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Mobile ad hoc networks (MANETs) have experienced rapid growth in their use for various 

military, medical, and commercial scenarios.  This is due to their dynamic nature that enables the 

deployment of such networks, in any target environment, without the need for a pre-existing 

infrastructure.  On the other hand, the unique characteristics of MANETs, such as the lack of 

central networking points, limited wireless range, and constrained resources, have made the 

quest for securing such networks a challenging task.  A large number of studies have focused on 

intrusion detection systems (IDSs) as a solid line of defense against various attacks targeting the 

vulnerable nature of MANETs.  Since cooperation between nodes is mandatory to detect 

complex attacks in real time, various solutions have been proposed to provide cooperative IDSs 

(CIDSs) in efforts to improve detection efficiency.  However, all of these solutions suffer from 

high rates of false alarms, and they violate the constrained-bandwidth nature of MANETs.  To 

overcome these two problems, this research presented a novel CIDS utilizing the concept of 

social communities and the Dempster-Shafer theory (DST) of evidence.  The concept of social 

communities was intended to establish reliable cooperative detection reporting while consuming 

minimal bandwidth.  On the other hand, DST targeted decreasing false accusations through 

honoring partial/lack of evidence obtained solely from reliable sources.  Experimental evaluation 

of the proposed CIDS resulted in consistently high detection rates, low false alarms rates, and 

low bandwidth consumption.  The results of this research demonstrated the viability of applying 

the social communities concept combined with DST in achieving high detection accuracy and 

minimized bandwidth consumption throughout the detection process.  
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Chapter 1 
 

Introduction 
 

 

Background 

The rapid proliferation of wireless network devices, alongside the growth of related 

technologies, has increased the adoption of mobile ad hoc networks (MANETs) across different 

military and commercial fields.  MANETs are multi-hop wireless networks consisting of a 

number of wireless devices (nodes) that communicate with each other without the need for 

preexisting configurations (Singh, Woo, & Raghavendra, 1998).  This gives such networks the 

ability to be deployed in various situations where no infrastructure exists, such as disaster relief 

sites, emergency conferences, and battlefields (Johansson, 1999).  MANETs are distinguished 

from other types of networks, by their possession of certain unique characteristics.  These 

include infrastructure-less routing, limited resources, constrained bandwidth, dynamic 

topologies, and limited wireless range (Corson, Macker, & Cirincione, 1999).   

The dynamic nature of MANETs has been a major challenge for those providing security 

solutions for these networks.  The same characteristics that give these networks survivability in 

sites where no infrastructure exists, render them susceptible to unique security challenges (Dorri, 

Kamel, & Kheirkhah, 2015).  The current body of knowledge contains an extensive amount of 

research proposing various security solutions for fixed networks.  These solutions typically rely 

on central traffic points to monitor and collect audit data.  As such, these solutions cannot be 

applied for MANETs due to the infrastructure-less nature of these networks (Anantvalee & Wu, 

2007).  On the other hand, the resource-constrained nature of MANETs poses another challenge 

in the way of network availability.  Nodes in MANETs utilize a shared wireless medium to relay 
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their messages back and forth.  However, such a medium is limited in capacity as it conforms to 

the inherently bandwidth-constrained nature of MANETs.  As more nodes begin to utilize the 

same channel, the chances of interference and link errors rise in proportion to the increasing 

number of nodes. These errors, in turn, may result in communication interruptions as well as 

information loss that can have devastating consequences for mission-critical networks (Yang et 

al., 2004).  

The ever-challenging task of designing security solutions for MANETs has always been 

hindered by the limited energy and processing power possessed by nodes in these networks.  

These limitations have pushed a large number of researchers towards the task of establishing 

balance between energy conservation and minimization of processing overhead (Kim & Jang, 

2006; Mikki, 2009; Maleki, Dantu, & Pedram, 2002).  This balance is necessary because any 

packet transmission, such as sending and receiving, or even standby hardware operations 

consumes a nontrivial amount of power that can deplete a node’s battery.  Extra processing 

overhead imposed by security solutions may result in draining nodes’ battery power, leaving 

them incapable of participating in normal network operations.  As such, resource conservation is 

critical when designing security implementations for MANETs to sustain a longer network 

lifetime (Kim & Jang, 2006).   

Various preventive security solutions for MANETs exist in the current body of 

knowledge.  These solutions serve as a first line of defense against malicious attempts to 

compromise the network.  However, history has shown that preventive security solutions cannot 

survive on their own, and this issue continues to be problematic.  As networks evolve and 

become more complex, security is still an afterthought in many designs while the exploitability 

of preventative solutions increases along with the network complexity.  Therefore, the need for 
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an intrusion detection system (IDS) solution as a second line of defense is regarded as a necessity 

for maintaining the survivability of MANETs (Zhang, Lee, & Huang, 2003).  

A plethora of research studies have proposed IDSs as solid lines of defense that can 

provide an intrusion-free environment for MANETs.  Such systems target continuous monitoring 

of network traffic in order to detect and respond to hostile activities that might compromise 

network security.  However, a significant number of the proposed IDS solutions in the current 

literature fall short in fulfilling their security goals.  This can mostly be blamed on the dynamic 

nature of MANETs, which has made the quest of intrusion detection an exceptionally 

complicated task (Cannady, 2010).  

The lack of central traffic points in MANETs introduces a mandatory need for real-time 

cooperative detection techniques to achieve an effective IDS (Mahmood, Amin, Amir, & Khan, 

2009).  Besides, a broader view of the network is deemed significant to defend against insider 

attacks, which can only be accomplished through nodes’ cooperation in the detection process 

(Morais & Cavalli, 2012).  The existing body of research contains various solutions for 

cooperative IDS (CIDS) in MANETs.  However, all of the solutions suffer from two major 

problems: high communication overhead caused by constant information exchange and reliance 

on intrusion reports originating from anonymous nodes.  These, in turn, result in high false 

alarms rates that cause degradation in the detection accuracy as well as increased bandwidth 

consumption that might result in disrupting the normal routing operations in such bandwidth-

constrained networks. 

To this effect, researchers emphasized the continuous increase of security threats, and the 

overwhelming need for an efficient and reliable IDS for MANETs (Banerjee, Nandi, Dey, & 

Saha, 2015; Keyshap, 2015).  By proposing a novel IDS for MANETs, this research attempted to 
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address the high bandwidth consumptions and false alarms issues found in the current solutions. 

The proposed system is cooperative in nature, protocol-independent, and aimed to decrease 

bandwidth consumption as well as improving detection accuracy through reducing false 

positives. 

 

Problem Statement 

Currently, there is no efficient CIDS for MANETs.  All of the proposed solutions suffer 

from high communication overhead and false alarm rates.  The reliance of such solutions on 

constant information dissemination throughout the network violates the bandwidth-constrained 

nature of MANETs. This, in turn, causes disruption of normal network operations as well as loss 

of detection-related messages, which affects detection accuracy.  On the other hand, relying on 

reports from anonymous nodes in intrusion decision-making renders the current solutions 

susceptible to increased rates of false alarms and incapable of efficient detection of attacks when 

large numbers of malicious nodes exist in the network. 

 

Dissertation Goal 

The goal of this research was to develop an effective CIDS for MANETs that is capable 

of detecting malicious activities with high accuracy and achieving low bandwidth consumption 

to preserve the normal routing operations in the network.  We presented a novel approach for 

intrusion detection that used a combination of mechanisms to achieve these goals.  High 

detection accuracy is accomplished through the application of a two-layered detection model 

(local and cooperative) that honors partial and lack of evidence against a suspicious activity in 

the detection decision through the application of Dempster-Shafer theory (DST).  However, the 
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uniqueness of such application as compared to similar approaches is the avoidance of weighting 

nodes’ trustworthiness in evidence consideration, which can result in inaccurate results when 

high numbers of malicious nodes exist in the network.  Due to the highly dynamic nature of 

MANETs, evidence collection throughout the process of intrusion detection might suffer from 

cases where partial or no evidence is collected.  Such cases, in the proposed approach, were not 

taken as negative evidence against the suspicious node as opposed to similar techniques found in 

the literature, such as the Bayesian theorem (Gordon & Shortliffe, 1984).  Instead, through the 

application of DST, each node calculates and sends out its own degree of belief in the collected 

evidence against the suspicious node, alongside the evidence itself.  The degree of belief in this 

context represents the level of certainty towards the collected evidence from a certain node.  

Based on the received degrees of belief, each piece of evidence or lack thereof is given a certain 

weight.  Those weights are then honored in the intrusion detection process to calculate the final 

decision against the suspicious node.  This, in turn, targeted reducing false alarms rates in cases 

of accidental behaviors, such as high node mobility or nodes leaving the network.  

All of the current solutions rely on collaborative calculations that require extensive back 

and forth communications to establish the reliability of information exchange between nodes.  

However, they tend to fall short when there is a high number of malicious nodes in the network.  

Besides, their high bandwidth consumption for exchanging detection-related information causes 

disruption of normal network operations and potential loss of such information.  Therefore, for 

the reduction of this large volume of information dissemination found in current solutions, this 

research targeted this issue through employing a self-sufficient technique for each node to 

determine its own social circle.  This enables nodes to limit information exchange, such as 

cooperative detections or false alarms generations, with only certain sets of nodes.  This, in turn, 
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has two benefits.  First, detection-related information is only sent to strongly-tied nodes, which 

eliminates the possibility that malicious nodes receive such information and temporarily adjusts 

their behavior to avoid exclusion from the network.  The second benefit relies upon having 

intrusion cooperation limited to a node’s social circle, instead of the entire neighborhood.  Such 

restriction ensures reliable detection information through excluding anonymous nodes from 

cooperative investigation operations.  At the same time, it decreases information exchange, even 

in such short-lived operations.   

The proposed approach employed the concept of social communities, which has never 

been applied to MANETs security before, to improve detection accuracy.  This was done by 

building strongly-tied communities that enable the exchange of reliable detection information 

solely among nodes' social circles.  This type of application addresses a major limitation that 

exists in current approaches: their reliance on intrusion reports from anonymous nodes, which 

can result in high false alarms rates.  As such, in this research, intrusion-related reports are only 

considered if they come from a node belonging to a strongly-tied community.   

The combination of the mechanisms, mentioned above, successfully attained a highly 

efficient CIDS for MANETs through achieving high detection accuracy and low bandwidth 

consumption, as compared to the existing solutions. 

 

Relevance and Significance 

MANETs have experienced a rapid growth in their applications with alignment to the 

proliferation of mobile devices and technologies.  The ability of MANETs to function without 

the need for Internet connectivity or fixed infrastructure have led to increased deployments of 

such networks towards various scenarios, such as disaster relief operations and military tactics 
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(Johansson, 1999).  The unique characteristics of these networks, such as the lack of 

infrastructure, limited bandwidth, constrained resources, and the essential need for cooperation, 

renders these networks susceptible to various types of attacks.  These attacks may result in 

devastating consequences, such as loss of confidential information, service interruptions, or even 

eradication of the entire network (Vij & Sharma, 2016).  Such disastrous potential of these 

attacks has made the application of security for MANETs a challenging mission (Hubaux, 

Buttyán, & Capkun, 2001).  

Different preventive techniques have been proposed to secure such networks.  However, 

the mechanisms utilized in these propositions cannot guarantee an intrusion-free network.  Thus, 

a second line of defense is needed to achieve this goal, represented by the application of IDSs.  

There exists a plethora of research in the area of MANETs security through the development and 

applications of various IDSs.  Three primary architectures exist in the current body of literature 

for the implementation of IDSs in MANETs: stand-alone, hierarchical, and cooperative.  In the 

stand-alone architecture, each node analyzes and detects attacks on its own through a locally 

installed IDS.  However, the reliance on locally collected data affects detection accuracy and 

limits the range of malicious attacks that can be uncovered (Şen & Clark, 2009).  In a 

hierarchical setup, a MANET is divided into clusters, which each have a dedicated monitoring 

node to perform detection functions.  The main drawback of this architecture is the high risk of 

leaving the entire network in jeopardy when such nodes get compromised or drop out of the 

network (Cannady, 2010).  In a cooperative configuration, each node has its own IDS and 

cooperates with others in attack detection.  The use of a cooperative architecture over the other 

types can be reasoned to the lack of central traffic points in MANETs, which mandate the need 

for real-time cooperative detection techniques for an effective IDS (Mahmood, Amin, Amir, & 
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Khan, 2009).  Additionally, a broader view of the network is deemed significant to defend a 

network against insider attacks, which can only be achieved through nodes’ cooperation in the 

detection process (Morais & Cavalli, 2012). 

A large body of knowledge exists in the area of CIDS implementations, pertaining 

different methodologies and mechanisms.  However, all of these implementations rely on 

extensive dissemination of detection information throughout the network.  This reliance has two 

major consequences: disruption of normal routing operations and potential loss of detection 

information, leading to degradation of detection accuracy.  The other downside found in the 

existing systems is the high rate of false alarms resulting from their reliance on unreliable 

detection reports obtained from anonymous nodes throughout the decision-making process.  

Making intrusion decisions based on anonymous reports can lead to false accusations towards 

innocent nodes in case of fake information generated by malicious nodes (Razak, Samian, & 

Maarof, 2008).  These vulnerabilities found in existing approaches hinder the efforts towards a 

widespread adoption of MANET applications against more areas since security forms the main 

obstacle towards such adoption (Nadeem & Howarth, 2013).  Therefore, there is a need for an 

efficient CIDS that can detect intrusions with high accuracy while maintaining an efficient 

bandwidth consumption.  

 

Barriers and Issues 

The unique characteristics of MANETs represented in their continuously changing 

network topologies, infrastructure-less nature, and lack of central networking points make the 

mission of securing such networks an inherently difficult one.  Despite the extensive research 

efforts put forth in the area of intrusion detection, the development of an efficient IDS that is able 
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to detect complex attacks remains an obstacle in the way of security researchers (Cannady, 

2013).  This is largely due to a number of contributing factors, such as the continuous 

advancements in technologies, attackers’ creativity, and the dynamic nature of threats.  Cannady 

(2013) outlined the criticality of achieving timely and accurate attack detection when 

implementing an IDS for MANETs.  This aligns with the primary goals of this research, as the 

proposed system was intended to achieve high detection accuracy through decreasing false 

positives while avoiding overwhelming bandwidth consumption to accomplish timely 

completion of the detection process, towards meeting Cannady's criterion for an efficient IDS.  

However, the primary lesson learned from previous research studies in this area is that 

attempting to achieve such timely accuracy requires a high degree of complexity and extensive 

efforts, which were anticipated to accompany this research study.   

The acquisition of representative attack data was another barrier for this research.  This 

type of data is critical for validating the effectiveness and viability of this study’s proposed 

approach in real-world attack scenarios and implementations.   However, since the proposed 

approach was intended to work with real-time network traffic, it was not sufficient to obtain and 

operate on static data to simulate malicious activities.  Previous research studies that have 

attempted the implementation of various attack scenarios were examined for this purpose. Some 

edits and manipulation for these implementations were necessary to accommodate the required 

scenarios in this research.  Nonetheless, the validity of such implementation as efficient 

representations of real-world attack scenarios is still an outstanding area of critical concern.  The 

Defense Advanced Research Projects Agency (DARPA) provides a number of sample datasets, 

consisting of network traffic and audit logs, for the evaluation of intrusion detection techniques.  

However, these datasets do not include attack data that are specific to MANETs.  As such, 



 

 

18 

common methodologies implemented by previous studies were followed for attack 

representations in this research.  However, in the face of increasingly creative attackers that 

continuously vary existing attack patterns, such implementation might not necessarily represent 

all scenarios for real-life attacks. 

 

Assumptions, Limitations, and Delimitations 

To manage the scope of the study, the proposed research was conducted in a simulated 

environment using ns-2.  Network prototypes, validation of the efficiency and applicability of the 

proposed system, and data analysis were performed in that environment.  The simulated network 

prototypes produced different attack scenarios that are common to MANETs.  Prominent 

researchers have used common methodologies to simulate such attacks.  Their work was 

validated and piloted in the attack simulation process for the proposed system.  However, one 

limitation here lied in the adaptability of attackers.  As networks continue to advance, attackers 

evolve and become better at devising innovative ways to launch security attacks against 

MANETs.  Thus, the simulated environment cannot represent every threat level that MANETs 

might be exposed to in real-life scenarios.  However, the system was implemented to be 

applicable to every MANET. 

This research was not intended to result in an IDS that can detect all types of attacks.  

Instead, the proposed system demonstrated how the application of social communities 

accompanied by DST can enhance accuracy while minimizing communication overhead 

throughout the intrusion detection process.  A possible extension of this study is to implement 

detection mechanisms against a more comprehensive set of attacks against MANETs.  This was 

kept in mind during the design of the proposed system to potentially simplify future extensions. 
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Summary 

 The dynamic nature of MANETs represented in features such as the lack of fixed 

infrastructure, constant mobility, and dynamic topology have made designing effective security 

mechanisms a difficult challenge.  Researchers have put forth extensive efforts towards 

MANET’s security through the implementation of IDSs.  Since cooperation between nodes in a 

MANET is mandatory to achieve efficient detection (Mahmood et al., 2009), a large number of 

studies have proposed a variety of CIDS implementations.  However, all of the proposed CIDS 

in the current literature suffer from high bandwidth consumption and false alarm rates.  Due to 

the resource-constrained nature of MANETs, high bandwidth consumptions can have adverse 

effects on normal network operations.  On the other hand, the reliance current solutions have on 

intrusion detection reports from anonymous nodes may lead to false accusations towards 

innocent nodes, which in turn, decreases detection accuracy.    

The goal of this research was to apply the concept of social communities and DST 

towards the implementation of a CIDS that is capable of achieving high detection accuracy while 

minimizing bandwidth consumption.  Implementation of the proposed research was able to 

produce an efficient CIDS that is capable of accurately detecting security attacks in a timely 

manner. 

 This Dissertation Proposal is structured as follows: Chapter 2 presents a comprehensive 

review of literature relevant to intrusion detection in MANETs.  Chapter 3 details the research 

methodology that is going to be followed in the implementation of this research.  
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Chapter 2 

Review of Literature 

 

Introduction 

This chapter presents a summary of relevant research studies in the current body of 

knowledge.  As will be shown, these studies support the research presented in this Dissertation 

Proposal pertaining to MANETs, their security issues, and current security solutions.  The review 

starts with a survey of what makes MANETs such unique networks. This survey will include 

reviewing their characteristics, security issues, security requirements, and possible attacks.  The 

review then progresses towards the specific domain of this research: discussing intrusion 

detection for MANETs in relation to the various mechanism, techniques, and architectures 

followed in IDS implementations.  

 

 

Overview of MANETs 

Characteristics  

Early work on ad hoc networking traces back to 1972 when DARPA introduced their 

Packet Radio Network (PRNet) project.  The work focused on the application of packet-

switching techniques, such as store-and-forward routing and bandwidth sharing for mobile 

wireless networking (Jubin & Tornow, 1987).  DARPA continued their development in this field, 

resulting in the introduction of Survivable Radio Networks (SURAN) in 1983.  This new 

technology addressed scalability, energy consumption, and security issues found in PRNet 

(Beyer, 1990).  In 1987, DARPA designed the Low-cost Packet Radio (LPR) technology, which 
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enhanced the scalability and network management aspects of packet radio networks (Jubin & 

Tornow, 1987).   

Advancements continued to be made, and in 1994, DARPA started the Global Mobile 

(GloMo) program targeting the support of multimedia connectivity in wireless devices anytime 

and anywhere (Leiner, Ruther, & Sastry, 1996).  With all these advancements in ad hoc 

networking, the US Army’s Tactical Internet (TI) that was developed in 1997 is considered the 

largest-scale implementation of a mobile wireless multi-hop packet radio network.  Numerous 

amounts of work have followed to build on top of this implementation, exposing the potential of 

ad hoc networking to the research community, outside the military domain (Chlamtac, Conti, & 

Liu, 2003). 

Early work on MANETs was sharply focused on military applications.  The proliferation 

of wireless networking and mobile devices, as well as the ongoing advancements in these 

technologies, have increased the widespread application of MANETs implementations across 

medical, military, financial, and various other fields.  In military applications, MANETs provide 

a decentralized configuration that is necessary and advantageous for these types of operations.  

However, the same configuration can be employed to non-military scenarios where no 

infrastructure exists, such as construction sites, disaster relief areas, conferences, and many 

others (Singh, Woo, & Raghavendra, 1998; Johansson, 1999).  A MANET is a multi-hop 

wireless network consisting of a number of wireless devices that have the ability to perform 

routing on their own.  As such, these nodes cooperatively maintain connectivity inside a 

MANET (Singh, Woo, & Raghavendra, 1998).  The movements of such nodes are arbitrary 

because they are free to move in any direction needed.  A node can be an integrated unit of 

network devices, such as laptops and handheld devices, or it may consist of physically separated 
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network devices.  In order for a node to connect to others in a MANET, wireless connectivity in 

the form of a dynamic, multi-hop ad hoc network must exist.  This is done through a variety of 

wireless transmitters and receivers, which are usually implemented with different kinds of 

antennas that nodes must be equipped with (Corson, Macker, & Cirincione, 1999).   

In contrast with other types of networks that rely heavily on Internet connectivity to 

operate, MANETs are autonomous systems of nodes that can fully operate in isolation without 

the need to be connected to the Internet.  In traditional mobile networks, although a user might 

change location due to continuous movements, a variety of fixed networking infrastructures are 

typically used to support such routing with other devices.  However, in MANETs, the entire 

routing infrastructure moves with users’ devices, leading to frequent and unpredictable changes 

in the network topology.  As such, a fixed routing infrastructure is no longer useful in such 

networks (Corson et al., 1999).  

The main characteristics of MANETs that differentiate them from other types of wireless 

networking can be summarized by the following (Corson et al., 1999; Chlamtac et al, 2003; 

Johansson, 1999): 

• Dynamic Topologies: since nodes in MANETs are free to move arbitrarily and route 

changes, frequent network partitioning and packet loss are natural outcomes of the 

constant change in topology in such networks.  Nodes in MANETs vary in regard to their 

transmission range and software/hardware configurations.  This results in different 

processing powers, causing a dynamic, heterogeneous networking environment.  

• Infrastructure-less Networking: nodes in MANETs do not rely on fixed infrastructure to 

communicate with others residing within their wireless range.  Should communication be 

needed with an out-of-range node, other nodes can be used as intermediates, relaying the 
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message hop by hop until it reaches its destination.  As such, it can be seen that each node 

in a MANET acts as a router, enabling message forwarding and information sharing 

inside the network.  

• Resource constrained: applications and services provided by mobile nodes in MANETs 

are restricted due to the limited energy, storage, and processing power.  Each node in a 

MANET acts as both an end- and intermediate-system.  Resource limitations become a 

big problem in MANETs as a network moves towards scaling to a larger number of 

nodes and requires more resources to perform the different routing operations. 

 

Nodes in MANETs have the unique ability to instantaneously form routes among 

themselves as they roam freely in the network.  The infrastructure-less nature of MANETs 

allows this dynamic routing to occur without interruptions to normal network operations.  This is 

achieved through nodes exchanging their routing information with each other as they move 

around the network to establish routes dynamically without disrupting communications.  Such a 

capability allows MANETs to be a suitable choice for special deployment scenarios.  These 

include challenging deployment environments, such as disaster relief locations, where addressing 

terrestrial and geographical limitations requires a high distribution of network devices without 

any fixed base stations or central networking units. (Deng, Li. & Agrawal, 2002).     

Although the dynamic configuration of MANETs allows network operations to survive 

through high-mobility scenarios, it does impose certain requirements and obstacles for MANET 

routing protocols.  Depending on the network size, which is defined by the number of nodes in a 

MANET, communications can suffer from data loss and continuous interruptions (Wang & Li, 

2002).  This can happen, for instance, with small MANETs in which mobile nodes move in 
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opposite directions and cause network partitioning where a network is divided into multiple 

disconnected sections.  Routing disruptions, packet delays and loss can occur in such situations, 

causing the network to suffer from high overhead in an attempt to rediscover routes to the 

disconnected partitions (Tan & Seah, 2005).   

Network partitioning caused by the continuously changing topological formations in 

MANETs has occupied many researchers in efforts to find solutions that might lessen the impact 

of communication disruptions.  These efforts focused mainly on predicting nodes’ mobility 

patterns to avoid network partitioning (Wang & Li, 2002).  Such efforts were put forth due to the 

criticality of some MANET applications, such as battlefield deployment where certain levels of 

network availability and quality of services must be guaranteed.  To that extent, routing protocols 

along with the applications deployed on nodes must be designed to accommodate the high rates 

of topological changes in the network (McDonald & Znati, 1999).    

The resource-constrained nature MANETs also makes them prone to network availability 

challenges.  When nodes communicate with each other, they utilize a shared wireless medium to 

relay their messages back and forth.  This medium is limited in capacity as it conforms to the 

inherently bandwidth-constrained MANETs.  The more nodes utilize the same channel, the 

higher the chances of interference and link errors to occur.  These, in turn, can result in 

interruptions of communications as well as information loss, which can have devastating 

consequences in mission-critical networks (Yang et al., 2004). 

The primary issue with limited-capacity wireless channels in MANETs lies in the 

inevitable unpredictability of communication quality between nodes.  This unpredictability is 

caused by the highly variable environmental conditions surrounding the deployment of 

MANETs, which are difficult to anticipate in advance (Xiao, Seah, Lo, & Chua, 2000).  Such 
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unpredictability continues to contribute to a lower quality of service in MANETs when 

compared to their fixed-wireless or even wired counterparts.  On the other hand, nodes in 

MANETs usually come equipped with different transmission rates subject to their wireless 

antenna design.  However, nodes with high transmission power cannot guarantee a full 

utilization of such a power.  This is due to the unpredictable effects of the shared wireless 

channel, which might cause interference, noise, and continuous collisions.  All of these factors 

have adverse effects on communication and service quality in MANETs, causing such networks 

to be constantly vulnerable to availability problems (Garg & Mahapatra, 2009). 

Despite the increasing adoption of MANETs in areas other than military and disaster 

recovery operations, the applications that can be deployed on these networks are somewhat 

constrained by nodes’ limited energy and processing power.  This has pushed researchers to 

devise various methods to enhance energy conservation while minimizing processing overhead 

incurred by routing protocols (Kim & Jang, 2006; Mikki, 2009; Maleki, Dantu, & Pedram, 

2002).   By directing their efforts towards allowing more room for application to utilize such 

energy and processing, researchers hoped to increase the adoption of MANETs in a wider range 

of civilian deployments.  In addition, resource conservation is deemed critical for MANETs to 

sustain a longer network lifetime (Kim & Jang, 2006).   

Along with a detrimental impact on the feasibility of installing certain applications on 

nodes, the inherent energy constraints in MANET nodes also affect hardware and signal 

processing operations.  This happens because any packet operation such as sending and 

receiving, or even standby hardware operations, consumes a nontrivial amount of a node’s 

battery power (Goldsmith & Wicker, 2002).  This inevitable drainage of battery power not only 

imposes high restrictions for designing communication protocols, but it also prompts necessary 
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considerations for conserving such energy, even in sleep modes where nodes are idle.  Such 

considerations are usually applied in the hardware and operating system design for mobile 

devices (Goldsmith & Wicker, 2002).  

Although the unique nature of MANETs sometimes poses as a limitation towards the 

deployment of these networks in certain scenarios, it also serves as an attractive factor for a large 

number of applications.  Data, home, and sensor networks, for instance, have experienced a wide 

and successful adoption of MANETs.  This is all thanks to a dynamic nature that enables 

sufficient flexibility for these applications to operate in versatile environments.  Data network 

applications for MANETs provide wireless connectivity between laptops, handheld devices, and 

other information devices in commercial settings.  Home network applications, on the other 

hand, can support automatically adjusting light and room temperature or act as security alarms 

alerting home owners when odd movements are detected outside of their houses (Huhns, 1999). 

Another promising application of MANETs with high potentiality of expansion can be 

seen in sensor networks.  These applications can be of a great benefit for both military and 

commercial deployments.  Examples of military-targeted applications of sensor networks include 

optical, chemical, and biological sensors that can serve as first lines of attack detection in war 

zones.  On the other hand, commercial usage of these sensors includes gas, water, and electricity 

meters that can help consumers regulate their usage for high-energy consumption devices, such 

as water heaters and air conditioners (Goldsmith & Wicker, 2002).   

Nonetheless, the inherent energy constraints, processing limitations, and infrastructure-less 

nature of MANETs pose the requirements for different networking strategies to be implemented 

than those for fixed wireless networks.  As such, a tremendous amount of research has been 

directed to design a wide range of network management models to provide efficiently functional 
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communications with regard to limitations in MANETs (Abolhasan, Wysocki, & Dutkiewicz, 

2004). 

 

Routing  

Due to the limited transmission range of nodes in MANETs, each node has to act as both 

a host and router, forwarding packets to out-of-range nodes as multiple hops might be needed for 

packet exchange.  Route discovery and maintenance also fall under nodes’ responsibility (Royer, 

1999).  Since MANETs are infrastructure-less by nature, this means the lack of a fixed routing 

infrastructure forces nodes to dynamically establish routes among themselves to communicate 

with each other across the network.  Such routes are formed instantaneously, providing an 

extremely flexible communication environment for the continuously changing network topology 

(Deng, Li, & Agrawal, 2002).  

In traditional wired networking, there are two primary routing algorithms: link-state 

routing and distance-vector routing.  In link-state routing, each node in the network maintains an 

updated routing table through periodically broadcasting the link-state costs of its neighboring 

nodes.  Tables are then updated through the application of the shortest-path algorithm to 

determine the next hop nodes for destinations.  In distance-vector routing, each node maintains a 

table of distances to each neighboring node, allowing nodes to calculate the shortest path to each 

destination (Abolhasan et al., 2004).  Although these two protocols are widely used in wired 

networks, they are inefficient for the resource-constrained MANETs due to their high bandwidth 

consumption when performing their frequent route updates.  To overcome such inefficiency, a 

number of routing protocols have been specifically developed for MANETs.  These protocols 

can be categorized into three groups: proactive, reactive, and hybrid (Abolhasan et al., 2004).  
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In proactive routing, each node maintains information about all other nodes in the 

network.  Routes to all destinations are determined at the network initialization phase.  Different 

tables are used to maintain route information and prevent them from getting out of date due to 

continuous route updates (Royer, 1999).  These updates are of two types: periodic and triggered.  

In periodic updates, the entire routing table of each node is broadcasted to all other nodes.  On 

the other hand, triggered updates occur only when a node detects changes in its neighboring 

nodes.  Thus, only these changes are broadcasted.  This type of routing is also called table-driven 

routing (Srivastava et al., 2014).  There are a number of routing protocols following this strategy, 

such as Destination-Sequenced Distance Vector (DSDV), Wireless Routing Protocol (WRP), and 

several others that operate in a similar fashion (Royer, 1999; Shenbagapriya & Kumar, 2014).  

However, the main differences among the different protocols in proactive routing are the number 

of tables used to maintain information, types of information stored in each table, and the 

mechanisms used to circulate such information.   

Destination-Sequenced Distance Vector Routing (DSDV) provides an example to 

illustrate how proactive routing works.  DSDV improves on the classical Bellman-Ford routing 

mechanism through the elimination of loops in routing tables.  Nodes record every possible 

destination in the network and the number of hops it takes to reach that destination in their 

routing tables along with a sequence number.  This number allows nodes to distinguish stale 

routes, which in turn, eliminates routing loops.  That is, a higher sequence number indicates a 

more recent route to a destination.  When a node wants to transmit packets to a destination, it 

only considers routes with the most recent sequence numbers.  However, if a node receives two 

updates with the same sequence number, it selects the one with the smaller hop count to the 

destination (Royer & Toh, 1999).  Routing updates can be in a form of a “full dump” in which all 
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available routing information is broadcasted to the network.  Smaller incremental updates that 

only send updates from events after the last “full dump” are also employed in this protocol.  

These updates contain the address of a destination, a sequence number received for that 

destination, and the number of hops needed to reach it (Abolhasan et al., 2004).  

 In an attempt to reduce network congestion from frequent route updates, mobile nodes in 

DSDV may employ a certain broadcasting delay before sending subsequent updates.  This delay 

is determined through a mechanism that keeps track of settling times for routes, which are 

defined as the times when routes to a destination fluctuate before the route with the best metric is 

received (Royer & Toh, 1999).  However, DSDV does not thrive in large networks as the 

excessive amounts of routing overhead would occupy a large portion of the network and result in 

potential communication disruptions (Abolhasan et al., 2004).        

The main advantage of proactive routing is the immediate availability of routes when 

needed, which decreases delays in packet delivery (Sudarsan & Jisha, 2012).  However, the main 

disadvantage of these protocols is their excessive amounts of bandwidth usage for route update 

propagations, which might affect the scalability of the network (Abolhasan et al., 2004).  

Another disadvantage is the constant increase of the routing tables’ sizes as more nodes join the 

network (Srivastava et al., 2014).  

Reactive routing protocols attempt to reduce bandwidth usage and overheads that exist in 

proactive protocols by maintaining information on active routes only.  Along with this, routes are 

determined and maintained on demand.  As such, no periodic flooding of information is needed 

when a topology change occurs.  Therefore, this type of routing is also called on-demand or 

source-initiated routing (Royer, 1999).  When a node needs to send a packet to a destination with 

an unknown route, a route discovery process is initiated.  During this process, the network is 
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flooded with route request packets.  When the route is determined through an intermediate or 

destination node, route reply packets are sent back through link reversal if bidirectional links 

were used or by flooding the network with such packets (Royer, 1999).  Maintenance of the route 

ends when the destination node becomes inaccessible or no longer desired (Srivastava et al., 

2014).  Fewer route updates and maintenance are the main themes of reactive routing.  However, 

increased delay in packet delivery may occur due to the time consumed in the route discovery 

phase (Sudarsan & Jisha, 2012).  A large number of protocols exist in reactive routing, such as 

ad hoc on-demand distance vector (AODV) and dynamic source routing (DSR).  

 To illustrate how this type of routing works in a MANET, we will briefly examine the 

AODV protocol.  AODV builds on the DSDV algorithm.  However, the improvement this 

protocol offers over DSDV is the elimination of expensive route information exchange through 

the creation of routes on an on-demand basis (Abolhasan et al., 2004).  Nodes that are not in a 

selected path neither maintain routing information nor participate in routing tables’ exchanges. 

Hence, the protocol is referred to as a “pure on-demand route acquisition”.  When a node wants 

to transmit packets to a destination with an unknown route, it starts a route discovery process by 

sending a route request (RREQ) packet to its neighbors who then forward the request to their 

neighbors. The process continues until the destination or an intermediate node with a recent route 

to the destination is found (Royer & Toh, 1999).   

Sequence numbers are used in this protocol to eliminate loops and ensure recency of path 

information. A sequence number is a monotonically increasing number that is maintained by a 

node originating a route request.  This number is then used by other nodes to determine the 

freshness of information received from the originating nodes.  Therefore, the higher the sequence 

number, the fresher the received route to a destination.  Each node checks if it receives the same 
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sequence number in a routing message.  That way, if a node detects a duplicate sequence 

number, it drops the routing message to avoid potential loops.  Additionally, this sequence 

number is incremented each time a node initiates a route discovery, which along with the IP 

address identifies the RREQ.  Intermediate nodes can reply with the route information only if 

they have a route to the destination with a greater sequence number than that contained in the 

RREQ (Patel, Patel, Kothadiya, Jethwa, & Jhaveri, 2014).   

During the process of RREQ, a reverse path is established as each intermediate node 

records the address of the neighbor from which it received the first copy of the RREQ.  This path 

is then used when the destination is found to unicast a route reply (RREP) packet to the neighbor 

that a node received the first copy from, until it reaches the original requesting node.  A forward 

path is established during the process of RREP, in which each node records the information of 

the neighbor that sent the RREP.  If a node along an established route moves and needs to 

maintain an updated record of routing information during the route discovery phase, a link 

propagation failure message (RERR) is sent from the node’s upstream neighbor to all its 

neighbors.  These neighbors continue to forward the failure to their upstream neighbors until it 

reaches the source node. To keep a list of active neighbors, nodes listen to packet retransmissions 

of their neighbors to ensure the availability of their next hop.  If such retransmissions are not 

heard from a certain node, nodes send a “Hello” message to check if the next hop is still alive. 

Such messages are used by AODV as periodical local broadcasts to keep nodes informed about 

others in their neighborhood (Royer & Toh, 1999).  

  All of these protocols possess comparable mechanisms in regard to route discovery and 

maintenance operations (Abolhasan et al., 2004).  They also share similar transmission routing 
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costs when considering packet transmission between two nodes with no prior communications 

(Patel et al., 2014).    

Hybrid routing protocols for MANETs were introduced to overcome network scalability and 

latency issues found in both proactive and reactive protocols.  This is achieved by allowing 

close-proximity nodes to have full knowledge of the routes between them, which reduces 

overheads resulting from route discovery (Saeed, Abbod, & Al-Raweshidy, 2012).  To 

accomplish such a task, proactive routing is used for neighboring nodes to maintain routes 

between them.  When these nodes need to transmit data outside of their circle, reactive routing is 

used to determine the required routes through route discoveries (Sudarsan & Jisha, 2012; Patel et 

al., 2014).  Hybrid routing protocols have the ability to quickly switch between proactive and 

reactive mechanisms (Srivastava et al., 2014).  Different hybrid routing protocols were 

developed, such as the zone routing protocol (ZRP) and distributed dynamic routing (DDR).  

 ZRP provides an example to illustrate the functionality of hybrid protocols. This protocol 

is based on dividing the network into multiple routing zones.  ZRP defines a zone for each node 

with a radius of (p) that includes all the neighboring nodes who are (p) hops away.  Inside each 

zone, ZRP utilizes locally proactive routing defined as the Intra-Zone Routing Protocol (IARP).  

This protocol uses table-driven routing that relies on nodes to continuously update routing 

information regarding nodes in their local zone.  To communicate with distant zones, ZRP uses 

its reactive routing component called Inter-Zone Routing Protocol (IERP).  This protocol is 

reactive in nature. Thus, it issues route queries on demand whenever a route to an out-of-zone 

node is requested (Schaumann, 2002).  

 When a node wants to transmit packets to a destination, it checks whether that destination 

is within the local zone by querying the information provided by IARP.  If so, the node uses 
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proactive routing through IARP to transmit the packet.  However, if the destination is outside the 

local zone, the node must use reactive routing through IERP (Schaumann, 2002).  This is done 

by having the requesting node initiate route request packets to other nodes in its local zone.  If a 

receiver node has knowledge of the destination, it responds with a route reply to the requesting 

node.  If not, the request packet continues to bordercast until it reaches the destination or an 

intermediate node that has a recent path to the destination.  Bordercasting is a process of 

requesting route information from nodes located at zones’ borders.  Bordercasting is specific to 

the IARP that is provided by the Bordercast Resolution Protocol (BRP).  This protocol creates a 

bordercast tree map containing nodes that are located on the local zone’s border by querying 

topology information provided by IARP.  Such queries are only initiated when reactive routing is 

needed to a distant destination.  ZRP uses this protocol to direct route requests to distant zones 

through the process of bordercasting (Beijar, 2002).  

