission 

Spatial 
Resolution 
(m) 

Spectral 
Resolution 

Repeat 
cycle 
(days) 

High Resolution Sensor 

WorldView
-1 & 2 
(Hassan et 
al., 2014) 

*PAN, *MS 

 

September 
18th, 2007; 

 

October 8, 
2009 

0.46 m (both 1 
and 2) 

 

 

PAN (0.40-
0.90 µm); 

MS (0.40-1.04 
µm) 

1.7 days (= 
<1 m GSD) 

5.9 days 
(0.51 meter 
*GSD); 

 

1.1 days (= 
<1 m GSD  

3.7 days 
(0.52-meter 
GSD)  
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Satellite Sensor Date/Decom
mission 

Spatial 
Resolution 
(m) 

Spectral 
Resolution 

Repeat 
cycle 
(days) 

QuickBird 
(Kumar & 
Sinha, 
2014),  

BGIS  

2000 sensor 

October 18, 
2001 

PAN: 0.65 m 
(nadir) to 0.73 
m (20° off-
nadir) 

MS: 2.62 m 
(nadir) to 2.90 
m (20° off-
nadir) 

PAN (0.45-
0.90 µm); 

MS (0.45-0.52 
µm; 0.52-0.60 
µm; 0.63-0.69 
µm; 0.76–0.90 
µm) 

1-3.5 days, 
depending 
on latitude 
(30° off-
nadir) 

IKONOS 
(Jollineau 
& Howarth, 
2002) 

laser sensors,  

imagers,  

radar sensors,  

electro-optical  

astronomical 
sensors, planetary 
sensors 

September 24, 
1999 

PAN: 0.82–1 
m; 

MS: 3.2–4 m  

PAN (0.49 – 
0.90 µm); 

MS band 
1,2,3,4 (0.45 – 
0.52 µm; 0.52 
– 0.60 µm; 
0.63 – 0.69 
µm; 0.76 – 
0.90 µm) 

14 days 
(max) 

OrbView-3 
(Klemas, 
2013b)  

PAN, MS June 26, 2003  PAN: 1 m 

MS: 4 m 

PAN (1 m); 

MS (4 m). 

3 day 

 

Medium resolution Sensor 

RADARSA
T (Chaouch 
et al., 2012) 

SAR  November 4, 
1995 

8–100 m (26–
328 ft) 

RADARSAT-
1: Band C (5,3 
Ghz); 

 

RADARSAT-
2:  Band 
C (5,405 Ghz) 

24 days 
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Satellite Sensor Date/Decom
mission 

Spatial 
Resolution 
(m) 

Spectral 
Resolution 

Repeat 
cycle 
(days) 

JERS-1 
(Jung, 
2011) 

-An L-band SAR; 

-A nadir-pointing 
optical camera 
(OPS); 

-A side-looking 
optical camera 
(AVNIR). 

February 11, 
1992 

18 m MS: Band 1,2 
(0.52 - 0.60  
µm; 0.63 - 
0.69 µm); 

NIR band 3,4 
(0.76 - 0.86 
µm; 0.76 - 
0.86 µm); 

SWIR: Band 
5,6,7,8 (1.60 - 
1.71 µm; 2.01 
- 2.12 µm; 
2.13 - 2.25 
µm; 2.27 - 
2.40 µm) 

44 days 

SENTINEL
-1 (Muro et 
al., 2016) 

C-synthetic 
aperture radar 
(SAR) 

April 2014 5m Band-C (8400 
to 8450 MHz) 

6 days 

LANDSAT 
8 (W.-T. 
Wu et al., 
2017) 

*OLI, *TIRS February 2013 30m  PAN (0.50 – 
0.67 µm); 

MS (0.43-0.67 
µm); 

NIR (0.85-0.87 
µm); 

SWIR (1.55-2.2 
µm); 

Cirrus (1.36-
1.38 µm); 

16 days 
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Satellite Sensor Date/Decom
mission 

Spatial 
Resolution 
(m) 

Spectral 
Resolution 

Repeat 
cycle 
(days) 

Thermal (10.60-
12.51 µm). 

Landsat 
(ETM+) 
(Mueller et 
al., 2016)   

Opto-mechanical  April 15, 
1999 

30 m MS: Band 1-3 
(0.45 um- 0.69 
µm); 

NIR: Band 4 
(0.77-0.90 µm); 

SWIR: Band-
5,7 (1.55-1.75, 
2.09-2.35 µm); 

Thermal: Band-
6 (10.40-12.50 
µm); 

PAN: Band 8 
(.52-.90 µm). 

16 days 

Landsat 5 
(Michishita 
et al., 2012) 

TM  March 1984 to 
January, 2013 

30 m MS: Band 1-3 
(0.45 - 0.69 
µm); 

NIR: Band 4: 
(0.76-0.90 µm); 

SWIR: Band-
5,7 (1.55-1.75, 
2.08-2.35); 

Thermal: Band-
6 (10.40-12.50) 

16 
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Low Resolution Sensor 

MODIS 
(Michishita 
et al., 2012) 

Aqua/Terra December 18, 
1999.  

1 Km 36 spectral 
bands ranging 
from 0.4 µm to 
14.4 µm (band 
at varying 
spatial 
resolutions: 2 
bands 0.6µm - 
0.9µm, 5 bands 
at 0.4µm - 
2.1µm and 29 
bands at 0.4µm - 
14.4µm 

1 day 

  *Multispectral = MS; Panchromatic= PAN; Micrometers = µm; Gigahertz. = Ghz; Near Infrared 

= NIR; Shortwave Infrared = SWIR; Ground sample distance = GSD, Operational Land Imager = 

OLI, Thermal Infrared Sensor =TIRS. 

2.4.1 Airborne imagery 

The very first aerial photograph was taken in 1858 by French photographer commonly known as 

Nadar, (Aber, 2004). Since then is has become one of the most important tools for science, 

engineering, and outreach. Aerial imagery portraying flood and storm surge impacts was an 

important initiative in assessing damage due to hurricane events. Recently, Adams et al. provided 

a foundation for data collection practices using unmanned aerial systems (UAS) and their potential 

for integration with damage assessment techniques using other aerial imagery (Adams et al., 2009). 

Among satellite, aerial, and ground based imagery types, each has its own advantages such as 

breadth for satellite imagery, resolution for aerial imagery, and obliqueness for ground based 
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imagery. Advances in UAS technology and its capability for coupling with aerial imagery may 

decrease overall costs while increasing the usefulness and applicability of the data. This method 

provides a strong basis for post hurricane event reconnaissance needs (Adams et al., 2009) due the 

increased safety compared with putting photographers into the affected area on foot or in ground 

vehicles. UAS enable flexible data acquisition for required time periods at low cost and is therefore 

well-suited for targeted monitoring of specific sites while satellite imagery provides the best 

solution for larger areas (Müllerová et al., 2017). 

Coastal communities in the southeastern United States have regularly experienced severe hurricane 

impacts. To better facilitate recovery efforts in these communities following natural disasters, state 

and federal agencies must respond quickly with information regarding the extent and severity of 

hurricane damage and the amount of debris volume. To this end, a tool was developed to detect 

downed trees and debris volume to better aid disaster response efforts and tree debris removal. The 

tool estimates downed tree debris volume in hurricane affected urban areas using a Leica Airborne 

Digital Sensor (ADS40) camera and its high resolution digital images (Szantoi et al., 2012). 

A multi-hazard hurricane event that brings high winds, high precipitation and storm surge 

complicates the development of robust automated assessment methods. To detect damage resulting 

from an event, we typically define threshold values selected from the target attribute’s data 

distribution. Jiang and Friedland, (S. Jiang & Friedland, 2016) presented a mono-temporal image 

classification methodology using IKONOS panchromatic satellite and NOAA aerial color imagery 

collected in 2005 after Hurricane Katrina. The classification quickly and accurately differentiated 
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urban debris from non-urban debris using post-event images. However, aerial photography in CW 

studies mostly suffers from limitations due to daylight only acquisition times and weather factors 

that often accompany storm events such as clouds. Though issues associated with daylight and 

clouds can be mitigated with flight planning for airborne acquisitions, time sensitive data during 

storm seasons is likely to be obstructed by clouds resulting radiometric error and data loss (Morgan 

et al., 2010). 

2.4.2 Low, moderate and high spatial resolution remote sensors (passive and active) 

Spatial ground resolution is a measure of the length of the smallest dimension on the Earth’s 

surface that can be captured by the sensor. RS systems with spatial resolution greater than 1 km 

are generally classified as low or coarse resolution systems (J. B. Campbell & Mryka Hall-Beyer, 

1997). Coarse resolution and passive RS systems such as MODIS and AVHRR have been used in 

studies to examine phenomena occurring on scales larger than the ground resolution. For example, 

MODIS, combined with ecological field studies, Landsat and empirical based models, was used 

to quantify Hurricane Katrina's impact on U.S. Gulf Coast forests (Chambers et al., 2007). 

Mapping large areas impacted by flooding would be feasible by using low resolution data instead 

of high-resolution data. In a study in India, Jain et al. (Jain et al., 2006) used NOAA (National 

Oceanographic and Atmospheric Administration) AVHRR data for annual flood monitoring at the 

river Brahmaputra flowing through the state of Assam (India). The months of July and August 

were found to be flooded 25-30% of the time. However, a significant limitation of coarse resolution 

RS data is spectral similarity between distinctly different features such as dark water and shade 

(Michishita et al., 2012). Therefore, utilization of multi-sensor monitoring techniques that can 
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capture both the spatial details of middle-to-high resolution data and the temporal continuity of 

coarse spatial resolution data is needed to better understand spatio-temporal wetland dynamics. 

Imagery with a spatial resolution of 5-100 m are classified as medium resolution systems (J. B. 

Campbell & Mryka Hall-Beyer, 1997). Passive sensors such as Landsat are categorized as medium 

resolution (on the order of 30 meters) satellite imagery and have been used in variety of 

applications such as wetland flood studies and flood model development (Barras et al., 2010; 

Chaouch et al., 2012; Nghiem et al., 2017; Robinove, 1978). Other medium resolution and passive 

satellite imagery such as Landsat 5 TM, SPOT 5, Landsat 7 ETM+, ASTER and PALSAR were 

used to identify storm surge-impacts from Hurricanes Gustav and Ike on Louisiana’s wetlands and 

the interior coastal wetlands in southeastern Texas (Barras et al., 2010). Robinove (Robinove, 

1978) used Landsat images to map floods in Queensland, Australia and interpreted dark areas as 

wet soils rather than flooded regions. In a 2017 study, Sentinel SAR satellite data (10 m resolution) 

has been used to detect, map, and monitor inundation including newly flooded areas and pre-

existing water bodies. The flood inundation was assessed in August 2017, four days after 

Hurricane Harvey made landfall near Houston, Texas as well as the Florida Panhandle and the 

Florida Keys in September 2017 after Hurricane Irma made landfall as a Category 5 storm 

(Nghiem et al., 2017).  

High spatial resolution data (5 m or less) have been available since data from commercial satellite 

systems became publicly available. Dramatic deformation occurs on coastal areas when coastal 

storms like hurricanes bring strong winds and waves that alter the topography and near-shore 
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bathymetry of the coast. A study by Seker (Seker et al., 2013) utilized InSAR to conduct a spatio-

temporal analysis to investigate the effects of strong winds and waves on the coast of Karasu in 

Black Sea Region of Turkey. InSAR is capable of determining sub-cm level surface deformation 

under ideal conditions. The analysis showed the distinct changes to the landscape over time. 

During 2004, two strong tropical cyclones (hurricanes Frances and Jeanne) passed directly over 

the northern coast of the Bahamas. Comparisons of high resolution (2.4 m) QuickBird imagery 

and a quantitative wave model concluded that both the storms had limited effects on the sub-tidal 

platforms and the storm systems did not significantly alter the system. Instead, daily processes 

(winds, waves, and tides) were determined to be more plausible sources of geomorphic feature 

alterations (Reeder & Rankey, 2009).  

2.4.3 Hyperspectral remote sensor (HRS)  

Hyperspectral data are obtained using spectrometers that provide complete and continuous spectral 

information with a large number (224 for AVIRIS) of narrow wavelength bands. Available 

medium resolution hyperspectral sensors are AVIRIS (20 m); ALI (30 m); and Hyperion (30 m).  

Even with many new hyperspectral data available from both commercial and government 

programs worldwide, the airborne AVIRIS sensor is still considered the most useful hyperspectral 

sensor (Goetz, 2009). Although orbital sensors such as MODIS, MERIS and ASTER are 

sometimes classified as hyperspectral, these sensors lack the spatial (MODIS and MERIS) and 

spectral (ASTER) resolution desired for truly hyperspectral applications (Dor et al., 2012).  
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As stated previously, Barataria Bay in Louisiana was severely impacted in consecutive years by 

both the Deepwater Horizon oil spill in 2010 and Hurricane Isaac in 2011. Khanna et al. (Khanna 

et al., 2017) used AVIRIS hyperspectral imagery over this area just after the oil spill in September 

2010, a year later in August 2011 and post-hurricane in October 2012. They found that after 

hurricane Isaac the oiled shorelines (up to the 7 m topographic contour) experienced a 17.8%, 

while the land loss on oil-free shorelines was 13.6%. Zhang (H. Zhang et al., 2014) combined 

AVIRIS hyperspectral imagery and Light Detection and Ranging (Lidar) data to map the 

vegetation of the Florida Everglades. While the combined method produced an overall 

classification accuracy of 86% compared to ground truth, the hyperspectral images alone were 

76% accurate. Though not directly related, a similar comparative analysis study of EO-1 ALI / 

Hyperion and Landsat ETM+ Data for Mapping Forest Crown Closure (CC) and LAI described 

that the Hyperion sensor outperforms the non-hyperspectral sensors. Hyperion has high spectral 

resolution including SWIR data which are able to construct optimal VIs that are less affected by 

the atmosphere. Between ALI and ETM+, ALI performed better for mapping forest CC and LAI 

since ALI data have more bands and higher signal-to-noise ratios than ETM+ data. The study 

indicated that Hyperion has the potential for productive before-after analysis of impacts in CW.  

