
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2018

A Novel Cooperative Intrusion Detection System
for Mobile Ad Hoc Networks
Adam Solomon
Nova Southeastern University, adam_j_solomon@yahoo.com

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Adam Solomon. 2018. A Novel Cooperative Intrusion Detection System for Mobile Ad Hoc Networks. Doctoral dissertation. Nova
Southeastern University. Retrieved from NSUWorks, College of Engineering and Computing. (1062)
https://nsuworks.nova.edu/gscis_etd/1062.

http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1062&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1062&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1062&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1062&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1062&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1062&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1062&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

A Novel Cooperative Intrusion Detection System for Mobile Ad Hoc Networks

by

Adam Solomon

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

In

Information Systems

College of Engineering and Computing

Nova Southeastern University

An Abstract of a Dissertation Submitted to Nova Southeastern University

 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

A Novel Cooperative Intrusion Detection System for Mobile Ad Hoc Networks

by

Adam Solomon

2018

Mobile ad hoc networks (MANETs) have experienced rapid growth in their use for various

military, medical, and commercial scenarios. This is due to their dynamic nature that enables the

deployment of such networks, in any target environment, without the need for a pre-existing

infrastructure. On the other hand, the unique characteristics of MANETs, such as the lack of

central networking points, limited wireless range, and constrained resources, have made the

quest for securing such networks a challenging task. A large number of studies have focused on

intrusion detection systems (IDSs) as a solid line of defense against various attacks targeting the

vulnerable nature of MANETs. Since cooperation between nodes is mandatory to detect

complex attacks in real time, various solutions have been proposed to provide cooperative IDSs

(CIDSs) in efforts to improve detection efficiency. However, all of these solutions suffer from

high rates of false alarms, and they violate the constrained-bandwidth nature of MANETs. To

overcome these two problems, this research presented a novel CIDS utilizing the concept of

social communities and the Dempster-Shafer theory (DST) of evidence. The concept of social

communities was intended to establish reliable cooperative detection reporting while consuming

minimal bandwidth. On the other hand, DST targeted decreasing false accusations through

honoring partial/lack of evidence obtained solely from reliable sources. Experimental evaluation

of the proposed CIDS resulted in consistently high detection rates, low false alarms rates, and

low bandwidth consumption. The results of this research demonstrated the viability of applying

the social communities concept combined with DST in achieving high detection accuracy and

minimized bandwidth consumption throughout the detection process.

Acknowledgments

First and foremost, I would like to thank my creator for gifting me the passion to pursue further

knowledge and education. Throughout my dissertation process, I have had great support from my

dissertation adviser and role model: Dr. James Cannady. His invaluable guidance during my

research process made me indeed a better researcher. I'm forever grateful to him for instilling in

me solid principles of scientific research. I would like to thank Dr. Gowing and Dr. Liu for their

valuable feedback and time throughout this process.

 I would also like to thank my family for their continuous support and patience during my

research studies. I'm very appreciative of your encouragement and love that have pushed me

towards persevering till the finish line of my dissertation work.

Table of Contents

Abstract Error! Bookmark not defined.

List of Tables vii

List of Figures viii

Chapters

1. Introduction 9

Background 9

Problem Statement 12

Dissertation Goal 12

Relevance and Significance 14

Barriers and Issues 16

Assumptions, Limitations, and Delimitations 18

Summary 19

2. Review of Literature 20

Introduction 20

Overview of MANETs 20

Attacks on MANETs 42

Security Strategies in MANETs 51

Origins of IDS 55

IDS Mechanisms in MANETs 62

IDS Architectures in MANETs 70

Summary 99

3. Methodology 100

Overview of Research Methodology 100

Approach 100

Research Methods Employed 103

Attacks Generation 104

System Design 107

Data Collection Procedures 131

System Evaluation Metrics 134

Test MANET Simulation Parameters 136

Formats for Presenting Results 138

Resource Requirements 138

Summary 139

4. Results 140

Introduction 140

Experiment Structure 140

Experiments 143

Findings 172

Summary of Findings 175

5. Conclusions, Implications, Recommendations, and Summary 177

Conclusions 177

Implications 179

Recommendations 181

Summary 182

Appendices

A. IDS Source Code 188

References 218

List of Tables

Tables

Table 1- Attacks on OSI Layers 43

Table 2 - Social Ties Features Calculation 113

Table 3 - BPA Calculations in the LDM 123

Table 4 - Test MANET Simulation Parameters 137

Table 5 - Proposed System's Thresholds Values 144

Table 6 - Evaluation Metrics Values of the Proposed IDS 151

Table 7 - Evaluation Metrics Values of the Stand-alone IDS 160

List of Figures

Figures

Figure 1 - System Structure 108

Figure 2 - AED Values of no-IDS MANET 148

Figure 3 - DTR Values of the Proposed IDS 151

Figure 4 - FPR Values of the Proposed IDS 152

Figure 5 - AED of Proposed IDS vs. no-IDS MANET 156

Figure 6 - DTRs of Proposed IDS vs. Stand-alone IDS 161

Figure 7 - FPRs of Proposed IDS vs. Stand-alone IDS 162

Figure 8 - AEDs of Proposed IDS vs. CCIDS 169

9

Chapter 1

Introduction

Background

The rapid proliferation of wireless network devices, alongside the growth of related

technologies, has increased the adoption of mobile ad hoc networks (MANETs) across different

military and commercial fields. MANETs are multi-hop wireless networks consisting of a

number of wireless devices (nodes) that communicate with each other without the need for

preexisting configurations (Singh, Woo, & Raghavendra, 1998). This gives such networks the

ability to be deployed in various situations where no infrastructure exists, such as disaster relief

sites, emergency conferences, and battlefields (Johansson, 1999). MANETs are distinguished

from other types of networks, by their possession of certain unique characteristics. These

include infrastructure-less routing, limited resources, constrained bandwidth, dynamic

topologies, and limited wireless range (Corson, Macker, & Cirincione, 1999).

The dynamic nature of MANETs has been a major challenge for those providing security

solutions for these networks. The same characteristics that give these networks survivability in

sites where no infrastructure exists, render them susceptible to unique security challenges (Dorri,

Kamel, & Kheirkhah, 2015). The current body of knowledge contains an extensive amount of

research proposing various security solutions for fixed networks. These solutions typically rely

on central traffic points to monitor and collect audit data. As such, these solutions cannot be

applied for MANETs due to the infrastructure-less nature of these networks (Anantvalee & Wu,

2007). On the other hand, the resource-constrained nature of MANETs poses another challenge

in the way of network availability. Nodes in MANETs utilize a shared wireless medium to relay

10

their messages back and forth. However, such a medium is limited in capacity as it conforms to

the inherently bandwidth-constrained nature of MANETs. As more nodes begin to utilize the

same channel, the chances of interference and link errors rise in proportion to the increasing

number of nodes. These errors, in turn, may result in communication interruptions as well as

information loss that can have devastating consequences for mission-critical networks (Yang et

al., 2004).

The ever-challenging task of designing security solutions for MANETs has always been

hindered by the limited energy and processing power possessed by nodes in these networks.

These limitations have pushed a large number of researchers towards the task of establishing

balance between energy conservation and minimization of processing overhead (Kim & Jang,

2006; Mikki, 2009; Maleki, Dantu, & Pedram, 2002). This balance is necessary because any

packet transmission, such as sending and receiving, or even standby hardware operations

consumes a nontrivial amount of power that can deplete a node’s battery. Extra processing

overhead imposed by security solutions may result in draining nodes’ battery power, leaving

them incapable of participating in normal network operations. As such, resource conservation is

critical when designing security implementations for MANETs to sustain a longer network

lifetime (Kim & Jang, 2006).

Various preventive security solutions for MANETs exist in the current body of

knowledge. These solutions serve as a first line of defense against malicious attempts to

compromise the network. However, history has shown that preventive security solutions cannot

survive on their own, and this issue continues to be problematic. As networks evolve and

become more complex, security is still an afterthought in many designs while the exploitability

of preventative solutions increases along with the network complexity. Therefore, the need for

11

an intrusion detection system (IDS) solution as a second line of defense is regarded as a necessity

for maintaining the survivability of MANETs (Zhang, Lee, & Huang, 2003).

A plethora of research studies have proposed IDSs as solid lines of defense that can

provide an intrusion-free environment for MANETs. Such systems target continuous monitoring

of network traffic in order to detect and respond to hostile activities that might compromise

network security. However, a significant number of the proposed IDS solutions in the current

literature fall short in fulfilling their security goals. This can mostly be blamed on the dynamic

nature of MANETs, which has made the quest of intrusion detection an exceptionally

complicated task (Cannady, 2010).

The lack of central traffic points in MANETs introduces a mandatory need for real-time

cooperative detection techniques to achieve an effective IDS (Mahmood, Amin, Amir, & Khan,

2009). Besides, a broader view of the network is deemed significant to defend against insider

attacks, which can only be accomplished through nodes’ cooperation in the detection process

(Morais & Cavalli, 2012). The existing body of research contains various solutions for

cooperative IDS (CIDS) in MANETs. However, all of the solutions suffer from two major

problems: high communication overhead caused by constant information exchange and reliance

on intrusion reports originating from anonymous nodes. These, in turn, result in high false

alarms rates that cause degradation in the detection accuracy as well as increased bandwidth

consumption that might result in disrupting the normal routing operations in such bandwidth-

constrained networks.

To this effect, researchers emphasized the continuous increase of security threats, and the

overwhelming need for an efficient and reliable IDS for MANETs (Banerjee, Nandi, Dey, &

Saha, 2015; Keyshap, 2015). By proposing a novel IDS for MANETs, this research attempted to

12

address the high bandwidth consumptions and false alarms issues found in the current solutions.

The proposed system is cooperative in nature, protocol-independent, and aimed to decrease

bandwidth consumption as well as improving detection accuracy through reducing false

positives.

Problem Statement

Currently, there is no efficient CIDS for MANETs. All of the proposed solutions suffer

from high communication overhead and false alarm rates. The reliance of such solutions on

constant information dissemination throughout the network violates the bandwidth-constrained

nature of MANETs. This, in turn, causes disruption of normal network operations as well as loss

of detection-related messages, which affects detection accuracy. On the other hand, relying on

reports from anonymous nodes in intrusion decision-making renders the current solutions

susceptible to increased rates of false alarms and incapable of efficient detection of attacks when

large numbers of malicious nodes exist in the network.

Dissertation Goal

The goal of this research was to develop an effective CIDS for MANETs that is capable

of detecting malicious activities with high accuracy and achieving low bandwidth consumption

to preserve the normal routing operations in the network. We presented a novel approach for

intrusion detection that used a combination of mechanisms to achieve these goals. High

detection accuracy is accomplished through the application of a two-layered detection model

(local and cooperative) that honors partial and lack of evidence against a suspicious activity in

the detection decision through the application of Dempster-Shafer theory (DST). However, the

13

uniqueness of such application as compared to similar approaches is the avoidance of weighting

nodes’ trustworthiness in evidence consideration, which can result in inaccurate results when

high numbers of malicious nodes exist in the network. Due to the highly dynamic nature of

MANETs, evidence collection throughout the process of intrusion detection might suffer from

cases where partial or no evidence is collected. Such cases, in the proposed approach, were not

taken as negative evidence against the suspicious node as opposed to similar techniques found in

the literature, such as the Bayesian theorem (Gordon & Shortliffe, 1984). Instead, through the

application of DST, each node calculates and sends out its own degree of belief in the collected

evidence against the suspicious node, alongside the evidence itself. The degree of belief in this

context represents the level of certainty towards the collected evidence from a certain node.

Based on the received degrees of belief, each piece of evidence or lack thereof is given a certain

weight. Those weights are then honored in the intrusion detection process to calculate the final

decision against the suspicious node. This, in turn, targeted reducing false alarms rates in cases

of accidental behaviors, such as high node mobility or nodes leaving the network.

All of the current solutions rely on collaborative calculations that require extensive back

and forth communications to establish the reliability of information exchange between nodes.

However, they tend to fall short when there is a high number of malicious nodes in the network.

Besides, their high bandwidth consumption for exchanging detection-related information causes

disruption of normal network operations and potential loss of such information. Therefore, for

the reduction of this large volume of information dissemination found in current solutions, this

research targeted this issue through employing a self-sufficient technique for each node to

determine its own social circle. This enables nodes to limit information exchange, such as

cooperative detections or false alarms generations, with only certain sets of nodes. This, in turn,

14

has two benefits. First, detection-related information is only sent to strongly-tied nodes, which

eliminates the possibility that malicious nodes receive such information and temporarily adjusts

their behavior to avoid exclusion from the network. The second benefit relies upon having

intrusion cooperation limited to a node’s social circle, instead of the entire neighborhood. Such

restriction ensures reliable detection information through excluding anonymous nodes from

cooperative investigation operations. At the same time, it decreases information exchange, even

in such short-lived operations.

The proposed approach employed the concept of social communities, which has never

been applied to MANETs security before, to improve detection accuracy. This was done by

building strongly-tied communities that enable the exchange of reliable detection information

solely among nodes' social circles. This type of application addresses a major limitation that

exists in current approaches: their reliance on intrusion reports from anonymous nodes, which

can result in high false alarms rates. As such, in this research, intrusion-related reports are only

considered if they come from a node belonging to a strongly-tied community.

The combination of the mechanisms, mentioned above, successfully attained a highly

efficient CIDS for MANETs through achieving high detection accuracy and low bandwidth

consumption, as compared to the existing solutions.

Relevance and Significance

MANETs have experienced a rapid growth in their applications with alignment to the

proliferation of mobile devices and technologies. The ability of MANETs to function without

the need for Internet connectivity or fixed infrastructure have led to increased deployments of

such networks towards various scenarios, such as disaster relief operations and military tactics

15

(Johansson, 1999). The unique characteristics of these networks, such as the lack of

infrastructure, limited bandwidth, constrained resources, and the essential need for cooperation,

renders these networks susceptible to various types of attacks. These attacks may result in

devastating consequences, such as loss of confidential information, service interruptions, or even

eradication of the entire network (Vij & Sharma, 2016). Such disastrous potential of these

attacks has made the application of security for MANETs a challenging mission (Hubaux,

Buttyán, & Capkun, 2001).

Different preventive techniques have been proposed to secure such networks. However,

the mechanisms utilized in these propositions cannot guarantee an intrusion-free network. Thus,

a second line of defense is needed to achieve this goal, represented by the application of IDSs.

There exists a plethora of research in the area of MANETs security through the development and

applications of various IDSs. Three primary architectures exist in the current body of literature

for the implementation of IDSs in MANETs: stand-alone, hierarchical, and cooperative. In the

stand-alone architecture, each node analyzes and detects attacks on its own through a locally

installed IDS. However, the reliance on locally collected data affects detection accuracy and

limits the range of malicious attacks that can be uncovered (Şen & Clark, 2009). In a

hierarchical setup, a MANET is divided into clusters, which each have a dedicated monitoring

node to perform detection functions. The main drawback of this architecture is the high risk of

leaving the entire network in jeopardy when such nodes get compromised or drop out of the

network (Cannady, 2010). In a cooperative configuration, each node has its own IDS and

cooperates with others in attack detection. The use of a cooperative architecture over the other

types can be reasoned to the lack of central traffic points in MANETs, which mandate the need

for real-time cooperative detection techniques for an effective IDS (Mahmood, Amin, Amir, &

16

Khan, 2009). Additionally, a broader view of the network is deemed significant to defend a

network against insider attacks, which can only be achieved through nodes’ cooperation in the

detection process (Morais & Cavalli, 2012).

A large body of knowledge exists in the area of CIDS implementations, pertaining

different methodologies and mechanisms. However, all of these implementations rely on

extensive dissemination of detection information throughout the network. This reliance has two

major consequences: disruption of normal routing operations and potential loss of detection

information, leading to degradation of detection accuracy. The other downside found in the

existing systems is the high rate of false alarms resulting from their reliance on unreliable

detection reports obtained from anonymous nodes throughout the decision-making process.

Making intrusion decisions based on anonymous reports can lead to false accusations towards

innocent nodes in case of fake information generated by malicious nodes (Razak, Samian, &

Maarof, 2008). These vulnerabilities found in existing approaches hinder the efforts towards a

widespread adoption of MANET applications against more areas since security forms the main

obstacle towards such adoption (Nadeem & Howarth, 2013). Therefore, there is a need for an

efficient CIDS that can detect intrusions with high accuracy while maintaining an efficient

bandwidth consumption.

Barriers and Issues

The unique characteristics of MANETs represented in their continuously changing

network topologies, infrastructure-less nature, and lack of central networking points make the

mission of securing such networks an inherently difficult one. Despite the extensive research

efforts put forth in the area of intrusion detection, the development of an efficient IDS that is able

17

to detect complex attacks remains an obstacle in the way of security researchers (Cannady,

2013). This is largely due to a number of contributing factors, such as the continuous

advancements in technologies, attackers’ creativity, and the dynamic nature of threats. Cannady

(2013) outlined the criticality of achieving timely and accurate attack detection when

implementing an IDS for MANETs. This aligns with the primary goals of this research, as the

proposed system was intended to achieve high detection accuracy through decreasing false

positives while avoiding overwhelming bandwidth consumption to accomplish timely

completion of the detection process, towards meeting Cannady's criterion for an efficient IDS.

However, the primary lesson learned from previous research studies in this area is that

attempting to achieve such timely accuracy requires a high degree of complexity and extensive

efforts, which were anticipated to accompany this research study.

The acquisition of representative attack data was another barrier for this research. This

type of data is critical for validating the effectiveness and viability of this study’s proposed

approach in real-world attack scenarios and implementations. However, since the proposed

approach was intended to work with real-time network traffic, it was not sufficient to obtain and

operate on static data to simulate malicious activities. Previous research studies that have

attempted the implementation of various attack scenarios were examined for this purpose. Some

edits and manipulation for these implementations were necessary to accommodate the required

scenarios in this research. Nonetheless, the validity of such implementation as efficient

representations of real-world attack scenarios is still an outstanding area of critical concern. The

Defense Advanced Research Projects Agency (DARPA) provides a number of sample datasets,

consisting of network traffic and audit logs, for the evaluation of intrusion detection techniques.

However, these datasets do not include attack data that are specific to MANETs. As such,

18

common methodologies implemented by previous studies were followed for attack

representations in this research. However, in the face of increasingly creative attackers that

continuously vary existing attack patterns, such implementation might not necessarily represent

all scenarios for real-life attacks.

Assumptions, Limitations, and Delimitations

To manage the scope of the study, the proposed research was conducted in a simulated

environment using ns-2. Network prototypes, validation of the efficiency and applicability of the

proposed system, and data analysis were performed in that environment. The simulated network

prototypes produced different attack scenarios that are common to MANETs. Prominent

researchers have used common methodologies to simulate such attacks. Their work was

validated and piloted in the attack simulation process for the proposed system. However, one

limitation here lied in the adaptability of attackers. As networks continue to advance, attackers

evolve and become better at devising innovative ways to launch security attacks against

MANETs. Thus, the simulated environment cannot represent every threat level that MANETs

might be exposed to in real-life scenarios. However, the system was implemented to be

applicable to every MANET.

This research was not intended to result in an IDS that can detect all types of attacks.

Instead, the proposed system demonstrated how the application of social communities

accompanied by DST can enhance accuracy while minimizing communication overhead

throughout the intrusion detection process. A possible extension of this study is to implement

detection mechanisms against a more comprehensive set of attacks against MANETs. This was

kept in mind during the design of the proposed system to potentially simplify future extensions.

19

Summary

 The dynamic nature of MANETs represented in features such as the lack of fixed

infrastructure, constant mobility, and dynamic topology have made designing effective security

mechanisms a difficult challenge. Researchers have put forth extensive efforts towards

MANET’s security through the implementation of IDSs. Since cooperation between nodes in a

MANET is mandatory to achieve efficient detection (Mahmood et al., 2009), a large number of

studies have proposed a variety of CIDS implementations. However, all of the proposed CIDS

in the current literature suffer from high bandwidth consumption and false alarm rates. Due to

the resource-constrained nature of MANETs, high bandwidth consumptions can have adverse

effects on normal network operations. On the other hand, the reliance current solutions have on

intrusion detection reports from anonymous nodes may lead to false accusations towards

innocent nodes, which in turn, decreases detection accuracy.

The goal of this research was to apply the concept of social communities and DST

towards the implementation of a CIDS that is capable of achieving high detection accuracy while

minimizing bandwidth consumption. Implementation of the proposed research was able to

produce an efficient CIDS that is capable of accurately detecting security attacks in a timely

manner.

 This Dissertation Proposal is structured as follows: Chapter 2 presents a comprehensive

review of literature relevant to intrusion detection in MANETs. Chapter 3 details the research

methodology that is going to be followed in the implementation of this research.

20

Chapter 2

Review of Literature

Introduction

This chapter presents a summary of relevant research studies in the current body of

knowledge. As will be shown, these studies support the research presented in this Dissertation

Proposal pertaining to MANETs, their security issues, and current security solutions. The review

starts with a survey of what makes MANETs such unique networks. This survey will include

reviewing their characteristics, security issues, security requirements, and possible attacks. The

review then progresses towards the specific domain of this research: discussing intrusion

detection for MANETs in relation to the various mechanism, techniques, and architectures

followed in IDS implementations.

Overview of MANETs

Characteristics

Early work on ad hoc networking traces back to 1972 when DARPA introduced their

Packet Radio Network (PRNet) project. The work focused on the application of packet-

switching techniques, such as store-and-forward routing and bandwidth sharing for mobile

wireless networking (Jubin & Tornow, 1987). DARPA continued their development in this field,

resulting in the introduction of Survivable Radio Networks (SURAN) in 1983. This new

technology addressed scalability, energy consumption, and security issues found in PRNet

(Beyer, 1990). In 1987, DARPA designed the Low-cost Packet Radio (LPR) technology, which

21

enhanced the scalability and network management aspects of packet radio networks (Jubin &

Tornow, 1987).

Advancements continued to be made, and in 1994, DARPA started the Global Mobile

(GloMo) program targeting the support of multimedia connectivity in wireless devices anytime

and anywhere (Leiner, Ruther, & Sastry, 1996). With all these advancements in ad hoc

networking, the US Army’s Tactical Internet (TI) that was developed in 1997 is considered the

largest-scale implementation of a mobile wireless multi-hop packet radio network. Numerous

amounts of work have followed to build on top of this implementation, exposing the potential of

ad hoc networking to the research community, outside the military domain (Chlamtac, Conti, &

Liu, 2003).

Early work on MANETs was sharply focused on military applications. The proliferation

of wireless networking and mobile devices, as well as the ongoing advancements in these

technologies, have increased the widespread application of MANETs implementations across

medical, military, financial, and various other fields. In military applications, MANETs provide

a decentralized configuration that is necessary and advantageous for these types of operations.

However, the same configuration can be employed to non-military scenarios where no

infrastructure exists, such as construction sites, disaster relief areas, conferences, and many

others (Singh, Woo, & Raghavendra, 1998; Johansson, 1999). A MANET is a multi-hop

wireless network consisting of a number of wireless devices that have the ability to perform

routing on their own. As such, these nodes cooperatively maintain connectivity inside a

MANET (Singh, Woo, & Raghavendra, 1998). The movements of such nodes are arbitrary

because they are free to move in any direction needed. A node can be an integrated unit of

network devices, such as laptops and handheld devices, or it may consist of physically separated

22

network devices. In order for a node to connect to others in a MANET, wireless connectivity in

the form of a dynamic, multi-hop ad hoc network must exist. This is done through a variety of

wireless transmitters and receivers, which are usually implemented with different kinds of

antennas that nodes must be equipped with (Corson, Macker, & Cirincione, 1999).

In contrast with other types of networks that rely heavily on Internet connectivity to

operate, MANETs are autonomous systems of nodes that can fully operate in isolation without

the need to be connected to the Internet. In traditional mobile networks, although a user might

change location due to continuous movements, a variety of fixed networking infrastructures are

typically used to support such routing with other devices. However, in MANETs, the entire

routing infrastructure moves with users’ devices, leading to frequent and unpredictable changes

in the network topology. As such, a fixed routing infrastructure is no longer useful in such

networks (Corson et al., 1999).

The main characteristics of MANETs that differentiate them from other types of wireless

networking can be summarized by the following (Corson et al., 1999; Chlamtac et al, 2003;

Johansson, 1999):

• Dynamic Topologies: since nodes in MANETs are free to move arbitrarily and route

changes, frequent network partitioning and packet loss are natural outcomes of the

constant change in topology in such networks. Nodes in MANETs vary in regard to their

transmission range and software/hardware configurations. This results in different

processing powers, causing a dynamic, heterogeneous networking environment.

• Infrastructure-less Networking: nodes in MANETs do not rely on fixed infrastructure to

communicate with others residing within their wireless range. Should communication be

needed with an out-of-range node, other nodes can be used as intermediates, relaying the

23

message hop by hop until it reaches its destination. As such, it can be seen that each node

in a MANET acts as a router, enabling message forwarding and information sharing

inside the network.

• Resource constrained: applications and services provided by mobile nodes in MANETs

are restricted due to the limited energy, storage, and processing power. Each node in a

MANET acts as both an end- and intermediate-system. Resource limitations become a

big problem in MANETs as a network moves towards scaling to a larger number of

nodes and requires more resources to perform the different routing operations.

Nodes in MANETs have the unique ability to instantaneously form routes among

themselves as they roam freely in the network. The infrastructure-less nature of MANETs

allows this dynamic routing to occur without interruptions to normal network operations. This is

achieved through nodes exchanging their routing information with each other as they move

around the network to establish routes dynamically without disrupting communications. Such a

capability allows MANETs to be a suitable choice for special deployment scenarios. These

include challenging deployment environments, such as disaster relief locations, where addressing

terrestrial and geographical limitations requires a high distribution of network devices without

any fixed base stations or central networking units. (Deng, Li. & Agrawal, 2002).

Although the dynamic configuration of MANETs allows network operations to survive

through high-mobility scenarios, it does impose certain requirements and obstacles for MANET

routing protocols. Depending on the network size, which is defined by the number of nodes in a

MANET, communications can suffer from data loss and continuous interruptions (Wang & Li,

2002). This can happen, for instance, with small MANETs in which mobile nodes move in

24

opposite directions and cause network partitioning where a network is divided into multiple

disconnected sections. Routing disruptions, packet delays and loss can occur in such situations,

causing the network to suffer from high overhead in an attempt to rediscover routes to the

disconnected partitions (Tan & Seah, 2005).

Network partitioning caused by the continuously changing topological formations in

MANETs has occupied many researchers in efforts to find solutions that might lessen the impact

of communication disruptions. These efforts focused mainly on predicting nodes’ mobility

patterns to avoid network partitioning (Wang & Li, 2002). Such efforts were put forth due to the

criticality of some MANET applications, such as battlefield deployment where certain levels of

network availability and quality of services must be guaranteed. To that extent, routing protocols

along with the applications deployed on nodes must be designed to accommodate the high rates

of topological changes in the network (McDonald & Znati, 1999).

The resource-constrained nature MANETs also makes them prone to network availability

challenges. When nodes communicate with each other, they utilize a shared wireless medium to

relay their messages back and forth. This medium is limited in capacity as it conforms to the

inherently bandwidth-constrained MANETs. The more nodes utilize the same channel, the

higher the chances of interference and link errors to occur. These, in turn, can result in

interruptions of communications as well as information loss, which can have devastating

consequences in mission-critical networks (Yang et al., 2004).

The primary issue with limited-capacity wireless channels in MANETs lies in the

inevitable unpredictability of communication quality between nodes. This unpredictability is

caused by the highly variable environmental conditions surrounding the deployment of

MANETs, which are difficult to anticipate in advance (Xiao, Seah, Lo, & Chua, 2000). Such

25

unpredictability continues to contribute to a lower quality of service in MANETs when

compared to their fixed-wireless or even wired counterparts. On the other hand, nodes in

MANETs usually come equipped with different transmission rates subject to their wireless

antenna design. However, nodes with high transmission power cannot guarantee a full

utilization of such a power. This is due to the unpredictable effects of the shared wireless

channel, which might cause interference, noise, and continuous collisions. All of these factors

have adverse effects on communication and service quality in MANETs, causing such networks

to be constantly vulnerable to availability problems (Garg & Mahapatra, 2009).

Despite the increasing adoption of MANETs in areas other than military and disaster

recovery operations, the applications that can be deployed on these networks are somewhat

constrained by nodes’ limited energy and processing power. This has pushed researchers to

devise various methods to enhance energy conservation while minimizing processing overhead

incurred by routing protocols (Kim & Jang, 2006; Mikki, 2009; Maleki, Dantu, & Pedram,

2002). By directing their efforts towards allowing more room for application to utilize such

energy and processing, researchers hoped to increase the adoption of MANETs in a wider range

of civilian deployments. In addition, resource conservation is deemed critical for MANETs to

sustain a longer network lifetime (Kim & Jang, 2006).

Along with a detrimental impact on the feasibility of installing certain applications on

nodes, the inherent energy constraints in MANET nodes also affect hardware and signal

processing operations. This happens because any packet operation such as sending and

receiving, or even standby hardware operations, consumes a nontrivial amount of a node’s

battery power (Goldsmith & Wicker, 2002). This inevitable drainage of battery power not only

imposes high restrictions for designing communication protocols, but it also prompts necessary

26

considerations for conserving such energy, even in sleep modes where nodes are idle. Such

considerations are usually applied in the hardware and operating system design for mobile

devices (Goldsmith & Wicker, 2002).

Although the unique nature of MANETs sometimes poses as a limitation towards the

deployment of these networks in certain scenarios, it also serves as an attractive factor for a large

number of applications. Data, home, and sensor networks, for instance, have experienced a wide

and successful adoption of MANETs. This is all thanks to a dynamic nature that enables

sufficient flexibility for these applications to operate in versatile environments. Data network

applications for MANETs provide wireless connectivity between laptops, handheld devices, and

other information devices in commercial settings. Home network applications, on the other

hand, can support automatically adjusting light and room temperature or act as security alarms

alerting home owners when odd movements are detected outside of their houses (Huhns, 1999).

Another promising application of MANETs with high potentiality of expansion can be

seen in sensor networks. These applications can be of a great benefit for both military and

commercial deployments. Examples of military-targeted applications of sensor networks include

optical, chemical, and biological sensors that can serve as first lines of attack detection in war

zones. On the other hand, commercial usage of these sensors includes gas, water, and electricity

meters that can help consumers regulate their usage for high-energy consumption devices, such

as water heaters and air conditioners (Goldsmith & Wicker, 2002).

Nonetheless, the inherent energy constraints, processing limitations, and infrastructure-less

nature of MANETs pose the requirements for different networking strategies to be implemented

than those for fixed wireless networks. As such, a tremendous amount of research has been

directed to design a wide range of network management models to provide efficiently functional

27

communications with regard to limitations in MANETs (Abolhasan, Wysocki, & Dutkiewicz,

2004).

Routing

Due to the limited transmission range of nodes in MANETs, each node has to act as both

a host and router, forwarding packets to out-of-range nodes as multiple hops might be needed for

packet exchange. Route discovery and maintenance also fall under nodes’ responsibility (Royer,

1999). Since MANETs are infrastructure-less by nature, this means the lack of a fixed routing

infrastructure forces nodes to dynamically establish routes among themselves to communicate

with each other across the network. Such routes are formed instantaneously, providing an

extremely flexible communication environment for the continuously changing network topology

(Deng, Li, & Agrawal, 2002).

In traditional wired networking, there are two primary routing algorithms: link-state

routing and distance-vector routing. In link-state routing, each node in the network maintains an

updated routing table through periodically broadcasting the link-state costs of its neighboring

nodes. Tables are then updated through the application of the shortest-path algorithm to

determine the next hop nodes for destinations. In distance-vector routing, each node maintains a

table of distances to each neighboring node, allowing nodes to calculate the shortest path to each

destination (Abolhasan et al., 2004). Although these two protocols are widely used in wired

networks, they are inefficient for the resource-constrained MANETs due to their high bandwidth

consumption when performing their frequent route updates. To overcome such inefficiency, a

number of routing protocols have been specifically developed for MANETs. These protocols

can be categorized into three groups: proactive, reactive, and hybrid (Abolhasan et al., 2004).

28

In proactive routing, each node maintains information about all other nodes in the

network. Routes to all destinations are determined at the network initialization phase. Different

tables are used to maintain route information and prevent them from getting out of date due to

continuous route updates (Royer, 1999). These updates are of two types: periodic and triggered.

In periodic updates, the entire routing table of each node is broadcasted to all other nodes. On

the other hand, triggered updates occur only when a node detects changes in its neighboring

nodes. Thus, only these changes are broadcasted. This type of routing is also called table-driven

routing (Srivastava et al., 2014). There are a number of routing protocols following this strategy,

such as Destination-Sequenced Distance Vector (DSDV), Wireless Routing Protocol (WRP), and

several others that operate in a similar fashion (Royer, 1999; Shenbagapriya & Kumar, 2014).

However, the main differences among the different protocols in proactive routing are the number

of tables used to maintain information, types of information stored in each table, and the

mechanisms used to circulate such information.

Destination-Sequenced Distance Vector Routing (DSDV) provides an example to

illustrate how proactive routing works. DSDV improves on the classical Bellman-Ford routing

mechanism through the elimination of loops in routing tables. Nodes record every possible

destination in the network and the number of hops it takes to reach that destination in their

routing tables along with a sequence number. This number allows nodes to distinguish stale

routes, which in turn, eliminates routing loops. That is, a higher sequence number indicates a

more recent route to a destination. When a node wants to transmit packets to a destination, it

only considers routes with the most recent sequence numbers. However, if a node receives two

updates with the same sequence number, it selects the one with the smaller hop count to the

destination (Royer & Toh, 1999). Routing updates can be in a form of a “full dump” in which all

29

available routing information is broadcasted to the network. Smaller incremental updates that

only send updates from events after the last “full dump” are also employed in this protocol.

These updates contain the address of a destination, a sequence number received for that

destination, and the number of hops needed to reach it (Abolhasan et al., 2004).

 In an attempt to reduce network congestion from frequent route updates, mobile nodes in

DSDV may employ a certain broadcasting delay before sending subsequent updates. This delay

is determined through a mechanism that keeps track of settling times for routes, which are

defined as the times when routes to a destination fluctuate before the route with the best metric is

received (Royer & Toh, 1999). However, DSDV does not thrive in large networks as the

excessive amounts of routing overhead would occupy a large portion of the network and result in

potential communication disruptions (Abolhasan et al., 2004).

The main advantage of proactive routing is the immediate availability of routes when

needed, which decreases delays in packet delivery (Sudarsan & Jisha, 2012). However, the main

disadvantage of these protocols is their excessive amounts of bandwidth usage for route update

propagations, which might affect the scalability of the network (Abolhasan et al., 2004).

Another disadvantage is the constant increase of the routing tables’ sizes as more nodes join the

network (Srivastava et al., 2014).

Reactive routing protocols attempt to reduce bandwidth usage and overheads that exist in

proactive protocols by maintaining information on active routes only. Along with this, routes are

determined and maintained on demand. As such, no periodic flooding of information is needed

when a topology change occurs. Therefore, this type of routing is also called on-demand or

source-initiated routing (Royer, 1999). When a node needs to send a packet to a destination with

an unknown route, a route discovery process is initiated. During this process, the network is

30

flooded with route request packets. When the route is determined through an intermediate or

destination node, route reply packets are sent back through link reversal if bidirectional links

were used or by flooding the network with such packets (Royer, 1999). Maintenance of the route

ends when the destination node becomes inaccessible or no longer desired (Srivastava et al.,

2014). Fewer route updates and maintenance are the main themes of reactive routing. However,

increased delay in packet delivery may occur due to the time consumed in the route discovery

phase (Sudarsan & Jisha, 2012). A large number of protocols exist in reactive routing, such as

ad hoc on-demand distance vector (AODV) and dynamic source routing (DSR).

 To illustrate how this type of routing works in a MANET, we will briefly examine the

AODV protocol. AODV builds on the DSDV algorithm. However, the improvement this

protocol offers over DSDV is the elimination of expensive route information exchange through

the creation of routes on an on-demand basis (Abolhasan et al., 2004). Nodes that are not in a

selected path neither maintain routing information nor participate in routing tables’ exchanges.

Hence, the protocol is referred to as a “pure on-demand route acquisition”. When a node wants

to transmit packets to a destination with an unknown route, it starts a route discovery process by

sending a route request (RREQ) packet to its neighbors who then forward the request to their

neighbors. The process continues until the destination or an intermediate node with a recent route

to the destination is found (Royer & Toh, 1999).

Sequence numbers are used in this protocol to eliminate loops and ensure recency of path

information. A sequence number is a monotonically increasing number that is maintained by a

node originating a route request. This number is then used by other nodes to determine the

freshness of information received from the originating nodes. Therefore, the higher the sequence

number, the fresher the received route to a destination. Each node checks if it receives the same

31

sequence number in a routing message. That way, if a node detects a duplicate sequence

number, it drops the routing message to avoid potential loops. Additionally, this sequence

number is incremented each time a node initiates a route discovery, which along with the IP

address identifies the RREQ. Intermediate nodes can reply with the route information only if

they have a route to the destination with a greater sequence number than that contained in the

RREQ (Patel, Patel, Kothadiya, Jethwa, & Jhaveri, 2014).

During the process of RREQ, a reverse path is established as each intermediate node

records the address of the neighbor from which it received the first copy of the RREQ. This path

is then used when the destination is found to unicast a route reply (RREP) packet to the neighbor

that a node received the first copy from, until it reaches the original requesting node. A forward

path is established during the process of RREP, in which each node records the information of

the neighbor that sent the RREP. If a node along an established route moves and needs to

maintain an updated record of routing information during the route discovery phase, a link

propagation failure message (RERR) is sent from the node’s upstream neighbor to all its

neighbors. These neighbors continue to forward the failure to their upstream neighbors until it

reaches the source node. To keep a list of active neighbors, nodes listen to packet retransmissions

of their neighbors to ensure the availability of their next hop. If such retransmissions are not

heard from a certain node, nodes send a “Hello” message to check if the next hop is still alive.

Such messages are used by AODV as periodical local broadcasts to keep nodes informed about

others in their neighborhood (Royer & Toh, 1999).

 All of these protocols possess comparable mechanisms in regard to route discovery and

maintenance operations (Abolhasan et al., 2004). They also share similar transmission routing

32

costs when considering packet transmission between two nodes with no prior communications

(Patel et al., 2014).

Hybrid routing protocols for MANETs were introduced to overcome network scalability and

latency issues found in both proactive and reactive protocols. This is achieved by allowing

close-proximity nodes to have full knowledge of the routes between them, which reduces

overheads resulting from route discovery (Saeed, Abbod, & Al-Raweshidy, 2012). To

accomplish such a task, proactive routing is used for neighboring nodes to maintain routes

between them. When these nodes need to transmit data outside of their circle, reactive routing is

used to determine the required routes through route discoveries (Sudarsan & Jisha, 2012; Patel et

al., 2014). Hybrid routing protocols have the ability to quickly switch between proactive and

reactive mechanisms (Srivastava et al., 2014). Different hybrid routing protocols were

developed, such as the zone routing protocol (ZRP) and distributed dynamic routing (DDR).

 ZRP provides an example to illustrate the functionality of hybrid protocols. This protocol

is based on dividing the network into multiple routing zones. ZRP defines a zone for each node

with a radius of (p) that includes all the neighboring nodes who are (p) hops away. Inside each

zone, ZRP utilizes locally proactive routing defined as the Intra-Zone Routing Protocol (IARP).

This protocol uses table-driven routing that relies on nodes to continuously update routing

information regarding nodes in their local zone. To communicate with distant zones, ZRP uses

its reactive routing component called Inter-Zone Routing Protocol (IERP). This protocol is

reactive in nature. Thus, it issues route queries on demand whenever a route to an out-of-zone

node is requested (Schaumann, 2002).

 When a node wants to transmit packets to a destination, it checks whether that destination

is within the local zone by querying the information provided by IARP. If so, the node uses

33

proactive routing through IARP to transmit the packet. However, if the destination is outside the

local zone, the node must use reactive routing through IERP (Schaumann, 2002). This is done

by having the requesting node initiate route request packets to other nodes in its local zone. If a

receiver node has knowledge of the destination, it responds with a route reply to the requesting

node. If not, the request packet continues to bordercast until it reaches the destination or an

intermediate node that has a recent path to the destination. Bordercasting is a process of

requesting route information from nodes located at zones’ borders. Bordercasting is specific to

the IARP that is provided by the Bordercast Resolution Protocol (BRP). This protocol creates a

bordercast tree map containing nodes that are located on the local zone’s border by querying

topology information provided by IARP. Such queries are only initiated when reactive routing is

needed to a distant destination. ZRP uses this protocol to direct route requests to distant zones

through the process of bordercasting (Beijar, 2002).

 For the reply packet to be able to make it back to the requesting node across the zones,

each node that forwards the packet appends its own address. This way, when the destination

receives the packet, it copies these saved addresses to the route reply packet so that it can be

routed back to the source. On the other hand, nodes along the path to the destination save the

next-hop address to their routing tables for future use (Beijar, 2002).

A critical consideration when it comes to designing a MANET with ZRP as the main

routing protocol is identifying zones’ radiuses. The radius of the routing zones is a determining

factor in ZRP to decide what type of routing should be used and when. That is, the smaller the

radius, the more reactive routing is used, causing a significant increase of routing traffic in the

network. On the other hand, a bigger zone radius means more proactive routing and more inter-

zone traffic to maintain the view of each zone (Abolhasan et al., 2004).

34

The main similarity between these protocols is their zone-based nature, meaning they

tend to partition a network into a number of zones/clusters. However, each protocol employs

different mechanisms to form these zones (Abolhasan et al., 2004).