 For the reply packet to be able to make it back to the requesting node across the zones, 

each node that forwards the packet appends its own address.  This way, when the destination 

receives the packet, it copies these saved addresses to the route reply packet so that it can be 

routed back to the source.  On the other hand, nodes along the path to the destination save the 

next-hop address to their routing tables for future use (Beijar, 2002).   

A critical consideration when it comes to designing a MANET with ZRP as the main 

routing protocol is identifying zones’ radiuses.  The radius of the routing zones is a determining 

factor in ZRP to decide what type of routing should be used and when.  That is, the smaller the 

radius, the more reactive routing is used, causing a significant increase of routing traffic in the 

network.  On the other hand, a bigger zone radius means more proactive routing and more inter-

zone traffic to maintain the view of each zone (Abolhasan et al., 2004).   
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The main similarity between these protocols is their zone-based nature, meaning they 

tend to partition a network into a number of zones/clusters.  However, each protocol employs 

different mechanisms to form these zones (Abolhasan et al., 2004). 

There have been tremendous efforts put forth towards the design and development of the 

above-mentioned routing protocols.  However, there is no one-solution-fits-all approach when it 

comes to MANET applications.  A thorough understanding of a MANET’s condition and 

requirements is needed for selecting the suitable protocol for each implementation.  Such a 

selection should balance efficiency and performance, and it should account for security, which 

plays a significant role in the survivability of the network (Saeed et al., 2012; Deng et al., 2002). 

 

Security Issues 

Security has become a primary concern in the path to providing protected 

communications between nodes in MANETs.  Since each node acts as both a host and router, 

both legitimate and malicious nodes can access wireless channels.  A fundamental question when 

examining security for MANETs is how to protect the basic connectivity of each node to enable 

safe data transmission throughout the network (Yang et al., 2004)?  MANETs possess several 

unique characteristics that make the quest for security a nontrivial challenge, including the 

following:  

• No Predefined Boundary: the nomadic environment of a MANET does not impose 

physical boundaries.  This allows nodes to freely join or leave the network as they desire.  

Malicious nodes can immediately start communicating with nodes in a network once they 

are in the same wireless range (Sheik, Chande, & Mishra, 2010).  This lack of physical 

protection raises the chances for a network to get compromised (Zhou & Haas, 1999).  
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• Lack of Central Authority: MANETs don’t have a central node for network control and 

management (Raj, Bharti, & Thakur, 2015).  This means that traffic cannot be monitored 

from a centralized station.  Instead, it is distributed among different nodes.  This makes 

the detection of attacks a challenging mission because the lack of security association 

affects trust between nodes (Sheikh et al., 2010).  At the same time, having a single, 

central authority can cause major vulnerabilities; if such a node gets compromised, the 

entire network is sabotaged (Zhou & Haas, 1999).  Thus, distribution of traffic 

monitoring and attack detection cooperatively among nodes in MANETs can be viewed 

as mandatory to overcome the security issues related to a single or lack of central 

authority in these networks (Mahmood et al., 2009).  This is because such distribution 

provides a broader outlook on the network, which is considered crucial to achieve 

effective attack detection (Morais & Cavalli, 2012). 

• Dynamic Topology: nodes in MANETs roam independently and in any desired direction, 

causing nodes to drop in and out of the network as they wish (Deng et al., 2002).  This 

constant mobility of nodes inside the network causes changes to the underlying topology, 

which affect trust establishment because such changes might disrupt trust relationships 

among nodes.  Attention to the different challenges in this dynamic nature is a 

cornerstone in designing security solutions for MANETs (Goyal, Parmar, & Rishi, 2011).   

• Cooperativeness: due to the distributed nature of MANETs, cooperation between nodes is 

needed for such networks to function properly.  This cooperation compensates for the 

lack of fixed infrastructure.  However, the lack of a centralized authority to enforce such 

cooperation might lead some nodes to behave selfishly or maliciously (Conti,  Gregori, & 

Maselli, 2004).  Besides, routing protocols assume that all nodes in a MANET are non-
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malicious and cooperative in nature.  This poses a significant vulnerability when a node 

gets compromised and starts disrupting network communications (Goyal et al., 2011).  

• Resource Availability: nodes in MANETs each operate on a limited power supply 

through their built-in batteries.  This presents inevitable processing and operational 

restrictions, which cause limitations to the types of security mechanisms that can be 

implemented to secure such networks (Raj et al., 2015).  Such limitations give attackers 

ample opportunities to direct expensive computational tasks towards victim nodes, which 

might result in draining their battery power (Mishra, Nadkarni, & Patcha, 2004).   

• Scalability: as nodes in MANETs are free to join or drop out, scalability of these 

networks changes frequently.  This makes the prediction of the number of nodes a 

difficult task when routing and designing various services for these network (Raj et al., 

2015).  Scalability issues are more challenging in large networks with high mobility, 

causing excessive network routing and transmission overhead (Hong, Xu, & Gerla, 

2002).     

• Shared Wireless Medium: opposite to wired networks, which utilize a dedicated channel 

to connect two hosts, nodes in MANETs share the same access medium to communicate.  

Such a medium is susceptible to signal interference and external noise, affecting the 

reliability of packet transmission in the network (Sheikh et al., 2010).  Since 

communications in MANETs are broadcast in nature, data transmission can be 

interrupted by existing malicious nodes (Raj et al., 2015).  Various implementation 

scenarios for MANETs occur in hostile environments, such as military operations.  This 

leaves a high possibility and expectations for attacks against such a vulnerable wireless 

medium (El Defrawy & Tsudik, 2008).  
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• Adversaries inside the network: nodes inside the network can get compromised and start 

behaving maliciously.  Such insider threats are harder to detect than external ones (Sheik 

et al., 2010).  Insider threats can cause the inability of other nodes to detect incorrect or 

malicious behaviors. These insider adversaries can cause different kinds of transmission 

problems, such as false advertisements of routes, message dropping, and incorrect link-

state information (Mishra, 2004).    

 

Maintaining connectivity for a high mobility medium in a MANET is mandatory for the 

survivability of the network.  However, the different vulnerabilities in such networks make them 

susceptible to various types of attacks from malicious sources targeting different services and 

functionalities.  Such attacks might result in service interruptions, data loss, stealth of 

confidential information, or in some cases, eradication of the entire network (Vij & Sharma, 

2016).    

 

Security Requirements 

Security is a significant consideration in MANETs, especially for those applications 

involving highly secretive information, such as military operations (Zhou & Haas, 1999).  The 

path to an effective security implementation in a MANET should consider the following 

requirements: 

• Authentication: this ensures the originality of communications between two nodes, 

eliminating the possibility of a malicious node masquerading as a trusted one (Djenouri, 

Khelladi, & Badache, 2005).  That is, a communicating node can trust that the other end 

of the connection is truly the designated destination (Abdelaziz, Nafaa, & Salim, 2013). 
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In general, authentication is considered an assurance that all participants in a data 

communication are verified entities and not impersonators (Goyal, 2011).    

• Availability: this sustains networking functionalities and ensures resources are available 

at all times without any interruptions (Abdelaziz et al., 2013).  This means that such 

services should be available for consumption by nodes in a MANET, even in the 

presence of an attack.  Interruption of services could potentially put the availability of 

resources in a dangerous position, impacting the entire network operations of a MANET 

(Raj et al., 2015).   

• Integrity: when two nodes communicate in a MANET, they expect to receive the exact 

information that was sent from one to another.  Integrity ensures that the exchanged 

messages are authentic, uncorrupted, and untampered with by a malicious node (Djenouri 

et al., 2005).  Malicious tampering might include modification of contents, deleting and 

recreating the message, or changing certain bits of information (Goyal et al., 2011).  

However, some messages might get accidentally modified during transmission due to a 

network failure and are not necessarily results of malicious acts (Raj et al., 2015).  In all 

cases, integrity should protect from malicious and accidental modifications of messages 

between two communicating parties.     

• Confidentiality: MANETs have a wide variety of applications in various military and 

commercial fields.  Sensitive information might flow during communication in such 

operations (Raj et al., 2015).  Confidentiality ensures that such sensitive information 

remains undisclosed to anybody other than the authorized parties, and it ensures the 

information cannot be understood by unauthorized entities (Abdelaziz et al., 2013; 

Djenouri et al., 2005).    
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• Nonrepudiation: repudiation refers to the denial of a node that was involved in a data 

communication of its full or partial participation in such communication.  Consequences 

of repudiation can lead to damaging results, such as a node denying the participation in 

military communications leading to compromising the confidentiality of secret 

information.  Nonrepudiation guarantees that a node cannot deny sending/receiving a 

certain message (Djenouri et al., 2005).   

 

Any implementation of security solutions for MANETs should pay close attention to the 

above-mentioned security requirements.  Additionally, a number of significant metrics must be 

incorporated in the design of such solutions.  These metrics are referred to as “security 

parameters.”   Neglecting these parameters can increase the potentiality of serious security 

vulnerabilities when implementing security solutions for MANETs (Dorri et al., 2015).  These 

security parameters can be summarized as follows: 

 

• Communications Overhead: security solutions often introduce special control and 

intercommunication packets that aim to pass messages around between the different 

components of these solutions for management and reaction purposes (Yang et al., 

2004).  However, failing to limit the number and size of such messages might cause 

normal network operations to suffer.  This, in turn, can result in network congestions, 

packet loss, and disruption of packet routing among nodes in a MANET.  Packet 

retransmission is another potential consequence that results from packet loss due to 

the imposed overhead from security solutions. This would eventually affect nodes’ 

battery power levels because of continuous retransmission and would ultimately 
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cause nodes to potentially halt during communication to conserve energy (Dorri et al., 

2015).  

• Energy Consumption: nodes in MANETs are energy-constrained due to their reliance 

on battery power to operate in the network.  Security solutions tend to add extra 

processing overhead to apply various defense mechanisms against malicious 

activities, resulting in an increased energy consumption on nodes.  This is usually 

viewed as an inevitable consequence that makes optimization of battery consumption 

a critical consideration in the design of security solutions.  Nonetheless, such 

optimization is highly challenging and extensive research has been solely dedicated to 

this purpose (Biswas, Nag, & Neogy, 2014; Kerache et al, 2017; Lupia & Marano, 

2016).  Keeping energy efficiency in mind when developing security solutions for 

MANETs would result in positive effects on the network. This would be beneficial 

because decreasing nodes’ battery consumption may lead to a longer lifetime of the 

network in general (Kerache et al, 2017). 

• Processing Time: for security solutions to respond to a suspicious activity in the 

network, certain processing on the received/sent packets must occur.  Based on such 

processing, a suspicious node might be marked as malicious or, in some cases, 

isolated from the network (Nadeem & Howarth, 2013).  While these actions are 

mandatory to impose security in the network, so is the need for minimizing 

processing times accompanied with these actions.  During such processing times in 

highly dynamic environments like MANETs, this is necessary because attackers 

might move to a different location or even drop and rejoin the network with a 
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different identity.  This can potentially render any actions taken by these security 

solutions obsolete (Dorri et al., 2015).    

• Scalability: the plethora of MANET security implementations found in the current 

literature includes appealing solutions that largely target issues of energy 

consumption and communications overhead.  Addressing these targets might be all 

that is needed for small networks.  However, larger networks might require other 

actions.  As the number of nodes in a MANET increase, so does the challenge for 

security solutions to preserve their promised performance measures.  This is due to 

the unpredictability of the network size and the ever-changing topological conditions 

in MANETs.  Thus, accounting for network scalability is a critical consideration for 

those attempting to design a viable security implementation (Sheikh, Chande & 

Mishra, 2010).   

 

The criticality of the above-mentioned security parameters enforces the need to find a 

balance between these parameters in the design and implementation of security solutions 

for MANETs (Yang et al., 2004).  Thus, security researchers are left with an important 

task: finding a common ground between optimal security enforcement and the unique 

system requirements needed to support security in MANETs.  Failing to regard such a 

balance may leave these solutions inefficient and could potentially cause more harm than 

good (Dorri et al., 2015).  
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A MANET is vulnerable to different types of attacks that could affect its various resources, 

or even more, to attacks that block the entire network operations.  Having the above-mentioned 

goals in place is important to protect network resources from such attacks and misbehaviors 

originating from both internal and external entities (Djenouri et al., 2005). 

 

Attacks on MANETs 

Security in MANETs is essential for sustaining the basic functionality of the network.  

The unique characteristics of MANETs, such as the lack of fixed infrastructure, open wireless 

medium, cooperative algorithms, dynamic routing, and lack of a clear line of defense, have made 

these networks vulnerable to a variety of attacks (Rajakumar, Prasanna, & Pitchaikkannu, 2014).  

Attacks on MANET can be classified into passive and active.  

In passive attacks, an attacker listens and attempts to obtain information from the 

communication traffic between nodes without disrupting the network operation.  Attackers can 

gather information from the data exchanged among nodes.  Stealing or tampering with sensit ive 

data in this way might degrade the confidentiality of the entire network.  Such confidential 

information may include the network topology, locations of nodes, or identities of critical nodes 

(Nadeem & Howarth, 2013). 

In active attacks, an attacker tries to disrupt the network functionality through modifying, 

corrupting, or fabricating the exchanged information inside the network (Wu, Chen, Wu, & 

Cardei, 2007; Wang, Hu, Zhi, 2008).  In active attacks, attackers aim to disturb the network 

operations by launching malicious activities, such as modifying, forging, or dropping 

data/control packets.  These attacks can be as extreme as bringing the entire network down. 
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These types of attacks can be launched by either a single or multiple colluding attackers 

(Nadeem & Howarth, 2013).  

Attacks on MANETs can be further divided into external and internal attacks.  External 

attacks are performed by entities that don’t belong to the network while internal ones are carried 

out through insider nodes in a MANET.  Insider attacks are more damaging when compared to 

external ones.  This is because insider nodes possess privileged access rights and have 

knowledge of valuable and sensitive information exchanged inside the network (Wu et al., 2007).  

In this research, we classify attacks on MANETs based on the different layers of the 

Open Systems Interconnection (OSI) model they operate on, as shown in Table 1. 

 

Layer Attack(s) 

Physical  Eavesdropping, jamming 

Data Link Traffic analysis and monitoring, attacks on MAC protocols, attacks on WEP 

Network Black hole, gray hole, rushing, blackmail, worm hole, routing table 

poisoning, routing table overflow, byzantine, flooding, sinkhole, Sybil 

Transport SYN flooding, session hijacking 

Application Malicious software programs, repudiation 

Multi-Layer DoS attacks, man-in-the-middle, impersonation 

Table 1- Attacks on OSI Layers 
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Physical Layer Attacks  

• Eavesdropping: communications in wireless networks can be intercepted if an 

eavesdropper tunes to the proper frequency (Rajakumar et al., 2014).  Therefore, due to 

the open wireless medium characteristic of MANETs, a packet that is transmitted 

between two nodes can be overheard by other nodes within the same radio range.  An 

eavesdropping attack is hard to uncover since communicating nodes have no idea of its 

occurrence (Nadeem & Howarth, 2013).   

• Jamming Attacks: signals can be corrupted by a malicious node with a stronger 

transmitter that can disrupt communications through overwhelming the target signals. 

This type of malicious activity is referred to as a jamming attack (Rai et al., 2010).  

 

Data Link Layer Attacks  

Connectivity between neighboring nodes is maintained by the data link layer 

protocols.  Attackers may launch traffic analysis and monitoring, disruption of reservation-based 

wireless medium access control (MAC) protocols, or attacks against weaknesses in the wired 

equivalent privacy (WEP) protocol (Kannammal & Roy, 2016).  The following summarizes the 

different attack types against this layer: 

• Traffic analysis and monitoring: attackers intercept and examine exchanged messages 

within the network as an attempt to uncover information through analyzing 

communication patterns, amounts of data exchanged, and transmission attributes 

(Rajakumar et al., 2014; Nadeem & Howarth, 2013).  This type of attack can uncover 
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critical information, such as the location of commanding nodes in military 

operations.  Even if encryption is enforced throughout the network, these attacks can still 

extract useful information through analyzing communication patterns (Nadeem & 

Howarth, 2013).  

• Attacks on MAC protocols: MAC protocols have the responsibility of coordinating 

transmissions in a shared wireless medium.  These protocols assume cooperation from all 

nodes in a MANET.  Therefore, an attacker can ignore these protocols in an attempt to 

prevent others from sharing wireless channel access and disrupt communication between 

nodes in the network (Wu et al., 2007).   

• Attacks on WEP: radio signals are encrypted at the data link layer level through the WEP 

protocol.  This protocol is known for its weaknesses, such as lack of key management 

and other found vulnerabilities in the cryptographic algorithms used.  Malicious nodes 

can exploit these weaknesses to gain access to information communicated by neighbors 

(Wu et al., 2007). 

 

Network Layer Attacks 

Routing is the most significant operation carried out in the network layer.  Both reactive 

and proactive routing protocols for MANETs assume nodes’ cooperation in the discovery of 

optimal routes.  This assumption can be exploited as a vulnerability by malicious nodes to launch 

different kinds of attacks (Nadeem & Howarth, 2013), including the following types: 

• Black hole attack: a malicious node advertises itself as having optimal routes to one or 

more destinations, attracting all routes to these nodes (Tamilselvan & Sankaranarayanan, 

2007).  However, when such malicious nodes receive packets that are targeted to such 
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destinations, it drops and never forwards them. This causes the creation of a “black 

hole.”  The severity of the attack increases as the attacker becomes part of more routes in 

the network (Nadeem & Howarth, 2013).  

• Gray hole attack: this attack is a variation of the black hole method.  The attacker node 

initiates this attack by advertising itself as having optimal routes to a certain 

destination.  After that, it starts to selectively drop or forward packets (Sen, Chandra, 

Harihara, Reddy, & Balamuralidhar, 2007).  This can sometimes depend on the 

source/destination of the packet.  In some cases, the attacker might drop packets for a 

certain period and then resume forwarding (Abdelaziz et al., 2013).  This type of attack is 

more difficult to detect than a black hole because of its selective nature (Sen et al., 

2007).    

• Rushing attack:  on-demand routing protocols in MANETs limit the overhead of route 

discovery packets by having each node forward the first route request received for each 

discovery (Hu, Perrig, & Johnson, 2003).  Rushing attacks exploit such mechanisms as 

the malicious node rushes to flood the network with route requests. This increases the 

probability of including the attacker in more routes during future routes discoveries. It 

also causes the suppression of other legitimate routes in the network (Hu et al., 2003).     

• Blackmail attack: in some routing protocols, nodes in a MANET maintain a blacklist of 

other malicious nodes. This type of attack targets such protocols by fabricating 

malicious-activities-reporting-messages from the attacker in an attempt to corrupt the 

reputation of legitimate nodes.  Such messages may result in isolating the reported nodes 

from the network (Wang et al., 2008). 
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• Worm hole attack: in this type of attack, the attacker records packets at one location in 

the network and tunnels them to another attacker residing in a different location.  This 

tunnel consists of a shared private communication link between the two attackers, 

referred to as a “wormhole” (Wang et al., 2008).   The tunnel’s link usually has a faster 

data transmission rate than the rate between legitimate nodes, causing the attackers to be 

included in more routes (Abdelaziz et al., 2013).  This attack may result in distorting the 

network topology by preventing the discovery of alternative routes, other than the worm 

hole (Wu et al., 2007).   

• Routing Table Poisoning attack: routing protocols in MANETs maintain one or more 

table(s) to store routing information.  Malicious nodes can fabricate and send fake 

packets or modify legitimate ones to create false entries in the routing tables of other 

nodes.  This type of attack is referred to as routing table poisoning (Wang et al., 2008).  

• Routing Table Overflow Attack: a malicious node may attempt to overflow the routing 

tables of others by forging packets to non-existent destinations.  After that, the attacker 

floods the network with these forged packets through excessive route advertisements, 

resulting in flooding the routing tables of other nodes.  This disrupts network routing by 

leaving victim nodes incapable of creating new entries in their routing tables (Abdelaziz 

et al., 2013).      

• Byzantine attack: in this type of attack, an attacker creates/modifies routing control 

packets with false information in an attempt to disrupt routing operations in the 

network.  This type of attack can result in routing loops, non-optimal routes, and packet 

dropping (Abdelaziz et al., 2013).   
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• Flooding attack: this type of attack occurs when a malicious node attempts to drain the 

battery resources of others by requesting excessive route discoveries or by forwarding 

irrelevant packets to other nodes (Wu et al., 2007).  Since nodes in MANETs usually 

have limited battery power, such attacks result in having the energy-drained nodes 

incapable of participating in the routing process.  This renders such nodes unreachable by 

others in the network (Sarkar & Roy, 2011).         

• Sinkhole attack: a malicious node attempts to attract all traffic to itself by advertising 

false routing information to its neighbors.  This allows that node to be included in more 

routes to destination nodes.  When the sinkhole node receives the data packets, it drops or 

modifies them silently (Gandhewar & Patel, 2012).  This can boost nodes’ energy 

consumption by increasing network overhead.  As a result, this type of attacks can 

decrease network life and eventually eradicate the entire network (Gandhewar & Patel, 

2012). 

• Sybil attack: due to the lack of centralized identity management in MANETs, an attacker 

can create one or more fake identities for itself.  Since every node must to have an IP 

address as its identity, an attacker can send control packets with different IP addresses 

(Nadeem & Howarth, 2013).  This allows a malicious node to gain more access, 

information, and resources than that allocated for a single node in a network (Rajakumar 

et al., 2014).   

Transport Layer Attacks  

SYN flooding and Session hijacking can be launched against a MANET at the transport 

layer level.   
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• SYN Flooding: similar to wired networks, nodes in MANETs rely on the transmission 

control protocol (TCP) to perform their communications.  TCP uses a handshake 

mechanism between nodes before the start of any communications (Wu et al., 

2007).  This mechanism can be exploited by SYN flooding attacks. In these attacks, a 

malicious node overwhelms the victim by creating a large number of half-open TCP 

connections. It is considered a type of denial of service (DoS) attack, which leaves the 

victim incapable of accepting new connections with other nodes. 

• Session Hijacking:  through exploiting the session establishment mechanism in TCP, an 

attacker can spoof a victim's IP address, continue the session with the target, and launch a 

DoS attack (Kannammal & Roy,  2016).    

 

Application Layer Attacks  

 Malicious software programs and repudiations are the main types of application layer 

attacks. 

• Attacks by malicious software programs: the application layer contains user data and 

supports a wide variety of protocols.  Malicious programs operating on this layer, such as 

worms and viruses, can be launched against a MANET.  Such programs can traverse the 

network, find, and infect nodes through probing and exploiting existing vulnerabilities, 

resulting in data corruption (Wu et al., 2007).   

• Repudiation: this is another type of attack at this layer.  In this scenario, a malicious node 

denies its full or partial participation in a communication operation with other nodes.  

Malicious nodes may launch such attacks to send false routing information, resulting in 

isolating legitimate nodes from the network (Yi, Naldurg, & Kravets, 2001).   
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Multi-Layer attacks 

 Attackers may launch different types of attacks from multiple layers, including the 

following types:  

• Denial of Service (DoS) attacks: the main objective of this attack is to drop legitimate, 

authorized nodes out of the network.  These attacks usually target draining nodes’ 

resources and/or create a contention in the network that disrupts communications 

(Jawandhiya et al., 2010).  DoS attacks can be launched from any layer in the 

network.  At the physical layer, malicious nodes may employ jamming against the 

wireless communication channels in a MANET.  At the data link layer, an attacker can 

occupy communication channels, preventing others from access.  Packet modifications, 

dropping, and routing table overflow can be launched from the network layer.  At the 

transport layer, attackers can employ SYN flooding.  Malicious programs can perform 

DoS attacks from the application layer as well (Kannammal & Roy,  2016).   

• Man-In-The-Middle attacks: a malicious node can position itself between two 

communicating nodes to sniff the traffic flowing between them.  The attacker may also 

participate in the communication by impersonating the sender or the receiver.  This type 

of malicious activity is known as a man-in-the-middle attack (Wu et al., 2007).   

• Impersonation attacks: the lack of central network management in MANETs can lead to 

impersonation attacks.  In these attacks, a malicious node impersonates another legitimate 

one by stealing its identity and using it to communicate with other legitimate nodes in the 

network (Rai et al., 2010).   
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The above-mentioned attacks target different operational and communicational aspects of 

MANETs, rendering the network incapable of performing its basic functions.  Providing security 

for such networks is considered the major roadblock in the way of a wider adoption of MANET 

applications.  As such, throughout the years, researchers have made the mission of providing 

security solutions that target different types of potential attacks their main objective in the area of 

MANET security (Nadeem & Howarth, 2013).  

 

Security Strategies in MANETs 

The implementation of security strategies is considered one of the highest priority design 

elements for any type of network architecture.  Applying these strategies as an afterthought 

requires expensive efforts and can lead to breaches from malicious attacks before a solution is 

put in place.  The unique characteristics of MANETs make achieving security a complicated 

process (Hubaux, Buttyán, & Capkun, 2001).  The distributed nature of these networks does not 

allow the assumption that networked devices are always controlled by their legitimate owners.  

As such, any application of a security scheme for MANETs requires a device/node-level 

implementation (Papadimitratos & Haas, 2004).  Throughout the years, researchers have created 

an extensive body of literature on the development of security strategies for MANETs and their 

applications.  These strategies can be classified into two categories: prevention mechanisms and 

detection and reaction mechanisms. 

 

Prevention Mechanisms 

Preventive solutions for MANET security target the primary quest of deterring malicious 

attackers by hardening the system, which makes it notably difficult to penetrate (Yang et al., 
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2004).  These solutions act as first lines of defense to minimize potential attacks (Zhang & Lee, 

2005).  Different prevention mechanisms have been proposed for MANETs in the current body 

of research, including device imprinting, key management schemes, secure routing, and 

cooperation enforcement techniques.  

MANETs applications span different fields with a wide variety of implementations, such 

as military and disaster relief operations.  Considering the sensitive data carried out through 

these operations and the vulnerable physical locations of nodes, devices in MANETs are prone to 

be physically captured by malicious entities.  As such, these devices can be equipped with 

security checks that are capable of tracking their legitimate owners and deciding whom to trust 

(Hubaux et al., 2001).  Sensitive data contained in these devices should also be protected by 

enforcing a variety of security models, such as biometrics and smart cards (Wu et al., 2007).   

For a group of nodes in a MANET to securely communicate, an efficient group 

membership management scheme should exist.  Such a scheme would be responsible for 

protecting the transmitted data against potential attacks.  For this technique to be established, a 

secret key must be shared by all group members and used to encrypt/decrypt communications 

within the network.  The possession of this key is considered a proof of trustworthiness (Hegland 

et al., 2006).  Examples of key management services are symmetric cryptography, asymmetric 

cryptography, and group key management.  The primary responsibility of these services is to 

ensure the secret key, targeted for legitimate users, is not shared with unauthorized entities.  The 

main issues with these mechanisms are their susceptibility to the various resource and bandwidth 

constraints possessed by MANETs (Aziz & Nourdine, 2008).   

Routing operations in MANETs are vulnerable to both external and internal attacks.  An 

external attacker can disrupt operations through retransmission and inefficient routing, which 
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might lead to network partitioning and extensive traffic load.  Different strategies have been 

proposed to protect against external attacks on routing, such as the use of digital signatures 

during message transmission (Zhou & Haas, 1999).  Internal attacks that are generated from 

compromised nodes, on the other hand, cannot be prevented through the usage of authentication 

and encryption solely.  Preventing such attacks requires securing the underlying routing 

protocols by preventing malicious nodes from disrupting the routing process (Zhang & Lee, 

2005).   

An extensive body of knowledge has been dedicated to designing and evaluating different 

preventive security mechanisms for routing protocols for MANETs.  The primary target of these 

protocols is to prevent malicious nodes from disrupting normal routing in the network.  Such 

disruptions can be in the form of fabricating false routing messages, modifying original routing 

information, or impersonating other nodes (Chlamtac et al., 2003).  Secure routing protocols 

typically build on existing protocols by adding security extensions, such as message 

authentication through cryptographic methods.  This way, nodes can differentiate legitimate 

traffic against unauthenticated transmission packets originated from malicious entities (Yang et 

al., 2004).  

Unlike the operations in fixed-infrastructure networks, routing, data forwarding, and 

network management are carried out by all available nodes in a MANET.  This makes the 

enforcement of cooperation among nodes an essential requirement for a MANET to remain 

operational (Chlamtac et al., 2003).  Every communication between two nodes that are more than 

one-hop away is carried out by intermediate nodes.  This introduces concerns regarding 

malicious and selfish nodes.  One or more of these intermediate nodes may not cooperate in 

forwarding the data and can potentially disrupt network operations.  On the other hand, some 
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nodes act selfishly by not forwarding packets to conserve their resources (Chlamtac et al., 2003).  

Such behaviors have introduced the need to design systems that encourage collaboration among 

nodes to keep routing and data forwarding tasks alive.  The current body of knowledge in this 

area contains a plethora of methodologies for cooperation enforcement.  These can mainly be 

divided into reputation-based and credit-based systems (Marias, Georgiadis, Flitzanis, & 

Mandalas, 2006). 

Reputation-based models utilize different techniques to calculate a reputation score for 

each node.  This score increases every time a node forwards a packet without alteration.  Based 

on the calculated score, nodes with higher reputations are used to forward data packets 

(Mandalas, Flitzanis, Marias, & Georgiadis, 2005).  On the other hand, in credit-based systems, 

data forwarding among nodes is considered a service that is valuated or charged.  Since data 

forwarding incurs resource consumption on nodes, it’s treated as an incentive to persuade non-

cooperative nodes to participate in the routing process.  Credit-based systems employ a virtual 

currency mechanism that is usually implemented to reward nodes that forward packets and 

punish those which act selfishly and drop packets (Hu & Bemester, 2009).    

Preventive security techniques can help defend against certain attacks on MANETs.  

However, such techniques are incapable of mitigating new attacks because they are usually 

designed for known ones (Wu et al., 2007).  Besides, the application of these techniques is 

usually accompanied by a high processing overhead and energy consumption, which might prove 

inefficient considering the resource constrained nature of MANETs (Zhang & Lee, 2005).  These 

limitations in preventive techniques introduce the need for a new line of defense that is capable 

of uncovering unknown threats as well as balancing security and resource consumption.  This is 
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achieved by employing detection and response mechanisms, namely intrusion detection systems 

(IDSs).     

 

Detection and Reaction Mechanisms 

Intrusions are malicious activities aiming to compromise the confidentiality, integrity, 

and availability of a network.  Prevention mechanisms can be effective in reducing potential 

attacks.  However, if a node is compromised, all secrets associated with it are prone to attacks.  

This, in turn, makes such mechanisms inefficient against malicious insiders that cause much 

greater damage than external attackers (Sun, Osborne, Xiao, & Guizani, 2007). Besides, the 

history of preventive mechanisms shows the impracticality of such systems to survive on their 

own in providing a secure, intrusion-free system (Yang et al., 2004). Therefore, the presence of 

detection and reaction techniques, namely IDSs, that are capable of uncovering intrusions and 

avoiding their adverse effects through reactions is imperative for the survivability of a network 

(Yang et al., 2004).  IDSs consist of a set of automated components that are capable of detecting 

suspicious activities and reacting to them in an attempt to prevent the security of the network 

from getting compromised.  The detection part of an IDS involves constant monitoring of 

network activities.  On the other hand, the reaction part involves raising alarms as well as taking 

preventive measures, such as isolating the suspect from connecting to the network (Mishra, 

Nadkarni, & Patcha, 2004).    

 

Origins of IDS 

In 1972, while working with the United States Air Force (USAF), Anderson (1972) 

noticed that the increased reliance on computer systems to perform sensitive operations led to a 

similar increase of computer security problems.  Ad hoc security rules cannot be relied on 
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because their inherent design flaws make them an easy target for malicious attacks.  Thus, 

securing a computer system calls for the implementation of authorization mechanisms, access 

control mechanisms, and security marking of electronic and physical resources.  Anderson 

(1972) emphasized the need for security controls due to the lack of operating-system-level 

defense mechanisms against malicious attempts to gain unauthorized access.  

  Anderson (1980) introduced the idea of identifying abnormal user behaviors as threats to 

computer security and generating alerts through examining the information contained in audit 

files.  Anderson defines a threat as the likelihood of a targeted unauthorized attempt to 

access/manipulate information, leaving a system unreliable.  Anderson (1980) classified threats 

as coming from the following sources: 

• External penetrators: a person with physical access to a computer system’s location but 

no authorization to use it. 

• Internal penetrators: a person who is authorized to use a computer system but 

unauthorized to use certain resources. Internal penetrators are further sub-classified in the 

following categories: 

o Masqueraders who gain access to a system under different credentials, 

o Legitimate users that misuse their authorized access, and 

o Clandestine users who are able to evade access controls and audit trail recordings 

 

Host-Based Intrusion Detection 

Anderson's (1980) system operates based on statistical abnormality, which means that 

user activities are considered “abnormal” if they cross certain predefined limits.  Abnormality in 

this system is purely parametric. This means any usage outside of the identified parameters is 
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considered abnormal.  These parameters are defined based on applied statistics on audit files to 

define what would be “abnormal.”  If such limits are crossed, the system auto-generates security 

alerts in the form of exception reports.  The system addresses the identification of intrusion 

attacks from both internal and external malicious users (Anderson, 1980).   

Building on Anderson’s (1980) work, research began towards real-time IDSs.  The 

susceptibility of computer systems to intrusions due to their existing hard-to-replace flaws, the 

difficulty of developing flaw-free systems, and users’ continuous misuse of their privileges, 

motivated Denning (1987) to develop the first real-time IDS.  It was the very first general-

purpose framework for IDSs and has become a fundamental core of most intrusion detection 

methodologies in this area.  Denning (1987) followed the first system-independent approach to 

identify intrusions when the vulnerability behind intrusions is unknown.  Her system records 

normal user activities as signatures to compare against in the detection of abnormal behaviors.  

Normal usage of the system is monitored, deviations from normal usage are identified, and an 

alert is sent to the designated security officer when deviations are observed (Denning, 1987).   

Following Denning’s (1987) work, Smaha (1988) introduced Haystack, which is an IDS 

for multi-user Air Force computer systems.  The system relied on processing audit trail files to 

produce short summaries of normal/abnormal behaviors and security incidents.  An intrusion in 

this system is defined as any violation of the already-established security and administrative 

policies of a computer system.  It utilizes a combination of both a multi-user model, which 

establishes normal behaviors of a group of users, and a single-user model, which is based on a 

user’s past behavior.  These two models are then used in this system to establish statistically-

based models.  One of the novelties of Haystack is the self-modifying behavior in which user 

models evolve to match the changes in users’ work requirements.   
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Lunt and Jagannathan (1988) believed that implementing an IDS on a machine separate 

from the target machine would enhance security and performance. Their belief has led them to 

propose their own methodology for designing an IDS.  Regarding the classifications of 

anomalous behaviors and defining such behaviors as deviations from the expected user behavior, 

their system follows the same approach as Denning’s (1987).  However, their new system 

extends Denning’s (1987); in their system, an IDS sits on a separate machine within the network, 

receiving user activities through audit data over the network.  This way, the IDS cannot be 

tampered with from would-be intruders, and any existing flaws on the target system cannot 

impact the security of the detection system.   

 

Network-based Intrusion Detection 

Because Anderson’s (1980), Denning’s (1987), and Smaha’s (1988) IDSs operated on a 

single machine for detecting anomalies, audit files must exist on the same computer system as 

the IDS.  Shortly after, due to the increased usage of networking devices that were suffering from 

scant or nonexistent security measures, Heberlein et al. (1990) came up with the first network-

based IDS (NIDS) operating on Ethernet-based local area networks (LAN).  The system was 

called: Network Security Monitor (NSM).  Although encryption techniques presented an equally 

appealing option to prevent network attacks, Heberlein et al. (1990) believed they couldn’t 

protect against privilege misuse by legitimate users.  Incorporating ideas on stand-alone IDSs 

from Denning (1987), Whitehurst (1987), and Lunt et al. (1988), the new model builds a normal 

activity profile of the entire network and monitors activities against that profile in real time.   

Computer systems come with inherent security vulnerabilities that make the mission of 

having an intrusion-free system, or network of systems, an extremely difficult task.  Even if a 
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system is thought to be the most secure one due to the applied harnesses, it is still susceptible to 

insider threats through privilege misuse (Lunt, 1993).  All of the above-listed research on IDSs 

agree on one common conception: attacks against computer security primarily come from the 

inside.  Traditional access controls can help provide certain levels of defense against threats.  

However, in most cases, they are incapable of guarding a system against insider threats (Lunt, 

1993).  As network-based security attacks became more widespread and sophisticated, the focus 

of IDSs has shifted towards the exploration of mechanisms against such attacks, which 

influenced the direction of the research that followed (Vigna & Kemmerer, 1998).   

 

Intrusion Detection in MANETs 

 A plethora of IDS solutions populate the current body of research targeting traditional 

fixed networks.  Such networks typically possess central traffic points where all network packets 

must pass through.  Therefore, installing an IDS on one of these central points gives it a wide 

view on the network activities.  This is not the case for MANETs as no central traffic points 

exist.  Besides, the constant topological changes in these networks due to nodes’ mobility makes 

intrusion detection process even harder (Yang et al., 2004).  This is mainly due to potential false 

routing information that is sourced from stale routing tables caused by nodes’ volatile mobility.  

Additionally, communications among nodes in a MANET are carried over an open-access 

wireless medium that both legitimate and malicious nodes have access to.  This, in turn, leaves 

no explicit differentiation between legal and illegal activities for IDS solutions (Anantvalee & 

Wu, 2007). 

 Since IDS implementations in MANETs do not have the ability of collecting audit data 

from fixed traffic points, audit data sources pose as a limitation for these systems.  In fact, the 
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only available audit trace for IDSs is communication activities within the radio range of the IDS 

node.  The main concept behind intrusion detection is the examination of audit data to determine 

whether the system is under attack.  This leaves researchers who design intrusion detection 

algorithms with no choice but to capitalize and devise new methodologies to make use of the 

limited localized information (Zhang, Lee, & Huang, 2003).   