Hyperspectral acquisition and analysis are often costly for large areas and can generate large 

amounts of data to store and process. Due to the variety of sun angles for every flight strip,  separate 

solar and atmospheric adjustments are required in addition to the standard adjustments  made to 

compensate for aircraft pitch, roll and yaw (Porter et al., 2006).  



 

45 
 

2.4.4 Active remote sensors (Radar and Lidar)   

2.4.4.1 Radar 

Radar remote sensing is a useful tool for monitoring CWs over large geographic areas due its 30 

m (or better) spatial resolution and ability to penetrate clouds that frequently obscure coastal areas. 

Chaouch et al. (Chaouch et al., 2012) detected inundation between semi-diurnal low and high water 

conditions using satellite imagery from Radarsat-1 and  Landsat along with aerial photography in 

the northern Gulf of Mexico. The inundation maps were validated using historical aerial 

photography and achieved a classification accuracy, measured by Probability of Detection (POD) 

of 83% (Chaouch et al., 2012). The combination of SAR data and optical images, when coupled 

with a high resolution (2 m) digital elevation model, was shown to be useful for inundation 

mapping and demonstrated potential for the follow-on application of evaluating wetting/drying 

algorithms in coastal hydrodynamic models. This method was successfully applied to tidal 

simulation results produced by the ADCIRC model (Medeiros et al., 2013)(Medeiros & Hagen, 

2013). The differences between modeled and RS derived synoptic inundation extents indicated 

specific geographic areas in the model where performance was weak and therefore enabled the 

modelers to make targeted revisions to the input data, especially the terrain characterization 

(Medeiros & Hagen, 2013). 

SAR has distinct responses to open water and water with varying emergent vegetation coupled 

with all-weather capability, making the SAR sensors a promising choice for monitoring wetland 

ecosystems in storm prone regions with frequent cloud cover. SAR systems are useful for mapping 

floods because of their independence from the sun as the illumination source, their all-weather 
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functionality, and ability to penetrate forest canopy at certain frequencies and polarizations (Kiage 

et al., 2005; Townsend, 2002). All of these attributes allow SAR systems to provide medium 

resolution flood inundation extents free of cloud cover contamination compared to Landsat TM or 

MSS. Imhoff et al. (Imhoff et al., 1987) presented SAR imagery as more effective than Landsat 

MSS for monsoon flood mapping in Bangladesh. Henry et al. (Henry et al., 2006) used multi-

polarized SAR data for flood mapping of Elbe river basin, Central Europe. Horrit et al. (Horritt et 

al., 2001) delineated flood from the SAR imagery by applying a statistical active contour model. 

Thus, emergency mapping and flood management is a very useful and practical application of 

SAR. SAR images have 24 hour (i.e. day or night) capabilities as an active microwave satellite 

sensor that can penetrate clouds thereby making them valuable for flood monitoring (Grings et al., 

2006) since cloud cover is typically associated with flood events. 

2.4.4.2 Lidar  

Lidar is an RS technology used mainly to conduct topographic surveys (Hladik & Alber, 2012; 

Hooshyar et al., 2017; Medeiros et al., 2015) from an airborne platform. It measures the range 

between the target and the sensor using a pulsed laser. Lidar is useful to estimate the threat of SLR 

to coastal ecosystems and also to analyze the intensity and level of impact from raised water 

elevation and salt water penetration to coastal ecosystems (Moeslund et al., 2011). For example, 

Huang et al. (Huang et al., 2014) monitored wetland inundation using Landsat and Lidar data. 

Lidar is also useful for detecting water surfaces, even small channels, due to its fine spatial 

resolution and strong absorption of light energy by water surfaces. Integrating Lidar elevations 
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and signal intensity of ground returns were utilized to map the wet channel networks of several 

watersheds near Lake Tahoe (Hooshyar et al., 2015).  

Lidar is known for its ability to cover large geographic locations at a relatively low cost compared 

to traditional land surveying. Digital Elevation Models (DEMs) derived from Lidar are generally 

recognized to produce topographic surfaces that are accurate enough for a variety of modeling, 

mapping and civil engineering applications (Medeiros et al., 2015). Real Time Kinematic (RTK) 

topographic survey data still outperforms Lidar in terms of vertical accuracy, especially in areas 

of dense low vegetation such as coastal marshes (Hladik & Alber, 2012; Medeiros et al., 2015). 

This is mainly due to the inability of the laser to penetrate the marsh grasses and reflect off of the 

true marsh surface. In addition, raw (unadjusted) Lidar intensity data are usually incomparable 

between Lidar collections and are sensitive to the angle at which the laser interacts with ground 

surface (Kim et al., 2009).  

2.5 Future Wetland Remote Sensing Studies 

Future opportunities for RS research in CW will involve both maximum utilization of existing 

high-resolution sensors such as Hyperion and investigation / development of new sensors. There 

is both significant potential and emerging environmental challenges that RS is suitable to address 

such as the global monitoring of mangrove forests, the ecological effects of SLR (Medeiros et al., 

2015), and the progress and effectiveness of restoration efforts. There is also potential for future 

studies in finding both spatial and temporal changes in ecosystems and linking them with 
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global/regional climatic or hydrologic events. Alongside these potential RS based advances, 

innovative ground truth techniques that validate them will also be necessary. 

2.5.1 Algorithms for multi sensor integrations in wetland studies 

Remote sensing has been used widely for wetland classification for more than 50 years, achieving 

a wide range of effectiveness. Some have used single source data such as photography, medium-

resolution images, high-resolution images (Tahsin et al., 2017), hyperspectral images (Barducci et 

al., 2009), radar and lidar data (Hooshyar et al., 2015; Zhang, 2010) with conventional or improved 

methods of data mining to model or classify wetland ecosystems. Others used a combination of 

remote sensing and field survey data for the same purpose (Medeiros et al., 2015). A few studies 

suggested that integrating different data sources can increase the classification accuracy (Klemas, 

2013a; Klemas et al., 1993). Integration is especially useful when sensor types such as combining 

optical images with radar or Lidar data. Additionally, multi-season RS can increase classification 

accuracy (Wu et al., 2017) by presenting data for the same location in two or more phenological 

states. Scientists and engineers must be rigorous when combining sensor data from different time 

periods to detect expected (growth, color change) and unexpected (land clearing, storm damage) 

effects. All areas with emergent vegetation, such as wetlands, have high heterogeneity in 

reflectance due to water level, turbidity and vegetation density (for example), so merging data 

acquired at different times needs careful attention and defensible / reproducible methods with 

transparent parameter selection based on plausible physical factors. Development of validated 

algorithms for unifying different spatio-temporal resolution sensors to a common basis would be 

a useful tool for RS studies, especially those of wetlands. 



 

49 
 

2.5.2 Large spatial scales 

A very few past studies have focused on using remote sensors on a global scale. Hydrologic 

impacts and changes to ecosystems are better understood at larger spatial scales. Since global scale 

studies require onerous data collection and management processes, they tend to be very expensive 

which necessitates choosing imagery carefully to meet the objective under budget and 

computational constraints. Generally, low resolution images are used only when a gross level of 

vegetation classes is sufficient, whereas higher resolution images are used for fine vegetation 

classifications. Therefore, both from mapping scale point of view and cost efficiency, vegetation 

mapping at local/small scale generally needs high-resolution images, while low-resolution images 

are used for a large-scale mapping. MODIS data are a common source of coarse-resolution data 

that have the capability to map global wetland change. MODIS derived secondary data have been 

used in several studies mentioned previously. Radar RS offers a global perspective for several 

hydrological parameters. The all-weather capable satellite radar altimetry is used to delineate water 

bodies and wetland levels and infrared imagery can be used to detect visible wet areas. A program 

to globally and continuously monitor all large inland water bodies at the Mullard Space Science 

Laboratory (MSSL) showed an accuracy of 5 cm root mean square (RMS) of these waterbodies 

level variation (Birkett, 1995). The development of ScanSAR technologies made it possible to 

monitor the impact of climate change in permafrost transition zones. For example, using 

ENVISAT ASAR Global mode (GM, 1 km resolution), climate and environmental data (up to 

2012) from boreal environments are available for research and analysis. Research as identified up 

to 75% of oligotrophic bogs in the seasonal permafrost zone (Bartsch et al., 2009). Also, the high 
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seasonal and inter-annual dynamics of the sub-tropic Okavango Delta in Botswana, Africa, were 

captured by GM time series (Bartsch et al., 2009). 

Although the understanding and quantifying of wetland dynamics has been advanced, the 

validation of large-scale wetland monitoring is still challenging and needs to be extended using 

auxiliary data from secondary sources such as in-situ measurement and unmanned aerial vehicles. 

Coarse-resolution can be used to globally map wetlands using the decomposition of mixed pixel 

technology (Guo et al., 2017). NOAA and MODIS coarse-resolution data and their derived 

vegetation indices can map global wetland changes. High performance computing opens many 

opportunities for fine resolution classification, prediction of missing/obstructed wetland 

hydrologic data, and modeling wetland hydrology temporal dynamics. 

2.5.3 New data and methods  

The prime weakness of optical data is the data loss due to clouds, haze, and shadows. In some 

regions, especially coastal areas, clouds and rain events are frequent and these wet periods are 

important for plant growth and aquatic ecosystem balance. During this period, hydrologic events 

such as storms, hurricanes, and high precipitation occur and the need of large spatial coverage 

using RS arises to monitor the intensity of these hydrologic events and subsequent vegetation 

change. However, while the objectives may be clear, difficulties can still occur. For example, the 

optical sensor on board Landsat 7 occasionally showed anomalies such as Late Start Anomalies 

(LSAs) that was observed from 2006 to April 2007. Then, Landsat 7 switched to bumper mode 

and the LSAs cannot occur in bumper mode and the problem resolved. Another issue with optical 

images is that they usually fail to monitor vegetation types within wetlands because the dense 
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vegetation cover leads to signal saturation. Previous studies explored several methods as well as 

different sensors to overcome these limitations. To mitigate the data loss due to cloud cover, the 

Optical Cloud Pixel Recovery (OCPR) method was developed (Tahsin et al., 2017) to repair 

missing remote sensor pixels using information from the time-space-spectrum continuum. Using 

a Random Forest (RF) model trained using over fifteen years of Landsat imagery and local 

hydrologic data, NDVI values for cloud obscured pixels were able to be recovered with sufficient 

accuracy so that images that would have been previously discarded can now be used in the long-

term time series. The OCPR model performed well in a dynamic wetland ecosystem in the northern 

Gulf of Mexico. If optical images are obstructed by clouds, they are unable to accurately describe 

the extent of saturated areas in wetlands. Marechal et al. (Marechal et al., 2012) overcame this by 

employing time series Radarsat-2 data to monitor the seasonal changes of wetlands using SAR 

data and new supervised PolSAR segmentation methods, taking advantage of the radar data’s 

ability to penetrate clouds.  

Landsat 8 launched in 2013 is the most evolved platform of the Landsat lineage. Landsat 9 is 

planned to be launched in 2020 and will continue to evolve as did Landsat 8. Both Landsat 8 and 

9 have the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) (Irons, 2018). 

Landsat 8 has further capabilities to investigate water resources and for the detection of cirrus 

clouds and also provides information on the presence of features such as clouds, water, and snow. 

The innovative designs of Landsat 8 and Landsat 9 make them more sensitive and more reliable 

than earlier Landsat satellites.  
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They can be used to detect more subtle details in the images. The multispectral sensors on board 

Landsat 8 and Sentinel-2 offer the possibility to perform high-frequency time series analyses. They 

have the potential to carry out multi-temporal change detection before and after significant events 

such as mapping for disaster management. The end user must still pay particular attention to the 

impact of the radiometric differences between the images (Landsat 8 and Sentinel-2) acquired by 

the two sensors (Mandanici & Bitelli, 2016). Though both sensor’s radiometric accuracies are 

high, the difference still requires careful evaluation to determine whether the differences in 

reflectance values are relevant and fulfill the purpose of the specific application. Sentinel-3 

(launched at February 2016; design life: 7 years) is considered the most improved version of the 

family of Sentinel satellites. The Sentinel system first launched in 2014 resulted in an exceptional 

blend of spatial resolution, spectral coverage and temporal revisit time. Sentinel-3 has even greater 

potential to enhance water quality assessment, eutrophication monitoring and plant  / crop health 

monitoring (Huck, 2016). Newer data from various remote sensors on board of many different 

platforms and of different types will continue to be leveraged to produce more robust methods 

utilizing longer time series.    

2.6 Summary and Conclusions 

This paper provides an overview of RS applications in assessing the impact of extreme hydrologic 

events in coastal wetlands. Coastal wetlands worldwide have been experiencing significant threats 

due to extreme hydrologic events. Sea level rise, intensified storms, and changing freshwater input, 

along with human impacts, directly impact coastal wetlands and limit their ability to provide 
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valuable ecosystem services. The usefulness of vegetation indices and other methods for 

identifying the impact on coastal wetlands is the primary focus of the current review paper.  

Remote sensors were categorized according to their ground resolutions: Coarse, medium, and high. 

Hyperspectral images are a unique case and have a range of ground resolutions along with their 

fine spectral resolution. Also, remote sensors typically used in this application were categorized 

as active and passive according to their source of electromagnetic radiation. Satellite/aerial 

photography is also an integral part of sensor systems used to monitor and assess hydrologic 

impacts and in recent years, aerial photography has been used in conjunction with unmanned aerial 

systems to assess post storm damage and classify different types of coastal wetlands. Depending 

on the areal extent and purpose of a particular study, investigators blend a variety of sensor data 

that adequately captures the spatial, spectral, and time scales relevant to the target wetland and 

hazard types. Often times, abstracted indices, such as Normalized difference vegetation index, 

derived from MODIS, LANDSAT and/or AVHRR are frequently used in coastal wetland studies. 