There have been tremendous efforts put forth towards the design and development of the

above-mentioned routing protocols. However, there is no one-solution-fits-all approach when it

comes to MANET applications. A thorough understanding of a MANET’s condition and

requirements is needed for selecting the suitable protocol for each implementation. Such a

selection should balance efficiency and performance, and it should account for security, which

plays a significant role in the survivability of the network (Saeed et al., 2012; Deng et al., 2002).

Security Issues

Security has become a primary concern in the path to providing protected

communications between nodes in MANETs. Since each node acts as both a host and router,

both legitimate and malicious nodes can access wireless channels. A fundamental question when

examining security for MANETs is how to protect the basic connectivity of each node to enable

safe data transmission throughout the network (Yang et al., 2004)? MANETs possess several

unique characteristics that make the quest for security a nontrivial challenge, including the

following:

• No Predefined Boundary: the nomadic environment of a MANET does not impose

physical boundaries. This allows nodes to freely join or leave the network as they desire.

Malicious nodes can immediately start communicating with nodes in a network once they

are in the same wireless range (Sheik, Chande, & Mishra, 2010). This lack of physical

protection raises the chances for a network to get compromised (Zhou & Haas, 1999).

35

• Lack of Central Authority: MANETs don’t have a central node for network control and

management (Raj, Bharti, & Thakur, 2015). This means that traffic cannot be monitored

from a centralized station. Instead, it is distributed among different nodes. This makes

the detection of attacks a challenging mission because the lack of security association

affects trust between nodes (Sheikh et al., 2010). At the same time, having a single,

central authority can cause major vulnerabilities; if such a node gets compromised, the

entire network is sabotaged (Zhou & Haas, 1999). Thus, distribution of traffic

monitoring and attack detection cooperatively among nodes in MANETs can be viewed

as mandatory to overcome the security issues related to a single or lack of central

authority in these networks (Mahmood et al., 2009). This is because such distribution

provides a broader outlook on the network, which is considered crucial to achieve

effective attack detection (Morais & Cavalli, 2012).

• Dynamic Topology: nodes in MANETs roam independently and in any desired direction,

causing nodes to drop in and out of the network as they wish (Deng et al., 2002). This

constant mobility of nodes inside the network causes changes to the underlying topology,

which affect trust establishment because such changes might disrupt trust relationships

among nodes. Attention to the different challenges in this dynamic nature is a

cornerstone in designing security solutions for MANETs (Goyal, Parmar, & Rishi, 2011).

• Cooperativeness: due to the distributed nature of MANETs, cooperation between nodes is

needed for such networks to function properly. This cooperation compensates for the

lack of fixed infrastructure. However, the lack of a centralized authority to enforce such

cooperation might lead some nodes to behave selfishly or maliciously (Conti, Gregori, &

Maselli, 2004). Besides, routing protocols assume that all nodes in a MANET are non-

36

malicious and cooperative in nature. This poses a significant vulnerability when a node

gets compromised and starts disrupting network communications (Goyal et al., 2011).

• Resource Availability: nodes in MANETs each operate on a limited power supply

through their built-in batteries. This presents inevitable processing and operational

restrictions, which cause limitations to the types of security mechanisms that can be

implemented to secure such networks (Raj et al., 2015). Such limitations give attackers

ample opportunities to direct expensive computational tasks towards victim nodes, which

might result in draining their battery power (Mishra, Nadkarni, & Patcha, 2004).

• Scalability: as nodes in MANETs are free to join or drop out, scalability of these

networks changes frequently. This makes the prediction of the number of nodes a

difficult task when routing and designing various services for these network (Raj et al.,

2015). Scalability issues are more challenging in large networks with high mobility,

causing excessive network routing and transmission overhead (Hong, Xu, & Gerla,

2002).

• Shared Wireless Medium: opposite to wired networks, which utilize a dedicated channel

to connect two hosts, nodes in MANETs share the same access medium to communicate.

Such a medium is susceptible to signal interference and external noise, affecting the

reliability of packet transmission in the network (Sheikh et al., 2010). Since

communications in MANETs are broadcast in nature, data transmission can be

interrupted by existing malicious nodes (Raj et al., 2015). Various implementation

scenarios for MANETs occur in hostile environments, such as military operations. This

leaves a high possibility and expectations for attacks against such a vulnerable wireless

medium (El Defrawy & Tsudik, 2008).

37

• Adversaries inside the network: nodes inside the network can get compromised and start

behaving maliciously. Such insider threats are harder to detect than external ones (Sheik

et al., 2010). Insider threats can cause the inability of other nodes to detect incorrect or

malicious behaviors. These insider adversaries can cause different kinds of transmission

problems, such as false advertisements of routes, message dropping, and incorrect link-

state information (Mishra, 2004).

Maintaining connectivity for a high mobility medium in a MANET is mandatory for the

survivability of the network. However, the different vulnerabilities in such networks make them

susceptible to various types of attacks from malicious sources targeting different services and

functionalities. Such attacks might result in service interruptions, data loss, stealth of

confidential information, or in some cases, eradication of the entire network (Vij & Sharma,

2016).

Security Requirements

Security is a significant consideration in MANETs, especially for those applications

involving highly secretive information, such as military operations (Zhou & Haas, 1999). The

path to an effective security implementation in a MANET should consider the following

requirements:

• Authentication: this ensures the originality of communications between two nodes,

eliminating the possibility of a malicious node masquerading as a trusted one (Djenouri,

Khelladi, & Badache, 2005). That is, a communicating node can trust that the other end

of the connection is truly the designated destination (Abdelaziz, Nafaa, & Salim, 2013).

38

In general, authentication is considered an assurance that all participants in a data

communication are verified entities and not impersonators (Goyal, 2011).

• Availability: this sustains networking functionalities and ensures resources are available

at all times without any interruptions (Abdelaziz et al., 2013). This means that such

services should be available for consumption by nodes in a MANET, even in the

presence of an attack. Interruption of services could potentially put the availability of

resources in a dangerous position, impacting the entire network operations of a MANET

(Raj et al., 2015).

• Integrity: when two nodes communicate in a MANET, they expect to receive the exact

information that was sent from one to another. Integrity ensures that the exchanged

messages are authentic, uncorrupted, and untampered with by a malicious node (Djenouri

et al., 2005). Malicious tampering might include modification of contents, deleting and

recreating the message, or changing certain bits of information (Goyal et al., 2011).

However, some messages might get accidentally modified during transmission due to a

network failure and are not necessarily results of malicious acts (Raj et al., 2015). In all

cases, integrity should protect from malicious and accidental modifications of messages

between two communicating parties.

• Confidentiality: MANETs have a wide variety of applications in various military and

commercial fields. Sensitive information might flow during communication in such

operations (Raj et al., 2015). Confidentiality ensures that such sensitive information

remains undisclosed to anybody other than the authorized parties, and it ensures the

information cannot be understood by unauthorized entities (Abdelaziz et al., 2013;

Djenouri et al., 2005).

39

• Nonrepudiation: repudiation refers to the denial of a node that was involved in a data

communication of its full or partial participation in such communication. Consequences

of repudiation can lead to damaging results, such as a node denying the participation in

military communications leading to compromising the confidentiality of secret

information. Nonrepudiation guarantees that a node cannot deny sending/receiving a

certain message (Djenouri et al., 2005).

Any implementation of security solutions for MANETs should pay close attention to the

above-mentioned security requirements. Additionally, a number of significant metrics must be

incorporated in the design of such solutions. These metrics are referred to as “security

parameters.” Neglecting these parameters can increase the potentiality of serious security

vulnerabilities when implementing security solutions for MANETs (Dorri et al., 2015). These

security parameters can be summarized as follows:

• Communications Overhead: security solutions often introduce special control and

intercommunication packets that aim to pass messages around between the different

components of these solutions for management and reaction purposes (Yang et al.,

2004). However, failing to limit the number and size of such messages might cause

normal network operations to suffer. This, in turn, can result in network congestions,

packet loss, and disruption of packet routing among nodes in a MANET. Packet

retransmission is another potential consequence that results from packet loss due to

the imposed overhead from security solutions. This would eventually affect nodes’

battery power levels because of continuous retransmission and would ultimately

40

cause nodes to potentially halt during communication to conserve energy (Dorri et al.,

2015).

• Energy Consumption: nodes in MANETs are energy-constrained due to their reliance

on battery power to operate in the network. Security solutions tend to add extra

processing overhead to apply various defense mechanisms against malicious

activities, resulting in an increased energy consumption on nodes. This is usually

viewed as an inevitable consequence that makes optimization of battery consumption

a critical consideration in the design of security solutions. Nonetheless, such

optimization is highly challenging and extensive research has been solely dedicated to

this purpose (Biswas, Nag, & Neogy, 2014; Kerache et al, 2017; Lupia & Marano,

2016). Keeping energy efficiency in mind when developing security solutions for

MANETs would result in positive effects on the network. This would be beneficial

because decreasing nodes’ battery consumption may lead to a longer lifetime of the

network in general (Kerache et al, 2017).

• Processing Time: for security solutions to respond to a suspicious activity in the

network, certain processing on the received/sent packets must occur. Based on such

processing, a suspicious node might be marked as malicious or, in some cases,

isolated from the network (Nadeem & Howarth, 2013). While these actions are

mandatory to impose security in the network, so is the need for minimizing

processing times accompanied with these actions. During such processing times in

highly dynamic environments like MANETs, this is necessary because attackers

might move to a different location or even drop and rejoin the network with a

41

different identity. This can potentially render any actions taken by these security

solutions obsolete (Dorri et al., 2015).

• Scalability: the plethora of MANET security implementations found in the current

literature includes appealing solutions that largely target issues of energy

consumption and communications overhead. Addressing these targets might be all

that is needed for small networks. However, larger networks might require other

actions. As the number of nodes in a MANET increase, so does the challenge for

security solutions to preserve their promised performance measures. This is due to

the unpredictability of the network size and the ever-changing topological conditions

in MANETs. Thus, accounting for network scalability is a critical consideration for

those attempting to design a viable security implementation (Sheikh, Chande &

Mishra, 2010).

The criticality of the above-mentioned security parameters enforces the need to find a

balance between these parameters in the design and implementation of security solutions

for MANETs (Yang et al., 2004). Thus, security researchers are left with an important

task: finding a common ground between optimal security enforcement and the unique

system requirements needed to support security in MANETs. Failing to regard such a

balance may leave these solutions inefficient and could potentially cause more harm than

good (Dorri et al., 2015).

42

A MANET is vulnerable to different types of attacks that could affect its various resources,

or even more, to attacks that block the entire network operations. Having the above-mentioned

goals in place is important to protect network resources from such attacks and misbehaviors

originating from both internal and external entities (Djenouri et al., 2005).

Attacks on MANETs

Security in MANETs is essential for sustaining the basic functionality of the network.

The unique characteristics of MANETs, such as the lack of fixed infrastructure, open wireless

medium, cooperative algorithms, dynamic routing, and lack of a clear line of defense, have made

these networks vulnerable to a variety of attacks (Rajakumar, Prasanna, & Pitchaikkannu, 2014).

Attacks on MANET can be classified into passive and active.

In passive attacks, an attacker listens and attempts to obtain information from the

communication traffic between nodes without disrupting the network operation. Attackers can

gather information from the data exchanged among nodes. Stealing or tampering with sensit ive

data in this way might degrade the confidentiality of the entire network. Such confidential

information may include the network topology, locations of nodes, or identities of critical nodes

(Nadeem & Howarth, 2013).

In active attacks, an attacker tries to disrupt the network functionality through modifying,

corrupting, or fabricating the exchanged information inside the network (Wu, Chen, Wu, &

Cardei, 2007; Wang, Hu, Zhi, 2008). In active attacks, attackers aim to disturb the network

operations by launching malicious activities, such as modifying, forging, or dropping

data/control packets. These attacks can be as extreme as bringing the entire network down.

43

These types of attacks can be launched by either a single or multiple colluding attackers

(Nadeem & Howarth, 2013).

Attacks on MANETs can be further divided into external and internal attacks. External

attacks are performed by entities that don’t belong to the network while internal ones are carried

out through insider nodes in a MANET. Insider attacks are more damaging when compared to

external ones. This is because insider nodes possess privileged access rights and have

knowledge of valuable and sensitive information exchanged inside the network (Wu et al., 2007).

In this research, we classify attacks on MANETs based on the different layers of the

Open Systems Interconnection (OSI) model they operate on, as shown in Table 1.

Layer Attack(s)

Physical Eavesdropping, jamming

Data Link Traffic analysis and monitoring, attacks on MAC protocols, attacks on WEP

Network Black hole, gray hole, rushing, blackmail, worm hole, routing table

poisoning, routing table overflow, byzantine, flooding, sinkhole, Sybil

Transport SYN flooding, session hijacking

Application Malicious software programs, repudiation

Multi-Layer DoS attacks, man-in-the-middle, impersonation

Table 1- Attacks on OSI Layers

44

Physical Layer Attacks

• Eavesdropping: communications in wireless networks can be intercepted if an

eavesdropper tunes to the proper frequency (Rajakumar et al., 2014). Therefore, due to

the open wireless medium characteristic of MANETs, a packet that is transmitted

between two nodes can be overheard by other nodes within the same radio range. An

eavesdropping attack is hard to uncover since communicating nodes have no idea of its

occurrence (Nadeem & Howarth, 2013).

• Jamming Attacks: signals can be corrupted by a malicious node with a stronger

transmitter that can disrupt communications through overwhelming the target signals.

This type of malicious activity is referred to as a jamming attack (Rai et al., 2010).

Data Link Layer Attacks

Connectivity between neighboring nodes is maintained by the data link layer

protocols. Attackers may launch traffic analysis and monitoring, disruption of reservation-based

wireless medium access control (MAC) protocols, or attacks against weaknesses in the wired

equivalent privacy (WEP) protocol (Kannammal & Roy, 2016). The following summarizes the

different attack types against this layer:

• Traffic analysis and monitoring: attackers intercept and examine exchanged messages

within the network as an attempt to uncover information through analyzing

communication patterns, amounts of data exchanged, and transmission attributes

(Rajakumar et al., 2014; Nadeem & Howarth, 2013). This type of attack can uncover

45

critical information, such as the location of commanding nodes in military

operations. Even if encryption is enforced throughout the network, these attacks can still

extract useful information through analyzing communication patterns (Nadeem &

Howarth, 2013).

• Attacks on MAC protocols: MAC protocols have the responsibility of coordinating

transmissions in a shared wireless medium. These protocols assume cooperation from all

nodes in a MANET. Therefore, an attacker can ignore these protocols in an attempt to

prevent others from sharing wireless channel access and disrupt communication between

nodes in the network (Wu et al., 2007).

• Attacks on WEP: radio signals are encrypted at the data link layer level through the WEP

protocol. This protocol is known for its weaknesses, such as lack of key management

and other found vulnerabilities in the cryptographic algorithms used. Malicious nodes

can exploit these weaknesses to gain access to information communicated by neighbors

(Wu et al., 2007).

Network Layer Attacks

Routing is the most significant operation carried out in the network layer. Both reactive

and proactive routing protocols for MANETs assume nodes’ cooperation in the discovery of

optimal routes. This assumption can be exploited as a vulnerability by malicious nodes to launch

different kinds of attacks (Nadeem & Howarth, 2013), including the following types:

• Black hole attack: a malicious node advertises itself as having optimal routes to one or

more destinations, attracting all routes to these nodes (Tamilselvan & Sankaranarayanan,

2007). However, when such malicious nodes receive packets that are targeted to such

46

destinations, it drops and never forwards them. This causes the creation of a “black

hole.” The severity of the attack increases as the attacker becomes part of more routes in

the network (Nadeem & Howarth, 2013).

• Gray hole attack: this attack is a variation of the black hole method. The attacker node

initiates this attack by advertising itself as having optimal routes to a certain

destination. After that, it starts to selectively drop or forward packets (Sen, Chandra,

Harihara, Reddy, & Balamuralidhar, 2007). This can sometimes depend on the

source/destination of the packet. In some cases, the attacker might drop packets for a

certain period and then resume forwarding (Abdelaziz et al., 2013). This type of attack is

more difficult to detect than a black hole because of its selective nature (Sen et al.,

2007).

• Rushing attack: on-demand routing protocols in MANETs limit the overhead of route

discovery packets by having each node forward the first route request received for each

discovery (Hu, Perrig, & Johnson, 2003). Rushing attacks exploit such mechanisms as

the malicious node rushes to flood the network with route requests. This increases the

probability of including the attacker in more routes during future routes discoveries. It

also causes the suppression of other legitimate routes in the network (Hu et al., 2003).

• Blackmail attack: in some routing protocols, nodes in a MANET maintain a blacklist of

other malicious nodes. This type of attack targets such protocols by fabricating

malicious-activities-reporting-messages from the attacker in an attempt to corrupt the

reputation of legitimate nodes. Such messages may result in isolating the reported nodes

from the network (Wang et al., 2008).

47

• Worm hole attack: in this type of attack, the attacker records packets at one location in

the network and tunnels them to another attacker residing in a different location. This

tunnel consists of a shared private communication link between the two attackers,

referred to as a “wormhole” (Wang et al., 2008). The tunnel’s link usually has a faster

data transmission rate than the rate between legitimate nodes, causing the attackers to be

included in more routes (Abdelaziz et al., 2013). This attack may result in distorting the

network topology by preventing the discovery of alternative routes, other than the worm

hole (Wu et al., 2007).

• Routing Table Poisoning attack: routing protocols in MANETs maintain one or more

table(s) to store routing information. Malicious nodes can fabricate and send fake

packets or modify legitimate ones to create false entries in the routing tables of other

nodes. This type of attack is referred to as routing table poisoning (Wang et al., 2008).

• Routing Table Overflow Attack: a malicious node may attempt to overflow the routing

tables of others by forging packets to non-existent destinations. After that, the attacker

floods the network with these forged packets through excessive route advertisements,

resulting in flooding the routing tables of other nodes. This disrupts network routing by

leaving victim nodes incapable of creating new entries in their routing tables (Abdelaziz

et al., 2013).

• Byzantine attack: in this type of attack, an attacker creates/modifies routing control

packets with false information in an attempt to disrupt routing operations in the

network. This type of attack can result in routing loops, non-optimal routes, and packet

dropping (Abdelaziz et al., 2013).

48

• Flooding attack: this type of attack occurs when a malicious node attempts to drain the

battery resources of others by requesting excessive route discoveries or by forwarding

irrelevant packets to other nodes (Wu et al., 2007). Since nodes in MANETs usually

have limited battery power, such attacks result in having the energy-drained nodes

incapable of participating in the routing process. This renders such nodes unreachable by

others in the network (Sarkar & Roy, 2011).

• Sinkhole attack: a malicious node attempts to attract all traffic to itself by advertising

false routing information to its neighbors. This allows that node to be included in more

routes to destination nodes. When the sinkhole node receives the data packets, it drops or

modifies them silently (Gandhewar & Patel, 2012). This can boost nodes’ energy

consumption by increasing network overhead. As a result, this type of attacks can

decrease network life and eventually eradicate the entire network (Gandhewar & Patel,

2012).

• Sybil attack: due to the lack of centralized identity management in MANETs, an attacker

can create one or more fake identities for itself. Since every node must to have an IP

address as its identity, an attacker can send control packets with different IP addresses

(Nadeem & Howarth, 2013). This allows a malicious node to gain more access,

information, and resources than that allocated for a single node in a network (Rajakumar

et al., 2014).

Transport Layer Attacks

SYN flooding and Session hijacking can be launched against a MANET at the transport

layer level.

49

• SYN Flooding: similar to wired networks, nodes in MANETs rely on the transmission

control protocol (TCP) to perform their communications. TCP uses a handshake

mechanism between nodes before the start of any communications (Wu et al.,

2007). This mechanism can be exploited by SYN flooding attacks. In these attacks, a

malicious node overwhelms the victim by creating a large number of half-open TCP

connections. It is considered a type of denial of service (DoS) attack, which leaves the

victim incapable of accepting new connections with other nodes.

• Session Hijacking: through exploiting the session establishment mechanism in TCP, an

attacker can spoof a victim's IP address, continue the session with the target, and launch a

DoS attack (Kannammal & Roy, 2016).

Application Layer Attacks

 Malicious software programs and repudiations are the main types of application layer

attacks.

• Attacks by malicious software programs: the application layer contains user data and

supports a wide variety of protocols. Malicious programs operating on this layer, such as

worms and viruses, can be launched against a MANET. Such programs can traverse the

network, find, and infect nodes through probing and exploiting existing vulnerabilities,

resulting in data corruption (Wu et al., 2007).

• Repudiation: this is another type of attack at this layer. In this scenario, a malicious node

denies its full or partial participation in a communication operation with other nodes.

Malicious nodes may launch such attacks to send false routing information, resulting in

isolating legitimate nodes from the network (Yi, Naldurg, & Kravets, 2001).

50

Multi-Layer attacks

 Attackers may launch different types of attacks from multiple layers, including the

following types:

• Denial of Service (DoS) attacks: the main objective of this attack is to drop legitimate,

authorized nodes out of the network. These attacks usually target draining nodes’

resources and/or create a contention in the network that disrupts communications

(Jawandhiya et al., 2010). DoS attacks can be launched from any layer in the

network. At the physical layer, malicious nodes may employ jamming against the

wireless communication channels in a MANET. At the data link layer, an attacker can

occupy communication channels, preventing others from access. Packet modifications,

dropping, and routing table overflow can be launched from the network layer. At the

transport layer, attackers can employ SYN flooding. Malicious programs can perform

DoS attacks from the application layer as well (Kannammal & Roy, 2016).

• Man-In-The-Middle attacks: a malicious node can position itself between two

communicating nodes to sniff the traffic flowing between them. The attacker may also

participate in the communication by impersonating the sender or the receiver. This type

of malicious activity is known as a man-in-the-middle attack (Wu et al., 2007).

• Impersonation attacks: the lack of central network management in MANETs can lead to

impersonation attacks. In these attacks, a malicious node impersonates another legitimate

one by stealing its identity and using it to communicate with other legitimate nodes in the

network (Rai et al., 2010).

51

The above-mentioned attacks target different operational and communicational aspects of

MANETs, rendering the network incapable of performing its basic functions. Providing security

for such networks is considered the major roadblock in the way of a wider adoption of MANET

applications. As such, throughout the years, researchers have made the mission of providing

security solutions that target different types of potential attacks their main objective in the area of

MANET security (Nadeem & Howarth, 2013).

Security Strategies in MANETs

The implementation of security strategies is considered one of the highest priority design

elements for any type of network architecture. Applying these strategies as an afterthought

requires expensive efforts and can lead to breaches from malicious attacks before a solution is

put in place. The unique characteristics of MANETs make achieving security a complicated

process (Hubaux, Buttyán, & Capkun, 2001). The distributed nature of these networks does not

allow the assumption that networked devices are always controlled by their legitimate owners.

As such, any application of a security scheme for MANETs requires a device/node-level

implementation (Papadimitratos & Haas, 2004). Throughout the years, researchers have created

an extensive body of literature on the development of security strategies for MANETs and their

applications. These strategies can be classified into two categories: prevention mechanisms and

detection and reaction mechanisms.

Prevention Mechanisms

Preventive solutions for MANET security target the primary quest of deterring malicious

attackers by hardening the system, which makes it notably difficult to penetrate (Yang et al.,

52

2004). These solutions act as first lines of defense to minimize potential attacks (Zhang & Lee,

2005). Different prevention mechanisms have been proposed for MANETs in the current body

of research, including device imprinting, key management schemes, secure routing, and

cooperation enforcement techniques.

MANETs applications span different fields with a wide variety of implementations, such

as military and disaster relief operations. Considering the sensitive data carried out through

these operations and the vulnerable physical locations of nodes, devices in MANETs are prone to

be physically captured by malicious entities. As such, these devices can be equipped with

security checks that are capable of tracking their legitimate owners and deciding whom to trust

(Hubaux et al., 2001). Sensitive data contained in these devices should also be protected by

enforcing a variety of security models, such as biometrics and smart cards (Wu et al., 2007).

For a group of nodes in a MANET to securely communicate, an efficient group

membership management scheme should exist. Such a scheme would be responsible for

protecting the transmitted data against potential attacks. For this technique to be established, a

secret key must be shared by all group members and used to encrypt/decrypt communications

within the network. The possession of this key is considered a proof of trustworthiness (Hegland

et al., 2006). Examples of key management services are symmetric cryptography, asymmetric

cryptography, and group key management. The primary responsibility of these services is to

ensure the secret key, targeted for legitimate users, is not shared with unauthorized entities. The

main issues with these mechanisms are their susceptibility to the various resource and bandwidth

constraints possessed by MANETs (Aziz & Nourdine, 2008).

Routing operations in MANETs are vulnerable to both external and internal attacks. An

external attacker can disrupt operations through retransmission and inefficient routing, which

53

might lead to network partitioning and extensive traffic load. Different strategies have been

proposed to protect against external attacks on routing, such as the use of digital signatures

during message transmission (Zhou & Haas, 1999). Internal attacks that are generated from

compromised nodes, on the other hand, cannot be prevented through the usage of authentication

and encryption solely. Preventing such attacks requires securing the underlying routing

protocols by preventing malicious nodes from disrupting the routing process (Zhang & Lee,

2005).

An extensive body of knowledge has been dedicated to designing and evaluating different

preventive security mechanisms for routing protocols for MANETs. The primary target of these

protocols is to prevent malicious nodes from disrupting normal routing in the network. Such

disruptions can be in the form of fabricating false routing messages, modifying original routing

information, or impersonating other nodes (Chlamtac et al., 2003). Secure routing protocols

typically build on existing protocols by adding security extensions, such as message

authentication through cryptographic methods. This way, nodes can differentiate legitimate

traffic against unauthenticated transmission packets originated from malicious entities (Yang et

al., 2004).

Unlike the operations in fixed-infrastructure networks, routing, data forwarding, and

network management are carried out by all available nodes in a MANET. This makes the

enforcement of cooperation among nodes an essential requirement for a MANET to remain

operational (Chlamtac et al., 2003). Every communication between two nodes that are more than

one-hop away is carried out by intermediate nodes. This introduces concerns regarding

malicious and selfish nodes. One or more of these intermediate nodes may not cooperate in

forwarding the data and can potentially disrupt network operations. On the other hand, some

54

nodes act selfishly by not forwarding packets to conserve their resources (Chlamtac et al., 2003).

Such behaviors have introduced the need to design systems that encourage collaboration among

nodes to keep routing and data forwarding tasks alive. The current body of knowledge in this

area contains a plethora of methodologies for cooperation enforcement. These can mainly be

divided into reputation-based and credit-based systems (Marias, Georgiadis, Flitzanis, &

Mandalas, 2006).

Reputation-based models utilize different techniques to calculate a reputation score for

each node. This score increases every time a node forwards a packet without alteration. Based

on the calculated score, nodes with higher reputations are used to forward data packets

(Mandalas, Flitzanis, Marias, & Georgiadis, 2005). On the other hand, in credit-based systems,

data forwarding among nodes is considered a service that is valuated or charged. Since data

forwarding incurs resource consumption on nodes, it’s treated as an incentive to persuade non-

cooperative nodes to participate in the routing process. Credit-based systems employ a virtual

currency mechanism that is usually implemented to reward nodes that forward packets and

punish those which act selfishly and drop packets (Hu & Bemester, 2009).

Preventive security techniques can help defend against certain attacks on MANETs.

However, such techniques are incapable of mitigating new attacks because they are usually

designed for known ones (Wu et al., 2007). Besides, the application of these techniques is

usually accompanied by a high processing overhead and energy consumption, which might prove

inefficient considering the resource constrained nature of MANETs (Zhang & Lee, 2005). These

limitations in preventive techniques introduce the need for a new line of defense that is capable

of uncovering unknown threats as well as balancing security and resource consumption. This is

55

achieved by employing detection and response mechanisms, namely intrusion detection systems

(IDSs).

Detection and Reaction Mechanisms

Intrusions are malicious activities aiming to compromise the confidentiality, integrity,

and availability of a network. Prevention mechanisms can be effective in reducing potential

attacks. However, if a node is compromised, all secrets associated with it are prone to attacks.

This, in turn, makes such mechanisms inefficient against malicious insiders that cause much

greater damage than external attackers (Sun, Osborne, Xiao, & Guizani, 2007). Besides, the

history of preventive mechanisms shows the impracticality of such systems to survive on their

own in providing a secure, intrusion-free system (Yang et al., 2004). Therefore, the presence of

detection and reaction techniques, namely IDSs, that are capable of uncovering intrusions and

avoiding their adverse effects through reactions is imperative for the survivability of a network

(Yang et al., 2004). IDSs consist of a set of automated components that are capable of detecting

suspicious activities and reacting to them in an attempt to prevent the security of the network

from getting compromised. The detection part of an IDS involves constant monitoring of

network activities. On the other hand, the reaction part involves raising alarms as well as taking

preventive measures, such as isolating the suspect from connecting to the network (Mishra,

Nadkarni, & Patcha, 2004).

Origins of IDS

In 1972, while working with the United States Air Force (USAF), Anderson (1972)

noticed that the increased reliance on computer systems to perform sensitive operations led to a

similar increase of computer security problems. Ad hoc security rules cannot be relied on

56

because their inherent design flaws make them an easy target for malicious attacks. Thus,

securing a computer system calls for the implementation of authorization mechanisms, access

control mechanisms, and security marking of electronic and physical resources. Anderson

(1972) emphasized the need for security controls due to the lack of operating-system-level

defense mechanisms against malicious attempts to gain unauthorized access.

 Anderson (1980) introduced the idea of identifying abnormal user behaviors as threats to

computer security and generating alerts through examining the information contained in audit

files. Anderson defines a threat as the likelihood of a targeted unauthorized attempt to

access/manipulate information, leaving a system unreliable. Anderson (1980) classified threats

as coming from the following sources:

• External penetrators: a person with physical access to a computer system’s location but

no authorization to use it.

• Internal penetrators: a person who is authorized to use a computer system but

unauthorized to use certain resources. Internal penetrators are further sub-classified in the

following categories:

o Masqueraders who gain access to a system under different credentials,

o Legitimate users that misuse their authorized access, and

o Clandestine users who are able to evade access controls and audit trail recordings

Host-Based Intrusion Detection

Anderson's (1980) system operates based on statistical abnormality, which means that

user activities are considered “abnormal” if they cross certain predefined limits. Abnormality in

this system is purely parametric. This means any usage outside of the identified parameters is

57

considered abnormal. These parameters are defined based on applied statistics on audit files to

define what would be “abnormal.” If such limits are crossed, the system auto-generates security

alerts in the form of exception reports. The system addresses the identification of intrusion

attacks from both internal and external malicious users (Anderson, 1980).

Building on Anderson’s (1980) work, research began towards real-time IDSs. The

susceptibility of computer systems to intrusions due to their existing hard-to-replace flaws, the

difficulty of developing flaw-free systems, and users’ continuous misuse of their privileges,

motivated Denning (1987) to develop the first real-time IDS. It was the very first general-

purpose framework for IDSs and has become a fundamental core of most intrusion detection

methodologies in this area. Denning (1987) followed the first system-independent approach to

identify intrusions when the vulnerability behind intrusions is unknown. Her system records

normal user activities as signatures to compare against in the detection of abnormal behaviors.

Normal usage of the system is monitored, deviations from normal usage are identified, and an

alert is sent to the designated security officer when deviations are observed (Denning, 1987).

Following Denning’s (1987) work, Smaha (1988) introduced Haystack, which is an IDS

for multi-user Air Force computer systems. The system relied on processing audit trail files to

produce short summaries of normal/abnormal behaviors and security incidents. An intrusion in

this system is defined as any violation of the already-established security and administrative

policies of a computer system. It utilizes a combination of both a multi-user model, which

establishes normal behaviors of a group of users, and a single-user model, which is based on a

user’s past behavior. These two models are then used in this system to establish statistically-

based models. One of the novelties of Haystack is the self-modifying behavior in which user

models evolve to match the changes in users’ work requirements.

58

Lunt and Jagannathan (1988) believed that implementing an IDS on a machine separate

from the target machine would enhance security and performance. Their belief has led them to

propose their own methodology for designing an IDS. Regarding the classifications of

anomalous behaviors and defining such behaviors as deviations from the expected user behavior,

their system follows the same approach as Denning’s (1987). However, their new system

extends Denning’s (1987); in their system, an IDS sits on a separate machine within the network,

receiving user activities through audit data over the network. This way, the IDS cannot be

tampered with from would-be intruders, and any existing flaws on the target system cannot

impact the security of the detection system.

Network-based Intrusion Detection

Because Anderson’s (1980), Denning’s (1987), and Smaha’s (1988) IDSs operated on a

single machine for detecting anomalies, audit files must exist on the same computer system as

the IDS. Shortly after, due to the increased usage of networking devices that were suffering from

scant or nonexistent security measures, Heberlein et al. (1990) came up with the first network-

based IDS (NIDS) operating on Ethernet-based local area networks (LAN). The system was

called: Network Security Monitor (NSM). Although encryption techniques presented an equally

appealing option to prevent network attacks, Heberlein et al. (1990) believed they couldn’t

protect against privilege misuse by legitimate users. Incorporating ideas on stand-alone IDSs

from Denning (1987), Whitehurst (1987), and Lunt et al. (1988), the new model builds a normal

activity profile of the entire network and monitors activities against that profile in real time.

Computer systems come with inherent security vulnerabilities that make the mission of

having an intrusion-free system, or network of systems, an extremely difficult task. Even if a

59

system is thought to be the most secure one due to the applied harnesses, it is still susceptible to

insider threats through privilege misuse (Lunt, 1993). All of the above-listed research on IDSs

agree on one common conception: attacks against computer security primarily come from the

inside. Traditional access controls can help provide certain levels of defense against threats.

However, in most cases, they are incapable of guarding a system against insider threats (Lunt,

1993). As network-based security attacks became more widespread and sophisticated, the focus

of IDSs has shifted towards the exploration of mechanisms against such attacks, which

influenced the direction of the research that followed (Vigna & Kemmerer, 1998).

Intrusion Detection in MANETs

 A plethora of IDS solutions populate the current body of research targeting traditional

fixed networks. Such networks typically possess central traffic points where all network packets

must pass through. Therefore, installing an IDS on one of these central points gives it a wide

view on the network activities. This is not the case for MANETs as no central traffic points

exist. Besides, the constant topological changes in these networks due to nodes’ mobility makes

intrusion detection process even harder (Yang et al., 2004). This is mainly due to potential false

routing information that is sourced from stale routing tables caused by nodes’ volatile mobility.

Additionally, communications among nodes in a MANET are carried over an open-access

wireless medium that both legitimate and malicious nodes have access to. This, in turn, leaves

no explicit differentiation between legal and illegal activities for IDS solutions (Anantvalee &

Wu, 2007).

 Since IDS implementations in MANETs do not have the ability of collecting audit data

from fixed traffic points, audit data sources pose as a limitation for these systems. In fact, the

60

only available audit trace for IDSs is communication activities within the radio range of the IDS

node. The main concept behind intrusion detection is the examination of audit data to determine

whether the system is under attack. This leaves researchers who design intrusion detection

algorithms with no choice but to capitalize and devise new methodologies to make use of the

limited localized information (Zhang, Lee, & Huang, 2003).

 For an intrusion detection implementation to work, researchers must make certain

necessary assumptions. The first assumption is that nodes’ activities in the network are

observable. Another critical assumption is that normal and malicious activities possess clear

separable behavior. However, such assumptions are typically faced with the inherent limitations

in MANETs, making the task of implementing an efficient IDS a difficult challenge. This, in

turn, leaves researchers working on intrusion detection implementations with an increasingly

difficult task of distinguishing between false alarms from real attacks against the network (Zhang

et al., 2003).

IDS solutions in general require continuous monitoring, collection, and processing of

audit data to detect possible intrusions. This level of effort required to operate an IDS is

sometimes deemed too costly to implement due to the bandwidth and resource-constrained

nature of nodes in MANETs. Such constraints demand careful design considerations from

researchers to establish a balance between resource consumption and the level of provided

security. This has also made collaborative cooperation between nodes in the IDS activities, a

critical requirement to distribute the load among nodes while providing a wide view on the

network (Karygiannis, Antonakakis & Apostolopoulos, 2006).

For researchers who attempt an IDS implementation, certain design requirements must be

considered for the proposed system to be viable for MANETs. First, researchers should

61

determine the suitability of their architecture for MANET applications and decide whether a

proposed IDS is the right fit for the unique features in these networks. Secondly, researchers

must define the appropriate sources for collecting audit data, and they must determine the right

methodology to detect intrusions when only partial audit sources are available. Lastly, those

researching IDS implementations should define an activity model for the target MANET that can

be used by the system to distinguish intrusions from normal behavior when the network is

undergoing an attack (Zhang et al, 2003).

 Along with these considerations, Butun et al. (2014) have proposed that researchers

should integrate the following requirements when designing an IDS for MANETs:

• An IDS implementation for MANETs must not introduce new weaknesses to the nodes’

operating system.

• An IDS design should be tailored to enable the system to operate in the resource-

constrained nodes in MANETs without degrading their performance or exhausting

available resources.

• An IDS should be able to run continuously and transparently to the users.

• An IDS should be cooperative and reliable to minimize false negatives and false positives

in the detection process.

Studies targeting the design and implementation of IDS solutions for MANET must be

able to accommodate the unique requirements imposed by these networks. Besides, traditional

solutions for fixed networks cannot be directly applied to MANETs due to their fundamental

differences. The current body of research contains various IDS implementations for MANETs

employing different techniques to accommodate the above-mentioned design requirements.

62

Abiding by these requirements means that any proposed IDS implementation should detect a

substantial percentage of malicious behaviors, keep a low rate of false alarms, and keep resource

consumption minimal (Mishra et al., 2004).

IDS Mechanisms in MANETs

There exists a large body of research pertaining to different solutions for intrusion

detection in wired networks. However, the lack of a fixed infrastructure, disconnected patterns

of communications, and lack of central traffic concentration points make the application of

wired-network IDS solutions infeasible for MANETs (Zhang & Lee, 2000). Researchers have

proposed different detection mechanisms to adapt to the unique characteristics of MANETs.

These mechanisms can be classified into three categories based on their detection techniques:

anomaly-based, knowledge-based, and specification-based intrusion detection (Mishra et al.,

2004).

Anomaly-based Intrusion Detection

Since Denning’s work back in 1987, a plethora of research has been dedicated to

developing various implementations of anomaly-based intrusion detection (ABID). Due to the

perceived power of such systems in detecting known as well as unknown attacks in the network,

previous research studies have favored this type of IDS over the others. This is primarily

because attacker creativity continues to present a major challenge for intrusion detection

implementations (Cannady, 2009). Therefore, the ability of ABIDs to address novel attacks

continues to make this type of IDS a popular area of academic research (Tavallaee, Stakhanova,

& Ghorbani, 2010).

63

Despite the presence of an extensive body of research on various methodologies for

ABIDs, a clear definition of what constitutes an anomaly is still lacking from many studies

(Tavallaee et al., 2010). However, the common understanding of anomaly in the research

community leans towards defining an anomaly as an “abnormal behavior” in the network. For

instance, a survey conducted by Tavallaee et al. (2010) has shown that the majority of research

studies in the area of ABIDs tend to describe anomalous behavior as a behavior deviating from

normal. Additionally, the seminal work of Denning’s (1987) on ABIDs has treated anomalies as

activities that deviate significantly from the established normal network profile.

Previous studies tend to establish normal network profiles, in this type of intrusion

detection, through statistical behavioral modeling. This means that normal network operations of

nodes in a MANET are outlined so that any deviation of these profiles is considered as an

anomaly. For ABIDs to maintain high accuracy throughout their operations in the network, they

typically are bound to perform periodic updates to their established normal profiles. This is due

to the dynamic topological nature of MANETs, which causes normal network behavior to change

rapidly. Since nodes in MANETs are resource-constrained in nature, such frequent updates

might impose extra overhead that could cause disruptions in the normal network operations

(Butun, Morgera, & Sankar, 2014).

In an ABID, also known as a behavior-based IDS, intrusions are detected through a

comparison between expected normal behavior and the current behavior of the network. This

type of IDS has two phases: training and testing. In training, baseline profiles are created to

model the normal behavior of the network. In the testing phase, the constructed profiles are used

to detect any significant deviations from the current behavior, which are considered intrusions.

64

Different methodologies are typically applied for calculating these deviations (Nadeem &

Howarth, 2013).

For ABIDs to gather the information required for establishing a network’s normalcy

profile, extensive data-mining operations are deemed critical during the training phase. The

implementations of ABIDs in the current body of knowledge present different techniques for

collecting training data (Mitchell & Chen, 2014). Some of these implementations train their

systems with predefined sets of data, also known as “truth data”. Others opt for training their

systems against live network traffic. Investing time in this training phase before starting the

actual detection operations of ABIDs can be extremely beneficial when it comes to discovering

unknown attacks. Additionally, training enables this kind of intrusion detection to eliminate the

extra storage space needed to save all attack vectors. This is because ABIDs do not look for

something specific when it comes to attack detection. Instead, deviations from normalcy trigger

these systems to determine intrusions in the network (Mitchell & Chen, 2014).

All of the training techniques devised in the current literature share one common goal: the

process of feature extraction. Features in ABIDs are defined as security-related measures that

are needed to construct an effective intrusion detection algorithm. For these features to be

effective, they need to reflect the target subject (e.g., a MANET node) activities. Typical

examples of features include number of sent/received packets, number of routing-related

messages, and mobility patterns (Cai, Ci, Guizani & Al-Fuqaha, 2006).