  For an intrusion detection implementation to work, researchers must make certain 

necessary assumptions.  The first assumption is that nodes’ activities in the network are 

observable.  Another critical assumption is that normal and malicious activities possess clear 

separable behavior.  However, such assumptions are typically faced with the inherent limitations 

in MANETs, making the task of implementing an efficient IDS a difficult challenge.  This, in 

turn, leaves researchers working on intrusion detection implementations with an increasingly 

difficult task of distinguishing between false alarms from real attacks against the network (Zhang 

et al., 2003).   

IDS solutions in general require continuous monitoring, collection, and processing of 

audit data to detect possible intrusions.  This level of effort required to operate an IDS is 

sometimes deemed too costly to implement due to the bandwidth and resource-constrained 

nature of nodes in MANETs.  Such constraints demand careful design considerations from 

researchers to establish a balance between resource consumption and the level of provided 

security.  This has also made collaborative cooperation between nodes in the IDS activities, a 

critical requirement to distribute the load among nodes while providing a wide view on the 

network (Karygiannis, Antonakakis & Apostolopoulos, 2006).     

For researchers who attempt an IDS implementation, certain design requirements must be 

considered for the proposed system to be viable for MANETs.  First, researchers should 
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determine the suitability of their architecture for MANET applications and decide whether a 

proposed IDS is the right fit for the unique features in these networks.  Secondly, researchers 

must define the appropriate sources for collecting audit data, and they must determine the right 

methodology to detect intrusions when only partial audit sources are available.  Lastly, those 

researching IDS implementations should define an activity model for the target MANET that can 

be used by the system to distinguish intrusions from normal behavior when the network is 

undergoing an attack (Zhang et al, 2003).     

    Along with these considerations, Butun et al. (2014) have proposed that researchers 

should integrate the following requirements when designing an IDS for MANETs: 

• An IDS implementation for MANETs must not introduce new weaknesses to the nodes’ 

operating system.   

• An IDS design should be tailored to enable the system to operate in the resource-

constrained nodes in MANETs without degrading their performance or exhausting 

available resources.  

• An IDS should be able to run continuously and transparently to the users. 

• An IDS should be cooperative and reliable to minimize false negatives and false positives 

in the detection process. 

 

Studies targeting the design and implementation of IDS solutions for MANET must be 

able to accommodate the unique requirements imposed by these networks.  Besides, traditional 

solutions for fixed networks cannot be directly applied to MANETs due to their fundamental 

differences.  The current body of research contains various IDS implementations for MANETs 

employing different techniques to accommodate the above-mentioned design requirements.  
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Abiding by these requirements means that any proposed IDS implementation should detect a 

substantial percentage of malicious behaviors, keep a low rate of false alarms, and keep resource 

consumption minimal (Mishra et al., 2004).   

 

IDS Mechanisms in MANETs 

There exists a large body of research pertaining to different solutions for intrusion 

detection in wired networks.  However, the lack of a fixed infrastructure, disconnected patterns 

of communications, and lack of central traffic concentration points make the application of 

wired-network IDS solutions infeasible for MANETs (Zhang & Lee, 2000).  Researchers have 

proposed different detection mechanisms to adapt to the unique characteristics of MANETs.  

These mechanisms can be classified into three categories based on their detection techniques: 

anomaly-based, knowledge-based, and specification-based intrusion detection (Mishra et al., 

2004).  

 

Anomaly-based Intrusion Detection 

Since Denning’s work back in 1987, a plethora of research has been dedicated to 

developing various implementations of anomaly-based intrusion detection (ABID).  Due to the 

perceived power of such systems in detecting known as well as unknown attacks in the network, 

previous research studies have favored this type of IDS over the others.  This is primarily 

because attacker creativity continues to present a major challenge for intrusion detection 

implementations (Cannady, 2009).  Therefore, the ability of ABIDs to address novel attacks 

continues to make this type of IDS a popular area of academic research (Tavallaee, Stakhanova, 

& Ghorbani, 2010).   
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Despite the presence of an extensive body of research on various methodologies for 

ABIDs, a clear definition of what constitutes an anomaly is still lacking from many studies 

(Tavallaee et al., 2010).  However, the common understanding of anomaly in the research 

community leans towards defining an anomaly as an “abnormal behavior” in the network.  For 

instance, a survey conducted by Tavallaee et al. (2010) has shown that the majority of research 

studies in the area of ABIDs tend to describe anomalous behavior as a behavior deviating from 

normal.  Additionally, the seminal work of Denning’s (1987) on ABIDs has treated anomalies as 

activities that deviate significantly from the established normal network profile. 

Previous studies tend to establish normal network profiles, in this type of intrusion 

detection, through statistical behavioral modeling.  This means that normal network operations of 

nodes in a MANET are outlined so that any deviation of these profiles is considered as an 

anomaly.  For ABIDs to maintain high accuracy throughout their operations in the network, they 

typically are bound to perform periodic updates to their established normal profiles.  This is due 

to the dynamic topological nature of MANETs, which causes normal network behavior to change 

rapidly.  Since nodes in MANETs are resource-constrained in nature, such frequent updates 

might impose extra overhead that could cause disruptions in the normal network operations 

(Butun, Morgera, & Sankar, 2014).   

In an ABID, also known as a behavior-based IDS, intrusions are detected through a 

comparison between expected normal behavior and the current behavior of the network.  This 

type of IDS has two phases: training and testing.  In training, baseline profiles are created to 

model the normal behavior of the network.  In the testing phase, the constructed profiles are used 

to detect any significant deviations from the current behavior, which are considered intrusions.  
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Different methodologies are typically applied for calculating these deviations (Nadeem & 

Howarth, 2013).   

For ABIDs to gather the information required for establishing a network’s normalcy 

profile, extensive data-mining operations are deemed critical during the training phase.  The 

implementations of ABIDs in the current body of knowledge present different techniques for 

collecting training data (Mitchell & Chen, 2014).  Some of these implementations train their 

systems with predefined sets of data, also known as “truth data”.  Others opt for training their 

systems against live network traffic.  Investing time in this training phase before starting the 

actual detection operations of ABIDs can be extremely beneficial when it comes to discovering 

unknown attacks.  Additionally, training enables this kind of intrusion detection to eliminate the 

extra storage space needed to save all attack vectors.  This is because ABIDs do not look for 

something specific when it comes to attack detection. Instead, deviations from normalcy trigger 

these systems to determine intrusions in the network (Mitchell & Chen, 2014).   

All of the training techniques devised in the current literature share one common goal: the 

process of feature extraction.  Features in ABIDs are defined as security-related measures that 

are needed to construct an effective intrusion detection algorithm.  For these features to be 

effective, they need to reflect the target subject (e.g., a MANET node) activities. Typical 

examples of features include number of sent/received packets, number of routing-related 

messages, and mobility patterns (Cai, Ci, Guizani & Al-Fuqaha, 2006).   

     According to the processing model of the target system’s behavior, anomaly-based 

detection approaches can be categorized into three groups: statistical-based, knowledge-based, 

and machine learning techniques (Kheyri & Karami, 2012).  In statistical-based techniques, an 

ABID monitors network traffic activities to create the normal network profile. A normalcy 
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threshold is set during the training phase, and when the threshold is exceeded, an activity is 

considered an anomaly.  When the system transitions from training to detection mode, the ABID 

compares the current observed activities against the normal profile to check if the deviation 

exceeds the normalcy threshold.  If so, the system marks the node(s) originating the detected 

activity as malicious.  The accuracy of detection for statistical-based anomaly detection tends to 

increase when longer durations are dedicated to the training phase.  On the other hand, attacks 

might pass unnoticed in these systems due to their susceptibility of high false positives.  This is 

usually correlated to the creativity of attackers who vary their approaches for launching different 

attacks and fool the system into recognizing these attacks as normal traffic (Kheyri & Karami, 

2012).  

Alternatively, knowledge-based techniques for ABIDs rely on a set of specific rules, 

usually defined by a human expert.  These rules are then applied to determine the legitimate 

behaviors of the system.  During the training phase, specific sets of features are extracted from 

the gathered data.  Based on these features, the system classifies the gathered data according to 

the application of the predefined rules.  This technique offers significant flexibility and 

robustness in detecting illegal activities in the network.  Nonetheless, developing a 

comprehensive set of rules for these systems is viewed as a difficult and often time-consuming 

task (Butun, Morgera, & Sankar, 2014). 

Machine learning techniques in ABIDs employ an implicit or explicit model to 

characterize activities overserved in a MANET.  This approach usually requires labeling the data 

gathered in in the detection process for the system to learn the behavior model of nodes in the 

network.  The process of data labeling is considered a high-resource operation, demanding extra 

energy and bandwidth from the resource-constrained nodes in MANETs.  Despite the resource-
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demanding nature of these systems, they have shown undeniable efficiency in detecting both 

known and unknown attack vectors in previous studies.  Common techniques used in this 

category are Markov chains, fuzzy logic, neural networks, genetic algorithms, and Bayesian 

networks (Butun, Morgera, & Sankar, 2014).   

In general, ABIDs have the downside of demanding extensive training for behavior 

modeling.  This is problematic for MANETs and other resource-constrained mobile computing 

environments because each profile must be continuously updated, which increases the processing 

overhead imposed by recalculations of deviations (Mishra et al., 2004).  The significance of 

ABIDs comes from their ability to uncover unforeseen attacks.  However, the constant changes 

in the normal network behavior of MANETs due to their dynamic topology, render these systems 

prone to high rates of false positives (Nadeem & Howarth, 2013). 

 

Knowledge-based Intrusion Detection 

Knowledge-based intrusion detection (KBID), also known as misuse-, signature-, or rule-

based intrusion detection, targets events that match predefined patterns of malicious behaviors.  

KBIDs encode and store known attack signatures and system vulnerabilities in a designated 

database, and they constantly monitor activities in the network and compare them against stored 

attack signatures.  An intrusion is detected, and an alarm is raised if a match is found between 

current activities in the network against one or more signatures (Anjum, Subhadrabandhu, & 

Sarkar, 2003).   

KBIDs typically implement detection techniques that are completely reliant on 

accumulated knowledge of known attack patterns.  The system analyzes network traffic against 

such patterns to determine the occurrence of intrusions.  KBIDs usually have lower false alarms 

rates when compared to ABIDs.  However, human experts are required to formulate attack 
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signatures for the IDS to use in the detection process.  This, in turn, requires the system to 

maintain attack signatures through regular updates, which is usually a time-consuming task that 

is difficult to design properly (Debar, Dacier, & Wespi, 1999).   

There are three primary approaches that researchers follow when implementing a KBID: 

expert systems, model-based reasoning, and state transition analysis.  Jackson (1986) defined 

expert systems as computing systems that are capable of applying reasoning about a knowledge-

rich domain towards problem solving and advice formulating.  In expert systems, conditions 

required for an attack detection are coded into the system in “if-then” implication rules.  When 

all conditions in the “if” part are satisfied, a KBID triggers the predefined actions in the “else” 

part.  These typically include response actions for the detected intrusion and sometimes might 

trigger extra rules to confirm that the detected activity is indeed an intrusion.  The main 

advantage of expert systems is their separation between problem solving and control reasoning.   

Nonetheless, these systems often require extensive development and maintenance to create and 

manage the attack signatures (Kumar & Spafford, 1994). 

Model-based systems implement a database of known attacks scenarios.  An attack 

scenario is defined as a sequence of events that collectively make up the attack.  In model-based 

KBIDs, the system continues to monitor the network behavior and assumes that it might be 

experiencing attack scenarios at any moment.  Thus, as the system collects audit data, it 

continuously analyzes it to verify or disprove the occurrence of an attack.  An evidential 

reasoning calculus is typically built into these systems to update the likelihood of specific attack 

scenarios as audit data is analyzed.  Model-based systems can potentially decrease the extensive 

data processing incurred on nodes by actively monitoring successfully identified attacks while 

passively monitoring attacks that are yet to be encountered (Garvey & Lunt, 1991). 
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State transition analysis KBIDs use a sequence of state transitions for the monitored 

system to represent an attack occurrence.  An attack is defined here as a sequence of events that 

might transition the system to a compromised state.  The system identifies the events that occur 

between the system transitioning from normal to compromised as “signature actions”.  That is, if 

these actions are eliminated from an attack scenario, the attack would not be able to complete 

successfully.  The system detects intrusions by extracting state transitions from the collected data 

and comparing them against those of known attack scenarios stored in the knowledge database.  

If a match is found, the system marks the activity as an intrusion and triggers any predefined 

response steps (Ilgun, Kemmerer, & Porras, 1995).  

In KBIDs, a carefully written attack signature can detect even major variations of the 

same attack.  This is a major advantage for KBIDs versus ABIDs because attackers’ creativity 

and careful monitoring towards the behavior of an IDS in classifying attacks might enable 

malicious activities to pass unnoticed by an ABID.   However, the reliance on attack signatures 

renders KBIDs incapable of uncovering new types of attacks (Sun et al., 2007).  KBIDs resemble 

anti-virus programs because they effectively detect most of the known attack patterns but are 

inefficient at uncovering new ones (Butun et al., 2014).       

      

Specification-based Intrusion Detection  

Specification-based intrusion detection systems (SBIDs) combine the advantages of both 

ABIDs and KBIDs through the use of manually constructed constraints to model the normal 

system behavior.  However, they are more similar to ABIDs because ABIDs and SBIDs both 

define intrusions as deviations from the characterized normal behavior.  SBIDs define a set of 

constraints as specifications that establish the correct operation of a program or protocol.  The 
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execution of these programs/protocols is continuously monitored with regard to the defined 

specifications.  Deviations from the specifications are considered intrusions (Butun et al., 2014).   

The reliance of SBIDs on security specifications for the correct system behavior allows 

them to achieve tremendously higher accuracy over both KBIDs and ABIDs in detecting both 

known and unknown attacks scenarios.  Since all specifications are based on legitimate 

behaviors, the system does not generate false alarms when encountering unusual, though 

legitimate, behaviors from the target system (Uppuluri & Sekar, 2001).  The original concept of 

specification-based detection was first introduced by Ko, Ruschitzka and Levitt (1997) when 

they described the desirable behavior of the system through its functionalities along with the 

application of security policies.  Accordingly, Ko et al. (1997) stated that any sequence of actions 

executed outside of the system’s specifications should be considered as a violation. 

For SBIDs to detect malicious behaviors, they typically employ execution analyzers.  

These, in turn, monitor the execution of an activity/program with respect to the predefined 

specifications.  Each specification has a dedicated analyzer that only checks for violations 

against that specification.  The system raises an alarm whenever it detects missing/unknown 

events in the monitored execution of the target program (Ko et al., 1997).  Based on such a 

design, SBIDs in general don’t detect the actual intrusions.  Instead, they detect the impact of 

intrusions on program executions causing a violation in the specified behavior (Tseng et al, 

2003).   

Considering that such detection systems can achieve higher accuracy than KBIDs and 

ABIDs, the adoption of SBIDs is still not as wide as it is for the others. The main hindrance 

against the adoption of these systems is the inherent limitations involved in defining 

specifications for every operation in the target system.  Thus, in MANETs, the focus of SBIDs 
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solutions in the current literature so far has been put towards routing protocols (Tseng et al, 

2003; Tseng et al., 2005).  One limitation of current implementations of SBIDS against routing 

protocols for MANETs is their tendency to constrain the messages exchanged among nodes in 

the network, such as restricting receipt acknowledgements and message contents.  Another 

potential obstacle hindering SBIDs adoption is the difficulty of verifying the correctness of the 

developed specifications and that the specifications comprehensively cover the threat model 

(Berthier & Sanders, 2011).           

SBIDs can be loaded into mobile nodes prior to deploying a network.  This is possible 

because SBIDs do not require periodical updates for attack discoveries.  This mechanism is 

known for having low rates of false positives along with the ability to uncover unknown attacks.  

However, extensive manual work is usually required to define the needed constraints (Brutch & 

Ko, 2003).  

 

IDS Architectures in MANETs 

The concept of a “one network configuration works for all” does not apply to MANETs.  

Based on the deployment field and operational requirements, MANETs can be configured in a 

flat or multi-layered infrastructure.  In a flat configuration, all nodes are considered equal and 

free to take part in the routing process.  On the other hand, in a multi-layered configuration, all 

nodes are not equal.  In a multi-layered setting, nodes within each other's transmission range are 

divided into clusters.  Each cluster will have one or more nodes that are designated as gateways 

providing connectivity with other clusters in the network (Brutch & Ko, 2003).  Taking into 

consideration these different configurations, an effective IDS implementation should 

accommodate the target network infrastructure.  Extensive research has been done in this area, 
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resulting in proposing different IDS architectures in efforts to satisfy the needs of the various 

network configurations in MANETs.  Examining previous research in this area, IDS 

architectures are primarily categorized into stand-alone, hierarchical, and cooperative 

architecture (Anantvalee & Wu, 2007).    

 

Stand-alone 

This architecture targets flat network configurations in MANETs.  In this type of IDS, 

each node runs its own intrusion detection engine independently from others.  Intrusion 

determination decisions are made solely based on the information gathered by that individual 

node.  Nodes do not cooperate with each other regarding information sharing.  As such, if a node 

detects an intrusion, others would not know about it.  This architecture is more suitable for 

situations where not all nodes are capable of installing/running an IDS (Brutch & Ko, 2003).  

Different techniques have been proposed in the current body of research as part of the 

efforts to provide efficient self-contained IDS solutions for MANETs.  Bensal and Baker (2003) 

proposed their observation-based cooperation enforcement in ad hoc networks (OCEAN) 

targeting the DSR protocol.  Their system relies solely on nodes’ own observations to detect 

intrusions.  The system classifies nodes as selfish and misleading.  If a node observes its 

neighbor as not participating in the route discovery process, it marks that neighbor as “selfish”.  

On the other hand, if a node observes a neighbor participating in the route discovery process but 

fails to forward packets, that neighbor is marked as “misleading”.  To detect misleading nodes, a 

watchdog-like mechanism is implemented on each node to monitor whether its own neighbor 

forwards or drops packets.  This is done by having each node calculate and save a checksum for 

each packet it forwards to its neighbors.  The node then listens to the forwarded packet and 
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compares it against the saved checksum.  If a match is found, the monitoring node increments the 

positive rating for that neighbor.  Otherwise, the packet is considered dropped, and the 

monitoring node increments a negative rating for that neighbor.  The system predefines a 

threshold for a neighbor’s rating.  If a neighbor’s rating falls below that threshold, it is avoided in 

future routes. 

Nadkarni and Mishra (2004) presented a threshold-based stand-alone IDS.  Their system 

establishes threshold values for well-known attack patterns.  During the network initialization 

phase, attack thresholds are set based on comparing the normal network profile against the 

average frequency of events for each known attack type.  Intrusions are then detected 

individually by nodes when a predefined threshold is crossed for a specific attack.  Jacoby and 

Davis (2007) introduced their system that relied on battery-power consumption to detect 

intrusions.  The proposed system constantly monitors the battery consumption of every node in 

the network.  Intrusions are detected by comparing a node’s battery consumption against a set of 

battery-consumption patterns of well-known attacks.  Their system relies fundamentally on 

Smart Battery technology in which nodes’ batteries are equipped with an internal circuit that 

enables communication of battery states to a node’s operation system.   

In an attempt to solve receiver collision problems and limited transmission power issues 

among communicating nodes in MANETs, Liu, Deng, Varshney, and Balakrishnan (2007) 

proposed their two-hop acknowledgment (TWOACK) system for detecting packet dropping 

attacks.  When a source node sends a packet to a destination, the system requires an 

acknowledgement for every packet transmitted over every three consecutive nodes along the 

route.  That is, when an intermediate node receives a packet, it must send an acknowledgement 

to every node that is two hops away from it down the route.  This acknowledgement packet 
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contains the reverse route from the intermediate node to the source.  A node is declared as 

malicious when it fails to send back that acknowledgement.   

To reduce the overhead incurred in TWOACK through unnecessary acknowledgements 

from intermediate nodes, Sheltami, Al-Roubaiey, Shakshuki, and Mahmoud (2009) presented 

their adaptive acknowledgment (AACK) IDS.  In this system, when two nodes are 

communicating, the destination node must send an acknowledgment of packet receipt to the 

sending node within a predefined period.  Thus, replacing required acknowledgements from 

intermediate nodes with acknowledgements from destination nodes in a communication.  This 

system reduces routing overhead in comparison to TWOACK when the route to a destination 

consists of more than two hops.              

Lauf, Peters, and Robinson (2010) came up with a stand-alone IDS that has two intrusion 

detection engines. The first engine detects observed anomalies and then passes them down to the 

second engine to check against the predefined threshold.  The system sets such a threshold by 

establishing a network normalcy profile through maintaining a history of interactions occurred at 

the application layer.  The threshold is then defined as the average application layer behavior of 

all nodes in the network.  As such, intrusions are detected when a node behavior exceeds the 

identified threshold.   

Joseph, Lee, Das and Seet (2011) came up with their stand-alone cross-layer IDS 

targeting malicious sinking behavior in MANETs.  Joseph et al. (2011) define sinking as a 

malicious behavior exhibited from certain nodes that don’t cooperate in the routing process and, 

instead, tend to drop data and routing packets.  The system collects audit data from physical, 

MAC, and network layers in efforts to maximize detection accuracy.  Their implementation 

includes a mixture of anomaly-based and signature-based detection.  The system relies on 
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machine learning through the application of a support vector machine (SVM) for classification of 

audit data.  However, SVM algorithms are known to impose resource-exhaustive operations on 

nodes.  Thus, their application of SVMs is targeted towards the training phase.  Each node in the 

system monitors its own neighbors through activating promiscuous listening against neighbors’ 

communications.  The captured data is then fed into the detection engine to detect any deviations 

based on a comparison with attack thresholds calculated in the training phase.   

Both ACK and TWOACK systems suffer from one major vulnerability: the 

acknowledgement receipts can be forged by malicious nodes rendering the system incapable of 

detecting packet dropping attacks.  Thus, Shakshuki, Kang and Sheltami (2013) presented their 

approach to address this vulnerability through the implementation of a new IDS.  This approach 

is called Enhanced Adaptive Acknowledgement (EAACK).  The idea behind their system is the 

usage of acknowledgement packets for communications among nodes in a MANET.  Whenever 

a node sends a packet to a destination, it waits for a receipt acknowledgement packet from that 

destination.  If the originating node does not receive the acknowledgement packet within a 

predefined period, it sends an acknowledgment-request packet to intermediate nodes in the route 

to the destination.  Misbehaving nodes in the routes are detected when one of them does not 

return an acknowledgement packet stating that it has received the acknowledgment request. All 

acknowledgements are digitally signed to eliminate packet forging.  

Digital signatures represent the most valuable innovation behind the EAACK system 

since it is proposed to overcome packet forging issues found in both ACK and TWOACK.  Thus, 

all acknowledgement packets must be signed, so they can be verified by the receiver.  In their 

evaluation of packet signing, Shakshuki et al. (2013) proposed that the application of the Digital 

Signature Algorithm (DSA) produced desirable results in terms of signing/verification speed. 
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However, utilization of digital signatures imposes extra computational overhead, resulting in 

high consumption of battery power on the resource-constrained nodes in a MANET.    

Motivated to overcome the difficulty of detecting multiple attackers launching different 

attacks in a network, Mapanga et al. (2017) proposed their stand-alone IDS.  Their system relies 

on machine learning through the application of multilayer perception neural network (MLP-NN) 

for classification of packet dropping attacks.  The system undergoes a training phase that is based 

on locally collected data from each node, focusing on nodes participating in the route discovery 

process of the AODV protocol.  This data is then passed to the MLP-NN engine to extract 

routing parameters from control messages exchanged among the nodes to establish the normalcy 

profile.  Their approach assumes that malicious nodes have built-in attack mechanisms to drop 

all data packets while responding successfully to routing messages.   

Despite the various improvements proposed for stand-alone intrusion detection, it still 

possesses limited efficiency when compared to other types of architectures (Brutch & Ko, 2003).  

This limitation exists because of the reliance of stand-alone architecture solely on locally 

collected data, which impacts detection accuracy and limits the range of malicious attacks that 

can be uncovered (Şen & Clark, 2009).  Additionally, this type of architecture does not provide 

visibility for the security of other nodes in the network, which indicates its inability to detect 

coordinated attacks (Farhan, Zulkhairi, & Hatim, 2008). 

 

Hierarchical  

A hierarchical IDS is more suitable for multi-layered configurations in MANETs.  In this 

architecture, each node has its own IDS to detect intrusions locally.  However, a MANET is 

divided into groups, called clusters.  Each cluster has a “cluster-head” that acts as a gateway 
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connecting a cluster with others.  The collection of cluster-heads in the network provides the 

connectivity backbone needed for all clusters to be able to talk to each other (Anantvalee & Wu, 

2007).  Cluster-heads are also responsible for monitoring nodes’ activities in their own clusters, 

and they are responsible for participating in global intrusion detection and response activities 

(Butun et al., 2014). 

Researchers have employed different techniques for implementing hierarchical IDSs.  

Cluster-head nodes in this architecture are supposed to carry on the extensive intrusion detection 

responsibilities in the network.  This, in turn, presents two major issues: resource consumption 

and trustworthiness.  As cluster-heads carry out both local and global intrusion detection, they 

need to have more resources to be able to efficiently perform such activities (Butun et al., 2014).  

At the same time, these nodes act as gateways in their network.  This mandates the need for 

cluster-heads to be trustworthy; otherwise, network operations would be disrupted if a malicious 

node gets elected as a cluster-head (Huang & Lee, 2003). 

Previous studies attempted to tackle the resource consumption problem of cluster-heads 

by introducing various techniques.  Cabera, Gutierrez, and Mehra (2005) presented their 

distributed IDS through network clustering.  Each cluster would designate a cluster-head through 

electing the node which first responds to the election broadcast messages in the network 

initialization phase.  Cluster-heads perform IDS operations through the installed anomaly-based 

detection engine.  The engine employs cross-feature analysis (CFA) to calculate the normalcy 

profile for each node.  The network must go through an extensive training phase to extract 

anomaly features before the IDS engines can be installed on cluster-heads.  The system triggers 

the cluster-head election process periodically to eliminate draining resources of cluster-head 

nodes.   
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In an attempt to increase network lifetime with their approach, Kim, Kim, and Kim 

(2006) proposed their lifetime-enhancing selection (LES) scheme for selecting cluster-heads.  In 

each cluster, the system chooses the node with the highest battery power as the cluster-head.  

This is done by having nodes periodically exchange their battery power through control 

messages.  During these periods, nodes in the cluster vote to elect the node with the highest 

battery power as the cluster-head. When the batter power of the elected cluster-head falls below a 

predefined threshold, it initiates a re-election process in the cluster.  To further enhance energy 

consumption, the system specifies a limited size queue of packets to be inspected at once by the 

cluster-head.  Once the queue is full, no more packets are inspected until the current queue has 

been fully inspected.  This, in turn, is proposed to prevent overwhelming cluster-head nodes with 

processing overhead by limiting the number of packets inspected at a time.  The system is 

intended to enhance network lifetime by balancing the energy consumed by IDS activities among 

nodes in a cluster.   

Otrok, Mohammed, Wang, Debbabi, and Bhattacharya (2007) followed a similar 

approach for cluster-head election by having each node report its battery power to its neighbors.  

The system implements a reputation scheme to motivate selfish nodes to cooperate.  Based on 

voting, the node with the highest battery power would be elected as the cluster-head.  As for the 

trustworthiness issue for cluster-head nodes, the system introduces the concept of “checker 

nodes”.  The system randomly selects nodes in each cluster to serve as checkers.  The 

responsibility of checker nodes is to monitor the behavior of the cluster-heads and initiate a re-

election process if the currently elected cluster-head starts misbehaving.  The IDS defines a timer 

that expires when a new cluster-head election is triggered. 
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Pahlevanzadeh and Samsudin (2007) presented their agent-based hierarchical IDS for 

MANETs.  Their system divides the network into clusters and defines cluster-heads as the nodes 

that have the highest battery power, processing power, bandwidth, and number of connections to 

other nodes in the neighborhood.  At every cluster node, a data collection agent is installed to 

collect audit data about nodes in the neighborhood.  This information is then passed to the 

cluster-head who has the intrusion detection agent (IDA) installed.  The IDA uses an anomaly-

based detection engine to make decisions about the collected data.  However, Pahlevanzadeh and 

Samsudin (2007) did not describe the technique used for establishing normal network profiles. 

The IDA sends alarms to nodes in the cluster as well as to other cluster-heads to keep the 

network informed of the identified attacker. 

Ma and Fang (2009) followed a similar idea to that of Kim et al. (2006) in their 

hierarchical IDS proposal.  During the network initialization phase, each node reports its battery 

power to its neighbors.  After that, nodes vote to elect the one with the highest battery power as 

the cluster-head.  However, the election process doesn’t happen periodically as in Kim et al. 

(2006).  Instead, a re-election is triggered whenever a new node joins the network, the elected 

cluster-head leaves the network, or the battery power of the cluster-head falls below the 

predefined threshold.  The proposed system installs a local detection engine on cluster nodes and 

a global one on cluster-heads.  However, it is unclear what kind of detection techniques the 

system employs as Ma and Fang (2009) did not explain it. 

Roy, Chaki, and Chaki (2009) came up with the idea of “guard nodes” in their 

hierarchical IDS.  The system was specifically designed to detect worm hole attacks, and it 

divides the network into clusters with a cluster-head responsible for the intrusion detection 

decisions of each cluster.  However, the novelty of their approach is in the addition of guard 
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nodes in each cluster.  These nodes have the ability to monitor any node in the cluster and report 

back to the cluster-head if it detects any suspicious activities.  This ability comes from 

positioning guard nodes in a cluster where they can sniff all neighborhood traffic by activating 

their promiscuous mode. 

Abdel-Fattah, Dahalin, and Jusoh (2010) proposed their region-based hierarchical IDS.  

In their system, the network is divided into non-overlapping regions.  Each region would have 

member nodes and gateway nodes.  A node is considered a “gateway” if it has a connection to 

the neighboring region.  Otherwise, it is deemed a member node.  All nodes have an IDS 

installed on them.  However, if member nodes detect intrusion, they must send their decision to 

gateway nodes to start global intrusion detection.  The IDS in this architecture employs a 

combination of signature-based and anomaly-based engines.  The anomaly-based engine utilizes 

the conformal prediction for k-nearest neighbor (CP-KNN) and distance-based outlier detection 

(DODO) algorithms to calculate the certainty of an attack existence in the collected data.  If an 

anomaly is detected with a high certainty, the extracted intrusion pattern is passed down to the 

signature-based engine to extract and store the attack signature in its database. 

Believing that a hierarchical architecture supports network scalability and fault tolerance, 

Shao, Lin, and Lee (2010) presented their hierarchical IDS for MANETs.  However, their 

cluster-head election does not rely on battery power.  Instead, the node with the highest number 

of connections to other nodes is elected as the cluster-head in every cluster.  Nodes in each 

cluster declare the number of their one-hop neighbors.  The system then employs voting among 

such nodes to choose the cluster-head.  The presented IDS implements an anomaly-based engine 

to detect intrusions. This engine implements a back-propagation network (BPN), which is a 
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supervised learning neural algorithm to train against and establish the normal profile of the 

network.   

Zeng, Chen, Qiao, and Xu (2011) believed that since MANETs are energy-constrained by 

nature, nodes might be inclined to lie about their battery power during cluster-head elections. 

Zeng et al. (2011) stated that previous cluster-head selection approaches suffer from this issue, 

which might affect network lifetime negatively.  Their approach focused solely on cluster-head 

election without detailing what kind of intrusion detection engine is used.  Thus, they proposed 

their system in which selfish nodes are encouraged to reveal their battery power through 

incentives called reputation points.  These points are important since the system uses them to 

distribute services provided by cluster-heads.  Thus, nodes that don’t reveal their battery energy 

wouldn’t have enough reputation points to receive such services.  

Due to the significance of the role played by cluster-heads in hierarchical IDS 

implementations, Katal, Wazid, Sachan, Singh, and Goudar (2013) believed that battery power 

alone is not sufficient for cluster-head election.  Katal et al. (2013) attempted to address the 

challenge of cluster-head trustworthiness by adding more parameters to the election of cluster-

heads.  These include communication range, hop count, battery power, and mobility.  Katal et al. 

(2013) also introduced the idea of “super cluster-head” formations, which are randomly-selected 

nodes with the responsibility of monitoring the elected cluster-head for malicious behavior.  

Excluding the cluster-head, super cluster-head nodes typically possess the highest battery power 

in their cluster.  The proposed approach is intended to increase network lifetime as it keeps 

energy dissipation at low rates.  

Amouri, Jaimes, Manthena, Morgera, and Vergara-Laurens (2015) proposed a 

hierarchical IDS that specifically targets blackhole attacks. In their system, the network is 
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divided into a predefined number of squares. Each square has an imaginary circle representing 

the area of IDS activation.  Whenever a node enters that circle, it becomes a pseudo cluster head 

(PCH).  PCH nodes activate their promiscuous mode to sniff packets transmitted within their 

radio range.  These PHCs then use the collected data to calculate anomalies in each cluster.  This 

information, in turn, is passed to a manager node that is assigned at network initialization to act 

as the command and control unit in the network.  The manager node makes the final intrusion 

decision at the network level.  PCHs change as nodes in MANETs are in continuous motion.  

However, a node that is assigned the manager role remains in that position for the lifetime of the 

network.  The manager node then uses the data collected from all PCHs to calculate network-

level intrusions.  The approach utilizes a simple C4.5 decision tree to learn typical network 

behavioral responses to black hole attacks during the training phase. 

Specifically targeting the military applications of MANETs, Theresa and Sakthivel 

(2017) presented their fuzzy-based IDS for cluster-based battlefield networks.  Their approach 

consists of three stages: cluster-head selection, fuzzy logic technique, and intrusion detection.  

The system periodically chooses the node with the maximum battery power to serve as a cluster-

head in each cluster.  This is done by having nodes share their residual energy levels at 

predefined election times.  Nodes then vote to elect the node with the highest energy level as the 

cluster-head.  The second stage of the system uses fuzzy logic to generate detection rules in the 

form of “if-then” clauses.  The proposed system focuses on rule generation for data 

communications between regular nodes and control stations on the battlefield.  When a node tries 

to communicate with a control station, the data packet passes through the cluster-head first as it 

serves as the central traffic point in its cluster.  The intrusion detection (third stage) is performed 

by cluster-heads.  These then apply the generated rules from the fuzzy-based engine against each 
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packet passing through.  If a match is found, the cluster-head considers it as a malicious packet 

and drops it.  Otherwise, the packet is passed along until it reaches the destination.   

Justin, Marathe, and Dongre (2017) presented a hybrid hierarchical IDS combining the 

accuracy of signature-based engines and the adaptability of anomaly-based intrusion detection.  

The system chooses the node with the highest energy as the cluster-head.  However, Justin et al. 

(2017) did not explain how and when such selection occurs.  The anomaly-based detection 

engine uses support vector machines for learning and establishing the normalcy profile during 

the training phase.  Every node activates its signature-based engine to detect malicious activities 

by matching the collected data against the attacks-signature database.  If no match is found, 

nodes activate their anomaly-based engine for further detection.  If an anomaly is found, an 

alarm is sent to the other cluster-heads.  When other cluster-heads receive this alarm, they send 

their vote to the originating cluster-head stating their findings from local detection against the 

suspicious node.  If the majority of the nodes’ votes support the suspicion, the originating 

cluster-head sends an alert to the entire network.  In addition to that, the anomaly-based engine 

passes the detected attack to the signature-based engine to create a new predefined rule that can 

be used in future detections.  

Despite the extensive research done in the area of hierarchical IDSs, this architecture 

imposes additional processing and communication overhead on other nodes in the network for 

electing and maintaining cluster-heads.  Moreover, having a single node as a central point of 

detection raises the potentiality of such nodes to become the main target for malicious attacks.  

The success of such attacks can give malicious nodes the ability to take over the entire cluster 

and, eventually, the network.  This, in turn, may cause false detection information reporting as 

well as fake accusations against legitimate nodes (Panos, Xenakis, & Stavrakakis, 2010).  
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Relying on dedicated nodes, such as cluster-heads, to perform heavy duty intrusion 

detection also entails a high processing overhead on the designated nodes.  Considering the 

resource-constrained nature of MANETs, energy drainage of cluster-heads is a common issue in 

this type of architecture.  Additionally, since each cluster-head represents a single point of failure 

in its cluster, this might lead to having groups of nodes disconnected and unable to communicate 

with each other, resulting in network segmentation (Butun et al., 2014). 

 

Cooperative 

In a cooperative architecture, each node in the network participates in the intrusion 

detection and response activities.  This is done through having an IDS engine installed on each 

node, enabling it to collect audit data, detect intrusions, and alert the entire network when an 

intrusion is detected.  Each IDS node analyzes the collected audit data and searches for evidence 

for intrusions.  Such evidence is defined as signs of intrusions found in local or neighboring 

nodes’ activities.  Each node then assigns a certainty value to the collected evidence, which is 

called a confidence level.  If a node finds a high confidence in the collected evidence, it marks 

the identified activity as an intrusion and alerts the entire network.  At the same time, nodes can 

launch a cooperative intrusion detection when inconclusive evidence is found in the locally 

collected information against a suspicious activity.  Inconclusive evidence situations occur when 

the level of certainty in the collected evidence is deemed too low for a node to make an intrusion 

decision on its own.  In this case, nodes share their opinions, based on individual observations, to 

reach a final collaborative decision against the suspect node and initiate a global response (Soni, 

Ahirwar, & Agrawal, 2015).   
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The seminal work on cooperative IDSs (CIDSs) for MANETs was introduced by Zhang 

and Lee (2000).  Their research proposed a new cooperative architecture for intrusion detection.  

Their system is an anomaly-based one that relies on both local and global detection mechanisms.  

Each node has its own local IDS agent that can detect and respond to intrusions.  However, a 

global detection IDS is utilized when the confidence level of the detected intrusion is low.  Thus, 

requesting neighboring nodes IDS agents to participate in the global IDS actions cooperatively.  

The system gives immediate neighboring nodes the highest values in evaluating an intrusion 

state.  Zhang and Lee (2000) believe that such reports are accurate since compromised nodes do 

not have the incentive to send intrusion reports, fearing of their expulsion from the network.   

Marti, Giuli, Lai, and Baker (2000) presented their watchdog and path-rater mechanisms 

on top of the DSR protocol towards the detection of misbehaving nodes.  In their methodology, 

each node can overhear traffic passed by its direct neighbors.  Each node maintains a buffer of 

the recently sent packets, which is then used to compare against the overheard ones from 

neighbors.  The comparison entails checking for packet dropping and modification attacks.  