Hyperspectral data are used mostly in relatively small area studies due their advantage of deep 

spectral resolution and also their high cost and data magnitude. Active sensors such as synthetic 

aperture radar consistently outperformed optical sensors in coastal wetland change detection 

because of its ability to penetrate clouds and canopy. lidar data have also been shown to be very 

useful for monitoring and exploring ground surface and elevation information such as the height 

of forests or the water level. Many studies use lidar in combination with other forms of remote 

sensing data to amplify the classification and quantification effectiveness. 
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This study documented previous researches on the application of remote sensing with special focus 

on vegetation indices to identify and assess the impacts of extreme hydrologic events on coastal 

wetlands. The discussion aimed to identify limitations and advantages of certain vegetation indices 

and also primary sensor data in an effort to guide future research into this application of remote 

sensing. This study also discussed potential future research topics for enhancing coastal wetland 

studies using remote sensing. Thus, this paper provides a reference base for future studies 

involving long term monitoring of coastal wetlands, especially their response to extreme 

hydrologic events. 
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CHAPTER 3: WETLAND DYNAMICS INFERRED FROM 

SPECTRAL ANALYSES OF HYDRO-METEOROLOGICAL 

SIGNALS AND LANDSAT DERIVED VEGETATION 

INDICES 

3.1 Introduction 

The spatial extent and composition of coastal wetlands (CW) varies in response to hydrologic and 

meteorological conditions (e.g. precipitation and wind) and extreme events (e.g. droughts and 

floods). These variations represent a major source of CW alteration on the global, regional, and 

local scale (Bilskie et al., 2016; La Cecilia et al., 2016; Clinton et al., 2014; Van Hoek et al., 2016; 

Passeri et al., 2016). Knowledge of CW dynamics across scales is important as these wetlands 

provide a variety of ecosystem services such as habitat (Sivaperuman & Venkatraman, 2015), 

protection from storm surges (Barbier, 2013; Wamsley et al., 2010), water quality enhancement 

by nutrient uptake and filtration, carbon sequestration, and commercial and recreational fishing. 

CW also provide other important ecosystem services such as erosion control, local water storage 

improvement (Wong et al., 2017), climate regulation and stabilization, and are a unique aesthetic 

landscape of cultural, historic and spiritual relevance (Barbier, 2013).   

The characterization of both terrestrial wetland (Papa et al., 2006; Tadesse et al., 2014) and CW 

dynamics can be efficiently approached by using satellite remote sensing data that are available 

over wide and consistently sampled areas. Satellite remote sensing can be particularly important 

for monitoring long-term CW changes  (Rodgers et al., 2009; Steyer et al., 2013). The Normalized 

difference vegetation index (NDVI) is a vegetation index that is used to measure vegetation 
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greenness and can be derived from several remote sensors. This index is sensitive to the green 

vegetation biomass as affected by the type of wetland and season (Guo et al., 2017). It has been 

well correlated with wetland greenness, for example, in Apalachicola Bay of Florida (La Cecilia 

et al., 2016; Tahsin et al., 2016). Landsat NDVI is also regarded as a reliable indicator for wetland 

pattern change detection (Kayastha et al., 2012). Furthermore, NDVI derived from Landsat has the 

most comprehensive spatial and temporal coverage along with reasonable resolution when 

compared to other publicly available satellite imagery. Landsat satellites has been collecting 

valuable information since 1984 and such a long-term record is unique among satellite remote 

sensing products.  

Previous studies established that vegetation phenology in different parts of the world is a key 

indicator of climate-biosphere interactions. Timings of phenology is linked to precipitation 

(Maignan et al., 2008) and temperature (Myneni et al., 1997; Zhou et al., 2001), especially, in the 

northern high-latitudes. As the global hydro-meteorology changes as part of the climate, vegetation 

is adapting and simultaneously feeding back to the larger system (Foley et al., 1994; Kirilenko & 

Sedjo, 2007).  

The presence of feedback mechanisms relating Earth’s coastal/terrestrial systems and hydro-

meteorology, implies the presence of cross-correlation structures (interdependencies) and memory 

effects. Within this feedback structure, the concept of persistence, explained through the idea of 

scaling behavior of Fourier transformed hydro-meteorological signals  (Feder, 1988; Telesca & 

Lasaponara, 2006), can be useful to discern the resilience of wetland vegetation. Persistence of a 

system refers to a phenomena that is controlled by positive feedback mechanisms, which tend to 
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disrupt the stability properties of the system and make them vulnerable to external forcing 

(Maktav, 2009; Witt & Malamud, 2013; Zheng et al., 2010). Since resilience of a system is the 

capability to respond to a disturbance by resisting damage and recovering quickly, ecosystem 

resilience can be studied by their persistence through time (Switzer et al., 2006). The quantification 

of memory and persistence in a signal requires long-term data and satellite remote sensing often 

fills this need. However, not all satellites provide long-term time-series data and there is often 

missing information within the available time-frame. A methodical and repeatable framework for 

addressing this issue is therefore required to characterize vegetation dynamics at temporal scales 

ranging from seasonal to multi-decadal.  

In this study, we use the time-series of NDVI and hydro-meteorological data from 1984 to 2015 

for Apalachicola Bay, Florida. Spectral analysis of these data allows for the characterization of 

persistence in the signal. While previous studies focused on vegetation dynamics in terrestrial areas 

using conventional data and methods, CW dynamics using long-term remote sensing data and 

robust methodologies for the extraction of complex interaction related information is understudied. 

This study aims to partially fill that knowledge gap. 

We quantified the time-lag between the forcing (hydro-meteorological) and response (NDVI) 

signals for target coastal areas based on the National Oceanic and Atmospheric Administration 

(NOAA) Coastal Change Analysis Program (C-CAP) classification system. Most previous models 

estimated time-lag using linear correlation or cross-correlation between changes in two or more 

indices over time or used a time-lag defined a priori. These techniques could lead to insufficient 

results due to the large variation in NDVI across both spatial and temporal scales, making previous 
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assumptions unsuitable to be adopted globally or locally (Clinton et al., 2014). Also, the influence 

of the varying growth periods of vegetation could affect the results as well. We minimized these 

limitations first by applying cross-spectral analysis over wetland vegetation and hydro-

meteorological signals which allows the determination of the similarities between two signals as a 

function of frequency with the help of phase shift; and second by re-classifying CW into aggregate 

classes (freshwater and saltwater types); and third by extracting time-lags directly from cross-

spectral components.  

The aim of the study was to i) understand and quantify any prevailing variability in persistent 

behavior among different CW vegetation classes; ii) characterize the spatio-temporal sensitivity 

of CW with hydro-meteorological signals under various frequency domains; and iii) assess the 

spatial difference in time-lag between forcing (hydro-meteorological) and response (NDVI) 

signals.  

3.2 Data and Methods 

3.2.1 Site description and coastal wetlands classification 

The setting for this study was Apalachicola Bay in the Florida Panhandle, with the specific study 

area indicated by the black boundary in Figure 3.1 a). CW have been classified by C-CAP along 

the eastern seaboard and Gulf coasts of the United States (Ramsey III et al., 2001). Figure 3.1 b) 

depicts the type and the locations of CW in the study area. The specific wetland classes 

investigated were: Palustrine-forested wetland (PFW): 54.1%, Palustrine-emergent wetland 

(PEW): 7.9%, Palustrine-scrub and emergent- wetlands (PSEW): 11.7%, and Estuarine-emergent 

wetland (EEW): 6.5%.  
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Figure 3.1: a) Different classes of wetlands* at spatially separated locations in the Apalachicola 

Bay; b) Distinguishing wetland habitats in Palustrine and Estuarine Wetlands: CW ecosystem 

definitions based on NOAA C-CAP. *Palustrine forested wetland (PFW); Palustrine emergent 

wetland (PEW); Estuarine emergent wetland (EEW); Palustrine scrub/shrub and Palustrine 

emergent wetland (PSEW). Mean high water (MHW); Mean sea level (MSL); Low water (LW) 
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Other wetland classes such as Estuarine forested wetland, Estuarine scrub/shrub wetland are 

uncommon (<1%) in the study area. 19.56% of the study area was comprised of other land uses 

than wetlands, including developed area, agricultural use, and bare land.  

We selected six locations (see Figure 3.1 a) inside the study area to represent the dominant wetland 

types. The spatial variability includes PFW at two locations: Lake Wimico and Apalachicola 

River; EEW at two locations: lower Apalachicola River and St. Vincent Island; PSEW at one 

location – Eastern Apalachicola; and PEW at one location – South of Lake Wimico. 

3.2.2 Forcing and Response Signals 

Surface reflectance of Landsat-5 data were acquired between 1984 and 2015 from USGS Earth 

Resources Observation and Science Center archive to calculate NDVI. After image acquisition, all 

images were registered and clipped to the spatial extent of the study area. Spatial registration, 

resampling and projection using WGS1984 UTM Zone 16N was implemented using ArcGIS.  

NDVI was calculated as the normalized ratio of red (R) and near-infrared (NIR) reflectance of a 

sensor system and generally characterizes the greenness of wetland vegetation. It is commonly 

expressed as equation  3.1. 

   𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 = 𝑵𝑵𝑵𝑵𝑵𝑵−𝑹𝑹
𝑵𝑵𝑵𝑵𝑵𝑵+𝑹𝑹

            (3.1) 

For heavily vegetated areas, NIR reflectance is greater than Red reflectance due to the tendency of 

chlorophyll to absorb red light. In those areas, NDVI values greater than 0 are expected  (Tahsin 

et al., 2016, 2018). The C-CAP wetland classification was superimposed onto the wetland NDVI 

to label NDVI according to CW classes. 
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Water level, precipitation, temperature and wind speed data were collected over the same spatial 

region and time period. Water level data were collected from NOAA / NOS coastal gage station 

(Station ID: 8728690) located at Apalachicola, FL. Precipitation, temperature and wind speed data 

were collected from Automated Surface Observing System (ASOS) stations located at the airports 

in the United States and maintained by IOWA State University, IOWA Environmental Mesonet. 

The AAF Apalachicola Muni ASOS station, located inside the study area was used for the analysis 

in the study.  

3.2.3 Methodology 

3.2.3.1 Power Spectral Density and Scaling Behavior in the Frequency Domain  

Power spectral density (PSD) is a measure of the frequency response to the variation in a signal. 

In general, PSD analysis provides a standard method to identify correlation features in time-series 

fluctuations and describes how the energy in a signal is distributed across various frequencies 

(Singh et al., 2010). The PSD 𝑆𝑆(𝜔𝜔) of a discrete signal 𝐹𝐹(𝑥𝑥) can be computed as the average of 

the Fourier transform magnitude squared, over a large time interval and expressed as equation 3.2. 

             𝑺𝑺(𝝎𝝎) =  � 𝟏𝟏
𝟐𝟐𝟐𝟐

 ∑ 𝑭𝑭(𝒙𝒙)𝒆𝒆−𝒊𝒊𝒊𝒊𝒊𝒊 ∞
−∞ �

𝟐𝟐
     =   𝑭𝑭

�(𝝎𝝎)𝑭𝑭�∗(𝝎𝝎) 
𝟐𝟐𝟐𝟐

         (3.2) 

where 𝐹𝐹�(ω) is the discrete Fourier transform of 𝐹𝐹(𝑥𝑥), 𝐹𝐹�∗(ω) is its complex conjugate and ω is 

the wavenumber (Singh et al., 2012; Stoica & Randolph, 1997).  

We analyzed the scaling behavior of the PSD which was determined to be a power-law dependence 

of the spectrum on the frequency 𝜔𝜔 in the following equation 3.3. 
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𝑺𝑺(𝝎𝝎) ~ 𝟏𝟏
𝝎𝝎𝜷𝜷           (3.3) 

Here β is the power-law exponent of the PSD. A robust estimation of the scaling exponent β can 

be achieved by computing the slope of the linear regression fitted to the estimated PSD plotted on 

log–log scales (Pilgram & Kaplan, 1998). The strength of these scaling exponents provides useful 

information about the inherent memory of the system (Miramontes & Rohani, 2002; Witt & 

Malamud, 2013). Witt & Malamud, (2013) found PSD analysis to be a more accurate method to 

quantify persistence of a self-affine time-series than other empirical methods such as Hurst 

rescaled range (R/S) analysis, detrended fluctuation analysis, and semi-variogram analysis. The 

basic feature of a self-affine time-series is that the PSD of the time-series has a power-law 

dependence on frequency and as a result they exhibit long-range persistent behavior (Malamud & 

Turcotte, 1999; Mandelbrot & Ness, 1968). In other words, a time-series is self-affine if it exhibits 

statistical self-similarity i.e. invariance under suitable scaling of time or have the same statistical 

properties (Mandelbrot, 1984) when the two axes are scaled differently. A steeper PSD indicates 

a higher persistence (or low vulnerability) which characterizes stability or instability in the 

concerned ecosystem. In more general cases of long-range persistence, β ~ 0 implies that the 

temporal fluctuations are purely random and are characterized by the uncorrelated sample – 

typically white noise processes;  0 <  𝛽𝛽 ≤ 1 is known as a pink or flicker noise (Bak et al., 1987; 

Mandelbrot & Ness, 1968). Pink noise is a statistically reliable departure from white noise in the 

direction of persistence (Holden, 2005). 𝛽𝛽 = 2 is known as brown noise (or Brownian motion), 

however its increments are uncorrelated and result in white noise with 𝛽𝛽 = 0. Both pink and brown 

noise correspond to persistent behavior and indicate the presence of a positive feedback 

mechanism.  
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3.2.3.2 Cross-spectrum and Time-Lag Analysis Between Signals in the Frequency Domain 

Cross-spectrum analysis relates the variance of two signals. The cross power spectral density 

(CPSD) is computed using a real valued PSD estimate of time-series 𝑧𝑧𝑖𝑖(𝑡𝑡) defined as 𝐹𝐹�𝑧𝑧𝑖𝑖 (ω) and 

the complex conjugate of the PSD estimate of time-series 𝑧𝑧𝑗𝑗(𝑡𝑡) defined as 𝐹𝐹�𝑧𝑧𝑗𝑗
∗  (ω) in the frequency 

domain (ω), and is given by equation 3.4. 

𝑭𝑭�𝒛𝒛𝒊𝒊𝒛𝒛𝒋𝒋 (ω) = 𝑭𝑭�𝒛𝒛𝒊𝒊(𝝎𝝎)  𝑭𝑭� 𝒛𝒛𝒋𝒋
∗  (ω)            (3.4) 

The real component of the CPSD is defined as the co-spectrum, Co, whereas the imaginary 

component is defined as the quadrature spectrum, Q. Equation 3.4 can thus be re-written as 

equation 3.5. 