 According to the processing model of the target system’s behavior, anomaly-based

detection approaches can be categorized into three groups: statistical-based, knowledge-based,

and machine learning techniques (Kheyri & Karami, 2012). In statistical-based techniques, an

ABID monitors network traffic activities to create the normal network profile. A normalcy

65

threshold is set during the training phase, and when the threshold is exceeded, an activity is

considered an anomaly. When the system transitions from training to detection mode, the ABID

compares the current observed activities against the normal profile to check if the deviation

exceeds the normalcy threshold. If so, the system marks the node(s) originating the detected

activity as malicious. The accuracy of detection for statistical-based anomaly detection tends to

increase when longer durations are dedicated to the training phase. On the other hand, attacks

might pass unnoticed in these systems due to their susceptibility of high false positives. This is

usually correlated to the creativity of attackers who vary their approaches for launching different

attacks and fool the system into recognizing these attacks as normal traffic (Kheyri & Karami,

2012).

Alternatively, knowledge-based techniques for ABIDs rely on a set of specific rules,

usually defined by a human expert. These rules are then applied to determine the legitimate

behaviors of the system. During the training phase, specific sets of features are extracted from

the gathered data. Based on these features, the system classifies the gathered data according to

the application of the predefined rules. This technique offers significant flexibility and

robustness in detecting illegal activities in the network. Nonetheless, developing a

comprehensive set of rules for these systems is viewed as a difficult and often time-consuming

task (Butun, Morgera, & Sankar, 2014).

Machine learning techniques in ABIDs employ an implicit or explicit model to

characterize activities overserved in a MANET. This approach usually requires labeling the data

gathered in in the detection process for the system to learn the behavior model of nodes in the

network. The process of data labeling is considered a high-resource operation, demanding extra

energy and bandwidth from the resource-constrained nodes in MANETs. Despite the resource-

66

demanding nature of these systems, they have shown undeniable efficiency in detecting both

known and unknown attack vectors in previous studies. Common techniques used in this

category are Markov chains, fuzzy logic, neural networks, genetic algorithms, and Bayesian

networks (Butun, Morgera, & Sankar, 2014).

In general, ABIDs have the downside of demanding extensive training for behavior

modeling. This is problematic for MANETs and other resource-constrained mobile computing

environments because each profile must be continuously updated, which increases the processing

overhead imposed by recalculations of deviations (Mishra et al., 2004). The significance of

ABIDs comes from their ability to uncover unforeseen attacks. However, the constant changes

in the normal network behavior of MANETs due to their dynamic topology, render these systems

prone to high rates of false positives (Nadeem & Howarth, 2013).

Knowledge-based Intrusion Detection

Knowledge-based intrusion detection (KBID), also known as misuse-, signature-, or rule-

based intrusion detection, targets events that match predefined patterns of malicious behaviors.

KBIDs encode and store known attack signatures and system vulnerabilities in a designated

database, and they constantly monitor activities in the network and compare them against stored

attack signatures. An intrusion is detected, and an alarm is raised if a match is found between

current activities in the network against one or more signatures (Anjum, Subhadrabandhu, &

Sarkar, 2003).

KBIDs typically implement detection techniques that are completely reliant on

accumulated knowledge of known attack patterns. The system analyzes network traffic against

such patterns to determine the occurrence of intrusions. KBIDs usually have lower false alarms

rates when compared to ABIDs. However, human experts are required to formulate attack

67

signatures for the IDS to use in the detection process. This, in turn, requires the system to

maintain attack signatures through regular updates, which is usually a time-consuming task that

is difficult to design properly (Debar, Dacier, & Wespi, 1999).

There are three primary approaches that researchers follow when implementing a KBID:

expert systems, model-based reasoning, and state transition analysis. Jackson (1986) defined

expert systems as computing systems that are capable of applying reasoning about a knowledge-

rich domain towards problem solving and advice formulating. In expert systems, conditions

required for an attack detection are coded into the system in “if-then” implication rules. When

all conditions in the “if” part are satisfied, a KBID triggers the predefined actions in the “else”

part. These typically include response actions for the detected intrusion and sometimes might

trigger extra rules to confirm that the detected activity is indeed an intrusion. The main

advantage of expert systems is their separation between problem solving and control reasoning.

Nonetheless, these systems often require extensive development and maintenance to create and

manage the attack signatures (Kumar & Spafford, 1994).

Model-based systems implement a database of known attacks scenarios. An attack

scenario is defined as a sequence of events that collectively make up the attack. In model-based

KBIDs, the system continues to monitor the network behavior and assumes that it might be

experiencing attack scenarios at any moment. Thus, as the system collects audit data, it

continuously analyzes it to verify or disprove the occurrence of an attack. An evidential

reasoning calculus is typically built into these systems to update the likelihood of specific attack

scenarios as audit data is analyzed. Model-based systems can potentially decrease the extensive

data processing incurred on nodes by actively monitoring successfully identified attacks while

passively monitoring attacks that are yet to be encountered (Garvey & Lunt, 1991).

68

State transition analysis KBIDs use a sequence of state transitions for the monitored

system to represent an attack occurrence. An attack is defined here as a sequence of events that

might transition the system to a compromised state. The system identifies the events that occur

between the system transitioning from normal to compromised as “signature actions”. That is, if

these actions are eliminated from an attack scenario, the attack would not be able to complete

successfully. The system detects intrusions by extracting state transitions from the collected data

and comparing them against those of known attack scenarios stored in the knowledge database.

If a match is found, the system marks the activity as an intrusion and triggers any predefined

response steps (Ilgun, Kemmerer, & Porras, 1995).

In KBIDs, a carefully written attack signature can detect even major variations of the

same attack. This is a major advantage for KBIDs versus ABIDs because attackers’ creativity

and careful monitoring towards the behavior of an IDS in classifying attacks might enable

malicious activities to pass unnoticed by an ABID. However, the reliance on attack signatures

renders KBIDs incapable of uncovering new types of attacks (Sun et al., 2007). KBIDs resemble

anti-virus programs because they effectively detect most of the known attack patterns but are

inefficient at uncovering new ones (Butun et al., 2014).

Specification-based Intrusion Detection

Specification-based intrusion detection systems (SBIDs) combine the advantages of both

ABIDs and KBIDs through the use of manually constructed constraints to model the normal

system behavior. However, they are more similar to ABIDs because ABIDs and SBIDs both

define intrusions as deviations from the characterized normal behavior. SBIDs define a set of

constraints as specifications that establish the correct operation of a program or protocol. The

69

execution of these programs/protocols is continuously monitored with regard to the defined

specifications. Deviations from the specifications are considered intrusions (Butun et al., 2014).

The reliance of SBIDs on security specifications for the correct system behavior allows

them to achieve tremendously higher accuracy over both KBIDs and ABIDs in detecting both

known and unknown attacks scenarios. Since all specifications are based on legitimate

behaviors, the system does not generate false alarms when encountering unusual, though

legitimate, behaviors from the target system (Uppuluri & Sekar, 2001). The original concept of

specification-based detection was first introduced by Ko, Ruschitzka and Levitt (1997) when

they described the desirable behavior of the system through its functionalities along with the

application of security policies. Accordingly, Ko et al. (1997) stated that any sequence of actions

executed outside of the system’s specifications should be considered as a violation.

For SBIDs to detect malicious behaviors, they typically employ execution analyzers.

These, in turn, monitor the execution of an activity/program with respect to the predefined

specifications. Each specification has a dedicated analyzer that only checks for violations

against that specification. The system raises an alarm whenever it detects missing/unknown

events in the monitored execution of the target program (Ko et al., 1997). Based on such a

design, SBIDs in general don’t detect the actual intrusions. Instead, they detect the impact of

intrusions on program executions causing a violation in the specified behavior (Tseng et al,

2003).

Considering that such detection systems can achieve higher accuracy than KBIDs and

ABIDs, the adoption of SBIDs is still not as wide as it is for the others. The main hindrance

against the adoption of these systems is the inherent limitations involved in defining

specifications for every operation in the target system. Thus, in MANETs, the focus of SBIDs

70

solutions in the current literature so far has been put towards routing protocols (Tseng et al,

2003; Tseng et al., 2005). One limitation of current implementations of SBIDS against routing

protocols for MANETs is their tendency to constrain the messages exchanged among nodes in

the network, such as restricting receipt acknowledgements and message contents. Another

potential obstacle hindering SBIDs adoption is the difficulty of verifying the correctness of the

developed specifications and that the specifications comprehensively cover the threat model

(Berthier & Sanders, 2011).

SBIDs can be loaded into mobile nodes prior to deploying a network. This is possible

because SBIDs do not require periodical updates for attack discoveries. This mechanism is

known for having low rates of false positives along with the ability to uncover unknown attacks.

However, extensive manual work is usually required to define the needed constraints (Brutch &

Ko, 2003).

IDS Architectures in MANETs

The concept of a “one network configuration works for all” does not apply to MANETs.

Based on the deployment field and operational requirements, MANETs can be configured in a

flat or multi-layered infrastructure. In a flat configuration, all nodes are considered equal and

free to take part in the routing process. On the other hand, in a multi-layered configuration, all

nodes are not equal. In a multi-layered setting, nodes within each other's transmission range are

divided into clusters. Each cluster will have one or more nodes that are designated as gateways

providing connectivity with other clusters in the network (Brutch & Ko, 2003). Taking into

consideration these different configurations, an effective IDS implementation should

accommodate the target network infrastructure. Extensive research has been done in this area,

71

resulting in proposing different IDS architectures in efforts to satisfy the needs of the various

network configurations in MANETs. Examining previous research in this area, IDS

architectures are primarily categorized into stand-alone, hierarchical, and cooperative

architecture (Anantvalee & Wu, 2007).

Stand-alone

This architecture targets flat network configurations in MANETs. In this type of IDS,

each node runs its own intrusion detection engine independently from others. Intrusion

determination decisions are made solely based on the information gathered by that individual

node. Nodes do not cooperate with each other regarding information sharing. As such, if a node

detects an intrusion, others would not know about it. This architecture is more suitable for

situations where not all nodes are capable of installing/running an IDS (Brutch & Ko, 2003).

Different techniques have been proposed in the current body of research as part of the

efforts to provide efficient self-contained IDS solutions for MANETs. Bensal and Baker (2003)

proposed their observation-based cooperation enforcement in ad hoc networks (OCEAN)

targeting the DSR protocol. Their system relies solely on nodes’ own observations to detect

intrusions. The system classifies nodes as selfish and misleading. If a node observes its

neighbor as not participating in the route discovery process, it marks that neighbor as “selfish”.

On the other hand, if a node observes a neighbor participating in the route discovery process but

fails to forward packets, that neighbor is marked as “misleading”. To detect misleading nodes, a

watchdog-like mechanism is implemented on each node to monitor whether its own neighbor

forwards or drops packets. This is done by having each node calculate and save a checksum for

each packet it forwards to its neighbors. The node then listens to the forwarded packet and

72

compares it against the saved checksum. If a match is found, the monitoring node increments the

positive rating for that neighbor. Otherwise, the packet is considered dropped, and the

monitoring node increments a negative rating for that neighbor. The system predefines a

threshold for a neighbor’s rating. If a neighbor’s rating falls below that threshold, it is avoided in

future routes.

Nadkarni and Mishra (2004) presented a threshold-based stand-alone IDS. Their system

establishes threshold values for well-known attack patterns. During the network initialization

phase, attack thresholds are set based on comparing the normal network profile against the

average frequency of events for each known attack type. Intrusions are then detected

individually by nodes when a predefined threshold is crossed for a specific attack. Jacoby and

Davis (2007) introduced their system that relied on battery-power consumption to detect

intrusions. The proposed system constantly monitors the battery consumption of every node in

the network. Intrusions are detected by comparing a node’s battery consumption against a set of

battery-consumption patterns of well-known attacks. Their system relies fundamentally on

Smart Battery technology in which nodes’ batteries are equipped with an internal circuit that

enables communication of battery states to a node’s operation system.

In an attempt to solve receiver collision problems and limited transmission power issues

among communicating nodes in MANETs, Liu, Deng, Varshney, and Balakrishnan (2007)

proposed their two-hop acknowledgment (TWOACK) system for detecting packet dropping

attacks. When a source node sends a packet to a destination, the system requires an

acknowledgement for every packet transmitted over every three consecutive nodes along the

route. That is, when an intermediate node receives a packet, it must send an acknowledgement

to every node that is two hops away from it down the route. This acknowledgement packet

73

contains the reverse route from the intermediate node to the source. A node is declared as

malicious when it fails to send back that acknowledgement.

To reduce the overhead incurred in TWOACK through unnecessary acknowledgements

from intermediate nodes, Sheltami, Al-Roubaiey, Shakshuki, and Mahmoud (2009) presented

their adaptive acknowledgment (AACK) IDS. In this system, when two nodes are

communicating, the destination node must send an acknowledgment of packet receipt to the

sending node within a predefined period. Thus, replacing required acknowledgements from

intermediate nodes with acknowledgements from destination nodes in a communication. This

system reduces routing overhead in comparison to TWOACK when the route to a destination

consists of more than two hops.

Lauf, Peters, and Robinson (2010) came up with a stand-alone IDS that has two intrusion

detection engines. The first engine detects observed anomalies and then passes them down to the

second engine to check against the predefined threshold. The system sets such a threshold by

establishing a network normalcy profile through maintaining a history of interactions occurred at

the application layer. The threshold is then defined as the average application layer behavior of

all nodes in the network. As such, intrusions are detected when a node behavior exceeds the

identified threshold.

Joseph, Lee, Das and Seet (2011) came up with their stand-alone cross-layer IDS

targeting malicious sinking behavior in MANETs. Joseph et al. (2011) define sinking as a

malicious behavior exhibited from certain nodes that don’t cooperate in the routing process and,

instead, tend to drop data and routing packets. The system collects audit data from physical,

MAC, and network layers in efforts to maximize detection accuracy. Their implementation

includes a mixture of anomaly-based and signature-based detection. The system relies on

74

machine learning through the application of a support vector machine (SVM) for classification of

audit data. However, SVM algorithms are known to impose resource-exhaustive operations on

nodes. Thus, their application of SVMs is targeted towards the training phase. Each node in the

system monitors its own neighbors through activating promiscuous listening against neighbors’

communications. The captured data is then fed into the detection engine to detect any deviations

based on a comparison with attack thresholds calculated in the training phase.

Both ACK and TWOACK systems suffer from one major vulnerability: the

acknowledgement receipts can be forged by malicious nodes rendering the system incapable of

detecting packet dropping attacks. Thus, Shakshuki, Kang and Sheltami (2013) presented their

approach to address this vulnerability through the implementation of a new IDS. This approach

is called Enhanced Adaptive Acknowledgement (EAACK). The idea behind their system is the

usage of acknowledgement packets for communications among nodes in a MANET. Whenever

a node sends a packet to a destination, it waits for a receipt acknowledgement packet from that

destination. If the originating node does not receive the acknowledgement packet within a

predefined period, it sends an acknowledgment-request packet to intermediate nodes in the route

to the destination. Misbehaving nodes in the routes are detected when one of them does not

return an acknowledgement packet stating that it has received the acknowledgment request. All

acknowledgements are digitally signed to eliminate packet forging.

Digital signatures represent the most valuable innovation behind the EAACK system

since it is proposed to overcome packet forging issues found in both ACK and TWOACK. Thus,

all acknowledgement packets must be signed, so they can be verified by the receiver. In their

evaluation of packet signing, Shakshuki et al. (2013) proposed that the application of the Digital

Signature Algorithm (DSA) produced desirable results in terms of signing/verification speed.

75

However, utilization of digital signatures imposes extra computational overhead, resulting in

high consumption of battery power on the resource-constrained nodes in a MANET.

Motivated to overcome the difficulty of detecting multiple attackers launching different

attacks in a network, Mapanga et al. (2017) proposed their stand-alone IDS. Their system relies

on machine learning through the application of multilayer perception neural network (MLP-NN)

for classification of packet dropping attacks. The system undergoes a training phase that is based

on locally collected data from each node, focusing on nodes participating in the route discovery

process of the AODV protocol. This data is then passed to the MLP-NN engine to extract

routing parameters from control messages exchanged among the nodes to establish the normalcy

profile. Their approach assumes that malicious nodes have built-in attack mechanisms to drop

all data packets while responding successfully to routing messages.

Despite the various improvements proposed for stand-alone intrusion detection, it still

possesses limited efficiency when compared to other types of architectures (Brutch & Ko, 2003).

This limitation exists because of the reliance of stand-alone architecture solely on locally

collected data, which impacts detection accuracy and limits the range of malicious attacks that

can be uncovered (Şen & Clark, 2009). Additionally, this type of architecture does not provide

visibility for the security of other nodes in the network, which indicates its inability to detect

coordinated attacks (Farhan, Zulkhairi, & Hatim, 2008).

Hierarchical

A hierarchical IDS is more suitable for multi-layered configurations in MANETs. In this

architecture, each node has its own IDS to detect intrusions locally. However, a MANET is

divided into groups, called clusters. Each cluster has a “cluster-head” that acts as a gateway

76

connecting a cluster with others. The collection of cluster-heads in the network provides the

connectivity backbone needed for all clusters to be able to talk to each other (Anantvalee & Wu,

2007). Cluster-heads are also responsible for monitoring nodes’ activities in their own clusters,

and they are responsible for participating in global intrusion detection and response activities

(Butun et al., 2014).

Researchers have employed different techniques for implementing hierarchical IDSs.

Cluster-head nodes in this architecture are supposed to carry on the extensive intrusion detection

responsibilities in the network. This, in turn, presents two major issues: resource consumption

and trustworthiness. As cluster-heads carry out both local and global intrusion detection, they

need to have more resources to be able to efficiently perform such activities (Butun et al., 2014).

At the same time, these nodes act as gateways in their network. This mandates the need for

cluster-heads to be trustworthy; otherwise, network operations would be disrupted if a malicious

node gets elected as a cluster-head (Huang & Lee, 2003).

Previous studies attempted to tackle the resource consumption problem of cluster-heads

by introducing various techniques. Cabera, Gutierrez, and Mehra (2005) presented their

distributed IDS through network clustering. Each cluster would designate a cluster-head through

electing the node which first responds to the election broadcast messages in the network

initialization phase. Cluster-heads perform IDS operations through the installed anomaly-based

detection engine. The engine employs cross-feature analysis (CFA) to calculate the normalcy

profile for each node. The network must go through an extensive training phase to extract

anomaly features before the IDS engines can be installed on cluster-heads. The system triggers

the cluster-head election process periodically to eliminate draining resources of cluster-head

nodes.

77

In an attempt to increase network lifetime with their approach, Kim, Kim, and Kim

(2006) proposed their lifetime-enhancing selection (LES) scheme for selecting cluster-heads. In

each cluster, the system chooses the node with the highest battery power as the cluster-head.

This is done by having nodes periodically exchange their battery power through control

messages. During these periods, nodes in the cluster vote to elect the node with the highest

battery power as the cluster-head. When the batter power of the elected cluster-head falls below a

predefined threshold, it initiates a re-election process in the cluster. To further enhance energy

consumption, the system specifies a limited size queue of packets to be inspected at once by the

cluster-head. Once the queue is full, no more packets are inspected until the current queue has

been fully inspected. This, in turn, is proposed to prevent overwhelming cluster-head nodes with

processing overhead by limiting the number of packets inspected at a time. The system is

intended to enhance network lifetime by balancing the energy consumed by IDS activities among

nodes in a cluster.

Otrok, Mohammed, Wang, Debbabi, and Bhattacharya (2007) followed a similar

approach for cluster-head election by having each node report its battery power to its neighbors.

The system implements a reputation scheme to motivate selfish nodes to cooperate. Based on

voting, the node with the highest battery power would be elected as the cluster-head. As for the

trustworthiness issue for cluster-head nodes, the system introduces the concept of “checker

nodes”. The system randomly selects nodes in each cluster to serve as checkers. The

responsibility of checker nodes is to monitor the behavior of the cluster-heads and initiate a re-

election process if the currently elected cluster-head starts misbehaving. The IDS defines a timer

that expires when a new cluster-head election is triggered.

78

Pahlevanzadeh and Samsudin (2007) presented their agent-based hierarchical IDS for

MANETs. Their system divides the network into clusters and defines cluster-heads as the nodes

that have the highest battery power, processing power, bandwidth, and number of connections to

other nodes in the neighborhood. At every cluster node, a data collection agent is installed to

collect audit data about nodes in the neighborhood. This information is then passed to the

cluster-head who has the intrusion detection agent (IDA) installed. The IDA uses an anomaly-

based detection engine to make decisions about the collected data. However, Pahlevanzadeh and

Samsudin (2007) did not describe the technique used for establishing normal network profiles.

The IDA sends alarms to nodes in the cluster as well as to other cluster-heads to keep the

network informed of the identified attacker.

Ma and Fang (2009) followed a similar idea to that of Kim et al. (2006) in their

hierarchical IDS proposal. During the network initialization phase, each node reports its battery

power to its neighbors. After that, nodes vote to elect the one with the highest battery power as

the cluster-head. However, the election process doesn’t happen periodically as in Kim et al.

(2006). Instead, a re-election is triggered whenever a new node joins the network, the elected

cluster-head leaves the network, or the battery power of the cluster-head falls below the

predefined threshold. The proposed system installs a local detection engine on cluster nodes and

a global one on cluster-heads. However, it is unclear what kind of detection techniques the

system employs as Ma and Fang (2009) did not explain it.

Roy, Chaki, and Chaki (2009) came up with the idea of “guard nodes” in their

hierarchical IDS. The system was specifically designed to detect worm hole attacks, and it

divides the network into clusters with a cluster-head responsible for the intrusion detection

decisions of each cluster. However, the novelty of their approach is in the addition of guard

79

nodes in each cluster. These nodes have the ability to monitor any node in the cluster and report

back to the cluster-head if it detects any suspicious activities. This ability comes from

positioning guard nodes in a cluster where they can sniff all neighborhood traffic by activating

their promiscuous mode.

Abdel-Fattah, Dahalin, and Jusoh (2010) proposed their region-based hierarchical IDS.

In their system, the network is divided into non-overlapping regions. Each region would have

member nodes and gateway nodes. A node is considered a “gateway” if it has a connection to

the neighboring region. Otherwise, it is deemed a member node. All nodes have an IDS

installed on them. However, if member nodes detect intrusion, they must send their decision to

gateway nodes to start global intrusion detection. The IDS in this architecture employs a

combination of signature-based and anomaly-based engines. The anomaly-based engine utilizes

the conformal prediction for k-nearest neighbor (CP-KNN) and distance-based outlier detection

(DODO) algorithms to calculate the certainty of an attack existence in the collected data. If an

anomaly is detected with a high certainty, the extracted intrusion pattern is passed down to the

signature-based engine to extract and store the attack signature in its database.

Believing that a hierarchical architecture supports network scalability and fault tolerance,

Shao, Lin, and Lee (2010) presented their hierarchical IDS for MANETs. However, their

cluster-head election does not rely on battery power. Instead, the node with the highest number

of connections to other nodes is elected as the cluster-head in every cluster. Nodes in each

cluster declare the number of their one-hop neighbors. The system then employs voting among

such nodes to choose the cluster-head. The presented IDS implements an anomaly-based engine

to detect intrusions. This engine implements a back-propagation network (BPN), which is a

80

supervised learning neural algorithm to train against and establish the normal profile of the

network.

Zeng, Chen, Qiao, and Xu (2011) believed that since MANETs are energy-constrained by

nature, nodes might be inclined to lie about their battery power during cluster-head elections.

Zeng et al. (2011) stated that previous cluster-head selection approaches suffer from this issue,

which might affect network lifetime negatively. Their approach focused solely on cluster-head

election without detailing what kind of intrusion detection engine is used. Thus, they proposed

their system in which selfish nodes are encouraged to reveal their battery power through

incentives called reputation points. These points are important since the system uses them to

distribute services provided by cluster-heads. Thus, nodes that don’t reveal their battery energy

wouldn’t have enough reputation points to receive such services.

Due to the significance of the role played by cluster-heads in hierarchical IDS

implementations, Katal, Wazid, Sachan, Singh, and Goudar (2013) believed that battery power

alone is not sufficient for cluster-head election. Katal et al. (2013) attempted to address the

challenge of cluster-head trustworthiness by adding more parameters to the election of cluster-

heads. These include communication range, hop count, battery power, and mobility. Katal et al.

(2013) also introduced the idea of “super cluster-head” formations, which are randomly-selected

nodes with the responsibility of monitoring the elected cluster-head for malicious behavior.

Excluding the cluster-head, super cluster-head nodes typically possess the highest battery power

in their cluster. The proposed approach is intended to increase network lifetime as it keeps

energy dissipation at low rates.

Amouri, Jaimes, Manthena, Morgera, and Vergara-Laurens (2015) proposed a

hierarchical IDS that specifically targets blackhole attacks. In their system, the network is

81

divided into a predefined number of squares. Each square has an imaginary circle representing

the area of IDS activation. Whenever a node enters that circle, it becomes a pseudo cluster head

(PCH). PCH nodes activate their promiscuous mode to sniff packets transmitted within their

radio range. These PHCs then use the collected data to calculate anomalies in each cluster. This

information, in turn, is passed to a manager node that is assigned at network initialization to act

as the command and control unit in the network. The manager node makes the final intrusion

decision at the network level. PCHs change as nodes in MANETs are in continuous motion.

However, a node that is assigned the manager role remains in that position for the lifetime of the

network. The manager node then uses the data collected from all PCHs to calculate network-

level intrusions. The approach utilizes a simple C4.5 decision tree to learn typical network

behavioral responses to black hole attacks during the training phase.

Specifically targeting the military applications of MANETs, Theresa and Sakthivel

(2017) presented their fuzzy-based IDS for cluster-based battlefield networks. Their approach

consists of three stages: cluster-head selection, fuzzy logic technique, and intrusion detection.

The system periodically chooses the node with the maximum battery power to serve as a cluster-

head in each cluster. This is done by having nodes share their residual energy levels at

predefined election times. Nodes then vote to elect the node with the highest energy level as the

cluster-head. The second stage of the system uses fuzzy logic to generate detection rules in the

form of “if-then” clauses. The proposed system focuses on rule generation for data

communications between regular nodes and control stations on the battlefield. When a node tries

to communicate with a control station, the data packet passes through the cluster-head first as it

serves as the central traffic point in its cluster. The intrusion detection (third stage) is performed

by cluster-heads. These then apply the generated rules from the fuzzy-based engine against each

82

packet passing through. If a match is found, the cluster-head considers it as a malicious packet

and drops it. Otherwise, the packet is passed along until it reaches the destination.

Justin, Marathe, and Dongre (2017) presented a hybrid hierarchical IDS combining the

accuracy of signature-based engines and the adaptability of anomaly-based intrusion detection.

The system chooses the node with the highest energy as the cluster-head. However, Justin et al.

(2017) did not explain how and when such selection occurs. The anomaly-based detection

engine uses support vector machines for learning and establishing the normalcy profile during

the training phase. Every node activates its signature-based engine to detect malicious activities

by matching the collected data against the attacks-signature database. If no match is found,

nodes activate their anomaly-based engine for further detection. If an anomaly is found, an

alarm is sent to the other cluster-heads. When other cluster-heads receive this alarm, they send

their vote to the originating cluster-head stating their findings from local detection against the

suspicious node. If the majority of the nodes’ votes support the suspicion, the originating

cluster-head sends an alert to the entire network. In addition to that, the anomaly-based engine

passes the detected attack to the signature-based engine to create a new predefined rule that can

be used in future detections.

Despite the extensive research done in the area of hierarchical IDSs, this architecture

imposes additional processing and communication overhead on other nodes in the network for

electing and maintaining cluster-heads. Moreover, having a single node as a central point of

detection raises the potentiality of such nodes to become the main target for malicious attacks.

The success of such attacks can give malicious nodes the ability to take over the entire cluster

and, eventually, the network. This, in turn, may cause false detection information reporting as

well as fake accusations against legitimate nodes (Panos, Xenakis, & Stavrakakis, 2010).

83

Relying on dedicated nodes, such as cluster-heads, to perform heavy duty intrusion

detection also entails a high processing overhead on the designated nodes. Considering the

resource-constrained nature of MANETs, energy drainage of cluster-heads is a common issue in

this type of architecture. Additionally, since each cluster-head represents a single point of failure

in its cluster, this might lead to having groups of nodes disconnected and unable to communicate

with each other, resulting in network segmentation (Butun et al., 2014).

Cooperative

In a cooperative architecture, each node in the network participates in the intrusion

detection and response activities. This is done through having an IDS engine installed on each

node, enabling it to collect audit data, detect intrusions, and alert the entire network when an

intrusion is detected. Each IDS node analyzes the collected audit data and searches for evidence

for intrusions. Such evidence is defined as signs of intrusions found in local or neighboring

nodes’ activities. Each node then assigns a certainty value to the collected evidence, which is

called a confidence level. If a node finds a high confidence in the collected evidence, it marks

the identified activity as an intrusion and alerts the entire network. At the same time, nodes can

launch a cooperative intrusion detection when inconclusive evidence is found in the locally

collected information against a suspicious activity. Inconclusive evidence situations occur when

the level of certainty in the collected evidence is deemed too low for a node to make an intrusion

decision on its own. In this case, nodes share their opinions, based on individual observations, to

reach a final collaborative decision against the suspect node and initiate a global response (Soni,

Ahirwar, & Agrawal, 2015).

84

The seminal work on cooperative IDSs (CIDSs) for MANETs was introduced by Zhang

and Lee (2000). Their research proposed a new cooperative architecture for intrusion detection.

Their system is an anomaly-based one that relies on both local and global detection mechanisms.

Each node has its own local IDS agent that can detect and respond to intrusions. However, a

global detection IDS is utilized when the confidence level of the detected intrusion is low. Thus,

requesting neighboring nodes IDS agents to participate in the global IDS actions cooperatively.

The system gives immediate neighboring nodes the highest values in evaluating an intrusion

state. Zhang and Lee (2000) believe that such reports are accurate since compromised nodes do

not have the incentive to send intrusion reports, fearing of their expulsion from the network.

Marti, Giuli, Lai, and Baker (2000) presented their watchdog and path-rater mechanisms

on top of the DSR protocol towards the detection of misbehaving nodes. In their methodology,

each node can overhear traffic passed by its direct neighbors. Each node maintains a buffer of

the recently sent packets, which is then used to compare against the overheard ones from

neighbors. The comparison entails checking for packet dropping and modification attacks.

Dropped packets are detected if no match is found between the overheard and the recently sent

packets. On the other hand, the system detects packet modifications through comparing the

contents of the header/payload of the overheard packets against the recently sent ones. A node is

marked as misbehaving if any packet drop/modification is found through this comparison, and

the packet sender is notified of the misbehaving node. This is referred to as the “watchdog”

mechanism. Along with this, Marti et al. (2000) proposed their “path-rater” mechanism that

combines the knowledge of misbehaving nodes from the watchdog along with link reliability to

provide optimal routing paths free of misbehaving nodes.

85

One weakness found in the watchdog mechanism proposed by Marti et al. (2000) is its

inability to detect nodes that falsely report others as malicious. This weakness stems from their

system’s incapability to establish trust among nodes in the network. Thus, reports are considered

trustworthy from any watchdog node. As such, compromised nodes may send false reports about

legitimate nodes in the network causing them to be marked as malicious by others. This

shortcoming in Marti et al. (2000) watchdog mechanism has pushed Patcha and Mishra (2003) to

propose their collaborative system to detect black hole attacks on top of the AODV protocol. In

their system, nodes in a MANET are classified into ordinary, trusted, and watchdog nodes.

Every node must prove its trustworthiness to be included in the trusted group. Periodically, a

node from the trusted group is chosen to be the watchdog based on energy, computation power,

and storage capacity. This, as stated by Patcha and Mishra (2003), eliminates the problem of

false reports encountered by the Mari et al. (2000) watchdog mechanism. Another weakness in

the original watchdog mechanism (Marti et al., 2000) is its inability to detect packet dropping in

the presence of colluding nodes. Patcha and Mishra (2000) attempted to overcome this problem

by having each node send a message to the watchdog before forwarding any packet. Thus, a

node is declared malicious if it doesn’t inform the watchdog of a message forwarding event after

exceeding a certain predefined time limit set by the system during initialization.

Based on a neighborhood-watch concept, Manikopoulos and Ling (2003) designed their

mobile ad-hoc network security (MANS) system. Each node in MANS runs its own IDS that is

responsible for collecting local data from the node itself as well as data from neighbors. All

nodes exchange information periodically or when a suspicious event occurs. Majority voting

from each neighborhood is employed when a node reports another as malicious. Results from

voting are then propagated through the entire network. The system implements its own security

86

policy, forcing nodes to (a) send the status of the IDS agent to the entire neighborhood at a given

interval, (b) isolate a node that declares itself as compromised, and (c) opt to majority voting

when a suspicious activity is reported. This policy is enforced by a controller module installed

on each node, which is logically placed between a node and its network interface.

Stemming from their belief that intrusion detection should be carried out in a distributed

manner, Huang and Lee (2003) proposed their anomaly-based CIDS. Their IDS relies on cross-

feature correlation against anomaly detection models for routing protocols. During the training

phase, the system establishes the normal network profile as well as a set of identification rules

for well-known attacks. Their system constantly inspects and compares network traffic against

such identification rules and triggers an intrusion alarm when a match is found. Cooperation is

implemented in this system by dividing the network into cliques of nodes, with each having a

periodically changing cluster-head. Cooperation in intrusion detection is carried out among all

nodes in a clique where member nodes compute routing and location-related features while

cluster-heads perform computations for traffic-related features. The system requires trained IDS

models to be pre-installed on every node before deployment.

Sterne et al. (2005) proposed their CIDS based on a dynamic tree hierarchy in which

intrusion detection data flows from the leaves towards the root of the tree. The system employs

clustering for maintaining the proposed hierarchy with each cluster having its own cluster-head.

The tree hierarchy is presented as having cluster nodes as the leaves. Those leaves then report to

their cluster-heads representing a higher level in the hierarchy. At the root of the tree are

security nodes to whom cluster-heads report their data. Security nodes are responsible for

managing the intrusion detection capabilities for all clusters. These responsibilities include

sending certain information to all other nodes in the network, such as intrusion detection

87

directives and attack signatures. As the data flows from the leaf nodes to the root, it

incrementally gets aggregated, filtered, and analyzed. An IDS is installed on each node for local

intrusion detection. Each node is also responsible for reporting data about other nodes in the

network. Such responsibility includes monitoring, logging, and analyzing data across protocol

layers. If a node is able to detect an attack on its own, then it would only send an alert message

to its cluster-head. However, if it is unable to make a decision, it transfers its local detection data

upwards through the hierarchy to further aggregate it with other collected data. Despite the

anticipated efficiency of the model, proficiency of the proposed IDS is not determined as the

model was not simulated or applied towards real-life scenarios.

Stamouli, Patroklos, Argyroudis, and Terwari (2005) attempted to address the issue of

high false alarm rates found in IDSs for MANETs by proposing their real-time intrusion

detection for ad hoc networks (RIDAN). Their system is a knowledge-based one that utilizes

time finite state machine (TFSM) to detect real-time routing attacks against the AODV protocol.

All nodes in the network must have RIDAN installed on them. When a node detects an attack, it

attempts to avoid the malicious node from its future routing until it goes back to behaving

normally. However, the detecting node does not share its findings with its neighbors. Building

on Stamouli et al. (2005) approach, Ding and Xu (2006) proposed their enhancement to RIDAN

by introducing cooperation in their real-time cooperation intrusion detection system for

MANETs (RCIDMANet). The system implements cooperation modules that allow building

cliques and choosing one monitoring node for each clique. Nodes in a clique cooperate with

each other through information sharing and by conveying such information to the monitoring

node. When a node detects a suspicious activity, it consults with other nodes to determine

88

whether the identified behavior is an attack. Through the application of cooperation,

RCIDMANet showed 6%-10% improvements in detection accuracy over RAIDAN.

Coming from their faith in the beneficial characteristics of CIDS in MANETs, Deng et al.

(2006) presented their agent-based cooperative anomaly detection model. In their system, the

network is divided into clusters, each with a periodically-changing cluster-head. The intrusion

detection feature information is collected from member nodes and sent to the cluster-head to

perform anomaly detection. This is done through an anomaly detection engine comprised of one-

class support vector machines (1-SVMs) algorithms. Cluster-heads have the responsibility of

instructing their cluster nodes on how feature extraction should be performed. When an attack is

detected at the cluster-level, an alarm is sent to the entire network. The model relies on training

data acquired from modeling normal network behavior.

Trang, Kong, and Lee (2006) developed their CIDS based on the work by Zhang and Lee

(2000), targeting the AODV protocol. Their system assumes that malicious nodes do not have an

IDS installed on them. Each legitimate node in the network is equipped with its own IDS, which

detects anomalies based on inspecting AODV’s packet headers during the route discovery phase.

Specifically, the system checks for the sequence number in the received route request (RREQ)

packets. Nodes locally store each RREQ packet received from others during route discovery

operations. When a rebroadcast RREQ is received by a certain node, it compares the received

request to the locally stored ones. If a match is found and the sequence number of the

rebroadcast RREQ is different than the stored one, an intrusion is detected and the node floods

the network with an “ALARM” packet. Detecting nodes cannot send “ALARM” packets to

themselves or to any malicious node. A node is considered malicious if it doesn’t reply to the

“ALARM” message. The system demonstrated a number of false alarms during simulation as a

89

result of losing replies to the “ALARM” message during transmission. The model was tested

against two types of attacks: flooding and sequence number modification.

Suggesting that a Bayesian approach can improve intrusion detection accuracy, Karim,

Rajatheva, and Ahmed (2006) presented their CIDS based on such an approach. Each node in

the system has a local IDS collecting packet information from both data and network layers. A

Naïve Bayes classifier is then used to compare the collected information against a set of

predefined anomaly detection rules. If such a comparison results in the detection of a suspicious

activity, a node would initiate a global alert and contact its neighbors to start the cooperative

detection. A decision is made regarding the reported node after combining the locally collected

observations from all nodes. If the final value crosses a predefined threshold for an anomaly

detection rule, the reported node is marked as malicious. The proposed system responds to

intrusions by rearranging the network to exclude malicious nodes.

In efforts to address the common problem of high false positives in IDSs for MANETs,

Otrok et al. (2007) developed their IDS using a cooperative game theory approach. The system

targets two types of attacks: cache poisoning and flooding. Nodes cooperate with each other to

detect and respond to attacks. If a node experiences high rates of packet loss due to it not

receiving acknowledgments to the packet it already sent, it suspects a cache poisoning attack.

However, if a node receives more packets than the expected rate, a flooding attack is assumed

The system introduces the concept of security classes to reduce false positives. These classes

take into consideration the reputation and contribution of attack reporting using game theory as

well as the severity of attacks reported by each of the cooperating nodes in the detection process.

If the result of calculating the security class exceeds a certain predefined threshold, an immediate

local or global response is triggered.

90

Bose, Bharathimurugan, and Kannan (2007) presented their multi-layer CIDS, which

operates on MAC, network, and application layers in MANETs. Bose et al. (2007) believed the

effectiveness of such a system comes from the fact that if an intruder node escapes one layer of

detection, it would be caught in another. The system designates three anomaly detection

subsystems using Bayesian classification, Markov chain construction, and association rule

mining algorithms for MAC, routing, and application layers respectively. Each node combines

its local intrusion information from each of the anomaly subsystems through a local integration

module. The results are then combined with those obtained from cooperation with neighboring

nodes via the global integration module. A global intrusion module is then used to make a final

decision and initiate a response towards the identified attack.

Based on the concept of evidence chain (EC) and trust fluctuation (TF), Wang, Huang,

Zhao, and Rong (2008) proposed their intrusion detection mechanism based on trust model for

MANET (IDMTM). The system regards malicious behaviors from nodes as evidence. As time

passes, these pieces of evidence are aggregated into an EC. This occurs until the system has

enough evidence to identity the suspicious node as malicious. On the other hand, the system

employs a TF mechanism in which each node is assigned a trust value. Changes in this value are

monitored over time. The greater the changes of the trust value for a node, the more likely it has

been compromised or turned malicious. Trust values are cooperatively calculated through

observations of neighboring nodes. The combination of collected ECs and TFs result in a

judgment being made against a suspected node regarding its maliciousness.

Sen, Chaki, and Chaki (2008) argued that most IDSs lack the precision to properly

identify malicious nodes and tend to permanently isolate such nodes from the network. This, in

turn, results in eliminating the chances for the accused nodes to recover their trust. Having this

91

issue as their target, Sen et al. (2008) proposed their CIDS based on the concept of an honesty

rate index (h-rate). Each node is assigned an h-rate that increases when it cooperates and

decreases when a node behaves maliciously during a certain predefined interval. Each node

stores a table for neighbors' h-rates and maintains a record of its own h-rate. Neighbors monitor

each other’s performance, and the h-rate gets recalculated based on the current observations.

The IDS randomly selects a node to be the monitor and changes it to another at random intervals.

The system implements packet signing by using public and private keys assigned to nodes

through polynomial secret key sharing.

Sen, Ukil, Bera, and Pal (2008) proposed a fully cooperative system that relies on

reputation and voting mechanisms. Using a monitor module, every node in the network monitors

its neighbors for packet dropping and modification attacks. If such attacks are suspected, a

reputation module is activated to compare the average of neighbors’ opinions against the one

declared by the accused node. Majority voting is then employed to make the final decision on

whether the accused node is malicious. The system encrypts all intrusion-related

communications against replay attacks. Each node receives a trust certificate when cooperating

in the group voting through a trust maintenance module. A table containing all reputation values

of malicious nodes is stored on each node. A reputation propagator module conveys the newly

calculated reputation values to the neighboring nodes at regular intervals. If an intrusion

decision is made, after majority cooperative voting, the participating nodes flood the network

with alarm messages, and an alarm raiser module is invoked to take a response action.