Dropped packets are detected if no match is found between the overheard and the recently sent 

packets.  On the other hand, the system detects packet modifications through comparing the 

contents of the header/payload of the overheard packets against the recently sent ones.  A node is 

marked as misbehaving if any packet drop/modification is found through this comparison, and 

the packet sender is notified of the misbehaving node.  This is referred to as the “watchdog” 

mechanism.  Along with this, Marti et al. (2000) proposed their “path-rater” mechanism that 

combines the knowledge of misbehaving nodes from the watchdog along with link reliability to 

provide optimal routing paths free of misbehaving nodes.   
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One weakness found in the watchdog mechanism proposed by Marti et al. (2000) is its 

inability to detect nodes that falsely report others as malicious.  This weakness stems from their 

system’s incapability to establish trust among nodes in the network.  Thus, reports are considered 

trustworthy from any watchdog node.  As such, compromised nodes may send false reports about 

legitimate nodes in the network causing them to be marked as malicious by others.  This 

shortcoming in Marti et al. (2000) watchdog mechanism has pushed Patcha and Mishra (2003) to 

propose their collaborative system to detect black hole attacks on top of the AODV protocol.  In 

their system, nodes in a MANET are classified into ordinary, trusted, and watchdog nodes.  

Every node must prove its trustworthiness to be included in the trusted group.  Periodically, a 

node from the trusted group is chosen to be the watchdog based on energy, computation power, 

and storage capacity.  This, as stated by Patcha and Mishra (2003), eliminates the problem of 

false reports encountered by the Mari et al. (2000) watchdog mechanism. Another weakness in 

the original watchdog mechanism (Marti et al., 2000) is its inability to detect packet dropping in 

the presence of colluding nodes.  Patcha and Mishra (2000) attempted to overcome this problem 

by having each node send a message to the watchdog before forwarding any packet.  Thus, a 

node is declared malicious if it doesn’t inform the watchdog of a message forwarding event after 

exceeding a certain predefined time limit set by the system during initialization.  

Based on a neighborhood-watch concept, Manikopoulos and Ling (2003) designed their 

mobile ad-hoc network security (MANS) system.  Each node in MANS runs its own IDS that is 

responsible for collecting local data from the node itself as well as data from neighbors.  All 

nodes exchange information periodically or when a suspicious event occurs.  Majority voting 

from each neighborhood is employed when a node reports another as malicious.  Results from 

voting are then propagated through the entire network.  The system implements its own security 
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policy, forcing nodes to (a) send the status of the IDS agent to the entire neighborhood at a given 

interval, (b) isolate a node that declares itself as compromised, and (c) opt to majority voting 

when a suspicious activity is reported.  This policy is enforced by a controller module installed 

on each node, which is logically placed between a node and its network interface.  

Stemming from their belief that intrusion detection should be carried out in a distributed 

manner, Huang and Lee (2003) proposed their anomaly-based CIDS.  Their IDS relies on cross-

feature correlation against anomaly detection models for routing protocols.  During the training 

phase, the system establishes the normal network profile as well as a set of identification rules 

for well-known attacks.  Their system constantly inspects and compares network traffic against 

such identification rules and triggers an intrusion alarm when a match is found.  Cooperation is 

implemented in this system by dividing the network into cliques of nodes, with each having a 

periodically changing cluster-head.  Cooperation in intrusion detection is carried out among all 

nodes in a clique where member nodes compute routing and location-related features while 

cluster-heads perform computations for traffic-related features.  The system requires trained IDS 

models to be pre-installed on every node before deployment.  

Sterne et al. (2005) proposed their CIDS based on a dynamic tree hierarchy in which 

intrusion detection data flows from the leaves towards the root of the tree.  The system employs 

clustering for maintaining the proposed hierarchy with each cluster having its own cluster-head.  

The tree hierarchy is presented as having cluster nodes as the leaves.  Those leaves then report to 

their cluster-heads representing a higher level in the hierarchy.  At the root of the tree are 

security nodes to whom cluster-heads report their data.  Security nodes are responsible for 

managing the intrusion detection capabilities for all clusters.  These responsibilities include 

sending certain information to all other nodes in the network, such as intrusion detection 



 

 

87 

directives and attack signatures.  As the data flows from the leaf nodes to the root, it 

incrementally gets aggregated, filtered, and analyzed.  An IDS is installed on each node for local 

intrusion detection.  Each node is also responsible for reporting data about other nodes in the 

network.  Such responsibility includes monitoring, logging, and analyzing data across protocol 

layers.  If a node is able to detect an attack on its own, then it would only send an alert message 

to its cluster-head.  However, if it is unable to make a decision, it transfers its local detection data 

upwards through the hierarchy to further aggregate it with other collected data. Despite the 

anticipated efficiency of the model, proficiency of the proposed IDS is not determined as the 

model was not simulated or applied towards real-life scenarios.  

Stamouli, Patroklos, Argyroudis, and Terwari (2005) attempted to address the issue of 

high false alarm rates found in IDSs for MANETs by proposing their real-time intrusion 

detection for ad hoc networks (RIDAN).  Their system is a knowledge-based one that utilizes 

time finite state machine (TFSM) to detect real-time routing attacks against the AODV protocol.  

All nodes in the network must have RIDAN installed on them.  When a node detects an attack, it 

attempts to avoid the malicious node from its future routing until it goes back to behaving 

normally.  However, the detecting node does not share its findings with its neighbors.  Building 

on Stamouli et al. (2005) approach, Ding and Xu (2006) proposed their enhancement to RIDAN 

by introducing cooperation in their real-time cooperation intrusion detection system for 

MANETs (RCIDMANet).  The system implements cooperation modules that allow building 

cliques and choosing one monitoring node for each clique.  Nodes in a clique cooperate with 

each other through information sharing and by conveying such information to the monitoring 

node.  When a node detects a suspicious activity, it consults with other nodes to determine 
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whether the identified behavior is an attack.  Through the application of cooperation, 

RCIDMANet showed 6%-10% improvements in detection accuracy over RAIDAN. 

Coming from their faith in the beneficial characteristics of CIDS in MANETs, Deng et al. 

(2006) presented their agent-based cooperative anomaly detection model.  In their system, the 

network is divided into clusters, each with a periodically-changing cluster-head.  The intrusion 

detection feature information is collected from member nodes and sent to the cluster-head to 

perform anomaly detection. This is done through an anomaly detection engine comprised of one-

class support vector machines (1-SVMs) algorithms.  Cluster-heads have the responsibility of 

instructing their cluster nodes on how feature extraction should be performed.  When an attack is 

detected at the cluster-level, an alarm is sent to the entire network. The model relies on training 

data acquired from modeling normal network behavior.    

Trang, Kong, and Lee (2006) developed their CIDS based on the work by Zhang and Lee 

(2000), targeting the AODV protocol. Their system assumes that malicious nodes do not have an 

IDS installed on them.  Each legitimate node in the network is equipped with its own IDS, which 

detects anomalies based on inspecting AODV’s packet headers during the route discovery phase.  

Specifically, the system checks for the sequence number in the received route request (RREQ) 

packets.  Nodes locally store each RREQ packet received from others during route discovery 

operations.  When a rebroadcast RREQ is received by a certain node, it compares the received 

request to the locally stored ones.  If a match is found and the sequence number of the 

rebroadcast RREQ is different than the stored one, an intrusion is detected and the node floods 

the network with an “ALARM” packet.  Detecting nodes cannot send “ALARM” packets to 

themselves or to any malicious node.  A node is considered malicious if it doesn’t reply to the 

“ALARM” message.  The system demonstrated a number of false alarms during simulation as a 
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result of losing replies to the “ALARM” message during transmission.  The model was tested 

against two types of attacks: flooding and sequence number modification.  

Suggesting that a Bayesian approach can improve intrusion detection accuracy, Karim, 

Rajatheva, and Ahmed (2006) presented their CIDS based on such an approach.  Each node in 

the system has a local IDS collecting packet information from both data and network layers.  A 

Naïve Bayes classifier is then used to compare the collected information against a set of 

predefined anomaly detection rules.  If such a comparison results in the detection of a suspicious 

activity, a node would initiate a global alert and contact its neighbors to start the cooperative 

detection.  A decision is made regarding the reported node after combining the locally collected 

observations from all nodes.  If the final value crosses a predefined threshold for an anomaly 

detection rule, the reported node is marked as malicious. The proposed system responds to 

intrusions by rearranging the network to exclude malicious nodes.   

In efforts to address the common problem of high false positives in IDSs for MANETs, 

Otrok et al. (2007) developed their IDS using a cooperative game theory approach.  The system 

targets two types of attacks: cache poisoning and flooding.  Nodes cooperate with each other to 

detect and respond to attacks.  If a node experiences high rates of packet loss due to it not 

receiving acknowledgments to the packet it already sent, it suspects a cache poisoning attack.  

However, if a node receives more packets than the expected rate, a flooding attack is assumed   

The system introduces the concept of security classes to reduce false positives.  These classes 

take into consideration the reputation and contribution of attack reporting using game theory as 

well as the severity of attacks reported by each of the cooperating nodes in the detection process.  

If the result of calculating the security class exceeds a certain predefined threshold, an immediate 

local or global response is triggered.  
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Bose, Bharathimurugan, and Kannan (2007) presented their multi-layer CIDS, which 

operates on MAC, network, and application layers in MANETs.  Bose et al. (2007) believed the 

effectiveness of such a system comes from the fact that if an intruder node escapes one layer of 

detection, it would be caught in another.  The system designates three anomaly detection 

subsystems using Bayesian classification, Markov chain construction, and association rule 

mining algorithms for MAC, routing, and application layers respectively.  Each node combines 

its local intrusion information from each of the anomaly subsystems through a local integration 

module.  The results are then combined with those obtained from cooperation with neighboring 

nodes via the global integration module.  A global intrusion module is then used to make a final 

decision and initiate a response towards the identified attack.    

Based on the concept of evidence chain (EC) and trust fluctuation (TF), Wang, Huang, 

Zhao, and Rong (2008) proposed their intrusion detection mechanism based on trust model for 

MANET (IDMTM).  The system regards malicious behaviors from nodes as evidence.  As time 

passes, these pieces of evidence are aggregated into an EC.  This occurs until the system has 

enough evidence to identity the suspicious node as malicious.  On the other hand, the system 

employs a TF mechanism in which each node is assigned a trust value.  Changes in this value are 

monitored over time.  The greater the changes of the trust value for a node, the more likely it has 

been compromised or turned malicious.  Trust values are cooperatively calculated through 

observations of neighboring nodes.  The combination of collected ECs and TFs result in a 

judgment being made against a suspected node regarding its maliciousness.   

Sen, Chaki, and Chaki (2008) argued that most IDSs lack the precision to properly 

identify malicious nodes and tend to permanently isolate such nodes from the network. This, in 

turn, results in eliminating the chances for the accused nodes to recover their trust.  Having this 
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issue as their target, Sen et al. (2008) proposed their CIDS based on the concept of an honesty 

rate index (h-rate).  Each node is assigned an h-rate that increases when it cooperates and 

decreases when a node behaves maliciously during a certain predefined interval.  Each node 

stores a table for neighbors' h-rates and maintains a record of its own h-rate.  Neighbors monitor 

each other’s performance, and the h-rate gets recalculated based on the current observations.  

The IDS randomly selects a node to be the monitor and changes it to another at random intervals.  

The system implements packet signing by using public and private keys assigned to nodes 

through polynomial secret key sharing.     

Sen, Ukil, Bera, and Pal (2008) proposed a fully cooperative system that relies on 

reputation and voting mechanisms.  Using a monitor module, every node in the network monitors 

its neighbors for packet dropping and modification attacks.  If such attacks are suspected, a 

reputation module is activated to compare the average of neighbors’ opinions against the one 

declared by the accused node.  Majority voting is then employed to make the final decision on 

whether the accused node is malicious.  The system encrypts all intrusion-related 

communications against replay attacks.  Each node receives a trust certificate when cooperating 

in the group voting through a trust maintenance module.  A table containing all reputation values 

of malicious nodes is stored on each node.  A reputation propagator module conveys the newly 

calculated reputation values to the neighboring nodes at regular intervals.  If an intrusion 

decision is made, after majority cooperative voting, the participating nodes flood the network 

with alarm messages, and an alarm raiser module is invoked to take a response action.  

Ebinger and Bibmeyer (2009) targeted the establishment of a distributed trust system as 

an approach to cooperative intrusion detection in MANETs.  Each node calculates a trust value 

for every neighboring node.  This value gets updated at each predefined interval to address 
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topology changes.  Each node must monitor its one-hop neighbors, and the resulting measures 

are used cooperatively between all nodes in the network to make intrusion decisions.  To 

conserve resources, IDS values are updated at fixed intervals.  The system uses the AODV 

routing protocol to distribute reputation information piggybacking on normal routing packets.  

Tangpong, Kesidis, Hsu, and Hurson (2009) presented a cooperative intrusion detection 

model targeting Sybil attacks, specifically.  The model only considers simultaneous Sybil attacks 

in which attackers use their fake identities to consume a larger share of the wireless channel 

access.  The model does not solve colluding or join-and-leave scenarios for Sybil attacks.  Each 

packet is signed with a private key before sending.  Upon receiving a packet, a node verifies the 

packet signature and the location of the sending node.  Packet signatures along with 

corresponding fields are cached in the receiving node and periodically shared with other nodes in 

an attempt to uncover Sybil attacks.  The model performs a comparison against the cached 

observations to look for co-occurrences of multiple similar paths coming from the same region 

with the same identities.  If the number of such occurrences exceeds a predefined threshold, a 

node is declared as Sybil.  

Believing in the Hierarchical Graph Neuron (HGN) algorithm’s ability to increase 

detection accuracy, Mahmood et al. (2009) came up with their CIDS based on a distributed HGN 

(DHGN).  The system goes through an initiation stage, in which a normal network profile is 

obtained and defined.  In the proposed architecture, each node monitors its local traffic pattern 

and calculates whether a node has left the network or is still alive in the form of a “neuron 

index.”  This index is then passed from all nodes to a master node that is chosen to have low 

mobility and high battery power.  The master node possesses a database of normal network 

profiles obtained at the initiation stage and can determine an attack occurrence by comparing 
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such profiles to the received information from the cooperative nodes.  However, if the 

confidence calculation performed by the master node has a lower rate, the final detection 

decision is made based on majority voting.  Mahmood, et al. (2009) did not provide an 

evaluation of the applicability or efficiency of the proposed system.    

Shresta, Han, Choi, and Han (2010) proposed a cross-layer cooperative anomaly IDS. 

This stemmed from their belief that utilizing data from different layers of the protocol stack can 

improve detection accuracy.  Information from MAC, routing, and physical layers are extracted 

through the system’s association module to form a rule set that is used for anomaly profiling.  A 

local data collection module aggregates data streams, related to traffic patterns, from the 

association module.  These streams are then passed to the local anomaly detection module, which 

analyzes such data against intrusions.  This module relies on normal behavior data collected 

across layers during the training phase.  If an intrusion is found with high confidence, a node can 

locally determine the occurrence of an attack and initiates a global alarm.  However, if the 

detection is with low confidence due to insufficient evidence, a cooperative detection is 

requested from surrounding nodes through a secure channel.  A final decision is made according 

to majority voting.  An alert management module exists to collect evidence from both local and 

cooperative engines and initiates an alarm accordingly to inform the network of the identified 

attack(s).   

Morias and Cavalli (2012) came up with their CIDS based on routing protocol analysis.  

Each node captures and analyses every packet going through its network interface.  A routing 

protocol analyzer engine examines all the routing information of each packet to generate routing 

events.  The system defines various constraints on the normal behavior of the routing protocol to 

detect intrusions.  Detected inconsistencies in nodes’ routing behavior are then compared against 
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a predefined threshold. When such threshold is crossed, a routing attack is considered.  The 

system uses a cooperative consensus mechanism to obtain a majority-based decision regarding 

the maliciousness of the suspected node.  As a response to a detected attack, the detecting node 

sends an alert message to all others regarding the malicious node.  Along with that, the system 

isolates the malicious node from the network by discarding its packets and depriving it of using 

the network resources. 

Alattar, Sailhan, and Bourgeois (2012) introduced an Intrusion Detection and 

Cooperative Response (IDAR) system that is a log- and signature-based IDS targeting the OLSR 

protocol.  The system is installed on each node to collect OLSR logs and compares them against 

predefined attack signatures to detect intrusions.  To limit bandwidth consumption, evidence 

obtained from these logs is divided into different groups according to their degree of suspicion. 

This, in turn, provides more efficiency in determining whether a cooperative detection is needed 

or a node can detect the attack on its own.  If a node does not have sufficient evidence against a 

suspected activity, it quickly starts a cooperative networked detection to either confirm or affirm 

its suspicions and ends the investigation promptly.  

Utilizing neural-fuzzy as the core detection engine, Tabari, Pouyan, Hassanpour, and 

Saleki (2012) proposed a lightweight semi-distributed IDS for MANETs.  The system defines 

three modes to classify the status of nodes in the network: normal, attack-presented, and 

suspicious.  The IDS engine can easily detect an attack-presented status through the local IDS, 

which runs on every node in the network.  However, a suspicious status may occur in the normal 

mode where a node might have rapid movements as well as the attack-presented mode where 

attackers perform low-level attacks or are positioned away from the victim.  In these cases, the 

system turns to the cooperative investigation to resolve ambiguity and proceeds to carry out a 



 

 

95 

final decision regarding the doubted activity.  The final decision is made by asking neighboring 

nodes for their sate in relation to the identified activity.  The model was compared to a sample 

stand-alone architecture to prove its detection efficiency and performance. 

Malek and Khorsandi (2013) presented a CIDS that is independent of any routing 

protocol.  The system divides the network into zones based on the total number of nodes and 

resources.  Three types of nodes exist in the proposed system: general, header, and monitor.  

General nodes are divided into clusters that have a separate cluster-head for each cluster.  

General nodes are agnostic to the intrusion detection activities and have no knowledge of the 

different types of packets passing through.  Header nodes must have enough resources and are 

considered trustworthy and fault-tolerant, so are monitor nodes.  Header nodes perform 

continuous broadcasting of voting packets and ask general nodes to rebroadcast these packets.  

The system assumes that legitimate general nodes rebroadcast the voting packets without 

modification while malicious nodes tend to drop or tamper with the contents of such packets.  

Monitor nodes, on the other hand, receive and inspect the results of rebroadcasting from general 

nodes against packet dropping and modification and send their observations back to header 

nodes.  Based on such observations, header nodes determine normal, suspicious, and malicious 

nodes.  The voting process is repeated for a certain number of times according to the number of 

nodes in the cluster and traffic load.  Both suspicious and malicious nodes are isolated from the 

routing process.  However, the main difference between the two is the possibility of reassessment 

for suspicious nodes, which could allow them to be re-included in the cluster.  Normal nodes are 

recorded in a white list, suspicious ones are added to a gray list, and malicious nodes are added 

to a black list.  These lists are broadcasted periodically by header nodes to all general nodes in 

the cluster.  
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Mustafa and Xiong (2013) proposed a CIDS that specifically targets routing attacks in 

MANETs.  Each node in the system monitors its one-hop neighbors for malicious routing 

activities.  Nodes in the network share their monitoring information with each other.  Each node 

makes a detection decision based on both local and global observations obtained from other 

nodes.  A maximum normed residual test (aka Grubb’s test) is used to prevent inconsistencies in 

the collected observations and to detect fake information from malicious nodes.  When an 

intrusion is detected, the detecting node shares its decision with other well-behaving nodes and 

isolates the malicious node from routing services.  The system grants a chance for suspicious 

nodes to return to their normal behavior by periodically reassessing observations.  A suspicious 

node can reutilize routing services after adjusting its behavior back to normal.  

Adhikari and Setua (2013) proposed a cooperative network intrusion detection system 

(CNIDS) that is tailored for the DSR protocol.  Every node in the network periodically runs a 

context analyzer to check whether it has neighbors.  If not, the context analyzer component is 

disabled for that period to save energy.  A watchdog system is implemented on each node to 

ensure packet forwarding by its one-hop neighbors through promiscuous overhearing of 

transmissions.  If a neighbor does not forward a message, the IDS of the overhearing node 

records an anomalous event for that neighbor in the reputation table.  Each node maintains a 

reputation table containing information regarding other nodes in the network through direct 

observations of its one-hop neighbors and indirect observations received by alert messages from 

other nodes.  When a node receives an alert message regarding another node, it activates the 

“ALERT message verifier” component to verify if the information contained in the received alert 

is true before updating the reputation table.  This is done through sending and overhearing the 

transmission of a test packet through the suspected node for one-hop neighbors.  If the suspicious 
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node is not a direct neighbor, the receiving node checks the reputation table to check that the 

alert initiator node is marked as “normal” and that it’s truly a direct neighbor of the reported 

node.  Malicious nodes are punished by having normal nodes drop their packets.  The system sets 

a predefined threshold for the maximum number of packet drops by a node.  When the threshold 

is crossed, a node is marked as malicious.    

Prasannavenkatesan, Raja, and Ganeshkumar (2014) introduced a CIDS relying on their 

own packet dropping detection (PDA) algorithm.  In the proposed system, a MANET is divided 

into clusters.  Each cluster has a cluster-head that is elected based on majority voting from all 

member nodes.  Mobility, degree, energy levels, and transmission range are the four qualities 

considered when electing a new cluster-head.  Each node is equipped with an IDS that passively 

listens to one-hop neighbors to detect packet dropping attacks.  If a node detects a neighbor 

dropping or modifying packets, it requests a cooperative detection from other nodes in the 

cluster.  Such detection is driven by the cluster-head through forcing each node to respond with 

the degree of maliciousness of the suspected node.  The cluster-head marks the target node as 

malicious if the majority of the received responses from cluster members indicate so.  As a 

responsive action, the cluster-head then floods the network with an alarm message containing 

information about the detected attacker.  

Sharma (2015) presented a cooperative intrusion detection approach that specifically 

targets selective packet dropping of gray hole attacks.  Each node in the network is equipped 

with an IDS that monitors its direct neighbors.  If a neighbor continuously drops a packet, it’s 

marked as a black hole attacker.  Since uncertainty usually surrounds gray hole attacks due to 

their selective nature, the proposed IDS has each node maintain a statistical table containing 

information about the analyzed packets.  The system defines a packet dropping threshold. When 
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this threshold is crossed at a certain time, a node is put in a gray hole attacker list maintained by 

its neighbors and is removed from their routing table.  If a node suspects a gray hole attacker, it 

sends a request packet to its neighbors to consider the suspicion.  Neighbors check their own 

gray hole lists to confirm the suspicion.  The information continues to pass to the next level of 

neighbors for a predefined period.  After receiving all responses, the initiating node checks if 

two-thirds of the received responses confirm the existence of the suspected node in their gray 

hole attacker list. Then, it marks the suspected node as a gray hole attacker.  The IDS does not 

broadcast an alarm for the network after discovering gray hole attackers.  The alarm is not issued 

because of a fear that the malicious node would start behaving normally once it receives the 

alarm.  

Merchang, Datta, and Das (2017) believed that resource consumption, in a CIDS can be 

minimized by introducing the concept of “security levels.”  Since each node in a CIDS is 

monitored by all its one-hop neighbors, higher energy consumption would occur.  However, 

defining a security level can solve this problem by having only a certain number of neighbors 

monitor the target node.  A security level defines the number of neighbors designated to monitor 

a certain node at a given time.  A threshold is set to maintain the minimum security level based 

on the application scenario.  However, the problem with this technique is that nodes are inclined 

to save their energy and avoid IDS activities, which might result in an ineffective system.  This is 

tackled by Merchang et al. (2017) by employing a cooperative game theory approach to establish 

an equilibrium between detection activities and energy savings.  As such, the defined game 

forces two goals on all nodes: participating in monitoring activities and reducing energy 

consumption.  The system defines a certain interval for all nodes to use.  At each interval, a node 

determines whether its IDS should be active based on the calculated probability according to the 
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selected security level.  During active times, if a malicious node is detected, the detecting node 

broadcasts a vote message to neighbors.  The selected security level determines the number of 

votes needed from neighbors for the suspected node to be marked as malicious.  

Cooperative intrusion detection overcomes the weaknesses in both stand-alone and 

hierarchical architectures.  The primary advantage of this architecture against the stand-alone one 

is represented by the cooperation mechanisms that enables a broader view of the network, which 

results in the ability to detect complex attacks.  On the other hand, CIDS defeats the hierarchical 

one by removing the reliance on a single point of failure and distributing identical detection 

engines on every node in the network.  In general, due to the dynamic nature of MANETs, 

cooperation is imperative to achieve real-time detection accuracy, through providing a shared 

view on the security situation of other nodes in the network (Morais & Cavalli, 2012). 

 

Summary 

This chapter reviewed the current body of knowledge on MANETs, their characteristics, 

security issues, and vulnerabilities.  In addition, a review and comparison between the various 

intrusion detection architectures and implementations for MANETs was presented.  Due to their 

unique characteristics and inherent vulnerabilities, the quest for an efficient IDS continues to be 

a challenging problem for researchers in this field.  The researcher has found significant 

emphasis from previous studies on the critical need for cooperative detection towards achieving 

such efficiency.  In reviewing the current literature, the urgent need for an efficient CIDS 

implementation for MANETs that is able to simultaneously identify malicious attacks with high 

accuracy and minimal communication overhead has become the motivation and driver for this 

research.       
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Chapter 3 

Methodology 

 

Overview of Research Methodology 

 This chapter details the methodology that was followed to implement this research study.  

Experimental design was implemented through the design and development of the proposed IDS.  

This is a common approach followed by similar studies to create and assess new IDS 

implementations for MANETs (Huang & Lee, 2003; Kareem et al., 2006; Wang et al., 2008; 

Cannady, 2009; Tabari et al., 2012; Adhikari & Setua, 2013; Merchang et al., 2017).  The system 

was evaluated to determine its feasibility in achieving the research goals of increasing detection 

accuracy while minimizing communication overhead.  The application of the concept of social 

communities accompanied with DST targeted the achievement of these goals.  The researcher 

followed four major steps in the development of the proposed system: design of the proposed 

IDS components, implementation of the components, integration of the components into a 

deployable IDS, and testing of the IDS implementation.  Detailed implementation steps are 

provided along with the specific procedures that were followed for attacks generation, system 

development, data collection, and system evaluation.  Resources needed for this implementation 

are also outlined in this chapter.   

 

 

Approach 

The goal of this research study was to implement a CIDS that is able to achieve high 

detection accuracy while minimizing communication overhead.   To achieve these research 

goals, the design and implementation of the proposed system depended on combining the 

concepts of social communities and DST.  Nodes in MANETs represent characteristics similar to 
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social behaviors of humans in a community (Banerjee, Nandi, Dey, & Saha., 2015).  As such, 

and following Granovetter’s (1973) definitions of strong and weak ties in social communities, we 

treated a MANET as a web of strongly tied social communities connected with each other 

through weak ties.  Strong ties in this context are defined as social links that are formed between 

nodes based on recency of communications, age of communications, reciprocity, and knowledge 

sharing (Gilbert & Karahalios, 2009).  On the other hand, the lack of such ties between two 

nodes indicates the nonexistence of social links between them, which is defined in this context as 

weak ties.  Nodes in each community are connected through strong ties.  However, for nodes 

inside these communities to interact with other communities, they utilize the weak ties as a 

communication bridge.  Each node in the network, along with its circle of strong ties, represents 

a densely-knit mass of social structures.  This is called a "social community".  Each node would 

also have a set of weak ties connecting it to distant communities.  Sometimes for a node to 

connect to one distant friend, it needs to utilize one of the weak ties as a crucial bridge to access 

information beyond its own social circle (Granovetter, 1983).   

The application of the social community theory in our approach aimed to address the high 

bandwidth consumption issue found in current solutions.  This is due to our unique 

implementation of such concepts, which eliminated the need for high information dissemination, 

thus minimizing bandwidth consumption required to establish nodes’ social circles.  Details of 

this implementation are provided in the next sections.  The application of social communities 

aimed to improve detection accuracy as well.  The detection accuracy is improved through a 

focused reliance on reports coming solely from reliable social circles.  This is because, in a social 

community, received information is rarely trusted unless it comes from strong ties (Granovetter, 

1973).  However, for this research to achieve high efficiency regarding the second goal, which is 
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decreasing the number of false positives, Dempster-Shafer theory (DST) of evidence (Shafer, 

1976) was utilized.  Although this research relied on reliable reporting, false positives would still 

occur due to a lack of sufficient evidence against a suspicious activity.  Thus, the application of 

DST here aimed to decrease and potentially eliminate cases where a node is falsely accused due 

to a lack of evidence or cases of partial evidence. 

Mainly, there are two commonly used theories for combining multiple beliefs from 

different entities: Bayesian theorem and DST (Li & Joshi, 2009).  Bayesian theorem considers 

the lack of knowledge regarding an incident as a negative evidence (Gordon & Shortliffe, 1984).  

In other words, if two nodes are asked to give their observations regarding a suspected third 

neighbor and one of them fails to report such an observation due to a collision or unreceived 

request, Bayesian theorem considers it as negative evidence towards the suspected node.  

Besides, such theorem usually requires training data ahead of time to achieve an efficient 

accuracy.  However, the reliance on training data in attack detection is problematic since 

adversaries can change their behavior with time (Li & Joshi, 2009).  As opposed to the Bayesian 

theorem, DST does not require training data or prior knowledge of an incident.  Additionally, 

DST does not regard the lack of knowledge as negative evidence because it can hold either a 

supportive or uncertain view about an incident (Gordon & Shortliffe, 1984). 

The main issue with the current applications of DST, found in the literature, is the 

determination of trustworthiness and untrustworthiness of nodes when weighing in nodes’ votes 

(Chen & Venkataramanan, 2005; Li & Joshi, 2009).  This requires a high bandwidth overhead 

imposed by trust-related information dissemination to establish accurate calculations.  Otherwise, 

DST can combine observations from nodes disregarding their trustworthiness.  However, this 

might yield inaccurate results in the presence of a large number of malicious nodes in the 
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network (Chen & Venkataramanan, 2005).  Very little research has been done towards the 

application of DST for intrusion detection in MANETs.  All of which relied on the calculated 

trustworthiness of nodes in the combined decision-making process.  This can be problematic in 

the presence of a large number of malicious nodes, which in turn, can result in manipulated votes 

against legitimate nodes (Rajakumar et al., 2014).  

In our approach, we eliminated both the overhead of trust calculations as well as the 

inclusion of anonymous votes, which usually result in a high rate of false alarms.  Instead, we 

used DST against observations obtained solely from strong-ties to handle cases where some of 

these nodes did not catch any/enough evidence against the suspicious activity.  Details of the 

application of DST are provided in the next sections.   

 

Research Methods Employed  

 For this research to achieve the outlined goals, the researcher adapted the following 

sequential steps for the implementation of the proposed system.  This ensured systematic 

development and execution of all the pieces necessary to conduct the experiment and obtain the 

required metrics to document the research findings. 

• Create an initial MANET for testing the implementation of the proposed system.  The 

designated MANET contained a number of legitimate mobile nodes communicating with 

each other over the AODV routing protocol.  The researcher chose the AODV protocol as 

it is widely used for intrusion detection experimentation for MANETs.  A large number 

of research studies have opted to use AODV as the routing protocol of choice for such 

experimentations (Cannady, 2009; Huang et al, 2003; Parasannavenkatesan et al, 2014; 

Wang et al., 2008; Otrok et al., 2007; Shrestha et al., 2010; Karim et al., 2006). 
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• Develop deployable attack models for black hole, gray hole, modification, rushing and 

flooding attacks.  The development of these attacks was based on their definitions 

outlined in Chapter 2.  This is identified further in the “Attacks Generation” section. 

• Develop testing scenarios for each of the above-mentioned attacks.  Mixtures of multiple 

attacks in the same scenario along with a variable number of attackers was developed as 

well. 

• Perform iterative testing on the developed scenarios to define and adjust the required 

thresholds for the proposed IDS operations.  This is identified further in the “System 

Design” section.  

• Develop the components of the proposed IDS outlined in Figure 1 in the upcoming 

“System Design” section.  This entailed the application of the concept of social 

communities and DST towards achieving the research goals.   

• Test the IDS against the previously developed testing scenarios. 

• Collect datasets by continuously monitoring the testing MANET in various operational 

models.  Details of the data collection process are provided in the next sections.   

• Collect evaluation metrics to determine the system’s ability to feasibly achieve the 

research goals of high detection accuracy with minimal communication overhead.  

• Document findings in the Dissertation Report. 

 

 

Attacks Generation 

 To simulate the proposed system’s response and behavior during malicious attacks on the 

network, the researcher implemented the following attacks based on their definition outlined in 

Chapter 2.  For all these attacks, a new attacker-node module was created to simulate each one of 
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them.  This also allowed the researcher to keep the normal node behavior intact as we 

implemented each attack.  Making the attacker-node module optional, allowed the researcher to 

flexibly install it whenever necessary to simulate any of the following attacks: 

 

• Black hole: The attacker node tries to attract as many routes through it as possible. 

AODV was the routing protocol followed in the simulation.  Thus, implementation of 

route attractions from the black hole attacker was focused on the route discovery phase in 

this protocol.   Whenever the attacker-node receives a RREQ message, it generates an 

RREP message to the originator stating that it has a fresh route to the destination.  This is 

done by setting the sequence number in the RREP packet to the maximum allowed 

number in AODV.  When the requesting node receives the reply packet, it starts 

communicating with the destination node through the route received from the attacker.  

When the attacker-node receives these packets, it immediately drops them without 

forwarding it to the destination.  

• Gray hole: this attack is similar to black hole except it follows a selective packet 

dropping pattern.  However, the attacker-node still implemented the same procedure 

outlines present in the black hole attack simulation above. This is done to attract nodes 

to route their packets through it.  The main difference in the simulation would be the 

implementation of selective packet dropping.  This was implemented as follows-

whenever the attacker-node receives a data packet, it generates a random number 

(RND_GH).  If this random number falls between a predefined range (GH_RANGE), 

the attacker-node drops the packet.  Otherwise, it would forward it without dropping.  
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The researcher varied the RND_GH and GH_RANGE through extensive testing to 

establish a similar resemblance of selective packet dropping to real-life attack scenarios. 

•  Modification: in this attack, when an attacker-node receives a data packet, it appends a 

randomly-generated number to the contents and forwards the packet along the route.  

This is done by copying the received data packet into a new one.  After that, the 

attacker-node modifies the payload of the copied packet by appending the random 

number.  Finally, it removes the original packet and instead forwards the 

copied/modified on down the route.  

• Rushing: at the network initialization phase, this attacker-node generates a large number 

of RREQ to ensure it will be included in as many future routes during nodes’ 

communications.  This was implemented by installing an antenna with a higher 

transmission power on the attacker-node than those of legitimate nodes.  Thus, when the 

attacker receives a RREQ, it forwards it to the next hop faster than a legitimate node is 

able to forward it.  That way, more nodes will potentially include the attacker in future 

routes.  This would cause legitimate routes to eventually become neglected as more 

nodes will have the attacker in their routing tables.   

• Flooding: the attacker-node creates a new data packet with size equal to the maximum 

allowed packet size in the AODV protocol.  The attacker then starts flooding the 

network with these packets by sending it to all its one hop neighbors as well as to fake 

destinations.  That way, when other nodes receive such packets, high processing would 

be needed to inspect each one to find the destination to forward to.  Continuously 

receiving such packets causes legitimate nodes to start draining battery power that is 

being spent to route such processing-intensive packets.  This would potentially cause 
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nodes to drop out of the network due to full drainage of their battery, rendering them 

incapable of participating in normal network operations.        

 

 

System Design  

In this research, we proposed a novel CIDS for MANETs comprised of the following 

components: 

• Data Inspection Module responsible for gathering traffic data. 

• Social Ties Builder Module for establishing social communities between nodes. 

• Local Detection Module for analyzing the collected data against suspicious activities. 

• Cooperative Detection Module that is responsible for launching collaborative 

investigations with other nodes.   

• Global Response Module for broadcasting alarms when an intrusion is detected.  

 

The IDS was implemented as an integrated module that can be optionally installed on the 

designated nodes.  This allowed the implementation of attacker and IDS nodes in the network at 

the same time by specifying the required module to be installed on each node, without modifying 

the normal behavior of nodes. 

 

Figure 1 below illustrates the overall structure of the proposed system. 
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Figure 1 - System Structure 

 

 

 

 

Data Inspection Module 

Each node in the network activates its promiscuous mode enabling it to overhear traffic 

passing through its one-hop neighbors.  The data inspection module (DIM) has two main 

responsibilities: data collection and inspection and selective packet forwarding.  The DIM 

collects statistical data about each received/sent packet as well as neighbors’ forwarded packets.  

This includes recording all the information in the packets’ headers as well as calculating a 

checksum for each packet.  The collected information is saved on each node so that it can be 
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consumed by the social ties builder, local detection, and cooperative detection modules. To 

perform selective packet forwarding, this module checks the social ties table (STT) (defined next 

in the Social Ties Builder Module) before forwarding a packet to check if the source node is 

marked as “Malicious” then drops the packets, otherwise, the packet is forwarded.  

The implementation of this module was as follows: whenever an IDS node receives a 

routing/data packet, it goes through the DIM.  Before any further processing, this module 

extracts the source IP address from the received packet.  The DIM then asks the STBM whether 

this source IP is marked as “malicious”.  If so, the DIM drops the packet.  Otherwise, the DIM 

extracts the packet type (routing or data), source/destination addresses, and packet time, and it 

calculates a checksum for the packet payload.  The extracted data is then stored in the memory 

for future utilization by other modules.  The packet is then forwarded to the neighbor down the 

route and is marked in the memory storage as “forwarded to neighbor.”  The IP of the neighbor 

the DIM is forwarding the packet to is appended to the packet entry in the storage.  This memory 

storage represents the table for storing DIM data.  This table is called the data collection table 

(DCT).  Since IDS nodes activate their promiscuous mode at all times, they are able to sniff 

packet transmissions of their one-hop neighbors.  Thus, whenever a packet is forwarded by a 

one-hop neighbor, the LDM extracts the packet type (routing or data), source/destination 

addresses, packet time, and IP address of the forwarding neighbor, and it calculates a checksum 

for the packet payload.  The packet is then marked as “forwarded by neighbor” in the DCT.  
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Social Ties Builder Module 

This module is responsible for constructing social ties with other nodes based on the 

collected information from the DIM.  Due to the constrained nature of nodes in a MANET, the 

social ties builder model (STBM) is activated after each time interval (t).  That way, we can 

reduce energy consumption and potentially extend battery life, as opposed to having the module 

run indefinitely.  After each interval (t), this module queries the collected data from the DIM to 

extract and calculate social ties features.  These features are derived from Gilbert and Karahalios 

(2009) findings regarding the significant predictors (p<0.001) of strong ties in a community. 

These features are the following: 

• Recency of communication: this is calculated by recording the time a packet is 

received from a certain node. 

• Time since first communication: this value is saved when a node receives a packet 

from another for the first time. 

• Reciprocity: this denotes the number of messages exchanged with other nodes. 