𝑭𝑭�𝒛𝒛𝒊𝒊𝒛𝒛𝒋𝒋 (ω) = Co (ω) + Q (ω)            (3.5) 

The phase spectrum estimate  𝜙𝜙𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗(ω) is bounded between –𝞹𝞹 and 𝞹𝞹 and is the phase difference 

at each frequency between 𝑧𝑧𝑖𝑖  and 𝑧𝑧𝑗𝑗. It can be calculated from the real and imaginary components 

of the CPSD in equation 3.6. 

𝝓𝝓𝒛𝒛𝒊𝒊𝒛𝒛𝒋𝒋(𝛚𝛚) = 𝐭𝐭𝐭𝐭𝐭𝐭−𝟏𝟏 � 𝑸𝑸 (𝛚𝛚)
𝑪𝑪𝒐𝒐 (𝛚𝛚)

� .          (3.6) 

Finally, the time-lag  𝜙𝜙𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗(t) can be obtained from the phase spectrum as equation 3.7. 

𝝓𝝓𝒛𝒛𝒊𝒊𝒛𝒛𝒋𝒋(𝐭𝐭) =
𝝓𝝓𝒛𝒛𝒊𝒊𝒛𝒛𝒋𝒋(𝛚𝛚)

(𝟐𝟐 ⨯𝝅𝝅 ⨯𝝎𝝎)
             (3.7) 

where  𝜙𝜙𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗(ω) is the phase in radians and ω  is the radian frequency (Van Hoek et al., 2016). 
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3.3 Results and Discussion 

The NDVI time-series for the six selected locations from 1984 to 2015 (sampled monthly) are 

shown in Figure 3.2 a. The three black-dashed boxes in the time-series highlight the dynamic 

behavior of the NDVI ranging from approximately 0.1 to 0.9 and are shown in greater detail in 

Figure 3.2 b (1985 to 1987), Figure 3.2 c (1995 to 1996), and Figure 3.2 e (2004 to 2006), which 

were marked by several extreme events including various minor and major hurricanes, droughts, 

and floods (Hurricane Research Division, 2012). The black solid box highlights less dynamic 

NDVI ranging from approximately 0.4 to 0.9 (Figure 3.2 d; 2001 to 2002), where there were no 

reported extreme natural or anthropogenic events. However, NDVI for PFW still had a distinct 

peak and drop during this but varied little for EEW, PEW and PSEW. Therefore, these time-series 

hinted at the disparate response among PFW, PSEW, PEW and EEW.  
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Figure 3.2: Time-series of NDVIs at spatially separated six locations in Apalachicola Bay 
from 1984 to 2015. [1] through [6] in the legend indicate the locations of wetlands (see 

Figure 3.1 a) 

To further investigate the disparate behavior among different wetland types, we identified peak 

greenness and explored periodic trends using PSD analysis. Figure 3.3 shows the averaged PSD 

of NDVIs at six locations in Apalachicola Bay (see Figure 3.1 a for location). Visual observation 

suggests that the PSDs, which were plotted in log-log scale, were not flat (slope 𝛽𝛽 ≠ 0) for the 

analyzed frequency scale. This indicated that the wetland dynamics were not characterized by 

purely random and uncorrelated temporal fluctuations but instead contained correlated time-

structure and memory phenomena.  
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Figure 3.3: PSD of NDVI at spatially separated wetland locations around Apalachicola 
Bay. For all locations, the PSDs were computed as an average of PSDs from 60 data points 

(pixels); the locations are shown in Figure 3.1 a. 

Figure 3.3 (a) and Figure 3.3 (b) show two different modality behaviors with distinct annual 

(frequency peaks at f = 0.085 (month-1)) and semi-annual peaks (frequency peaks at f = 0.1693 

(month-1)). Modality indicates the periodicity of the vegetation. Generally, multi-modality occurs 

in places with double cropping, or with vegetation that is highly responsive to bi-modal 

temperature and/or precipitation regime, or with diverse land-cover types (Yang et al., 2001). In 

our case, there were two peaks of greenness for PFW occurring at different times. This was mainly 

due to the heterogeneity of the PFW, which consists mostly of woody vegetation both in tidal or 

non-tidal wetlands. Characteristic species are Tupelo (Nyssa), Cottonwoods (Populus deltoids) and 

Bald Cypress (Taodium distichum) (Conner & Buford, 1998). For PFW, the main greenness peak 
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was associated with the spring season, whereas the second peak was likely due to the larger 

availability of fresh water during the main precipitation season in the months of October and 

November. This finding is consistent with previous studies (Lizárraga-Celaya et al., 2010; Telesca 

& Lasaponara, 2006; Vivoni et al., 2008). 

However, for the other four sites (PSEW, PEW and EEW), shown in Figure 3.3 (c), (d), (e) and 

(f) there was a unimodal NDVI seasonal cycle. This peak (f = 0.085 (month-1)) indicated a strong 

annual component of the NDVI fluctuations. An early peak supporting initial springtime plant 

emergence was observed for PSEW, PEW and EEW in Apalachicola Bay, followed by 3-4 months 

of gradual plant growth until the summertime rain provided adequate moisture for the rapidly 

established NDVI peak. This type of unimodal greenness is also found at south-west American 

regions, for example Utah/Colorado sites and Audubon showed a unimodal NDVI cycle, where 

springtime snowmelt and an initial precipitation peak support springtime plant emergence, then 

the plants keep growing gradually for the next 3-4 months and NDVI peaks in summertime (Notaro 

et al., 2010).  

The results also indicated two scaling regimes in the PSDs of the wetlands associated with annual 

and decadal scales. In the annual frequency domain, the slopes were steeper for the PFW wetlands 

PSD compared to the slope for PSEW, PEW and EEW wetlands. The finding was similar to 

previous findings where scrub wetlands (here PSEW) were found to be less persistent (Dinerstein 

et al., 2019), and emergent wetlands (here PEW and EEW) were found to be more salt tolerant 

(Adam, 1990). Coastal forests (here PFW) were also found to be more persistent in a previous 

study in southern Italy (Telesca & Lasaponara, 2006). In this study, the persistence reversal was 
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observed at the decadal frequency where the NDVI values for the PSEW, PEW and EEW were 

more persistent than PFW. Figure 3.2 (d) graphically explains the dynamic nature of PFW annually 

where NDVI dropped sharply (from 0.9 to 0.4) while the NDVI for the other wetland categories 

fluctuated within a much narrower range (from 0.6 to 0.4). At the decadal scale, PSEW, PEW and 

EEW had larger persistence in NDVI values compared to PFWs which indicates a more unstable 

character with respect to external perturbations. Hurricanes, storm surges or other hydrologic 

events impact the coastal areas over a relatively sudden and short time span and since PSEW, PEW 

and EEW are generally located closer to the coast than PFW, they were impacted first and more 

severely.  
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Figure 3.4: Power Spectral Density (PSD) of Water level, Precipitation, Temperature, and 
Wind.  The dashed linear lines represent the slopes of the annual and decadal frequency 

regimes 

Figure 3.4 shows the PSDs of the four hydro-meteorological signals: water level, precipitation, 

temperature and wind in Apalachicola Bay, which we refer to as forcing mechanisms. For visual 

comparison, we vertically shifted the PSDs on the log-log plot. Figure 3.4 clearly shows a distinct 

annual peak for water level and temperature similar to what was observed for the NDVI for the 

different wetland types (Figure 3.3). The major peak suggests an interdependence between the 

vegetation dynamics of all wetland types and the annual water level and temperature fluctuation.  

Figure 3.4 also exhibits steeper spectral slope for water level and precipitation, which indicates 

that the temporal fluctuations of water level and precipitation were persistent and related by 

memory. On the other hand, the PSD for temperature and wind were flat suggesting uncorrelated 

behavior of fluctuations across spatial and temporal scales.   
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Figure 3.5: Heat-map of cross-spectral (CPSD) slope between NDVI and four hydro-
meteorological signals - Water level (WT), Precipitation (P), Temperature (T), and Wind 
(WD); Color bar shows the magnitude of the CPSD slope. [1], [2], [3], [4], [5] and [6] show 

the locations of the different wetlands type (see Figure 4.3 a) 

Figure 3.5 shows a heat-map of cross-spectral slope obtained from the CPSD analysis between 

each of the CW NDVI signals and hydro-meteorological signals at the annual Figure 3.5 (a) and 

decadal Figure 3.5 (b) scales. The slope of the CPSD serves as a measure of the influence of hydro-

meteorological signal onto wetland types. The warmer colors indicate a steeper slope, which is 

suggestive of a more persistent and thus less resilient (Gunderson, 2002; Holling, 1973) relation, 

between the forcing and response signal. Figure 3.5 shows the largest CPSD slopes for water level 

and precipitation for all wetland types in both annual and decadal scales indicating that wetlands 

responded more to the changes in water level and precipitation across all scales compared to wind 

and temperature. Figure 3.5 also depicts a reverse scenario for the wetland types in two different 

frequency domains. While annually PFWs responded promptly to the change in hydro-
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meteorological forcing; PFW responded less on a decadal scale with hydro-meteorological 

mechanisms. In summary, inland wetlands exhibited more vulnerability at the annual scale while 

in the decadal scale they were less vulnerable. The PFW, PSEW, PEW and EEW persistence 

character with respect to hydro-meteorological signals provides valuable information that can be 

used in supporting local environmental protection agencies.  

Components of CPSD analysis, i.e. percentage of amplitude with the major peak, phase lag and 

corresponding time-lag are shown in Table 3.1. Major peaks in amplitude spectra were identified 

by using a threshold quantified using smoothed z-score algorithm (Lo et al., 2018; Moore et al., 

2018; Perkins & Heber, 2018). The algorithm is based on the principle of dispersion and is robust 

as it builds a separate moving mean and deviation so that the signals themselves do not pollute the 

threshold (Lo et al., 2018). Peak or high amplitude indicates a strong correlation between response 

and forcing signal at that frequency. While there are clear major peaks for temperature and water 

level, there were none for precipitation and wind did not have major peaks. Precipitation had a 

minor peak for PEW at location 4 and wind had two minor peaks for PFW at locations 1 and 2 and 

one minor peak for PEW at location 4 (see Figure 3.1 (a) for locations). 

  



 

72 
 

Table 3.1: Summary of cross-spectral (CPSD) analysis between NDVI and different hydro-
meteorological signals. Amplitude % was computed as the ratio of amplitude at the peak to 

the sum of amplitudes at all frequencies. Phase-lag, and time-lag were computed using 
equations 3.6 and equation 3.7 respectively. Major peak was computed using the smoothed 

z-score algorithm. In the last column, the square brackets [] represent frequencies 
corresponding to the % of amplitude 

Cross power spectral 
density (CPSD) 

Variables 

(Major peak)  

% of Amplitude 
at annual 
frequency 

Phase-lag 
(degree) 

Time-Lag 
(months) 

(Minor peak) 

% of Amplitude 
at other 

frequencies 

Wet 1 vs. temperature 31.6 81.9 2.7 1.0 [Every 1.2 
years] 

Wet 2 vs. temperature 39.5 62.3 2.1 0.7 [Every 8 
years] 

Wet 3 vs. temperature 22.0 24.5 0.8 No minor peak  

Wet 4 vs. temperature 32.6 32.0 1.1 0.5 [Every 8 
years] 

Wet 5 vs. temperature 37.4 56.2 1.9 No minor peak   

Wet 6 vs. temperature 16.7 50.8 1.7 1.0 [Every 6 
years] 

Wet 1 vs. water level 11.2 66.0 2.2 2.3 [Every 5 
years] 

Wet 2 vs. water level 19.1 46.6 1.6 2.3 [Every 8 
years] 

Wet 3 vs. water level 16.1 39.7 1.3 2.1 [Every 1.6 
years] 

Wet 4 vs. water level 15.7 26.3 0.9 1.6 [Every 5 
years] 

Wet 5 vs. water level 17.5 46.6 1.6 No minor peak  

Wet 6 vs. water level 14.1 41.8  1.4  1.4 [Every 2 
years] 

Wet 1 vs. wind No major peak N/A  N/A  4.1 [Annual] 
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Cross power spectral 
density (CPSD) 

Variables 

(Major peak)  

% of Amplitude 
at annual 
frequency 

Phase-lag 
(degree) 

Time-Lag 
(months) 

(Minor peak) 

% of Amplitude 
at other 

frequencies 

Wet 2 vs. wind No major peak N/A  N/A  7.6 [Annual] 

Wet 3 vs. wind No major peak N/A  N/A  No minor peak 

Wet 4 vs. wind No major peak N/A  N/A  5.2 [Annual] 

Wet 5 vs. wind No major peak N/A  N/A   No minor peak 

Wet 6 vs. wind No major peak N/A  N/A  No minor peak 

Wet 1 vs. precipitation No major peak N/A  N/A  2.0 [Every 3 
years] 

Wet 2 vs. precipitation No major peak N/A  N/A  5.1 & 2.4 [Every 8 
& 4 years] 

Wet 3 vs. precipitation No major peak N/A  N/A  3.4 [Every 6 
years] 

Wet 4 vs. precipitation No major peak N/A  N/A  No minor peak  

Wet 5 vs. precipitation No major peak N/A  N/A  2.13 [Every 8 
years] 

Wet 6 vs. precipitation No major peak N/A  N/A  6.13 [Every 6 
years] 

 

The major peak indicated that annually both periodic components of NDVI time-series and 

temperature time-series are correlated. The phase lag between the annual components of CW 

NDVIs and temperature ranged from approximately 24 degrees to 81 degrees i.e. 0.8 month to 2.7 

months. Our results suggest that the CW NDVI responded with a longer delay of maximum 2.7 

months with temperature whereas, it responded with a shorter delay of maximum 2.2 months with 

water level. The time-lag was obtained using equation 3.7 from the mean phase spectrum over 
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frequencies within a range of +/-1 month. There was no major peak in the amplitude spectra at any 

frequency between CW NDVI and precipitation or CW NDVI and wind. Since low amplitude 

(minor peak) indicate weaker correlations between response and forcing signal, the phase spectrum 

and consequently time-lag are not significant (i.e. unreliable) for that frequency (see Table 3.1). 

This analysis can help in understanding key factors such as moderate temperature and water level 

benefits in CW growth.  

