22 research outputs found

    A Learning Health System for Radiation Oncology

    Get PDF
    The proposed research aims to address the challenges faced by clinical data science researchers in radiation oncology accessing, integrating, and analyzing heterogeneous data from various sources. The research presents a scalable intelligent infrastructure, called the Health Information Gateway and Exchange (HINGE), which captures and structures data from multiple sources into a knowledge base with semantically interlinked entities. This infrastructure enables researchers to mine novel associations and gather relevant knowledge for personalized clinical outcomes. The dissertation discusses the design framework and implementation of HINGE, which abstracts structured data from treatment planning systems, treatment management systems, and electronic health records. It utilizes disease-specific smart templates for capturing clinical information in a discrete manner. HINGE performs data extraction, aggregation, and quality and outcome assessment functions automatically, connecting seamlessly with local IT/medical infrastructure. Furthermore, the research presents a knowledge graph-based approach to map radiotherapy data to an ontology-based data repository using FAIR (Findable, Accessible, Interoperable, Reusable) concepts. This approach ensures that the data is easily discoverable and accessible for clinical decision support systems. The dissertation explores the ETL (Extract, Transform, Load) process, data model frameworks, ontologies, and provides a real-world clinical use case for this data mapping. To improve the efficiency of retrieving information from large clinical datasets, a search engine based on ontology-based keyword searching and synonym-based term matching tool was developed. The hierarchical nature of ontologies is leveraged to retrieve patient records based on parent and children classes. Additionally, patient similarity analysis is conducted using vector embedding models (Word2Vec, Doc2Vec, GloVe, and FastText) to identify similar patients based on text corpus creation methods. Results from the analysis using these models are presented. The implementation of a learning health system for predicting radiation pneumonitis following stereotactic body radiotherapy is also discussed. 3D convolutional neural networks (CNNs) are utilized with radiographic and dosimetric datasets to predict the likelihood of radiation pneumonitis. DenseNet-121 and ResNet-50 models are employed for this study, along with integrated gradient techniques to identify salient regions within the input 3D image dataset. The predictive performance of the 3D CNN models is evaluated based on clinical outcomes. Overall, the proposed Learning Health System provides a comprehensive solution for capturing, integrating, and analyzing heterogeneous data in a knowledge base. It offers researchers the ability to extract valuable insights and associations from diverse sources, ultimately leading to improved clinical outcomes. This work can serve as a model for implementing LHS in other medical specialties, advancing personalized and data-driven medicine

    Information systems in clinical research : categorization and evaluation of information systems and development of a guide for choosing the appropriate information system

    Get PDF
    Διπλωματική εργασία--Πανεπιστήμιο Μακεδονίας, Θεσσαλονίκη, 2019.The development of information systems used in clinical research is constantly increasing, as their advantages are widely acknowledged. Although many researchers have introduced information systems which can be used during a clinical study’s process, a scarcity of information systems accommodating the complete process has been detected. Based on this finding, twenty-three (23) information systems and ontologies used in clinical research were retrieved, based on certain criteria. The information systems and ontologies were then categorized and evaluated based on categorization and evaluation tools. Finally, the result was the synthesis of the eligible-for-evaluation information systems and the development of a guide for choosing the appropriate information system during each step of a clinical trial; the data provided by each information system were identified. Unfortunately, some information systems and ontologies were excluded from the synthesis due to lack of information regarding the evaluation criteria. Therefore, future research should proceed with retrieving this information and developing a guide which will consider more information systems, especially for conducting observational studies

    Hakemistojen käytettävyys hajautuneen potilastiedon hallinnassa

    Get PDF
    Tässä työssä käsitellään sähköisiä potilaskertomuksia (EHR) sekä tiedonhakua niistä hakemistoja hyödyntäen. Aluksi työssä esitellään keskeisimmät sähköisten potilaskertomusten standardit, kuten HL7 versiot 2 ja 3, CDA ja IHE XDS sekä BPPC. Tämän jälkeen siirrytään tarkastelemaan tarkemmin potilastiedon hakemistoja. Työssä tarkastellaan erityisesti IHE XDS –profiilia, joka kuvaa hakemistoon perustuvan sähköisten potilaskertomusten tiedonvälitystavan potilastietojärjestelmien välillä. ebXML:ään pohjautuvan IHE XDS:n keskeiset komponentit ovat arkisto (Document repository), asiakirjahakemisto (Document registry), asiakirjan tuottaja (Document source) ja asiakirjan käyttäjä (Document consumer). Työssä kuvataan näiden eri komponenttien tehtävät hakemistossa. Työssä kuvataan myös potilaskertomusten hakemista käyttäen IHE XDS-hakemista sekä OWL- ja SPARQL –kieleliä. Työssä esitellään myös muutamia kansallisia potilaskertomusjärjestelmiä, kuten suomen KanTa –järjestelmä sekä Hollannin ja Singaporen kansallisia potilaskertomusten arkistot sekä yleiseurooppalainen epSOS-hanke. Pohdintaosiossa arvioidaan potilaskertomusten hakemiseen käytettävissä olevien menetelmien tehokkuutta

    Experimental Evaluation of Growing and Pruning Hyper Basis Function Neural Networks Trained with Extended Information Filter