Ebinger and Bibmeyer (2009) targeted the establishment of a distributed trust system as

an approach to cooperative intrusion detection in MANETs. Each node calculates a trust value

for every neighboring node. This value gets updated at each predefined interval to address

92

topology changes. Each node must monitor its one-hop neighbors, and the resulting measures

are used cooperatively between all nodes in the network to make intrusion decisions. To

conserve resources, IDS values are updated at fixed intervals. The system uses the AODV

routing protocol to distribute reputation information piggybacking on normal routing packets.

Tangpong, Kesidis, Hsu, and Hurson (2009) presented a cooperative intrusion detection

model targeting Sybil attacks, specifically. The model only considers simultaneous Sybil attacks

in which attackers use their fake identities to consume a larger share of the wireless channel

access. The model does not solve colluding or join-and-leave scenarios for Sybil attacks. Each

packet is signed with a private key before sending. Upon receiving a packet, a node verifies the

packet signature and the location of the sending node. Packet signatures along with

corresponding fields are cached in the receiving node and periodically shared with other nodes in

an attempt to uncover Sybil attacks. The model performs a comparison against the cached

observations to look for co-occurrences of multiple similar paths coming from the same region

with the same identities. If the number of such occurrences exceeds a predefined threshold, a

node is declared as Sybil.

Believing in the Hierarchical Graph Neuron (HGN) algorithm’s ability to increase

detection accuracy, Mahmood et al. (2009) came up with their CIDS based on a distributed HGN

(DHGN). The system goes through an initiation stage, in which a normal network profile is

obtained and defined. In the proposed architecture, each node monitors its local traffic pattern

and calculates whether a node has left the network or is still alive in the form of a “neuron

index.” This index is then passed from all nodes to a master node that is chosen to have low

mobility and high battery power. The master node possesses a database of normal network

profiles obtained at the initiation stage and can determine an attack occurrence by comparing

93

such profiles to the received information from the cooperative nodes. However, if the

confidence calculation performed by the master node has a lower rate, the final detection

decision is made based on majority voting. Mahmood, et al. (2009) did not provide an

evaluation of the applicability or efficiency of the proposed system.

Shresta, Han, Choi, and Han (2010) proposed a cross-layer cooperative anomaly IDS.

This stemmed from their belief that utilizing data from different layers of the protocol stack can

improve detection accuracy. Information from MAC, routing, and physical layers are extracted

through the system’s association module to form a rule set that is used for anomaly profiling. A

local data collection module aggregates data streams, related to traffic patterns, from the

association module. These streams are then passed to the local anomaly detection module, which

analyzes such data against intrusions. This module relies on normal behavior data collected

across layers during the training phase. If an intrusion is found with high confidence, a node can

locally determine the occurrence of an attack and initiates a global alarm. However, if the

detection is with low confidence due to insufficient evidence, a cooperative detection is

requested from surrounding nodes through a secure channel. A final decision is made according

to majority voting. An alert management module exists to collect evidence from both local and

cooperative engines and initiates an alarm accordingly to inform the network of the identified

attack(s).

Morias and Cavalli (2012) came up with their CIDS based on routing protocol analysis.

Each node captures and analyses every packet going through its network interface. A routing

protocol analyzer engine examines all the routing information of each packet to generate routing

events. The system defines various constraints on the normal behavior of the routing protocol to

detect intrusions. Detected inconsistencies in nodes’ routing behavior are then compared against

94

a predefined threshold. When such threshold is crossed, a routing attack is considered. The

system uses a cooperative consensus mechanism to obtain a majority-based decision regarding

the maliciousness of the suspected node. As a response to a detected attack, the detecting node

sends an alert message to all others regarding the malicious node. Along with that, the system

isolates the malicious node from the network by discarding its packets and depriving it of using

the network resources.

Alattar, Sailhan, and Bourgeois (2012) introduced an Intrusion Detection and

Cooperative Response (IDAR) system that is a log- and signature-based IDS targeting the OLSR

protocol. The system is installed on each node to collect OLSR logs and compares them against

predefined attack signatures to detect intrusions. To limit bandwidth consumption, evidence

obtained from these logs is divided into different groups according to their degree of suspicion.

This, in turn, provides more efficiency in determining whether a cooperative detection is needed

or a node can detect the attack on its own. If a node does not have sufficient evidence against a

suspected activity, it quickly starts a cooperative networked detection to either confirm or affirm

its suspicions and ends the investigation promptly.

Utilizing neural-fuzzy as the core detection engine, Tabari, Pouyan, Hassanpour, and

Saleki (2012) proposed a lightweight semi-distributed IDS for MANETs. The system defines

three modes to classify the status of nodes in the network: normal, attack-presented, and

suspicious. The IDS engine can easily detect an attack-presented status through the local IDS,

which runs on every node in the network. However, a suspicious status may occur in the normal

mode where a node might have rapid movements as well as the attack-presented mode where

attackers perform low-level attacks or are positioned away from the victim. In these cases, the

system turns to the cooperative investigation to resolve ambiguity and proceeds to carry out a

95

final decision regarding the doubted activity. The final decision is made by asking neighboring

nodes for their sate in relation to the identified activity. The model was compared to a sample

stand-alone architecture to prove its detection efficiency and performance.

Malek and Khorsandi (2013) presented a CIDS that is independent of any routing

protocol. The system divides the network into zones based on the total number of nodes and

resources. Three types of nodes exist in the proposed system: general, header, and monitor.

General nodes are divided into clusters that have a separate cluster-head for each cluster.

General nodes are agnostic to the intrusion detection activities and have no knowledge of the

different types of packets passing through. Header nodes must have enough resources and are

considered trustworthy and fault-tolerant, so are monitor nodes. Header nodes perform

continuous broadcasting of voting packets and ask general nodes to rebroadcast these packets.

The system assumes that legitimate general nodes rebroadcast the voting packets without

modification while malicious nodes tend to drop or tamper with the contents of such packets.

Monitor nodes, on the other hand, receive and inspect the results of rebroadcasting from general

nodes against packet dropping and modification and send their observations back to header

nodes. Based on such observations, header nodes determine normal, suspicious, and malicious

nodes. The voting process is repeated for a certain number of times according to the number of

nodes in the cluster and traffic load. Both suspicious and malicious nodes are isolated from the

routing process. However, the main difference between the two is the possibility of reassessment

for suspicious nodes, which could allow them to be re-included in the cluster. Normal nodes are

recorded in a white list, suspicious ones are added to a gray list, and malicious nodes are added

to a black list. These lists are broadcasted periodically by header nodes to all general nodes in

the cluster.

96

Mustafa and Xiong (2013) proposed a CIDS that specifically targets routing attacks in

MANETs. Each node in the system monitors its one-hop neighbors for malicious routing

activities. Nodes in the network share their monitoring information with each other. Each node

makes a detection decision based on both local and global observations obtained from other

nodes. A maximum normed residual test (aka Grubb’s test) is used to prevent inconsistencies in

the collected observations and to detect fake information from malicious nodes. When an

intrusion is detected, the detecting node shares its decision with other well-behaving nodes and

isolates the malicious node from routing services. The system grants a chance for suspicious

nodes to return to their normal behavior by periodically reassessing observations. A suspicious

node can reutilize routing services after adjusting its behavior back to normal.

Adhikari and Setua (2013) proposed a cooperative network intrusion detection system

(CNIDS) that is tailored for the DSR protocol. Every node in the network periodically runs a

context analyzer to check whether it has neighbors. If not, the context analyzer component is

disabled for that period to save energy. A watchdog system is implemented on each node to

ensure packet forwarding by its one-hop neighbors through promiscuous overhearing of

transmissions. If a neighbor does not forward a message, the IDS of the overhearing node

records an anomalous event for that neighbor in the reputation table. Each node maintains a

reputation table containing information regarding other nodes in the network through direct

observations of its one-hop neighbors and indirect observations received by alert messages from

other nodes. When a node receives an alert message regarding another node, it activates the

“ALERT message verifier” component to verify if the information contained in the received alert

is true before updating the reputation table. This is done through sending and overhearing the

transmission of a test packet through the suspected node for one-hop neighbors. If the suspicious

97

node is not a direct neighbor, the receiving node checks the reputation table to check that the

alert initiator node is marked as “normal” and that it’s truly a direct neighbor of the reported

node. Malicious nodes are punished by having normal nodes drop their packets. The system sets

a predefined threshold for the maximum number of packet drops by a node. When the threshold

is crossed, a node is marked as malicious.

Prasannavenkatesan, Raja, and Ganeshkumar (2014) introduced a CIDS relying on their

own packet dropping detection (PDA) algorithm. In the proposed system, a MANET is divided

into clusters. Each cluster has a cluster-head that is elected based on majority voting from all

member nodes. Mobility, degree, energy levels, and transmission range are the four qualities

considered when electing a new cluster-head. Each node is equipped with an IDS that passively

listens to one-hop neighbors to detect packet dropping attacks. If a node detects a neighbor

dropping or modifying packets, it requests a cooperative detection from other nodes in the

cluster. Such detection is driven by the cluster-head through forcing each node to respond with

the degree of maliciousness of the suspected node. The cluster-head marks the target node as

malicious if the majority of the received responses from cluster members indicate so. As a

responsive action, the cluster-head then floods the network with an alarm message containing

information about the detected attacker.

Sharma (2015) presented a cooperative intrusion detection approach that specifically

targets selective packet dropping of gray hole attacks. Each node in the network is equipped

with an IDS that monitors its direct neighbors. If a neighbor continuously drops a packet, it’s

marked as a black hole attacker. Since uncertainty usually surrounds gray hole attacks due to

their selective nature, the proposed IDS has each node maintain a statistical table containing

information about the analyzed packets. The system defines a packet dropping threshold. When

98

this threshold is crossed at a certain time, a node is put in a gray hole attacker list maintained by

its neighbors and is removed from their routing table. If a node suspects a gray hole attacker, it

sends a request packet to its neighbors to consider the suspicion. Neighbors check their own

gray hole lists to confirm the suspicion. The information continues to pass to the next level of

neighbors for a predefined period. After receiving all responses, the initiating node checks if

two-thirds of the received responses confirm the existence of the suspected node in their gray

hole attacker list. Then, it marks the suspected node as a gray hole attacker. The IDS does not

broadcast an alarm for the network after discovering gray hole attackers. The alarm is not issued

because of a fear that the malicious node would start behaving normally once it receives the

alarm.

Merchang, Datta, and Das (2017) believed that resource consumption, in a CIDS can be

minimized by introducing the concept of “security levels.” Since each node in a CIDS is

monitored by all its one-hop neighbors, higher energy consumption would occur. However,

defining a security level can solve this problem by having only a certain number of neighbors

monitor the target node. A security level defines the number of neighbors designated to monitor

a certain node at a given time. A threshold is set to maintain the minimum security level based

on the application scenario. However, the problem with this technique is that nodes are inclined

to save their energy and avoid IDS activities, which might result in an ineffective system. This is

tackled by Merchang et al. (2017) by employing a cooperative game theory approach to establish

an equilibrium between detection activities and energy savings. As such, the defined game

forces two goals on all nodes: participating in monitoring activities and reducing energy

consumption. The system defines a certain interval for all nodes to use. At each interval, a node

determines whether its IDS should be active based on the calculated probability according to the

99

selected security level. During active times, if a malicious node is detected, the detecting node

broadcasts a vote message to neighbors. The selected security level determines the number of

votes needed from neighbors for the suspected node to be marked as malicious.

Cooperative intrusion detection overcomes the weaknesses in both stand-alone and

hierarchical architectures. The primary advantage of this architecture against the stand-alone one

is represented by the cooperation mechanisms that enables a broader view of the network, which

results in the ability to detect complex attacks. On the other hand, CIDS defeats the hierarchical

one by removing the reliance on a single point of failure and distributing identical detection

engines on every node in the network. In general, due to the dynamic nature of MANETs,

cooperation is imperative to achieve real-time detection accuracy, through providing a shared

view on the security situation of other nodes in the network (Morais & Cavalli, 2012).

Summary

This chapter reviewed the current body of knowledge on MANETs, their characteristics,

security issues, and vulnerabilities. In addition, a review and comparison between the various

intrusion detection architectures and implementations for MANETs was presented. Due to their

unique characteristics and inherent vulnerabilities, the quest for an efficient IDS continues to be

a challenging problem for researchers in this field. The researcher has found significant

emphasis from previous studies on the critical need for cooperative detection towards achieving

such efficiency. In reviewing the current literature, the urgent need for an efficient CIDS

implementation for MANETs that is able to simultaneously identify malicious attacks with high

accuracy and minimal communication overhead has become the motivation and driver for this

research.

100

Chapter 3

Methodology

Overview of Research Methodology

 This chapter details the methodology that was followed to implement this research study.

Experimental design was implemented through the design and development of the proposed IDS.

This is a common approach followed by similar studies to create and assess new IDS

implementations for MANETs (Huang & Lee, 2003; Kareem et al., 2006; Wang et al., 2008;

Cannady, 2009; Tabari et al., 2012; Adhikari & Setua, 2013; Merchang et al., 2017). The system

was evaluated to determine its feasibility in achieving the research goals of increasing detection

accuracy while minimizing communication overhead. The application of the concept of social

communities accompanied with DST targeted the achievement of these goals. The researcher

followed four major steps in the development of the proposed system: design of the proposed

IDS components, implementation of the components, integration of the components into a

deployable IDS, and testing of the IDS implementation. Detailed implementation steps are

provided along with the specific procedures that were followed for attacks generation, system

development, data collection, and system evaluation. Resources needed for this implementation

are also outlined in this chapter.

Approach

The goal of this research study was to implement a CIDS that is able to achieve high

detection accuracy while minimizing communication overhead. To achieve these research

goals, the design and implementation of the proposed system depended on combining the

concepts of social communities and DST. Nodes in MANETs represent characteristics similar to

101

social behaviors of humans in a community (Banerjee, Nandi, Dey, & Saha., 2015). As such,

and following Granovetter’s (1973) definitions of strong and weak ties in social communities, we

treated a MANET as a web of strongly tied social communities connected with each other

through weak ties. Strong ties in this context are defined as social links that are formed between

nodes based on recency of communications, age of communications, reciprocity, and knowledge

sharing (Gilbert & Karahalios, 2009). On the other hand, the lack of such ties between two

nodes indicates the nonexistence of social links between them, which is defined in this context as

weak ties. Nodes in each community are connected through strong ties. However, for nodes

inside these communities to interact with other communities, they utilize the weak ties as a

communication bridge. Each node in the network, along with its circle of strong ties, represents

a densely-knit mass of social structures. This is called a "social community". Each node would

also have a set of weak ties connecting it to distant communities. Sometimes for a node to

connect to one distant friend, it needs to utilize one of the weak ties as a crucial bridge to access

information beyond its own social circle (Granovetter, 1983).

The application of the social community theory in our approach aimed to address the high

bandwidth consumption issue found in current solutions. This is due to our unique

implementation of such concepts, which eliminated the need for high information dissemination,

thus minimizing bandwidth consumption required to establish nodes’ social circles. Details of

this implementation are provided in the next sections. The application of social communities

aimed to improve detection accuracy as well. The detection accuracy is improved through a

focused reliance on reports coming solely from reliable social circles. This is because, in a social

community, received information is rarely trusted unless it comes from strong ties (Granovetter,

1973). However, for this research to achieve high efficiency regarding the second goal, which is

102

decreasing the number of false positives, Dempster-Shafer theory (DST) of evidence (Shafer,

1976) was utilized. Although this research relied on reliable reporting, false positives would still

occur due to a lack of sufficient evidence against a suspicious activity. Thus, the application of

DST here aimed to decrease and potentially eliminate cases where a node is falsely accused due

to a lack of evidence or cases of partial evidence.

Mainly, there are two commonly used theories for combining multiple beliefs from

different entities: Bayesian theorem and DST (Li & Joshi, 2009). Bayesian theorem considers

the lack of knowledge regarding an incident as a negative evidence (Gordon & Shortliffe, 1984).

In other words, if two nodes are asked to give their observations regarding a suspected third

neighbor and one of them fails to report such an observation due to a collision or unreceived

request, Bayesian theorem considers it as negative evidence towards the suspected node.

Besides, such theorem usually requires training data ahead of time to achieve an efficient

accuracy. However, the reliance on training data in attack detection is problematic since

adversaries can change their behavior with time (Li & Joshi, 2009). As opposed to the Bayesian

theorem, DST does not require training data or prior knowledge of an incident. Additionally,

DST does not regard the lack of knowledge as negative evidence because it can hold either a

supportive or uncertain view about an incident (Gordon & Shortliffe, 1984).

The main issue with the current applications of DST, found in the literature, is the

determination of trustworthiness and untrustworthiness of nodes when weighing in nodes’ votes

(Chen & Venkataramanan, 2005; Li & Joshi, 2009). This requires a high bandwidth overhead

imposed by trust-related information dissemination to establish accurate calculations. Otherwise,

DST can combine observations from nodes disregarding their trustworthiness. However, this

might yield inaccurate results in the presence of a large number of malicious nodes in the

103

network (Chen & Venkataramanan, 2005). Very little research has been done towards the

application of DST for intrusion detection in MANETs. All of which relied on the calculated

trustworthiness of nodes in the combined decision-making process. This can be problematic in

the presence of a large number of malicious nodes, which in turn, can result in manipulated votes

against legitimate nodes (Rajakumar et al., 2014).

In our approach, we eliminated both the overhead of trust calculations as well as the

inclusion of anonymous votes, which usually result in a high rate of false alarms. Instead, we

used DST against observations obtained solely from strong-ties to handle cases where some of

these nodes did not catch any/enough evidence against the suspicious activity. Details of the

application of DST are provided in the next sections.

Research Methods Employed

 For this research to achieve the outlined goals, the researcher adapted the following

sequential steps for the implementation of the proposed system. This ensured systematic

development and execution of all the pieces necessary to conduct the experiment and obtain the

required metrics to document the research findings.

• Create an initial MANET for testing the implementation of the proposed system. The

designated MANET contained a number of legitimate mobile nodes communicating with

each other over the AODV routing protocol. The researcher chose the AODV protocol as

it is widely used for intrusion detection experimentation for MANETs. A large number

of research studies have opted to use AODV as the routing protocol of choice for such

experimentations (Cannady, 2009; Huang et al, 2003; Parasannavenkatesan et al, 2014;

Wang et al., 2008; Otrok et al., 2007; Shrestha et al., 2010; Karim et al., 2006).

104

• Develop deployable attack models for black hole, gray hole, modification, rushing and

flooding attacks. The development of these attacks was based on their definitions

outlined in Chapter 2. This is identified further in the “Attacks Generation” section.

• Develop testing scenarios for each of the above-mentioned attacks. Mixtures of multiple

attacks in the same scenario along with a variable number of attackers was developed as

well.

• Perform iterative testing on the developed scenarios to define and adjust the required

thresholds for the proposed IDS operations. This is identified further in the “System

Design” section.

• Develop the components of the proposed IDS outlined in Figure 1 in the upcoming

“System Design” section. This entailed the application of the concept of social

communities and DST towards achieving the research goals.

• Test the IDS against the previously developed testing scenarios.

• Collect datasets by continuously monitoring the testing MANET in various operational

models. Details of the data collection process are provided in the next sections.

• Collect evaluation metrics to determine the system’s ability to feasibly achieve the

research goals of high detection accuracy with minimal communication overhead.

• Document findings in the Dissertation Report.

Attacks Generation

 To simulate the proposed system’s response and behavior during malicious attacks on the

network, the researcher implemented the following attacks based on their definition outlined in

Chapter 2. For all these attacks, a new attacker-node module was created to simulate each one of

105

them. This also allowed the researcher to keep the normal node behavior intact as we

implemented each attack. Making the attacker-node module optional, allowed the researcher to

flexibly install it whenever necessary to simulate any of the following attacks:

• Black hole: The attacker node tries to attract as many routes through it as possible.

AODV was the routing protocol followed in the simulation. Thus, implementation of

route attractions from the black hole attacker was focused on the route discovery phase in

this protocol. Whenever the attacker-node receives a RREQ message, it generates an

RREP message to the originator stating that it has a fresh route to the destination. This is

done by setting the sequence number in the RREP packet to the maximum allowed

number in AODV. When the requesting node receives the reply packet, it starts

communicating with the destination node through the route received from the attacker.

When the attacker-node receives these packets, it immediately drops them without

forwarding it to the destination.

• Gray hole: this attack is similar to black hole except it follows a selective packet

dropping pattern. However, the attacker-node still implemented the same procedure

outlines present in the black hole attack simulation above. This is done to attract nodes

to route their packets through it. The main difference in the simulation would be the

implementation of selective packet dropping. This was implemented as follows-

whenever the attacker-node receives a data packet, it generates a random number

(RND_GH). If this random number falls between a predefined range (GH_RANGE),

the attacker-node drops the packet. Otherwise, it would forward it without dropping.

106

The researcher varied the RND_GH and GH_RANGE through extensive testing to

establish a similar resemblance of selective packet dropping to real-life attack scenarios.

• Modification: in this attack, when an attacker-node receives a data packet, it appends a

randomly-generated number to the contents and forwards the packet along the route.

This is done by copying the received data packet into a new one. After that, the

attacker-node modifies the payload of the copied packet by appending the random

number. Finally, it removes the original packet and instead forwards the

copied/modified on down the route.

• Rushing: at the network initialization phase, this attacker-node generates a large number

of RREQ to ensure it will be included in as many future routes during nodes’

communications. This was implemented by installing an antenna with a higher

transmission power on the attacker-node than those of legitimate nodes. Thus, when the

attacker receives a RREQ, it forwards it to the next hop faster than a legitimate node is

able to forward it. That way, more nodes will potentially include the attacker in future

routes. This would cause legitimate routes to eventually become neglected as more

nodes will have the attacker in their routing tables.

• Flooding: the attacker-node creates a new data packet with size equal to the maximum

allowed packet size in the AODV protocol. The attacker then starts flooding the

network with these packets by sending it to all its one hop neighbors as well as to fake

destinations. That way, when other nodes receive such packets, high processing would

be needed to inspect each one to find the destination to forward to. Continuously

receiving such packets causes legitimate nodes to start draining battery power that is

being spent to route such processing-intensive packets. This would potentially cause

107

nodes to drop out of the network due to full drainage of their battery, rendering them

incapable of participating in normal network operations.

System Design

In this research, we proposed a novel CIDS for MANETs comprised of the following

components:

• Data Inspection Module responsible for gathering traffic data.

• Social Ties Builder Module for establishing social communities between nodes.

• Local Detection Module for analyzing the collected data against suspicious activities.

• Cooperative Detection Module that is responsible for launching collaborative

investigations with other nodes.

• Global Response Module for broadcasting alarms when an intrusion is detected.

The IDS was implemented as an integrated module that can be optionally installed on the

designated nodes. This allowed the implementation of attacker and IDS nodes in the network at

the same time by specifying the required module to be installed on each node, without modifying

the normal behavior of nodes.

Figure 1 below illustrates the overall structure of the proposed system.

108

Figure 1 - System Structure

Data Inspection Module

Each node in the network activates its promiscuous mode enabling it to overhear traffic

passing through its one-hop neighbors. The data inspection module (DIM) has two main

responsibilities: data collection and inspection and selective packet forwarding. The DIM

collects statistical data about each received/sent packet as well as neighbors’ forwarded packets.

This includes recording all the information in the packets’ headers as well as calculating a

checksum for each packet. The collected information is saved on each node so that it can be

109

consumed by the social ties builder, local detection, and cooperative detection modules. To

perform selective packet forwarding, this module checks the social ties table (STT) (defined next

in the Social Ties Builder Module) before forwarding a packet to check if the source node is

marked as “Malicious” then drops the packets, otherwise, the packet is forwarded.

The implementation of this module was as follows: whenever an IDS node receives a

routing/data packet, it goes through the DIM. Before any further processing, this module

extracts the source IP address from the received packet. The DIM then asks the STBM whether

this source IP is marked as “malicious”. If so, the DIM drops the packet. Otherwise, the DIM

extracts the packet type (routing or data), source/destination addresses, and packet time, and it

calculates a checksum for the packet payload. The extracted data is then stored in the memory

for future utilization by other modules. The packet is then forwarded to the neighbor down the

route and is marked in the memory storage as “forwarded to neighbor.” The IP of the neighbor

the DIM is forwarding the packet to is appended to the packet entry in the storage. This memory

storage represents the table for storing DIM data. This table is called the data collection table

(DCT). Since IDS nodes activate their promiscuous mode at all times, they are able to sniff

packet transmissions of their one-hop neighbors. Thus, whenever a packet is forwarded by a

one-hop neighbor, the LDM extracts the packet type (routing or data), source/destination

addresses, packet time, and IP address of the forwarding neighbor, and it calculates a checksum

for the packet payload. The packet is then marked as “forwarded by neighbor” in the DCT.

110

Social Ties Builder Module

This module is responsible for constructing social ties with other nodes based on the

collected information from the DIM. Due to the constrained nature of nodes in a MANET, the

social ties builder model (STBM) is activated after each time interval (t). That way, we can

reduce energy consumption and potentially extend battery life, as opposed to having the module

run indefinitely. After each interval (t), this module queries the collected data from the DIM to

extract and calculate social ties features. These features are derived from Gilbert and Karahalios

(2009) findings regarding the significant predictors (p<0.001) of strong ties in a community.

These features are the following:

• Recency of communication: this is calculated by recording the time a packet is

received from a certain node.

• Time since first communication: this value is saved when a node receives a packet

from another for the first time.

• Reciprocity: this denotes the number of messages exchanged with other nodes.

• Shared Knowledge: this denotes the number of route discovery or link failure

messages shared by other nodes.

At each interval (t), these features are extracted and stored on each node inside the STT.

The novelty of this module against the current solutions is twofold: a tremendous decrease of

bandwidth consumption and high reliability of intrusion detection information. Each node

utilizing this module performs its calculations to establish a strongly-tied social circle. This is

done without the need for reputation or trust information to flood the network. As compared to

all current solutions, this demonstrated substantial enhancements in bandwidth consumption,

which resulted in fewer collisions and less packet loss throughout the network. The other

111

primary benefit from this implementation is its reliance on strongly-tied communities to deliver

reliable information. Compared to the current trend in getting such information, researchers lean

towards reputation-based mechanisms based on the observed node behaviors from neighbors.

However, such an approach is error-prone as legitimate nodes can be marked malicious due to

accidental packet drops. The other downside of reputation-based detection is its inability to

perform when a high number of malicious nodes exists in the network, as compared to legitimate

ones (Rajakumar et al., 2014).

A node is considered a strong-tie on strict conditions: if and only if its recency of

communication is less than the predefined threshold (rrec), time since first communication is

greater than the predefined threshold (rt), and the combination of reciprocity and shared

knowledge is greater than the specified threshold (rrsh). On the other hand, a link between two

nodes is considered a weak tie if such conditions are not met. It should be noted that “recency of

communication” also helps in detecting nodes that have dropped out of the network and those

which turned malicious after a certain period. This stems from the assumption that such nodes

tend to stop message exchange in case of leaving the network or cease to cooperate in the routing

process in the event of compromised nodes, resulting in removing them from the social circle.

As far as the distribution of ties, the proposed system had high densities of strong ties

among nodes inside each social community. Weak ties were more distributed as connectors

between strongly tied communities. The existence of both is important to keep the flow of

normal network traffic undisrupted. The system does not isolate nodes that are connected with

each other through weak ties. Such nodes can still communicate with each other as well as with

other nodes in the network without issues. On the other hand, nodes that were identified as

malicious are excluded from the routing process among strongly tied communities.

112

An important question arises here: what if malicious nodes drop and rejoin the network

with different identities? Since the system uses strict conditions to form strong ties, such nodes

would not be considered as part of the intrusion decision making process when they rejoin. Over

time and under the continuous monitoring of our system, these malicious nodes get caught again

performing malicious acts and isolated from the routing process. However, if these nodes were

behaving selfishly due to limited resources, such as low battery power, and their behavior

changes after rejoining, they will be able to communicate with other nodes and possibly even

form strong ties with others if their normal behavior is consistent.

This module was implemented as follows: the researcher defined a set interval (t) to

activate the STBM operation. At every (t), this module sends a message to the DIM requesting

the newly collected data, which is defined as the data collected between now and the last

interval. The DIM then fetches this data from its memory storage (DCT) by selecting records

with packet time between now and last interval (now – t), where (t) is the activation interval for

STBM. The DIM then passes down the records to the STBM. The STBM has its own memory

storage, named the social ties table (STT). At this point, the STBM checks if it has the source IP

of each received record in the STT. If it doesn’t, a new record is created by extracting the above-

mentioned ties features from the currently inspected packet entry. Otherwise, this module

updates the record for the existing IP address. Table 2 below shows the items involved in the

calculations of the social ties feature from the currently inspected packet entry:

Feature Calculation

Recency of communication Time packet received.

113

Time since first communication Time packet received (for new records only).

This value doesn’t get updated for nodes that

already have records in the STT.

Reciprocity This value is incremented by one if the

currently inspected packet is a data packet.

Shared Knowledge This value is incremented by one if the

currently inspected packet is a routing packet.

Table 2 - Social Ties Features Calculation

At each interval (t) when this module is done updating the records in the STT, it runs a

check to see if a new strong-tie can be formed and if it can remove obsolete ties due to their

inactivity. This is done by checking each record in the STT to see if rrec, rt, and rsh are satisfied.

If so, the entry is marked as a strong-tie. On the other hand, for existing ties that have become

obsolete for reasons such as leaving the network, this module calculates if rrec, rt, and rsh are still

viable. In this case, rrec would not be satisfied, and the “strong-tie” label would be removed from

that record.

Local Detection Module

This module is responsible for detecting suspicious activities by analyzing the data

collected by the DIM. All of the current approaches for CIDSs enable a node to make an

intrusion decision on its own when, subjectively, enough data is present to support it. However,

the uniqueness of our approach in the local detection module (LDM), as compared to the existing

methodologies, is its delegation of further inspection for all suspicious activities to the

cooperative detection module (CDM). Such delegation is done even if enough evidence exists

114

for the LDM to make a decision on its own. This is due to the observed weaknesses found in the

current approaches where there might be enough evidence, for example, against a node’s packet

dropping. However, this could be due to accidental drops related to battery power or even

increased node mobility that cause a node to gradually move out of range, resulting in such

drops. As a result, such legitimate nodes would be falsely marked as malicious in these systems,

which degrades detection accuracy and increases false alarms.

To sustain battery life, the methodology followed by the LDM for detecting attacks is

unique in an energy saving way. This is achieved by having the detection process operate on an

interval basis instead of having it run the entire time, which might result in a costly overhead for

limited power devices in MANETs.

This module was implemented as follows: at each time interval (t l), the LDM sends a

message to the DIM requesting the data collected between the current time and previous interval.

The DIM then fetches this data from its memory storage (DCT) by selecting records with a

packet time between current time and last interval (now – tl), where (tl) is the activation interval

for LDM. Once the data is received, the LDM starts its analysis against potential attacks.

To investigate black hole attacks against the data received from the DIM, the LDM

calculates the number of packets forwarded to each neighbor by counting the packets that are

marked as “forwarded to neighbor” along with that neighbor’s IP address. Then, the LDM

calculates those who were forwarded by that neighbor by counting the packets marked as

“forwarded by neighbor” and have the neighbor’s IP address. The LDM then performs a

comparison between the two. If the number of packets forwarded by a neighbor is less than the

amount forwarded to that neighbor and the difference exceeds the predefined threshold for black

115

hole attacks (bt), the LDM contacts the CDM to perform a collaborative investigation against the

suspicious neighbor.

For modification attacks, the LDM inspects the data received from the DIM against such

attacks by comparing the checksum of packets forwarded by each neighbor against those

forwarded to that neighbor. If any difference is detected and the total packets modified by that

neighbor exceed the predefined threshold (mt), the LDM contacts the CDM to start a

collaborative investigation against the suspect.

For rushing attacks, the LDM inspects the data received from the DIM and calculates the

total number and average receipt time of RREQ packets received from each IP address. Then,

the LDM calculates the total number and average receipt time of all RREQ packets from all

nodes in the current dataset retrieved from the DIM. The LDM then compares the two. If one

node has the number of received RREQ with a receipt time of “smaller than the overall average”

is greater than a predefined threshold (rt), the LDM activates the CDM to launch a collaborative

investigation.

For flooding attacks, the LDM counts the total number of packets received from a source

node based on the data received from the DIM. The LDM then calculates the average payload

size received from each node and the average payload size received from all nodes. If the total

received packets from one node has an average payload size greater than that received from other

nodes and is greater than the specified threshold (ft), the LDM activates the CDM for further

investigation.

As for gray hole attacks, the LDM can detect gray hole attacks in which a malicious node

selectively drops packets. In this case, from the data received from the DIM, the LDM counts

the total number of packet drops by each neighbor by applying the same calculations described

116

in the black hole attack detection above. If a node has a number of packet drops but the total

number of drops does not exceed the threshold for black hole attacks (bt), the LDM contacts the

DIM to retrieve data where packet time is between current time and (np * tl) and where (np)

represents the number of past LDM intervals. For instance, if np = 2 and tl = 15 seconds, this

means that the LDM would retrieve packets with a receipt time between current time and the past

thirty seconds (current time – 2 * 15). Upon receiving the data from the DIM, the LDM then

counts the number of packet drops belonging to the suspicious node, across the collected data to

compare the total packet drops of that node over time. If the rate of packet drops is higher than

the threshold (gt), the CDM is contacted to confirm the suspicion cooperatively.

For all the above-mentioned attack detections in the LDM, activation of the CDM was

implemented by sending a message to the CDM containing the IP address of the suspicious node

along with the name of the suspected attack. For instance, if the LDM found that packet

dropping from node (A) has crossed the predefined threshold for black hole attacks (bt), the

activation message for the CDM would contain the IP address of node (A) along with the attack

type as “black hole.” The same applies to the other attack types except the attack type content of

the message would vary based on the detected attack (e.g., modification, rushing, flooding, etc.)

 Another responsibility of the LDM is providing calculation results regarding the observed

maliciousness of a certain node, when it receives a request from the CDM. The request message

contains the IP address of the suspicious node and the type of suspected attack. In return, the

LDM must return a reply message to the CDM containing observations regarding whether the

suspect is malicious or non-malicious, along with uncertainty of the LDM regarding its

observations. The LDM assigns a probability value for malicious, non-malicious, and

uncertainty towards the suspect node based on its observations as explained in more details

117

below. The LDM performs such calculations based on the received “attack type” in the CDM

message.

 One issue that remains open in the current research is the assignment of probabilities

towards proving or refuting the designated hypotheses based on the collected evidence. This

process is known as basic probability assignment (BPA) in DST. This is primarily due to the

fact that Shafer (1976) did not specify a concrete methodology to assign probability values to a

hypothesis based on the collected evidence. Shafer (1976) explained that assignment of

probability values to a mutually exclusive set of hypotheses is subjective to the problem domain.

That is, the more evidence we have supporting a hypothesis, the closer the assigned weight is

moved to one. At the same time, lower evidence in a hypothesis moves the assigned weight

closer to zero. If no evidence at all is found supporting a specific hypothesis, then the value is

set to zero. A hypothesis is defined here as any subset of the mutually exclusive possibilities to

which we can assign a value based on the collected evidence. On the other hand, evidence in this

context refers to signs found in the collected data that support of refute the hypothesis. Weight is

defined as the strength of evidence in supporting a hypothesis (Shafer, 1976).

Up until now, there is no clear approach on how to automatically calculate BPAs

supporting/refuting a system’s hypotheses (Jiang, Zhan, Zhou, & Li, 2016). Previous studies

opted to assign weight to evidence based on subjectively-assigned trust values of the sender. For

instance, Boston (2000) used manual assignment of assigning probabilities through human expert

opinion. Another study by (Siaterlis & Maglaris, 2004) implemented such assignment based on

having a system administrator examine previously conducted experiments on the system and

subjectively assign these probabilities.

118

In their research towards an automatic and adaptive way to calculate BPA values for their

IDS for fixed wireless networks, Aparicio-Navarro, Kyriakopoulos, and Parish (2012) found that

no previous research has suggested this type of BPA calculation. As such, they have come up

with a novel methodology for BPAs that can automatically assign probabilities without the need

for human intervention. In their approach, a maximum limit of 50% is assigned to their “attack”

hypothesis to denote the presence of attacks in the network. The other 50% is assigned to a

“normal” hypothesis representing an attack-free network. Lastly, uncertainty is calculated by

normalizing the smaller of the two hypotheses by 50% and dividing it by the other. The system

assigns probabilities by applying a predefined set of calculations for both normal and attack

hypotheses throughout the detection process. Although these detection calculations were

designed for fixed networks and don’t apply to MANETs, their automatic BPA approach was

designed to be adaptable to all types of wireless technologies (Aparicio-Navarro et al., 2012).

Thus, in this research, we have followed the Aparicio-Navarro et al. (2012) methodology

as it represents a low-cost automatic method for BPA calculations. Based on their methodology,

a maximum limit of 50% was assigned to each of the malicious and non-malicious hypotheses.

Additionally, uncertainty was calculated by multiplying the smaller value of malicious and non-

malicious hypotheses by 50% and dividing it by the other value. However, since each attack is

designated by certain characteristics, it was not feasible to use one calculation for all attacks. In

our approach, each type of attack was designated a separate set of BPA calculations relative to its

predefined threshold, as can be seen in Table 3 below.

 To demonstrate with a simple example, let’s assume the LDM receives a message from

the CDM stating that node (M) is suspected to have attempted a black hole attack. The LDM

then sends a message to the DIM requesting the data collected between the current time and

119

previous LDM interval. The DIM then fetches this data from its memory storage (DCT) by

selecting entries with a packet time between current time and the last interval (now – tl) and

where (tl) is the activation interval for LDM. Upon receiving the data, the LDM starts the

calculations of the requested values as follows: Let’s assume the predefined threshold for black

hole attacks (bt) is set to ten. Additionally, let’s assume that through inspecting the data received

from the DIM, the LDM found that the total dropped packets observed from the suspicious node

(M) equals to eight out of the twenty packets forwarded to that node. On the other hand, the

received data from the DIM shows that the suspicious node did not drop three packets forwarded

to that node out of the twenty packets forwarded to that node. This could be tricky as these

packets could have been destined to that suspect node. Based on these two values, the LDM

calculates the requested BPAs according to the DST as follows:

Let LDM(M) represent the observations of the local LDM towards the suspicious node (M).

Let Ω be the frame of discernment, which represents a set of mutually exclusive possibilities

(Shafer, 1976). In our case, Ω consists of two possibilities regarding node (M): Ω = {P, P̅},

where P=non-malicious and P̅=malicious. For this Ω, we have three focal elements: hypothesis

S1={P} stating that node (M) is non-malicious, hypothesis S2={P̅} stating that node (M) is

malicious, and hypothesis U = Ω representing uncertainty by stating that node (M) is either

malicious or non-malicious. A hypothesis in this context refers to any subset of Ω for which the

LDM can present evidence. Additionally, Shafer (1976) stated that the sum of all focal elements

must equal to one.

The LDM calculates these values as follows:

120

𝐿𝐷𝑀(𝑀)𝑆1 =
𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑑 𝑏𝑦 𝑠𝑢𝑠𝑝𝑒𝑐𝑡

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑑 𝑡𝑜 𝑠𝑢𝑠𝑝𝑒𝑐𝑡
∗ 0.5 =

3

20
∗ 0.5 = 0.075

𝐿𝐷𝑀(𝑀)𝑆2 =
𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑑𝑟𝑜𝑝𝑝𝑒𝑑 𝑏𝑦 𝑠𝑢𝑠𝑝𝑒𝑐𝑡

bt
∗ 0.5 =

8

10
∗ 0.5 = 0.4

The above calculations are multiplied by “0.5” to limit the value of malicious and non-malicious

assignments to 50% as discussed previously. To calculate (𝑀)𝑆3 , based on the work by

Aparicio-Navarro et al. (2012), the smaller value of 𝐿𝐷𝑀(𝑀)𝑆1 and 𝐿𝐷𝑀(𝑀)𝑆2 is normalized

by 50% and divided by the other. In this case:

𝐿𝐷𝑀(𝑀)𝑆3 =
0.5 ∗ 𝐿𝐷𝑀(𝑀)𝑆1

𝐿𝐷𝑀(𝑀)𝑆2
 =

0.5 ∗ 0.075

0.4
 = 0.09375

According to Shafer (1976), the summation of focal elements (𝐿𝐷𝑀(𝑀)𝑆1, 𝐿𝐷𝑀(𝑀)𝑆2, and

𝐿𝐷𝑀(𝑀)𝑆3) should always equal to one. However, the summation of the above values dos not

equal to one. As such, to avoid falling into cases where the summation is greater or less than

one, we are going to apply an adjustment value (𝜇), as proposed by Aparicio-Navarro et al.

