35 research outputs found

    Modeling Wireless Sensor Network Architectures using AADL

    Get PDF
    International audienceRecent technological advances have enhanced the possibilities of large-scale development and commercial deployment of diverse applications using wireless sensor networks. As this development effort expands, it becomes increasingly important to build tools and formal methodologies that ease large-scale deployments of such networks. In this paper, we advocate the use of an architecture description language called AADL to describe wireless sensor network architectures. We highlight the use of component-connector paradigm of AADL in designing robust, performance-critical, real-time sensor network applications incorporating relevant dependability metrics. By careful analysis and extraction of the common requirements, we describe a case study, that of a simple data collection application using sensor networks, as a proof of concept of the AADL modeling approach. Lastly, we propose several wireless sensor network specific extensions to AADL that will further enhance the richness of such models

    Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project Subcommittee Final

    Get PDF
    UAS Integration in the NAS Project overview with details from each of the subprojects. Subprojects include: Communications, Certification, Integrated Test and Evaluation, Human Systems Integration, and Separation Assurance/Sense and Avoid Interoperability

    Interoperability issues on the design of safe in-vehicle embedded systems

    Get PDF
    International audienceThe design of in-vehicle embedded systems follows a complex multi-partner development process. Carmakers specify the whole system and have to integrate several parts of the system provided by different suppliers. Specification as well as integration are concerned with properties requirements (safety, performance, cost, etc.) and validation issues. On another hand, the economical aspects lead suppliers to reuse previously developped components. At least, the portability of components is a necessary means that enable the flexibility of the development. For short, the problem when developping an automotive embedded system is the interoperability between components. To tackle this problem, two complementary solutions have been proposed by the automotive industry. The first one is the definition of a reference model for embedded systems that identifies component types and the formal rules of their interactions together. The other solution is a modeling language that can be shared by the different actors. In this paper, we show how automotive industry has contributed to these two aspects

    A methodology for the design of application-specific cyber-physical social sensing co-simulators

    Get PDF
    Cyber-Physical Social Sensing (CPSS) is a new trend in the context of pervasive sensing. In these new systems, various domains coexist in time, evolve together and influence each other. Thus, application-specific tools are necessary for specifying and validating designs and simulating systems. However, nowadays, different tools are employed to simulate each domain independently. Mainly, the cause of the lack of co-simulation instruments to simulate all domains together is the extreme difficulty of combining and synchronizing various tools. In order to reduce that difficulty, an adequate architecture for the final co-simulator must be selected. Therefore, in this paper the authors investigate and propose a methodology for the design of CPSS co-simulation tools. The paper describes the four steps that software architects should follow in order to design the most adequate co-simulator for a certain application, considering the final users’ needs and requirements and various additional factors such as the development team’s experience. Moreover, the first practical use case of the proposed methodology is provided. An experimental validation is also included in order to evaluate the performing of the proposed co-simulator and to determine the correctness of the proposal

    Automated validation of minimum risk model-based system designs of complex avionics systems