3.4 Summary and Conclusions 

This study aimed to understand the dynamic nature of various types of coastal wetlands by 

analyzing the interaction between the hydro-meteorological mechanisms (i.e., water level, 

precipitation, temperature, wind) that force these dynamics and the corresponding response in the 

CW NDVI signal. The study also sought to understand the temporal lag between the response and 

forcing signals. The data used were Landsat derived NDVI, airport and tide station hydro-

meteorological data, and an established wetland classification system. A series of empirical 

methods were implemented to analyze the time-series under different situations. 

Based on spectral analysis, on an annual-scale, PFW (inland locations) were found to be more 

vulnerable to external forcing compared to PSEW, PEW and EEW (coastal locations). However, 

at the decadal-scale, inland locations were more resilient (i.e. less vulnerable) than coastal 

locations. The wetland dynamics were mostly driven by water level and precipitation. NDVI 

exhibited annual periodicity which appeared to be regulated primarily by temperature and water 

level. Cross-spectral analysis found a time-lag of 0.8 months to 2.7 months between temperature 

and NDVI and 0.9 months to 2.2 months between water level and NDVI. The characterization of 
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the persistent behavior across a range of spatial and temporal scales and subsequent understanding 

that coastal wetland dynamics are mostly driven by water level and precipitation indicated that the 

severity of droughts, floods, and storm surges will be a driving factor in the future sustainability 

of coastal wetland ecosystems. For long term projections of coastal wetland dynamics, we 

recommend that extreme hydrologic events (floods and hurricanes) be incorporated into the model 

at approximately decadal intervals and that wetland responses to temperature and storm surge 

events be lagged in time by the values indicated above. 
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CHAPTER 4: NDVI RECONSTRUCTION FOR IMPROVED 

COASTAL WETLAND MONITORING USING TRI-SENSOR 

DATA FUSION: OBSERVATIONS FROM LANDSAT-8, 

SENTINEL-2A AND ASTER 

 

4.1 Introduction 

Availability of free satellite imagery significantly advances simulated constellations of medium 

resolution sensor data for monitoring earth’s coastal and terrestrial systems (Dassenakis et al., 

2011; Wulder et al., 2015). Coastal wetlands (CW) have been recognized for their ability to protect 

shorelines, improve water quality, recharge aquifers, provide nurseries for fisheries, and offer a 

setting for recreational activities (Ozesmi et al., 2002). Unfortunately, CW are deteriorating due to 

climate change, human activity and accelerating rates of sea level rise (E. Barbier, 2013; Ozesmi 

et al., 2002). Due to the protective and non-protective ecosystem services they provide, it is 

important to conserve these valuable resources.  

Satellite remote sensing has many advantages for inventorying and monitoring CW. However, 

even with high resolution, a single sensor can have limitations in terms of spatial coverage in a 

selected scene or in a series of scenes that hinders continuous long-term CW monitoring. 

Therefore, multi-sensor fusion plays an important role in accumulating complementary data from 

multiple sensors. This is especially useful for CW areas where a single day of full coverage is 

difficult for a single sensor due to frequent thick clouds (Gordon & Wang, 1994). In this regard, a 
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potential problem lies in the synergistic use of multiple satellite systems. Fusion of satellite data 

from multiple sources involves an inherent disruption of harmonizing information due to 

differences in spatial resolution, spectral ranges, and spectral properties such as band number, 

position, and width (Ranchin & Wald, 1996). Therefore, finding satellite sensors of similar spatial 

and spectral properties, especially for CW dynamics analysis, is vital for the coherent fusion of 

multi-sensor satellite data.  

Among the publicly available sensors, Landsat has the longest data record starting from 1984 and 

has been used extensively for local and global monitoring. Landsat-8 (L8) is the latest generation 

in the Landsat Data Continuity mission which was launched in 2013. L8 is equipped with 

Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) and both are currently in 

operation with an orbital revisit time of 16 days (Wulder et al., 2015). The historical record of 

Landsat imagery is hindered by the cloud and shadow obscurity that affects all similar optical 

satellite sensors. The temporally sparse time-series of L8 requires complementary data to make 

the longest satellite time-series more suitable for CW monitoring in applications such as long-term 

salt marsh change and mapping (Campbell, 2018; SUN, 2015), forest degradation (Ranchin & 

Wald, 1996), rapid phenology changes (SUN, 2015), and CW degradation (Mo et al., 2017; Tahsin 

et al., 2016).  

Normalized Difference Vegetation Index (NDVI) conveys valuable information relating to CW 

dynamics (Civco et al., 2006; Tahsin et al., 2016). NDVI is a vegetation index derived from optical 

remote sensors that characterizes the reflective and absorptive characteristics of vegetation in the 

red and near infrared (NIR) bands of the electromagnetic spectrum. A chronological analysis of 
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NDVI with reasonable spatial resolution can indicate changes in CW including coastal marsh 

vegetation (SUN, 2015). Current optical sensors have sufficient spatial and temporal resolution for 

NDVI production, but unfortunately image pixels may be obscured by clouds thereby masking 

critical areas of change. These obscured pixels are one of the principal barriers to effective satellite 

image interpretation from optical sensors. However, the required high or medium spatial resolution 

is provided only by panchromatic and multispectral scanners in the reflective spectral range e.g., 

SPOT, Landsat, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), 

Sentinel and SAR sensors. Many of these are commercial and not publicly available to use except 

at significant cost. Hyperspectral sensors on satellites such as MERIS/ENVISAT-1 could provide 

additional useful information about biochemical composition of vegetation and waters, 

mineralogical composition of soils and rocks, surface temperature, water content in vegetation and 

soil, etc. However, their relatively coarse resolution is not suitable for a local ecosystem change 

identification and the narrow swath width results in low availability of data for coastal areas, both 

of which prevent their efficient and widespread utilization for many coastal applications. 

Previous researchers have reported many successful applications of sensor fusion among Landsat, 

MODIS, and Sentinel (Kulawardhana et al., 2007; Roy et al., 2008; Walker et al., 2012). Also, 

different satellite sensors: Landsat, AVHRR, ASTER, Sentinel, and MODIS have been exploited 

for the NDVI mapping at local or global scale over the past decades (Cihlar, 1996; Xu & Zhang, 

2011; W. Zhu et al., 2012). In spite of the availability of NDVI data from multiple sources, an 

inherent inconsistency hinders the synergistic use of multi-source NDVI. Many previous 

researchers have also presented  comprehensive literature reviews focused on consistency issues 

among the inter sensor NDVI data, particularly in the spectral aspect (Fan & Liu, 2018). Since 
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NDVI is computed using reflectance values in the visible and NIR bands, the issues affecting 

spectral band data impacts the NDVI calculation. Basically, satellite observations are post-

processed to rectify various spatial (Goodin & Henebry, 2002), temporal (Fensholt et al., 2010), 

radiometric (Roderick et al., 1996), and spectral factors (Galvão et al., 1999). Differences in spatial 

resolution can add bias to fused NDVI data since it is scale dependent (Jiang et al., 2006).To reduce 

overall uncertainty, multiple NDVI intercalibration studies agree that the subject and reference 

sensor data need to be spatially co-registered and resampled (Fan & Liu, 2018). Thus, all sensor 

data can be compared pixel-to-pixel. After that any physical quantities can be computed via 

accurate sensor calibration. In the cases of spectral and spatial similarity, multi-sensor data can be 

used interchangeably (Li et al., 2013; Wulder et al., 2015). In other cases, the results obtained from 

multi-sensor data are first compared and then used in combination (Wu & Liu, 2014). However, 

some research gaps remain. 

Previous research compared Sentinel-2A (S2A) MSI and L8 OLI data, but did not take into account 

the misregistration between the sensors (Flood, 2017). While some previous research focused on 

terrestrial area (desert) only (Li et al., 2017) and used simulated reflectance data (Gorroño et al., 

2017), some of their models did not consider large amounts of data from the spatio-temporal 

domain (Li et al., 2017; Mandanici & Bitelli, 2016). For example, some models were based on 

fusion of multi-sensor data for pre-selected dates only leaving the model inapplicable to other 

seasons (Hazaymeh & Hassan, 2015). Other research did not consider more than two satellite 

systems of similar spectral and spatial features (Walker et al., 2012).  
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A research gap is clearly present in multiple sensor fusion models that can be applied to any season 

or any area. Therefore, we propose a tri-sensor fusion (TSF) model that integrates compatible 

sensors and addresses the sensor inequality issues by utilizing the coincident imagery from a 

selected four-year time-series. The technique uses both S2A MSI and ASTER synergistically with 

L8 OLI. The free access to L8, S2A and ASTER, the similar wavelength for bands relevant to 

NDVI, and similar geographic coordinate systems (Zhu et al., 2015) provide a viable opportunity 

to combine these three satellite systems for more continuous monitoring of CW areas. ASTER has 

been used in conjunction with Landsat 5 (L5) to compare two vegetation indices generated by 

these two sensors. Both NDVI and soil-adjusted vegetation index (SAVI) showed lower spectral 

vegetation index measurements for ASTER compared to L5 ETM+ for the same target, but still 

showed a strong positive linear relationship (Xu & Zhang, 2011). Several simulation studies have 

also shown the potential of combining S2A and L8 [29] as well as L8 and ASTER (Xu & Zhang, 

2011). In total, the aforementioned research provides justification for the synergistic use of L8, 

ASTER and S2A in this study. 

Various approaches have been developed for image fusion, such as the intensity-hue-saturation 

(Tu et al., 2001), principal component analysis (Shettigara, 1992), wavelet decomposition (Nünez 

et al., 1999), high-pass filter (HPF) (Chavez & Sides, 2002), sparse representation (Wei et al., 

2015) and area-to-point regression kriging (ATPRK) methods (Q. Wang et al., 2015). There are 

several reviews of the available image fusion approaches (Pohl & Van Genderen, 1998; J. Zhang, 

2010). Recently, machine learning techniques such as deep learning (Liu et al., 2018) and random 

forest (RF) (Seo et al., 2018; Tahsin et al., 2017) have gained popularity in image fusion. Motivated 

by the advantages and encouraging performance in a previous data enhancement technique (Tahsin 
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et al., 2017), an RF algorithm is proposed here for multi-sensor data adjustment before the fusion 

of L8, S2A and ASTER data. Our approach in the multi-sensor data environment is to first 

designate the most ubiquitous sensor with the longest data record as the baseline. In this study, L8 

will serve as the baseline. The second component of our approach is to investigate peer sensors for 

similar spectral features to develop candidates for fusion. Third, the hierarchical fusion workflow 

is established to produce enhanced cloud-free NDVI that mimics the L8 product. 

There are two potential sub-approaches for the fusion task. The first option was to upscale the 20 

m S2A Level-1C data and the 15 m ASTER Level-1B data to match the 30 m spatial resolution of 

L8 Level-1B. S2A Level-1C top-of-atmosphere (TOA) reflectance data is geometrically and 

radiometrically rectified with orthorectification to generate accurate geolocated products. ASTER 

Level-1B data contains calibrated at-sensor radiance, which is geometrically corrected and 

geolocated. The process for upscaling is straightforward but effectively wastes the valuable 20 m 

information obtained by S2A and 15 m information obtained by ASTER. Since our objective is to 

enrich the existing L8 with available complementary data, we retained all spatial and spectral 

characteristics of L8 and modified the other two satellites accordingly. The fusion of L8 with S2A 

and ASTER data can increase the spatial coverage of data available for continuous monitoring. 

This is especially beneficial in CW areas where cloud and water vapor masks a high percentage of 

the data (Martinuzzi et al., 2007). The second option was to compute NDVI from each sensor first 

before the co-registration and scaling. This approach is called ‘index then blend (IB)’ (Goyal & 

Guruprasad, 2018; Jarihani et al., 2014). The IB approach has been found to be computationally 

more accurate because it mitigates error propagation compared to the alternative (Jarihani et al., 

2014).  
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This paper presents a virtual constellation of NDVI data from three satellite sensors that have 

similar spectral features: L8, S2A and ASTER. The combined imagery enables NDVI observations 

of CW at moderate (30 m) spatial resolution similar to L8 with more available spatio-temporal 

coverage. The novelty in current study lies in the capability of the proposed model to utilize the 

four years of NDVI imagery altogether to predict NDVI for any selected date irrespective of the 

season, thus making the TSF model robust and adaptive to seasonal and inter-annual changes. The 

TSF model will serve as a unique tool for coastal managers to monitor CW changes. The 

development and testing of the TSF technique are as follows: We discuss the methodology in 

Section 2, application of proposed method in Section 3, and results in Section 4. After that, a 

discussion on the proposed TSF model, its application, and limitations are presented in Section 5. 

Conclusions and recommendations for future work are provided in Section 6. 

4.2 Methodology 

The TSF methodology is divided into three major components: data collection and pre-processing; 

model development; and model validation. The components are illustrated in Figure 4.1 a (data 

collection and pre-processing) and Figure 4.1 b (model development and validation) and discussed 

in the following sections. 
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Figure 4.1: Sketch map of TSF flowchart: a) Image pre-processing for Landsat-8, Sentinel-
2A and ASTER including compositing Sentinel-2A time-series into a new composite of gap 
filled (caused by image path overlapping) Sentinel-2A time-series at a pixel-based scale; b) 

Schematic flowchart of the Tri-sensor fusion (TSF) scheme. 

  

 

 

(a) 

(b) 
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4.2.1 Sensor data collection and pre-processing  

L8, S2A and ASTER data from the years 2015 through 2018 were collected for the current study. 

These years represent the time period (ongoing) where data are available for all three sensors.  

Landsat-8 (L8) data were collected from the Earth Observing System (EOS) website (Lenhardt, 

2015), for the years 2015 through 2018. L8 was initially known as the Landsat Data Continuity 

Mission which was launched on February 11, 2013. Similar to the previous generations of Landsat, 

L8 has a 16-day repeat cycle. L8 satellite carries the Operational Land Imager (OLI) sensor that 

contains nine spectral bands, including a panchromatic (PAN) band. The visible, near infrared 

(VNIR) and shortwave infrared (SWIR) bands are 30 m in spatial resolution, while the PAN band 

is 15 m in spatial resolution. The L8 swath width is 185 km. We downloaded L8 images covering 

the Paths 19-20, Row 39. While Path 20, Row-39 covers 100% of our study area, Path 19, Row-

39 covers almost 50% of the eastern side of the study area. The reason for keeping two different 

combinations of Paths and Rows, is to accumulate more dates in the temporal domain for training 

the RF model. A sharp edge is observed in the L8 image for the dates where only one pass (Path 

19, Row-39) which covers half of the study area is performed (See Figure 4.2 a). 