• Shared Knowledge: this denotes the number of route discovery or link failure 

messages shared by other nodes. 

At each interval (t), these features are extracted and stored on each node inside the STT.  

The novelty of this module against the current solutions is twofold: a tremendous decrease of 

bandwidth consumption and high reliability of intrusion detection information.  Each node 

utilizing this module performs its calculations to establish a strongly-tied social circle.  This is 

done without the need for reputation or trust information to flood the network.  As compared to 

all current solutions, this demonstrated substantial enhancements in bandwidth consumption, 

which resulted in fewer collisions and less packet loss throughout the network.  The other 
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primary benefit from this implementation is its reliance on strongly-tied communities to deliver 

reliable information.  Compared to the current trend in getting such information, researchers lean 

towards reputation-based mechanisms based on the observed node behaviors from neighbors.  

However, such an approach is error-prone as legitimate nodes can be marked malicious due to 

accidental packet drops. The other downside of reputation-based detection is its inability to 

perform when a high number of malicious nodes exists in the network, as compared to legitimate 

ones (Rajakumar et al., 2014).   

A node is considered a strong-tie on strict conditions: if and only if its recency of 

communication is less than the predefined threshold (rrec), time since first communication is 

greater than the predefined threshold (rt), and the combination of reciprocity and shared 

knowledge is greater than the specified threshold (rrsh).  On the other hand, a link between two 

nodes is considered a weak tie if such conditions are not met.  It should be noted that “recency of 

communication” also helps in detecting nodes that have dropped out of the network and those 

which turned malicious after a certain period.  This stems from the assumption that such nodes 

tend to stop message exchange in case of leaving the network or cease to cooperate in the routing 

process in the event of compromised nodes, resulting in removing them from the social circle. 

As far as the distribution of ties, the proposed system had high densities of strong ties 

among nodes inside each social community.  Weak ties were more distributed as connectors 

between strongly tied communities.  The existence of both is important to keep the flow of 

normal network traffic undisrupted.  The system does not isolate nodes that are connected with 

each other through weak ties.  Such nodes can still communicate with each other as well as with 

other nodes in the network without issues.  On the other hand, nodes that were identified as 

malicious are excluded from the routing process among strongly tied communities.   
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An important question arises here: what if malicious nodes drop and rejoin the network 

with different identities?  Since the system uses strict conditions to form strong ties, such nodes 

would not be considered as part of the intrusion decision making process when they rejoin.  Over 

time and under the continuous monitoring of our system, these malicious nodes get caught again 

performing malicious acts and isolated from the routing process.  However, if these nodes were 

behaving selfishly due to limited resources, such as low battery power, and their behavior 

changes after rejoining, they will be able to communicate with other nodes and possibly even 

form strong ties with others if their normal behavior is consistent.   

This module was implemented as follows: the researcher defined a set interval (t) to 

activate the STBM operation.  At every (t), this module sends a message to the DIM requesting 

the newly collected data, which is defined as the data collected between now and the last 

interval.  The DIM then fetches this data from its memory storage (DCT) by selecting records 

with packet time between now and last interval (now – t), where (t) is the activation interval for 

STBM.  The DIM then passes down the records to the STBM.  The STBM has its own memory 

storage, named the social ties table (STT).  At this point, the STBM checks if it has the source IP 

of each received record in the STT.  If it doesn’t, a new record is created by extracting the above-

mentioned ties features from the currently inspected packet entry.  Otherwise, this module 

updates the record for the existing IP address.  Table 2 below shows the items involved in the 

calculations of the social ties feature from the currently inspected packet entry: 

 

 

Feature Calculation 

Recency of communication Time packet received.  
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Time since first communication Time packet received (for new records only). 

This value doesn’t get updated for nodes that 

already have records in the STT. 

Reciprocity This value is incremented by one if the 

currently inspected packet is a data packet. 

Shared Knowledge This value is incremented by one if the 

currently inspected packet is a routing packet. 

Table 2 - Social Ties Features Calculation 

At each interval (t) when this module is done updating the records in the STT, it runs a 

check to see if a new strong-tie can be formed and if it can remove obsolete ties due to their 

inactivity.  This is done by checking each record in the STT to see if rrec, rt, and rsh are satisfied. 

If so, the entry is marked as a strong-tie.  On the other hand, for existing ties that have become 

obsolete for reasons such as leaving the network, this module calculates if rrec, rt, and rsh are still 

viable.  In this case, rrec would not be satisfied, and the “strong-tie” label would be removed from 

that record.   

 

Local Detection Module 

This module is responsible for detecting suspicious activities by analyzing the data 

collected by the DIM.  All of the current approaches for CIDSs enable a node to make an 

intrusion decision on its own when, subjectively, enough data is present to support it.  However, 

the uniqueness of our approach in the local detection module (LDM), as compared to the existing 

methodologies, is its delegation of further inspection for all suspicious activities to the 

cooperative detection module (CDM).  Such delegation is done even if enough evidence exists 
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for the LDM to make a decision on its own.  This is due to the observed weaknesses found in the 

current approaches where there might be enough evidence, for example, against a node’s packet 

dropping.  However, this could be due to accidental drops related to battery power or even 

increased node mobility that cause a node to gradually move out of range, resulting in such 

drops.  As a result, such legitimate nodes would be falsely marked as malicious in these systems, 

which degrades detection accuracy and increases false alarms.    

To sustain battery life, the methodology followed by the LDM for detecting attacks is 

unique in an energy saving way.  This is achieved by having the detection process operate on an 

interval basis instead of having it run the entire time, which might result in a costly overhead for 

limited power devices in MANETs. 

This module was implemented as follows: at each time interval (t l), the LDM sends a 

message to the DIM requesting the data collected between the current time and previous interval.   

The DIM then fetches this data from its memory storage (DCT) by selecting records with a 

packet time between current time and last interval (now – tl), where (tl) is the activation interval 

for LDM.  Once the data is received, the LDM starts its analysis against potential attacks. 

To investigate black hole attacks against the data received from the DIM, the LDM 

calculates the number of packets forwarded to each neighbor by counting the packets that are 

marked as “forwarded to neighbor” along with that neighbor’s IP address.  Then, the LDM 

calculates those who were forwarded by that neighbor by counting the packets marked as 

“forwarded by neighbor” and have the neighbor’s IP address. The LDM then performs a 

comparison between the two.  If the number of packets forwarded by a neighbor is less than the 

amount forwarded to that neighbor and the difference exceeds the predefined threshold for black 
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hole attacks (bt), the LDM contacts the CDM to perform a collaborative investigation against the 

suspicious neighbor.   

For modification attacks, the LDM inspects the data received from the DIM against such 

attacks by comparing the checksum of packets forwarded by each neighbor against those 

forwarded to that neighbor.  If any difference is detected and the total packets modified by that 

neighbor exceed the predefined threshold (mt), the LDM contacts the CDM to start a 

collaborative investigation against the suspect. 

For rushing attacks, the LDM inspects the data received from the DIM and calculates the 

total number and average receipt time of RREQ packets received from each IP address.  Then, 

the LDM calculates the total number and average receipt time of all RREQ packets from all 

nodes in the current dataset retrieved from the DIM.  The LDM then compares the two.  If one 

node has the number of received RREQ with a receipt time of “smaller than the overall average” 

is greater than a predefined threshold (rt), the LDM activates the CDM to launch a collaborative 

investigation. 

For flooding attacks, the LDM counts the total number of packets received from a source 

node based on the data received from the DIM.  The LDM then calculates the average payload 

size received from each node and the average payload size received from all nodes.  If the total 

received packets from one node has an average payload size greater than that received from other 

nodes and is greater than the specified threshold (ft), the LDM activates the CDM for further 

investigation. 

As for gray hole attacks, the LDM can detect gray hole attacks in which a malicious node 

selectively drops packets.  In this case, from the data received from the DIM, the LDM counts 

the total number of packet drops by each neighbor by applying the same calculations described 
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in the black hole attack detection above.  If a node has a number of packet drops but the total 

number of drops does not exceed the threshold for black hole attacks (bt), the LDM contacts the 

DIM to retrieve data where packet time is between current time and (np * tl) and where (np) 

represents the number of past LDM intervals.  For instance, if np = 2 and tl = 15 seconds, this 

means that the LDM would retrieve packets with a receipt time between current time and the past 

thirty seconds (current time – 2 * 15).  Upon receiving the data from the DIM, the LDM then 

counts the number of packet drops belonging to the suspicious node, across the collected data to 

compare the total packet drops of that node over time.  If the rate of packet drops is higher than 

the threshold (gt), the CDM is contacted to confirm the suspicion cooperatively. 

For all the above-mentioned attack detections in the LDM, activation of the CDM was 

implemented by sending a message to the CDM containing the IP address of the suspicious node 

along with the name of the suspected attack.  For instance, if the LDM found that packet 

dropping from node (A) has crossed the predefined threshold for black hole attacks (bt), the 

activation message for the CDM would contain the IP address of node (A) along with the attack 

type as “black hole.”  The same applies to the other attack types except the attack type content of 

the message would vary based on the detected attack (e.g., modification, rushing, flooding, etc.)     

 Another responsibility of the LDM is providing calculation results regarding the observed 

maliciousness of a certain node, when it receives a request from the CDM.  The request message 

contains the IP address of the suspicious node and the type of suspected attack.  In return, the 

LDM must return a reply message to the CDM containing observations regarding whether the 

suspect is malicious or non-malicious, along with uncertainty of the LDM regarding its 

observations.  The LDM assigns a probability value for malicious, non-malicious, and 

uncertainty towards the suspect node based on its observations as explained in more details 



 

 

117 

below.  The LDM performs such calculations based on the received “attack type” in the CDM 

message.  

 One issue that remains open in the current research is the assignment of probabilities 

towards proving or refuting the designated hypotheses based on the collected evidence.  This 

process is known as basic probability assignment (BPA) in DST.  This is primarily due to the 

fact that Shafer (1976) did not specify a concrete methodology to assign probability values to a 

hypothesis based on the collected evidence.  Shafer (1976) explained that assignment of 

probability values to a mutually exclusive set of hypotheses is subjective to the problem domain.  

That is, the more evidence we have supporting a hypothesis, the closer the assigned weight is 

moved to one.  At the same time, lower evidence in a hypothesis moves the assigned weight 

closer to zero.  If no evidence at all is found supporting a specific hypothesis, then the value is 

set to zero.  A hypothesis is defined here as any subset of the mutually exclusive possibilities to 

which we can assign a value based on the collected evidence.  On the other hand, evidence in this 

context refers to signs found in the collected data that support of refute the hypothesis.  Weight is 

defined as the strength of evidence in supporting a hypothesis (Shafer, 1976).   

Up until now, there is no clear approach on how to automatically calculate BPAs 

supporting/refuting a system’s hypotheses (Jiang, Zhan, Zhou, & Li, 2016).  Previous studies 

opted to assign weight to evidence based on subjectively-assigned trust values of the sender.  For 

instance, Boston (2000) used manual assignment of assigning probabilities through human expert 

opinion.  Another study by (Siaterlis & Maglaris, 2004) implemented such assignment based on 

having a system administrator examine previously conducted experiments on the system and 

subjectively assign these probabilities.   
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In their research towards an automatic and adaptive way to calculate BPA values for their 

IDS for fixed wireless networks, Aparicio-Navarro, Kyriakopoulos, and Parish (2012) found that 

no previous research has suggested this type of BPA calculation.  As such, they have come up 

with a novel methodology for BPAs that can automatically assign probabilities without the need 

for human intervention.  In their approach, a maximum limit of 50% is assigned to their “attack” 

hypothesis to denote the presence of attacks in the network.  The other 50% is assigned to a 

“normal” hypothesis representing an attack-free network.  Lastly, uncertainty is calculated by 

normalizing the smaller of the two hypotheses by 50% and dividing it by the other.  The system 

assigns probabilities by applying a predefined set of calculations for both normal and attack 

hypotheses throughout the detection process.  Although these detection calculations were 

designed for fixed networks and don’t apply to MANETs, their automatic BPA approach was 

designed to be adaptable to all types of wireless technologies (Aparicio-Navarro et al., 2012).        

Thus, in this research, we have followed the Aparicio-Navarro et al. (2012) methodology 

as it represents a low-cost automatic method for BPA calculations.  Based on their methodology, 

a maximum limit of 50% was assigned to each of the malicious and non-malicious hypotheses.  

Additionally, uncertainty was calculated by multiplying the smaller value of malicious and non-

malicious hypotheses by 50% and dividing it by the other value.  However, since each attack is 

designated by certain characteristics, it was not feasible to use one calculation for all attacks.  In 

our approach, each type of attack was designated a separate set of BPA calculations relative to its 

predefined threshold, as can be seen in Table 3 below.   

 To demonstrate with a simple example, let’s assume the LDM receives a message from 

the CDM stating that node (M) is suspected to have attempted a black hole attack.  The LDM 

then sends a message to the DIM requesting the data collected between the current time and 
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previous LDM interval.  The DIM then fetches this data from its memory storage (DCT) by 

selecting entries with a packet time between current time and the last interval (now – tl) and 

where (tl) is the activation interval for LDM.  Upon receiving the data, the LDM starts the 

calculations of the requested values as follows: Let’s assume the predefined threshold for black 

hole attacks (bt) is set to ten.  Additionally, let’s assume that through inspecting the data received 

from the DIM, the LDM found that the total dropped packets observed from the suspicious node 

(M) equals to eight out of the twenty packets forwarded to that node.  On the other hand, the 

received data from the DIM shows that the suspicious node did not drop three packets forwarded 

to that node out of the twenty packets forwarded to that node.  This could be tricky as these 

packets could have been destined to that suspect node.  Based on these two values, the LDM 

calculates the requested BPAs according to the DST as follows:  

 

Let LDM(M) represent the observations of the local LDM towards the suspicious node (M).  

Let Ω be the frame of discernment, which represents a set of mutually exclusive possibilities 

(Shafer, 1976).  In our case, Ω consists of two possibilities regarding node (M): Ω = {P, P̅}, 

where P=non-malicious and P̅=malicious.  For this Ω, we have three focal elements: hypothesis 

S1={P} stating that node (M) is non-malicious, hypothesis S2={P̅} stating that node (M) is 

malicious, and hypothesis U = Ω representing uncertainty by stating that node (M) is either 

malicious or non-malicious.  A hypothesis in this context refers to any subset of Ω for which the 

LDM can present evidence.  Additionally, Shafer (1976) stated that the sum of all focal elements 

must equal to one.   

  

The LDM calculates these values as follows:   
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𝐿𝐷𝑀(𝑀)𝑆1 =  
𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑑 𝑏𝑦 𝑠𝑢𝑠𝑝𝑒𝑐𝑡

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑑 𝑡𝑜 𝑠𝑢𝑠𝑝𝑒𝑐𝑡
∗ 0.5 =  

3

20
∗ 0.5 =  0.075 

 

𝐿𝐷𝑀(𝑀)𝑆2  =  
𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑑𝑟𝑜𝑝𝑝𝑒𝑑 𝑏𝑦 𝑠𝑢𝑠𝑝𝑒𝑐𝑡

bt 
∗ 0.5 =  

8

10
∗ 0.5 =  0.4 

 

 

The above calculations are multiplied by “0.5” to limit the value of malicious and non-malicious 

assignments to 50% as discussed previously.  To calculate (𝑀)𝑆3 , based on the work by 

Aparicio-Navarro et al. (2012), the smaller value of 𝐿𝐷𝑀(𝑀)𝑆1 and 𝐿𝐷𝑀(𝑀)𝑆2 is normalized 

by 50% and divided by the other.  In this case: 

 

𝐿𝐷𝑀(𝑀)𝑆3 =  
0.5 ∗   𝐿𝐷𝑀(𝑀)𝑆1

𝐿𝐷𝑀(𝑀)𝑆2
 =  

0.5 ∗  0.075

0.4
  =  0.09375 

  

According to Shafer (1976), the summation of focal elements (𝐿𝐷𝑀(𝑀)𝑆1, 𝐿𝐷𝑀(𝑀)𝑆2, and 

𝐿𝐷𝑀(𝑀)𝑆3) should always equal to one.  However, the summation of the above values dos not 

equal to one.  As such, to avoid falling into cases where the summation is greater or less than 

one, we are going to apply an adjustment value (𝜇), as proposed by Aparicio-Navarro et al. 

(2012).  This value is calculated as follows: 

 

𝜇 =  
(𝐿𝐷𝑀(𝑀)𝑆1 +  𝐿𝐷𝑀(𝑀)𝑆2 +  𝐿𝐷𝑀(𝑀)𝑆3) − 1 

3
 

=   
(0.075 +  0.4 +  0.09375) − 1 

3
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=  −0.14375 

 

 

To obtain the final values for 𝐿𝐷𝑀(𝑀)𝑆1𝑢, 𝐿𝐷𝑀(𝑀)𝑆2𝑢, and 𝐿𝐷𝑀(𝑀)𝑆3𝑢, we subtract (𝜇) from 

each of them.  Thus, the final values would be (summation of all equals to one): 

 

𝐿𝐷𝑀(𝑀)𝑆1𝑢 =  𝐿𝐷𝑀(𝑀)𝑆1 −  𝜇 

= 0.075 − (−0.14375) 

= 0.21875  

 

𝐿𝐷𝑀(𝑀)𝑆2𝑢 =  𝐿𝐷𝑀(𝑀)𝑆2 −  𝜇 

= 0.4 − (−0.14375) 

= 0.54375 

 

 

𝐿𝐷𝑀(𝑀)𝑆3𝑢 =  𝐿𝐷𝑀(𝑀)𝑆3 −  𝜇 

= 0.09375 − (−0.14375) 

= 0.2375 

 

Comparing the results from this example with the gathered evidence that shows a high 

number of packet drops as compared to the predefined threshold (bt) from node (M), the above 

calculations show that the LDM has more evidence supporting the maliciousness of node (M), 

but still comes with uncertainty.  However, the final decision can only be made by the CDM 
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when it combines all evidence from other nodes while regarding uncertainty to account for 

accidental packet drops. 

After performing the above calculations, the LDM sends a message back to the CDM 

containing the IP address of the suspected node, the suspected attack, LDM(M)S1u, LDM(M)S2u, 

and LDM(M)S3u.  The CDM then uses this reply to participate in the cooperative investigation. 

Further DST calculations along with a demonstration of how such observations were used in the 

CDM for the intrusion detection process can be seen in the next section.  

 Based on the outlined mechanisms of the LDM to detect malicious attacks, Table 3 below 

lists the necessary calculations performed by the LDM to calculate BPA values for each attack.  

For the sake of readability, the suspect node is referred to as (M) in the below table.  For all 

LDM calculations, based on the work by Aparicio-Navarro et al. (2012), uncertainty was 

calculated by multiplying the smaller value of 𝐿𝐷𝑀(𝑀)𝑆1 and 𝐿𝐷𝑀(𝑀)𝑆2 by 50% and dividing 

it by the other value, as seen in the above example.  Overall average in these calculations refers 

to the corresponding average of all nodes.  

 

 

 

Attack Type 𝐿𝐷𝑀(𝑀)𝑆1 𝐿𝐷𝑀(𝑀)𝑆2 

Black hole 
  

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑑 𝑏𝑦 𝑠𝑢𝑠𝑝𝑒𝑐𝑡

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑑 𝑡𝑜 𝑠𝑢𝑠𝑝𝑒𝑐𝑡
  

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑑𝑟𝑜𝑝𝑝𝑒𝑑 𝑏𝑦 𝑠𝑢𝑠𝑝𝑒𝑐𝑡

bt
  

Modification 
  
𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑢𝑛𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑  𝑏𝑦 𝑠𝑢𝑠𝑝𝑒𝑐𝑡

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑑 𝑡𝑜 𝑠𝑢𝑠𝑝𝑒𝑐𝑡
   

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑏𝑦 𝑠𝑢𝑠𝑝𝑒𝑐𝑡

mt
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Rushing 

  

𝑡𝑜𝑡𝑎𝑙 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
𝑓𝑟𝑜𝑚 𝑠𝑢𝑠𝑝𝑒𝑐𝑡 𝑤𝑖𝑡ℎ 𝑟𝑒𝑐𝑒𝑖𝑝𝑡 𝑡𝑖𝑚𝑒

𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑡ℎ𝑒
𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 

𝑡𝑜𝑡𝑎𝑙 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 
𝑓𝑟𝑜𝑚 𝑠𝑢𝑠𝑝𝑒𝑐𝑡

   

𝑡𝑜𝑡𝑎𝑙 𝑟𝑜𝑢𝑡𝑖𝑛𝑔 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
𝑓𝑟𝑜𝑚 𝑠𝑢𝑠𝑝𝑒𝑐𝑡 𝑤𝑖𝑡ℎ 𝑟𝑒𝑐𝑒𝑖𝑝𝑡 𝑡𝑖𝑚𝑒

𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑡ℎ𝑎𝑛
𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝑟𝑡
 

Flooding 

  

𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
𝑓𝑟𝑜𝑚 𝑠𝑢𝑠𝑝𝑒𝑐𝑡 𝑤𝑖𝑡ℎ 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 𝑠𝑖𝑧𝑒

𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 

𝑓𝑟𝑜𝑚 𝑠𝑢𝑠𝑝𝑒𝑐𝑡

   

𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
𝑓𝑟𝑜𝑚 𝑠𝑢𝑠𝑝𝑒𝑐𝑡 𝑤𝑖𝑡ℎ 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 𝑠𝑖𝑧𝑒

𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑡ℎ𝑒 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝑓𝑡
 

Gray hole 

  

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑑 𝑏𝑦 𝑠𝑢𝑠𝑝𝑒𝑐𝑡
𝑎𝑐𝑐𝑟𝑜𝑠𝑠 𝑡ℎ𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑒𝑑 𝑡𝑜 𝑠𝑢𝑠𝑝𝑒𝑐𝑡
𝑎𝑐𝑟𝑜𝑠𝑠 𝑡ℎ𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠

   

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑑𝑜𝑝𝑝𝑒𝑑 𝑏𝑦 𝑠𝑢𝑠𝑝𝑒𝑐𝑡
𝑎𝑐𝑐𝑟𝑜𝑠𝑠 𝑡ℎ𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠

𝑔𝑡
 

Table 3 - BPA Calculations in the LDM 

 

 

 

 

Cooperative Detection Module 

This module (CDM) is activated only upon receiving a request message from the LDM. 

The request message contains the IP address of the suspicious node as well as the type of the 

predicted attack.  When such a request is received, this module contacts other nodes in the social 

circle to launch a collaborative investigation to prove/disprove the raised suspicion.  Participants 

of the collaborative investigations are determined through querying the SST to pick only strong-

ties.  This collaborative investigation relies on the decisions made by each neighbor’s LDM.  

However, sometimes, some of these strongly tied nodes might not have collected enough data 

during the interval to form an opinion against the suspicious node.  It’s important to note that 

CDM does not consider opinions from weak ties (nodes that are not strong ties) or from 

malicious nodes.  Some studies have utilized majority-voting techniques for collaborative 
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decision making (Manikopoulos & Ling, 2003; Sen et al., 2008; Mahmood et al., 2009).  

However, such approaches might lead to unreliable results in the presence of a large number of 

malicious nodes (Chen & Venkataramanan, 2005).  As such, a methodology is needed to weigh 

in the received opinions based on a certain degree of belief.  Thus, this module utilizes DST to 

do so.  

The primary benefit of applying DST to CDM’s operations is to eliminate inaccurate 

detection decisions against accidental activities, such as packet dropping, in which a legitimate 

node may be falsely accused to be malicious.  However, the fact is that such packet dropping can 

happen for other non-malicious reasons, such as collisions and low battery power.  Through the 

application of DST, the CDM is able to make a decision based on different received opinions and 

with uncertainty towards the observed behaviors in mind.  A unique quality of our application of 

DST is the consideration of cases where some nodes would only have partial evidence against an 

incident. This, in turn, would significantly decrease false accusations against accidental non-

malicious cases. 

We used DST against observations obtained solely from strong ties. This was done to 

handle cases where some of these nodes did not catch enough evidence against the suspicious 

activity.  To illustrate the intended calculations, let’s assume that node (K) requests observations, 

through CDM, from its strong-tied neighbors (A, B, and C) against node (M), which node (A) 

doubts as malicious due to observed packet dropping during a period (tx).  However, such packet 

dropping occurred due to the increased mobility of node (M) away from its neighbors.  At the 

same time, node (B) and (C) did not catch enough data regarding dropped packets from node (M) 

to form a solid observation. The observations received from all nodes represent two possibilities 
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against the suspected node: malicious and non-malicious.  The following illustrates the intended 

calculations through DST in this case:  

 

Let A(M), B(M), and C(M) represent the observations of A, B, and C respectively towards the 

suspicious node (M).  

Let Ω be the frame of discernment which represents a set of mutually exclusive possibilities 

(Shafer, 1976).  In our case, Ω consists of two possibilities regarding node (M): Ω = {P, P̅}, 

where P=non-malicious and P̅=malicious.  For this Ω, we have three focal elements: hypothesis 

S1={P} stating that node (M) is non-malicious, hypothesis S2={P̅} stating that node (M) is 

malicious, and hypothesis U = Ω representing uncertainty by stating that node (M) is either 

malicious or non-malicious.  A hypothesis in this context refers to any subset of Ω for which 

nodes (A), (B), and (C) can present evidence.    

The following illustrates hypothetical observations from nodes (A), (B), and (C) with 

each of the three nodes having a probability assignment, as follows:  

 

Observations from Node A Observations from Node B Observations from Node C 

A(M)S1 = 0.4 

A(M)S2= 0.1 

A(M)S3=0.5 

B(M)S1=0.1 

B(M)S2=0.5 

B(M)S3=0.4 

C(M)S1=0.4 

C(M)S2=0 

C(M)S3=0.6 

 

Based on the collected observations from Nodes (A), (B), and (C), we apply Dempster’s 

rule of combination (Shafer, 1976) to combine the observations of all three nodes.  The result of 

this combination represents the final decision regarding the maliciousness of node (M).  
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First, we calculate the normalizing constant (KAB) which represents the extent of conflict 

between the observations from node (A) and (B):  

𝐾𝐴𝐵 =  𝐴(𝑀)𝑆1  𝐵(𝑀)𝑆1 +  𝐴(𝑀)𝑆1  𝐵(𝑀)𝑆3 +  𝐴(𝑀)𝑆3  𝐵(𝑀)𝑆1 

+ 𝐴(𝑀)𝑆2  𝐵(𝑀)𝑆2 + 𝐴(𝑀)𝑆2  𝐵(𝑀)𝑆3  +  𝐴(𝑀)𝑆3  𝐵(𝑀)𝑆2   

+ 𝐴(𝑀)𝑆3  𝐵(𝑀)𝑆3  =  0.79 

 

Then, we combine the beliefs from node (A) and (B):   

𝐴𝐵(𝑀)𝑆1 =  𝐴(𝑀)𝑆1  ⊕  𝐵(𝑀)𝑆1  = 

𝐴(𝑀)𝑆1 𝐵(𝑀)𝑆1 +  𝐴(𝑀)𝑆1 𝐵(𝑀)𝑆3 +  𝐴(𝑀)𝑆3 𝐵(𝑀)𝑆1

𝐾𝐴𝐵
 

= 0.3164 

𝐴𝐵(𝑀)𝑆2 =  𝐴(𝑀)𝑆2  ⊕  𝐵(𝑀)𝑆2  = 

𝐴(𝑀)𝑆2 𝐵(𝑀)𝑆2 +  𝐴(𝑀)𝑆2 𝐵(𝑀)𝑆3 +  𝐴(𝑀)𝑆3 𝐵(𝑀)𝑆2

𝐾𝐴𝐵
 

= 0.4303 

𝐴𝐵(𝑀)𝑆3 =  𝐴(𝑀)𝑆3  ⊕  𝐵(𝑀)𝑆3  = 

𝐴(𝑀)𝑆3 𝐵(𝑀)𝑆3

𝐾𝐴𝐵
 

= 0.2531 

After that, we calculate the normalizing constant (KABC) representing the conflict 

between the combined beliefs of nodes (A) and (B) with those of (C):  

𝐾𝐴𝐵𝐶  =  𝐴𝐵(𝑀)𝑆1  𝐶(𝑀)𝑆1 + 𝐴𝐵(𝑀)𝑆1  𝐶(𝑀)𝑆3 + 𝐴𝐵(𝑀)𝑆3  𝐶(𝑀)𝑆1 

+ 𝐴𝐵(𝑀)𝑆2  𝐶(𝑀)𝑆2 + 𝐴𝐵(𝑀)𝑆2  𝐶(𝑀)𝑆3   +  𝐴𝐵(𝑀)𝑆3  𝐶(𝑀)𝑆2   
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+ 𝐴𝐵(𝑀)𝑆3  𝐶(𝑀)𝑆3 

= 0.827 

Finally, to get the final decision regarding the maliciousness of node (M), we combine 

AB(M)S2 with C(M)S2:  

𝐴𝐵𝐶(𝑀)𝑆2  =  𝐴𝐵(𝑀)𝑆2  ⊕  𝐶(𝑀)𝑆2  = 

𝐴𝐵(𝑀)𝑆2 𝐶(𝑀)𝑆2 +  𝐴𝐵(𝑀)𝑆2 𝐶(𝑀)𝑆3 +  𝐴𝐵(𝑀)𝑆3 𝐶(𝑀)𝑆2

𝐾𝐴𝐵𝐶  
 

= 0.311 

 

Examining the results, we notice that even though node (B) had strong evidence 

supporting the suspicious activity from the suspected node (M).  The insufficient evidence from 

nodes (A) and (C) saved (M) from falsely being marked as malicious since its packet dropping 

was accidental due to its mobility pattern.  Compared to other methodologies, such as the 

Bayesian theorem, node (M) would’ve been falsely accused as malicious.  Thus, it would have 

been isolated from the network and false alarm rates for similar situations would increase.   

From the results of the example above, we notice how the application of DST can help 

reduce false accusations when partial or no evidence exists against a suspected node.  This is 

useful considering such cases can very well happen when a node recently joined the network or 

when no evidence can be constructed due to the lack of sufficient collection intervals.  On the 

other hand, the partial evidence scenario might occur in cases where the analyzed suspicious 

activity has not crossed the predefined threshold for the suspected attack.  Since DST does not 

regard uncertainty as negative evidence, taking these scenarios in consideration has a significant 

impact on decreasing false alarms and increasing detection accuracy of the overall system in the 

long run. 
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The implementation of the CDM was as follows: upon receiving a collaborative 

investigation request message from the LDM, the CDM requests a list of IP addresses of strong-

ties from the STBM.  The STBM then queries its own STT to retrieve these addresses, and it 

passes them back to the CDM.  When the CDM receives these addresses, it formulates a message 

containing a unique request identification (RID) number, the IP address of the suspicious node, 

and the type of the suspected attack extracted from the message received from the LDM (e.g., 

black hole).  The CDM then sends the formulated message to each strong tie node in the list 

obtained from the STBM.  The formulated message is then saved to the CDM’s memory storage 

represented by a table of CDM requests and their corresponding received replies, called a 

collaborative information table (CIT).  At this point the CDM investigation is still open, but no 

further processing is required until replies are received from the strong ties.   

When the CDM receives a reply, it correlates it with the sent request through the RID 

number.  The CDM reply message contains the following information: the replying node’s IP 

address, the RID, the suspected attack type, the suspicious node’s IP address, the probability of 

the suspect being malicious, the probability of the suspect being non-malicious, and the 

probability of the suspect being either malicious or non-malicious (uncertainty).  The reply is 

then saved to the CIT.  After that, the CDM checks if the number of replies to that particular 

request equals to 80% of the number of strong-ties that have received the request.  The reason the 

researcher is considering 80% is to account for mobility and collisions in the network that might 

cause the CDM request to get lost in the network and not be received by some of the strong-ties.  

If the CDM has indeed received replies from 80% of the destination strong-ties, it combines the 

received observations through applying the DST calculations outlined above.  Based on the result 

of these calculations, the CDM makes the final decision regarding the maliciousness of the 
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suspicious node.  If the node is found malicious, the CDM sends a message to the GRM 

containing the IP address of that node.  The CDM then marks the request as complete in the CIT.   

On the other hand, if the CDM receives a request for collaborative investigation, it first 

checks to see if the request originated from a strong tie node.  This is done by sending a message 

containing the IP address of the request node to the STBM.  The STBM, in turn, searches its STT 

to see if it can find that IP address and to determine if it’s marked as a “strong-tie”.  The STBM 

then sends a message back to the CDM confirming whether the IP address belongs to a strong tie 

or not.  If the STBM message states the originating node is not a strong tie, the CDM ignore the 

request.  Otherwise, the CDM extracts the RID, the IP address of the suspect node, and the 

suspected attack and passes the message to the LDM.  Based on the suspected attack, the LDM 

performs its calculations (outlined in the previous section) and returns the results to the CDM.  

After that, the CDM formulates and sends a reply message to the originating node containing the 

RID, the IP address of the suspect node, the probability of the suspect being malicious, the 

probability of the suspect being non-malicious, and the probability of the suspect being either 

malicious or non-malicious (uncertainty).  

 

 

Global Response Module 

The global response module (GRM) is responsible for taking responsive actions 

whenever an intrusion is detected.  The responsive actions in this system work by sending an 

alarm message to a node’s social circle and removing the detected malicious node from the 

routing table.  When an attack is detected through the CDM, the GRM gets activated through a 

message containing the IP address of the malicious node.  The first responsive action by this 

module is to remove the malicious node from the routing table to isolate it from all future 
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communications.  After that, the GRM sends an alarm message to all nodes in its social 

community, aka strongly-tied nodes.  Each receiving node would then forward the alarm 

message to their social circle.  That way the malicious node would be known even to remote 

nodes, and with time, information convergence would result in the elimination of the malicious 

nodes from the routing process.  This assumption is backed by Granovetter’s (1973) suggestion 

that diffusion of rumors between strongly-tied friends, utilizing weak ties as a crossing bridge, 

can reach a large number of entities in a larger social distance.  

On the receiving side, to eliminate fake reports generated from malicious nodes against 

legitimate ones, when a node receives an intrusion alarm message, the GRM checks whether the 

source address is a strong-tie.  If so, the reported node is removed from the routing table, and the 

alarm is forwarded to all nodes in the social circle of the receiving node.  Otherwise, the alarm is 

discarded and no responsive actions would be taken. 

The implementation of this module was as follows: whenever the GRM receives a 

message from the CDM, it contacts the STBM to retrieve a list of IP addresses of strong ties.  

The STBM then queries its own STT to retrieve these addresses and passes them back to the 

GRM.  After that, the GRM creates a new message containing the IP address of the malicious 

node detected by the CDM and sends it to every IP address in the list returned from the STBM.  

On the other hand, when a node receives an alarm message, the GRM sends a message 

containing the IP address of the originating node to the STBM to check whether it belongs to a 

strong tie or not.  The STBM, in turn, searches its STT to see if it can find that IP address and if 

it’s marked as a “strong tie”.  The STBM sends a message back to the GRM confirming whether 

the IP address belongs to a strong tie or not.  If the STBM message denies that the originating 

node is a strong tie, the GRM drops the alarm packet.  However, if it is a strong tie, the GRM 
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sends a request to the STBM to retrieve the IP addresses of strong ties.  Once the GRM receives 

this list, it forwards the alarm message to all IP addresses in that list.  

As a reactive action to the received alarm, the GRM deletes all entries of the malicious 

node in the routing table.  Additionally, to avoid including the malicious node in future routes, 

when an IDS node receives a RREQ or RREP packets, as mentioned in the DIM section, it sends 

the source IP address to the STBM to check if the node is marked as malicious.  The STBM then 

searches the STT for the source IP address and returns with a response that indicates whether it is 

marked as “malicious” or “non-malicious.”  The DIM then drops the packet if the response from 

the STBM confirms that the originating node is malicious.  Otherwise, the DIM forwards the 

packet down the route.  By dropping not only data packets from malicious nodes but also routing 

packets, the proposed IDS does not add any entries to the routing table for these nodes.  As the 

alarm messages propagate among strongly-tied communities, malicious nodes eventually end up 

isolated and cannot communicate with these communities.   

 

Data Collection Procedures 

 The implementation of the proposed IDS required extensive data collection operations 

throughout the testing phase until the collection of the final results of the experiment.  The 

researcher performed the following three major phases for data collection: 

• Normal network operations: throughout this phase, the researcher implemented a testing 

MANET comprised of a number of legitimate nodes communicating with each other over 

the AODV routing protocol.  Details of the testing MANET are presented in the next 

sections.  The researcher monitored the normal network operations with regards to 

routing, communications between nodes, and topological changes from nodes’ mobility.  
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Continuous data collection operations were performed throughout the lifetime of the test 

network.  The result of such operations was a collection of trace files containing various 

routing/data communication packets along with nodes’ positions at each point of time 

during testing.  The researcher then used these files to analyze and document 

communications and mobility patterns in an attack-free network.  Additionally, this data 

was used to document the network performance without the existence of IDS nodes.  This 

was then used to evaluate the performance impact of the proposed IDS on normal 

network operations, as discussed later in this section.     

• Network under attacks: in this phase, the researcher deployed single and multiple attacker 

nodes in the same testing MANET.  These attacker nodes targeted the disruption of the 

normal network operations of legitimate nodes.  Attacker nodes launched variations of 

black hole, gray hole, modification, rushing, and flooding attacks.  Each of these attacks 

had an adverse impact on communications between nodes and the survivability of the 

network in general.  The researcher continuously collected data throughout the various 

attack scenarios in the form of trace files.  These files were then used to analyze and 

determine the required attack thresholds defined for the detection components of the 

proposed IDS.  In this context, the term attack threshold refers to a certain base criterion 

the proposed IDS will use to make intrusion detection decisions. Usage details of each 

attack threshold were previously explained in the “system design” section.  

• Network with IDS nodes: after following the implementation steps described in the 

“system design” section, the proposed IDS was ready to start operating in a simulated 

network.  Thus, the researcher used the same network configuration for collecting normal 

network operation parameters for this data collection phase.  The testing MANET had an 
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IDS installed on each node.  Nodes followed the same routing, data communications, and 

mobility patterns that would occur if the IDS module was not installed.  The researcher 

monitored these activities along with any impact imposed by the installation of the 

proposed IDS.  Continuous data collection operations took place in the form of trace files 

to collect routing/data communications and mobility parameters.  These parameters were 

then used to evaluate the proposed IDS’s impact on the network performance.  This 

evaluation was achieved by examining this data with that collected data from the normal 

network operation phase as will be discussed in Chapter 4.    

