104 research outputs found

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodes� resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    Unified architecture of mobile ad hoc network security (MANS) system

    Get PDF
    In this dissertation, a unified architecture of Mobile Ad-hoc Network Security (MANS) system is proposed, under which IDS agent, authentication, recovery policy and other policies can be defined formally and explicitly, and are enforced by a uniform architecture. A new authentication model for high-value transactions in cluster-based MANET is also designed in MANS system. This model is motivated by previous works but try to use their beauties and avoid their shortcomings, by using threshold sharing of the certificate signing key within each cluster to distribute the certificate services, and using certificate chain and certificate repository to achieve better scalability, less overhead and better security performance. An Intrusion Detection System is installed in every node, which is responsible for colleting local data from its host node and neighbor nodes within its communication range, pro-processing raw data and periodically broadcasting to its neighborhood, classifying normal or abnormal based on pro-processed data from its host node and neighbor nodes. Security recovery policy in ad hoc networks is the procedure of making a global decision according to messages received from distributed IDS and restore to operational health the whole system if any user or host that conducts the inappropriate, incorrect, or anomalous activities that threaten the connectivity or reliability of the networks and the authenticity of the data traffic in the networks. Finally, quantitative risk assessment model is proposed to numerically evaluate MANS security

    A Wormhole Attack Detection and Prevention Technique in Wireless Sensor Networks

    Get PDF
    Security is one of the major and important issues surrounding network sensors because of its inherent liabilities, i.e. physical size. Since network sensors have no routers, all nodes involved in the network must share the same routing protocol to assist each other for the transmission of packets. Also, its unguided nature in dynamic topology makes it vulnerable to all kinds of security attack, thereby posing a degree of security challenges. Wormhole is a prominent example of attacks that poses the greatest threat because of its difficulty in detecting and preventing. In this paper, we proposed a wormhole attach detection and prevention mechanism incorporated AODV routing protocol, using neighbour discovery and path verification mechanism. As compared to some preexisting methods, the proposed approach is effective and promising based on applied performance metrics

    A Scalable Trust Management scheme for Mobile Ad Hoc Networks

    Get PDF
    Mobile ad hoc networks MANETs, have special resource requirements and different topology features, they establish themselves on fly without reliance on centralized or specialized entities such as base stations. All the nodes must cooperate with each other in order to send packets, forwarding packets, responding to routing messages, sending recommendations, among others, Cooperating nodes must trust each other. In MANETs, an untrustworthy node can wreak considerable damage and adversely affect the quality and reliability of data. Therefore, analyzing the trust level of a node has a positive influence on the confidence with which an entity conducts transactions with that node. This thesis presents a new trust management scheme to assign trust levels for spaces or nodes in ad hoc networks. The scheme emulates the human model which depends on the previous individual experience and on the intercession or recommendation of other spaces in the same radio range. The trust level considers the recommendation of trustworthy neighbors and their own experience. For the recommendation computation, we take into account not only the trust level, but also its accuracy and the relationship maturity. The relationship rationality -maturity-, allows nodes to improve the efficiency of the proposed model for mobile scenarios. We also introduce the Contribution Exchange Protocol (CEP) which allows nodes to exchange Intercessions and recommendation about their neighbors without disseminating the trust information over the entire network. Instead, nodes only need to keep and exchange trust information about nodes within the radio range. Without the need for a global trust knowledge. Different from most related works, this scheme improves scalability by restricting nodes to keep and exchange trust information solely with direct neighbors, that is, neighbors within the radio range. We have developed a simulator, which is specifically designed for this model, in order to evaluate and identify the main characteristics of the proposed system. Simulation results show the correctness of this model in a single-hop network. Extending the analysis to mobile multihop networks, shows the benefits of the maturity relationship concept, i.e. for how long nodes know each other, the maturity parameter can decrease the trust level error up to 50%. The results show the effectiveness of the system and the influence of main parameters in the presence of mobility. At last, we analyze the performance of the CEP protocol and show its scalability. We show that this implementation of CEP can significantly reduce the number messages

    On secure communication in integrated internet and heterogeneous multi-hop wireless networks.

    Get PDF
    Integration of the Internet with a Cellular Network, WMAN, WLAN, and MANET presents an exceptional promise by having co-existence of conventional WWANs/WMANs/WLANs with wireless ad hoc networks to provide ubiquitous communication. We call such integrated networks providing internet accessibility for mobile users as heterogeneous multi-hop wireless networks where the Internet and wireless infrastructure such as WLAN access points (APs) and base stations (BSs) constitute the backbone for various emerging wireless networks (e.g., multi-hop WLAN and ad hoc networks. Earlier approaches for the Internet connectivity either provide only unidirectional connectivity for ad hoc hosts or cause high overhead as well as delay for providing full bi-directional connections. In this dissertation, a new protocol is proposed for integrated Internet and ad hoc networks for supporting bi-directional global connectivity for ad hoc hosts. In order to provide efficient mobility management for mobile users in an integrated network, a mobility management protocol called multi-hop cellular IP (MCIP) has been proposed to provide a micro-mobility management framework for heterogeneous multi-hop network. The micro-mobility is achieved by differentiating the local domain from the global domain. At the same time, the MCIP protocol extends Mobile IP protocol for providing macro-mobility support between local domains either for single hop MSs or multi-hop MSs. In the MCIP protocol, new location and mobility management approaches are developed for tracking mobile stations, paging, and handoff management. This dissertation also provides a security protocol for integrated Internet and MANET to establish distributed trust relationships amongst mobile infrastructures. This protocol protects communication between two mobile stations against the attacks either from the Internet side or from wireless side. Moreover, a secure macro/micro-mobility protocol (SM3P) have been introduced and evaluated for preventing mobility-related attacks either for single-hop MSs or multi-hop MSs. In the proposed SM3P, mobile IP security has been extended for supporting macro-mobility across local domains through the process of multi-hop registration and authentication. In a local domain, a certificate-based authentication achieves the effective routing and micro-mobility protection from a range of potential security threats

    A Novel Cooperative Intrusion Detection System for Mobile Ad Hoc Networks

    Get PDF
    Mobile ad hoc networks (MANETs) have experienced rapid growth in their use for various military, medical, and commercial scenarios. This is due to their dynamic nature that enables the deployment of such networks, in any target environment, without the need for a pre-existing infrastructure. On the other hand, the unique characteristics of MANETs, such as the lack of central networking points, limited wireless range, and constrained resources, have made the quest for securing such networks a challenging task. A large number of studies have focused on intrusion detection systems (IDSs) as a solid line of defense against various attacks targeting the vulnerable nature of MANETs. Since cooperation between nodes is mandatory to detect complex attacks in real time, various solutions have been proposed to provide cooperative IDSs (CIDSs) in efforts to improve detection efficiency. However, all of these solutions suffer from high rates of false alarms, and they violate the constrained-bandwidth nature of MANETs. To overcome these two problems, this research presented a novel CIDS utilizing the concept of social communities and the Dempster-Shafer theory (DST) of evidence. The concept of social communities was intended to establish reliable cooperative detection reporting while consuming minimal bandwidth. On the other hand, DST targeted decreasing false accusations through honoring partial/lack of evidence obtained solely from reliable sources. Experimental evaluation of the proposed CIDS resulted in consistently high detection rates, low false alarms rates, and low bandwidth consumption. The results of this research demonstrated the viability of applying the social communities concept combined with DST in achieving high detection accuracy and minimized bandwidth consumption throughout the detection process
    • …
    corecore