(2012). This value is calculated as follows:

𝜇 =
(𝐿𝐷𝑀(𝑀)𝑆1 + 𝐿𝐷𝑀(𝑀)𝑆2 + 𝐿𝐷𝑀(𝑀)𝑆3) − 1

3

=
(0.075 + 0.4 + 0.09375) − 1

3

121

= −0.14375

To obtain the final values for 𝐿𝐷𝑀(𝑀)𝑆1𝑢, 𝐿𝐷𝑀(𝑀)𝑆2𝑢, and 𝐿𝐷𝑀(𝑀)𝑆3𝑢, we subtract (𝜇) from

each of them. Thus, the final values would be (summation of all equals to one):

𝐿𝐷𝑀(𝑀)𝑆1𝑢 = 𝐿𝐷𝑀(𝑀)𝑆1 − 𝜇

= 0.075 − (−0.14375)

= 0.21875

𝐿𝐷𝑀(𝑀)𝑆2𝑢 = 𝐿𝐷𝑀(𝑀)𝑆2 − 𝜇

= 0.4 − (−0.14375)

= 0.54375

𝐿𝐷𝑀(𝑀)𝑆3𝑢 = 𝐿𝐷𝑀(𝑀)𝑆3 − 𝜇

= 0.09375 − (−0.14375)

= 0.2375

Comparing the results from this example with the gathered evidence that shows a high

number of packet drops as compared to the predefined threshold (bt) from node (M), the above

calculations show that the LDM has more evidence supporting the maliciousness of node (M),

but still comes with uncertainty. However, the final decision can only be made by the CDM

122

when it combines all evidence from other nodes while regarding uncertainty to account for

accidental packet drops.

After performing the above calculations, the LDM sends a message back to the CDM

containing the IP address of the suspected node, the suspected attack, LDM(M)S1u, LDM(M)S2u,

and LDM(M)S3u. The CDM then uses this reply to participate in the cooperative investigation.

Further DST calculations along with a demonstration of how such observations were used in the

CDM for the intrusion detection process can be seen in the next section.

 Based on the outlined mechanisms of the LDM to detect malicious attacks, Table 3 below

lists the necessary calculations performed by the LDM to calculate BPA values for each attack.

For the sake of readability, the suspect node is referred to as (M) in the below table. For all

LDM calculations, based on the work by Aparicio-Navarro et al. (2012), uncertainty was

calculated by multiplying the smaller value of 𝐿𝐷𝑀(𝑀)𝑆1 and 𝐿𝐷𝑀(𝑀)𝑆2 by 50% and dividing

it by the other value, as seen in the above example. Overall average in these calculations refers

to the corresponding average of all nodes.

Attack Type 𝐿𝐷𝑀(𝑀)𝑆1 𝐿𝐷𝑀(𝑀)𝑆2

Black hole

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑑 𝑏𝑦 𝑠𝑢𝑠𝑝𝑒𝑐𝑡

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑑 𝑡𝑜 𝑠𝑢𝑠𝑝𝑒𝑐𝑡

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑑𝑟𝑜𝑝𝑝𝑒𝑑 𝑏𝑦 𝑠𝑢𝑠𝑝𝑒𝑐𝑡

bt

Modification

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑏𝑦 𝑠𝑢𝑠𝑝𝑒𝑐𝑡

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑑 𝑡𝑜 𝑠𝑢𝑠𝑝𝑒𝑐𝑡

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑏𝑦 𝑠𝑢𝑠𝑝𝑒𝑐𝑡

mt

123

Rushing

𝑡𝑜𝑡𝑎𝑙 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
𝑓𝑟𝑜𝑚 𝑠𝑢𝑠𝑝𝑒𝑐𝑡 𝑤𝑖𝑡ℎ 𝑟𝑒𝑐𝑒𝑖𝑝𝑡 𝑡𝑖𝑚𝑒

𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑡ℎ𝑒
𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝑡𝑜𝑡𝑎𝑙 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
𝑓𝑟𝑜𝑚 𝑠𝑢𝑠𝑝𝑒𝑐𝑡

𝑡𝑜𝑡𝑎𝑙 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
𝑓𝑟𝑜𝑚 𝑠𝑢𝑠𝑝𝑒𝑐𝑡 𝑤𝑖𝑡ℎ 𝑟𝑒𝑐𝑒𝑖𝑝𝑡 𝑡𝑖𝑚𝑒

𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑡ℎ𝑎𝑛
𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝑟𝑡

Flooding

𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
𝑓𝑟𝑜𝑚 𝑠𝑢𝑠𝑝𝑒𝑐𝑡 𝑤𝑖𝑡ℎ 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 𝑠𝑖𝑧𝑒

𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑓𝑟𝑜𝑚 𝑠𝑢𝑠𝑝𝑒𝑐𝑡

𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
𝑓𝑟𝑜𝑚 𝑠𝑢𝑠𝑝𝑒𝑐𝑡 𝑤𝑖𝑡ℎ 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 𝑠𝑖𝑧𝑒

𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑡ℎ𝑒 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝑓𝑡

Gray hole

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑑 𝑏𝑦 𝑠𝑢𝑠𝑝𝑒𝑐𝑡
𝑎𝑐𝑐𝑟𝑜𝑠𝑠 𝑡ℎ𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑑 𝑡𝑜 𝑠𝑢𝑠𝑝𝑒𝑐𝑡
𝑎𝑐𝑟𝑜𝑠𝑠 𝑡ℎ𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑑𝑜𝑝𝑝𝑒𝑑 𝑏𝑦 𝑠𝑢𝑠𝑝𝑒𝑐𝑡
𝑎𝑐𝑐𝑟𝑜𝑠𝑠 𝑡ℎ𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠

𝑔𝑡

Table 3 - BPA Calculations in the LDM

Cooperative Detection Module

This module (CDM) is activated only upon receiving a request message from the LDM.

The request message contains the IP address of the suspicious node as well as the type of the

predicted attack. When such a request is received, this module contacts other nodes in the social

circle to launch a collaborative investigation to prove/disprove the raised suspicion. Participants

of the collaborative investigations are determined through querying the SST to pick only strong-

ties. This collaborative investigation relies on the decisions made by each neighbor’s LDM.

However, sometimes, some of these strongly tied nodes might not have collected enough data

during the interval to form an opinion against the suspicious node. It’s important to note that

CDM does not consider opinions from weak ties (nodes that are not strong ties) or from

malicious nodes. Some studies have utilized majority-voting techniques for collaborative

124

decision making (Manikopoulos & Ling, 2003; Sen et al., 2008; Mahmood et al., 2009).

However, such approaches might lead to unreliable results in the presence of a large number of

malicious nodes (Chen & Venkataramanan, 2005). As such, a methodology is needed to weigh

in the received opinions based on a certain degree of belief. Thus, this module utilizes DST to

do so.

The primary benefit of applying DST to CDM’s operations is to eliminate inaccurate

detection decisions against accidental activities, such as packet dropping, in which a legitimate

node may be falsely accused to be malicious. However, the fact is that such packet dropping can

happen for other non-malicious reasons, such as collisions and low battery power. Through the

application of DST, the CDM is able to make a decision based on different received opinions and

with uncertainty towards the observed behaviors in mind. A unique quality of our application of

DST is the consideration of cases where some nodes would only have partial evidence against an

incident. This, in turn, would significantly decrease false accusations against accidental non-

malicious cases.

We used DST against observations obtained solely from strong ties. This was done to

handle cases where some of these nodes did not catch enough evidence against the suspicious

activity. To illustrate the intended calculations, let’s assume that node (K) requests observations,

through CDM, from its strong-tied neighbors (A, B, and C) against node (M), which node (A)

doubts as malicious due to observed packet dropping during a period (tx). However, such packet

dropping occurred due to the increased mobility of node (M) away from its neighbors. At the

same time, node (B) and (C) did not catch enough data regarding dropped packets from node (M)

to form a solid observation. The observations received from all nodes represent two possibilities

125

against the suspected node: malicious and non-malicious. The following illustrates the intended

calculations through DST in this case:

Let A(M), B(M), and C(M) represent the observations of A, B, and C respectively towards the

suspicious node (M).

Let Ω be the frame of discernment which represents a set of mutually exclusive possibilities

(Shafer, 1976). In our case, Ω consists of two possibilities regarding node (M): Ω = {P, P̅},

where P=non-malicious and P̅=malicious. For this Ω, we have three focal elements: hypothesis

S1={P} stating that node (M) is non-malicious, hypothesis S2={P̅} stating that node (M) is

malicious, and hypothesis U = Ω representing uncertainty by stating that node (M) is either

malicious or non-malicious. A hypothesis in this context refers to any subset of Ω for which

nodes (A), (B), and (C) can present evidence.

The following illustrates hypothetical observations from nodes (A), (B), and (C) with

each of the three nodes having a probability assignment, as follows:

Observations from Node A Observations from Node B Observations from Node C

A(M)S1 = 0.4

A(M)S2= 0.1

A(M)S3=0.5

B(M)S1=0.1

B(M)S2=0.5

B(M)S3=0.4

C(M)S1=0.4

C(M)S2=0

C(M)S3=0.6

Based on the collected observations from Nodes (A), (B), and (C), we apply Dempster’s

rule of combination (Shafer, 1976) to combine the observations of all three nodes. The result of

this combination represents the final decision regarding the maliciousness of node (M).

126

First, we calculate the normalizing constant (KAB) which represents the extent of conflict

between the observations from node (A) and (B):

𝐾𝐴𝐵 = 𝐴(𝑀)𝑆1 𝐵(𝑀)𝑆1 + 𝐴(𝑀)𝑆1 𝐵(𝑀)𝑆3 + 𝐴(𝑀)𝑆3 𝐵(𝑀)𝑆1

+ 𝐴(𝑀)𝑆2 𝐵(𝑀)𝑆2 + 𝐴(𝑀)𝑆2 𝐵(𝑀)𝑆3 + 𝐴(𝑀)𝑆3 𝐵(𝑀)𝑆2

+ 𝐴(𝑀)𝑆3 𝐵(𝑀)𝑆3 = 0.79

Then, we combine the beliefs from node (A) and (B):

𝐴𝐵(𝑀)𝑆1 = 𝐴(𝑀)𝑆1 ⊕ 𝐵(𝑀)𝑆1 =

𝐴(𝑀)𝑆1 𝐵(𝑀)𝑆1 + 𝐴(𝑀)𝑆1 𝐵(𝑀)𝑆3 + 𝐴(𝑀)𝑆3 𝐵(𝑀)𝑆1

𝐾𝐴𝐵

= 0.3164

𝐴𝐵(𝑀)𝑆2 = 𝐴(𝑀)𝑆2 ⊕ 𝐵(𝑀)𝑆2 =

𝐴(𝑀)𝑆2 𝐵(𝑀)𝑆2 + 𝐴(𝑀)𝑆2 𝐵(𝑀)𝑆3 + 𝐴(𝑀)𝑆3 𝐵(𝑀)𝑆2

𝐾𝐴𝐵

= 0.4303

𝐴𝐵(𝑀)𝑆3 = 𝐴(𝑀)𝑆3 ⊕ 𝐵(𝑀)𝑆3 =

𝐴(𝑀)𝑆3 𝐵(𝑀)𝑆3

𝐾𝐴𝐵

= 0.2531

After that, we calculate the normalizing constant (KABC) representing the conflict

between the combined beliefs of nodes (A) and (B) with those of (C):

𝐾𝐴𝐵𝐶 = 𝐴𝐵(𝑀)𝑆1 𝐶(𝑀)𝑆1 + 𝐴𝐵(𝑀)𝑆1 𝐶(𝑀)𝑆3 + 𝐴𝐵(𝑀)𝑆3 𝐶(𝑀)𝑆1

+ 𝐴𝐵(𝑀)𝑆2 𝐶(𝑀)𝑆2 + 𝐴𝐵(𝑀)𝑆2 𝐶(𝑀)𝑆3 + 𝐴𝐵(𝑀)𝑆3 𝐶(𝑀)𝑆2

127

+ 𝐴𝐵(𝑀)𝑆3 𝐶(𝑀)𝑆3

= 0.827

Finally, to get the final decision regarding the maliciousness of node (M), we combine

AB(M)S2 with C(M)S2:

𝐴𝐵𝐶(𝑀)𝑆2 = 𝐴𝐵(𝑀)𝑆2 ⊕ 𝐶(𝑀)𝑆2 =

𝐴𝐵(𝑀)𝑆2 𝐶(𝑀)𝑆2 + 𝐴𝐵(𝑀)𝑆2 𝐶(𝑀)𝑆3 + 𝐴𝐵(𝑀)𝑆3 𝐶(𝑀)𝑆2

𝐾𝐴𝐵𝐶

= 0.311

Examining the results, we notice that even though node (B) had strong evidence

supporting the suspicious activity from the suspected node (M). The insufficient evidence from

nodes (A) and (C) saved (M) from falsely being marked as malicious since its packet dropping

was accidental due to its mobility pattern. Compared to other methodologies, such as the

Bayesian theorem, node (M) would’ve been falsely accused as malicious. Thus, it would have

been isolated from the network and false alarm rates for similar situations would increase.

From the results of the example above, we notice how the application of DST can help

reduce false accusations when partial or no evidence exists against a suspected node. This is

useful considering such cases can very well happen when a node recently joined the network or

when no evidence can be constructed due to the lack of sufficient collection intervals. On the

other hand, the partial evidence scenario might occur in cases where the analyzed suspicious

activity has not crossed the predefined threshold for the suspected attack. Since DST does not

regard uncertainty as negative evidence, taking these scenarios in consideration has a significant

impact on decreasing false alarms and increasing detection accuracy of the overall system in the

long run.

128

The implementation of the CDM was as follows: upon receiving a collaborative

investigation request message from the LDM, the CDM requests a list of IP addresses of strong-

ties from the STBM. The STBM then queries its own STT to retrieve these addresses, and it

passes them back to the CDM. When the CDM receives these addresses, it formulates a message

containing a unique request identification (RID) number, the IP address of the suspicious node,

and the type of the suspected attack extracted from the message received from the LDM (e.g.,

black hole). The CDM then sends the formulated message to each strong tie node in the list

obtained from the STBM. The formulated message is then saved to the CDM’s memory storage

represented by a table of CDM requests and their corresponding received replies, called a

collaborative information table (CIT). At this point the CDM investigation is still open, but no

further processing is required until replies are received from the strong ties.

When the CDM receives a reply, it correlates it with the sent request through the RID

number. The CDM reply message contains the following information: the replying node’s IP

address, the RID, the suspected attack type, the suspicious node’s IP address, the probability of

the suspect being malicious, the probability of the suspect being non-malicious, and the

probability of the suspect being either malicious or non-malicious (uncertainty). The reply is

then saved to the CIT. After that, the CDM checks if the number of replies to that particular

request equals to 80% of the number of strong-ties that have received the request. The reason the

researcher is considering 80% is to account for mobility and collisions in the network that might

cause the CDM request to get lost in the network and not be received by some of the strong-ties.

If the CDM has indeed received replies from 80% of the destination strong-ties, it combines the

received observations through applying the DST calculations outlined above. Based on the result

of these calculations, the CDM makes the final decision regarding the maliciousness of the

129

suspicious node. If the node is found malicious, the CDM sends a message to the GRM

containing the IP address of that node. The CDM then marks the request as complete in the CIT.

On the other hand, if the CDM receives a request for collaborative investigation, it first

checks to see if the request originated from a strong tie node. This is done by sending a message

containing the IP address of the request node to the STBM. The STBM, in turn, searches its STT

to see if it can find that IP address and to determine if it’s marked as a “strong-tie”. The STBM

then sends a message back to the CDM confirming whether the IP address belongs to a strong tie

or not. If the STBM message states the originating node is not a strong tie, the CDM ignore the

request. Otherwise, the CDM extracts the RID, the IP address of the suspect node, and the

suspected attack and passes the message to the LDM. Based on the suspected attack, the LDM

performs its calculations (outlined in the previous section) and returns the results to the CDM.

After that, the CDM formulates and sends a reply message to the originating node containing the

RID, the IP address of the suspect node, the probability of the suspect being malicious, the

probability of the suspect being non-malicious, and the probability of the suspect being either

malicious or non-malicious (uncertainty).

Global Response Module

The global response module (GRM) is responsible for taking responsive actions

whenever an intrusion is detected. The responsive actions in this system work by sending an

alarm message to a node’s social circle and removing the detected malicious node from the

routing table. When an attack is detected through the CDM, the GRM gets activated through a

message containing the IP address of the malicious node. The first responsive action by this

module is to remove the malicious node from the routing table to isolate it from all future

130

communications. After that, the GRM sends an alarm message to all nodes in its social

community, aka strongly-tied nodes. Each receiving node would then forward the alarm

message to their social circle. That way the malicious node would be known even to remote

nodes, and with time, information convergence would result in the elimination of the malicious

nodes from the routing process. This assumption is backed by Granovetter’s (1973) suggestion

that diffusion of rumors between strongly-tied friends, utilizing weak ties as a crossing bridge,

can reach a large number of entities in a larger social distance.

On the receiving side, to eliminate fake reports generated from malicious nodes against

legitimate ones, when a node receives an intrusion alarm message, the GRM checks whether the

source address is a strong-tie. If so, the reported node is removed from the routing table, and the

alarm is forwarded to all nodes in the social circle of the receiving node. Otherwise, the alarm is

discarded and no responsive actions would be taken.

The implementation of this module was as follows: whenever the GRM receives a

message from the CDM, it contacts the STBM to retrieve a list of IP addresses of strong ties.

The STBM then queries its own STT to retrieve these addresses and passes them back to the

GRM. After that, the GRM creates a new message containing the IP address of the malicious

node detected by the CDM and sends it to every IP address in the list returned from the STBM.

On the other hand, when a node receives an alarm message, the GRM sends a message

containing the IP address of the originating node to the STBM to check whether it belongs to a

strong tie or not. The STBM, in turn, searches its STT to see if it can find that IP address and if

it’s marked as a “strong tie”. The STBM sends a message back to the GRM confirming whether

the IP address belongs to a strong tie or not. If the STBM message denies that the originating

node is a strong tie, the GRM drops the alarm packet. However, if it is a strong tie, the GRM

131

sends a request to the STBM to retrieve the IP addresses of strong ties. Once the GRM receives

this list, it forwards the alarm message to all IP addresses in that list.

As a reactive action to the received alarm, the GRM deletes all entries of the malicious

node in the routing table. Additionally, to avoid including the malicious node in future routes,

when an IDS node receives a RREQ or RREP packets, as mentioned in the DIM section, it sends

the source IP address to the STBM to check if the node is marked as malicious. The STBM then

searches the STT for the source IP address and returns with a response that indicates whether it is

marked as “malicious” or “non-malicious.” The DIM then drops the packet if the response from

the STBM confirms that the originating node is malicious. Otherwise, the DIM forwards the

packet down the route. By dropping not only data packets from malicious nodes but also routing

packets, the proposed IDS does not add any entries to the routing table for these nodes. As the

alarm messages propagate among strongly-tied communities, malicious nodes eventually end up

isolated and cannot communicate with these communities.

Data Collection Procedures

 The implementation of the proposed IDS required extensive data collection operations

throughout the testing phase until the collection of the final results of the experiment. The

researcher performed the following three major phases for data collection:

• Normal network operations: throughout this phase, the researcher implemented a testing

MANET comprised of a number of legitimate nodes communicating with each other over

the AODV routing protocol. Details of the testing MANET are presented in the next

sections. The researcher monitored the normal network operations with regards to

routing, communications between nodes, and topological changes from nodes’ mobility.

132

Continuous data collection operations were performed throughout the lifetime of the test

network. The result of such operations was a collection of trace files containing various

routing/data communication packets along with nodes’ positions at each point of time

during testing. The researcher then used these files to analyze and document

communications and mobility patterns in an attack-free network. Additionally, this data

was used to document the network performance without the existence of IDS nodes. This

was then used to evaluate the performance impact of the proposed IDS on normal

network operations, as discussed later in this section.

• Network under attacks: in this phase, the researcher deployed single and multiple attacker

nodes in the same testing MANET. These attacker nodes targeted the disruption of the

normal network operations of legitimate nodes. Attacker nodes launched variations of

black hole, gray hole, modification, rushing, and flooding attacks. Each of these attacks

had an adverse impact on communications between nodes and the survivability of the

network in general. The researcher continuously collected data throughout the various

attack scenarios in the form of trace files. These files were then used to analyze and

determine the required attack thresholds defined for the detection components of the

proposed IDS. In this context, the term attack threshold refers to a certain base criterion

the proposed IDS will use to make intrusion detection decisions. Usage details of each

attack threshold were previously explained in the “system design” section.

• Network with IDS nodes: after following the implementation steps described in the

“system design” section, the proposed IDS was ready to start operating in a simulated

network. Thus, the researcher used the same network configuration for collecting normal

network operation parameters for this data collection phase. The testing MANET had an

133

IDS installed on each node. Nodes followed the same routing, data communications, and

mobility patterns that would occur if the IDS module was not installed. The researcher

monitored these activities along with any impact imposed by the installation of the

proposed IDS. Continuous data collection operations took place in the form of trace files

to collect routing/data communications and mobility parameters. These parameters were

then used to evaluate the proposed IDS’s impact on the network performance. This

evaluation was achieved by examining this data with that collected data from the normal

network operation phase as will be discussed in Chapter 4.

• Network with IDS and malicious nodes: this represented the final data collection phase

in which both IDS and attacker nodes were installed on nodes in the network. The same

testing MANET used in the normal network operations phase was used here. First, all

nodes had the proposed IDS installed on them. Then, the researcher randomly-designated

certain nodes to uninstall the IDS and install attack modules instead. Variations of single

and multiple attackers were simulated in the network. The researcher continuously

collected data from the network for evaluating the proposed IDS along with the adverse

effects of the attacker nodes on the network. Evaluation parameters that were collected

are described in the next section. Additionally, the impact of attacker nodes on

routing/data communications and the lifetime of the network was collected. The

collected data was then analyzed to evaluate the feasibility of the proposed IDS in

achieving the research goals of attaining a high detection accuracy and minimizing

communication overhead. The researcher followed exhaustive data analysis operations

for such evaluations. Details of such evaluations are discussed in Chapter 4.

134

System Evaluation Metrics

 To evaluate whether the proposed system achieves a high detection accuracy rate along

with minimal communication overhead, the following evaluation metrics were collected

throughout the life of the experiment. These metrics are commonly used by similar studies to

evaluate the feasibility and performance of IDS implementations for MANETs (Manikopoulos &

Ling, 2003; Kareem et al., 2006; Sen et al., 2008; Zhang et al., 2016).

• False Positives (FP): this represents the number of innocent nodes falsely identified by

the system as malicious.

• False Negatives (FN): this denotes the number of malicious nodes incorrectly identified

by the system as innocent.

• True Positives (TP): this denotes the number of malicious nodes correctly identified by

the system as malicious.

• True Negatives (TN): This represents the number of innocent nodes correctly identified

by the system as innocent.

• Detection Rate (DTR): this is calculated as follows:

𝐷𝑇𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

• False Positives Rate (FPR): this is calculated as follows:

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃

• Average End-to-End Delay (AED): this represents the average delay encountered to

deliver packets from a source to a destination, and it is calculated as follows:

𝐴𝐸𝐷 =
𝑇𝐷

𝑃𝑅

135

Here, TD is defined as the time spent to deliver packets while PR represents the total number of

packets received.

 FPR and DTR were used to demonstrate the proposed system’s achievement of the first

goal of this research, which is “high detection accuracy.” On the other hand, AED was measured

to determine if the system met the second goal of this research, represented in minimizing

communication overhead throughout the detection operations of the proposed IDS. The usage of

AED targeted measuring the effect of eliminating regular dissemination of detection packets on

delays and successful deliveries in the network. In current CIDS, detection-related packets are

disseminated on a regular-basis. This, in turn, incurs extra delays in the network as such a

dissemination could potentially cause collisions, and eventually packet loss. AED here measures

the bandwidth consumption in a sense that lower AED values means less packet loss due to

collisions caused by regular information dissemination, thus less delays.

Alongside, the proposed system was evaluated against a stand-alone installation of

itself. To perform such an installation, the system was modified to remove the cooperative

components. As such, the system relied solely on the LDM to make intrusion detection

decisions. The LDM was modified to perform the final decision calculations. This comparison

was intended to evaluate the efficiency of the cooperative detection nature of the proposed

system as compared to a stand-alone intrusion detection.

Furthermore, the system was modified to have the DIM disseminate detection related

information to all strong ties of the IDS node at each collection interval. This modification was

intended to evaluate the efficiency of the proposed system in minimizing communication

overhead as compared to regular dissemination of detection information found in the current

136

CIDSs. The researcher then compared the proposed system to the modified version with regards

to bandwidth overhead. Results of the aforementioned comparisons are discussed in Chapter 4.

Test MANET Simulation Parameters

Table 4 shows the various parameters used for simulating the test MANET throughout

the experiment. Previous studies have followed similar parameters in their simulation

procedures (Kareem et al., 2006; Sen et al., 2008; Shao, Lin, & Lee, 2010; Tabari et al., 2012;

Veeraiah & Krishna, 2018).

.

Parameter Value

Topology area 1000 m x 1000 m

MAC Protocol IEEE 802.11

Routing Protocol AODV

Mobility model Random Waypoint

Transmission range 250 m

Packet type UDP

Packet size 512 bytes

Minimum node speed 2 m/s

Maximum node speed 10 m/s

137

Pause time 10 s

Number of nodes 100

Simulation time per iteration 500 s

Total iterations 40

Table 4 - Test MANET Simulation Parameters

The topology area parameter, shown in table 4, was used to define the simulation area

boundaries that nodes in the test MANET are allowed to move in. This parameter is defined by

Kurkowski, Camp and Colagrosso (2005) as “the square meter area of the topology.” As such,

1000 m x 1000 m defines the height and width of the test MANET’s area in meters respectively

(Kurkowski et al., 2005). As previously outlined, AODV was used as the routing protocol while

IEEE 802.11 was used as the MAC protocol commonly used in MANET studies due to its ability

to minimize packet collisions (Akai, Martin, & Bagrodia, 2001).

Node speed parameter defines the speed that nodes travel around the test MANET. The

mobility model parameter defines the movement pattern for nodes in the test MANET. Random

waypoint is a mobility pattern implemented in ns-2 that allows each node to choose and move

towards a random destination at each instant at the specified node speed. Nodes then pause for a

period specified in the pause time parameter and then move towards another destination (Bai,

Sadagopan, & Helmy, 2003). The transmission range parameter specifies the maximum distance

that two nodes in the test MANET can be from one another to transmit data to each other

(Gomez & Campbell, 2007). The total iterations parameter specifies the total iterations executed

138

in the implementation of this research study targeting the evaluation of the proposed system

against the research goals. Details of these iterations are discussed in Chapter 4.

Formats for Presenting Results

 Data resulting from the experiment was presented in tables and line graphs. The tables

were used to summarize the outlined evaluation metrics that were used to evaluate the system’s

feasibility to achieve the research goals. Line graphs were utilized to visualize the simulation

results throughout the experiment and illustrate the performance of the proposed system.

Resource Requirements

The implementation of the proposed system was executed through ns-2. Simulation of

the performance and efficiency of the proposed system was done through ns-2 as well, against

different attacks scenarios. Since ns-2 implementations usually consume a fair amount of

computing resources for compiling and running simulation packages, the proposed system was

implemented in a researcher-prepared environment with the following technical specifications:

• Computer Hardware:

o Processor: Intel 2.6 GHZ Coe i7

o Memory: 16GB

o Disk: 200GB

• Operating System: Mac OS 10.12 (Free BSD based)

• Implementation Platform: ns-2.35

139

All of the implementation steps and testing were executed by the researcher. No changes

in the implementation environment were done during the implementation of the proposed

system.

Summary

 This research followed an experimental model to design and implement the proposed

IDS. This chapter explained the approach that was followed to implement this research study.

The novel approach this research took in applying the concept of social communities along with

DST and how this approach enabled the system to achieve the research goals were also

explained. Conceptual and technical details of the system implementation were provided as

well, and descriptions of the various components of the proposed IDS were provided alongside a

detailed explanation of their intended implementation. Attacks generation, data collection,

system testing, and evaluation procedures were also explained. Additionally, formats of the

results from the experiment along with the required resources were presented.

140

Chapter 4

Results

Introduction

The primary objective of this research was to develop a CIDS capable of achieving both high

detection accuracy and minimized bandwidth consumption throughout the detection process.

This chapter details the experiments conducted to evaluate the implementation of the proposed

CIDS along with the results achieved. A detailed analysis of the results of each experiment is

presented along with quantitative evaluation of results against the achievement of the presented

research goals. The chapter concludes with research findings based on the collective analysis of

the results obtained throughout the experiments.

Experiment Structure

The results collection phase of this research consisted of running four experiments. The

first targeted the identification of attacks and the proposed system’s thresholds previously

141

discussed in Chapter 3. The second experiment involved the evaluation of the proposed IDS

against a variety of attack scenarios. The third experiment targeted the evaluation of the

proposed IDS against a stand-alone IDS implementation, specifically with regard to detection

accuracy and false alarms rates. The last and fourth experiment assessed bandwidth

consumption throughout the detection process of the proposed IDS against a CIDS

implementation that continuously disseminated detection-related information through the

network, referred to from here on as CCIDS (continuously-information-disseminating

cooperative intrusion detection system). Details of each experiment are presented in the next

sections.

Each of the above-mentioned experiments involved running multiple simulation iterations.

Throughout the experiment, the researcher implemented the following sequential steps to execute

each simulation:

• Attackers Generation: to measure the accuracy of the experiment results under different

attack scenarios, the researcher included randomly-selected attack types for each

simulation. This was intended to eliminate the possibility that the produced results might

contain more inconsistency in the presence of certain attacks than others. Randomization

of attackers in the test MANET throughout the various simulation iterations eliminated

such potentiality and reduced the chances for the researcher to control the results by

including certain attack types more than the others.

• Simulation Execution: in this step, the researcher modified the simulation file to include

the randomly-selected attackers. The researcher then proceeded with executing the

simulation on the host environment. Throughout the lifetime of the simulation, the

researcher continuously observed the execution to ensure no interruptions or early

142

execution stoppage happened due to memory/CPU utilization problems on the host

environment. This was done to eliminate potential partial or incorrect simulation results.

• Results Collection: Once a simulation iteration was done, the researcher moved towards

collecting the generated data based on the following categorization:

o Detection-related Results: The researcher wrote the underlying IDS code to output

each final intrusion decision to an output text file. Each line of the contents of the

output file included the decision-making node, suspect node, decision

(malicious/innocent), and attack type.

o Bandwidth-related Results: The researcher used the trace files generated by ns-2

to calculate the AED values for each iteration. The researcher did not write any

custom code to output bandwidth-related data, as ns-2 does that without the need

for any modifications. The trace files were then analyzed to extract the AED value

based on the calculations outlined in Chapter 3.

• Evaluation Metrics Calculations: After each iteration, the researcher manually inspected

the text file from the “Detection Results” step and calculated the evaluation metrics

values based on the calculations outlined in Chapter 3. Those values were documented

and are presented in the next sections.

• Results Documentation: the researcher used the following data presentation methods to

document the results of the experiments:

o Tables: these were used to document the results of the evaluation metrics

calculations including TP, TN, FP, FN, DTR, and FPR.

o Graphs: these were used to visually plot the DTR, FPR, and AED calculation

results throughout the conducted experiments.

143

Experiments

Experiment 1 - Thresholds Identification

The first experiment following the research implementation involved identifying attacks

and IDS-related thresholds. Prior to testing the actual implementation of the proposed IDS, the

researcher ran multiple simulations on the test MANET to calculate attack thresholds. The

researcher implemented the attack models as outlined in Chapter 3 then proceeded towards

finding a consistent threshold for each attack model. This consisted of simulating five iterations

of the test MANET with random nodes launching each type of attack (black hole, gray hole,

modification, flooding, and rushing). After consistent thresholds were identified, the researcher

ran three more simulations but with mixed attacker types. The goal was to validate the

consistency of the identified thresholds in scenarios where a mixture of attacks exists while

ensuring such scenarios would not affect the accuracy of the identified thresholds. The

thresholds were adjusted manually as iterations went on until the researcher found threshold

values that are consistent in all mixed attackers scenarios. The final attack thresholds along with

other system thresholds (discussed next) are documented in table 5 below.

Threshold Value

Recency of communications (rrec) 4 s

Reciprocity and shared knowledge (rrsh) 16

144

Time since first communication (rt) 10 s

Black hole threshold (bt) 0.9 x total packets received by suspect

Modification threshold (mt) 0.5 x total packets received by suspect

Rushing threshold (rt) 2.0 s

Flooding threshold (ft) 800 bytes

Gray hole threshold (gt) 0.4 x total packets received by suspect

STBM interval (t) 5 s

LDM interval (tl) 6 s

Decision threshold (dft) 0.7132

Minimum packets collected (pc) 20

Minimum number of strong-ties (st) 5

Table 5 - Proposed System's Thresholds Values

Data Analysis

To identify the IDS threshold values, discussed in Chapter 3, the researcher simulated the

test MANET with both IDS and attacker nodes. The first simulation produced inconsistent

results from the different IDS nodes in making the final intrusion detection decisions. Following

up by running multiple simulations while monitoring the execution output, the researcher noticed

that the inconsistency resulted from the lack of a final detection decision threshold. The

researcher has noticed that for IDS nodes to make consistent final intrusion detection decisions, a

145

threshold was needed to define the minimum value for the final DST calculations. When the

value stipulated in the threshold is crossed, the suspect node is declared as malicious for the

specific attack type. This was referred to as the final decision threshold (dft).

Such a threshold was critical, specifically when the final intrusion decision indicated the

suspect node as malicious. In such cases, before identifying dft, a node would be considered

malicious if the final DST value for maliciousness was equal to or greater than 0.5. However,

inspection of the decision output files showed that this resulted in rare cases where highly mobile

nodes got mistaken as malicious. The researcher then ran four simulations with a mixture of

attackers to identify the accurate value for dft. By running the final decision threshold

identification simulation, and identifying it as 0.7132, the researcher noticed that the rare cases

of inaccurate decisions no longer appeared in the results.

To identify the STBM thresholds, the researcher ran the test MANET with no attackers

for three iterations. Using the resulting thresholds values, the researcher ran the proposed IDS in

a MANET with a mixture of attackers for six iterations. During the implementation of the

proposed IDS, the researcher coded the system to write the strong-ties of each IDS node to a text

file for verifying the implementation of ties calculations. With each iteration, the researcher

inspected the resulting ties file to examine the formulated ties throughout the simulation. The

researcher adjusted the mobility of randomly chosen nodes to be higher than others to ensure the

accuracy of these thresholds in situations where a node is legitimate but has abandoned its initial

position in a social community. With each iteration, the researcher had to manually adjust the

thresholds until reaching consistent results with each new iteration. The final threshold values

obtained produced accurate and consistent identification of the social ties, based on the

146

description in Chapter 3, regardless of the total number of attackers in the network. These values

are documented in table 5 above.

While inspecting the detection decisions output files, the researcher noticed that some

nodes were sending CDM replies to requests initiated by their social circles without enough

collected information about the suspect node. Even though these cases did not affect the

decision accuracy, thanks to the application of DST, their unnecessary replies added extra

bandwidth utilization. By inspecting the intrusion decision log files, the researcher found that a

detection decision can still retain accuracy while minimizing extra CDM replies by enforcing a

minimum packets collected threshold (pc). This threshold is defined as the minimum packets a

strong-tie node has collected on a suspect node.

By using pc, strong-ties that have very little or no collected packets on a suspect should

not send out their replies as they do not affect detection accuracy but only increase bandwidth

utilization. By manually adjusting the value of (pc) over four simulations, the researcher found

that assigning a value of 20 to pc yielded no negative effects on the detection accuracy. This

means a node can send out a CDM reply about a suspect node, if and only if it has collected at

least 20 packets about the suspect. It’s worth mentioning that enforcing such a threshold does not

interfere with the lack of evidence calculations for DST.

Primarily, pc ensures that an IDS node has sufficient data to suspect a node’s

maliciousness. That data might have strong, little or no evidence supporting the suspicion,

which is what is needed for DST. Additionally, pc ensures that strong-ties outside of the

transmission range of a suspect do not weigh in their individual decisions without any

observations. Experimental simulations have shown that excluding this threshold results in

inaccurate decisions because nodes with no observations at all would respond with a high

147

uncertainty value against the suspect. This, in turn, resulted in cases where malicious nodes were

considered as innocent, as such values affect the final DST calculations. These occurrences

greatly impacted detection results in cases where more than one node returned high uncertainty

due to the lack of any observations against the suspect. On the other hand, after applying pc, the

trace files analysis indicated slight improvement in the AED values. Further analysis of AED

values of the proposed IDS is presented in the next sections.

After running the initial simulation iterations, the researcher noticed some nodes had few

strong-ties but still were making final intrusion detection decisions. By inspecting the ties output

files from each testing iteration, the researcher noticed that results from decisions based on

replies from five or more ties scored a higher certainty in the final detection decision value than

those with less ties. Based on this observation, the researcher adjusted the CDM requests to

check for a minimum number of strong-ties (st) before initiating the cooperative detection

process. This also resulted in less unnecessary CDM requests in the network and, ultimately,

less bandwidth utilization. The researcher then executed four simulations with the new condition

applied and noticed results were consistently accurate with the certainty of the final detection

decision values at 0.758 and higher.

The last part of the threshold identification phase involved collecting and documenting

the AED values of the test MANET without the presence of the proposed system. The researcher

ran ten simulations. These started with five attackers in the first iteration and then five more

attackers were added for each consecutive iteration. The final iteration had a total of 50

attackers. The researcher then analyzed the resulting trace file from each iteration to extract and

document the AED values of the test MANET. Figure 2 below shows the resulting AED values

148

of the test MANET without the implementation of the proposed system, referred to as no-IDS

MANET.

Figure 2 - AED Values of no-IDS MANET

Figure 2 above shows a continuous increase of AED values in the test MANET as more

attackers occupy the network. These results were caused by more attackers dropping packets,

delaying packet forwarding, and affecting other nodes survivability through exhausting their

resources, causing less packets to be delivered successfully to their destination (Wazid, Katal,

Sachan, Goudar, & Singh, 2013; Garg & Chand, 2014; Kumar, Vijay, & Suhas,

2016). Additionally, route discovery operations increase as nodes try to find alternative routes to

149

deliver packets successfully to their destination. This adds extra delay in the delivery process

until such routes are discovered, if any (Abdelshafy & King, 2013).

Experiment 2 - Performance Evaluation of the Proposed IDS

After establishing the required thresholds for the proposed IDS, the researcher installed

the developed IDS module on all nodes in the test MANET. The researcher then ran ten

iterations of the same simulation where no attackers exist in the network to measure the

consistency of the IDS operations. The researcher then checked the consistency of the decision

output files across all iterations. Inspection of such files revealed the expected consistency as the

IDS did not issue any alarms in the attack-free network. Once that was established, the

researcher included attackers and IDS nodes in the same network. This consisted of first

installing the IDS module on all nodes in the test MANET. Then, the researcher picked random

nodes and uninstalled the IDS module from each, and then installed a randomly-chosen attack

module. The attack module was one of the five attacks identified in the previous chapter (black

hole, gray hole, modification, rushing, and flooding).

As outlined in the previous sections, the attack-module type was chosen randomly in each

simulation iteration. This was done to eliminate any biases towards inclusions of certain attacks

that might be easier to detect than others. This experiment was divided into ten simulation

iterations. Each iteration included a number of random attacker nodes, and the rest were IDS

nodes. Iterations were identified based on the total number of attackers in the network starting

from five attackers, adding five more at each consecutive iteration, and ending with 50 attackers.

Each iteration ran for a period of 500 seconds, during which the researcher monitored the

execution without intervention. Monitoring the execution of each iteration was necessary to

150

ensure no errors occurred due to hosting environment issues. Ensuring an error-free run for each

iteration preserved the accuracy of the results. This was important for the accuracy because such

errors, without monitoring, could have potentially stopped the execution of the simulation and

resulted in partial results, leading to inaccurate data analysis. After the end of each iteration, the

researcher collected the intrusion detection decisions from the decision output files, mentioned in

the previous sections. The researcher then calculated the detection evaluation metrics, previously

outlined in Chapter 3. The results are documented in table 6 below.

Total

attackers

TP TN FP FN DTR FPR

5 7 30 2 0 1.00000 0.0625

10 14 56 2 1 0.933333 0.01754

15 19 66 1 2 0.90476 0.014925

20 23 58 4 2 0.92000 0.06451

25 27 57 3 1 0.96428 0.05000

30 51 26 1 3 0.94444 0.03703

35 54 40 1 2 0.96428 0.02439

40 50 30 2 4 0.92592 0.06250

151

45 70 24 1 3 0.95890 0.04000

50 109 33 2 5 0.95614 0.05714

Table 6 - Evaluation Metrics Values of the Proposed IDS

Figure 3 - DTR Values of the Proposed IDS

152

Figure 4 - FPR Values of the Proposed IDS

Data Analysis

Table 6 above shows the incremental increase of the total number of TPs as the number

of attackers increase in each iteration. This happened because the first iteration had only five

attackers that could potentially break the links between social communities. As such, IDS nodes

were able to form a larger number of strong-ties and, eventually, social communities. This

resulted in the following advantage: if one node makes the final detection decision towards a

malicious attacker, the decision can reach a larger number of nodes in their communities. This

meant that if any of the nodes in that certain community encounter the attacker as nodes move

around the network, it would not have to go through the detection process again. This enables

153

less bandwidth utilization by eliminating redundant detections. Additionally, it reduces the

number of TPs as seen in table 6 above.

On the other hand, as the total number of attackers increase in the network, large social

communities start decreasing. This leaves IDS nodes with less total strong-ties and eventually

contributes to the formation of smaller social communities. This activity occurs because

increased attackers break established connections within social communities. As IDS nodes

detect malicious attackers, they remove them from their routing table, leaving the connection to

distant nodes potentially broken. This, in turn, results in the STBM removing strong-ties from

the STT since they might not satisfy the strong-tie features discussed in Chapter 3. Eventually,

the process causes smaller communities to form with potentially no communications to distant

communities. This then results in potentially triggering the detection process for the same

attacker node(s) multiple times as each smaller community attempts to learn about the status of

the malicious node(s).