    Get PDF
    In this paper we test Extended Information Filter (EIF) for sequential training of Hyper Basis Function Neural Networks with growing and pruning ability (HBF-GP). The HBF neuron allows different scaling of input dimensions to provide better generalization property when dealing with complex nonlinear problems in engineering practice. The main intuition behind HBF is in generalization of Gaussian type of neuron that applies Mahalanobis-like distance as a distance metrics between input training sample and prototype vector. We exploit concept of neuron’s significance and allow growing and pruning of HBF neurons during sequential learning process. From engineer’s perspective, EIF is attractive for training of neural networks because it allows a designer to have scarce initial knowledge of the system/problem. Extensive experimental study shows that HBF neural network trained with EIF achieves same prediction error and compactness of network topology when compared to EKF, but without the need to know initial state uncertainty, which is its main advantage over EKF

    Bioinspired metaheuristic algorithms for global optimization

    Get PDF
    This paper presents concise comparison study of newly developed bioinspired algorithms for global optimization problems. Three different metaheuristic techniques, namely Accelerated Particle Swarm Optimization (APSO), Firefly Algorithm (FA), and Grey Wolf Optimizer (GWO) are investigated and implemented in Matlab environment. These methods are compared on four unimodal and multimodal nonlinear functions in order to find global optimum values. Computational results indicate that GWO outperforms other intelligent techniques, and that all aforementioned algorithms can be successfully used for optimization of continuous functions

    Towards a system of concepts for Family Medicine. Multilingual indexing in General Practice/ Family Medicine in the era of Semantic Web

    Get PDF
    UNIVERSITY OF LIÈGE, BELGIUM Executive Summary Faculty of Medicine Département Universitaire de Médecine Générale. Unité de recherche Soins Primaires et Santé Doctor in biomedical sciences Towards a system of concepts for Family Medicine. Multilingual indexing in General Practice/ Family Medicine in the era of SemanticWeb by Dr. Marc JAMOULLE Introduction This thesis is about giving visibility to the often overlooked work of family physicians and consequently, is about grey literature in General Practice and Family Medicine (GP/FM). It often seems that conference organizers do not think of GP/FM as a knowledge-producing discipline that deserves active dissemination. A conference is organized, but not much is done with the knowledge shared at these meetings. In turn, the knowledge cannot be reused or reapplied. This these is also about indexing. To find knowledge back, indexing is mandatory. We must prepare tools that will automatically index the thousands of abstracts that family doctors produce each year in various languages. And finally this work is about semantics1. It is an introduction to health terminologies, ontologies, semantic data, and linked open data. All are expressions of the next step: Semantic Web for health care data. Concepts, units of thought expressed by terms, will be our target and must have the ability to be expressed in multiple languages. In turn, three areas of knowledge are at stake in this study: (i) Family Medicine as a pillar of primary health care, (ii) computational linguistics, and (iii) health information systems. Aim • To identify knowledge produced by General practitioners (GPs) by improving annotation of grey literature in Primary Health Care • To propose an experimental indexing system, acting as draft for a standardized table of content of GP/GM • To improve the searchability of repositories for grey literature in GP/GM. 1For specific terms, see the Glossary page 257 x Methods The first step aimed to design the taxonomy by identifying relevant concepts in a compiled corpus of GP/FM texts. We have studied the concepts identified in nearly two thousand communications of GPs during conferences. The relevant concepts belong to the fields that are focusing on GP/FM activities (e.g. teaching, ethics, management or environmental hazard issues). The second step was the development of an on-line, multilingual, terminological resource for each category of the resulting taxonomy, named Q-Codes. We have designed this terminology in the form of a lightweight ontology, accessible on-line for readers and ready for use by computers of the semantic web. It is also fit for the Linked Open Data universe. Results We propose 182 Q-Codes in an on-line multilingual database (10 languages) (www.hetop.eu/Q) acting each as a filter for Medline. Q-Codes are also available under the form of Unique Resource Identifiers (URIs) and are exportable in Web Ontology Language (OWL). The International Classification of Primary Care (ICPC) is linked to Q-Codes in order to form the Core Content Classification in General Practice/Family Medicine (3CGP). So far, 3CGP is in use by humans in pedagogy, in bibliographic studies, in indexing congresses, master theses and other forms of grey literature in GP/FM. Use by computers is experimented in automatic classifiers, annotators and natural language processing. Discussion To the best of our knowledge, this is the first attempt to expand the ICPC coding system with an extension for family physician contextual issues, thus covering non-clinical content of practice. It remains to be proven that our proposed terminology will help in dealing with more complex systems, such as MeSH, to support information storage and retrieval activities. However, this exercise is proposed as a first step in the creation of an ontology of GP/FM and as an opening to the complex world of Semantic Web technologies. Conclusion We expect that the creation of this terminological resource for indexing abstracts and for facilitating Medline searches for general practitioners, researchers and students in medicine will reduce loss of knowledge in the domain of GP/FM. In addition, through better indexing of the grey literature (congress abstracts, master’s and doctoral theses), we hope to enhance the accessibility of research results and give visibility to the invisible work of family physicians

    Front-Line Physicians' Satisfaction with Information Systems in Hospitals

    Get PDF
    Day-to-day operations management in hospital units is difficult due to continuously varying situations, several actors involved and a vast number of information systems in use. The aim of this study was to describe front-line physicians' satisfaction with existing information systems needed to support the day-to-day operations management in hospitals. A cross-sectional survey was used and data chosen with stratified random sampling were collected in nine hospitals. Data were analyzed with descriptive and inferential statistical methods. The response rate was 65 % (n = 111). The physicians reported that information systems support their decision making to some extent, but they do not improve access to information nor are they tailored for physicians. The respondents also reported that they need to use several information systems to support decision making and that they would prefer one information system to access important information. Improved information access would better support physicians' decision making and has the potential to improve the quality of decisions and speed up the decision making process.Peer reviewe
    corecore