We pre-processed the L8 data for years 2015 through 2018 using the analytics tool in the EOS 

cloud-based platform (Lenhardt, 2015). This service removes the need for the user to download 

and store the data prior to pre-processing locally, making this part of the workflow much more 

convenient. The L8 data were subjected to the EOS imagery pre-processing pipeline which 

includes radiometric calibration of digital numbers into at-sensor radiance, raster filters to remove 

noise, reprojection to a common projection system (UTM zone 16N, WGS 1984), cloud detection 
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and masking. We specified for NDVI computation and further analysis. NDVI was computed using 

EOS based on band 4 (Red) and band 5 (NIR) reflectances and the resulting NDVI image was 

produced in geotiff format (Lenhardt, 2015). EOS employs the canonical NDVI formula (Levy, 

2000), expressed mathematically as: 

                    NDVI = (𝑁𝑁𝑁𝑁𝑁𝑁−𝑅𝑅𝑅𝑅𝑅𝑅)
(𝑁𝑁𝑁𝑁𝑁𝑁+𝑅𝑅𝑅𝑅𝑅𝑅)

                  (4.1) 

Sentinel-2A (S2A) data were also collected from EOS (Lenhardt, 2015). S2A was launched as 

part of the European Commission's Copernicus program on June 23, 2015. S2A has 13 spectral 

channels including three VNIR bands with 10 m resolution, two NIR bands with 10 and 20 m 

resolution. S2A has the widest swath width of the three sensors in TSF at 290 km. Similar to L8, 

S2A data were collected and pre-processed using EOS for the years 2015 through 2018. Band 8A 

(NIR) and band 4 (Red) reflectance values were used for S2A NDVI calculation. All available 

S2A images from tiles T16RFT, T16RGU, T16RGT, T16RFU, and T16RGT were used to produce 

NDVI images. These 5 tiles combined to cover the full study area, but not all tiles had images 

captured on all desired dates. Similar to L8, a sharp edge was observed in the S2A image for those 

dates where less than five of the mentioned tiles are available. Also, S2A data tiles contain some 

overlap for images acquired on the same date. Image reprojection and cubic convolution 

resampling technique was done with ArcGIS to estimate the resampled pixel value in the 

overlapped portion of the S2A input image (Park & Schowengerdt, 1983) (See Figure 4.2 b). 
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Figure 4.2: a) ASTER tile from May 2018 and Landsat-8 tile from February 2018, no 
adjacent tiles present on the same date for either sensor; 

b) Sentinel-2A tiles merged for August 2015, two overlapping tiles present on the same 
date. 

 
ASTER data were acquired through the USGS Earth Explorer website  from LP-DAAC site (The 

NASA Land Processes Distributed Active Archive Center (LP DAAC), n.d.). ASTER is a joint 

operation between National Aeronautics and Space Administration (NASA) and Japan's Ministry 

of Economy, Trade and Industry (METI). ASTER global observation data has been publicly 

available since the year 2000. ASTER spectral capabilities include three VNIR bands at 15 m 

resolution, six SWIR bands at 30 m resolution, five thermal infrared (TIR) bands at 90 m resolution 

and a NIR band at 15 m resolution. It has the narrowest swath width of the three TSF sensors at 
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60 km. We downloaded all available local granules of ASTER covering the entire spatial extent of 

the study area. Similar to L8 and S2A, the dates where one or more granules are missing result in 

a sharp edge in the image. Collecting granules in the same date prevents from overlapping image 

scenes (See figure 2a). The ASTER data was pre-processed using USGS LP-DAAC Science 

Processor for Missions (S4PM) (Lynnes, 2007) processing system that also stores ASTER Level 

1, 2, and 3 products. The ASTER Level-1B data was used for NDVI computation. The ASTER 

Level-1B data are available in the Hierarchical Data Format (HDF) and the bands required to 

compute NDVI are band 3N (Red) and band 8 (NIR). The R (Krehbiel, 2017) package provided 

by USGS LP-DAAC (The NASA Land Processes Distributed Active Archive Center (LP DAAC), 

n.d.) was used to convert the HDF data from ASTER Level-1B (which is in UTM) and outputs it 

as a multi-band geotiff file. NDVI was computed from the pre-processed image using the bands 

referenced above and equation 4.1. 

The collective spatial and spectral similarities of L8, S2A and ASTER enable their synergistic use 

to map NDVI as a virtual constellation. Since NDVI is calculated using only red and NIR bands, 

no other bands from the respective satellite sensors were used in the current paper. The spectral 

characteristics of the L8, S2A and ASTER standard products are listed in Table 4.1.  
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Table 4.1: Parameters of Selected Bands (for NDVI Computation) from Landsat8 (L8), Sentinel-
2A (S2A) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER). 

Satellite/Sensors Subsystem Band 
Number 

Spectral 
Range 
(µm) 

Signal to 
Noise Ratio 
(SNR) 

Spatial 
Resolution 
(m) 

Swath 
Width 
(km) 

Landsat-8 OLI NIR Band 5 0.85-0.87 204 30 185 

Red Band 4 0.63-0.68 227 

Sentinel-2A MSI  NIR Band 8A 0.86–0.88 72 20 290 

Red Band 4 0.65–0.68 142 10 

ASTER NIR Band 3N 0.78-0.86 202 15 60 
Red Band 2  0.63-0.69 306 

 

4.2.2 Tri-Sensor fusion method development 

Tri-Sensor Fusion (TSF) model is a remote sensing modeling system that synthesizes three satellite 

sensors into a virtual constellation. It was built using Matlab and ArcGIS for image processing and 

Python for TSF operation. The method was developed under two primary assumptions. First, 

NDVI is a proxy for CW vegetation vigor (Tahsin et al., 2017), therefore a monthly NDVI time 

series will follow a relatively predictable annual pattern of growth and decline except when 

influenced by major external forces such as sea level rise (long-term) or hurricane storm surge 

(short term). Second, inequality of NDVI between different sensors is systematic (Fan & Liu, 

2018) or random (Aghakouchak et al., 2012) and the complex relationship can be modeled using 

long-term historical data (Nay et al., 2018) for all three sensors. 
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The first objective of TSF is to unify the NDVI scales across the three sensors prior to fusion. 

Common observations from the three sensors during the coincident time-period provides an 

opportunity for synergistic inter-sensor comparison. Relationships need to be analyzed pixel by 

pixel between two sensors at a time. The reason for developing the relationships between two 

sensors at a time is that each pair of sensors has unique inconsistencies from systematic and random 

components (Aghakouchak et al., 2012) where the systematic inconsistency comes from different 

climate conditions or geographical locations of the satellites (Y. Tian et al., 2009) and the random 

inconsistency comes from multiple sources such as difference in overpass timing, sun angle, sensor 

mechanism and other sensor specific features. The amount of inconsistency varies between each 

sensor combination. Traditional linear regression would be the simplest method to establish NDVI 

relationships between sensors. However, linear regression has previously been shown to be 

ineffective in capturing complex and non-linear relationships in remote sensing imagery. 

Therefore, TSF implements a random forest (RF) model similar to Tahsin et al. 2017 (Tahsin et 

al., 2017). By using four years of monthly imagery data with sufficient temporal overlapping 

among the sensors, a RF model was developed to predict missing NDVI for L8 pixels obscured by 

clouds and shadows. 

4.2.2.1 Random Forest Model 

To establish quantitative relationships between the baseline L8 sensor, and peer sensors S2A and 

ASTER, we constructed a RF model as a multivariate non-parametric regression method (Breiman, 

2001; Rodriguez-Galiano et al., 2015), with peer sensor NDVI values, unique geographic location 
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(northing (m) and easting (m)) and month of the year from each NDVI time series as predictor 

variables.  

The RF algorithm builds many regression trees (i.e. a forest) based on random subsamples of the 

training data set. This known as bootstrap aggregation, commonly referred to as bagging, where a 

random subset is selected with replacement to train the individual trees with the results of the 

ensemble aggregated by averaging (for regression) or voting (for classification)  (Breiman, 2001; 

Palmer et al., 2007). At each node in the tree, a subset of predictor variables is selected at random 

and the optimal binary split is computed using the training data subsample and a metric known as 

“purity.” During this procedure, the decision tree progresses through all candidate splits to 

determine the optimal split that maximizes the purity of the resulting branch. Residual sum of 

squares (RSS), shown in equation 4.2 is used as the splitting criteria for regression trees. 

𝑅𝑅𝑅𝑅𝑅𝑅 =  ∑ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝐿𝐿)2 +  ∑𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑅𝑅)2               (4.2) 

where, ∑ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝐿𝐿)2 and  ∑𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑅𝑅)2 refer to the left and right nodes, determined by 

the binary split.  

The RF algorithm is superior in a sense that while classic regression trees are typically “pruned” 

thus reducing the number of child nodes, according to a specific condition, decision trees in RF 

grows to maximum purity, constrained by a maximum depth parameter. Each tree sees only part 

of the training data sets and thus captures only part of the information contained in the entire 

training data set. The details of RF can be found in (Breiman, 2001). RF is appealing in this 

application because it inherits some special characteristics such as built-in feature selection 

capabilities, a means for evaluating the influence of each feature on the algorithm, and relatively 
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high levels of accuracy in predictions (Palmer et al., 2007). The vital feature of RF is that, using a 

bootstrap sample of the data, it trains each tree individually. This randomness makes the model 

more robust than a single decision tree and prevents overfitting the training data. The ensemble of 

decision trees aggregates predictions of continuous variables by averaging the predictions from all 

trees (Breiman, 2001). Furthermore, the RF algorithm provides an extra level of randomness and 

computational efficiency to the bagging process. While nodes of standard decision trees are split 

by making use of the best possible split from the full list of predictor variables, RF uses a randomly 

selected subset of these variables; this considerably speeds up the tree growing process. However, 

in RF every node utilizes the best possible split from the randomly selected subset of predictors at 

the node. The best splitter might either be just a fairly good splitter, may not be of any help at all 

or the best overall. In case the splitter is not very helpful, the outcome from the split is two nodes 

that are basically the same. We suggest that readers look at the figures of (Tahsin et al., 2017) to 

see an illustration of an ensemble containing three tree and also a detail of one tree from the 

ensemble. 

4.2.3 TSF model validation 

The validation starts with comparing the prediction accuracy of the proposed TSF model using RF 

against a linear regression model. The purpose of this comparison is to demonstrate the superiority 

of the RF model and justify the added complexity over a simple linear regression model. For 

quantitative validation of the model, synthetic clouds were developed over areas in an image that 

have viable NDVI values. This provides labeled data for validation purposes. The images selected 

for the synthetic cloud validation were purposely excluded from the training and testing data but 
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were still located in the study area. The statistical measurement used for validation was Root Mean 

Square Error (RMSE) and Coefficient of Determination (R2). 

Root-Mean-Square Error (RMSE) is defined as:  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �1
𝑛𝑛
∑ [𝑛𝑛
𝑖𝑖=1 𝑇𝑇�𝑖𝑖 − 𝑇𝑇𝑖𝑖 ]2              (4.3) 

Where 𝑇𝑇�𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑖𝑖 represents the observed NDVI and estimated NDVI for pixel i, respectively, and 

n is the number of pixels in the test set (Jagalingam & Hegde, 2015).  

Coefficient of Determination (R2) is an overall measure of performance when comparing estimated 

values to observed values. It is defined as: 

𝑅𝑅2 =   𝐶𝐶𝐶𝐶𝐶𝐶 (𝑇𝑇�𝑖𝑖 ,𝑇𝑇𝑖𝑖)
𝑆𝑆𝑇𝑇�𝚤𝚤
� ,𝑆𝑆𝑇𝑇𝑖𝑖

                       (4.4) 

Where 𝐶𝐶𝐶𝐶𝐶𝐶 (𝑇𝑇�𝑖𝑖 ,𝑇𝑇𝑖𝑖) is the covariance between 𝑇𝑇�𝑖𝑖   (Observed NDVI for pixel i) and 𝑇𝑇𝑖𝑖 (estimated 

NDVI for pixel i); 𝑆𝑆𝑇𝑇�𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆𝑇𝑇𝑖𝑖 indicate the standard deviations of 𝑇𝑇�𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑖𝑖 respectively. R2 

measures the linear association between prediction and observation. However, it only provides 

usable information when data are normally distributed and is sensitive to large values and outliers. 

4.3 Application and Testing of TSF in Apalachicola Bay 

We conducted our study at Apalachicola Bay, located on the Gulf of Mexico coast in the Florida 

panhandle (see Figure 4.3). The study area occupies a section of complete L8 scene, Path 19/Row 

39, containing a total area of 1053.24 km2. The study site in Apalachicola Bay is home to rich 

variety of CW vegetation. CW along the eastern seaboard and Gulf coasts of the United States 
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have been classified by the National Oceanographic and Atmospheric Administration (NOAA) 

Coastal Change Analysis Program (C-CAP) (NOAA, 2017; Tahsin et al., 2016). The relevant 

wetland land cover types in the study area are: palustrine forested wetland (PFW): 54.1%, 

palustrine emergent wetland (PEW): 7.86%, palustrine scrub and emergent wetlands (PSEW): 

11.66%, and estuarine emergent wetland (EEW): 6.48%. Other wetland classes such as estuarine 

forested wetland, estuarine scrub/shrub wetland are negligible (<1%) in the study area. 19.56% of 

the study area was comprised of other land uses in addition to wetlands including developed area, 

agricultural use, and bare land. Apalachicola Bay was chosen as the study area because of its 

location in a coastal area where clouds are frequently present throughout the year. 

 

Figure 4.3: Study Area Shown in Red Polygon in the Upper Panel and Black Polygon in the 
Lower Panel. 
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4.3.1 Selecting the baseline sensor 

A baseline sensor is required before image fusion. The baseline sensor is the target sensor while 

the peer sensors provide complementary observations to the target sensor in an effort to estimated 

missing data. In the current paper, NDVI derived from three satellite systems (L8, S2A and 

ASTER) were selected for data fusion. Three primary factors were considered when selecting the 

baseline sensor: Longest availabile historical data record; maximum overlapping with peer 

sensors; and minimum percentage of monthly cloud obscured data. 

