185 research outputs found

    V2X Meets NOMA: Non-Orthogonal Multiple Access for 5G Enabled Vehicular Networks

    Full text link
    Benefited from the widely deployed infrastructure, the LTE network has recently been considered as a promising candidate to support the vehicle-to-everything (V2X) services. However, with a massive number of devices accessing the V2X network in the future, the conventional OFDM-based LTE network faces the congestion issues due to its low efficiency of orthogonal access, resulting in significant access delay and posing a great challenge especially to safety-critical applications. The non-orthogonal multiple access (NOMA) technique has been well recognized as an effective solution for the future 5G cellular networks to provide broadband communications and massive connectivity. In this article, we investigate the applicability of NOMA in supporting cellular V2X services to achieve low latency and high reliability. Starting with a basic V2X unicast system, a novel NOMA-based scheme is proposed to tackle the technical hurdles in designing high spectral efficient scheduling and resource allocation schemes in the ultra dense topology. We then extend it to a more general V2X broadcasting system. Other NOMA-based extended V2X applications and some open issues are also discussed.Comment: Accepted by IEEE Wireless Communications Magazin

    Content delivery over multi-antenna wireless networks

    Get PDF
    The past few decades have witnessed unprecedented advances in information technology, which have significantly shaped the way we acquire and process information in our daily lives. Wireless communications has become the main means of access to data through mobile devices, resulting in a continuous exponential growth in wireless data traffic, mainly driven by the demand for high quality content. Various technologies have been proposed by researchers to tackle this growth in 5G and beyond, including the use of increasing number of antenna elements, integrated point-to-multipoint delivery and caching, which constitute the core of this thesis. In particular, we study non-orthogonal content delivery in multiuser multiple-input-single-output (MISO) systems. First, a joint beamforming strategy for simultaneous delivery of broadcast and unicast services is investigated, based on layered division multiplexing (LDM) as a means of superposition coding. The system performance in terms of minimum required power under prescribed quality-of-service (QoS) requirements is examined in comparison with time division multiplexing (TDM). It is demonstrated through simulations that the non-orthogonal delivery strategy based on LDM significantly outperforms the orthogonal strategy based on TDM in terms of system throughput and reliability. To facilitate efficient implementation of the LDM-based beamforming design, we further propose a dual decomposition-based distributed approach. Next, we study an efficient multicast beamforming design in cache-aided multiuser MISO systems, exploiting proactive content placement and coded delivery. It is observed that the complexity of this problem grows exponentially with the number of subfiles delivered to each user in each time slot, which itself grows exponentially with the number of users in the system. Therefore, we propose a low-complexity alternative through time-sharing that limits the number of subfiles that can be received by a user in each time slot. Moreover, a joint design of content delivery and multicast beamforming is proposed to further enhance the system performance, under the constraint on maximum number of subfiles each user can decode in each time slot. Finally, conclusions are drawn in Chapter 5, followed by an outlook for future works.Open Acces

    5G Radio Access Networks Enabling Efficient Point-to-Multipoint Transmissions

    Full text link
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] The first release of 5th Generation (5G) technology from 3rd Generation Project Partnership (3GPP) Rel'15 has been completed in December 2018. An open issue with this release of standards is that it only supports unicast communications in the core network and Point-To-Point (PTP) transmissions in the Radio Access Network (RAN), and does not support multicast/broadcast communications and Point-To-Multipoint (PTM) transmissions, which are 3GPP system requirements for 5G applications in a number of vertical sectors, such as Automotive, Airborne Communications, Internet-of-Things, Media & Entertainment, and Public Warning & Safety systems. In this article, we present novel mechanisms for enhancing the 5G unicast architecture with minimal footprint, to enable efficient PTM transmissions in the RAN, and to support multicast communications in the Rel'15 core as an in-built delivery optimization feature of the system. This approach will enable completely new levels of network management and delivery cost-efficiency.This work was supported in part by the European Commission under the 5G Infrastructure Public Private Partnership project "5G-Xcast: Broadcast and Multicast Communication Enablers for the Fifth Generation of Wireless Systems" (H2020-ICT-2016-2 call, grant 761498). The views expressed here are those of the authors and do not necessarily represent the project.Säily, M.; Barjau, C.; Navrátil, D.; Prasad, A.; Gomez-Barquero, D.; Tesema, FB. (2019). 5G Radio Access Networks Enabling Efficient Point-to-Multipoint Transmissions. IEEE Vehicular Technology Magazine. 14(4):29-37. https://doi.org/10.1109/MVT.2019.2936657S293714