• Network with IDS and malicious nodes:  this represented the final data collection phase 

in which both IDS and attacker nodes were installed on nodes in the network.  The same 

testing MANET used in the normal network operations phase was used here.  First, all 

nodes had the proposed IDS installed on them.  Then, the researcher randomly-designated 

certain nodes to uninstall the IDS and install attack modules instead.  Variations of single 

and multiple attackers were simulated in the network.  The researcher continuously 

collected data from the network for evaluating the proposed IDS along with the adverse 

effects of the attacker nodes on the network.  Evaluation parameters that were collected 

are described in the next section.  Additionally, the impact of attacker nodes on 

routing/data communications and the lifetime of the network was collected.  The 

collected data was then analyzed to evaluate the feasibility of the proposed IDS in 

achieving the research goals of attaining a high detection accuracy and minimizing 

communication overhead.  The researcher followed exhaustive data analysis operations 

for such evaluations.  Details of such evaluations are discussed in Chapter 4.     
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System Evaluation Metrics 

 To evaluate whether the proposed system achieves a high detection accuracy rate along 

with minimal communication overhead, the following evaluation metrics were collected 

throughout the life of the experiment.  These metrics are commonly used by similar studies to 

evaluate the feasibility and performance of IDS implementations for MANETs (Manikopoulos & 

Ling, 2003; Kareem et al., 2006; Sen et al., 2008; Zhang et al., 2016). 

 

• False Positives (FP): this represents the number of innocent nodes falsely identified by 

the system as malicious. 

• False Negatives (FN): this denotes the number of malicious nodes incorrectly identified 

by the system as innocent. 

• True Positives (TP): this denotes the number of malicious nodes correctly identified by 

the system as malicious. 

• True Negatives (TN): This represents the number of innocent nodes correctly identified 

by the system as innocent. 

• Detection Rate (DTR): this is calculated as follows:  

𝐷𝑇𝑅 =  
𝑇𝑃  

𝑇𝑃 +  𝐹𝑁
 

• False Positives Rate (FPR): this is calculated as follows:  

𝐹𝑃𝑅 =  
𝐹𝑃 

𝑇𝑁 +  𝐹𝑃
 

• Average End-to-End Delay (AED): this represents the average delay encountered to 

deliver packets from a source to a destination, and it is calculated as follows: 

𝐴𝐸𝐷 =  
𝑇𝐷 

𝑃𝑅
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Here, TD is defined as the time spent to deliver packets while PR represents the total number of 

packets received. 

 

 FPR and DTR were used to demonstrate the proposed system’s achievement of the first 

goal of this research, which is “high detection accuracy.”  On the other hand, AED was measured 

to determine if the system met the second goal of this research, represented in minimizing 

communication overhead throughout the detection operations of the proposed IDS. The usage of 

AED targeted measuring the effect of eliminating regular dissemination of detection packets on 

delays and successful deliveries in the network. In current CIDS, detection-related packets are 

disseminated on a regular-basis. This, in turn, incurs extra delays in the network as such a 

dissemination could potentially cause collisions, and eventually packet loss. AED here measures 

the bandwidth consumption in a sense that lower AED values means less packet loss due to 

collisions caused by regular information dissemination, thus less delays.  

Alongside, the proposed system was evaluated against a stand-alone installation of 

itself.  To perform such an installation, the system was modified to remove the cooperative 

components.  As such, the system relied solely on the LDM to make intrusion detection 

decisions.  The LDM was modified to perform the final decision calculations.  This comparison 

was intended to evaluate the efficiency of the cooperative detection nature of the proposed 

system as compared to a stand-alone intrusion detection.  

Furthermore, the system was modified to have the DIM disseminate detection related 

information to all strong ties of the IDS node at each collection interval.  This modification was 

intended to evaluate the efficiency of the proposed system in minimizing communication 

overhead as compared to regular dissemination of detection information found in the current 
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CIDSs. The researcher then compared the proposed system to the modified version with regards 

to bandwidth overhead.  Results of the aforementioned comparisons are discussed in Chapter 4. 

 

Test MANET Simulation Parameters 

Table 4 shows the various parameters used for simulating the test MANET throughout 

the experiment.  Previous studies have followed similar parameters in their simulation 

procedures (Kareem et al., 2006; Sen et al., 2008; Shao, Lin, & Lee, 2010; Tabari et al., 2012; 

Veeraiah & Krishna, 2018). 

.  

Parameter Value 

Topology area 1000 m x 1000 m 

MAC Protocol IEEE 802.11 

Routing Protocol AODV 

Mobility model Random Waypoint 

Transmission range 250 m 

Packet type UDP 

Packet size 512 bytes 

Minimum node speed 2 m/s 

Maximum node speed 10 m/s 
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Pause time 10 s 

Number of nodes 100 

Simulation time per iteration 500 s 

Total iterations 40 

Table 4 - Test MANET Simulation Parameters 

 

The topology area parameter, shown in table 4, was used to define the simulation area 

boundaries that nodes in the test MANET are allowed to move in. This parameter is defined by 

Kurkowski, Camp and Colagrosso (2005) as “the square meter area of the topology.” As such, 

1000 m x 1000 m defines the height and width of the test MANET’s area in meters respectively 

(Kurkowski et al., 2005).  As previously outlined, AODV was used as the routing protocol while 

IEEE 802.11 was used as the MAC protocol commonly used in MANET studies due to its ability 

to minimize packet collisions (Akai, Martin, & Bagrodia, 2001).  

Node speed parameter defines the speed that nodes travel around the test MANET.  The 

mobility model parameter defines the movement pattern for nodes in the test MANET.   Random 

waypoint is a mobility pattern implemented in ns-2 that allows each node to choose and move 

towards a random destination at each instant at the specified node speed.  Nodes then pause for a 

period specified in the pause time parameter and then move towards another destination (Bai, 

Sadagopan, & Helmy, 2003).  The transmission range parameter specifies the maximum distance 

that two nodes in the test MANET can be from one another to transmit data to each other 

(Gomez & Campbell, 2007).  The total iterations parameter specifies the total iterations executed 
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in the implementation of this research study targeting the evaluation of the proposed system 

against the research goals.  Details of these iterations are discussed in Chapter 4. 

 

Formats for Presenting Results 

 Data resulting from the experiment was presented in tables and line graphs.  The tables 

were used to summarize the outlined evaluation metrics that were used to evaluate the system’s 

feasibility to achieve the research goals.  Line graphs were utilized to visualize the simulation 

results throughout the experiment and illustrate the performance of the proposed system.    

 

Resource Requirements 

The implementation of the proposed system was executed through ns-2.  Simulation of 

the performance and efficiency of the proposed system was done through ns-2 as well, against 

different attacks scenarios.  Since ns-2 implementations usually consume a fair amount of 

computing resources for compiling and running simulation packages, the proposed system was 

implemented in a researcher-prepared environment with the following technical specifications: 

 

• Computer Hardware: 

o Processor: Intel 2.6 GHZ Coe i7 

o Memory: 16GB 

o Disk: 200GB 

• Operating System: Mac OS 10.12 (Free BSD based) 

• Implementation Platform: ns-2.35  
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All of the implementation steps and testing were executed by the researcher. No changes 

in the implementation environment were done during the implementation of the proposed 

system.     

 

 

 

Summary 

 This research followed an experimental model to design and implement the proposed 

IDS.  This chapter explained the approach that was followed to implement this research study.  

The novel approach this research took in applying the concept of social communities along with 

DST and how this approach enabled the system to achieve the research goals were also 

explained.   Conceptual and technical details of the system implementation were provided as 

well, and descriptions of the various components of the proposed IDS were provided alongside a 

detailed explanation of their intended implementation.  Attacks generation, data collection, 

system testing, and evaluation procedures were also explained.  Additionally, formats of the 

results from the experiment along with the required resources were presented. 
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Chapter 4  

Results 

 

Introduction 

The primary objective of this research was to develop a CIDS capable of achieving both high 

detection accuracy and minimized bandwidth consumption throughout the detection process. 

This chapter details the experiments conducted to evaluate the implementation of the proposed 

CIDS along with the results achieved. A detailed analysis of the results of each experiment is 

presented along with quantitative evaluation of results against the achievement of the presented 

research goals. The chapter concludes with research findings based on the collective analysis of 

the results obtained throughout the experiments. 

 

Experiment Structure 

The results collection phase of this research consisted of running four experiments. The 

first targeted the identification of attacks and the proposed system’s thresholds previously 
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discussed in Chapter 3.  The second experiment involved the evaluation of the proposed IDS 

against a variety of attack scenarios. The third experiment targeted the evaluation of the 

proposed IDS against a stand-alone IDS implementation, specifically with regard to detection 

accuracy and false alarms rates.  The last and fourth experiment assessed bandwidth 

consumption throughout the detection process of the proposed IDS against a CIDS 

implementation that continuously disseminated detection-related information through the 

network, referred to from here on as CCIDS (continuously-information-disseminating 

cooperative intrusion detection system).  Details of each experiment are presented in the next 

sections. 

Each of the above-mentioned experiments involved running multiple simulation iterations. 

Throughout the experiment, the researcher implemented the following sequential steps to execute 

each simulation: 

• Attackers Generation: to measure the accuracy of the experiment results under different 

attack scenarios, the researcher included randomly-selected attack types for each 

simulation.  This was intended to eliminate the possibility that the produced results might 

contain more inconsistency in the presence of certain attacks than others.  Randomization 

of attackers in the test MANET throughout the various simulation iterations eliminated 

such potentiality and reduced the chances for the researcher to control the results by 

including certain attack types more than the others. 

• Simulation Execution: in this step, the researcher modified the simulation file to include 

the randomly-selected attackers.  The researcher then proceeded with executing the 

simulation on the host environment. Throughout the lifetime of the simulation, the 

researcher continuously observed the execution to ensure no interruptions or early 
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execution stoppage happened due to memory/CPU utilization problems on the host 

environment.  This was done to eliminate potential partial or incorrect simulation results. 

• Results Collection: Once a simulation iteration was done, the researcher moved towards 

collecting the generated data based on the following categorization: 

o Detection-related Results: The researcher wrote the underlying IDS code to output 

each final intrusion decision to an output text file.  Each line of the contents of the 

output file included the decision-making node, suspect node, decision 

(malicious/innocent), and attack type.  

o Bandwidth-related Results:  The researcher used the trace files generated by ns-2 

to calculate the AED values for each iteration. The researcher did not write any 

custom code to output bandwidth-related data, as ns-2 does that without the need 

for any modifications. The trace files were then analyzed to extract the AED value 

based on the calculations outlined in Chapter 3.  

• Evaluation Metrics Calculations: After each iteration, the researcher manually inspected 

the text file from the “Detection Results” step and calculated the evaluation metrics 

values based on the calculations outlined in Chapter 3. Those values were documented 

and are presented in the next sections.  

• Results Documentation: the researcher used the following data presentation methods to 

document the results of the experiments: 

o Tables: these were used to document the results of the evaluation metrics 

calculations including TP, TN, FP, FN, DTR, and FPR. 

o Graphs: these were used to visually plot the DTR, FPR, and AED calculation 

results throughout the conducted experiments. 
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Experiments 

Experiment 1 - Thresholds Identification 

The first experiment following the research implementation involved identifying attacks 

and IDS-related thresholds. Prior to testing the actual implementation of the proposed IDS, the 

researcher ran multiple simulations on the test MANET to calculate attack thresholds.  The 

researcher implemented the attack models as outlined in Chapter 3 then proceeded towards 

finding a consistent threshold for each attack model.  This consisted of simulating five iterations 

of the test MANET with random nodes launching each type of attack (black hole, gray hole, 

modification, flooding, and rushing).  After consistent thresholds were identified, the researcher 

ran three more simulations but with mixed attacker types.  The goal was to validate the 

consistency of the identified thresholds in scenarios where a mixture of attacks exists while 

ensuring such scenarios would not affect the accuracy of the identified thresholds.  The 

thresholds were adjusted manually as iterations went on until the researcher found threshold 

values that are consistent in all mixed attackers scenarios.  The final attack thresholds along with 

other system thresholds (discussed next) are documented in table 5 below. 

 

Threshold Value  

Recency of communications (rrec) 4 s 

Reciprocity and shared knowledge (rrsh) 16 
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Time since first communication (rt) 10 s 

Black hole threshold (bt) 0.9 x total packets received by suspect 

Modification threshold (mt) 0.5 x total packets received by suspect 

Rushing threshold (rt) 2.0 s 

Flooding threshold (ft) 800 bytes 

Gray hole threshold (gt) 0.4 x total packets received by suspect 

STBM interval (t) 5 s 

LDM interval (tl) 6 s 

Decision threshold (dft) 0.7132 

Minimum packets collected (pc) 20 

Minimum number of strong-ties (st) 5 

Table 5 - Proposed System's Thresholds Values 

 

Data Analysis 

To identify the IDS threshold values, discussed in Chapter 3, the researcher simulated the 

test MANET with both IDS and attacker nodes. The first simulation produced inconsistent 

results from the different IDS nodes in making the final intrusion detection decisions.  Following 

up by running multiple simulations while monitoring the execution output, the researcher noticed 

that the inconsistency resulted from the lack of a final detection decision threshold. The 

researcher has noticed that for IDS nodes to make consistent final intrusion detection decisions, a 
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threshold was needed to define the minimum value for the final DST calculations.  When the 

value stipulated in the threshold is crossed, the suspect node is declared as malicious for the 

specific attack type. This was referred to as the final decision threshold (dft).   

Such a threshold was critical, specifically when the final intrusion decision indicated the 

suspect node as malicious.  In such cases, before identifying dft, a node would be considered 

malicious if the final DST value for maliciousness was equal to or greater than 0.5.  However, 

inspection of the decision output files showed that this resulted in rare cases where highly mobile 

nodes got mistaken as malicious.  The researcher then ran four simulations with a mixture of 

attackers to identify the accurate value for dft.  By running the final decision threshold 

identification simulation, and identifying it as 0.7132, the researcher noticed that the rare cases 

of inaccurate decisions no longer appeared in the results. 

To identify the STBM thresholds, the researcher ran the test MANET with no attackers 

for three iterations.  Using the resulting thresholds values, the researcher ran the proposed IDS in 

a MANET with a mixture of attackers for six iterations.  During the implementation of the 

proposed IDS, the researcher coded the system to write the strong-ties of each IDS node to a text 

file for verifying the implementation of ties calculations. With each iteration, the researcher 

inspected the resulting ties file to examine the formulated ties throughout the simulation. The 

researcher adjusted the mobility of randomly chosen nodes to be higher than others to ensure the 

accuracy of these thresholds in situations where a node is legitimate but has abandoned its initial 

position in a social community.  With each iteration, the researcher had to manually adjust the 

thresholds until reaching consistent results with each new iteration.  The final threshold values 

obtained produced accurate and consistent identification of the social ties, based on the 
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description in Chapter 3, regardless of the total number of attackers in the network. These values 

are documented in table 5 above.   

While inspecting the detection decisions output files, the researcher noticed that some 

nodes were sending CDM replies to requests initiated by their social circles without enough 

collected information about the suspect node.  Even though these cases did not affect the 

decision accuracy, thanks to the application of DST, their unnecessary replies added extra 

bandwidth utilization.  By inspecting the intrusion decision log files, the researcher found that a 

detection decision can still retain accuracy while minimizing extra CDM replies by enforcing a 

minimum packets collected threshold (pc).  This threshold is defined as the minimum packets a 

strong-tie node has collected on a suspect node.   

By using pc, strong-ties that have very little or no collected packets on a suspect should 

not send out their replies as they do not affect detection accuracy but only increase bandwidth 

utilization.  By manually adjusting the value of (pc) over four simulations, the researcher found 

that assigning a value of 20 to pc yielded no negative effects on the detection accuracy.  This 

means a node can send out a CDM reply about a suspect node, if and only if it has collected at 

least 20 packets about the suspect. It’s worth mentioning that enforcing such a threshold does not 

interfere with the lack of evidence calculations for DST.   

Primarily, pc ensures that an IDS node has sufficient data to suspect a node’s 

maliciousness.  That data might have strong, little or no evidence supporting the suspicion, 

which is what is needed for DST.  Additionally, pc ensures that strong-ties outside of the 

transmission range of a suspect do not weigh in their individual decisions without any 

observations. Experimental simulations have shown that excluding this threshold results in 

inaccurate decisions because nodes with no observations at all would respond with a high 
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uncertainty value against the suspect.  This, in turn, resulted in cases where malicious nodes were 

considered as innocent, as such values affect the final DST calculations. These occurrences 

greatly impacted detection results in cases where more than one node returned high uncertainty 

due to the lack of any observations against the suspect.  On the other hand, after applying pc, the 

trace files analysis indicated slight improvement in the AED values.  Further analysis of AED 

values of the proposed IDS is presented in the next sections. 

After running the initial simulation iterations, the researcher noticed some nodes had few 

strong-ties but still were making final intrusion detection decisions.  By inspecting the ties output 

files from each testing iteration, the researcher noticed that results from decisions based on 

replies from five or more ties scored a higher certainty in the final detection decision value than 

those with less ties. Based on this observation, the researcher adjusted the CDM requests to 

check for a minimum number of strong-ties (st) before initiating the cooperative detection 

process.  This also resulted in less unnecessary CDM requests in the network and, ultimately, 

less bandwidth utilization.  The researcher then executed four simulations with the new condition 

applied and noticed results were consistently accurate with the certainty of the final detection 

decision values at 0.758 and higher. 

The last part of the threshold identification phase involved collecting and documenting 

the AED values of the test MANET without the presence of the proposed system. The researcher 

ran ten simulations.  These started with five attackers in the first iteration and then five more 

attackers were added for each consecutive iteration.  The final iteration had a total of 50 

attackers.  The researcher then analyzed the resulting trace file from each iteration to extract and 

document the AED values of the test MANET.  Figure 2 below shows the resulting AED values 
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of the test MANET without the implementation of the proposed system, referred to as no-IDS 

MANET.   

 

 

Figure 2 - AED Values of no-IDS MANET 

 

Figure 2 above shows a continuous increase of AED values in the test MANET as more 

attackers occupy the network.  These results were caused by more attackers dropping packets, 

delaying packet forwarding, and affecting other nodes survivability through exhausting their 

resources, causing less packets to be delivered successfully to their destination (Wazid, Katal, 

Sachan, Goudar, & Singh, 2013; Garg & Chand, 2014; Kumar, Vijay, & Suhas, 

2016).  Additionally, route discovery operations increase as nodes try to find alternative routes to 
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deliver packets successfully to their destination.  This adds extra delay in the delivery process 

until such routes are discovered, if any (Abdelshafy & King, 2013).  

 

Experiment 2 - Performance Evaluation of the Proposed IDS 

After establishing the required thresholds for the proposed IDS, the researcher installed 

the developed IDS module on all nodes in the test MANET.  The researcher then ran ten 

iterations of the same simulation where no attackers exist in the network to measure the 

consistency of the IDS operations.  The researcher then checked the consistency of the decision 

output files across all iterations.  Inspection of such files revealed the expected consistency as the 

IDS did not issue any alarms in the attack-free network.  Once that was established, the 

researcher included attackers and IDS nodes in the same network. This consisted of first 

installing the IDS module on all nodes in the test MANET. Then, the researcher picked random 

nodes and uninstalled the IDS module from each, and then installed a randomly-chosen attack 

module.  The attack module was one of the five attacks identified in the previous chapter (black 

hole, gray hole, modification, rushing, and flooding).   

As outlined in the previous sections, the attack-module type was chosen randomly in each 

simulation iteration.  This was done to eliminate any biases towards inclusions of certain attacks 

that might be easier to detect than others.  This experiment was divided into ten simulation 

iterations.  Each iteration included a number of random attacker nodes, and the rest were IDS 

nodes.  Iterations were identified based on the total number of attackers in the network starting 

from five attackers, adding five more at each consecutive iteration, and ending with 50 attackers.  

Each iteration ran for a period of 500 seconds, during which the researcher monitored the 

execution without intervention.  Monitoring the execution of each iteration was necessary to 
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ensure no errors occurred due to hosting environment issues.  Ensuring an error-free run for each 

iteration preserved the accuracy of the results. This was important for the accuracy because such 

errors, without monitoring, could have potentially stopped the execution of the simulation and 

resulted in partial results, leading to inaccurate data analysis.  After the end of each iteration, the 

researcher collected the intrusion detection decisions from the decision output files, mentioned in 

the previous sections. The researcher then calculated the detection evaluation metrics, previously 

outlined in Chapter 3.  The results are documented in table 6 below. 

 

 

Total 

attackers 

TP TN FP FN DTR FPR 

5 7 30 2 0 1.00000 0.0625 

10 14 56 2 1 0.933333 0.01754 

15 19 66 1 2 0.90476 0.014925 

20 23 58 4 2 0.92000 0.06451 

25 27 57 3 1 0.96428 0.05000 

30 51 26 1 3 0.94444 0.03703 

35 54 40 1 2 0.96428 0.02439 

40 50 30 2 4 0.92592 0.06250 
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45 70 24 1 3 0.95890 0.04000 

50 109 33 2 5 0.95614 0.05714 

Table 6 - Evaluation Metrics Values of the Proposed IDS 

 

 

Figure 3 - DTR Values of the Proposed IDS 
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Figure 4 - FPR Values of the Proposed IDS 

 

Data Analysis 

Table 6 above shows the incremental increase of the total number of TPs as the number 

of attackers increase in each iteration.  This happened because the first iteration had only five 

attackers that could potentially break the links between social communities.  As such, IDS nodes 

were able to form a larger number of strong-ties and, eventually, social communities. This 

resulted in the following advantage: if one node makes the final detection decision towards a 

malicious attacker, the decision can reach a larger number of nodes in their communities. This 

meant that if any of the nodes in that certain community encounter the attacker as nodes move 

around the network, it would not have to go through the detection process again. This enables 
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less bandwidth utilization by eliminating redundant detections.  Additionally, it reduces the 

number of TPs as seen in table 6 above.   

On the other hand, as the total number of attackers increase in the network, large social 

communities start decreasing.  This leaves IDS nodes with less total strong-ties and eventually 

contributes to the formation of smaller social communities.  This activity occurs because 

increased attackers break established connections within social communities.  As IDS nodes 

detect malicious attackers, they remove them from their routing table, leaving the connection to 

distant nodes potentially broken.  This, in turn, results in the STBM removing strong-ties from 

the STT since they might not satisfy the strong-tie features discussed in Chapter 3.  Eventually, 

the process causes smaller communities to form with potentially no communications to distant 

communities.  This then results in potentially triggering the detection process for the same 

attacker node(s) multiple times as each smaller community attempts to learn about the status of 

the malicious node(s). 

Additionally, as attackers occupy large portions of the network, communities with less 

strong-ties might not be able to initiate the detection process.  This is because of the established 

st restricting IDS nodes from initiating cooperative investigation when their total strong-ties do 

not exceed that threshold.  Besides, less nodes participating in the detection process means 

weaker collective evidence established to support the final decision as opposed to that of larger 

communities.  This resulted in the presence of FN values in the output decision files due to an 

inability of some nodes to collect strong-evidence against suspect nodes.  However, the total 

number of FNs remained low across all iterations with a lowest value of zero and a highest of 

five when half the network was occupied by malicious nodes. Nonetheless, DTR remained high 

with a highest value of 1.00000 and a lowest of 0.90476, as shown in figure 3 above.  
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The above results show a presence of FP values throughout the experiment.  However, 

the proposed system managed to keep the total number of FPs as low as one with a highest value 

of four.  Even when the number of attackers increased, the total number of FPs remained low. 

This is mainly due to the combined application of social communities and DST.  The application 

of social communities restricted IDS nodes from producing high numbers of FPs as more 

attackers joined the network.  Such an application forced IDS nodes to only consider reports 

coming from strong-ties.  Thus, eliminating situations where false reports coming from malicious 

nodes in aim to skew the final detection decision are considered.   

Working in concert with social communities, the application of the DST contributed to 

the low total of FPs where IDS nodes incorporated lack/little evidence in the final decision 

making.  This in turn, saved innocent nodes from being accused as malicious due to some of the 

strong-ties observing abnormal behaviors where as others did not have enough evidence 

supporting such accusations. Such behaviors might have resulted from high mobility or resource 

consumptions of the suspect nodes.  In these cases, legitimate nodes managed to avoid false 

accusations, resulting in an overall low total number of FPs across all iterations. 

The proposed IDS sustained a high total of TNs across throughout the experiment, with 

the lowest value being 24 and the highest being 66.  The presence of TNs in this experiment 

resulted from situations where innocent nodes were saved from being falsely accused as 

malicious due to some IDS nodes observance of abnormal activities.  This is due to the 

cooperative nature of the system solidified by considering observations only from strong-ties as 

well as enforcing lack of evidence in the final decision making.  As opposed to IDS systems 

where a node gets accused for a certain attack as soon as it crosses a predefined threshold 

(Nadkarni & Mishra, 2004; Karim, Rajatheva, & Ahmed, 2006; Tangpon, Kesidis, Hsu, & 
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Hurson, 2009; Lauf, Peters, & Robinson, 2010), the proposed system does not rely solely on the 

attack thresholds to make such accusations.   

Instead, the proposed IDS incorporates multiple restrictions before initiating any 

accusation against a node. These restrictions include attack thresholds, collected evidence over a 

period of time, minimum number of strong-ties, and minimum number of packets observed from 

the suspect node. All these restrictions must be met for an IDS node to initiate an accusation 

against a suspect node.  Even so, the suspect remains innocent until all DST values come back 

from the initiating node’s social circle in which a final detection decision is made.  The high total 

of TNs accompanied by low totals of FPs across all iterations contributed to the low FPR values. 

The proposed system recorded FPR values as low as 0.01492 and a highest of 0.06451.     

Figure 4 above shows how the FPR values for the different iterations do not follow a 

continuous increase corresponding to the total number of attackers in the network.  In current 

CIDs, a common observation found in the literature is the proportional increase of FPR as more 

attackers join the network (Mustafa & Xiong, 2013; Ullah, Khan, Ahmed, Javaid & Khan, 2016; 

Alattar, Sailhan & Bourgeois, 2012; Mahmoud & Shen, 2010).  The proposed IDS overcame this 

problem through the implementation of DST in decision making.  As such, the reliance of DST 

on the collected evidence prevented IDS nodes from making accusations against other nodes 

without strong evidence.  As attackers increase, large communities break into smaller 

communities leaving potentially less nodes participating in the final decision making.  In cases 

where not enough or no strong evidence exists, these nodes avoid making false accusations 

against legitimate nodes.  This minimizes the total number of FPs as more attackers join the 

network.  
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After documenting the detection evaluation metrics, the researcher calculated the AED 

values based on the corresponding calculation identified in Chapter 3.  This involved analyzing 

each trace file of all simulation iterations to extract these values.  Documenting these values was 

critical to demonstrating the proposed system’s ability to fulfill the second goal of this research: 

minimizing bandwidth consumption throughout cooperative detection operations.  Figure 5 

below shows these values along with the corresponding AED values of no-IDS MANET from 

experiment 1.    

 

 

Figure 5 - AED of Proposed IDS vs. no-IDS MANET 
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Figure 5 above shows how the proposed IDS managed to maintain a consistently low rate 

of AED, as compared to the no-IDS MANET, despite the increase of the total number of 

attackers in the network.  This happens because the network starts with a small number of 

attackers and nodes form large social communities with a higher total of strong-ties. This 

formation results in the successful delivery of data and detection-related packets between nodes 

in a single community as well as packets between different communities.  As the number of 

attackers increase, the link between strong-ties may break, resulting in smaller social 

communities.  However, due to the implementation of the proposed IDS, nodes re-route their 

packets through non-malicious nodes as soon as a malicious attacker is confirmed in the final 

DST calculations of the detection process. Additionally, smaller communities with no-legitimate 

weak-ties to other communities keep their detection process contained in their small 

community.  This results in less packet loss as opposed to detection-related data flowing through 

malicious nodes between communities.  

On the other hand, as malicious nodes occupy a larger portion of the network, delivery of 

detection-related packets gets affected.  This is due to the packet loss encountered from 

malicious nodes dropping pass-through traffic.  Additionally, even with IDS nodes re-routing 

packets around malicious nodes, smaller social communities continue to break down into smaller 

communities with less strong-ties.  This results in less packets delivered around the network as 

strong-ties end up with fewer links to communicate with each other.  Besides, some nodes might 

not be able to initiate the detection process since the total number of their strong-ties, as a result 

of a large number of attackers, does not suffice st identified previously.  Additionally, as nodes 

get separated from each other by attackers breaking the corresponding links, more route-

discovery queries are issued.  This causes delays in packet delivery as nodes continue to look for 



 

 

158 

a path with legitimate links to deliver such packets. The duration of establishing such paths, if 

even applicable as some nodes may potentially fail to do so as attackers occupy larger areas of 

the network, causes an increase in the AED values (Abdelshafy & King, 2013),  

The comparison between the implementation of the proposed IDS versus no-IDS 

MANET shows improvements in the AED values as more attackers join the network.  However, 

the goal of this study was to evaluate the proposed system’s ability to minimize bandwidth 

consumption throughout the detection process. To examine the proposed system ability to fulfill 

that goal, a comparison of AED values between the proposed system and a CCIDS 

implementation is presented in the next sections. 

 

Experiment 3 - Stand-alone IDS vs. Proposed IDS’s Detection Accuracy Evaluation  

This experiment was intended to compare the detection accuracy of the proposed system 

against a stand-alone version of itself.  Before conducting this experiment, the researcher 

modified the original implementation of the proposed IDS.  The modification involved removing 

the STBM, CDM, and GRM components along with changing the LDM to remove any calls to 

the CDM.  This, in turn, removed all cooperative detection components from the IDS to match 

the stand-alone IDS definition outlined in Chapter 2.  Additionally, the DST calculation code in 

the LDM was modified to make an intrusion decision after calculating the final DST value for 

each node.  As such, all intrusion detection decisions were made individually by the IDS node 

without any cooperation or information sharing with the neighboring nodes.  All STBM and 

CDM related thresholds were removed as they were irrelevant for this experiment. 
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The researcher then proceeded with a total of five test simulations to ensure that the 

modifications matched the description provided for the stand-alone IDS.  In each iteration, the 

researcher selected a random node out of the total 100 nodes in the test MANET to install the 

stand-alone IDS module on.  Each simulation ran for 100 seconds.  After each iteration, the 

researcher inspected the decision output files and manually checked that all decisions were made 

solely by the randomly-selected IDS node.  Manual modifications were made after iteration one 

and two as the final DST values were being printed out multiple times per each node.  The 

researcher then corrected the LDM code to output an intrusion decision once per node per 

interval (tl). By inspecting the output results from iterations three to five, the researcher observed 

consistency of the implementation in regard to the stand-alone description provided in Chapter 2.  

Once accuracy of the implementation was established, the researcher proceeded to 

experiment simulations to extract detection evaluation metrics.  The simulation procedures 

followed the same format as experiment 2.  A total of ten simulations were executed.  The first 

simulation started with five randomly-selected attackers, and five more attackers were added 

consecutively for each following iteration.  Each duration spanned a total of 500 seconds.  The 

researcher closely monitored each iteration to ensure no errors or sudden interruptions happened 

during simulations as a result of a sudden failure of the hosting environment.  At the end of each 

iteration, the resulting detection decisions file was manually inspected to calculate the detection 

evaluation metrics as discussed in Chapter 3.  The collected metrics are documented in table 7 

below: 
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Total 

attackers 

TP TN FP FN DTR FPR 

5 0 45 9 0 0.00000 0.16666 

10 2 41 14 12 0.14285 0.25454 

15 1 36 8 13 0.07142 0.18181 

20 9 38 11 41 0.18000 0.22448 

25 12 31 15 37 0.24489 0.32608 

30 8 29 12 25 0.24242 0.29268 

35 9 23 5 44 0.16981 0.17857 

40 11 24 6 58 0.15942 0.20000 

45 12 15 6 55 0.17910 0.28571 

50 11 14 10 50 0.18032 0.41666 

Table 7 - Evaluation Metrics Values of the Stand-alone IDS 
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Figure 6 - DTRs of Proposed IDS vs. Stand-alone IDS 
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Figure 7 - FPRs of Proposed IDS vs. Stand-alone IDS 

 

Data Analysis 

Table 7 above shows the consistency of low TPs across all iterations, demonstrating the 

incapability of the stand-alone IDS in all cases to efficiently identify attackers in the network. 

This is based on the manual inspection of the detection decision output files, which revealed that 

the randomly-chosen IDS node was only able to detect attackers when they moved within its 

transmission range.  As such, a lack of a wider view of the network rendered the stand-alone IDS 

incapable of observing and eventually detecting malicious activities happening in other parts of 

the network. This can be seen by the low overall values of TPs across all iterations.  
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In comparison with the proposed CIDS, it consistently maintained a high number of TPs 

across all iterations. Such results emphasize the significance of the application of social 

communities in keeping all IDS nodes informed of the security situation of the entire 

network.  Additionally, the participation of trusted strong-ties in the final decision making 

significantly improved the accuracy of detecting malicious nodes, as seen in experiment 2 in the 

resulting TP values.  As opposed to the stand-alone IDS where the IDS node made all final 

detection decisions on its own. This significantly impacted the detection accuracy, as observed 

across the resulting TP values.  

On the other hand, table 7 shows how FPs of the stand-alone IDS remained high across 

all iterations.  This is due to the fact that the stand-alone IDS node made all final DST 

calculations based on one-sided evidence, that is, its own.  The lack of multiple DST calculations 

from social communities as provided by in the proposed CIDS, left the detecting node here with 

significant error-prone decision making.  This resulted in a high number of FNs where malicious 

nodes were not detected as well as high FPs from falsely accusing innocent nodes. This reveals 

the criticality of multiple evidence to support the final detection decision and ensure the overall 

accuracy of the detection process.  

Observing the TN values of the stand-alone IDS, table 7 above shows that the stand-alone 

IDS suffered from continuous degradation of the total TNs as more attackers joined the network. 

The stand-alone IDS ended up with a total TNs as low as 14 when half of the network was 

occupied with attackers.  This was noteworthy when compared to those of the proposed IDS, 

which resulted in a high TNs of 33 in the same scenario. The proposed IDS managed to produce 

the high TNs due to the cooperative DST calculations that, as observed from the data, have saved 

a large number of innocent nodes from being marked as malicious.  Such cooperative 
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calculations were ultimately a result of the implementation of the concept of social communities 

in the proposed system. 

The side-by-side comparison of DTRs and FPRs in figure 6 and 7 above, between the 

proposed IDS and a stand-alone IDS implementation shows two major observations.  First, it 

shows the significance of implementing the concept of social-communities to provide a wider 

view on the network and utilize detection information coming only from trusted strong-ties.  This 

is opposed to relying on a single observation from the IDS node to determine the final detection 

decision.  Examining the DTR and FPR values of the two implementations reveals the obvious 

lack of detection accuracy in the stand-alone IDS as compared to the proposed system. This, in 

turn, shows the failure of the stand-alone IDS in fulfilling the goal of high detection accuracy 

with low false alarm rates.  Table 7 above shows that the stand-alone IDS resulted in DTR values 

as low as 0.00000 with a highest of 0.24489. This was noteworthy when compared to the 

proposed IDS, as it maintained a high DTR rate with a lowest of 0.90476 and a highest of 

1.00000 across all simulation iterations.     

Additionally, the stand-alone IDS revealed the significance of applying DST in a 

cooperative manner when attempting to reduce and possibly eliminate false alarms in the 

network.  A side-by-side comparison between the FPR values of the stand-alone versus the 

proposed IDS, as shown in figure 7 above, reveals a significant difference in the resulting values.  

The stand-alone IDS resulted in high FPR values, with the lowest being 0.16666 and the highest 

being 0.41666.  As compared to the consistently low FPRs of the proposed system, which had a 

highest of 0.06451 and a lowest of 0.01492.  The overall FPR values for the stand-alone IDS 

were significantly higher than those of the proposed IDS across all iterations.  The stand-alone 

IDS suffered from such a high FPR because it lacked the significant implementations of DST 
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and social communities and was incapable of accurately differentiating malicious from 

legitimate nodes.  As opposed to the proposed IDS, which utilized the power of strong-ties along 

with DST in which lack/little evidence was taken in consideration in the final decision 

making.  This in turn resulted in lower FPRs across all iterations as seen in figure 7 above.  

The above detection accuracy comparison between the proposed system and the stand-

alone IDS was conducted to evaluate the proposed system’s fulfillment of the research goal of 

high detection accuracy.  As outlined in Chapter 3, evaluating the detection accuracy in this 

research relied on two evaluation metrics: DTR and FPR.  Across all simulations in this 

experiment, the proposed IDS managed to maintain high DTRs with values as high as 1.00000 

and a lowest of 0.90476.  This was noteworthy when compared to the stand-alone IDS, which 

consistently produced low DTR values, with a highest of 0.24489 and a lowest of 0.00000.  On 

the other hand, the proposed system maintained low FPR values, even in situations where 

attackers occupied half of the network, with a lowest of 0.01492 and a highest of 0.06451. This 

was opposed to the stand-alone version, which suffered from high FPR values across all 

simulation iterations, producing a lowest FPR of 0.16666 with a significantly high FPR of 

0.41666 when half of the test MANET was occupied with attackers.  

From the results, it can be seen that the lack of the application of the concept of social 

communities combined with DST in the stand-alone IDS rendered the system inefficient even in 

cases where only few attackers existed in the network.  The stand-alone IDS lacked the 

incorporation of lack/no evidence from strong-ties in the final detection decisions.  As a result, 

the stand-alone IDS made all final detection decisions based solely on the IDS node’s own 

observations.  On the other hand, the lack of the application of the concept of social communities 
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in the stand-alone IDS left the system incapable of incorporating trusted observations about 

suspect nodes in final decision making.  

Additionally, the stand-alone IDS did not have any visibility of the security status of 

distant nodes, which left many attackers undetected, as can be seen from the consistently low 

TPs in this experiment.  Results from this experiment that revealed consistently low DTRs and 

high FPRs show how the lack of a wider network visibility causes detection accuracy issues and 

inefficiencies.  In MANETs, nodes can leave and rejoin, move to random locations inside the 

network or suffer from battery drainage affecting transmission activities. This leaves single 

observation-based detection susceptible to falsely detecting such cases as malicious, as can be 

seen from the high FPRs in this experiment.  

Alternatively, the high DTR and low FPR values seen in the implementation of the 

proposed system are due to the combination of the concept of social communities and DST.  