Average monthly cloud cover percentage (i.e., CC) was calculated as the number of cloud obscured 

pixels by total pixels in the study area in each image. The formula can be written as: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝐶𝐶𝐶𝐶) = 100 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

              (4.5) 

Here, Pixelcloud is the number of pixels obscured by clouds; Pixeltotal is the total number of pixels 

in the scene. 
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Figure 4.4: Monthly Percentage of Cloud Free Data for L8, S2A and ASTER. 

Figure 4.4 shows the timeline of the three sensors with their respective cloud coverage percentages. 

Landsat (including generations previous to L8) has the longest data record starting from August 

1972. ASTER has the next longest record starting from July 2000 and S2A has the shortest records 

starting from July 2015. Figure 4.4 shows that all three satellites are in operation with their 

coincident time period beginning in 2015. In the current study we limit the temporal domain from 

2015 to 2018 when all three sensors were operational. The greatest benefits among these three 

sensors are spectral and spatial similarity which reduce the pre-processing and aids in retaining 

sensor information intact in the peer sensors. Regarding the last criterion for selection of the 

baseline sensor, L8 has highest percentage (79.72%) of cloud free data while S2A and ASTER 

have 71.33% and 52.27%, respectively, over the coincident time period from July 2015 to 2018. 

Therefore, L8 was selected as the baseline sensor over ASTER or S2A. By selecting L8 as the 

baseline sensor, observations from the peer sensors will be projected onto L8 when necessary. In 
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other words, the output of TSF will be a repaired L8 image where missing values due to clouds 

are estimated using S2A and/or ASTER.   

4.3.2 Input Preparation 

4.3.2.1 Target Variable: L8 NDVI  

L8 NDVI imagery is the target for the TSF model. Images in the L8 time-series were clipped to 

study area boundary using ArcGIS. In performing the TSF, data availability was considered at the 

pixel level. The L8 cloud mask (Foga et al., 2017), distributed with each image, was used to 

identify cloudy pixels and calculate cloud cover percentage. An additional filter for negative NDVI 

values was implemented since NDVI values approaching -1 correspond to open water (Weier & 

Herring, 2000). Figure 4.5 shows a heat map of usable data in the study area over the selected 

temporal domain.  L8 NDVI imagery is released as a 16-day composite, therefore two images per 

month are often available. Considering that the month is a predictor variable in the feature vector, 

when two images were available for a given month the one with less cloud coverage was selected. 
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Figure 4.5: Percentage of Data Availability in Landsat-8 (L8). 

4.3.2.2 Predictor Variables: S2A and ASTER NDVI, Location and Month 

S2A and ASTER NDVI values, location (encoded as the northing and easting coordinates of the 

pixels in meters referenced to UTM Zone 16N, WGS84), and the image acquisition month 

(encoded as an integer from 1 to 12) were the predictor variables for TSF model. Including location 

in the feature vector guides the model to estimate a value close to that of the neighboring pixels as 

well as a plausible value for that pixel in historical and phenological terms.  

The pre-processed S2A and ASTER data were clipped to study area and resampled to 30 m using 

ArcGIS to ensure that each 30 m pixel location was consistent throughout the time series. The 

SEN2COR cloud mask (Mueller-Wilm et al., 2016) is used for S2A cloud identification. The 

negative NDVI filter was also used for S2A to mask out pixels corresponding to open water.  
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In the TSF model organization, S2A data is selected as secondary. The reason for prioritizing S2A 

with L8 was because S2A has been previously shown to provide adequate continuity for current 

LANDSAT missions (Topaloǧlu et al., 2016). The L8-S2A fused imagery is then ready for tertiary 

fusion with ASTER if necessary. The TSF model is robust in the sense that in cases of scene 

unavailability or obscurity for any of these three sensors, the others can be fused into a viable 

NDVI image In cases where only one sensor is available in addition to L8 (target variable), then 

the sensor adjustment takes place and the peer sensor (S2A or ASTER) is converted to L8 

compatible NDVI values while L8 values remained unchanged. On the other hand, if the baseline 

target variable L8 is not available, then S2A can be fused with ASTER where both S2A and 

ASTER transforms to L8 compatible values based on the training data memory. In the event that 

the only available imagery is a cloudy image from one sensor, then a technique such as Optical 

Cloud Pixel Recovery (OCPR) can be used to repair the image (Tahsin et al., 2017). 

4.3.3 Selection of input for training  

It is important to select reliable inputs for the training of any machine learning model, including 

TSF. The final performance of the final estimator is highly dependent on the quantity and quality 

of the training data. For TSF, NDVI from L8 are the target data or labels and NDVI from S2A, 

NDVI from ASTER, northing, easting, and calendar month, easting and northing are predictor data 

or features. All predictor variables except calendar month are gridded raster products and are 

therefore spatially variable. Examples of input data records used to train the TSF model are shown 

in Table 4.2 and Table 4.3. 
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Table 4.2: Sample Input Data for Training TSF Model - Phase 1. 

L8 NDVI Data  Month Northing (m) Easting (m) S2A NDVI Data  

0.56 12 701392 3296625 0.69 
0.59 12 701422 3296625 0.67 
0.62 8 701452 3296625 0.66 
0.61 8 701482 3296625 0.68 
0.59 8 701512 3296625 0.68 
0.53 6 701542 3296625 0.67 
0.49 5 701572 3296625 0.64 
0.49 4 701602 3296625 0.69 
0.49 4 701632 3296625 0.66 
0.56 5 701662 3296625 0.66 

 

Table 4.3: Sample Input Data for Training TSF Model – Phase 2. 

L8 NDVI Data Month Northing (m) Easting (m) ASTER NDVI Data 

0.59 5 701692 3296625 0.34 
0.62 5 701722 3296625 0.26 
0.48 7 701752 3296625 0.00 
0.55 7 701782 3296625 0.36 
0.66 7 701812 3296625 0.38 
0.66 8 701842 3296625 0.38 
0.62 6 701872 3296625 0.35 
0.55 6 701902 3296625 0.36 
0.59 6 701932 3296625 0.37 
0.58 6 701962 3296625 0.37 

 

4.3.4 Building the prediction model 

The random forest algorithm used in the TSF model to project L8 data was implemented in Python 

using the scikit-learn (sklearn) (Pedregosa & Varoquaux, 2011) module . The GDAL 
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(GDAL/OGR contributors, 2012) module was used to extract the spatial information associated 

with the target and predictor variables from geo-referenced images. 70% of the data corpus was 

randomly selected in both models, without replacement, as the training data with the remaining 

30% held out for testing. For the maximum purity of the RF model, the records containing missing 

predictors (labeled as “zero”) were removed. Overall, the construction of the data corpus from the 

associated imagery took approximately 15+ min on average for each date (approximately 1053.24 

km2) on a non-specialized laptop computer. 

4.3.5 Validation and performance metrics 

For quantitative validation of the model, hypothetical clouds were created where the underlying 

image has viable NDVI values in L8. First, a performance matrix was developed for the 

hypothetical cloud pixels using RF-based TSF model and LR-based TSF model. Data from each 

season i.e. every 3rd month of year were taken for validation to check for reconstruction bias by 

season/month. This provides labeled data for validation purposes. The images selected for the 

hypothetical cloud validation were deliberately excluded from the training and testing data but 

were still located in the study area.  

The TSF model also underwent an additional two-fold validation: 1) by month and 2) by 

percentage of spatial coverage in a specific image to deepen our understanding about the 

robustness of the model in terms of seasonality effect, to check for issues related to Simpson’s 

paradox (Tahsin et al., 2017) or any sensitivity to the percentage of image obscured spatial 

coverage. Hypothetical clouds were created purposefully by extracting percentages of data 
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systematically from the area to see any potential impact by percentage of spatial coverage in data 

reconstruction.  

4.4 Results 

4.4.1 Sensor inequality adjustment 

To observe the results of the sensor inequality adjustment, we produced one-to-one scatterplots of 

observed L8 versus observed S2A and observed ASTER individually, along with their counterpart 

plots of observed L8 versus adjusted S2A and adjusted ASTER (Figure 4.6). The images used to 

generate Figure 4.6 was acquired in May 2018. Figure 4.6 (a) and Figure 4.6 (c) clearly show the 

scale inconsistencies between L8 and observed S2A and between L8 and observed ASTER, 

respectively. Figure 4.6 (a) shows a positive yet significantly scattered relationship between 

observed L8 and observed S2A NDVI, while Figure 4.6 (b) shows a much less scattered and 

positive relationship between observed L8 and adjusted S2A NDVI. Similarly, Figure 4.6 (c) 

shows a positive and highly scattered relationship between observed L8 and observed ASTER 

NDVI, while Figure 4.6 (d) shows a much less scattered and positive relationship between 

observed L8 and observed ASTER NDVI. These visual observations are confirmed by the 

improved R2 values between the observed and adjusted S2A and ASTER NDVI plots. 
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Figure 4.6: Comparison of observed NDVI differences between sensors and subsequent 
adjustments for selected pixels in May 2018: (a) Observed L8 versus observed S2A; (b) 

Observed L8 versus L8 estimated by S2A; (c) Observed L8 versus observed ASTER; (d) 
Observed L8 versus L8 estimated by ASTER. 

4.4.2 Data fusion and reconstruction 

After TSF, the spatial coverage of L8 NDVI over the study area showed improvement. In February 

2018 (Figure 4.7 a), L8 had visible coverage of only 48.08% of the study area. The coverage 

percentages improved to 100% after fusion with S2A. ASTER did not contribute to this fusion due 

to complete cloud coverage in its February 2018 image. In September 2016, both S2A and ASTER 

contributed to the increased spatial coverage of fused L8 NDVI. Before TSF, L8 had a visible 

coverage of only 9.89%. The visible coverage percentage improved to 33.75% after fusion with 

S2A and then to 70.86% after fusion with ASTER. The sharp image boundaries in Figure 4.7 

represent the absence of an adjacent scene for that sensor in that month or possibly cloud cover 

although it is unlikely for clouds to form such a regular pattern.     
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Figure 4.7: TSF performance in (a) February 2018; (b) September 2016. 

4.4.3 Analysis of TSF model performance 

A large portion of relevant NDVI data is often missing (i.e. see Figure 4.4) from L8 due to heavy 

cloud cover in coastal areas. Therefore, to aid in the broader application of long-term continuous 

monitoring of CW vegetation dynamics, TSF should be applied improve spatial NDVI coverage. 

The RF based TSF model (TSF-RF) was compared with a LR based TSF model (TSF-LR) to 

demonstrate the insufficiency of LR and justify the use of RF. Figure 8 shows the fused L8 NDVI 

versus observed L8 NDVI for the pixels in testing dataset. Figure 4.8 (a) shows the predictions of 

TSF-RF while Figure 4.8 (b) shows TSF-LR. The testing data consists of 30% of the entire data 

https://www.mdpi.com/2072-4292/9/6/527/htm#fig_body_display_remotesensing-09-00527-f006
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set, randomly sampled, without replacement (n = 830772). Visually, the plots show that TSF-RF 

has a more consistent linear trend across the plotted seasons and a tighter agreement than LR. TSF-

RF has an R2 value of 0.88 and a clearly positive linear trend while the TSF-LR has a significantly 

weaker R2 value (0.26) and is more scattered around its linear trend, with some visible disjoints 

between seasons. Overall, TSF-RF has a RMSE of 0.0020 while TSF-LR has a RMSE of 0.1207. 

R2 and RMSE also suggest that TSF-RF was able to synthesize the missing pixels quite closely in 

terms of the absolute magnitude of NDVI. The data shown in Figure 4.8 are also color coded by 

month to represent seasonal variations and to investigate the possibility of the model performing 

well as a whole while performing poorly in each individual month (Simpson’s Paradox). Though 

the test data was randomly sampled from the entire data consisting of twelve months, in figure 8 

only four months (March, June, September, and December) have been plotted to avoid chaos of 

different categories. At the same time represents the seasonal varieties in each quarter of a year. 

The colors are well distributed throughout the scatter plot indicating that the model is performing 

equally well in all months in addition to the data aggregated over the entire time span.  
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Figure 4.8: Scatter Plots of The Observed and Reconstructed NDVI From the Testing 
Dataset Using (Left) TSF and (Right) Linear Regression. 

4.4.4 Sensitivity of TSF performance to initial L8 cloud cover 

TSF was trained and tested using a data corpus where each record corresponds to a labeled (NDVI) 

pixel with the predictor features explained above. The source images were compiled from the from 

the imagery associated with L8, S2A, and ASTER from 2015 to 2018. Since each pixel is used as 

a training record, rather than a vector representing the entire image (i.e. common practice in deep 

convolutional neural networks), TSF is robust against overfitting to any particular prediction 

feature, including month. However, in order to determine the effective limit on initial cloud cover 

in the target L8 image that can be reconstructed using TSF, we tested the methods sensitivity to 

percent cloud cover by artificially obscuring increasing percentages of pixels from the target L8 

image and executing TSF.  Table 4.4 shows the performance of TSF obtained under different 

percentages of cloud covered scenario for a selected image. January 2016 was selected as the test 

image because it had 0% observed cloud coverage and was therefore a good candidate for 

validation using hypothetical clouds.   
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Table 4.4: Sensitivity of TSF performance to percent cloud cover of base L8 image, January 
2016 

 
Percentage of cloud 

cover 
Tri-sensor fusion  

R-Square RMSE P-Value 
10% 0.8129 0.009648 <0.05 
20% 0.8146 0.009669 <0.05 
30% 0.8127 0.00949 <0.05 
40% 0.8356 0.009557 <0.05 
50% 0.8246 0.009474 <0.05 
60% 0.8179 0.009457 <0.05 
70% 0.8113 0.009548 <0.05 
80% 0.8403 0.009457 <0.05 
90% 0.8155 0.009546 <0.05 
100% 0.8193 0.009581 <0.05 

 
The performance of TSF in reconstructing NDVI data in an L8 image was not sensitive to the 

initial cloud cover of the base L8 image. Thus, the results showed that TSF produces reasonably 

accurate reconstructions of cloud-obscured L8 NDVI pixels based on the spatio-temporal attributes 

of peer and target sensors regardless of season or severity of cloud coverage in the target L8 image.   