Additionally, as attackers occupy large portions of the network, communities with less

strong-ties might not be able to initiate the detection process. This is because of the established

st restricting IDS nodes from initiating cooperative investigation when their total strong-ties do

not exceed that threshold. Besides, less nodes participating in the detection process means

weaker collective evidence established to support the final decision as opposed to that of larger

communities. This resulted in the presence of FN values in the output decision files due to an

inability of some nodes to collect strong-evidence against suspect nodes. However, the total

number of FNs remained low across all iterations with a lowest value of zero and a highest of

five when half the network was occupied by malicious nodes. Nonetheless, DTR remained high

with a highest value of 1.00000 and a lowest of 0.90476, as shown in figure 3 above.

154

The above results show a presence of FP values throughout the experiment. However,

the proposed system managed to keep the total number of FPs as low as one with a highest value

of four. Even when the number of attackers increased, the total number of FPs remained low.

This is mainly due to the combined application of social communities and DST. The application

of social communities restricted IDS nodes from producing high numbers of FPs as more

attackers joined the network. Such an application forced IDS nodes to only consider reports

coming from strong-ties. Thus, eliminating situations where false reports coming from malicious

nodes in aim to skew the final detection decision are considered.

Working in concert with social communities, the application of the DST contributed to

the low total of FPs where IDS nodes incorporated lack/little evidence in the final decision

making. This in turn, saved innocent nodes from being accused as malicious due to some of the

strong-ties observing abnormal behaviors where as others did not have enough evidence

supporting such accusations. Such behaviors might have resulted from high mobility or resource

consumptions of the suspect nodes. In these cases, legitimate nodes managed to avoid false

accusations, resulting in an overall low total number of FPs across all iterations.

The proposed IDS sustained a high total of TNs across throughout the experiment, with

the lowest value being 24 and the highest being 66. The presence of TNs in this experiment

resulted from situations where innocent nodes were saved from being falsely accused as

malicious due to some IDS nodes observance of abnormal activities. This is due to the

cooperative nature of the system solidified by considering observations only from strong-ties as

well as enforcing lack of evidence in the final decision making. As opposed to IDS systems

where a node gets accused for a certain attack as soon as it crosses a predefined threshold

(Nadkarni & Mishra, 2004; Karim, Rajatheva, & Ahmed, 2006; Tangpon, Kesidis, Hsu, &

155

Hurson, 2009; Lauf, Peters, & Robinson, 2010), the proposed system does not rely solely on the

attack thresholds to make such accusations.

Instead, the proposed IDS incorporates multiple restrictions before initiating any

accusation against a node. These restrictions include attack thresholds, collected evidence over a

period of time, minimum number of strong-ties, and minimum number of packets observed from

the suspect node. All these restrictions must be met for an IDS node to initiate an accusation

against a suspect node. Even so, the suspect remains innocent until all DST values come back

from the initiating node’s social circle in which a final detection decision is made. The high total

of TNs accompanied by low totals of FPs across all iterations contributed to the low FPR values.

The proposed system recorded FPR values as low as 0.01492 and a highest of 0.06451.

Figure 4 above shows how the FPR values for the different iterations do not follow a

continuous increase corresponding to the total number of attackers in the network. In current

CIDs, a common observation found in the literature is the proportional increase of FPR as more

attackers join the network (Mustafa & Xiong, 2013; Ullah, Khan, Ahmed, Javaid & Khan, 2016;

Alattar, Sailhan & Bourgeois, 2012; Mahmoud & Shen, 2010). The proposed IDS overcame this

problem through the implementation of DST in decision making. As such, the reliance of DST

on the collected evidence prevented IDS nodes from making accusations against other nodes

without strong evidence. As attackers increase, large communities break into smaller

communities leaving potentially less nodes participating in the final decision making. In cases

where not enough or no strong evidence exists, these nodes avoid making false accusations

against legitimate nodes. This minimizes the total number of FPs as more attackers join the

network.

156

After documenting the detection evaluation metrics, the researcher calculated the AED

values based on the corresponding calculation identified in Chapter 3. This involved analyzing

each trace file of all simulation iterations to extract these values. Documenting these values was

critical to demonstrating the proposed system’s ability to fulfill the second goal of this research:

minimizing bandwidth consumption throughout cooperative detection operations. Figure 5

below shows these values along with the corresponding AED values of no-IDS MANET from

experiment 1.

Figure 5 - AED of Proposed IDS vs. no-IDS MANET

157

Figure 5 above shows how the proposed IDS managed to maintain a consistently low rate

of AED, as compared to the no-IDS MANET, despite the increase of the total number of

attackers in the network. This happens because the network starts with a small number of

attackers and nodes form large social communities with a higher total of strong-ties. This

formation results in the successful delivery of data and detection-related packets between nodes

in a single community as well as packets between different communities. As the number of

attackers increase, the link between strong-ties may break, resulting in smaller social

communities. However, due to the implementation of the proposed IDS, nodes re-route their

packets through non-malicious nodes as soon as a malicious attacker is confirmed in the final

DST calculations of the detection process. Additionally, smaller communities with no-legitimate

weak-ties to other communities keep their detection process contained in their small

community. This results in less packet loss as opposed to detection-related data flowing through

malicious nodes between communities.

On the other hand, as malicious nodes occupy a larger portion of the network, delivery of

detection-related packets gets affected. This is due to the packet loss encountered from

malicious nodes dropping pass-through traffic. Additionally, even with IDS nodes re-routing

packets around malicious nodes, smaller social communities continue to break down into smaller

communities with less strong-ties. This results in less packets delivered around the network as

strong-ties end up with fewer links to communicate with each other. Besides, some nodes might

not be able to initiate the detection process since the total number of their strong-ties, as a result

of a large number of attackers, does not suffice st identified previously. Additionally, as nodes

get separated from each other by attackers breaking the corresponding links, more route-

discovery queries are issued. This causes delays in packet delivery as nodes continue to look for

158

a path with legitimate links to deliver such packets. The duration of establishing such paths, if

even applicable as some nodes may potentially fail to do so as attackers occupy larger areas of

the network, causes an increase in the AED values (Abdelshafy & King, 2013),

The comparison between the implementation of the proposed IDS versus no-IDS

MANET shows improvements in the AED values as more attackers join the network. However,

the goal of this study was to evaluate the proposed system’s ability to minimize bandwidth

consumption throughout the detection process. To examine the proposed system ability to fulfill

that goal, a comparison of AED values between the proposed system and a CCIDS

implementation is presented in the next sections.

Experiment 3 - Stand-alone IDS vs. Proposed IDS’s Detection Accuracy Evaluation

This experiment was intended to compare the detection accuracy of the proposed system

against a stand-alone version of itself. Before conducting this experiment, the researcher

modified the original implementation of the proposed IDS. The modification involved removing

the STBM, CDM, and GRM components along with changing the LDM to remove any calls to

the CDM. This, in turn, removed all cooperative detection components from the IDS to match

the stand-alone IDS definition outlined in Chapter 2. Additionally, the DST calculation code in

the LDM was modified to make an intrusion decision after calculating the final DST value for

each node. As such, all intrusion detection decisions were made individually by the IDS node

without any cooperation or information sharing with the neighboring nodes. All STBM and

CDM related thresholds were removed as they were irrelevant for this experiment.

159

The researcher then proceeded with a total of five test simulations to ensure that the

modifications matched the description provided for the stand-alone IDS. In each iteration, the

researcher selected a random node out of the total 100 nodes in the test MANET to install the

stand-alone IDS module on. Each simulation ran for 100 seconds. After each iteration, the

researcher inspected the decision output files and manually checked that all decisions were made

solely by the randomly-selected IDS node. Manual modifications were made after iteration one

and two as the final DST values were being printed out multiple times per each node. The

researcher then corrected the LDM code to output an intrusion decision once per node per

interval (tl). By inspecting the output results from iterations three to five, the researcher observed

consistency of the implementation in regard to the stand-alone description provided in Chapter 2.

Once accuracy of the implementation was established, the researcher proceeded to

experiment simulations to extract detection evaluation metrics. The simulation procedures

followed the same format as experiment 2. A total of ten simulations were executed. The first

simulation started with five randomly-selected attackers, and five more attackers were added

consecutively for each following iteration. Each duration spanned a total of 500 seconds. The

researcher closely monitored each iteration to ensure no errors or sudden interruptions happened

during simulations as a result of a sudden failure of the hosting environment. At the end of each

iteration, the resulting detection decisions file was manually inspected to calculate the detection

evaluation metrics as discussed in Chapter 3. The collected metrics are documented in table 7

below:

160

Total

attackers

TP TN FP FN DTR FPR

5 0 45 9 0 0.00000 0.16666

10 2 41 14 12 0.14285 0.25454

15 1 36 8 13 0.07142 0.18181

20 9 38 11 41 0.18000 0.22448

25 12 31 15 37 0.24489 0.32608

30 8 29 12 25 0.24242 0.29268

35 9 23 5 44 0.16981 0.17857

40 11 24 6 58 0.15942 0.20000

45 12 15 6 55 0.17910 0.28571

50 11 14 10 50 0.18032 0.41666

Table 7 - Evaluation Metrics Values of the Stand-alone IDS

161

Figure 6 - DTRs of Proposed IDS vs. Stand-alone IDS

162

Figure 7 - FPRs of Proposed IDS vs. Stand-alone IDS

Data Analysis

Table 7 above shows the consistency of low TPs across all iterations, demonstrating the

incapability of the stand-alone IDS in all cases to efficiently identify attackers in the network.

This is based on the manual inspection of the detection decision output files, which revealed that

the randomly-chosen IDS node was only able to detect attackers when they moved within its

transmission range. As such, a lack of a wider view of the network rendered the stand-alone IDS

incapable of observing and eventually detecting malicious activities happening in other parts of

the network. This can be seen by the low overall values of TPs across all iterations.

163

In comparison with the proposed CIDS, it consistently maintained a high number of TPs

across all iterations. Such results emphasize the significance of the application of social

communities in keeping all IDS nodes informed of the security situation of the entire

network. Additionally, the participation of trusted strong-ties in the final decision making

significantly improved the accuracy of detecting malicious nodes, as seen in experiment 2 in the

resulting TP values. As opposed to the stand-alone IDS where the IDS node made all final

detection decisions on its own. This significantly impacted the detection accuracy, as observed

across the resulting TP values.

On the other hand, table 7 shows how FPs of the stand-alone IDS remained high across

all iterations. This is due to the fact that the stand-alone IDS node made all final DST

calculations based on one-sided evidence, that is, its own. The lack of multiple DST calculations

from social communities as provided by in the proposed CIDS, left the detecting node here with

significant error-prone decision making. This resulted in a high number of FNs where malicious

nodes were not detected as well as high FPs from falsely accusing innocent nodes. This reveals

the criticality of multiple evidence to support the final detection decision and ensure the overall

accuracy of the detection process.

Observing the TN values of the stand-alone IDS, table 7 above shows that the stand-alone

IDS suffered from continuous degradation of the total TNs as more attackers joined the network.

The stand-alone IDS ended up with a total TNs as low as 14 when half of the network was

occupied with attackers. This was noteworthy when compared to those of the proposed IDS,

which resulted in a high TNs of 33 in the same scenario. The proposed IDS managed to produce

the high TNs due to the cooperative DST calculations that, as observed from the data, have saved

a large number of innocent nodes from being marked as malicious. Such cooperative

164

calculations were ultimately a result of the implementation of the concept of social communities

in the proposed system.

The side-by-side comparison of DTRs and FPRs in figure 6 and 7 above, between the

proposed IDS and a stand-alone IDS implementation shows two major observations. First, it

shows the significance of implementing the concept of social-communities to provide a wider

view on the network and utilize detection information coming only from trusted strong-ties. This

is opposed to relying on a single observation from the IDS node to determine the final detection

decision. Examining the DTR and FPR values of the two implementations reveals the obvious

lack of detection accuracy in the stand-alone IDS as compared to the proposed system. This, in

turn, shows the failure of the stand-alone IDS in fulfilling the goal of high detection accuracy

with low false alarm rates. Table 7 above shows that the stand-alone IDS resulted in DTR values

as low as 0.00000 with a highest of 0.24489. This was noteworthy when compared to the

proposed IDS, as it maintained a high DTR rate with a lowest of 0.90476 and a highest of

1.00000 across all simulation iterations.

Additionally, the stand-alone IDS revealed the significance of applying DST in a

cooperative manner when attempting to reduce and possibly eliminate false alarms in the

network. A side-by-side comparison between the FPR values of the stand-alone versus the

proposed IDS, as shown in figure 7 above, reveals a significant difference in the resulting values.

The stand-alone IDS resulted in high FPR values, with the lowest being 0.16666 and the highest

being 0.41666. As compared to the consistently low FPRs of the proposed system, which had a

highest of 0.06451 and a lowest of 0.01492. The overall FPR values for the stand-alone IDS

were significantly higher than those of the proposed IDS across all iterations. The stand-alone

IDS suffered from such a high FPR because it lacked the significant implementations of DST

165

and social communities and was incapable of accurately differentiating malicious from

legitimate nodes. As opposed to the proposed IDS, which utilized the power of strong-ties along

with DST in which lack/little evidence was taken in consideration in the final decision

making. This in turn resulted in lower FPRs across all iterations as seen in figure 7 above.

The above detection accuracy comparison between the proposed system and the stand-

alone IDS was conducted to evaluate the proposed system’s fulfillment of the research goal of

high detection accuracy. As outlined in Chapter 3, evaluating the detection accuracy in this

research relied on two evaluation metrics: DTR and FPR. Across all simulations in this

experiment, the proposed IDS managed to maintain high DTRs with values as high as 1.00000

and a lowest of 0.90476. This was noteworthy when compared to the stand-alone IDS, which

consistently produced low DTR values, with a highest of 0.24489 and a lowest of 0.00000. On

the other hand, the proposed system maintained low FPR values, even in situations where

attackers occupied half of the network, with a lowest of 0.01492 and a highest of 0.06451. This

was opposed to the stand-alone version, which suffered from high FPR values across all

simulation iterations, producing a lowest FPR of 0.16666 with a significantly high FPR of

0.41666 when half of the test MANET was occupied with attackers.

From the results, it can be seen that the lack of the application of the concept of social

communities combined with DST in the stand-alone IDS rendered the system inefficient even in

cases where only few attackers existed in the network. The stand-alone IDS lacked the

incorporation of lack/no evidence from strong-ties in the final detection decisions. As a result,

the stand-alone IDS made all final detection decisions based solely on the IDS node’s own

observations. On the other hand, the lack of the application of the concept of social communities

166

in the stand-alone IDS left the system incapable of incorporating trusted observations about

suspect nodes in final decision making.

Additionally, the stand-alone IDS did not have any visibility of the security status of

distant nodes, which left many attackers undetected, as can be seen from the consistently low

TPs in this experiment. Results from this experiment that revealed consistently low DTRs and

high FPRs show how the lack of a wider network visibility causes detection accuracy issues and

inefficiencies. In MANETs, nodes can leave and rejoin, move to random locations inside the

network or suffer from battery drainage affecting transmission activities. This leaves single

observation-based detection susceptible to falsely detecting such cases as malicious, as can be

seen from the high FPRs in this experiment.

Alternatively, the high DTR and low FPR values seen in the implementation of the

proposed system are due to the combination of the concept of social communities and DST.

First, the application of the concept of social communities forced the system to avoid accusing

innocent nodes of being malicious without having enough strong-ties to support the claim. This

can be seen in the consistently low FPRs found in experiment 2. Additionally, the application of

DST restricted the detection process from accusing innocent nodes without providing strong

supporting evidence from a node’s social community. The combination of these two concepts

allowed the IDS to minimize false accusations while making detection decisions based on strong

evidence coming from trusted sources. The proposed system when compared to the stand-alone

IDS has empirically shown the significance of these two concepts in fulfilling the research goal

of high detection accuracy.

167

Experiment 4 – CCIDS vs. Proposed IDS’s Bandwidth Consumption Evaluation

This experiment was intended to compare the proposed system’s bandwidth consumption

performance throughout the detection process against a CCIDS version of itself. Implementation

the CCIDS involved modifying the proposed IDS to follow a common methodology in current

CIDs where these systems disseminate detection-related information on a regular basis (Sterne et

al., 2005; Razak et al., 2008; Shahnawaz, Joshi, & Gupta, 2012; Hernandez-Orallo, Serrat, Cano,

Calafate, & Manzoni, 2012; Subramaniyan, Johnson, & Subramaniyan, 2014). The researcher

modified the DIM component of the original IDS to send detection-related information to the

IDS node’s one-hop neighbors at each interval (t). That information consisted of a list of nodes

along with their status (malicious/non-malicious) based on previous detection decisions made by

the node or received in an alarm from other nodes. The original implementation already

programmed the DIM to be aware of previous detection decisions as outlined in Chapter 3.

Additionally, to test the implemented functionality, the DIM was modified to print out the total

and destinations of detection-related packets sent at each interval (t). The purpose of that was to

have a visual way to verify the accuracy of this modification.

The researcher then proceeded with a total of five test simulations to verify that the

modifications matched the description outlined in Chapter 3. The researcher installed the

modified IDS on all nodes in the test MANET. In each iteration, the researcher selected a total

of ten random nodes out of the total 100 nodes in the test MANET to uninstall the IDS and

install a random attacker module on. Each simulation ran for 100 seconds. After each iteration,

the researcher inspected the DIM output file and manually checked that each IDS node was

sending its malicious/non-malicious nodes list to its neighbors. After completing the manual

inspection of the DIM output files for all simulations, no inconsistencies were found throughout

168

all five simulations. For each iteration, the researcher observed the implementation conformed

to the outlined description of the CCIDS implementation.

Once implementation accuracy was established, the researcher performed the experiment

simulations. The simulation procedures followed the same format as experiments 2 and 3. A total

of ten simulations were executed. These simulations started with five randomly-selected

attackers, and five more attackers were added consecutively for each of the following iterations.

Each simulation spanned a total of 500 seconds in duration. The researcher closely monitored

each iteration to ensure no errors or sudden interruptions occurred during simulations as a result

of a sudden failure of the hosting environment. After each iteration, the researcher analyzed the

resulting trace file to calculate the AED value based on the calculation described in Chapter 3.

Figure 8 below shows the resulting AED values across all iterations from the CCIDS as

compared to those collected from the proposed IDS.

169

Figure 8 - AEDs of Proposed IDS vs. CCIDS

Data Analysis

Figure 8 above shows how the network suffered higher delays in the presence of CCIDS

than those experienced with the proposed IDS. The CCIDS produced AED values as high as

0.25358 seconds with a lowest of 0.20674 seconds. The proposed IDS had consistently lower

AED values, which were as low as 0.15192 seconds with a highest of 0.18554 seconds. The

continuous dissemination of detection-related information contributed to the high delays

produced by the CCIDS as they increase the potentiality of packet loss and collisions in the

170

limited wireless medium of MANET (Lee & Gerla, 2000). Additionally, as more attackers join

the network, the size of detection-related packets increase due to the corresponding increase in

the size of the list of nodes sent by DIM. This caused the IDS nodes to consume extra bandwidth

to send/receive these large packets, causing depletion in the available network bandwidth and

delaying packet delivery (Vigna, Gwalani,Srinivasan, Belding-Royer, & Kemmerer, 2004).

Moreover, the continuous dissemination of these packets added extra transmission delays since

more routing discovery operations were needed to deliver these packets around malicious nodes

as more attackers joined the network (Abdelshafy & King, 2013). The negative impact of the

continuous dissemination of detection-related packets in CCIDS can be seen from the AED

values in figure 8.

Figure 8 above presents a comparison between the resulting AED values from the CCIDS

against the proposed system’s. This comparison reveals an obvious improvement of AED values

in the proposed system as opposed to CCIDS across all simulation iterations. In iterations where

only five attackers existed in the network, the CCIDS produced an AED value of 0.2147

seconds, while the proposed system’s AED value was 0.1647 seconds in the same scenario. On

the other hand, the CCIDS resulted in an AED value of 0.25336 seconds when half of the

network was occupied by attackers, while in the same scenario the proposed IDS produced a low

AED value of 0.18554 seconds. The proposed system demonstrated lower AED values in both

low and high attackers scenarios across all simulation iterations throughout the experiment.

Additionally, the CCIDS produced an overall average AED value of 0.2405 throughout

the experiment while the proposed IDS maintained an overall average AED value of 0.177

seconds. Per these results, the CCIDS produced an overall average of 63.5 milliseconds delay

over the proposed system’s. Additionally, the CCIDS maintained AED values of over 0.2067

171

seconds in all iterations with attackers present in the network. On the other hand, the proposed

system maintained AED values of less than 0.1856 seconds, even in situations where attackers

occupied half of the network.

The side-by-side comparison between the proposed IDS and the CCIDS version revealed

a major finding regarding the proposed IDS: the significance of applying the social communities

concept in the proposed system and its observed impact on reducing bandwidth consumption

throughout the detection process. This effect was consistent, even in scenarios where a large

number of malicious nodes existed in the network. Nodes formulate their social communities

utilizing the strong-ties features described in Chapter 3 without the need for continuous

information dissemination. This showed a positive impact on the bandwidth consumption, as

can be seen in the results. By enabling IDS nodes to be autonomous in their formation of social

communities, the proposed approach allowed less bandwidth consumption as opposed to, for

instance, relying on extra acknowledgement packets to establish such communities.

Additionally, the social communities restrictions that only alarm a node’s social

community instead of flooding the network reduce excessive packet transmission during the

detection process, resulting in less bandwidth consumption. Lastly, combining DST and social

communities to restrict the initiation of the detection process based on DST values, minimum

strong-ties needed to initiate the detection, and strong-evidence support eliminates the need for

excessive communications about a suspect node that might not be a suspect in the first place.

The primary purpose of this experiment was to evaluate the proposed system’s ability to

fulfill the research goal of minimizing bandwidth consumption throughout the detection

process. As outlined in Chapter 3, AED was used as the evaluation metric for that goal. From

the results above, it can be seen that the proposed system was better at conserving bandwidth

172

than the CCIDS implementation. The experiment tested the two systems against scenarios with

low numbers of attackers and those where attackers occupied large areas of the network. In all

cases, the proposed IDS consistently maintained lower AED values than those in the CCIDS

version. Additionally, the proposed implementation showed improved AED values in

comparison with the no-IDS MANET thanks to the GRM and DIM roles in excluding malicious

nodes from routing, resulting in more packets being delivered successfully. The application of

the concept of social communities combined with the DST during the detection operations

empirically demonstrated improvements in bandwidth consumption. This empirical proof can be

seen in when comparing resulting AED values for the proposed system and the CCIDS.

Findings

The primary objective of this research was to implement a CIDS capable of producing

high detection accuracy while minimizing bandwidth consumption throughout the detection

process. To evaluate the proposed system’s fulfillment of the stated goals, the implementation of

the proposed IDS was compared to a stand-alone IDS and CCIDS implementations. DTR and

FPR evaluation metrics were used to measure the system’s ability to meet the high detection

accuracy goal. Additionally, an AED evaluation metric was used to evaluate the system’s ability

to minimize bandwidth consumption throughout the detection process.

To evaluate the high detection accuracy goal of this study, a comparison of the intrusion

detection decisions was made between the proposed system and a stand-alone IDS

implementation, in the presence of a random mixture of attackers in the network. Research

findings from that comparison suggest that the proposed system succeeded in fulfilling the high

detection accuracy goal, with DTR values as high as 1.00000 with a lowest of 0.90476 and FPR

173

values as low as 0.01492 with a highest of 0.06451. This can be compared to the stand-alone

IDS, which resulted in a highest DTR of 0.24489 and a lowest of 0.00000 as well as a lowest

FPR of 0.16666 and a highest of 0.41666. Additionally, the proposed system managed to

maintain a low FPR of 0.05714 and a high DTR 0.95614, even when half of the network was

occupied by malicious attackers. In comparison, the stand-alone version showed a high FPR of

0.41666 and a low DTR of 0.18032 in the very same situation.

On the other hand, to evaluate the proposed system’s ability to fulfill the research goal of

minimized bandwidth consumption throughout the detection process, the researcher compared

the proposed IDS against the CCIDS implementation in scenarios where a mixture of random

attackers existed in the network. AED was used as the evaluation metric for this purpose.

Findings from the comparison showed the proposed system was able to achieve minimized

bandwidth consumption goal with consistently low AEDs with values as low as 0.15192 seconds

with a highest of 0.18554 seconds. Comparatively, the CCIDS recorded higher AED values with

a highest of 0.25358 seconds and a lowest of 0.20674 seconds. The proposed IDS resulted in

63.5 milliseconds less overall average delay than the CCIDS. Additionally, findings show that

the proposed system was successful in improving AED values as opposed to MANETs with no

IDS installed. This is due to the application of the social community concept, which allowed

IDS nodes to route traffic through legitimate nodes and, thus, eliminate delays/droppage caused

by malicious nodes.

Results from this research empirically demonstrated the advantages of the application of

social communities combined with DST in the proposed IDS. The autonomy provided by the

concept of social communities allowed nodes to build their strong-ties without the need for

excessive communications. This combined with the restrictions enforced by the application of

174

the DST through eliminating initiation of cooperative detection without strong evidence, resulted

in the system maintaining low AED values throughout the experiment. On the other hand, the

enforcement of the concept of social communities on nodes to only consider detection reports

from strong-ties eliminated potential false accusations coming from anonymous nodes. This,

alongside the application of DST, in which a lack of or no evidence is considered in the final

detection decision, resulted in the high DTRs and low FPRs previously discussed. The

consistency of these results, throughout the lifetime of the experiment, showed the viability of

applying social communities combined with DST in a CIDS implementation to achieve high

detection accuracy and minimized bandwidth consumption in the detection process.

It should be noted that the research was conducted to evaluate the application of the

concept of social communities combined with DST in a CIDS implementation towards the

achievement of the research goals. As such, the research did not cover all attack types that a

MANET could be exposed to. Only a number of these attacks were implemented to contain the

scope of this study and evaluate the viability of the proposed system. Additionally, the research

in this study did not cover situations where MANETs have a total number of nodes exceeding

100, to keep the scope of this study manageable. It was thought that 100 nodes in the test

MANET is a sufficient number to simulate and evaluate the proposed system as followed by

similar research studies in this area (Theresa & Sakthivel, 2017; Sangeetha & Kumar, 2018;

Veeraiah & Krishna, 2018).

175

Summary of Findings

The study aimed to develop a CIDS capable of producing high detection accuracy while

minimizing bandwidth consumption throughout the detection process. The research proposed

the application of social communities in combination with DST in a CIDS implementation to

achieve these goals. Several experiments were conducted to evaluate whether the proposed IDS

fulfills the stated goals. Results of these experiments were examined and quantitatively

evaluated. Outcomes of this study show the success of the proposed system in achieving both

goals, even in situations where large number of attackers existed in the network. To evaluate the

proposed system’s fulfillment of the high detection accuracy goal, the study quantitatively

compared the proposed system against a stand-alone IDS implementation.

The proposed system produced DTRs as high as 1.00000 with a lowest of 0.90476.

Comparatively, the stand-alone IDS implementation achieved a highest DTR value of 0.24489

and a lowest of 0.00000. Similarly, the proposed system’s results produced consistently low

FPRs, with the lowest value at 0.01492 and the highest at 0.06451. This is opposed to a lowest

FPR of 0.16666 and a highest of 0.41666 for the stand-alone version. The results of the proposed

system’s detection accuracy far exceeded those of the stand-alone IDS.

Additionally, to evaluate the proposed system’s ability to fulfill the study’s second goal

of minimized bandwidth consumption throughout the detection process, the system was

evaluated against a CCIDS implementation. Such an implementation followed an approach

similar to the CIDS approaches found in the current literature, where detection-related

information is disseminated over the network on a regular basis (Sterne et al., 2005; Razak et al.,

2008; Shahnawaz, Joshi, & Gupta, 2012; Hernandez-Orallo, Serrat, Cano, Calafate, & Manzoni,

176

2012; Subramaniyan, Johnson, & Subramaniyan, 2014). Several simulations were conducted to

extract the results of that comparison.

Quantitative comparison of these results revealed the proposed system’s ability to

achieve the aforementioned goal, with AED values as low as 0.15192 seconds with a highest of

0.18554 seconds. This was opposed to the CCIDS, which had a lowest value 0.20674 seconds

and a highest value of 0.25358 seconds. The CCIDS resulted in an overall average of 63.5

milliseconds additional delay over the proposed IDS. Throughout the experiment, the proposed

system resulted in lower AED values as compared to the CCIDS version, empirically

demonstrating the proposed system’s ability to minimize bandwidth consumption throughout the

detection process.

The proposed system was implemented and evaluated through simulations in multiple

experiments. These experiments involved randomized types of attackers with situations where

attackers occupied half of the network. The developed system was able to successfully meet the

research goals consistently across all experiments. Therefore, the results of this study

demonstrate the success and efficacy of combining the social communities concept and DST in a

CIDS implementation to improve detection accuracy while reducing bandwidth consumption

throughout the detection process.

177

Chapter 5

Conclusions, Implications, Recommendations, and Summary

Conclusions

Current CIDS found in the literature suffer from high bandwidth overhead throughout the

detection process as well as high false alarms rates. This research targeted the development of a

CIDS capable of producing high detection accuracy while minimizing bandwidth consumption

throughout the detection process. The study demonstrated the viability of combining social

communities and DST in a CIDS implementation to achieve the presented research goals.

The study provided empirical evidence supporting the proposed solution through the

implementation and quantitative evaluation of the proposed CIDS. Evaluation of the detection

accuracy involved modifying the proposed system to implement a stand-alone IDS version and

compare the results. Experimental evaluation demonstrated that applying the social communities

concept along with DST in the proposed CIDS resulted in high detection accuracy, with

consistently high DTRs as high as 1.00000 with a lowest of 0.90476. Comparatively, the stand-

alone IDS implementation developed in this research resulted in consistently low DTRs, with a

highest value of 0.24489 and a lowest of 0.00000. At the same time, the proposed CIDS

maintained low FPRs with a lowest value of 0.01492 and a highest value of 0.06451 throughout

the lifetime of the experiment. Comparatively, the stand-alone IDS resulted in overall high

FPRs, with a highest value of 0.41666 and a lowest value of 0.16666. In fact, the proposed IDS

sustained a low FPR of 0.05714 with a DTR of 0.95614, even when half of the network was

178

occupied with malicious attackers. This occurred while the stand-alone IDS, in the same

scenario, produced a high FPR of 0.41666 and a low DTR of 0.18032.

The study evaluated the bandwidth consumption of the proposed CIDS by modifying the

proposed CIDS to implement a CCIDS and comparing the results. Experimental results

demonstrated the system’s ability to effectively minimize bandwidth consumption throughout the

detection process. The system produced AED values as low as 0.15192 seconds with a highest of

0.18554 seconds as opposed to a CCIDS implementation, where the lowest AED value was

0.20674 seconds and the highest was 0.25358 seconds. On average, the proposed system

produced reduced delays, represented in AEDs, of 63.5 milliseconds when compared to the

average AEDs produced by the CCIDS.

Throughout all simulations, the proposed system sustained high DTRs, low FPRs, and

low AED values. Additionally, the system did not suffer from an increase of FPRs proportional

to the increase of the total number of attackers in the network, as found in IDS solutions in the

current literature (Mustafa & Xiong, 2013; Ullah, Khan, Ahmed, Javaid & Khan, 2016; Alattar,

Sailhan & Bourgeois, 2012; Mahmoud & Shen, 2010). In fact, the proposed system maintained

low FPRs throughout the experiment, with values as low as 0.014925 with a highest of 0.06451.

Given the consistency of high DTRs, low FPRs, and low AEDs throughout the entirety of the

experiment, it can be stated that the proposed system succeeded in fulfilling the research goals of

high detection accuracy and minimized bandwidth consumption.

As previously stated in this research, current CIDSs suffer from degraded detection

accuracy due to the reliance on detection reports sourced from anonymous nodes. At the same

time, these solutions tend to create high bandwidth consumption as a result of their continuous

179

dissemination of detection-related information. This research aimed to address these issues by

applying the social communities concept and DST in a CIDS implementation. Experimental

results strongly demonstrated the proposed implementation was able to address the current issues

outlined above. The study concluded the combination of the social communities concept and

DST in a CIDS implementation was effective at increasing detection accuracy while minimizing

bandwidth consumption throughout the detection operations.

Implications

For a CIDS to be efficient, based on Cannady’s (2013) criterion, it needs to be able to

identify attacks accurately in a timely manner. This criterion shows the significance of high

detection accuracy and low bandwidth utilization in the effectiveness of an IDS. When it comes

to detection accuracy, an IDS must be able to accurately identify attackers while avoiding false

accusations against innocent nodes. On the other hand, an IDS should avoid over-consumption

of the bandwidth-constrained nodes of MANETs. This in turn, reduces the effects of the IDS

communications during normal network operations towards sustainable packet delivery. Thus,

attacks identification packets can be delivered on time throughout the network. This research

aimed to achieve high detection accuracy with minimized bandwidth consumption in a CIDS

implementation.

As the applications of MANETs are gaining a widespread adoption in more commercial

as well as military areas, so do their security threats and the significance of effective IDS

solutions (Banerjee, Nandi, Dey, & Saha, 2015; Keyshap, 2015). The primary implication of this

research is that the application of the social communities concept combined with DST can

180

produce high detection accuracy while minimizing bandwidth consumption when applied to a

CIDS implementation. The study has empirically shown through experimental evidence how the

combination of these two applications eliminates reliance on detection reports coming from

anonymous nodes in the intrusion detection process.

On the other hand, the consideration of a lack of or no evidence in the final intrusion

detection decisions reduced false accusations, thus low false alarm rates. Such a consideration

resulted in overall high detection accuracy in terms of accurately detecting malicious nodes

across all the experimental testing. The proposed CIDS demonstrated high detection accuracy

even in cases where half of the network was occupied by malicious attackers with DTRs as high

as 1.00000 with a lowest of 0.90476. The application of the social communities concept allowed

nodes to have the autonomy of forming strong-ties without the need for continuous

communications. At the same time, the restrictions that the DST enforced on the system

eliminated initiations of unnecessary cooperative communications without strong evidence.

Experimental results demonstrated the efficiency of the CIDS implementation ability to sustain

low bandwidth consumption, represented in consistently low AEDs, throughout the lifetime of

the experiment.

Another implication obtained from the experimental results showed that the proportional

increase of false alarms can be avoided by implementing the above-mentioned concepts. This is

due to the restrictions the proposed system enforced on the IDS nodes to initiate or respond to

cooperative detections. These include minimum strong-ties, minimum packets observed against

a suspect, attack thresholds, and the applied DST calculations. These restrictions contributed to

the hindrance of a proportional increase of false accusations against legitimate nodes, as

discussed on Chapter 4. As a result, the proposed system maintained a steady low-rate of false

181

alarms represented in the FPRs obtained throughout all the experiments, with values as low as

0.014925 with a highest of 0.06451. This contributed to the high detection accuracy goal and

saved the bandwidth-constrained network from unnecessary detection packets, which in turn

translates to less bandwidth consumption.

Recommendations

To contain the scope of this research to a manageable level, the researcher chose five of

the common attack types against MANETs, as discussed in Chapter 3. However, as

advancements in MANETs continue to move forward, so does the creativity of attackers to

invent new attack types (Cannady, 2013). Wider implementation of attack types is

recommended to evaluate the system’s viability against new, potentially more complicated attack

types.

Another recommendation for future research would be to extend the current

implementation of the proposed system’s LDM. Machine learning implementations for attack

detection demonstrated undeniable efficiency in detecting both known and unknown attacks

(Butun, Morgera, & Sankar, 2014). Future research may extend the LDM component to

incorporate a machine learning-based engine for attack detection. This could increase the

system’s effectiveness in detecting both known and unknown attacks. MANET implementations

are different depending on the deployment model. This difference introduces an increased

complexity on manual calculation of attack thresholds. By incorporating machine learning-based

detection in the LDM, the process of learning attack thresholds could potentially be reduced

tremendously while, at the same time, the system would gain the advantage of adapting the

detection process with network changes.

182

Lastly, this research implemented the LDM and STBM components as interval-based

modules. This meant that the LDM triggered the attack detection process at specific intervals, as

opposed to a continuous detection process. Similarly, the STBM calculated strong-ties features,

discussed in Chapter 3, periodically at a predefined interval. This implementation was meant to

contribute to lowering bandwidth consumption while conserving nodes’ energy. It would be

worthwhile for future research to investigate the variation of the LDM/STBM intervals and their

impacts on the accuracy of the detection process as well as overall bandwidth consumption in the

network.

Summary

The unique characteristics of MANETs have led to their wide adoptions in various

military and commercial fields. The infrastructure-less nature of MANETs allows them to be

deployed in various situations where no infrastructure exists, such as disaster relief sites and

battlefields. This is due to their ability to dynamically form topologies as each node in the

network acts as both host and router. On the other hand, nodes in MANETs have limited

resources, constrained-bandwidth, and limited wireless range. All of these distinctive attributes

made the mission of providing security solutions for MANETs a challenging task (Hubaux,

Buttyán, & Capkun, 2001; Cannady, 2010; Sheik et al., 2010).

Due to their dynamic nature, security solutions designed for fixed networks cannot be

applied to MANETs. Previous research proposed various types of solutions to the security

vulnerabilities in MANETs while keeping in consideration the limitations accompanied with

these networks (Kim & Jang, 2006; Mikki, 2009; Maleki, Dantu, & Pedram, 2002). The current

body of knowledge contains a large number of preventive solutions that attempt to block attacks

183

against MANETs before their occurrence. However, history has shown that these solutions

cannot survive on their own as their exploitability increases along with the increased

complexities of MANETs (Yang et al., 2004). As such, a second line of defense, represented in

IDSs, has gained strong momentum from researchers. An extensive body of knowledge exists in

the current literature pertaining to IDS solutions targeting intrusion-free MANETs. However,

most of these solutions fail to deliver their promise due to the dynamic nature of MANETs.

For IDS solutions to operate efficiently in such infrastructure-less networks, the

cooperative detection process is deemed mandatory (Mahmood, Amin, Amir, & Khan, 2009).

Various CIDS were proposed in the current literature targeting the inclusion of cooperativeness

in their implementations. However, all of the solutions suffer from two major problems: high

communication overhead caused by continuous information exchange and reliance on intrusion

reports originating from anonymous nodes. These result in high false alarms rates that cause

degradation in the detection accuracy as well as increased bandwidth consumption that might

disrupt the normal routing operations in such bandwidth-constrained networks.

The study developed a novel approach to implement an efficient CIDS by applying the

concept of social communities with DST. That is a CIDS capable of achieving high detection

accuracy while minimizing bandwidth consumption throughout the detection process. The

concept of social communities, which has never been applied to MANETs security before, was

implemented to improve detection accuracy. This was done by building strongly-tied

communities that enable the exchange of reliable detection information solely among nodes’

social circles. This addressed a major limitation that exists in current approaches: their reliance

on intrusion reports from anonymous nodes, which can result in high false alarms rates.

Additionally, the application of communities in this research allowed nodes the autonomy to

184

build their social circle without the need for extensive back-and-forth communications with other

nodes, thus minimizing bandwidth consumption.

Alongside the concept of social communities, this research proposed the application of

the DST to improve detection accuracy and minimize false alarms rates. Researchers have

applied DST in their security solutions in previous studies. However, the main issue with these

applications is the determination of trustworthiness and untrustworthiness of nodes when

weighing in nodes’ votes (Chen & Venkataramanan, 2005; Li & Joshi, 2009). This requires a

high bandwidth overhead imposed by trust-related information dissemination to establish

accurate calculations. Otherwise, DST can combine observations from nodes without regard to

their trustworthiness. However, this might yield inaccurate results in the presence of a large

number of malicious nodes in the network (Chen & Venkataramanan, 2005).

Very little research has been done towards the application of DST for intrusion detection

in MANETs. All of which relied on the calculated trustworthiness of nodes in the combined

decision-making process. This can be problematic in the presence of a large number of

malicious nodes because it can result in manipulated votes against legitimate nodes (Rajakumar

et al., 2014). The application of DST in this research targeted the elimination of detection

reports from anonymous sources, which usually result in a high rate of false alarms.

Additionally, the research utilized the DST against observations obtained solely from strong-ties

to handle cases where some of these nodes did not catch enough evidence against the suspicious

activity.

The goal of this research was to develop, through an experimental approach, a CIDS that

is capable of producing high detection accuracy while minimizing bandwidth consumption

185

throughout the detection process. The combination of social communities and DST in the

proposed CIDS aimed to address the study’s goals. This research used DTR and FPR evaluation

metrics to evaluate the proposed system’s ability to meet the research goal of high detection

accuracy. On the other hand, AED was used to evaluate whether the proposed system achieved

minimized bandwidth consumption as stated in the research goals. Extensive experimental

testing was conducted to evaluate the system in various scenarios where a mixture of random

attackers existed in the network. Experimental results showed that the proposed system’s

achieved DTR values were as high as 1.00000 and the FPR values were as low as 0.014925.

Additionally, the system managed to maintain low AED values throughout the experiment

iterations, with a lowest value of 0.15192 seconds and a highest value of 0.18554 seconds.

To further evaluate the system’s ability to meet the high detection accuracy goal, the

researcher implemented a stand-alone IDS version of the proposed system. The stand-alone IDS

underwent similar experimental evaluations as those for the proposed system. Results from all

evaluations showed success and demonstrated that the proposed system was more effective at

achieving high detection accuracy than the stand-alone IDS. Experimental evaluations revealed

that the stand-alone IDS achieved lower DTR values, with a highest value of 0.24489 and a

lowest value of 0.00000. As compared to the proposed CIDS, which achieved a DTR as high as

1.00000 with a lowest of 0.90476. Similarly, FPR values of the stand-alone IDS were as high as

0.41666 with a lowest value of 0.16666. Comparatively, the proposed CIDS maintained low

FPR as low as 0.014925 with a highest value of 0.06451.