    Get PDF
    Today, large civil aircraft incorporate a vast array of complex and coupled subsystems with thousands of electronic control units and software with millions of lines of code. Aircraft suppliers are challenged to provide superior products that are developed at a minimum time and cost, with maximum safety and security. No single person can understand the complex interactions of such a system of systems. Finding an optimal solution from large sets of different possible designs is an impossible task if done manually. Thus, written, non-executable specifications carry a high degree of product uncertainty. As a result, more than two-thirds of all specifications need to be reworked. Since most specification flaws are discovered and resolved at a late stage during development, when expenditures for redesign are at a maximum, the development approach currently used has a high probability of project cost and time overruns or even project failure, thus maximizing the risk of development. It is the aim of this work, to develop a model- and simulation-based systems engineering method with associated design and validation environment that minimizes the risk of development for complex systems, e.g. aircraft. The development risk is a minimum, if all development decisions are validated early against the services of a product at mission level by the final customer. To do so, executable specifications are created during design and validated against the requirements of system services at mission level. Validated executable specifications are used and updated for all decisions from concept development through implementation and training. In addition, virtual prototypes are developed. A virtual prototype is an executable system specification that is combined with human machine interface concept models to include usability requirements in the overall design and to enable interactive specification validation and early end user training by means of interactive user-driven system simulation. In a first step, so called executable workflows and simulation sets are developed to enable the execution of sets of structured and coupled simulation models. In a second step, a model- and simulation-based development and validation process model is developed from concept design to specification development. In a final step, two different validation processes are developed. An automated validation process based on executable specifications and an interactive validation process based on virtual prototypes. For the development of executable specifications and virtual prototypes, plug-and-play capable model components are developed. The developed method is validated for examples from civil aircraft development with focus on avionics and highly configurable and customizable cabin systems.Große zivile Flugzeuge umfassen eine hohe Anzahl von komplexen und gekoppelten Subsystemen mit Tausenden von elektronischen Steuergeräten und Software mit Millionen von Codezeilen. Keine einzelne Person kann die komplexen Wechselwirkungen eines solchen Systems von Systemen verstehen. Daher beinhalten geschriebene, nicht ausführbare Spezifikationen einen hohen Grad an Produktunsicherheit. Infolgedessen müssen mehr als zwei Drittel aller Spezifikationen überarbeitet werden. Da die meisten Spezifikationsfehler zu einem späten Zeitpunkt entdeckt und gelöst werden, wenn Aufwände für Überarbeitungen maximal sind, hat der gegenwärtige Entwicklungsansatz eine hohe Wahrscheinlichkeit für Kosten- und Zeitüberschreitungen oder führt zum Fehlschlagen von Projekten. Hierdurch wird das Entwicklungsrisiko maximiert. Es ist das Ziel dieser Arbeit, eine modell- und simulationsbasierte Entwicklungsmethode mit zugehöriger Entwurfs- und Validierungsumgebung zu entwickeln, welche das Risiko der Entwicklung für komplexe Systeme minimiert. Das Entwicklungsrisiko ist minimal, wenn alle Entwicklungsentscheidungen frühzeitig vom Endkunden gegen die Leistungen eines Produktes auf Missionsebene validiert werden. Dazu werden ausführbare Spezifikationen während des Entwurfs erstellt und anhand der Anforderungen auf Missionsebene validiert. Validierte ausführbare Spezifikationen werden für alle Entscheidungen von der Konzeptentwicklung bis zur Implementierung verwendet und aktualisiert. Darüber hinaus werden virtuelle Prototypen entwickelt, welche ausführbare Spezifikationen mit Konzeptmodellen für Mensch-Maschine-Schnittstellen kombinieren, um Usability-Anforderungen in den Gesamtentwurf aufzunehmen. Dies ermöglicht eine interaktive Validierung sowie frühes Endbenutzertraining mittels benutzergesteuerter Systemsimulation. Es werden ausführbare Arbeitsabläufe und Simulation Sets entwickelt, welche die Ausführung von strukturierten und gekoppelten Simulationsmodellen ermöglichen. Anschließend wird ein modell- und simulationsbasiertes Entwicklungs- und Validierungsprozessmodell vom Konzeptdesign bis zur Spezifikationsentwicklung entwickelt. Hierfür werden zwei verschiedene Validierungsprozesse verwendet. Ein automatisierter Validierungsprozess basierend auf ausführbaren Spezifikationen und ein interaktiver Validierungsprozess basierend auf virtuellen Prototypen. Für die Entwicklung von ausführbaren Spezifikationen und virtuellen Prototypen werden Modellkomponenten entwickelt. Die entwickelte Methode wird mithilfe von Beispielen aus der zivilen Flugzeugentwicklung validiert, insbesondere in Hinblick auf Avionik sowie hoch konfigurierbare und anpassbare Kabinensysteme

    Wireless Sensor Networks

    Get PDF
    The aim of this book is to present few important issues of WSNs, from the application, design and technology points of view. The book highlights power efficient design issues related to wireless sensor networks, the existing WSN applications, and discusses the research efforts being undertaken in this field which put the reader in good pace to be able to understand more advanced research and make a contribution in this field for themselves. It is believed that this book serves as a comprehensive reference for graduate and undergraduate senior students who seek to learn latest development in wireless sensor networks

    Dependability Assessment of Wireless Sensor Networks with Formal Methods

    Get PDF
    Wireless Sensor Networks (WSNs) are increasingly being adopted in critical applications, where verifying the correct operation of sensor nodes is a major concern. Undesired events, such as node crash and packet loss, may undermine the dependability of the WSN. Hence their effects need to be properly assessed from the early stages of the development process onwards to minimize the chances of unexpected problems during use. It is also necessary to monitor the system during operation in order to avoid unexpected results or dangerous effects. In this thesis we propose a framework to investigate the correctness of the design of a WSN from the point of view of its dependability, i.e., resilience to undesired events. The framework is based on the Event Calculus formalism and it is backed-up by a support tool aimed to simplify its adoption by system designers. The tool allows to specify the target WSN in a user-friendly way and it is able to generate automatically the Event Calculus specifications used to check correctness properties and evaluate dependability metrics, such as connection resiliency, coverage and lifetime. It is able to work at design time and runtime. In particular at runtime the tool works a server that is in waiting for new events coming from the WSN and, performed the reasoning using the same specifications, is able to do prediction about future criticalities of the WSN. The effectiveness of the approach is shown in the context of five case studies, aiming to illustrate how the framework is helpful to drive design choices by means of what-if scenario analysis and robustness checking, and to check the correctness properties of the WSN at runtime

    Industrial Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are penetrating our daily lives, and they are starting to be deployed even in an industrial environment. The research on such industrial wireless sensor networks (IWSNs) considers more stringent requirements of robustness, reliability, and timeliness in each network layer. This Special Issue presents the recent research result on industrial wireless sensor networks. Each paper in this Special Issue has unique contributions in the advancements of industrial wireless sensor network research and we expect each paper to promote the relevant research and the deployment of IWSNs
    corecore