First, the application of the concept of social communities forced the system to avoid accusing 

innocent nodes of being malicious without having enough strong-ties to support the claim.  This 

can be seen in the consistently low FPRs found in experiment 2.  Additionally, the application of 

DST restricted the detection process from accusing innocent nodes without providing strong 

supporting evidence from a node’s social community.  The combination of these two concepts 

allowed the IDS to minimize false accusations while making detection decisions based on strong 

evidence coming from trusted sources. The proposed system when compared to the stand-alone 

IDS has empirically shown the significance of these two concepts in fulfilling the research goal 

of high detection accuracy. 
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Experiment 4 – CCIDS vs. Proposed IDS’s Bandwidth Consumption Evaluation 

This experiment was intended to compare the proposed system’s bandwidth consumption 

performance throughout the detection process against a CCIDS version of itself.  Implementation 

the CCIDS involved modifying the proposed IDS to follow a common methodology in current 

CIDs where these systems disseminate detection-related information on a regular basis (Sterne et 

al., 2005; Razak et al., 2008; Shahnawaz, Joshi, & Gupta, 2012; Hernandez-Orallo, Serrat, Cano, 

Calafate, & Manzoni, 2012; Subramaniyan, Johnson, & Subramaniyan, 2014).  The researcher 

modified the DIM component of the original IDS to send detection-related information to the 

IDS node’s one-hop neighbors at each interval (t).  That information consisted of a list of nodes 

along with their status (malicious/non-malicious) based on previous detection decisions made by 

the node or received in an alarm from other nodes.  The original implementation already 

programmed the DIM to be aware of previous detection decisions as outlined in Chapter 3.  

Additionally, to test the implemented functionality, the DIM was modified to print out the total 

and destinations of detection-related packets sent at each interval (t).  The purpose of that was to 

have a visual way to verify the accuracy of this modification. 

The researcher then proceeded with a total of five test simulations to verify that the 

modifications matched the description outlined in Chapter 3.  The researcher installed the 

modified IDS on all nodes in the test MANET.  In each iteration, the researcher selected a total 

of ten random nodes out of the total 100 nodes in the test MANET to uninstall the IDS and 

install a random attacker module on.  Each simulation ran for 100 seconds.  After each iteration, 

the researcher inspected the DIM output file and manually checked that each IDS node was 

sending its malicious/non-malicious nodes list to its neighbors.  After completing the manual 

inspection of the DIM output files for all simulations, no inconsistencies were found throughout 
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all five simulations.  For each iteration, the researcher observed the implementation conformed 

to the outlined description of the CCIDS implementation. 

Once implementation accuracy was established, the researcher performed the experiment 

simulations. The simulation procedures followed the same format as experiments 2 and 3. A total 

of ten simulations were executed. These simulations started with five randomly-selected 

attackers, and five more attackers were added consecutively for each of the following iterations.  

Each simulation spanned a total of 500 seconds in duration.  The researcher closely monitored 

each iteration to ensure no errors or sudden interruptions occurred during simulations as a result 

of a sudden failure of the hosting environment.  After each iteration, the researcher analyzed the 

resulting trace file to calculate the AED value based on the calculation described in Chapter 3.  

Figure 8 below shows the resulting AED values across all iterations from the CCIDS as 

compared to those collected from the proposed IDS. 
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Figure 8 - AEDs of Proposed IDS vs. CCIDS 

 

Data Analysis 

Figure 8 above shows how the network suffered higher delays in the presence of CCIDS 

than those experienced with the proposed IDS.  The CCIDS produced AED values as high as 

0.25358 seconds with a lowest of 0.20674 seconds.  The proposed IDS had consistently lower 

AED values, which were as low as 0.15192 seconds with a highest of 0.18554 seconds. The 

continuous dissemination of detection-related information contributed to the high delays 

produced by the CCIDS as they increase the potentiality of packet loss and collisions in the 
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limited wireless medium of MANET (Lee & Gerla, 2000).  Additionally, as more attackers join 

the network, the size of detection-related packets increase due to the corresponding increase in 

the size of the list of nodes sent by DIM.  This caused the IDS nodes to consume extra bandwidth 

to send/receive these large packets, causing depletion in the available network bandwidth and 

delaying packet delivery (Vigna, Gwalani,Srinivasan, Belding-Royer, & Kemmerer, 2004).  

Moreover, the continuous dissemination of these packets added extra transmission delays since 

more routing discovery operations were needed to deliver these packets around malicious nodes 

as more attackers joined the network (Abdelshafy & King, 2013).  The negative impact of the 

continuous dissemination of detection-related packets in CCIDS can be seen from the AED 

values in figure 8.  

Figure 8 above presents a comparison between the resulting AED values from the CCIDS 

against the proposed system’s.  This comparison reveals an obvious improvement of AED values 

in the proposed system as opposed to CCIDS across all simulation iterations.  In iterations where 

only five attackers existed in the network, the CCIDS produced an AED value of 0.2147 

seconds, while the proposed system’s AED value was 0.1647 seconds in the same scenario. On 

the other hand, the CCIDS resulted in an AED value of 0.25336 seconds when half of the 

network was occupied by attackers, while in the same scenario the proposed IDS produced a low 

AED value of 0.18554 seconds.  The proposed system demonstrated lower AED values in both 

low and high attackers scenarios across all simulation iterations throughout the experiment. 

Additionally, the CCIDS produced an overall average AED value of 0.2405 throughout 

the experiment while the proposed IDS maintained an overall average AED value of 0.177 

seconds.  Per these results, the CCIDS produced an overall average of 63.5 milliseconds delay 

over the proposed system’s.  Additionally, the CCIDS maintained AED values of over 0.2067 
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seconds in all iterations with attackers present in the network. On the other hand, the proposed 

system maintained AED values of less than 0.1856 seconds, even in situations where attackers 

occupied half of the network. 

The side-by-side comparison between the proposed IDS and the CCIDS version revealed 

a major finding regarding the proposed IDS: the significance of applying the social communities 

concept in the proposed system and its observed impact on reducing bandwidth consumption 

throughout the detection process.  This effect was consistent, even in scenarios where a large 

number of malicious nodes existed in the network.  Nodes formulate their social communities 

utilizing the strong-ties features described in Chapter 3 without the need for continuous 

information dissemination.  This showed a positive impact on the bandwidth consumption, as 

can be seen in the results.  By enabling IDS nodes to be autonomous in their formation of social 

communities, the proposed approach allowed less bandwidth consumption as opposed to, for 

instance, relying on extra acknowledgement packets to establish such communities.  

Additionally, the social communities restrictions that only alarm a node’s social 

community instead of flooding the network reduce excessive packet transmission during the 

detection process, resulting in less bandwidth consumption.  Lastly, combining DST and social 

communities to restrict the initiation of the detection process based on DST values, minimum 

strong-ties needed to initiate the detection, and strong-evidence support eliminates the need for 

excessive communications about a suspect node that might not be a suspect in the first place.  

The primary purpose of this experiment was to evaluate the proposed system’s ability to 

fulfill the research goal of minimizing bandwidth consumption throughout the detection 

process.  As outlined in Chapter 3, AED was used as the evaluation metric for that goal.  From 

the results above, it can be seen that the proposed system was better at conserving bandwidth 
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than the CCIDS implementation.  The experiment tested the two systems against scenarios with 

low numbers of attackers and those where attackers occupied large areas of the network.  In all 

cases, the proposed IDS consistently maintained lower AED values than those in the CCIDS 

version. Additionally, the proposed implementation showed improved AED values in 

comparison with the no-IDS MANET thanks to the GRM and DIM roles in excluding malicious 

nodes from routing, resulting in more packets being delivered successfully.  The application of 

the concept of social communities combined with the DST during the detection operations 

empirically demonstrated improvements in bandwidth consumption. This empirical proof can be 

seen in when comparing resulting AED values for the proposed system and the CCIDS. 

 

Findings 

The primary objective of this research was to implement a CIDS capable of producing 

high detection accuracy while minimizing bandwidth consumption throughout the detection 

process.  To evaluate the proposed system’s fulfillment of the stated goals, the implementation of 

the proposed IDS was compared to a stand-alone IDS and CCIDS implementations.  DTR and 

FPR evaluation metrics were used to measure the system’s ability to meet the high detection 

accuracy goal.  Additionally, an AED evaluation metric was used to evaluate the system’s ability 

to minimize bandwidth consumption throughout the detection process.  

To evaluate the high detection accuracy goal of this study, a comparison of the intrusion 

detection decisions was made between the proposed system and a stand-alone IDS 

implementation, in the presence of a random mixture of attackers in the network.  Research 

findings from that comparison suggest that the proposed system succeeded in fulfilling the high 

detection accuracy goal, with DTR values as high as 1.00000 with a lowest of 0.90476 and FPR 
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values as low as 0.01492 with a highest of 0.06451.  This can be compared to the stand-alone 

IDS, which resulted in a highest DTR of 0.24489 and a lowest of 0.00000 as well as a lowest 

FPR of 0.16666 and a highest of 0.41666.  Additionally, the proposed system managed to 

maintain a low FPR of 0.05714 and a high DTR 0.95614, even when half of the network was 

occupied by malicious attackers.  In comparison, the stand-alone version showed a high FPR of 

0.41666 and a low DTR of 0.18032 in the very same situation. 

On the other hand, to evaluate the proposed system’s ability to fulfill the research goal of 

minimized bandwidth consumption throughout the detection process, the researcher compared 

the proposed IDS against the CCIDS implementation in scenarios where a mixture of random 

attackers existed in the network.  AED was used as the evaluation metric for this purpose.  

Findings from the comparison showed the proposed system was able to achieve minimized 

bandwidth consumption goal with consistently low AEDs with values as low as 0.15192 seconds 

with a highest of 0.18554 seconds.  Comparatively, the CCIDS recorded higher AED values with 

a highest of 0.25358 seconds and a lowest of 0.20674 seconds. The proposed IDS resulted in 

63.5 milliseconds less overall average delay than the CCIDS.  Additionally, findings show that 

the proposed system was successful in improving AED values as opposed to MANETs with no 

IDS installed.  This is due to the application of the social community concept, which allowed 

IDS nodes to route traffic through legitimate nodes and, thus, eliminate delays/droppage caused 

by malicious nodes.   

Results from this research empirically demonstrated the advantages of the application of 

social communities combined with DST in the proposed IDS.  The autonomy provided by the 

concept of social communities allowed nodes to build their strong-ties without the need for 

excessive communications. This combined with the restrictions enforced by the application of 
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the DST through eliminating initiation of cooperative detection without strong evidence, resulted 

in the system maintaining low AED values throughout the experiment. On the other hand, the 

enforcement of the concept of social communities on nodes to only consider detection reports 

from strong-ties eliminated potential false accusations coming from anonymous nodes. This, 

alongside the application of DST, in which a lack of or no evidence is considered in the final 

detection decision, resulted in the high DTRs and low FPRs previously discussed.  The 

consistency of these results, throughout the lifetime of the experiment, showed the viability of 

applying social communities combined with DST in a CIDS implementation to achieve high 

detection accuracy and minimized bandwidth consumption in the detection process. 

It should be noted that the research was conducted to evaluate the application of the 

concept of social communities combined with DST in a CIDS implementation towards the 

achievement of the research goals.  As such, the research did not cover all attack types that a 

MANET could be exposed to. Only a number of these attacks were implemented to contain the 

scope of this study and evaluate the viability of the proposed system.  Additionally, the research 

in this study did not cover situations where MANETs have a total number of nodes exceeding 

100, to keep the scope of this study manageable.  It was thought that 100 nodes in the test 

MANET is a sufficient number to simulate and evaluate the proposed system as followed by 

similar research studies in this area (Theresa & Sakthivel, 2017; Sangeetha & Kumar, 2018; 

Veeraiah & Krishna, 2018). 
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Summary of Findings 

The study aimed to develop a CIDS capable of producing high detection accuracy while 

minimizing bandwidth consumption throughout the detection process.  The research proposed 

the application of social communities in combination with DST in a CIDS implementation to 

achieve these goals.  Several experiments were conducted to evaluate whether the proposed IDS 

fulfills the stated goals.  Results of these experiments were examined and quantitatively 

evaluated.  Outcomes of this study show the success of the proposed system in achieving both 

goals, even in situations where large number of attackers existed in the network.  To evaluate the 

proposed system’s fulfillment of the high detection accuracy goal, the study quantitatively 

compared the proposed system against a stand-alone IDS implementation.  

The proposed system produced DTRs as high as 1.00000 with a lowest of 0.90476. 

Comparatively, the stand-alone IDS implementation achieved a highest DTR value of 0.24489 

and a lowest of 0.00000.  Similarly, the proposed system’s results produced consistently low 

FPRs, with the lowest value at 0.01492 and the highest at 0.06451.  This is opposed to a lowest 

FPR of 0.16666 and a highest of 0.41666 for the stand-alone version. The results of the proposed 

system’s detection accuracy far exceeded those of the stand-alone IDS. 

Additionally, to evaluate the proposed system’s ability to fulfill the study’s second goal 

of minimized bandwidth consumption throughout the detection process, the system was 

evaluated against a CCIDS implementation.  Such an implementation followed an approach 

similar to the CIDS approaches found in the current literature, where detection-related 

information is disseminated over the network on a regular basis (Sterne et al., 2005; Razak et al., 

2008; Shahnawaz, Joshi, & Gupta, 2012; Hernandez-Orallo, Serrat, Cano, Calafate, & Manzoni, 
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2012; Subramaniyan, Johnson, & Subramaniyan, 2014). Several simulations were conducted to 

extract the results of that comparison.   

Quantitative comparison of these results revealed the proposed system’s ability to 

achieve the aforementioned goal, with AED values as low as 0.15192 seconds with a highest of 

0.18554 seconds.  This was opposed to the CCIDS, which had a lowest value 0.20674 seconds 

and a highest value of 0.25358 seconds.  The CCIDS resulted in an overall average of 63.5 

milliseconds additional delay over the proposed IDS.  Throughout the experiment, the proposed 

system resulted in lower AED values as compared to the CCIDS version, empirically 

demonstrating the proposed system’s ability to minimize bandwidth consumption throughout the 

detection process. 

The proposed system was implemented and evaluated through simulations in multiple 

experiments.  These experiments involved randomized types of attackers with situations where 

attackers occupied half of the network.  The developed system was able to successfully meet the 

research goals consistently across all experiments. Therefore, the results of this study 

demonstrate the success and efficacy of combining the social communities concept and DST in a 

CIDS implementation to improve detection accuracy while reducing bandwidth consumption 

throughout the detection process.  
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Chapter 5 

Conclusions, Implications, Recommendations, and Summary 

 

Conclusions  

Current CIDS found in the literature suffer from high bandwidth overhead throughout the 

detection process as well as high false alarms rates.  This research targeted the development of a 

CIDS capable of producing high detection accuracy while minimizing bandwidth consumption 

throughout the detection process. The study demonstrated the viability of combining social 

communities and DST in a CIDS implementation to achieve the presented research goals. 

The study provided empirical evidence supporting the proposed solution through the 

implementation and quantitative evaluation of the proposed CIDS.  Evaluation of the detection 

accuracy involved modifying the proposed system to implement a stand-alone IDS version and 

compare the results.  Experimental evaluation demonstrated that applying the social communities 

concept along with DST in the proposed CIDS resulted in high detection accuracy, with 

consistently high DTRs as high as 1.00000 with a lowest of 0.90476.  Comparatively, the stand-

alone IDS implementation developed in this research resulted in consistently low DTRs, with a 

highest value of 0.24489 and a lowest of 0.00000.  At the same time, the proposed CIDS 

maintained low FPRs with a lowest value of 0.01492 and a highest value of 0.06451 throughout 

the lifetime of the experiment.  Comparatively, the stand-alone IDS resulted in overall high 

FPRs, with a highest value of 0.41666 and a lowest value of 0.16666.  In fact, the proposed IDS 

sustained a low FPR of 0.05714 with a DTR of 0.95614, even when half of the network was 
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occupied with malicious attackers.  This occurred while the stand-alone IDS, in the same 

scenario, produced a high FPR of 0.41666 and a low DTR of 0.18032. 

The study evaluated the bandwidth consumption of the proposed CIDS by modifying the 

proposed CIDS to implement a CCIDS and comparing the results. Experimental results 

demonstrated the system’s ability to effectively minimize bandwidth consumption throughout the 

detection process. The system produced AED values as low as 0.15192 seconds with a highest of 

0.18554 seconds as opposed to a CCIDS implementation, where the lowest AED value was 

0.20674 seconds and the highest was 0.25358 seconds. On average, the proposed system 

produced reduced delays, represented in AEDs, of 63.5 milliseconds when compared to the 

average AEDs produced by the CCIDS.  

Throughout all simulations, the proposed system sustained high DTRs, low FPRs, and 

low AED values.  Additionally, the system did not suffer from an increase of FPRs proportional 

to the increase of the total number of attackers in the network, as found in IDS solutions in the 

current literature (Mustafa & Xiong, 2013; Ullah, Khan, Ahmed, Javaid & Khan, 2016; Alattar, 

Sailhan & Bourgeois, 2012; Mahmoud & Shen, 2010).  In fact, the proposed system maintained 

low FPRs throughout the experiment, with values as low as 0.014925 with a highest of 0.06451. 

Given the consistency of high DTRs, low FPRs, and low AEDs throughout the entirety of the 

experiment, it can be stated that the proposed system succeeded in fulfilling the research goals of 

high detection accuracy and minimized bandwidth consumption.  

As previously stated in this research, current CIDSs suffer from degraded detection 

accuracy due to the reliance on detection reports sourced from anonymous nodes.  At the same 

time, these solutions tend to create high bandwidth consumption as a result of their continuous 
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dissemination of detection-related information.  This research aimed to address these issues by 

applying the social communities concept and DST in a CIDS implementation. Experimental 

results strongly demonstrated the proposed implementation was able to address the current issues 

outlined above.  The study concluded the combination of the social communities concept and 

DST in a CIDS implementation was effective at increasing detection accuracy while minimizing 

bandwidth consumption throughout the detection operations. 

 

Implications  

For a CIDS to be efficient, based on Cannady’s (2013) criterion, it needs to be able to 

identify attacks accurately in a timely manner. This criterion shows the significance of high 

detection accuracy and low bandwidth utilization in the effectiveness of an IDS.  When it comes 

to detection accuracy, an IDS must be able to accurately identify attackers while avoiding false 

accusations against innocent nodes.  On the other hand, an IDS should avoid over-consumption 

of the bandwidth-constrained nodes of MANETs.  This in turn, reduces the effects of the IDS 

communications during normal network operations towards sustainable packet delivery. Thus, 

attacks identification packets can be delivered on time throughout the network. This research 

aimed to achieve high detection accuracy with minimized bandwidth consumption in a CIDS 

implementation. 

As the applications of MANETs are gaining a widespread adoption in more commercial 

as well as military areas, so do their security threats and the significance of effective IDS 

solutions (Banerjee, Nandi, Dey, & Saha, 2015; Keyshap, 2015).  The primary implication of this 

research is that the application of the social communities concept combined with DST can 
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produce high detection accuracy while minimizing bandwidth consumption when applied to a 

CIDS implementation.  The study has empirically shown through experimental evidence how the 

combination of these two applications eliminates reliance on detection reports coming from 

anonymous nodes in the intrusion detection process.   

On the other hand, the consideration of a lack of or no evidence in the final intrusion 

detection decisions reduced false accusations, thus low false alarm rates.  Such a consideration 

resulted in overall high detection accuracy in terms of accurately detecting malicious nodes 

across all the experimental testing.  The proposed CIDS demonstrated high detection accuracy 

even in cases where half of the network was occupied by malicious attackers with DTRs as high 

as 1.00000 with a lowest of 0.90476.  The application of the social communities concept allowed 

nodes to have the autonomy of forming strong-ties without the need for continuous 

communications.  At the same time, the restrictions that the DST enforced on the system 

eliminated initiations of unnecessary cooperative communications without strong evidence.  

Experimental results demonstrated the efficiency of the CIDS implementation ability to sustain 

low bandwidth consumption, represented in consistently low AEDs, throughout the lifetime of 

the experiment. 

Another implication obtained from the experimental results showed that the proportional 

increase of false alarms can be avoided by implementing the above-mentioned concepts.  This is 

due to the restrictions the proposed system enforced on the IDS nodes to initiate or respond to 

cooperative detections.  These include minimum strong-ties, minimum packets observed against 

a suspect, attack thresholds, and the applied DST calculations.  These restrictions contributed to 

the hindrance of a proportional increase of false accusations against legitimate nodes, as 

discussed on Chapter 4.  As a result, the proposed system maintained a steady low-rate of false 
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alarms represented in the FPRs obtained throughout all the experiments, with values as low as 

0.014925 with a highest of 0.06451.  This contributed to the high detection accuracy goal and 

saved the bandwidth-constrained network from unnecessary detection packets, which in turn 

translates to less bandwidth consumption.  

Recommendations  

To contain the scope of this research to a manageable level, the researcher chose five of 

the common attack types against MANETs, as discussed in Chapter 3.  However, as 

advancements in MANETs continue to move forward, so does the creativity of attackers to 

invent new attack types (Cannady, 2013).  Wider implementation of attack types is 

recommended to evaluate the system’s viability against new, potentially more complicated attack 

types.  

Another recommendation for future research would be to extend the current 

implementation of the proposed system’s LDM.  Machine learning implementations for attack 

detection demonstrated undeniable efficiency in detecting both known and unknown attacks 

(Butun, Morgera, & Sankar, 2014).  Future research may extend the LDM component to 

incorporate a machine learning-based engine for attack detection.  This could increase the 

system’s effectiveness in detecting both known and unknown attacks.  MANET implementations 

are different depending on the deployment model.  This difference introduces an increased 

complexity on manual calculation of attack thresholds.  By incorporating machine learning-based 

detection in the LDM, the process of learning attack thresholds could potentially be reduced 

tremendously while, at the same time, the system would gain the advantage of adapting the 

detection process with network changes. 
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Lastly, this research implemented the LDM and STBM components as interval-based 

modules.  This meant that the LDM triggered the attack detection process at specific intervals, as 

opposed to a continuous detection process.  Similarly, the STBM calculated strong-ties features, 

discussed in Chapter 3, periodically at a predefined interval.  This implementation was meant to 

contribute to lowering bandwidth consumption while conserving nodes’ energy.  It would be 

worthwhile for future research to investigate the variation of the LDM/STBM intervals and their 

impacts on the accuracy of the detection process as well as overall bandwidth consumption in the 

network. 

Summary  

The unique characteristics of MANETs have led to their wide adoptions in various 

military and commercial fields.  The infrastructure-less nature of MANETs allows them to be 

deployed in various situations where no infrastructure exists, such as disaster relief sites and 

battlefields.  This is due to their ability to dynamically form topologies as each node in the 

network acts as both host and router.  On the other hand, nodes in MANETs have limited 

resources, constrained-bandwidth, and limited wireless range.  All of these distinctive attributes 

made the mission of providing security solutions for MANETs a challenging task (Hubaux, 

Buttyán, & Capkun, 2001; Cannady, 2010; Sheik et al., 2010). 

Due to their dynamic nature, security solutions designed for fixed networks cannot be 

applied to MANETs.  Previous research proposed various types of solutions to the security 

vulnerabilities in MANETs while keeping in consideration the limitations accompanied with 

these networks (Kim & Jang, 2006; Mikki, 2009; Maleki, Dantu, & Pedram, 2002).  The current 

body of knowledge contains a large number of preventive solutions that attempt to block attacks 
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against MANETs before their occurrence.  However, history has shown that these solutions 

cannot survive on their own as their exploitability increases along with the increased 

complexities of MANETs (Yang et al., 2004).  As such, a second line of defense, represented in 

IDSs, has gained strong momentum from researchers.  An extensive body of knowledge exists in 

the current literature pertaining to IDS solutions targeting intrusion-free MANETs.  However, 

most of these solutions fail to deliver their promise due to the dynamic nature of MANETs. 

For IDS solutions to operate efficiently in such infrastructure-less networks, the 

cooperative detection process is deemed mandatory (Mahmood, Amin, Amir, & Khan, 2009). 

Various CIDS were proposed in the current literature targeting the inclusion of cooperativeness 

in their implementations.  However, all of the solutions suffer from two major problems: high 

communication overhead caused by continuous information exchange and reliance on intrusion 

reports originating from anonymous nodes. These result in high false alarms rates that cause 

degradation in the detection accuracy as well as increased bandwidth consumption that might 

disrupt the normal routing operations in such bandwidth-constrained networks. 

The study developed a novel approach to implement an efficient CIDS by applying the 

concept of social communities with DST.  That is a CIDS capable of achieving high detection 

accuracy while minimizing bandwidth consumption throughout the detection process.  The 

concept of social communities, which has never been applied to MANETs security before, was 

implemented to improve detection accuracy.  This was done by building strongly-tied 

communities that enable the exchange of reliable detection information solely among nodes’ 

social circles. This addressed a major limitation that exists in current approaches: their reliance 

on intrusion reports from anonymous nodes, which can result in high false alarms rates.  

Additionally, the application of communities in this research allowed nodes the autonomy to 
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build their social circle without the need for extensive back-and-forth communications with other 

nodes, thus minimizing bandwidth consumption.  

Alongside the concept of social communities, this research proposed the application of 

the DST to improve detection accuracy and minimize false alarms rates.  Researchers have 

applied DST in their security solutions in previous studies.  However, the main issue with these 

applications is the determination of trustworthiness and untrustworthiness of nodes when 

weighing in nodes’ votes (Chen & Venkataramanan, 2005; Li & Joshi, 2009).  This requires a 

high bandwidth overhead imposed by trust-related information dissemination to establish 

accurate calculations. Otherwise, DST can combine observations from nodes without regard to 

their trustworthiness.  However, this might yield inaccurate results in the presence of a large 

number of malicious nodes in the network (Chen & Venkataramanan, 2005).  

Very little research has been done towards the application of DST for intrusion detection 

in MANETs.  All of which relied on the calculated trustworthiness of nodes in the combined 

decision-making process.  This can be problematic in the presence of a large number of 

malicious nodes because it can result in manipulated votes against legitimate nodes (Rajakumar 

et al., 2014).  The application of DST in this research targeted the elimination of detection 

reports from anonymous sources, which usually result in a high rate of false alarms. 

Additionally, the research utilized the DST against observations obtained solely from strong-ties 

to handle cases where some of these nodes did not catch enough evidence against the suspicious 

activity. 

The goal of this research was to develop, through an experimental approach, a CIDS that 

is capable of producing high detection accuracy while minimizing bandwidth consumption 
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throughout the detection process. The combination of social communities and DST in the 

proposed CIDS aimed to address the study’s goals.  This research used DTR and FPR evaluation 

metrics to evaluate the proposed system’s ability to meet the research goal of high detection 

accuracy.  On the other hand, AED was used to evaluate whether the proposed system achieved 

minimized bandwidth consumption as stated in the research goals.  Extensive experimental 

testing was conducted to evaluate the system in various scenarios where a mixture of random 

attackers existed in the network.  Experimental results showed that the proposed system’s 

achieved DTR values were as high as 1.00000 and the FPR values were as low as 0.014925. 

Additionally, the system managed to maintain low AED values throughout the experiment 

iterations, with a lowest value of 0.15192 seconds and a highest value of 0.18554 seconds.  

To further evaluate the system’s ability to meet the high detection accuracy goal, the 

researcher implemented a stand-alone IDS version of the proposed system.  The stand-alone IDS 

underwent similar experimental evaluations as those for the proposed system.  Results from all 

evaluations showed success and demonstrated that the proposed system was more effective at 

achieving high detection accuracy than the stand-alone IDS.  Experimental evaluations revealed 

that the stand-alone IDS achieved lower DTR values, with a highest value of 0.24489 and a 

lowest value of 0.00000. As compared to the proposed CIDS, which achieved a DTR as high as 

1.00000 with a lowest of 0.90476.  Similarly, FPR values of the stand-alone IDS were as high as 

0.41666 with a lowest value of 0.16666.  Comparatively, the proposed CIDS maintained low 

FPR as low as 0.014925 with a highest value of 0.06451.  

On the other hand, the researcher implemented a CCIDS version of the proposed CIDS, 

which disseminated detection-related information to other nodes on a regular basis. Same 

experimental evaluations applied for the proposed CIDS were applied to the CCIDS.  That 
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experiment’s focus was on collecting and quantitatively comparing AED values of the CCIDS 

against those of the proposed IDS.  The experimental results of the CCIDS revealed consistently 

higher AEDs, as compared to the proposed IDS, with values as high as 0.25358 seconds with a 

lowest of 0.20674 seconds.  Comparatively, the proposed CIDS resulted in AED values as low as 

0.15192 seconds with a highest of 0.18554 seconds.  On average, the proposed IDS reduced 

delays, represented in AED, by 63.5 milliseconds when compared to the CCIDS.  Quantitative 

evaluations empirically demonstrated the success of the proposed system’s ability to minimize 

bandwidth consumption throughout the detection process, as compared to the CCIDS. 

The study evaluated the viability of applying the concept of social communities along 

with DST towards a CIDS implementation. Results from the study suggest that such an 

application results in improved detection accuracy while maintaining minimal bandwidth 

consumption throughout the detection operations.  Empirical evidence from experiments 

conducted in this research demonstrated consistent results from the proposed system.  That is, the 

system maintained high DTR, low FPR, and low AED values across all experiments, even when 

half of the network was occupied with malicious attackers. Given the consistency of these values 

throughout the entirety of the experiment, the study concluded that the proposed system 

succeeded in fulfilling the research goals of achieving high detection accuracy and minimized 

bandwidth consumption throughout the detection process.  

This research resulted in two primary implications. First, the application of the concept of 

social communities combined with DST can produce high detection accuracy while minimizing 

bandwidth consumption when applied to a CIDS implementation.  The study has empirically 

proven, through evidence, how the combination of these two applications eliminate 

considerations of detection reports coming from anonymous nodes in the intrusion detection 
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process.  On the other hand, the consideration of a lack of or no evidence in the final intrusion 

detection decisions helped reduce false accusations against innocent nodes, thus lowering false 

alarm rates.  

The second implication of this study suggests that the proportional increase of false 

alarms can be avoided through the implementation of the concept of social communities and 

DST.  The restrictions that the proposed system enforced on the IDS nodes along with the DST 

calculations contributed to the hindrance of the proportional increase of false accusations against 

legitimate nodes.  As a result, the proposed system maintained a steady low rate of false alarms 

all across the experiment.  Thus, this contributed to the high detection accuracy goal, and it saved 

the network from unnecessary detection packets, which translated to less bandwidth consumption 

Results of the study suggest three recommendations for future research.  First, as the 

research implementation covered only five attack types to contain the scope of the study, 

research into more attack types is recommended.  This would help evaluate the system’s viability 

against new, potentially, more complicated attack types.  Secondly, future research could variate 

the LDM and STBM intervals and examine their effects on the overall detection accuracy and 

bandwidth consumption.  Lastly, previous studies demonstrated advancements in machine 

learning techniques towards attack detection and their demonstrated ability to adapt to behavioral 

changes in the network (Butun, Morgera, & Sankar, 2014). As such, another recommendation of 

this study is to extend the LDM to include a machine-learning-based attack detection and 

evaluate the impact of such an extension on the overall detection accuracy.  
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Appendix A 

IDS Source Code 

 

//IDS used in PhD research for Adam Solomon 

//Dissertation titled "A Novel Cooperative Intrusion Detection System  

//for Mobile Ad Hoc Networks" 

//Nova Southeastern University 

 

 

//*********************************************************************** 

// Global Objects 

//*********************************************************************** 

#include <stdio.h> 

#include <string.h> 

#include <stdlib.h> 

#include <list> 

 

const double MAJORITY_THRESHOLD = 80; 

const double FINAL_DECISION_THRESHOLD = 0.7132; 

const double THRESHOLD_RECENCY_THRESHOLD = 4.0; 

const double THRESHOLD_RECIPROCITY_SHARED_THRESHOLD = 16; 

const double THRESHOLD_TIME_SINCE_FIRST_MESSAGE = 10.0; 

const double BLACKHOLE_THRESHOLD = 0.9; 

const double GRAYHOLE_THRESHOLD = 0.4; 

const double MODIFICATION_THRESHOLD = 0.5; 

const double GHOLE_COLLECTION_INTERVAL = 3; 

const double BHOLE_COLLECTION_INTERVAL = 1; 

const double LDM_DELAY_INTERVAL = 6.0; 

const double STT_DELAY_INTERVAL = 5.0; 

const double FLOODING_MAX_PACKET_SIZE = 800; 

const double RUSHING_MAX_DELIVERY_TIME = 2.0; 

const double MINIMUM_STRONG_TIES = 5; 

const double MINIMUM_PACKETS_COLLECTED = 20; 

 

 

struct Node 

{ 

 int ip; 

 int DATA_TOTAL; 

 int RREQ_TOTAL; 

 int RREP_TOTAL; 

 double time_of_last_communication; 

 double time_of_first_communcation; 

 bool isMalicious; 
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 bool isStrongTie; 

 list<Packet> packets; 

 list<double> listOfPacketDeliveryTimes; 

 list<double> listOfPacketSizes; 

}; 

 

struct Packet 

{ 

 int32_t ip_src; 

 int32_t ip_dst; 

 double time; 

 char *data; 

 int data_size; 

 int protocol; 

 const char *pk_type; 

 int originPort; 

 int destinationPort; 

 bool isReceived; 

 bool isForwarded; 

 bool isModified; 

 bool isToForward; 

 double deliveryTime; 

 PacketType type; 

}; 

 

enum PacketType 

{ 

 RREQ, 

 RREP, 

 _DATA, 

 BROADCAST_IP_MESSAGE, 

 OTHER 

}; 

 

struct hdr_ids_alarm 

{ 

 u_int8_t rq_type; 

 u_int8_t reserved[2]; 

 nsaddr_t rq_dst; 

 nsaddr_t rq_src; 

 nsaddr_t malicious_node; 

 double rq_timestamp; // when REQUEST sent; 

 

 inline int size() 

 { 

  int sz = 0; 
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  sz = 8 * sizeof(u_int32_t); 

  assert(sz >= 0); 

  return sz; 

 } 

}; 

 

struct hdr_ids_cdm_req 

{ 

 u_int8_t rq_type; 

 int rq_id; 

 u_int8_t reserved[2]; 

 nsaddr_t rq_dst; 

 nsaddr_t rq_src; 

 nsaddr_t suspect_node; 

 int attack_type; 

 double rq_timestamp; 

 

 inline int size() 

 { 

  int sz = 0; 

  sz = 8 * sizeof(u_int32_t); 

  assert(sz >= 0); 

  return sz; 

 } 

}; 

 

struct hdr_ids_cdm_rep 

{ 

 u_int8_t rq_type; 

 int rq_id; 

 u_int8_t reserved[2]; 

 nsaddr_t rq_dst; 

 nsaddr_t rq_src; 

 nsaddr_t suspect_node; 

 int attack_type; 

 double rq_timestamp; 

 

 double isMalicious; 

 double isNonMalicious; 

 double isUncertain; 

 

 inline int size() 

 { 

  int sz = 0; 

  sz = 10 * sizeof(u_int32_t); 

  assert(sz >= 0); 
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  return sz; 

 } 

}; 

 

struct CDMReply 

{ 

 int reqId; 

 int repId; 

 int replyingNodeIP; 

 int suspectNodeIP; 

 double rp_timestamp; 

 AttackType suspectedAttack; 

 double isMalicious; 

 double isNonMalicious; 

 double isUncertain; 

}; 

 

struct CDMRequest 

{ 

 int reqId; 

 AttackType suspectedAttack; 

 int initiatingNodeIP; 

 int suspectNodeIP; 

 double rq_timestamp; 

 list<CDMReply *> replyQueue; 

 bool isFullfilled; 

 int totalRequestsSent; 

}; 

 

struct AttackDSTValues 

{ 

 AttackType attackType; 

 double malicious; 

 double nonMalicious; 

 double uncertain; 

}; 

 

struct GRMAlarm 

{ 

 int maliciousNodeIP; 

 bool isSentToAllTies; 

 double timeAlarmSent; 

}; 

 

enum AttackType 

{ 
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 Blackhole, 

 Grayhole, 

 Modification, 

 Rushing, 

 Flooding, 

 None 

}; 

 

 

//*********************************************************************** 

// DIM Component 

//*********************************************************************** 

//DIM.h 

#ifndef __DIM_H__ 

#define __DIM_H__ 

#include "global.h" 

#include  "aodv/aodv_rtable.h" 

#include "aodv.h" 

 

class DIM 

{ 

 list<Node> Nodes; 

 list<double> listOfPacketDeliveryTimes; 

 list<double> listOfPacketSizes; 

 

 void HandleListenedPacket(const Packet *p); 

   void HandleReceivedPacket(const Packet *p); 

   void SavePacket(int32_t source_ip, int32_t destination_ip, int source_ip, int   

destination_ip, int sourcePort, int destinationPort, packet_t packet_type, 

double pktime, const char *rt_type, int original_packet_size, Packet *p); 

 void SaveNode(node *nd); 

 Node *IsExistingNode(int ip); 

 list<Nodes> GetAllSavedNodes() void NodeReceivedPacketToForward(Packet *p); 

 void NodeForwardedPacket(Packet *p); 

} 

 

//DIM.cpp 

 

//function to read packets listened 

void 

DIM::HandleListenedPacket(const Packet *p) 

{ 

 hdr_ip *iph = hdr_ip::access(p); 

 hdr_cmn *pk = hdr_cmn::access(p); 

 

 hdr_mac802_11 *mh; 
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 mh = HDR_MAC802_11(p); 

 

 hdr_aodv *ah = HDR_AODV(p); 

 aodv_rt_entry *rt = rtable.rt_lookup(iph->daddr()); 

 bool isSourceMalicious = IsExistingNode(iph->src().addr_)->isMalicious; 

 if (!isSourceMalicious) 

 { 

  SavePacket(iph->src().addr_, iph->dst().addr_, ETHER_ADDR(mh->dh_ta), 

ip_dst, iph->sport(), 

       iph->dport(), pk->ptype_, Scheduler::instance().clock(), 

ah->ah_type, pk->size(), p); 

 } 

} 

 

// function to handle saving packets 

void SavePacket(int32_t source_ip, int32_t destination_ip, int source_ip, int destination_ip, int 

sourcePort, int destinationPort, packet_t packet_type, 

    double pktime, const char *rt_type, int 

original_packet_size, Packet *p) 

{ 

 { 

  Node *nd = IsExistingNode(source_ip); 

  if (source_ip != currentIP) 

  { 

   if ((nd = IsExistingNode(source_ip)) == NULL) 

   { 

    nd = SaveNode(source_ip, pktime); 

    nd->ip = source_ip; 

 

    if (rt_type == "RREQ") 

    { 

     nd->RREQ_TOTAL = nd->RREQ_TOTAL + 1; 

     nd->pkt_type = RREQ; 

     double rreq_delivery_time = pktime - 

original_rreq_sent_time; 

     nd->totalRreqPackts = nd->totalRreqPackts + 1; 

     nd-

>listOfPacketDeliveryTimes.push_back(rreq_delivery_time); 

    } 

    else if (rt_type == "DATA") 