On the other hand, the researcher implemented a CCIDS version of the proposed CIDS,

which disseminated detection-related information to other nodes on a regular basis. Same

experimental evaluations applied for the proposed CIDS were applied to the CCIDS. That

186

experiment’s focus was on collecting and quantitatively comparing AED values of the CCIDS

against those of the proposed IDS. The experimental results of the CCIDS revealed consistently

higher AEDs, as compared to the proposed IDS, with values as high as 0.25358 seconds with a

lowest of 0.20674 seconds. Comparatively, the proposed CIDS resulted in AED values as low as

0.15192 seconds with a highest of 0.18554 seconds. On average, the proposed IDS reduced

delays, represented in AED, by 63.5 milliseconds when compared to the CCIDS. Quantitative

evaluations empirically demonstrated the success of the proposed system’s ability to minimize

bandwidth consumption throughout the detection process, as compared to the CCIDS.

The study evaluated the viability of applying the concept of social communities along

with DST towards a CIDS implementation. Results from the study suggest that such an

application results in improved detection accuracy while maintaining minimal bandwidth

consumption throughout the detection operations. Empirical evidence from experiments

conducted in this research demonstrated consistent results from the proposed system. That is, the

system maintained high DTR, low FPR, and low AED values across all experiments, even when

half of the network was occupied with malicious attackers. Given the consistency of these values

throughout the entirety of the experiment, the study concluded that the proposed system

succeeded in fulfilling the research goals of achieving high detection accuracy and minimized

bandwidth consumption throughout the detection process.

This research resulted in two primary implications. First, the application of the concept of

social communities combined with DST can produce high detection accuracy while minimizing

bandwidth consumption when applied to a CIDS implementation. The study has empirically

proven, through evidence, how the combination of these two applications eliminate

considerations of detection reports coming from anonymous nodes in the intrusion detection

187

process. On the other hand, the consideration of a lack of or no evidence in the final intrusion

detection decisions helped reduce false accusations against innocent nodes, thus lowering false

alarm rates.

The second implication of this study suggests that the proportional increase of false

alarms can be avoided through the implementation of the concept of social communities and

DST. The restrictions that the proposed system enforced on the IDS nodes along with the DST

calculations contributed to the hindrance of the proportional increase of false accusations against

legitimate nodes. As a result, the proposed system maintained a steady low rate of false alarms

all across the experiment. Thus, this contributed to the high detection accuracy goal, and it saved

the network from unnecessary detection packets, which translated to less bandwidth consumption

Results of the study suggest three recommendations for future research. First, as the

research implementation covered only five attack types to contain the scope of the study,

research into more attack types is recommended. This would help evaluate the system’s viability

against new, potentially, more complicated attack types. Secondly, future research could variate

the LDM and STBM intervals and examine their effects on the overall detection accuracy and

bandwidth consumption. Lastly, previous studies demonstrated advancements in machine

learning techniques towards attack detection and their demonstrated ability to adapt to behavioral

changes in the network (Butun, Morgera, & Sankar, 2014). As such, another recommendation of

this study is to extend the LDM to include a machine-learning-based attack detection and

evaluate the impact of such an extension on the overall detection accuracy.

188

Appendix A

IDS Source Code

//IDS used in PhD research for Adam Solomon

//Dissertation titled "A Novel Cooperative Intrusion Detection System

//for Mobile Ad Hoc Networks"

//Nova Southeastern University

//***

// Global Objects

//***

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <list>

const double MAJORITY_THRESHOLD = 80;

const double FINAL_DECISION_THRESHOLD = 0.7132;

const double THRESHOLD_RECENCY_THRESHOLD = 4.0;

const double THRESHOLD_RECIPROCITY_SHARED_THRESHOLD = 16;

const double THRESHOLD_TIME_SINCE_FIRST_MESSAGE = 10.0;

const double BLACKHOLE_THRESHOLD = 0.9;

const double GRAYHOLE_THRESHOLD = 0.4;

const double MODIFICATION_THRESHOLD = 0.5;

const double GHOLE_COLLECTION_INTERVAL = 3;

const double BHOLE_COLLECTION_INTERVAL = 1;

const double LDM_DELAY_INTERVAL = 6.0;

const double STT_DELAY_INTERVAL = 5.0;

const double FLOODING_MAX_PACKET_SIZE = 800;

const double RUSHING_MAX_DELIVERY_TIME = 2.0;

const double MINIMUM_STRONG_TIES = 5;

const double MINIMUM_PACKETS_COLLECTED = 20;

struct Node

{

 int ip;

 int DATA_TOTAL;

 int RREQ_TOTAL;

 int RREP_TOTAL;

 double time_of_last_communication;

 double time_of_first_communcation;

 bool isMalicious;

189

 bool isStrongTie;

 list<Packet> packets;

 list<double> listOfPacketDeliveryTimes;

 list<double> listOfPacketSizes;

};

struct Packet

{

 int32_t ip_src;

 int32_t ip_dst;

 double time;

 char *data;

 int data_size;

 int protocol;

 const char *pk_type;

 int originPort;

 int destinationPort;

 bool isReceived;

 bool isForwarded;

 bool isModified;

 bool isToForward;

 double deliveryTime;

 PacketType type;

};

enum PacketType

{

 RREQ,

 RREP,

 _DATA,

 BROADCAST_IP_MESSAGE,

 OTHER

};

struct hdr_ids_alarm

{

 u_int8_t rq_type;

 u_int8_t reserved[2];

 nsaddr_t rq_dst;

 nsaddr_t rq_src;

 nsaddr_t malicious_node;

 double rq_timestamp; // when REQUEST sent;

 inline int size()

 {

 int sz = 0;

190

 sz = 8 * sizeof(u_int32_t);

 assert(sz >= 0);

 return sz;

 }

};

struct hdr_ids_cdm_req

{

 u_int8_t rq_type;

 int rq_id;

 u_int8_t reserved[2];

 nsaddr_t rq_dst;

 nsaddr_t rq_src;

 nsaddr_t suspect_node;

 int attack_type;

 double rq_timestamp;

 inline int size()

 {

 int sz = 0;

 sz = 8 * sizeof(u_int32_t);

 assert(sz >= 0);

 return sz;

 }

};

struct hdr_ids_cdm_rep

{

 u_int8_t rq_type;

 int rq_id;

 u_int8_t reserved[2];

 nsaddr_t rq_dst;

 nsaddr_t rq_src;

 nsaddr_t suspect_node;

 int attack_type;

 double rq_timestamp;

 double isMalicious;

 double isNonMalicious;

 double isUncertain;

 inline int size()

 {

 int sz = 0;

 sz = 10 * sizeof(u_int32_t);

 assert(sz >= 0);

191

 return sz;

 }

};

struct CDMReply

{

 int reqId;

 int repId;

 int replyingNodeIP;

 int suspectNodeIP;

 double rp_timestamp;

 AttackType suspectedAttack;

 double isMalicious;

 double isNonMalicious;

 double isUncertain;

};

struct CDMRequest

{

 int reqId;

 AttackType suspectedAttack;

 int initiatingNodeIP;

 int suspectNodeIP;

 double rq_timestamp;

 list<CDMReply *> replyQueue;

 bool isFullfilled;

 int totalRequestsSent;

};

struct AttackDSTValues

{

 AttackType attackType;

 double malicious;

 double nonMalicious;

 double uncertain;

};

struct GRMAlarm

{

 int maliciousNodeIP;

 bool isSentToAllTies;

 double timeAlarmSent;

};

enum AttackType

{

192

 Blackhole,

 Grayhole,

 Modification,

 Rushing,

 Flooding,

 None

};

//***

// DIM Component

//***

//DIM.h

#ifndef __DIM_H__

#define __DIM_H__

#include "global.h"

#include "aodv/aodv_rtable.h"

#include "aodv.h"

class DIM

{

 list<Node> Nodes;

 list<double> listOfPacketDeliveryTimes;

 list<double> listOfPacketSizes;

 void HandleListenedPacket(const Packet *p);

 void HandleReceivedPacket(const Packet *p);

 void SavePacket(int32_t source_ip, int32_t destination_ip, int source_ip, int

destination_ip, int sourcePort, int destinationPort, packet_t packet_type,

double pktime, const char *rt_type, int original_packet_size, Packet *p);

 void SaveNode(node *nd);

 Node *IsExistingNode(int ip);

 list<Nodes> GetAllSavedNodes() void NodeReceivedPacketToForward(Packet *p);

 void NodeForwardedPacket(Packet *p);

}

//DIM.cpp

//function to read packets listened

void

DIM::HandleListenedPacket(const Packet *p)

{

 hdr_ip *iph = hdr_ip::access(p);

 hdr_cmn *pk = hdr_cmn::access(p);

 hdr_mac802_11 *mh;

193

 mh = HDR_MAC802_11(p);

 hdr_aodv *ah = HDR_AODV(p);

 aodv_rt_entry *rt = rtable.rt_lookup(iph->daddr());

 bool isSourceMalicious = IsExistingNode(iph->src().addr_)->isMalicious;

 if (!isSourceMalicious)

 {

 SavePacket(iph->src().addr_, iph->dst().addr_, ETHER_ADDR(mh->dh_ta),

ip_dst, iph->sport(),

 iph->dport(), pk->ptype_, Scheduler::instance().clock(),

ah->ah_type, pk->size(), p);

 }

}

// function to handle saving packets

void SavePacket(int32_t source_ip, int32_t destination_ip, int source_ip, int destination_ip, int

sourcePort, int destinationPort, packet_t packet_type,

 double pktime, const char *rt_type, int

original_packet_size, Packet *p)

{

 {

 Node *nd = IsExistingNode(source_ip);

 if (source_ip != currentIP)

 {

 if ((nd = IsExistingNode(source_ip)) == NULL)

 {

 nd = SaveNode(source_ip, pktime);

 nd->ip = source_ip;

 if (rt_type == "RREQ")

 {

 nd->RREQ_TOTAL = nd->RREQ_TOTAL + 1;

 nd->pkt_type = RREQ;

 double rreq_delivery_time = pktime -

original_rreq_sent_time;

 nd->totalRreqPackts = nd->totalRreqPackts + 1;

 nd-

>listOfPacketDeliveryTimes.push_back(rreq_delivery_time);

 }

 else if (rt_type == "DATA")

 {

 nd->DATA_TOTAL = nd->DATA_TOTAL + 1;

 nd->pkt_type = DATA;

 nd-

>listOfPacketSizes.push_back(original_packet_size);

 }

194

 else if (rt_type == "RREP")

 {

 nd->RREP_TOTAL = nd->RREP_TOTAL + 1;

 nd->pkt_type = RREP;

 }

 else if (rt_type == "BROADCAST_IP_MESSAGE")

 {

 nd->BROADCAST_TOTAL = nd-

>BROADCAST_TOTAL + 1;

 nd->pkt_type = BROADCAST_IP_MESSAGE;

 }

 }

 else

 {

nd = new Node();

 nd->listOfPacketSizes.push_back(original_packet_size);

 nd->ip = source_ip;

 nd->time = pktime;

 nd->time_of_last_communication = pktime;

 if (rt_type == "RREQ")

 {

 nd->RREQ_TOTAL = nd->RREQ_TOTAL + 1;

 nd->pkt_type = RREQ;

 double rreq_delivery_time = pktime -

original_rreq_sent_time;

 nd-

>listOfPacketDeliveryTimes.push_back(rreq_delivery_time);

 nd->totalRreqPackts = nd->totalRreqPackts + 1;

 }

 else if (rt_type == "DATA")

 {

 nd->DATA_TOTAL = nd->DATA_TOTAL + 1;

 nd->pkt_type = _DATA;

 }

 else if (rt_type == "RREP")

 {

 nd->RREP_TOTAL = nd->RREP_TOTAL + 1;

 nd->pkt_type = RREP;

 }

 else if (rt_type == "BROADCAST_IP_MESSAGE")

 {

 nd->pkt_type = BROADCAST_IP_MESSAGE;

195

 nd->BROADCAST_TOTAL = nd-

>BROADCAST_TOTAL + 1;

 }

 }

nd->packets.push_back(p);

 if ((destination_ip != nd->ip) && (destination_ip != currentIP))

 {

 NodeReceivedPacketToForward(nd->ip, p);

 }

 if (source_ip != nd->ip)

 {

 NodeForwardedPacket(nd->ip, p);

 }

 }

 }

 //function to save nodes of which packets listened tby he DIM

 void DIM::SaveNode(node * nd)

 {

 Nodes.push_back(nd);

 }

 //function to check if DIM has records of a node

 Node *DIM::IsExistingNode(int ip)

 {

 Node *exists = false;

 for (list<Node>::iterator it = Nodes.begin(); it != Nodes.end(); ++it)

 {

 if (it->IP == ip)

 {

 return it;

 }

 }

 return NULL;

 }

//function to handle received packets

DIM::HandleReceivedPacket(const Packet *p)

{

hdr_ip *iph = hdr_ip::access(p);

hdr_cmn *pk = hdr_cmn::access(p);

hdr_mac802_11 *mh;

mh = HDR_MAC802_11(p);

hdr_aodv *ah = HDR_AODV(p);

196

aodv_rt_entry *rt = rtable.rt_lookup(iph->daddr());

bool isSourceMalicious = IsExistingNode(iph->src().addr_)->isMalicious;

if (isSourceMalicious)

{

AODV->drop(p, DROP_RTR_NO_ROUTE);

}

else {

if (iph->src().addr_ == currentIP)

{

SavePacket(iph->src().addr_, iph->dst().addr_, ETHER_ADDR(mh->dh_ta),

ip_dst, iph->sport(), iph->dport(), pk->ptype_, Scheduler::instance().clock(), ah-

>ah_type, pk->size(), p);

}

else {

AODV->forward((rt*) 0, p, 0);

 }

}

}

 //function to return a list of all stored nodes

 list<Nodes> DIM::GetAllSavedNodes()

 {

 return Nodes;

 }

 //function to find stored packet for a node

 Packet *DIM::FindPacket(int ip, Packet *p)

 {

 Node *n = IsExistingNode(ip);

 for (list<Packet>::iterator it = n->packets.begin(); it != n->packets.end();

++it)

 {

 if (memcmp(p, it, sizeof(p)))

 {

 return it;

 }

 }

 }

 // to save packets that need forwarding by a node

 void DIM::NodeReceivedPacketToForward(int ip, Packet *p)

 {

 Node *n = IsExistingNode(ip);

 packet pk = (packet *) (malloc(sizeof (packet)))) < (void *)0;

 pk->time = pktime;

197

 pk->data = (char *)malloc(sizeof(char) * data_size);

 pk->ip_src = ip_src;

 pk->ip_dst = ip_dst;

 pk->data_size = data_size;

 pk->time = pktime;

 pk->originPort = originPort;

 pk->destinationPort = destinationPort;

 pk->isReceived = true;

 pk->isForwarded = false;

 pk->isModified = false;

 pk->isToForward = true;

 n->packets.push_back(p);

 }

 // function to check if a node forwarded packets

 void DIM::NodeForwardedPacket(int ip, Packet *p)

 {

 packet foundPacket = FindPacket(ip, p);

 if (foundPacket != NULL)

 {

 foundPacket->isForwarded = true;

 }

 else if (strcmp(p->body, exists->body) != 0 || p->ip_src != exists->ip_src || p-

>ip_dst != exists->ip_dst)

 {

 foundPacket->isModified = true;

 }

 }

//***

// LDM Component

//***

//LDM.h

#ifndef __LDM_H__

#define __LDM_H__

#include "global.h"

#include "CDM.h"

#include "DSTHandler.h"

class LDM

{

 void PerformAttacksDetection(int currentIP, double current_time);

 AttackDSTValues *DetectAttacks(int currentIP, Node *n, double current_time, bool

isCDMRequest, AttackType attackType);

198

 AttackDSTValues *CalculateDSTValuesForSuspect(int currentIP, int suspectip,

AttackType _attackType, double current_time);

}

//LDM.cpp

//function to iterate over observed nodes and calls attack detection method

void

LDM::PerformAttacksDetection(int currentIP, double current_time)

{

 for (list<Node>::iterator nd = Nodes.begin(); it != Nodes.end(); ++nd)

 {

 if (nd->isMalicious == false)

 {

 DetectAttacks(currentIP, nd, current_time, false, None); //dont worry

about attack type, its not regard here

 }

 }

 Scheduler::instance().schedule(this, &intr, LDM_DELAY_INTERVAL);

}

//function to iterate over data collected against a node and calculate DST values

AttackDSTValues *LDM::DetectAttacks(int currentIP, Node *n, double current_time, bool

isCDMRequest, AttackType attackType)

{

 int rushing_totalFastPacketsCounter = 0;

 int rushing_totalAveragePacketsCounter = 0;

 int flooding_largePacketsCounter = 0;

 int flooding_averagePacketsCounter = 0;

 double overallRreqDeliveryTime = 0;

 double overallAveragePacketSizeOfAll = 0;

 int bhole_totalDropped = 0;

 int bhole_totalForwarded = 0;

 int bhole_totalReceived = 0;

 int ghole_totalDropped = 0;

 int ghole_totalForwarded = 0;

 int ghole_totalReceived = 0;

 int totalModified = 0;

 int modifications_totalReceived = 0;

double current_a_rreq = 0;

double current_a_size = 0;

double sum = 0;

 int totalNodes = 0;

 for (list<Node>::iterator nd = Nodes.begin(); it != Nodes.end(); ++nd)

 {

199

 if (nd->totalRreqPackts > 0)

 {

sum=0;

 for (int n : nd->listOfPacketDeliveryTimes){

 sum += n;}

 current_a_rreq = sum / nd->listOfPacketDeliveryTimes.size();

 }

 if (nd->listOfPacketSizes.size() > 0)

 {

 sum = 0;

 for (int n : nd->listOfPacketSizes){

 sum += n;}

 current_a_size = sum / nd->listOfPacketSizes.size();

 }

 totalNodes++;

 }

 overallAveragePacketSizeOfAll = overallAveragePacketSizeOfAll + current_a_rreq /

totalNodes;

 overallRreqDeliveryTime = overallRreqDeliveryTime + current_a_size / totalNodes;

 if (n->listOfPacketDeliveryTimes.size() > 0)

 {

 for (list<double>::iterator it = n->listOfPacketDeliveryTimes.begin(); it != n-

>listOfPacketDeliveryTimes.end(); ++it)

 {

 if (*it < overallRreqDeliveryTime && *it <=

RUSHING_MAX_DELIVERY_TIME)

 {

 rushing_totalFastPacketsCounter =

rushing_totalFastPacketsCounter + 1;

 }

 else

 {

 rushing_totalAveragePacketsCounter =

rushing_totalAveragePacketsCounter + 1;

 }

 }

 }

 if (n->listOfPacketSizes.size() > 0)

 {

 for (list<double>::iterator it = n->listOfPacketSizes.begin(); it != n-

>listOfPacketSizes.end(); ++it)

 {

200

 if (*it > overallAveragePacketSizeOfAll && *it >=

FLOODING_MAX_PACKET_SIZE)

 {

 flooding_largePacketsCounter = flooding_largePacketsCounter +

1;

 }

 else

 {

 flooding_averagePacketsCounter =

flooding_averagePacketsCounter + 1;

 }

 }

 }

 for (list<Packet>::iterator p = n->packets.begin(); it != n->packets.end(); ++p)

 {

 if (p->isToForward)

 {

 if (p->time < current_time && p->time > (current_time -

(BHOLE_COLLECTION_INTERVAL * LDM_DELAY_INTERVAL)))

 {

 bhole_totalReceived = bhole_totalReceived + 1;

 if (p->isForwarded == false)

 {

 bhole_totalDropped = bhole_totalDropped + 1;

 }

 else if (p->isForwarded == true)

 {

 bhole_totalForwarded = bhole_totalForwarded + 1;

 }

 }

 if (p->time < current_time && p->time > (current_time -

(GHOLE_COLLECTION_INTERVAL * LDM_DELAY_INTERVAL)))

 {

 ghole_totalReceived = ghole_totalReceived + 1;

 if (p->isForwarded == false)

 {

 ghole_totalDropped = ghole_totalDropped + 1;

 }

 else if (p->isForwarded == true)

 {

201

 ghole_totalForwarded = ghole_totalForwarded + 1;

 }

 }

 if (p->time < current_time && p->time > (current_time -

LDM_DELAY_INTERVAL))

 {

 modifications_totalReceived = modifications_totalReceived + 1;

 if (p->isModified == true)

 {

 totalModified = totalModified + 1;

 }

 else

 {

 totalUnmodified = totalUnmodified + 1;

 }

 }

 }

 }

 double blackHoleThreshold = BLACKHOLE_THRESHOLD *

(double)bhole_totalReceived;

 AttackDSTValues *dst_blackhole;

 = DSTHandler->CalculateDSTValues(currentIP, n->ip, bhole_totalForwarded,

 bhole_totalReceived,

bhole_totalDropped, blackHoleThreshold, Blackhole, !isCDMRequest);

 double grayHoleThreshold = GRAYHOLE_THRESHOLD *

(double)ghole_totalReceived;

 AttackDSTValues *dst_grayhole = DSTHandler->CalculateDSTValues(currentIP, n->ip,

ghole_totalForwarded,

 ghole_totalReceived, ghole_totalDropped, grayHoleThreshold,

Grayhole, !isCDMRequest);

 double modificationThreshold = MODIFICATION_THRESHOLD *

(double)modifications_totalReceived;

 AttackDSTValues *dst_modification = DSTHandler->CalculateDSTValues(currentIP, n-

>ip, totalUnmodified,

 modifications_totalReceived, totalModified,

modificationThreshold, Modification, !isCDMRequest);

 AttackDSTValues *dst_rushing = DSTHandler->CalculateDSTValues(currentIP, n->ip,

rushing_totalAveragePacketsCounter,

202

 n->totalRreqPackts, rushing_totalFastPacketsCounter,

rushing_totalAveragePacketsCounter, Rushing, !isCDMRequest);

 AttackDSTValues *dst_flooding = CDSTHandler->CalculateDSTValues(currentIP, n-

>ip, flooding_averagePacketsCounter,

 n->listOfPacketSizes.size(), flooding_largePacketsCounter,

flooding_averagePacketsCounter, Flooding, !isCDMRequest);

 if (isCDMRequest == true)

 {

 switch (attackType)

 {

 case Blackhole:

 return dst_blackhole;

 break;

 case Grayhole:

 return dst_grayhole;

 break;

 case Modification:

 return dst_modification;

 break;

 case Rushing:

 return dst_rushing;

 break;

 case Flooding:

 return dst_flooding;

 break;

 }

 }

 return NULL;

}

//function to reply to a strong-tie requests with information about a suspect node

AttackDSTValues *LDM::CalculateDSTValuesForSuspect(int currentIP, int suspectip,

AttackType _attackType, double current_time)

{

 Node *n = DIM->IsExistingNode(suspectip);

 AttackDSTValues *_dstNewCalcs = new AttackDSTValues();

 if (n != NULL)

 {

203

 _dstNewCalcs = DetectAttacks(currentIP, n, current_time, true, _attackType);

 }

 return _dstNewCalcs;

}

//***

// STBM Component

//***

//STBM.h

#ifndef __LDM_H__

#define __LDM_H__

#include "global.h"

#include "DIM.h";

class STBM

{

 list<int> strongTiesAddresses;

 void CalculateTies(int currentIP);

 void removeTieAndMarkMalicious(int ip);

 void removeTieAndMarkMalicious(int ip);

 bool isSourceMalicious(int ip);

}

//STBM.cpp

//function to calculate strong-ties

void

STBM::CalculateTies(int currentIP)

{

 list<Nodes> Nodes = DIM->GetAllSavedNodes();

 for (list<Node>::iterator n = Nodes.begin(); it != Nodes.end(); ++n)

 {

 double R_RECENCY = Scheduler::instance().clock() - n-

>time_of_last_communication;

 double R_RSH = n->DATA_TOTAL + n->RREQ_TOTAL + n-

>RREP_TOTAL;

double comm_history = Scheduler::instance().clock() - n->time_of_first_communcation;

 if (R_RECENCY < THRESHOLD_RECENCY_THRESHOLD && R_RSH >

THRESHOLD_RECIPROCITY_SHARED_THRESHOLD && comm_history >

THRESHOLD_TIME_SINCE_FIRST_MESSAGE && n->isMalicious == false)

 {

 //new strong-tie

 n->isStrongTie = true;

204

 strongTiesAddresses.push_back(n->ip);

 }

 else

 {

 //remove an existing tie if it doesn't fullfill the condition

 n->isStrongTie = false;

 strongTiesAddresses.remove(n->ip);

 }

 }

 Scheduler::instance().schedule(this, &intr, STT_DELAY_INTERVAL);

}

//function to remove a strong-tie and mark it as malicious based on CDM/alarms

void STBM::removeTieAndMarkMalicious(int ip)

{

 Node *n = DIM->IsExistingNode(ip);

 if (n != NULL)

 {

 if (n->ip == ip)

 {

 //remove tie;

 n->isStrongTie = false;

 n->isMalicious = true;

 break;

 }

 }

}

//function to check if a node is already marked as malicious

bool isSourceMalicious(int ip)

{

 Node *n = DIM->IsExistingNode(ip);

 return n->isMalicious;

}

//function to return an IP list of my strong-ties

list<int> DIM::GetStrongTiesIPAddresses(int currentIP)

{

 strongTiesAddresses.sort();

 strongTiesAddresses.unique();

 return strongTiesAddresses;

}

//***

// DST-related Calculations

//***

205

//DSTHandler.h

#ifndef __DSTHandler_H__

#define __DSTHandler_H__

#include "global.h"

#include "STBM"

#include "CDM"

#include "DIM"

class DSTHandler

{

 DSTHandler();

 AttackDSTValues CalculateDSTValues(int currentIP, int suspectIP, double

nonMaliciousNominator,

 double nonMaliciousDenominator, double maliciousNominator, double

threshold, AttackType attackType, bool doSendCDMRequest);

 CDMReply CombineAndReturnBelief(CDMReply A, CDMReply B);

}

//DSTHandler.cpp

//function to calcualte DST values for attack

AttackDSTValues *

DSTHandler::CalculateDSTValues(int currentIP, int suspectIP, double nonMaliciousNominator,

 double nonMaliciousDenominator, double maliciousNominator, double

threshold, AttackType attackType, bool doSendCDMRequest)

{

 float nonMalicious = nonMaliciousNominator / nonMaliciousDenominator;

 float malicious = maliciousNominator / threshold;

 float uncertainty = 0;

 if (malicious < nonMalicious)

 {

 uncertainty = (malicious * 0.5) / nonMalicious;

 }

 else

 {

 uncertainty = (nonMalicious * 0.5) / malicious;

 }

 //calculate adjustment factor

 float adjuster = ((malicious + nonMalicious + uncertainty) - 1) / 3;

 //reclaculate DST by subtracting adjuster from each

 malicious = malicious - adjuster;

 nonMalicious = nonMalicious - adjuster;

 uncertainty = uncertainty - adjuster;

206

 AttackDSTValues *_dstNewCalcs = new AttackDSTValues();

 _dstNewCalcs->malicious = malicious;

 _dstNewCalcs->nonMalicious = nonMalicious;

 _dstNewCalcs->uncertain = uncertainty;

 _dstNewCalcs->attackType = attackType;

 int totalStrongTies = STBM->GetStrongTiesIPAddresses(currentIP).size();

 if (malicious > nonMalicious && doSendCDMRequest == true && maliciousNominator >

threshold && DIM->IsExistingNode(suspectIP).packets.size() >

MINIMUM_PACKETS_COLLECTED && totalStrongTies > MINIMUM_STRONG_TIES)

 {

 CDM->CreateNewCDMRequest(currentIP, suspectIP, attackType);

 }

 return _dstNewCalcs;

}

//function to perform DST combinatations

CDMReply DSTHandler::CombineAndReturnBelief(CDMReply A, CDMReply B)

{

 //Node A

 double mA_C = A.isNonMalicious;

 double mA_S = A.isMalicious;

 double mA_U = A.isUncertain;

 //node B

 double mB_C = B.isNonMalicious;

 double mB_S = B.isMalicious;

 double mB_U = B.isUncertain;

 //combine AB mA+mAB (orthogonal)

 double K_AB = mA_C * mB_C + mA_C * mB_U + mA_U * mB_C + mA_S * mB_S +

mA_S * mB_U + mA_U * mB_S + mA_U * mB_U;

 //calculate final belief

 double mAB_C = (mA_C * mB_C + mA_C * mB_U + mA_U * mB_C) / K_AB;

 double mAB_S = (mA_S * mB_S + mA_S * mB_U + mA_U * mB_S) / K_AB;

 double mAB_U = (mA_U * mB_U) / K_AB;

 CDMReply *_returnReply = new CDMReply();

 _returnReply->replyingNodeIP = A.replyingNodeIP;

 _returnReply->suspectNodeIP = B.replyingNodeIP; //this assignment is just for checking

 _returnReply->isNonMalicious = mAB_C;

 _returnReply->isMalicious = mAB_S;

 _returnReply->isUncertain = mAB_U;

207

 return *_returnReply;

}

//***

// CDM Component

//***

//CDM.h

#ifndef __CDM_H__

#define __CDM_H__

#include "global.h"

#include "STBM.h"

class CDM

{

 list<CDMRequest> CDMStorageDictionary;

 list<CDMRequest> CDMRequestsAlreadySent;

 list<int> CDMReuqestsAlreadyRepliedTo;

 list<CDMRequest> CDMFullfilledRequestsDictionary;

 list<CDMReply> CDMReplyDictionary;

 void ActivateCDM(int currentIP);

 void CreateNewCDMRequest(int currentIP, int maliciousNodeAddress, AttackType

attackType);

 void AddNewCDMReply(int currentIP, int requestId, int initiaingNodeIP, int suspectNodeIP,

CDMReply *reply);

 void recvCDMReq(Packet *p);

 void recvCDMRep(Packet *p);

 void sendCDMRequest(CDMRequest request, int dst);

 void sendCDMReply(CDMReply reply, int dst);

 bool IDSCheckIfCDMRequestAlreadySent(int reqId);

 bool isCDMRequestFullfilled(int reqId);

 bool checkIfAlreadyRepliedToCDMReq(int reqId);

}

//CDM.cpp

//this function is called from LDM to activate CDM

void

CDM::ActivateCDM(int currentIP)

{

 list<CDMRequest> cdmStorage = CDMStorageDictionary;

 if (cdmStorage.empty() == 0)

 {

208

 list<CDMRequest>::iterator req;

 for (req = cdmStorage.begin(); req != cdmStorage.end(); ++req)

 {

 bool isFullfilled = isCDMRequestFullfilled(req->reqId);

 bool isAlreadySentOut = IDSCheckIfCDMRequestAlreadySent(req->reqId);

 //check if request isFullfilled

 if (isFullfilled == false && isAlreadySentOut == false)

 {

 list<int> myStrongTies = STBM->GetStrongTiesAddresses(index);

 if (!myStrongTies.empty())

 {

 int cnt = 0;

 list<int>::iterator tie;

 for (tie = myStrongTies.begin(); tie != myStrongTies.end(); ++tie)

 {

 if (*tie != req->suspectNodeIP)

 {

 sendCDMRequest(*req, *tie);

 }

 cnt++;

 }

 //mark it as sent so I dont keep sending the same request

 CDMRequestsAlreadySent.push_back(req->reqId);

 }

 }

 }

 } //end if empty

}

//this function is used to create CDM requests

void CDM::CreateNewCDMRequest(int currentIP, int maliciousNodeAddress, AttackType

attackType)

{

 CDMRequest *req = new CDMRequest();

 req->reqId = rand() % 200000000; // (int)time(NULL);// 11;

 req->suspectedAttack = attackType;

 req->initiatingNodeIP = currentIP;

 req->suspectNodeIP = maliciousNodeAddress;

 req->rq_timestamp = Scheduler::instance().clock();

 req->isFullfilled = false;

 req->totalRequestsSent = STBM->GetStrongTiesIPAddresses(currentIP).size();

 if (req->totalRequestsSent > 0)

 {

 CDMStorageDictionary.push_back(*req);

 }

 ActivateCDM(currentIP);

209

}

//function to handle receiving new CDM reply about a detection

void CDM::AddNewCDMReply(int currentIP, int requestId, int initiaingNodeIP, int

suspectNodeIP, CDMReply *reply)

{

 list<CDMRequest> cdmStorage = CDMStorageDictionary;

 //correlate to request

 if (cdmStorage.empty() == 0)

 {

 list<CDMRequest>::iterator req;

 for (req = cdmStorage.begin(); req != cdmStorage.end(); ++req)

 {

 bool isFullfilled = isCDMRequestFullfilled(req->reqId);

 if (isFullfilled == false)

 {

 float majorityFullfilled = (req->totalRequestsSent / STBM-

>GetStrongTiesIPAddresses(currentIP).size()) * 100;

 if (req->reqId == requestId && req->suspectNodeIP == suspectNodeIP)

 {

 CDMReplyDictionary.push_back(*reply);

 //check and see if we have enough replies to make a decision

 list<CDMReply> _foundReplies;

 list<CDMReply>::iterator _savedreply;

 int cct = 0;

 for (_savedreply = CDMReplyDictionary.begin(); _savedreply !=

CDMReplyDictionary.end(); ++_savedreply)

 {

 if (_savedreply->reqId == requestId && _savedreply->suspectNodeIP ==

suspectNodeIP)

 {

 _foundReplies.push_back(*_savedreply);

 cct++;

 }

 }

 int totalTies = (STBM->GetStrongTiesIPAddresses(currentIP).size()) - 1;

 double repliesMajorityReceived = ((double)cct / (double)totalTies) * 100; // * 100;

 if (repliesMajorityReceived >= MAJORITY_THRESHOLD)

 {

 list<CDMReply>::iterator _reply;

 int cnt = 0;

210

 CDMReply previousBelief;

 CDMReply _previousReply;

 list<int> processedRepliesIpAddressed;

 for (_reply = _foundReplies.begin(); _reply != _foundReplies.end(); ++_reply)

 {

 if ((_reply->isMalicious == 0 && _reply->isNonMalicious == 0 && _reply-

>isUncertain == 0) || _reply->replyingNodeIP == suspectNodeIP)

 {

 continue;

 }

 else

 {

 int originatingNodeIP = _reply->replyingNodeIP;

 bool exists = std::find(std::begin(processedRepliesIpAddressed),

 std::end(processedRepliesIpAddressed), originatingNodeIP)

!= std::end(processedRepliesIpAddressed);

 if (exists == false)

 {

 if (cnt == 0)

 {

 _previousReply = *_reply;

 }

 else if (_previousReply.replyingNodeIP != _reply->replyingNodeIP)

 {

 previousBelief =

 DSTHandler::combineAndReturnBelief(_previousReply, *_reply);

 _previousReply = previousBelief;

 processedRepliesIpAddressed.push_back(_reply->replyingNodeIP);

 }

 cnt++;

 }

 }

 }

 double Bel_isMalicious = previousBelief.isMalicious;

 double Bel_isNonMalicious = previousBelief.isNonMalicious;

 double Bel_isUncertain = previousBelief.isUncertain;

 //make a decision

 Node *n = IsNodeExists(suspectNodeIP);

 if (Bel_isMalicious > Bel_isNonMalicious && Bel_isMalicious >=

FINAL_DECISION_THRESHOLD)

 {

211

 if (n != NULL && n->isMalicious == false)

 {

 CreateNewGRMAlarmEntry(suspectNodeIP);

 GRM->ActivateGRM(currentIP);

printf(“%d, %d, malicious, %d”, currentIP, suspectNodeIP, req-

>suspectedAttack);

 }

 //mark as malicious and remove from strong-ties

 if (n != NULL)

 {

 n->isMalicious = true;

 n->isStrongTie = false;

 }

 }

 else

 {

 //final decision is non-malicious

 n->isMalicious = false;

printf(“%d, %d, innocent, %d”, currentIP, suspectNodeIP, req->suspectedAttack);

 }

 }

 req->isFullfilled = true;

 CDMFullfilledRequestsDictionary.push_back(req->reqId);

 }

 }

 }

 }

}

//function to check if CDM already replied to a received request

bool CDM::checkIfAlreadyRepliedToCDMReq(int reqId)

{

 bool exists = std::find(std::begin(CDMRequestsAlreadyRepliedTo),

 std::end(CDMRequestsAlreadyRepliedTo), reqId) !=

std::end(CDMRequestsAlreadyRepliedTo);

 return exists;

}

//function to receive CDM Request and calculate DST values, then send reply to originator

void CDM::recvCDMReq(Packet *p)

{

 //get suspectedNode and suspectedAttack

 struct hdr_ids_cdm_req *rq = HDR_IDS_CDM_REQ(p);

212

 //check if I already replied to that request

 bool alreadyReplied = checkIfAlreadyRepliedToCDMReq(rq->rq_id);

 if (alreadyReplied == false)

 {

 AttackDSTValues *_dstValues =

 LDM->CalculateDSTValuesForSuspect(index, rq->suspect_node, (AttackType)rq-

>attack_type, CURRENT_TIME);

 iDS->IDSAddCDMRequestRepliedTo(rq->rq_id);

 if (_dstValues != nullptr && (_dstValues->malicious + _dstValues->nonMalicious +

_dstValues->uncertain > 0))

 {

 CDMReply *_cdmReply = new CDMReply();

 _cdmReply->reqId = rq->rq_id;

 _cdmReply->repId = rand() % 99999 + 1;

 ;

 _cdmReply->replyingNodeIP = index;

 _cdmReply->suspectNodeIP = rq->suspect_node;

 _cdmReply->suspectedAttack = _dstValues->attackType;

 _cdmReply->rp_timestamp = CURRENT_TIME;

 _cdmReply->isMalicious = _dstValues->malicious;

 _cdmReply->isNonMalicious = _dstValues->nonMalicious;

 _cdmReply->isUncertain = _dstValues->uncertain;

 sendCDMReply(*_cdmReply, rq->rq_src);

 }

 }

}

}

//function to handle receiving CDM reply packets

void CDM::recvCDMRep(Packet *p)

{

 struct hdr_ids_cdm_rep *rep = HDR_IDS_CDM_REP(p);

 CDMReply *_cdmReply = new CDMReply();

 _cdmReply->reqId = rep->rq_id;

 _cdmReply->repId = std::rand();

 _cdmReply->replyingNodeIP = rep->rq_src;

 _cdmReply->suspectNodeIP = rep->suspect_node;

 _cdmReply->rp_timestamp = CURRENT_TIME;

 _cdmReply->isMalicious = rep->isMalicious;

 _cdmReply->isNonMalicious = rep->isNonMalicious;

 _cdmReply->isUncertain = rep->isUncertain;

 AddNewCDMReply(index, rep->rq_id, rep->rq_src, rep->suspect_node, _cdmReply);

}

213

//function to send CDM request to target node

void CDM::sendCDMRequest(CDMRequest request, int dst)

{

 Packet *p = Packet::alloc();

 struct hdr_cmn *ch = HDR_CMN(p);

 struct hdr_ip *ih = HDR_IP(p);

 struct hdr_ids_cdm_req *rq = HDR_IDS_CDM_REQ(p);

 ch->size() = IP_HDR_LEN + rq->size();

 ch->iface() = -2;

 ch->error() = 0;

 ch->addr_type() = NS_AF_NONE;

 ch->prev_hop_ = index;

 ch->next_hop_ = dst;

 ih->saddr() = index;

 ih->daddr() = dst;

 ih->sport() = RT_PORT;

 ih->dport() = RT_PORT;

 rq->rq_type = IDS_CDM_REQ;

 rq->suspect_node = request.suspectNodeIP;

 rq->attack_type = request.suspectedAttack;

 rq->rq_timestamp = CURRENT_TIME;

 rq->rq_dst = dst;

 rq->rq_src = index;

 rq->rq_id = request.reqId;

 Scheduler::instance().schedule(target_, p, 0.);

}

//function to send CDM reply to requesting node

void CDM::sendCDMReply(CDMReply reply, int dst)

{

 Packet *p = Packet::alloc();

 struct hdr_cmn *ch = HDR_CMN(p);

 struct hdr_ip *ih = HDR_IP(p);

 struct hdr_ids_cdm_rep *rq = HDR_IDS_CDM_REP(p);

 ch->size() = IP_HDR_LEN + rq->size();

 ch->iface() = -2;

 ch->error() = 0;

 ch->addr_type() = NS_AF_NONE;

 ch->prev_hop_ = index;

 ch->next_hop_ = dst;

214

 ih->saddr() = index;

 ih->daddr() = dst;

 ih->sport() = RT_PORT;

 ih->dport() = RT_PORT;

 rq->rq_type = IDS_CDM_REP;

 rq->suspect_node = reply.suspectNodeIP;

 rq->attack_type = reply.suspectedAttack;

 rq->rq_timestamp = CURRENT_TIME;

 rq->rq_dst = dst;

 rq->rq_src = index;

 rq->rq_id = reply.reqId;

 rq->isMalicious = reply.isMalicious;

 rq->isNonMalicious = reply.isNonMalicious;

 rq->isUncertain = reply.isUncertain;

 Scheduler::instance().schedule(target_, p, 0.);

}

//function to check if a CDM request was already sent out to strong-ties

bool CDM::IDSCheckIfCDMRequestAlreadySent(int reqId)

{

 bool exists = std::find(std::begin(CDMRequestsAlreadySent),

 std::end(CDMRequestsAlreadySent), reqId) !=

std::end(CDMRequestsAlreadySent);

 return exists;

}

//functino to check if a CDM request is fullfilled from a node's strong-ties

bool CDM::isCDMRequestFullfilled(int reqId)

{

 bool isFullfilled = false;

 list<int> currentFullfilledRequests = CDMFullfilledRequestsDictionary;

 if (currentFullfilledRequests.empty() == 0)

 {

 list<int>::iterator _req;

 for (_req = currentFullfilledRequests.begin(); _req != currentFullfilledRequests.end();

++_req)

 {

 if (*_req == reqId)

 {

 isFullfilled = true;

 break;

 }

215

 }

 }

 return isFullfilled;

}

//***

// GRM Component

//***

//GRM.h

#ifndef __GRM_H__

#define __GRM_H__

#include "global.h"

#include "STBM.h"

#include "DIM.h"

class GRM

{

 list<GRMAlarm> GRMAlarmStorage;

 void ActivateGRM(int currentIP);

 void sendAlarm(nsaddr_t dst, nsaddr_t maliciousNode);

 void recvAlarm(Packet *p);

}

//GRM.cpp

//function to activate GRM based on CDM decisions

void

GRM::ActivateGRM(int currentIP)

{

 //check for pending alarms

 list<GRMAlarm> _allAlarms = GRMAlarmStorage;

 list<GRMAlarm>::iterator _savedAlarm;

 for (_savedAlarm = _allAlarms.begin(); _savedAlarm != _allAlarms.end();

++_savedAlarm)

 {

 if (_savedAlarm->isSentToAllTies == false)

 {

 //send alarms out and mark them as completed

 list<int> myStrongTies = iDS->GetStrongTiesAddresses(index);

 if (!myStrongTies.empty())

 {

 list<int>::iterator tie;

 for (tie = myStrongTies.begin(); tie != myStrongTies.end(); ++tie)

216

 {

 sendAlarm(*tie, _savedAlarm->maliciousNodeIP);

 }

 rtable.rt_delete((int)_savedAlarm->maliciousNodeIP);

 //mark as completed

 _savedAlarm->isSentToAllTies = true;

 _savedAlarm->timeAlarmSent = CURRENT_TIME;

 }

 }

 }

}

//function to send alarm to strong-ties

void GRM::sendAlarm(nsaddr_t dst, nsaddr_t maliciousNode)

{

 Packet *p = Packet::alloc();

 struct hdr_cmn *ch = HDR_CMN(p);

 struct hdr_ip *ih = HDR_IP(p);

 struct hdr_ids_alarm *rq = HDR_IDS_ALARM(p);

 ch->size() = IP_HDR_LEN + rq->size();

 ch->iface() = -2;

 ch->error() = 0;

 ch->addr_type() = NS_AF_NONE;

 ch->prev_hop_ = index;

 ch->next_hop_ = dst;

 ih->saddr() = index;

 ih->daddr() = dst;

 ih->sport() = RT_PORT;

 ih->dport() = RT_PORT;

 rq->rq_type = IDS_ALARM;

 rq->rq_dst = dst;

 rq->rq_src = index;

 rq->malicious_node = maliciousNode;

 rq->rq_timestamp = CURRENT_TIME;

 Scheduler::instance().schedule(target_, p, 0.);

}

//function to handle receiving alarm from strong-ties

void GRM::recvAlarm(Packet *p)

{

 struct hdr_ids_alarm *rq = HDR_IDS_ALARM(p);

 //check if alarm is from a strong tie

217

 Node *n = DIM->IsExistingNode(rq->rq_src);

 if (n != NULL && n->isStrongTie == true && n->isMalicious == false)

 {

 //mark node as malicious

 Node *n_malicious = DIM->IsExistingNode(rq->malicious_node);

 if (n_malicious != NULL)

 {

 n_malicious->isMalicious = true;

 n_malicious->isStrongTie = false;

 rtable.rt_delete((int)n_malicious->ip);

 list<int> myStrongTies = STBM->GetStrongTiesAddresses(index);

 if (!myStrongTies.empty())

 {

 list<int>::iterator tie;

 for (tie = myStrongTies.begin(); tie != myStrongTies.end(); ++tie)

 {

 sendAlarm(*tie, rq->malicious_node);

 }

 }

 }

 }

}

}

218

References

Abdelaziz, A.K., Nafaa, M., Salim, G. (2013). Survey of routing attacks and countermeasures.