    Optical Non-Orthogonal Multiple Access for Visible Light Communication

    Get PDF
    The proliferation of mobile Internet and connected devices, offering a variety of services at different levels of performance, represents a major challenge for the fifth generation wireless networks and beyond. This requires a paradigm shift towards the development of key enabling techniques for the next generation wireless networks. In this respect, visible light communication (VLC) has recently emerged as a new communication paradigm that is capable of providing ubiquitous connectivity by complementing radio frequency communications. One of the main challenges of VLC systems, however, is the low modulation bandwidth of the light-emitting-diodes, which is in the megahertz range. This article presents a promising technology, referred to as "optical- non-orthogonal multiple access (O-NOMA)", which is envisioned to address the key challenges in the next generation of wireless networks. We provide a detailed overview and analysis of the state-of-the-art integration of O-NOMA in VLC networks. Furthermore, we provide insights on the potential opportunities and challenges as well as some open research problems that are envisioned to pave the way for the future design and implementation of O-NOMA in VLC systems

    Potentzia domeinuko NOMA 5G sareetarako eta haratago

    Get PDF
    Tesis inglés 268 p. -- Tesis euskera 274 p.During the last decade, the amount of data carried over wireless networks has grown exponentially. Several reasons have led to this situation, but the most influential ones are the massive deployment of devices connected to the network and the constant evolution in the services offered. In this context, 5G targets the correct implementation of every application integrated into the use cases. Nevertheless, the biggest challenge to make ITU-R defined cases (eMBB, URLLC and mMTC) a reality is the improvement in spectral efficiency. Therefore, in this thesis, a combination of two mechanisms is proposed to improve spectral efficiency: Non-Orthogonal Multiple Access (NOMA) techniques and Radio Resource Management (RRM) schemes. Specifically, NOMA transmits simultaneously several layered data flows so that the whole bandwidth is used throughout the entire time to deliver more than one service simultaneously. Then, RRM schemes provide efficient management and distribution of radio resources among network users. Although NOMA techniques and RRM schemes can be very advantageous in all use cases, this thesis focuses on making contributions in eMBB and URLLC environments and proposing solutions to communications that are expected to be relevant in 6G

    Wideband Broadcasting: A Power-Efficient Approach to 5G Broadcasting

    Full text link
    (c) 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this[EN] Efficient and flexible use of spectrum will be inherent characteristics of fifth-generation (5G) communication technologies with native support of wideband operation with frequency reuse 1, i.e. all transmit sites use all available frequency resources. Although not from the very first 5G release of 3GPP (Third Generation Partnership Project), it is expected that broadcast/multicast technology components will later be added and fully integrated in the 5G system. The combination of both wideband and frequency reuse 1 may provide significant gains for broadcast transmissions in terms of energy efficiency, since it is more efficient to increase capacity by extending the bandwidth rather than increasing the transmit power over a given bandwidth. This breaks with the traditional concept of terrestrial broadcast frequency planning, and paves the way to new potential uses of UHF (Ultra High Frequency) spectrum bands for 5G broadcasting. This paper provides an insight into the fundamental advantages in terms of capacity, coverage as well as power saving of wideband broadcast operation. The role of the network deployment, linked to frequency reuse in the UHF band, and its influence in the performance of a Wideband Broadcasting system are discussed. The technical requirements and features that would enable such power-efficient solution are also addressed.This work was supported in part by the European Commission under the 5G-PPP project 5G-Xcast (H2020-ICT-2016-2 call, grant number 761498). The views expressed in this contribution are those of the authors and do not necessarily represent the project. This work was also partially supported by the Ministerio de Educacion y Ciencia, Spain (TEC2014-56483-R), co-funded by European FEDER funds.Gimenez Gandia, JJ.; Gomez-Barquero, D.; Mogarde, J.; Stare, E. (2018). Wideband Broadcasting: A Power-Efficient Approach to 5G Broadcasting. IEEE Communications Magazine. 56(3):119-125. https://doi.org/10.1109/MCOM.2018.170067511912556

    Multiple Access in Aerial Networks: From Orthogonal and Non-Orthogonal to Rate-Splitting

    Get PDF
    Recently, interest on the utilization of unmanned aerial vehicles (UAVs) has aroused. Specifically, UAVs can be used in cellular networks as aerial users for delivery, surveillance, rescue search, or as an aerial base station (aBS) for communication with ground users in remote uncovered areas or in dense environments requiring prompt high capacity. Aiming to satisfy the high requirements of wireless aerial networks, several multiple access techniques have been investigated. In particular, space-division multiple access(SDMA) and power-domain non-orthogonal multiple access (NOMA) present promising multiplexing gains for aerial downlink and uplink. Nevertheless, these gains are limited as they depend on the conditions of the environment. Hence, a generalized scheme has been recently proposed, called rate-splitting multiple access (RSMA), which is capable of achieving better spectral efficiency gains compared to SDMA and NOMA. In this paper, we present a comprehensive survey of key multiple access technologies adopted for aerial networks, where aBSs are deployed to serve ground users. Since there have been only sporadic results reported on the use of RSMA in aerial systems, we aim to extend the discussion on this topic by modelling and analyzing the weighted sum-rate performance of a two-user downlink network served by an RSMA-based aBS. Finally, related open issues and future research directions are exposed.Comment: 16 pages, 6 figures, submitted to IEEE Journa
    corecore