4.5 Discussion 

Sensor fusion can open opportunities for capturing dynamics in CW vegetation by creating 

spatially and temporally seamless long-term observations. The major hindrance to multi-sensor 

fusion is inconsistency between coincident images from each sensor and it is important to consider 

sensors that are compatible in terms of spectral and spatial characteristics. L8 and S2A have the 

potential for synergistic use that can capture the dynamics of inland waters and nearshore coastal 

areas at rates that have never been possible before. L8 and S2A data represent the most widely 

accessible moderate resolution multispectral satellite measurements. ASTER is another medium 
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resolution sensor that has similar spatial and spectral characteristics as L8 and was successfully 

used in past synergistically with previous generations of Landsat (Mezned et al., 2007). While 

multi-sensor NDVI data provide different views of earth surface, it is important to calibrate the 

sensor differences. Otherwise, the uncorrected NDVI variances will introduce spurious noise into 

the fusion results (Fan & Liu, 2018).   

TSF explicitly addresses this issue by adjusting each complementary sensor separately and fusing 

them hierarchically (S2A followed by ASTER). The current study provides a quantitative 

assessment of how TSF can progress the science of developing accurate, seamless NDVI. TSF was 

developed to synthesize data from three compatible satellite sensors using RF to address the issue 

of obscured NDVI coverage from a single optical sensor. It takes advantage of the inherent 

capabilities and efficiencies of RF to characterize the relationship between a labeled outcome 

(NDVI) and the features that predict it. Inclusion of location (encoded as the northing and easting 

coordinates of the pixels) into the feature vector encourages the model to predict a value close to 

that of the neighboring pixels as well as a plausible value for that pixel based on its history. Also, 

the inclusion of month only (encoded as an integer from 1 to 12) instead of both month and year 

enhances the model’s robustness to seasonality without overfitting to annual scale non-stationarity. 

Another reason for the selection of RF as the base model for TSF is its ability to estimate prediction 

error and feature importance simultaneously with model training and testing. This information can 

effectively guide researchers toward feature inclusion or exclusion as well as tuning the 

hyperparameters of the RF model (number of features to split on and maximum depth). Table 4.5 

shows the feature importance from each RF used in TSF for this study. 
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Table 4.5: Feature importance for the trained random forest. 

ASTER to L8 NDVI S2A NDVI to L8 
Features Importance Features Importance 

ASTER NDVI 0.586 S2A NDVI 0.479 

Northing (m) 0.222 Northing (m) 0.275 

Easting (m) 0.185 Easting (m) 0.227 
Month 0.014 Month 0.024 

 

As shown in Table 4.5, the complementary sensor NDVI is the most important feature followed 

by position (Northing, Easting). The month contributes much less to the capture of the remaining 

variability, accounting for only 1% to 2% of the feature importance in the ASTER and S2A models, 

respectively. It is likely that the month adds a final layer of spatio-historical memory to the overall 

prediction, but perhaps it is replicating information already known to the model as a result of the 

complementary sensor NDVI. This is a necessary topic for future work in enhancing TSF.  

The results also showed that using multiple linear regression was insufficient to predict L8 NDVI 

for either complementary sensor. In terms of model training time, LR is significantly faster than 

RF. However, RF shows much better prediction accuracy than LR in this real-world application 

and its complexity is justified. It is not known however, whether or not RF is the best machine 

learning model for this task. Based on the literature, it is certainly a justifiable choice but perhaps 

as more data are collected, an alternative model such as convolutional neural networks may be a 

better choice. This is also a promising avenue for future work.  

Lastly, the results presented herein certainly show that while TSF improves spatial coverage of 

obscured L8 NDVI imagery, there are still cases where it cannot reconstruct the image due to lack 
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of complementary sensor data from S2A or ASTER over all or parts of the target area. In these 

cases, a model such as OCPR that relies on deeper environmental data and no other sensors can be 

used. Regardless, TSF model is positive step towards producing spatially and temporally seamless 

NDVI for long-term CW studies. One crucial application where TSF could be of use is the 

projection of CW coverage, zonation, and above ground biomass density under sea level rise 

scenarios (Alizad et al., 2016; Morris et al., 2002; Swanson et al., 2014). A critical component of 

these studies is the ability to capture the present and past states of CW for validation purposes. 

These present and past states serve as the basis for future projections and these types of models 

are highly sensitive to these intial conditions. TSF can be used to establish these initial states by 

capturing the spatial variability of CW vegetation health over time. It can also be used to validate 

a CW vegetation model’s projection as data are collected in the future. 

4.6 Conclusions 

This study developed a technique for synergistic use of three optical satellite sensors to increase 

spatio-temporal coverage of CW NDVI imagery with cloud contaminated pixels. Using a virtual 

constellation of L8, S2A, and ASTER, enhanced NDVI imagery was produced covering improved 

spatial coverage. The enhanced NDVI imagery mimics the spatial and spectral properties of L8 

product. The salient benefit of using compatible sensor data is the retention of spatial patterns in 

the newly reconstructed NDVI imagery which is important for change detection in coastal wetland 

modeling. Using complementary sensor S2A and ASTER NDVI along with prediction features 

known to influence coastal vegetation growth and vigor (spatial location encoded as northing and 

easting and month encoded as integer values from 1 to 12), TSF was shown to be capable of 

reconstructing obscured L8 NDVI imagery with visually plausible and quantitatively accurate 
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results, even under severe cloud cover. Complementary sensor NDVI and spatial location were the 

most important features in the model. On the test data set, TSF predicted NDVI values with an 

RMSE of 0.0020 (NDVI values range from 0 to 1). Also, the R2 for the observed versus 

reconstructed NDVI values was 0.8786 (~1.0) indicating good agreement with the observed data. 

Random forest was chosen as the base model for TSF because it demonstrated fast and accurate 

learning capability when characterizing complex time-space-spectrum relationships in real world 

studies. The proposed random forest based TSF method can recover missing information with high 

efficacy. We therefore we predict that it can eventually be scaled for operational use as all the 

included sensors develop to maturity, and others are brought online. 

It should be noted that the TSF method was limited by the availability of the historical time series 

to characterize the complex time–spatial–spectral relationships between the L8 and peer sensor 

data over the multiple parameters in a specific region. Also, the peer sensor data are currently not 

available over the same time period as the baseline L8 NDVI. As with any machine learning model, 

including TSF, its performance is heavily dependent on its training data. Improvements can be 

achieved by further optimizing the training algorithms and architectures of the random forest with 

the new ideas for treating missing values in the predictor variable data sets. Focusing on screening 

and selecting suitable peer sensors as inputs for the TSF models is critical to the prediction 

accuracy. Also, the authors strongly recommend that the outer boundary of area selected for 

training lie well outside the area of interest to avoid edge or boundary effects, considering the 

importance of spatial location on the reconstructed values. Despite these limitations, the idea of 

spatial information recovery via machine learning provides a promising and efficient approach to 
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mitigate and eliminate cloud contamination with enough accuracy to facilitate long-term remote 

sensing based coastal wetland studies. 
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CHAPTER 5: CONCLUSION 

5.1 Conclusion 

A 15-year long time series NDVI was analyzed to evaluate the impact of hydrologic event on CWs 

stresses. Such analysis with long-term data is much more credible compared to single event based 

before-after analyses that bring potential doubt about non-uniformity for all similar events. NDVI 

is a widely used index to measure density of live green vegetation at global and regional scale. In 

general, the impact of extreme hydrological events (EHEs) such as hurricane and droughts on CWs 

can range from massive to very small. The recovery time for vegetation after impact from these 

EHEs can be highly variable depending on the hazard type and intensity. We investigated the 

impact of hurricane and drought on both freshwater and saltwater wetlands from year 2000 to 2015 

in Apalachicola Bay. Our results indicated that saltwater wetlands are more resilient than 

freshwater wetlands and suggested that in response to hurricanes, the coastal wetlands took almost 

a year to recover, while recovery following a drought period was observed after only a month 

(Tahsin et al., 2016). 

The 15-year long NDVI time-series was extended to a 30-year NDVI time-series to evaluate the 

impact of hydro-meteorological signals on CWs responses. NDVI response was compared against 

forcing hydro-meteorological variables. The database ranged from the year 1984 to 2015 and 

included hydro-meteorological data in the same temporal domain for Apalachicola Bay, Florida. 

Spectral analysis of these data allows for the characterization of persistence properties in the signal. 

Spectral analysis exhibited a difference in persistency against EHEs between inland and coastal 

locations of CWs at annual-scale and decadal scale. At annual scale inland CWs (PFW) were more 
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vulnerable to external forcing than coastal CWs (PSEW, PEW and EEW). However, at the 

decadal-scale, inland locations were less vulnerable than coastal locations. Cross-spectral analysis 

found a time-lag of 0.8 months to 2.7 months between NDVI response towards temperature 

fluctuation and a time-lag of 0.9 months to 2.2 months between NDVI response towards water 

level fluctuation. The understanding that coastal wetland dynamics are mostly driven by water 

level and precipitation provided ample indication that the severity of droughts, floods, and storm 

surges will be a driving factor in the future sustainability of CWs.  

The analysis was based on optical sensor derived data. Therefore, the NDVI time-series was 

temporarily sparse with a lot of missing months in those years. Though empirical S-G filter was 

used to fill the gap NDVI in the months of missing data, it considered only temporal observations 

to predict the missing values within a selected window. It is to be noted that we used the filter to 

predict mean NDVI instead of pixel-by-pixel NDVI. We utilized the processed long time-series 

(30-years) and multi-variable data. The large dataset was used in machine learning techniques to 

reconstruct missing data which is a less investigated method. Against this backdrop, this research 

proposed a novel methodology and applied it firstly to fuse data from multiple sensors and 

secondly by applying a data enhancement technique to recover the information contaminated by 

cloud cover. 

The last part of this study innovated a novel tri-sensor fusion (TSF) method, that synergistically 

use three satellite sensors to increase spatial coverage of CWs NDVI data obscured by cloud, using 

optical remote sensing imagery. The main idea was to fuse sensors of similar spatial and spectral 

features to use data after adjustment. Peer sensor NDVI data, spatial location (northing and 
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easting), and month were kept as predictor variables. TSF was shown to be capable of gaining 

spatial coverage with visually plausible and quantitatively accurate results. As the performance of 

any machine learning model is heavily dependent on its training data, more training data helps 

model training and performances. Due to common points in a specific day among three sensors 

were low in number, we used all NDVI data and corresponding peer sensors data to form the 

model. TSF improved the spatial coverage in NDVI, yet some days still had missing portion. 

Therefore, another data reconstruction model was required.   

To recover data in the absence of any other available satellite sensor, the study proposed and 

applied a data reconstruction method for missing pixel recovery using supplementary data for 

NDVI. A novel and unique Optical Cloud Pixel Recovery (OCPR) method was proposed and 

applied in Apalachicola Bay. Multi parameter 30-year time series data were used to reconstruct 

missing data in NDVI reflectance in Landsat data based on the well-known machine learning 

approach of random forest (RF). OCPR method enabled to devise the cloud repair in a step by step 

strategy towards final estimation. Temperature, precipitation, water level, month, spatial locations 

were selected as predictor variable to define the NDVI. While TSF increased spatial coverage with 

a visually and quantitatively plausible results, OCPR filled the remaining gap with reasonable 

accuracy. 

5.2 Future Research Scope 

Future research opportunities in coastal wetland ecosystem (CWE) will involve both maximum 

utilization of existing satellite remote sensors as well as incorporation of extreme events in existing 

climate models. The characterization of the persistent behavior across a range of spatial and 
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temporal scales and subsequent understanding that coastal wetland dynamics are mostly driven by 

water level and precipitation indicated that the severity of droughts, floods, and storm surges will 

be a driving factor in the future sustainability of coastal wetland ecosystems. It is very important 

therefore to incorporate extreme events in modeling coastal processes such as salt marsh mapping, 

and CWE degradation. For long term projections of coastal wetland coverage dynamics, we 

recommend that extreme hydrologic events (floods and hurricanes) be incorporated into the model 

at approximately decadal intervals and that wetland responses to temperature and storm surge 

events be lagged in time by the values indicated above. Time-lag values such as wetland responses 

to temperature and storm surge events be lagged in time by 2.7 and 2.2 respectively and the time-

lag need to be input for any relevant model development if used as input.  

In the data reconstruction models, RF shows much better prediction accuracy than linear regression 

(LR) in this real-world application. It is not known however, whether RF is the best machine 

learning model for this task. Based on the literature, it is certainly a justifiable choice but perhaps 

as more data are collected, an alternative model such as convolutional neural networks may serve 

as a better choice and promising avenue for future work. TSF method training depends on data 

availability from the 4 years’ time-series. Given more complementary sensors, the prediction 

accuracy will be improved and therefore data need to be explored for multi-sensor fusion. A critical 

component of these studies is the ability to capture the present and past states of CW for validation 

purposes. The present and past states of CW serve as the basis for future projections and the 

prediction models are highly sensitive to initial conditions of the chosen parameters. TSF can be 

used to establish these initial states by capturing the spatial variability of CW vegetation health 
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over time. It can also be used to validate a CW vegetation model’s projection as data are collected 

in the future. 
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APPENDIX: LIST OF FIGURES 
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Landsat data pre-processing: a) An example of Landsat-7 NDVI reflectance data obscured 

by stripping; b) Landsat-7 NDVI de-stripping and regaining missing data beneath the 

stripes 

 

Landsat NDVI reflectance data using “cfmask” layer provided by Landsat NDVI Cloud 

masking (a) raw NDVI reflectance data (b) binary cloud mask layer (c) final NDVI 

reflectance after adjusting cloudy and noisy data using “cfmask” 
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Study area: The Apalachicola Bay in Florida. Wetlands has been re-classified in three 

classes from the original twenty-four classes defined by National Oceanic and Atmospheric 

Administration (NOAA) Coastal Change Analysis Program (C-CAP)   
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Comparison of filtered data using S-G filters using different degree and window size. a) 

Observed NDVI from time series (2000-2015); b) Filtered NDVI with Degree 3, moving 

window size 5; c) Filtered NDVI with Degree 2, moving window size 3; c) Filtered NDVI 

with Degree 5, moving window size 7; d) Filtered NDVI with Degree 3, moving window size 

9. 
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