Proceedings of the 15th International Conference on Computer Modelling and

Simulation (UKSim), 693–698.

Abdelshafy, M. A., & King, P. J. (2013, December). Analysis of security attacks on AODV

routing. Proceedings of the 2013 8th International Conference for Internet Technology

and Secured Transactions (ICITST), 290-295.

Abolhasan, M., Wysocki, T., & Dutkiewicz, E. (2004). A review of routing protocols for mobile

ad hoc networks. Ad hoc networks, 2(1), 1-22.

Adhikari, S., & Setua, S. K. (2013, October). Cooperative network intrusion detection system

(CNIDS) in mobile adhoc network based on DSR protocol. Proceedings of the 2013 3rd

International Conference on Computer Science and Network Technology (ICCSNT),

929-935.

Alani, M. M. (2014, November). MANET security: A survey. Proceedings of the 2014 IEEE

International Conference on Computing and Engineering (ICCSCE), pp. 559-564.

Alattar, M., Sailhan, F., & Bourgeois, J. (2012, August). Log-based intrusion detection for

MANET. Proceedings of the 2012 8th International Conference on Wireless

Communications and Mobile Computing (IWCMC), 697-702.

Amouri, A., Jaimes, L. G., Manthena, R., Morgera, S. D., & Vergara-Laurens, I. J. (2015,

November). A simple scheme for pseudo clustering algorithm for cross layer intrusion

detection in MANET. Proceedings of the 2015 7th IEEE Latin-American Conference on

Communications (LATINCOM), 1-6.

219

Anderson, J. P. (1972). Computer Security Technology Planning Study. Ft. Belvoir: Defense

Technical Information Center.

Anderson, J. P. (1980). Computer security threat monitoring and surveillance. Technical report,

Fort Washington, Pennsylvania: James P. Anderson Company.

Anjum, F., Subhadrabandhu, D., & Sarkar, S. (2003, October). Signature based intrusion

detection for wireless ad-hoc networks: A comparative study of various routing protocols.

Proceedings of the Vehicular Technology Conference, 2003. VTC 2003-Fall. 2003 IEEE

58th (3), 2152-2156.

Anantvalee, T., & Wu, J. (2007). A survey on intrusion detection in mobile ad hoc networks. In

Wireless Network Security, 159-180. Springer US.

Aparicio-Navarro, F. J., Kyriakopoulos, K. G., & Parish, D. J. (2012, June). A multi-layer data

fusion system for wi-fi attack detection using automatic belief assignment. Proceedings

of the 2012 World Congress on Internet Security (WorldCIS), 45-50.

Aziz, B., & Nourdine, E. (2008, April). A recent survey on key management schemes in manet.

Proceedings of ICTTA 2008, 3rd International Conference on Information and

Communication Technologies: From Theory to Applications, 1-6.

Bai, F., Sadagopan, N., & Helmy, A. (2003, March). IMPORTANT: A framework to

systematically analyze the Impact of Mobility on Performance of Routing protocols for

Adhoc Networks. Proceedings of the Twenty-second annual joint conference of the IEEE

computer and communications (INFOCOM 2003), 825-835.

Banerjee, S., Nandi, R., Dey, R., & Saha, H. N. (2015, October). A review on different Intrusion

Detection Systems for MANET and its vulnerabilities. Proceedings of the 2015

220

International Conference and Workshop on Computing and Communication (IEMCON),

1-7.

Bansal, S., & Baker, M. (2003). Observation-based cooperation enforcement in ad hoc networks.

Tech. Rep., Stanford University, CA.

Beijar, N. (2002). Zone routing protocol (ZRP). Networking Laboratory, Helsinki University of

Technology, Finland, 9, 1-12.

Berthier, R., & Sanders, W. H. (2011, December). Specification-based intrusion detection for

advanced metering infrastructures. Proceedings of the 2011 IEEE 17th Pacific Rim

International Symposium on Dependable Computing (PRDC), 184-193.

Beyer, D. A. (1990, September). Accomplishments of the DARPA SURAN Program.

Proceedings of the Military Communications Conference, 1990. MILCOM'90,

Conference Record, A New Era. 855-862.

Biswas, S., Nag, T., & Neogy, S. (2014, February). Trust based energy efficient detection and

avoidance of black hole attack to ensure secure routing in MANET. Proceedings of the

2014 International Conference on Applications and Innovations in Mobile Computing

(AIMoC), 157-164.

Bharati, T. S., & Kumar, R. (2015). Intrusion Detection System for MANET using Machine

Learning and State Transition Analysis. International Journal of Computer Engineering

& Technology (IJCET), 6(12), 1-8.

Bose, S., Bharathimurugan, S., & Kannan, A. (2007, February). Multi-layer integrated anomaly

intrusion detection system for mobile adhoc networks. Proceedings of the International

221

Conference on Signal Processing, Communications and Networking, 2007. ICSCN'07.

360-365.

Boston, J. R. (2000). A signal detection system based on Dempster-Shafer theory and

comparison to fuzzy detection. IEEE Systems, Man, and Cybernetics, 30(1), 45-51.

Brutch, P., & Ko, C. (2003, January). Challenges in intrusion detection for wireless ad-hoc

networks. Proceedings of the 2003 Symposium on Applications and the Internet

Workshops, 368-373.

Butun, I., Morgera, S. D., & Sankar, R. (2014). A survey of intrusion detection systems in

wireless sensor networks. IEEE Communications Surveys & Tutorials, 16(1), 266-282.

Cabrera, J. B., Gutiérrez, C., & Mehra, R. K. (2005, October). Infrastructures and algorithms for

distributed anomaly-based intrusion detection in mobile ad-hoc networks. Proceedings of

the 2005 Military Communications Conference (MILCOM 2005), 1831-1837.

Cai, C., Ci, S., Guizani, S., & Al-Fuqaha, A. (2006, November). Constructing an efficient

mobility profile of ad-Hoc node for mobility-pattern-based anomaly detection in

MANET. Proceedings of the 2006 Global Telecommunications Conference

(GLOBECOM'06), 1-5.

Cannady, J. (2009). Distributed detection of attacks in mobile ad hoc networks using learning

vector quantization. Proceedings of Third International Conference on Network and

System Security (NSS'09), 571-574.

Cannady, J. (2010). Dynamic neural networks in the detection of distributed attacks in mobile

Ad-Hoc networks. International Journal of Network Security & Its Application, 2(1), 1-7.

222

Cannady, J. (2013). The detection of temporally distributed network attacks using an adaptive

hierarchical neural network. Proceedings of the 2013 World Congress on Nature and

Biologically Inspired Computing (NaBIC), 5-9.

Chlamtac, I., Conti, M., & Liu, J. J. N. (2003). Mobile ad hoc networking: imperatives and

challenges. Ad hoc networks, 1(1), 13-64.

Conti, M., Gregori, E., & Maselli, G. (2004, March). Cooperation issues in mobile ad hoc

networks. Proceedings of the 24th International Conference on Distributed Computing

Systems Workshops, 803-808.

Corson, M. S., Macker, J. P., & Cirincione, G. H. (1999). Internet-based mobile ad hoc

networking. IEEE internet computing, 3(4), 63-70.

Debar, H., Dacier, M., & Wespi, A. (1999). Towards a taxonomy of intrusion-detection

systems. Computer Networks, 31(8), 805-822.

Denning, D. E. (1987). An intrusion-detection model. IEEE Transactions on software

engineering, (2), 222-232.

Denning, D. E., & Neumann, P. G. (1985). Requirements and model for IDES—a real-time

intrusion detection expert system. Document A005, SRI International, 333.

Deng, H., Li, W., & Agrawal, D. P. (2002). Routing security in wireless ad hoc networks. IEEE

Communications magazine, 40(10), 70-75.

Deng, H., Xu, R., Li, J., Zhang, F., Levy, R., & Lee, W. (2006). Agent-based cooperative

anomaly detection for wireless ad hoc networks. Proceedings of the 12th International

Conference on Parallel and Distributed Systems (ICPADS), 613-620.

223

Ding, H., & Xu, X. (2006, November). Real-time cooperation intrusion detection system for

MANets. Proceedings of the 2006 IET International Conference on Wireless, Mobile and

Multimedia Networks, 1-4.

Djenouri, D., Khelladi, L., & Badache, N. (2005). A survey of security issues in mobile ad hoc

networks. IEEE communications surveys, 7(4), 2-28.

Dorri, A., Kamel, S. R., & Kheirkhah, E. (2015). Security challenges in mobile ad hoc networks:

A survey. International Journal on Computer Science and Engineering, 6(1), 15-29.

Ebinger, P., & Bibmeyer, N. (2009, May). TEREC: Trust evaluation and reputation exchange for

cooperative intrusion detection in MANETs. Proceedings of the Seventh Annual

Communication Networks and Services Research Conference (CNSR'09), 378-385.

El Defrawy, K., & Tsudik, G. (2008, October). Prism: Privacy-friendly routing in suspicious

manets (and vanets). Proceedings of the IEEE International Conference on Network

Protocols (ICNP 2008), 258-267.

Farhan, A. F., Zulkhairi, D., & Hatim, M. T. (2008, September). Mobile agent intrusion detection

system for mobile ad hoc networks: A non-overlapping zone approach. Proceedings of

the 4th IEEE/IFIP International Conference on Internet (ICI 2008), 1-5.

Forrest, S., Hofmeyr, S. A., & Somayaji, A. (1997). Computer immunology. Communications of

the ACM, 40(10), 88-96.

Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G., & Vázquez, E. (2009). Anomaly-

based network intrusion detection: Techniques, systems and challenges. Computers &

Security, 28(1), 18-28.

224

Garg, S., & Chand, S. (2014, September). Enhanced AODV protocol for defense against

Jellyfish Attack on MANETs. Proceedings of the 2014 International Conference on

Advances in Computing, Communications and Informatics (ICACCI), 2279-2284.

Garg, N., & Mahapatra, R. P. (2009). MANET security issues. International Journal of Computer

Science and Network Security (IJCSNS), 9(8), 241.

Garvey, T. D., & Lunt, T. F. (1991, October). Model-based intrusion detection. In Proceedings

of the 14th National Computer Security Conference, 372-385.

Goldsmith, A. J., & Wicker, S. B. (2002). Design challenges for energy-constrained ad hoc

wireless networks. IEEE wireless communications, 9(4), 8-27.

Gomez, J., & Campbell, A. T. (2007). Variable-range transmission power control in wireless ad

hoc networks. IEEE Transactions on Mobile Computing, 6(1), 87-99.

Goyal, P., Parmar, V., & Rishi, R. (2011). Manet: vulnerabilities, challenges, attacks,

application. International Journal of Computational Engineering & Management

(IJCEM), 11(2011), 32-37.

Hegland, A. M., Winjum, E., Mjolsnes, S. F., Rong, C., Kure, O., & Spilling, P. (2006). A

survey of key management in ad hoc networks. IEEE Communications Surveys &

Tutorials, 8(3), 48-66.

Hernandez-Orallo, E., Serrat, M. D., Cano, J. C., Calafate, C. T., & Manzoni, P. (2012).

Improving selfish node detection in MANETs using a collaborative watchdog. IEEE

Communications letters, 16(5), 642-645.

Hong, X., Xu, K., & Gerla, M. (2002). Scalable routing protocols for mobile ad hoc networks.

IEEE network, 16(4), 11-21.

225

Hu, J., & Burmester, M. (2009). Cooperation in mobile ad hoc networks. In Guide to Wireless

Ad Hoc Networks, 43-57. Springer London.

Hu, Y. C., Perrig, A., & Johnson, D. B. (2003, September). Rushing attacks and defense in

wireless ad hoc network routing protocols. Proceedings of the 2nd ACM workshop on

Wireless security, 30-40.

Huang, Y. A., & Lee, W. (2003, October). A cooperative intrusion detection system for ad hoc

networks. Proceedings of the 1st ACM workshop on Security of Ad Hoc and Sensor

Networks, 135-147.

Hubaux, J. P., Buttyán, L., & Capkun, S. (2001, October). The quest for security in mobile ad

hoc networks. Proceedings of the 2nd ACM international symposium on Mobile ad hoc

networking & computing, 146-155.

Huhns, M. N. (1999). Networking embedded agents. IEEE Internet Computing, 3(1), 91-93.

Husain, S., Gupta, S. C., Chand, M., & Mandoria, H. L. (2010, September). A proposed model

for Intrusion Detection System for mobile adhoc network. Proceedings of the 2010

International Conference on Computer and Communication Technology (ICCCT), 99-

102).

Ilgun, K., Kemmerer, R. A., & Porras, P. A. (1995). State transition analysis: A rule-based

intrusion detection approach. IEEE transactions on software engineering, 21(3), 181-199.

Jacoby, G. A., & Davis, N. J. (2007). Mobile host-based intrusion detection and attack

identification. IEEE Wireless Communications, 14(4).

Jawandhiya, P. M., Ghonge, M. M., Ali, M. S., & Deshpande, J. S. (2010). A survey of mobile

ad hoc network attacks. International Journal of Engineering Science and Technology,

2(9), 4063-4071.

226

Johansson, P., Larsson, T., Hedman, N., Mielczarek, B., & Degermark, M. (1999, August).

Scenario-based performance analysis of routing protocols for mobile ad-hoc networks.

Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing

and networking, 195-206.

Joseph, J. F. C., Lee, B. S., Das, A., & Seet, B. C. (2011). Cross-layer detection of sinking

behavior in wireless ad hoc networks using SVM and FDA. IEEE Transactions on

Dependable and Secure Computing, 8(2), 233-245.

Jubin, J., & Tornow, J. D. (1987). The DARPA packet radio network protocols. Proceedings of

the IEEE, 75(1), 21-32.

Justin, V., Marathe, N., & Dongre, N. (2017, February). Hybrid IDS using SVM classifier for

detecting DoS attack in MANET application. Proceedings of the 2017 International

Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 775-778.

Kannammal, A., & Roy, S. S. (2016, March). Survey on secure routing in mobile ad hoc

networks. Proceedings of the 2016 International Conference on Advances in Human

Machine Interaction (HMI), 1-7.

Katal, A., Wazid, M., Sachan, R. S., Singh, D. P., & Goudar, R. H. (2013, December). Effective

Clustering Technique for Selecting Cluster Heads and Super Cluster Head in MANET.

Proceedings of the 2013 International Conference on Machine Intelligence and Research

Advancement (ICMIRA), 1-6.

Karygiannis, A., Antonakakis, E., & Apostolopoulos, A. (2006, June). Detecting critical nodes

for MANET intrusion detection systems. Proceedings of the 2006 Second International

Workshop on Security, Privacy and Trust in Pervasive and Ubiquitous Computing

(SecPerU 2006), 1-9.

227

Kashyap, N. (2015, March). Smart intrusion detection system for MANET. Proceedings of the

2015 International Conference on Advances in Computer Engineering and Applications

(ICACEA), 252-177.

Kathiravelu, T., & Sivasuthan, S. (2011, August). A hybrid reactive routing protocol for Mobile

Ad-hoc Networks. Proceedings of the 2011 6th IEEE International Conference on

Industrial and Information Systems (ICIIS), 222-227.

Kerrache, C. A., Lupia, A., De Rango, F., Calafate, C. T., Cano, J. C., & Manzoni, P. (2017,

June). An energy-efficient technique for MANETs distributed monitoring. Proceedings

of the 2017 13th International Wireless Communications and Mobile Computing

Conference (IWCMC), 1274-1279.

Kheyri, D., & Karami, M. (2012). A comprehensive survey on anomaly-based intrusion

detection in MANET. Computer and Information science, 5(4), 132-137.

Kim, J. M., & Jang, J. W. (2006, February). AODV based energy efficient routing protocol for

maximum lifetime in MANET. Proceedings of the 2006 Advanced International

Conference on Telecommunications and International Conference on Internet and Web

Applications and Services (AICT-ICIW'06), 77.

Kim, H., Kim, D., & Kim, S. (2006). Lifetime-enhancing selection of monitoring nodes for

intrusion detection in mobile ad hoc networks. AEU-International Journal of Electronics

and Communications, 60(3), 248-250.

Ko, C., Ruschitzka, M., & Levitt, K. (1997, May). Execution monitoring of security-critical

programs in distributed systems: A specification-based approach. Proceedings of the

1997 IEEE Symposium on Security and Privacy, 175-187.

228

Kumar, S. M., Vijay, K. A., & Suhas, N. S. (2016, May). A policy based preventive measure

against flooding attack in MANETs. Proceedings of the IEEE International Conference

on Recent Trends in Electronics, Information & Communication Technology (RTEICT),

1612-1616.

Kumar, S., & Spafford, E. H. (1994). A pattern matching model for misuse intrusion detection.

Proceedings of the National Computer Security Conference, 11–21.

Lee, S. J., & Gerla, M. (2000). AODV-BR: Backup routing in ad hoc networks. Proceedings of

the 2000 IEEE Wireless Communications and Networking Conference (WCNC), 1311-

1316.

Li, W., & Joshi, A. (2009, May). Outlier detection in ad hoc networks using dempster-shafer

theory. Proceedings of the Tenth International Conference on Mobile Data Management:

Systems, Services and Middleware (MDM'09), 112-121.

Lauf, A. P., Peters, R. A., & Robinson, W. H. (2010). A distributed intrusion detection system

for resource-constrained devices in ad-hoc networks. Ad Hoc Networks, 8(3), 253-266.

Leiner, B. M., Ruther, R. J., & Sastry, A. R. (1996). Goals and challenges of the DARPA GloMo

program [global mobile information systems]. IEEE Personal Communications, 3(6), 34-

43.

Liu, K., Deng, J., Varshney, P. K., & Balakrishnan, K. (2007). An acknowledgment-based

approach for the detection of routing misbehavior in MANETs. IEEE transactions on

mobile computing, 6(5), 536–550.

Lunt, T. F. (1993). A survey of intrusion detection techniques. Computers & Security, 12(4),

405-418.

229

Lunt, T. F., & Jagannathan, R. (1988, April). A prototype real-time intrusion-detection expert

system. Proceedings of the 1988 IEEE Symposium on Security and Privacy, 59-66.

Lunt, T., Jagannathan, R., Lee, R., Listgarten, S., Edwards, D. L., Neumann, P. G., Havitz, H.S.,

& Valses, A. (1988). IDES: The enhanced prototype. SRI International, SRI-CSL-88-12.

Lunt, T. F., Jagannathan, R., Lee, R., Whitehurst, A., & Listgarten, S. (1989, March).

Knowledge-based intrusion detection. Proceedings of the Annual AI Systems in

Government Conference, 102-107.

Lupia, A., & Marano, S. (2016, July). A dynamic monitoring for energy consumption reduction

of a trust-based intrusion detection system in mobile Ad-hoc networks. Proceedings of

the 2016 International Symposium on Performance Evaluation of Computer and

Telecommunication Systems (SPECTS), 1-5.

Ma, C. X., & Fang, Z. M. (2009, January). A novel intrusion detection architecture based on

adaptive selection event triggering for mobile ad-hoc networks. Proceedings of the

Second International Symposium on Intelligent Information Technology and Security

Informatics (IITSI'09), 198-201.

Mahmood, R. A., Amin, A. H. M., Amir, A., & Khan, A. I. (2009, December). Lightweight and

distributed attack detection scheme in mobile ad hoc networks. Proceedings of the 7th

International Conference on Advances in Mobile Computing and Multimedia, 62-169.

Mahmoud, M. E., & Shen, X. (2010, March). Stimulating cooperation in multi-hop wireless

networks using cheating detection system. Proceedings of the 2010 IEEE INFOCOM, ,1-

9.

230

Malek, S. F., & Khorsandi, S. (2013, May). A cooperative intrusion detection algorithm based on

trusted voting for mobile ad hoc network. Proceedings of the 2013 21st Iranian

Conference on Electrical Engineering (ICEE), 1-8.

Maleki, M., Dantu, K., & Pedram, M. (2002). Power-aware source routing protocol for mobile

ad hoc networks. Proceedings of the 2002 International Symposium on Low Power

Electronics and Design (ISLPED'02), 72-75.

Mandalas, K., Flitzanis, D., Marias, G. F., & Georgiadis, P. (2005, December). A survey of

several cooperation enforcement schemes for MANETs. Proceedings of the Fifth IEEE

International Symposium on Signal Processing and Information Technology, 466-471.

Manikopoulos, C., & Ling, L. (2003, October). Architecture of the mobile ad-hoc network

security (MANS) system. Proceedings of the IEEE International Conference on Systems,

Man and Cybernetics, 3122-3127.

Manousakis, K., Sterne, D., Ivanic, N., Lawler, G., & McAuley, A. (2008, November). A

stochastic approximation approach for improving intrusion detection data fusion

structures. Proceedings of the Military Communications Conference (MILCOM 2008),

IEEE, 1-7.

Mapanga, I., Kumar, V., Makando, W., Kushboo, T., Kadebu, P., & Chanda, W. (2017). Design

and Implementation of an Intrusion Detection System using MLP-NN for MANET.

Proceedings of the 2017 IST-Africa Week Conference (IST-Africa), 1-12.

Marias, G. F., Georgiadis, P., Flitzanis, D., & Mandalas, K. (2006). Cooperation enforcement

schemes for MANETs: A survey. Wireless Communications and Mobile Computing,

6(3), 319-332.

231

McDonald, A. B., & Znati, T. F. (1999). A mobility-based framework for adaptive clustering in

wireless ad hoc networks. IEEE Journal on Selected Areas in communications, 17(8),

1466-1487.

Mikki, M. A. (2009). Energy efficient location aided routing protocol for wireless

MANETs. International Journal of Computer Science and Information Security, 4(1-2).

Mishra, A., Nadkarni, K., & Patcha, A. (2004). Intrusion detection in wireless ad hoc networks.

IEEE wireless communications, 11(1), 48-60.

Mitchell, R., & Chen, R. (2014). A survey of intrusion detection in wireless network

applications. Computer Communications, 42, 1-23.

Morais, A., & Cavalli, A. (2012, March). A distributed intrusion detection scheme for wireless

ad hoc networks. Proceedings of the 27th Annual ACM Symposium on Applied

Computing, 556-562.

Mustafa, H., & Xiong, Y. (2013, May). Routing attacks detection and reaction scheme for

mobile ad hoc networks using statistical methods. Proceedings of the 22nd Wireless and

Optical Communication Conference (WOCC), 659-664.

Nadeem, A., & Howarth, M. P. (2013). A survey of manet intrusion detection & prevention

approaches for network layer attacks. IEEE Communications surveys and tutorials, 15(4),

2027-2045.

Nadkarni, K., & Mishra, A. (2004, March). A novel intrusion detection approach for wireless ad

hoc networks. Proceedings of the Wireless Communications and Networking Conference,

(WCNC), IEEE, 831-836.

232

Otrok, H., Debbabi, M., Assi, C., & Bhattacharya, P. (2007, June). A cooperative approach for

analyzing intrusions in mobile ad hoc networks. Proceedings of the 27th International

Conference on Distributed Computing Systems Workshops (ICDCSW'07), 86-86.

Otrok, H., Mohammed, N., Wang, L., Debbabi, M., & Bhattacharya, P. (2007, October). An

efficient and truthful leader IDS election mechanism for MANET. Proceedings of the 3rd

IEEE International Conference on Wireless and Mobile Computing, Networking and

Communications (WiMob 2007), 78-78.

Panos, C., Xenakis, C., & Stavrakakis, I. (2010, July). A novel intrusion detection system for

MANETs. Proceedings of the 2010 International Conference on Security and

Cryptography (SECRYPT), 1-10.

Papadimitratos, P., & Haas, Z. J. (2004). Securing Mobile Ad Hoc Networks. Proceedings of the

SCS Communication Networks and Distributed Systems Modeling and Simulation

Conference (CNDS 2002), 1-13.

Patel, D. N., Patel, S. B., Kothadiya, H. R., Jethwa, P. D., & Jhaveri, R. H. (2014, February). A

survey of reactive routing protocols in MANET. Proceedings of the 2014 International

Conference on Information Communication and Embedded Systems (ICICES), 1-6.

Patcha, A., & Mishra, A. (2003, August). Collaborative security architecture for black hole

attack prevention in mobile ad hoc networks. Proceedings of the Radio and Wireless

Conference (RAWCON'03), 75-78.

Prasannavenkatesan, T., Raja, R., & Ganeshkumar, P. (2014, April). PDA-misbehaving node

detection & prevention for MANETs. Proceedings of the 2014 International Conference

on Communications and Signal Processing (ICCSP), 1163-1167.

233

Rai, A. K., Tewari, R. R., & Upadhyay, S. K. (2010). Different types of attacks on integrated

MANET-Internet communication. International Journal of Computer Science and

Security, 4(3), 265-274.

Raj, N., Bharti, P., & Thakur, S. (2015, April). Vulnerabilities, Challenges and Threats in

Securing Mobile Ad-Hoc Network. Proceedings of the 2015 Fifth International

Conference on Communication Systems and Network Technologies (CSNT), 771-775.

Rajakumar, P., Prasanna, V. T., & Pitchaikkannu, A. (2014, February). Security attacks and

detection schemes in MANET. Proceedings of the 2014 International Conference on

Electronics and Communication Systems (ICECS), 1-6.

Razak, S. A., Samian, N., & Maarof, M. A. (2008, September). A friend mechanism for mobile

ad hoc networks. Proceedings of the Fourth International Conference on Information

Assurance and Security (ISIAS'08), 243-248.

Rezaul Karim, A. H. M., Rajatheva, R. M. A. P., & Ahmed, K. M. (2006, October). An efficient

collaborative intrusion detection system for MANET using Bayesian Approach.

Proceedings of the 9th ACM international symposium on Modeling Analysis and

Simulation of Wireless and Mobile Systems, 187-190.

Roy, D. B., Chaki, R., & Chaki, N. (2009). A new cluster-based wormhole intrusion detection

algorithm for mobile ad-hoc networks. International journal of network security and its

application,1(1), 44-52.

Royer, E. M., & Toh, C. K. (1999). A review of current routing protocols for ad hoc mobile

wireless networks. IEEE personal communications, 6(2), 46-55.

234

Sabat, S., & Kadam, S. (2014, April). Adaptive Energy aware reputation based leader election

for IDS in MANET. Proceedings of the 2014 International Conference on

Communications and Signal Processing (ICCSP), 891-894.

Saeed, N. H., Abbod, M. F., & Al-Raweshidy, H. S. (2012, April). MANET routing protocols

taxonomy. Proceedings of the 2012 International Conference on Future Communication

Networks (ICFCN), 123-128.

Sangeetha, V., & Kumar, S. S. (2018, January). Detection of malicious node in mobile ad-hoc

network. Proceedings of the 2018 International Conference on Power, Signals, Control

and Computation (EPSCICON), 1-3.

Sarkar, M., & Roy, D. B. (2011, April). Prevention of sleep deprivation attacks using clustering.

Proceedings of the 2011 3rd International Conference on Electronics Computer

Technology (ICECT), 391-394.

Schaumann, J. (2002). Analysis of the zone routing protocol. Stevens Institute of Technology

Hoboken, New Jersey, USA.

Sen, J., Chandra, M. G., Harihara, S. G., Reddy, H., & Balamuralidhar, P. (2007, December). A

mechanism for detection of gray hole attack in mobile Ad Hoc networks. Proceedings of

the 2007 6th International Conference on Information, Communications & Signal

Processing, 1-5.

Sen, P., Chaki, N., & Chaki, R. (2008, June). HIDS: Honesty-rate based collaborative intrusion

detection system for mobile ad-hoc networks. Proceedings of the 7th Computer

Information Systems and Industrial Management Applications (CISIM'08), 121-126.

235

Sen, J., Ukil, A., Bera, D., & Pal, A. (2008, December). A distributed intrusion detection system

for wireless ad hoc networks. Proceedings of the 16th IEEE International Conference on

Networks (ICON 2008), 1-6.

Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton, New Jersey, USA: Princeton

University Press.

Shahnawaz, H., Joshi, R. C., & Gupta, S. C. (2012). Design of detection engine for wormhole

attack in adhoc network environment. International Journal of Engineering and

Technology, 4(6), 381-395.

Shakshuki, E. M., Kang, N., & Sheltami, T. R. (2013). EAACK—a secure intrusion-detection

system for MANETs. IEEE transactions on industrial electronics, 60(3), 1089-1098.

Shao, M. H., Lin, J. B., & Lee, Y. P. (2010, June). Cluster-based cooperative back propagation

network approach for intrusion detection in MANET. Proceedings of the 2010 IEEE 10th

International Conference on Computer and Information Technology (CIT), 1627-1632.

Sharma, B. (2015, August). A Distributed Cooperative Approach to Detect Gray Hole Attack in

MANETs. Proceedings of the Third International Symposium on Women in Computing

and Informatics, 560-563.

Sheikh, R., Chande, M. S., & Mishra, D. K. (2010, September). Security issues in MANET: A

review. Proceedings of the 2010 Seventh International Conference on Wireless and

Optical Communications Networks (WOCN), 1-4.

Sheltami, T., Al-Roubaiey, A., Shakshuki, E., & Mahmoud, A. (2009). Video transmission

enhancement in presence of misbehaving nodes in MANETs. Multimedia systems, 15(5),

273-282.

236

Shenbagapriya, R., & Kumar, N. (2014, November). A survey on proactive routing protocols in

MANETs. Proceedings of the 2014 International Conference on Science Engineering

and Management Research (ICSEMR), 1-7.

Shrestha, R., Han, K. H., Choi, D. Y., & Han, S. J. (2010, April). A novel cross layer intrusion

detection system in MANET. Proceedings of the 2010 24th IEEE International

Conference on Advanced Information Networking and Applications (AINA), 647-654.

Siaterlis, C., & Maglaris, B. (2004, March). Towards multisensor data fusion for DoS detection.

Proceedings of the 2004 ACM symposium on Applied computing, 439-446.

Singh, S., Woo, M., & Raghavendra, C. S. (1998, October). Power-aware routing in mobile ad

hoc networks. Proceedings of the 4th annual ACM/IEEE international conference on

Mobile computing and networking, 181-190.

Soni, M., Ahirwa, M., & Agrawal, S. (2015, December). A Survey on Intrusion Detection

Techniques in MANET. Proceedings of the 2015 International Conference on

Computational Intelligence and Communication Networks (CICN), 1027-1032.

Srivastava, A., Mishra, A., Upadhyay, B., & Kumar Yadav, A. (2014, August). Survey and

overview of Mobile Ad-Hoc Network routing protocols. Proceedings of the 2014

International Conference on Advances in Engineering and Technology Research

(ICAETR), 1-6.

Stamouli, L., Argyroudis, P. G., & Tewari, H. (2005, June). Real-time intrusion detection for ad

hoc networks. Proceedings of the Sixth IEEE International Symposium on a World of

Wireless Mobile and Multimedia Networks (WoWMoM), 374-380.

Sterne, D., Balasubramanyam, P., Carman, D., Wilson, B., Talpade, R., Ko, C., Balupari, R.,

Tseng, C. Y., & Bowen, T. (2005, March). A general cooperative intrusion detection

237

architecture for MANETs. Proceedings of the Third IEEE International Workshop on

Information Assurance, 57-70.

Subramaniyan, S., Johnson, W., & Subramaniyan, K. (2014). A distributed framework for

detecting selfish nodes in MANET using Record-and Trust-Based Detection (RTBD)

technique. EURASIP Journal on Wireless Communications and Networking, 2014(1),

205.

Sudarsan, D., & Jisha, G. (2012, August). A survey on various improvements of hybrid zone

routing protocol in MANET. Proceedings of the International Conference on Advances

in Computing, Communications and Informatics, 1261-1265.

Sun, B., Osborne, L., Xiao, Y., & Guizani, S. (2007). Intrusion detection techniques in mobile ad

hoc and wireless sensor networks. IEEE Wireless Communications, 14(5), 56-63

Tabari, M. Y., Hassanpour, H., Pouyan, A., & Saleki, S. (2012, November). Proposing a light

weight semi-distributed IDS for mobile ad-hoc network based on nodes' mode.

Proceedings of the 2012 Sixth International Symposium on Telecommunications (IST),

948-953.

Takai, M., Martin, J., & Bagrodia, R. (2001, October). Effects of wireless physical layer

modeling in mobile ad hoc networks. Proceedings of the 2nd ACM international

symposium on Mobile ad hoc networking & computing, 87-94.

Tavallaee, M., Stakhanova, N., & Ghorbani, A. A. (2010). Toward credible evaluation of

anomaly-based intrusion-detection methods. IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), 40(5), 516-524.

238

Tan, H. X., & Seah, W. (2005). Dynamic topology control to reduce interference in MANETs.

Proceedings of 2nd International Conference on Mobile Computing and Ubiquitous

Networking (ICMU 2005), 1-6.

Tangpong, A., Kesidis, G., Hsu, H. Y., & Hurson, A. (2009, August). Robust Sybil Detection for

MANETs. Proceedings of the 18th International Conference on Computer

Communications and Networks (ICCCN 2009), 1-6.

Theresa, W. G., & Sakthivel, S. (2017, August). Fuzzy based intrusion detection for cluster

based battlefield MANET. Proceedings of the 2017 IEEE International Conference

on Smart Technologies and Management for Computing, Communication, Controls,

Energy and Materials (ICSTM), 22-27).

Trang, C. M., Kong, H. Y., & Lee, H. H. (2006, August). A distributed intrusion detection

system for AODV. Proceedings of the Asia-Pacific Conference on Communications

(APCC'06), 1-4.

Tsang, C. H., & Kwong, S. (2005, December). Multi-agent intrusion detection system in

industrial network using ant colony clustering approach and unsupervised feature

extraction. Proceedings of the IEEE International Conference on Industrial Technology

(ICIT 2005), 51-56.

Ullah, Z., Khan, M. S., Ahmed, I., Javaid, N., & Khan, M. I. (2016, March). Fuzzy-Based Trust

Model for Detection of Selfish Nodes in MANETs. Proceedings of the 2016 IEEE 30th

International Conference on Advanced Information Networking and Applications (AINA),

965-972.

239

Uppuluri, P., & Sekar, R. (2001). Experiences with specification-based intrusion detection.

Proceedings of the 4th International Symposium Recent Advances in Intrusion Detection,

172-189.

Veeraiah, N., & Krishna, B. T. (2018, January). Selfish node detection IDSM based approach

using individual master cluster node. Proceedings of the 2018 2nd International

Conference on Inventive Systems and Control (ICISC), 427-431.

Vigna, G., & Kemmerer, R. A. (1998, December). NetSTAT: A network-based intrusion

detection approach. Proceedings of the 14th Annual Computer Security Applications

Conference, 25-34.

Vij, A., & Sharma, V. (2016, April). Security issues in mobile adhoc network: A survey paper.

Proceedings of the 2016 International Conference on Computing, Communication and

Automation (ICCCA), 561-566.

Wang, D., Hu, M., & Zhi, H. (2008, July). A survey of secure routing in ad hoc networks.

Proceedings of the Ninth International Conference on Web-Age Information

Management (WAIM'08), 482-486.

Wang, F., Huang, C., Zhao, J., & Rong, C. (2008, March). IDMTM: A novel intrusion detection

mechanism based on trust model for ad hoc networks. Proceedings of the 22nd

International Conference on Advanced Information Networking and Applications (AINA),

978-984.

Wang, K. H., & Li, B. (2002). Group mobility and partition prediction in wireless ad-hoc

networks. Proceedings of the IEEE International Conference on Communications (ICC

2002), 1017-1021.

240

Wazid, M., Katal, A., Sachan, R. S., Goudar, R. H., & Singh, D. P. (2013, April). Detection and

prevention mechanism for blackhole attack in wireless sensor network. Proceedings of

the 2013 International Conference on Communications and Signal Processing (ICCSP),

576-581.

Whitehurst, R. A. (1987). Expert systems in intrusion detection: A case study. Computer Science

Lab., SRIInternational, Menlo Park, CA.

Wu, B., Chen, J., Wu, J., & Cardei, M. (2007). A survey of attacks and countermeasures in

mobile ad hoc networks. In Wireless network security, 103-135. Springer US.

Xiao, H., Seah, W. K., Lo, A., & Chua, K. C. (2000). A flexible quality of service model for

mobile ad-hoc networks. Proceedings of the 51st IEEE Conference on Vehicular

Technology (VTC 2000), 445-449.

Yang, H., Luo, H., Ye, F., Lu, S., & Zhang, L. (2004). Security in mobile ad hoc networks:

challenges and solutions. IEEE wireless communications, 11(1), 38-47.

Yi, S., Naldurg, P., & Kravets, R. (2001). Security-aware ad hoc routing for wireless networks.

Proceedings of the 2nd ACM international symposium on Mobile ad hoc networking &

computing, 299-302).

Zhang, Y., & Lee, W. (2000, August). Intrusion detection in wireless ad-hoc networks.

Proceedings of the 6th annual international conference on Mobile computing and

networking, 275-283.

Zhang, Y., Lee, W., & Huang, Y. A. (2003). Intrusion detection techniques for mobile wireless

networks. Wireless Networks, 9(5), 545-556.

Zhang, Y., & Lee, W. (2005). Security in Mobile Ad-hoc networks. In Ad hoc networks, 249-

268. Springer US.

241

Zeng, Y., Chen, Z., Qiao, C., & Xu, L. (2011, May). A cluster header election scheme based on

auction mechanism for intrusion detection in MANET. Proceedings of the 2011

International Conference on Network Computing and Information Security (NCIS), 433-

437.

Zhou, L., & Haas, Z. J. (1999). Securing ad hoc networks. IEEE network, 13(6), 24-30.

	Nova Southeastern University
	NSUWorks
	2018

	A Novel Cooperative Intrusion Detection System for Mobile Ad Hoc Networks
	Adam Solomon
	Share Feedback About This Item
	NSUWorks Citation

	tmp.1547469431.pdf.IQDcN