    { 

     nd->DATA_TOTAL = nd->DATA_TOTAL + 1; 

     nd->pkt_type = DATA; 

     nd-

>listOfPacketSizes.push_back(original_packet_size); 

    } 
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    else if (rt_type == "RREP") 

    { 

 

     nd->RREP_TOTAL = nd->RREP_TOTAL + 1; 

     nd->pkt_type = RREP; 

    } 

    else if (rt_type == "BROADCAST_IP_MESSAGE") 

    { 

     nd->BROADCAST_TOTAL = nd-

>BROADCAST_TOTAL + 1; 

     nd->pkt_type = BROADCAST_IP_MESSAGE; 

    } 

   } 

   else 

   { 

nd = new Node(); 

    nd->listOfPacketSizes.push_back(original_packet_size); 

    nd->ip = source_ip; 

    nd->time = pktime; 

    nd->time_of_last_communication = pktime; 

    if (rt_type == "RREQ") 

    { 

     nd->RREQ_TOTAL = nd->RREQ_TOTAL + 1; 

     nd->pkt_type = RREQ; 

 

     double rreq_delivery_time = pktime - 

original_rreq_sent_time; 

     nd-

>listOfPacketDeliveryTimes.push_back(rreq_delivery_time); 

     nd->totalRreqPackts = nd->totalRreqPackts + 1; 

    } 

    else if (rt_type == "DATA") 

    { 

     nd->DATA_TOTAL = nd->DATA_TOTAL + 1; 

     nd->pkt_type = _DATA; 

    } 

 

    else if (rt_type == "RREP") 

    { 

     nd->RREP_TOTAL = nd->RREP_TOTAL + 1; 

     nd->pkt_type = RREP; 

    } 

    else if (rt_type == "BROADCAST_IP_MESSAGE") 

    { 

     nd->pkt_type = BROADCAST_IP_MESSAGE; 
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     nd->BROADCAST_TOTAL = nd-

>BROADCAST_TOTAL + 1; 

    } 

   } 

nd->packets.push_back(p); 

   if ((destination_ip != nd->ip) && (destination_ip != currentIP)) 

   { 

    NodeReceivedPacketToForward(nd->ip, p); 

   } 

   if (source_ip != nd->ip) 

   { 

    NodeForwardedPacket(nd->ip, p); 

   } 

  } 

 } 

 

 //function to save nodes of which packets listened tby he DIM 

 void DIM::SaveNode(node * nd) 

 { 

  Nodes.push_back(nd); 

 } 

 

 //function to check if DIM has records of a node 

 Node *DIM::IsExistingNode(int ip) 

 { 

  Node *exists = false; 

  for (list<Node>::iterator it = Nodes.begin(); it != Nodes.end(); ++it) 

  { 

   if (it->IP == ip) 

   { 

    return it; 

   } 

  } 

  return NULL; 

 } 

 

//function to handle received packets 

DIM::HandleReceivedPacket(const Packet *p) 

{ 

hdr_ip *iph = hdr_ip::access(p); 

hdr_cmn *pk = hdr_cmn::access(p); 

 

hdr_mac802_11 *mh; 

mh = HDR_MAC802_11(p); 

 

hdr_aodv *ah = HDR_AODV(p); 
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aodv_rt_entry *rt = rtable.rt_lookup(iph->daddr()); 

bool isSourceMalicious = IsExistingNode(iph->src().addr_)->isMalicious; 

if (isSourceMalicious) 

{ 

AODV->drop(p, DROP_RTR_NO_ROUTE); 

} 

else { 

if ( iph->src().addr_ == currentIP) 

{ 

SavePacket(iph->src().addr_, iph->dst().addr_, ETHER_ADDR(mh->dh_ta), 

ip_dst, iph->sport(),  iph->dport(), pk->ptype_, Scheduler::instance().clock(), ah-

>ah_type, pk->size(), p); 

} 

else { 

AODV->forward((rt*) 0, p, 0); 

           } 

} 

 

} 

 

 //function to return a list of all stored nodes 

 list<Nodes> DIM::GetAllSavedNodes() 

 { 

  return Nodes; 

 } 

 

 //function to find stored packet for a node 

 Packet *DIM::FindPacket(int ip, Packet *p) 

 { 

  Node *n = IsExistingNode(ip); 

  for (list<Packet>::iterator it = n->packets.begin(); it != n->packets.end(); 

++it) 

  { 

   if (memcmp(p, it, sizeof(p))) 

   { 

    return it; 

   } 

  } 

 } 

 

 // to save packets that need forwarding by a node 

 void DIM::NodeReceivedPacketToForward(int ip, Packet *p) 

 { 

  Node *n = IsExistingNode(ip); 

  packet pk = (packet *) (malloc(sizeof (packet)))) < (void *)0; 

  pk->time = pktime; 
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  pk->data = (char *)malloc(sizeof(char) * data_size); 

  pk->ip_src = ip_src; 

  pk->ip_dst = ip_dst; 

  pk->data_size = data_size; 

  pk->time = pktime; 

  pk->originPort = originPort; 

  pk->destinationPort = destinationPort; 

  pk->isReceived = true; 

  pk->isForwarded = false; 

  pk->isModified = false; 

  pk->isToForward = true; 

  n->packets.push_back(p); 

 } 

 

 // function to check if a node forwarded packets 

 void DIM::NodeForwardedPacket(int ip, Packet *p) 

 { 

  packet foundPacket = FindPacket(ip, p); 

  if (foundPacket != NULL) 

  { 

   foundPacket->isForwarded = true; 

  } 

  else if (strcmp(p->body, exists->body) != 0 || p->ip_src != exists->ip_src || p-

>ip_dst != exists->ip_dst) 

  { 

   foundPacket->isModified = true; 

  } 

 } 

 

//*********************************************************************** 

// LDM Component 

//*********************************************************************** 

 

//LDM.h 

#ifndef __LDM_H__ 

#define __LDM_H__ 

#include "global.h" 

#include "CDM.h" 

#include "DSTHandler.h" 

 

class LDM 

{ 

 void PerformAttacksDetection(int currentIP, double current_time); 

 AttackDSTValues *DetectAttacks(int currentIP, Node *n, double current_time, bool 

isCDMRequest, AttackType attackType); 
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 AttackDSTValues *CalculateDSTValuesForSuspect(int currentIP, int suspectip, 

AttackType _attackType, double current_time); 

} 

 

//LDM.cpp 

 

//function to iterate over observed nodes and calls attack detection method 

void 

LDM::PerformAttacksDetection(int currentIP, double current_time) 

{ 

 for (list<Node>::iterator nd = Nodes.begin(); it != Nodes.end(); ++nd) 

 { 

  if (nd->isMalicious == false) 

  { 

   DetectAttacks(currentIP, nd, current_time, false, None); //dont worry 

about attack type, its not regard here 

  } 

 } 

 

 Scheduler::instance().schedule(this, &intr, LDM_DELAY_INTERVAL); 

} 

 

//function to iterate over data collected against a node and calculate DST values 

AttackDSTValues *LDM::DetectAttacks(int currentIP, Node *n, double current_time, bool 

isCDMRequest, AttackType attackType) 

{ 

 int rushing_totalFastPacketsCounter = 0; 

 int rushing_totalAveragePacketsCounter = 0; 

 int flooding_largePacketsCounter = 0; 

 int flooding_averagePacketsCounter = 0; 

 double overallRreqDeliveryTime = 0; 

 double overallAveragePacketSizeOfAll = 0; 

 int bhole_totalDropped = 0; 

 int bhole_totalForwarded = 0; 

 int bhole_totalReceived = 0; 

 int ghole_totalDropped = 0; 

 int ghole_totalForwarded = 0; 

 int ghole_totalReceived = 0; 

 int totalModified = 0; 

 int modifications_totalReceived = 0; 

double current_a_rreq = 0; 

double current_a_size =  0; 

double sum = 0; 

 int totalNodes = 0; 

 for (list<Node>::iterator nd = Nodes.begin(); it != Nodes.end(); ++nd) 

 { 
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  if (nd->totalRreqPackts > 0) 

  { 

sum=0; 

   for (int n : nd->listOfPacketDeliveryTimes){ 

    sum += n;} 

   current_a_rreq = sum / nd->listOfPacketDeliveryTimes.size(); 

  } 

  if (nd->listOfPacketSizes.size() > 0) 

  { 

   sum = 0; 

   for (int n : nd->listOfPacketSizes){ 

    sum += n;} 

   current_a_size = sum / nd->listOfPacketSizes.size(); 

  } 

  totalNodes++; 

 } 

 overallAveragePacketSizeOfAll = overallAveragePacketSizeOfAll + current_a_rreq / 

totalNodes; 

 overallRreqDeliveryTime = overallRreqDeliveryTime + current_a_size / totalNodes; 

 

 if (n->listOfPacketDeliveryTimes.size() > 0) 

 { 

 

  for (list<double>::iterator it = n->listOfPacketDeliveryTimes.begin(); it != n-

>listOfPacketDeliveryTimes.end(); ++it) 

  { 

   if (*it < overallRreqDeliveryTime && *it <= 

RUSHING_MAX_DELIVERY_TIME) 

   { 

    rushing_totalFastPacketsCounter = 

rushing_totalFastPacketsCounter + 1; 

   } 

   else 

   { 

    rushing_totalAveragePacketsCounter = 

rushing_totalAveragePacketsCounter + 1; 

   } 

  } 

 } 

 

 if (n->listOfPacketSizes.size() > 0) 

 { 

  for (list<double>::iterator it = n->listOfPacketSizes.begin(); it != n-

>listOfPacketSizes.end(); ++it) 

  { 
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   if (*it > overallAveragePacketSizeOfAll && *it >= 

FLOODING_MAX_PACKET_SIZE) 

   { 

    flooding_largePacketsCounter = flooding_largePacketsCounter + 

1; 

   } 

   else 

   { 

    flooding_averagePacketsCounter = 

flooding_averagePacketsCounter + 1; 

   } 

  } 

 } 

 

 for (list<Packet>::iterator p = n->packets.begin(); it != n->packets.end(); ++p) 

 { 

  if (p->isToForward) 

  { 

   if (p->time < current_time && p->time > (current_time - 

(BHOLE_COLLECTION_INTERVAL * LDM_DELAY_INTERVAL))) 

   { 

 

    bhole_totalReceived = bhole_totalReceived + 1; 

    if (p->isForwarded == false) 

    { 

     bhole_totalDropped = bhole_totalDropped + 1; 

    } 

    else if (p->isForwarded == true) 

    { 

 

     bhole_totalForwarded = bhole_totalForwarded + 1; 

    } 

   } 

 

   if (p->time < current_time && p->time > (current_time - 

(GHOLE_COLLECTION_INTERVAL * LDM_DELAY_INTERVAL))) 

   { 

 

    ghole_totalReceived = ghole_totalReceived + 1; 

    if (p->isForwarded == false) 

    { 

 

     ghole_totalDropped = ghole_totalDropped + 1; 

    } 

    else if (p->isForwarded == true) 

    { 
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     ghole_totalForwarded = ghole_totalForwarded + 1; 

    } 

   } 

 

   if (p->time < current_time && p->time > (current_time - 

LDM_DELAY_INTERVAL)) 

   { 

    modifications_totalReceived = modifications_totalReceived + 1; 

    if (p->isModified == true) 

    { 

     totalModified = totalModified + 1; 

    } 

    else 

    { 

     totalUnmodified = totalUnmodified + 1; 

    } 

   } 

  } 

 } 

 

 double blackHoleThreshold = BLACKHOLE_THRESHOLD * 

(double)bhole_totalReceived; 

 AttackDSTValues *dst_blackhole; 

 = DSTHandler->CalculateDSTValues(currentIP, n->ip, bhole_totalForwarded, 

          bhole_totalReceived, 

bhole_totalDropped, blackHoleThreshold, Blackhole, !isCDMRequest); 

 

 double grayHoleThreshold = GRAYHOLE_THRESHOLD * 

(double)ghole_totalReceived; 

 AttackDSTValues *dst_grayhole = DSTHandler->CalculateDSTValues(currentIP, n->ip, 

ghole_totalForwarded, 

             

      ghole_totalReceived, ghole_totalDropped, grayHoleThreshold, 

Grayhole, !isCDMRequest); 

 

 double modificationThreshold = MODIFICATION_THRESHOLD * 

(double)modifications_totalReceived; 

 AttackDSTValues *dst_modification = DSTHandler->CalculateDSTValues(currentIP, n-

>ip, totalUnmodified, 

             

       modifications_totalReceived, totalModified, 

modificationThreshold, Modification, !isCDMRequest); 

 

 AttackDSTValues *dst_rushing = DSTHandler->CalculateDSTValues(currentIP, n->ip, 

rushing_totalAveragePacketsCounter, 
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     n->totalRreqPackts, rushing_totalFastPacketsCounter, 

rushing_totalAveragePacketsCounter, Rushing, !isCDMRequest); 

 

 AttackDSTValues *dst_flooding = CDSTHandler->CalculateDSTValues(currentIP, n-

>ip, flooding_averagePacketsCounter, 

             

    n->listOfPacketSizes.size(), flooding_largePacketsCounter, 

flooding_averagePacketsCounter, Flooding, !isCDMRequest); 

 

 if (isCDMRequest == true) 

 { 

  switch (attackType) 

  { 

  case Blackhole: 

   return dst_blackhole; 

   break; 

 

  case Grayhole: 

   return dst_grayhole; 

   break; 

 

  case Modification: 

   return dst_modification; 

   break; 

 

  case Rushing: 

   return dst_rushing; 

   break; 

 

  case Flooding: 

   return dst_flooding; 

   break; 

  } 

 } 

 return NULL; 

} 

 

//function to reply to a strong-tie requests with information about a suspect node 

AttackDSTValues *LDM::CalculateDSTValuesForSuspect(int currentIP, int suspectip, 

AttackType _attackType, double current_time) 

{ 

 Node *n = DIM->IsExistingNode(suspectip); 

 AttackDSTValues *_dstNewCalcs = new AttackDSTValues(); 

 if (n != NULL) 

 { 
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  _dstNewCalcs = DetectAttacks(currentIP, n, current_time, true, _attackType); 

 } 

 return _dstNewCalcs; 

} 

 

//*********************************************************************** 

// STBM Component 

//*********************************************************************** 

//STBM.h 

#ifndef __LDM_H__ 

#define __LDM_H__ 

#include "global.h" 

#include "DIM.h"; 

 

class STBM 

{ 

 list<int> strongTiesAddresses; 

 

 void CalculateTies(int currentIP); 

 void removeTieAndMarkMalicious(int ip); 

 void removeTieAndMarkMalicious(int ip); 

 bool isSourceMalicious(int ip); 

 

} 

 

//STBM.cpp 

 

//function to calculate strong-ties 

void 

STBM::CalculateTies(int currentIP) 

{ 

 list<Nodes> Nodes = DIM->GetAllSavedNodes(); 

 for (list<Node>::iterator n = Nodes.begin(); it != Nodes.end(); ++n) 

 { 

  double R_RECENCY = Scheduler::instance().clock() - n-

>time_of_last_communication; 

  double R_RSH = n->DATA_TOTAL + n->RREQ_TOTAL + n-

>RREP_TOTAL; 

double comm_history = Scheduler::instance().clock() - n->time_of_first_communcation; 

 

  if (R_RECENCY < THRESHOLD_RECENCY_THRESHOLD && R_RSH > 

THRESHOLD_RECIPROCITY_SHARED_THRESHOLD && comm_history > 

THRESHOLD_TIME_SINCE_FIRST_MESSAGE && n->isMalicious == false) 

  { 

   //new strong-tie 

   n->isStrongTie = true; 
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   strongTiesAddresses.push_back(n->ip); 

  } 

  else 

  { 

   //remove an existing tie if it doesn't fullfill the condition 

   n->isStrongTie = false; 

   strongTiesAddresses.remove(n->ip); 

  } 

 } 

 Scheduler::instance().schedule(this, &intr, STT_DELAY_INTERVAL); 

} 

 

//function to remove a strong-tie and mark it as malicious based on CDM/alarms 

void STBM::removeTieAndMarkMalicious(int ip) 

{ 

 Node *n = DIM->IsExistingNode(ip); 

 if (n != NULL) 

 { 

  if (n->ip == ip) 

  { 

   //remove tie; 

   n->isStrongTie = false; 

   n->isMalicious = true; 

   break; 

  } 

 } 

} 

 

//function to check if a node is already marked as malicious 

bool isSourceMalicious(int ip) 

{ 

 Node *n = DIM->IsExistingNode(ip); 

 return n->isMalicious; 

} 

 

//function to return an IP list of my strong-ties 

list<int> DIM::GetStrongTiesIPAddresses(int currentIP) 

{ 

 strongTiesAddresses.sort(); 

 strongTiesAddresses.unique(); 

 return strongTiesAddresses; 

} 

 

//*********************************************************************** 

// DST-related Calculations 

//*********************************************************************** 
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//DSTHandler.h 

#ifndef __DSTHandler_H__ 

#define __DSTHandler_H__ 

#include "global.h" 

#include "STBM" 

#include "CDM" 

#include "DIM" 

 

class DSTHandler 

{ 

    DSTHandler(); 

    AttackDSTValues CalculateDSTValues(int currentIP, int suspectIP, double 

nonMaliciousNominator, 

                                       double nonMaliciousDenominator, double maliciousNominator, double 

threshold, AttackType attackType, bool doSendCDMRequest); 

    CDMReply CombineAndReturnBelief(CDMReply A, CDMReply B); 

} 

 

//DSTHandler.cpp 

 

//function to calcualte DST values for attack 

AttackDSTValues * 

DSTHandler::CalculateDSTValues(int currentIP, int suspectIP, double nonMaliciousNominator, 

                               double nonMaliciousDenominator, double maliciousNominator, double 

threshold, AttackType attackType, bool doSendCDMRequest) 

{ 

    float nonMalicious = nonMaliciousNominator / nonMaliciousDenominator; 

    float malicious = maliciousNominator / threshold; 

    float uncertainty = 0; 

    if (malicious < nonMalicious) 

    { 

        uncertainty = (malicious * 0.5) / nonMalicious; 

    } 

    else 

    { 

        uncertainty = (nonMalicious * 0.5) / malicious; 

    } 

 

    //calculate adjustment factor 

    float adjuster = ((malicious + nonMalicious + uncertainty) - 1) / 3; 

 

    //reclaculate DST by subtracting adjuster from each 

    malicious = malicious - adjuster; 

    nonMalicious = nonMalicious - adjuster; 

    uncertainty = uncertainty - adjuster; 
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    AttackDSTValues *_dstNewCalcs = new AttackDSTValues(); 

    _dstNewCalcs->malicious = malicious; 

    _dstNewCalcs->nonMalicious = nonMalicious; 

    _dstNewCalcs->uncertain = uncertainty; 

    _dstNewCalcs->attackType = attackType; 

 

    int totalStrongTies = STBM->GetStrongTiesIPAddresses(currentIP).size(); 

    if (malicious > nonMalicious && doSendCDMRequest == true && maliciousNominator > 

threshold && DIM->IsExistingNode(suspectIP).packets.size() > 

MINIMUM_PACKETS_COLLECTED && totalStrongTies > MINIMUM_STRONG_TIES) 

    { 

        CDM->CreateNewCDMRequest(currentIP, suspectIP, attackType); 

    } 

 

    return _dstNewCalcs; 

} 

 

//function to perform DST combinatations 

CDMReply DSTHandler::CombineAndReturnBelief(CDMReply A, CDMReply B) 

{ 

    //Node A 

    double mA_C = A.isNonMalicious; 

    double mA_S = A.isMalicious; 

    double mA_U = A.isUncertain; 

 

    //node B 

    double mB_C = B.isNonMalicious; 

    double mB_S = B.isMalicious; 

    double mB_U = B.isUncertain; 

 

    //combine AB mA+mAB (orthogonal) 

 

    double K_AB = mA_C * mB_C + mA_C * mB_U + mA_U * mB_C + mA_S * mB_S + 

mA_S * mB_U + mA_U * mB_S + mA_U * mB_U; 

 

    //calculate final belief 

    double mAB_C = (mA_C * mB_C + mA_C * mB_U + mA_U * mB_C) / K_AB; 

    double mAB_S = (mA_S * mB_S + mA_S * mB_U + mA_U * mB_S) / K_AB; 

    double mAB_U = (mA_U * mB_U) / K_AB; 

 

    CDMReply *_returnReply = new CDMReply(); 

    _returnReply->replyingNodeIP = A.replyingNodeIP; 

    _returnReply->suspectNodeIP = B.replyingNodeIP; //this assignment is just for checking 

    _returnReply->isNonMalicious = mAB_C; 

    _returnReply->isMalicious = mAB_S; 

    _returnReply->isUncertain = mAB_U; 
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    return *_returnReply; 

} 

 

//*********************************************************************** 

// CDM Component 

//*********************************************************************** 

 

//CDM.h 

#ifndef __CDM_H__ 

#define __CDM_H__ 

#include "global.h" 

#include "STBM.h" 

 

class CDM 

{ 

    list<CDMRequest> CDMStorageDictionary; 

    list<CDMRequest> CDMRequestsAlreadySent; 

    list<int> CDMReuqestsAlreadyRepliedTo; 

    list<CDMRequest> CDMFullfilledRequestsDictionary; 

    list<CDMReply> CDMReplyDictionary; 

 

    void ActivateCDM(int currentIP); 

    void CreateNewCDMRequest(int currentIP, int maliciousNodeAddress, AttackType 

attackType); 

    void AddNewCDMReply(int currentIP, int requestId, int initiaingNodeIP, int suspectNodeIP, 

CDMReply *reply); 

    void recvCDMReq(Packet *p); 

    void recvCDMRep(Packet *p); 

    void sendCDMRequest(CDMRequest request, int dst); 

    void sendCDMReply(CDMReply reply, int dst); 

    bool IDSCheckIfCDMRequestAlreadySent(int reqId); 

    bool isCDMRequestFullfilled(int reqId); 

    bool checkIfAlreadyRepliedToCDMReq(int reqId); 

} 

 

//CDM.cpp 

 

//this function is called from LDM to activate CDM 

void 

CDM::ActivateCDM(int currentIP) 

{ 

    list<CDMRequest> cdmStorage = CDMStorageDictionary; 

 

    if (cdmStorage.empty() == 0) 

    { 
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        list<CDMRequest>::iterator req; 

        for (req = cdmStorage.begin(); req != cdmStorage.end(); ++req) 

        { 

            bool isFullfilled = isCDMRequestFullfilled(req->reqId); 

            bool isAlreadySentOut = IDSCheckIfCDMRequestAlreadySent(req->reqId); 

            //check if request isFullfilled 

            if (isFullfilled == false && isAlreadySentOut == false) 

            { 

                list<int> myStrongTies = STBM->GetStrongTiesAddresses(index); 

                if (!myStrongTies.empty()) 

                { 

                    int cnt = 0; 

                    list<int>::iterator tie; 

                    for (tie = myStrongTies.begin(); tie != myStrongTies.end(); ++tie) 

                    { 

                        if (*tie != req->suspectNodeIP) 

                        { 

                            sendCDMRequest(*req, *tie); 

                        } 

                        cnt++; 

                    } 

                    //mark it as sent so I dont keep sending the same request 

                    CDMRequestsAlreadySent.push_back(req->reqId); 

                } 

            } 

        } 

    } //end if empty 

} 

 

//this function is used to create CDM requests 

void CDM::CreateNewCDMRequest(int currentIP, int maliciousNodeAddress, AttackType 

attackType) 

{ 

    CDMRequest *req = new CDMRequest(); 

    req->reqId = rand() % 200000000; //   (int)time(NULL);// 11; 

    req->suspectedAttack = attackType; 

    req->initiatingNodeIP = currentIP; 

    req->suspectNodeIP = maliciousNodeAddress; 

    req->rq_timestamp = Scheduler::instance().clock(); 

    req->isFullfilled = false; 

    req->totalRequestsSent = STBM->GetStrongTiesIPAddresses(currentIP).size(); 

    if (req->totalRequestsSent > 0) 

    { 

        CDMStorageDictionary.push_back(*req); 

    } 

    ActivateCDM(currentIP); 
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} 

 

//function to handle receiving new CDM reply about a detection 

void CDM::AddNewCDMReply(int currentIP, int requestId, int initiaingNodeIP, int 

suspectNodeIP, CDMReply *reply) 

{ 

    list<CDMRequest> cdmStorage = CDMStorageDictionary; 

    //correlate to request 

    if (cdmStorage.empty() == 0) 

    { 

        list<CDMRequest>::iterator req; 

        for (req = cdmStorage.begin(); req != cdmStorage.end(); ++req) 

        { 

            bool isFullfilled = isCDMRequestFullfilled(req->reqId); 

 

            if (isFullfilled == false) 

            { 

                float majorityFullfilled = (req->totalRequestsSent / STBM-

>GetStrongTiesIPAddresses(currentIP).size()) * 100; 

                if (req->reqId == requestId && req->suspectNodeIP == suspectNodeIP) 

                { 

                    CDMReplyDictionary.push_back(*reply); 

                    //check and see if we have enough replies to make a decision 

                    list<CDMReply> _foundReplies; 

                    list<CDMReply>::iterator _savedreply; 

                    int cct = 0; 

                    for (_savedreply = CDMReplyDictionary.begin(); _savedreply != 

CDMReplyDictionary.end(); ++_savedreply) 

                    { 

                        if (_savedreply->reqId == requestId && _savedreply->suspectNodeIP == 

suspectNodeIP) 

                        { 

                            _foundReplies.push_back(*_savedreply); 

                            cct++; 

                        } 

                    } 

 

                    int totalTies = (STBM->GetStrongTiesIPAddresses(currentIP).size()) - 1; 

                    double repliesMajorityReceived = ((double)cct / (double)totalTies) * 100; // * 100; 

 

                    if (repliesMajorityReceived >= MAJORITY_THRESHOLD) 

                     

                    { 

                        list<CDMReply>::iterator _reply; 

 

                        int cnt = 0; 
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                        CDMReply previousBelief; 

                        CDMReply _previousReply; 

 

                        list<int> processedRepliesIpAddressed; 

                        for (_reply = _foundReplies.begin(); _reply != _foundReplies.end(); ++_reply) 

                        { 

 

                            if ((_reply->isMalicious == 0 && _reply->isNonMalicious == 0 && _reply-

>isUncertain == 0) || _reply->replyingNodeIP == suspectNodeIP) 

                            { 

                                continue; 

                            } 

                            else 

                            { 

                                int originatingNodeIP = _reply->replyingNodeIP; 

                                bool exists = std::find(std::begin(processedRepliesIpAddressed), 

                                                        std::end(processedRepliesIpAddressed), originatingNodeIP) 

!= std::end(processedRepliesIpAddressed); 

                                if (exists == false) 

                                { 

 

                                    if (cnt == 0) 

                                    { 

                                        _previousReply = *_reply; 

                                    } 

                                    else if (_previousReply.replyingNodeIP != _reply->replyingNodeIP) 

                                    { 

                                        previousBelief = 

                                            DSTHandler::combineAndReturnBelief(_previousReply, *_reply); 

                                        _previousReply = previousBelief; 

                                        processedRepliesIpAddressed.push_back(_reply->replyingNodeIP); 

                                    } 

                                    cnt++; 

                                } 

                            } 

                        } 

 

                        double Bel_isMalicious = previousBelief.isMalicious; 

                        double Bel_isNonMalicious = previousBelief.isNonMalicious; 

                        double Bel_isUncertain = previousBelief.isUncertain; 

 

                        //make a decision 

                        Node *n = IsNodeExists(suspectNodeIP); 

                        if (Bel_isMalicious > Bel_isNonMalicious && Bel_isMalicious >= 

FINAL_DECISION_THRESHOLD) 

                        { 
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                            if (n != NULL && n->isMalicious == false) 

                            { 

                                CreateNewGRMAlarmEntry(suspectNodeIP); 

                                GRM->ActivateGRM(currentIP); 

printf(“%d, %d, malicious, %d”, currentIP, suspectNodeIP, req-

>suspectedAttack); 

                            } 

                            //mark as malicious and remove from strong-ties 

                            if (n != NULL) 

                            { 

                                n->isMalicious = true; 

                                n->isStrongTie = false; 

                            } 

                        } 

                        else 

                        { 

                            //final decision is non-malicious 

                            n->isMalicious = false; 

printf(“%d, %d, innocent, %d”, currentIP, suspectNodeIP, req->suspectedAttack); 

 

                        } 

                    } 

 

                    req->isFullfilled = true; 

                    CDMFullfilledRequestsDictionary.push_back(req->reqId); 

                } 

            } 

        } 

    } 

} 

 

//function to check if CDM already replied to a received request 

bool CDM::checkIfAlreadyRepliedToCDMReq(int reqId) 

{ 

    bool exists = std::find(std::begin(CDMRequestsAlreadyRepliedTo), 

                            std::end(CDMRequestsAlreadyRepliedTo), reqId) != 

std::end(CDMRequestsAlreadyRepliedTo); 

 

    return exists; 

} 

 

//function to receive CDM Request and calculate DST values, then send reply to originator 

void CDM::recvCDMReq(Packet *p) 

{ 

    //get suspectedNode and suspectedAttack 

    struct hdr_ids_cdm_req *rq = HDR_IDS_CDM_REQ(p); 
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    //check if I already replied to that request 

    bool alreadyReplied = checkIfAlreadyRepliedToCDMReq(rq->rq_id); 

 

    if (alreadyReplied == false) 

    { 

        AttackDSTValues *_dstValues = 

            LDM->CalculateDSTValuesForSuspect(index, rq->suspect_node, (AttackType)rq-

>attack_type, CURRENT_TIME); 

 

        iDS->IDSAddCDMRequestRepliedTo(rq->rq_id); 

 

        if (_dstValues != nullptr && (_dstValues->malicious + _dstValues->nonMalicious + 

_dstValues->uncertain > 0)) 

        { 

            CDMReply *_cdmReply = new CDMReply(); 

            _cdmReply->reqId = rq->rq_id; 

            _cdmReply->repId = rand() % 99999 + 1; 

            ; 

            _cdmReply->replyingNodeIP = index; 

            _cdmReply->suspectNodeIP = rq->suspect_node; 

            _cdmReply->suspectedAttack = _dstValues->attackType; 

            _cdmReply->rp_timestamp = CURRENT_TIME; 

            _cdmReply->isMalicious = _dstValues->malicious; 

            _cdmReply->isNonMalicious = _dstValues->nonMalicious; 

            _cdmReply->isUncertain = _dstValues->uncertain; 

            sendCDMReply(*_cdmReply, rq->rq_src); 

        } 

    } 

} 

} 

 

//function to handle receiving CDM reply packets 

void CDM::recvCDMRep(Packet *p) 

{ 

    struct hdr_ids_cdm_rep *rep = HDR_IDS_CDM_REP(p); 

    CDMReply *_cdmReply = new CDMReply(); 

    _cdmReply->reqId = rep->rq_id; 

    _cdmReply->repId = std::rand(); 

    _cdmReply->replyingNodeIP = rep->rq_src; 

    _cdmReply->suspectNodeIP = rep->suspect_node; 

    _cdmReply->rp_timestamp = CURRENT_TIME; 

    _cdmReply->isMalicious = rep->isMalicious; 

    _cdmReply->isNonMalicious = rep->isNonMalicious; 

    _cdmReply->isUncertain = rep->isUncertain; 

    AddNewCDMReply(index, rep->rq_id, rep->rq_src, rep->suspect_node, _cdmReply); 

} 
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//function to send CDM request to target node 

void CDM::sendCDMRequest(CDMRequest request, int dst) 

{ 

    Packet *p = Packet::alloc(); 

    struct hdr_cmn *ch = HDR_CMN(p); 

    struct hdr_ip *ih = HDR_IP(p); 

    struct hdr_ids_cdm_req *rq = HDR_IDS_CDM_REQ(p); 

 

    ch->size() = IP_HDR_LEN + rq->size(); 

    ch->iface() = -2; 

    ch->error() = 0; 

    ch->addr_type() = NS_AF_NONE; 

    ch->prev_hop_ = index; 

    ch->next_hop_ = dst; 

 

    ih->saddr() = index; 

    ih->daddr() = dst; 

    ih->sport() = RT_PORT; 

    ih->dport() = RT_PORT; 

 

    rq->rq_type = IDS_CDM_REQ; 

    rq->suspect_node = request.suspectNodeIP; 

    rq->attack_type = request.suspectedAttack; 

    rq->rq_timestamp = CURRENT_TIME; 

    rq->rq_dst = dst; 

    rq->rq_src = index; 

    rq->rq_id = request.reqId; 

 

    Scheduler::instance().schedule(target_, p, 0.); 

} 

 

//function to send CDM reply to requesting node 

void CDM::sendCDMReply(CDMReply reply, int dst) 

{ 

    Packet *p = Packet::alloc(); 

    struct hdr_cmn *ch = HDR_CMN(p); 

    struct hdr_ip *ih = HDR_IP(p); 

    struct hdr_ids_cdm_rep *rq = HDR_IDS_CDM_REP(p); 

 

    ch->size() = IP_HDR_LEN + rq->size(); 

    ch->iface() = -2; 

    ch->error() = 0; 

    ch->addr_type() = NS_AF_NONE; 

    ch->prev_hop_ = index; 

    ch->next_hop_ = dst; 
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    ih->saddr() = index; 

    ih->daddr() = dst; 

    ih->sport() = RT_PORT; 

    ih->dport() = RT_PORT; 

 

    rq->rq_type = IDS_CDM_REP; 

    rq->suspect_node = reply.suspectNodeIP; 

    rq->attack_type = reply.suspectedAttack; 

    rq->rq_timestamp = CURRENT_TIME; 

    rq->rq_dst = dst; 

    rq->rq_src = index; 

    rq->rq_id = reply.reqId; 

    rq->isMalicious = reply.isMalicious; 

    rq->isNonMalicious = reply.isNonMalicious; 

    rq->isUncertain = reply.isUncertain; 

    Scheduler::instance().schedule(target_, p, 0.); 

} 

 

//function to check if a CDM request was already sent out to strong-ties 

bool CDM::IDSCheckIfCDMRequestAlreadySent(int reqId) 

{ 

    bool exists = std::find(std::begin(CDMRequestsAlreadySent), 

                            std::end(CDMRequestsAlreadySent), reqId) != 

std::end(CDMRequestsAlreadySent); 

 

    return exists; 

} 

 

//functino to check if a CDM request is fullfilled from a node's strong-ties 

bool CDM::isCDMRequestFullfilled(int reqId) 

{ 

    bool isFullfilled = false; 

 

    list<int> currentFullfilledRequests = CDMFullfilledRequestsDictionary; 

    if (currentFullfilledRequests.empty() == 0) 

    { 

        list<int>::iterator _req; 

        for (_req = currentFullfilledRequests.begin(); _req != currentFullfilledRequests.end(); 

++_req) 

        { 

            if (*_req == reqId) 

            { 

                isFullfilled = true; 

                break; 

            } 
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        } 

    } 

    return isFullfilled; 

} 

 

//*********************************************************************** 

// GRM Component 

//*********************************************************************** 

//GRM.h 

#ifndef __GRM_H__ 

#define __GRM_H__ 

#include "global.h" 

#include "STBM.h" 

#include "DIM.h" 

 

class GRM 

{ 

 list<GRMAlarm> GRMAlarmStorage; 

 

 void ActivateGRM(int currentIP); 

 void sendAlarm(nsaddr_t dst, nsaddr_t maliciousNode); 

 void recvAlarm(Packet *p); 

 

} 

 

//GRM.cpp 

 

//function to activate GRM based on CDM decisions 

void 

GRM::ActivateGRM(int currentIP) 

{ 

 //check for pending alarms 

 list<GRMAlarm> _allAlarms = GRMAlarmStorage; 

 list<GRMAlarm>::iterator _savedAlarm; 

 

 for (_savedAlarm = _allAlarms.begin(); _savedAlarm != _allAlarms.end(); 

++_savedAlarm) 

 { 

  if (_savedAlarm->isSentToAllTies == false) 

  { 

   //send alarms out and mark them as completed 

   list<int> myStrongTies = iDS->GetStrongTiesAddresses(index); 

   if (!myStrongTies.empty()) 

   { 

    list<int>::iterator tie; 

    for (tie = myStrongTies.begin(); tie != myStrongTies.end(); ++tie) 
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    { 

     sendAlarm(*tie, _savedAlarm->maliciousNodeIP); 

    } 

    rtable.rt_delete((int)_savedAlarm->maliciousNodeIP); 

    //mark as completed 

    _savedAlarm->isSentToAllTies = true; 

    _savedAlarm->timeAlarmSent = CURRENT_TIME; 

   } 

  } 

 } 

} 

 

//function to send alarm to strong-ties 

void GRM::sendAlarm(nsaddr_t dst, nsaddr_t maliciousNode) 

{ 

 Packet *p = Packet::alloc(); 

 struct hdr_cmn *ch = HDR_CMN(p); 

 struct hdr_ip *ih = HDR_IP(p); 

 struct hdr_ids_alarm *rq = HDR_IDS_ALARM(p); 

 

 ch->size() = IP_HDR_LEN + rq->size(); 

 ch->iface() = -2; 

 ch->error() = 0; 

 ch->addr_type() = NS_AF_NONE; 

 ch->prev_hop_ = index; 

 ch->next_hop_ = dst; 

 

 ih->saddr() = index; 

 ih->daddr() = dst; 

 ih->sport() = RT_PORT; 

 ih->dport() = RT_PORT; 

 

 rq->rq_type = IDS_ALARM; 

 rq->rq_dst = dst; 

 rq->rq_src = index; 

 rq->malicious_node = maliciousNode; 

 rq->rq_timestamp = CURRENT_TIME; 

 

 Scheduler::instance().schedule(target_, p, 0.); 

} 

 

//function to handle receiving alarm from strong-ties 

void GRM::recvAlarm(Packet *p) 

{ 

 struct hdr_ids_alarm *rq = HDR_IDS_ALARM(p); 

 //check if alarm is from a strong tie 
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 Node *n = DIM->IsExistingNode(rq->rq_src); 

 if (n != NULL && n->isStrongTie == true && n->isMalicious == false) 

 { 

  //mark node as malicious 

  Node *n_malicious = DIM->IsExistingNode(rq->malicious_node); 

  if (n_malicious != NULL) 

  { 

   n_malicious->isMalicious = true; 

   n_malicious->isStrongTie = false; 

   rtable.rt_delete((int)n_malicious->ip); 

   list<int> myStrongTies = STBM->GetStrongTiesAddresses(index); 

 

   if (!myStrongTies.empty()) 

   { 

    list<int>::iterator tie; 

    for (tie = myStrongTies.begin(); tie != myStrongTies.end(); ++tie) 

    { 

     sendAlarm(*tie, rq->malicious_node); 

    } 

   } 

  } 

 } 

} 

} 
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