8,579 research outputs found

    Using Negotiation to Reduce Redundant Autonomous Mobile Program Movements

    Get PDF
    Distributed load managers exhibit thrashing where tasks are repeatedly moved between locations due to incomplete global load information. This paper shows that systems of Autonomous Mobile Programs (AMPs) exhibit the same behaviour, identifying two types of redundant movement and terming them greedy effects. AMPs are unusual in that, in place of some external load management system, each AMP periodically recalculates network and program parameters and may independently move to a better execution environment. Load management emerges from the behaviour of collections of AMPs. The paper explores the extent of greedy effects by simulation, and then proposes negotiating AMPs (NAMPs) to ameliorate the problem. We present the design of AMPs with a competitive negotiation scheme (cNAMPs), and compare their performance with AMPs by simulation

    Redundant movements in autonomous mobility: experimental and theoretical analysis

    Get PDF
    <p>Distributed load balancers exhibit thrashing where tasks are repeatedly moved between locations due to incomplete global load information. This paper shows that systems of autonomous mobile programs (AMPs) exhibit the same behaviour, and identifies two types of redundant movement (greedy effect). AMPs are unusual in that, in place of some external load management system, each AMP periodically recalculates network and program parameters and may independently move to a better execution environment. Load management emerges from the behaviour of collections of AMPs.</p> <p>The paper explores the extent of greedy effects by simulating collections of AMPs and proposes negotiating AMPs (NAMPs) to ameliorate the problem. We present the design of AMPs with a competitive negotiation scheme (cNAMPs), and compare their performance with AMPs by simulation. We establish new properties of balanced networks of AMPs, and use these to provide a theoretical analysis of greedy effects.</p&gt

    Autonomous mobility in multilevel networks

    Get PDF
    Autonomous Mobile Programs (AMPs) are mobile agents that are aware of their resource needs and sensitive to the execution environment. AMPs are unusual in that, instead of using some external load management system, each AMP periodically recalculates network and program parameters and independently moves to a new location if it provides a better execution environment. Dynamic load management emerges from the behaviour of collections of AMPs. AMPs have previously been measured using mobile languages like Java Voyager on local area networks (LANs). The thesis develops an accurate simulation for AMPs on networks and validates it by reproducing the behaviour of collections of AMPs on homogeneous and heterogeneous LANs. The analysis shows that AMPs exhibit thrashing like other distributed load balancers. This thrashing is investigated in collections of AMPs, and two types of redundant movement (greedy effect) are identified. The thesis explores the extent of greedy effects by simulating collections of AMPs, and proposes negotiating AMPs (NAMPs) to ameliorate the problem. The design of AMPs with a competitive negotiation scheme (cNAMPs) is presented, followed by a performance comparison AMPs and cNAMPs using simulation. To estimate the significance of the greedy effects the properties of balanced states are established, such as independent balance, singleton optimality, and consecutive optimality. The balanced states are characterised for homogeneous and heterogeneous networks where AMPs are analysed as the general case. The significance of the cNAMP greedy effect is established by conducting a worst case analysis of redundant movements, and the maximum number, and probability of, redundant movements are calculated for homogeneous and heterogeneous networks. One of three theorems proves that in a heterogeneous network of q subnetworks the number of redundant movements does not exceed q − 1. i The thesis proposes and evaluates a multilevel cNAMP architecture that abstracts over network topologies to effectively distribute cNAMPs in large networks. The thesis investigates alternatives for implementation of this multilevel architecture and proposes a fusion-based scheme where information is first available to neighbour nodes. These neighbour nodes modify the information and pass it to remote locations. The effectiveness of the scheme is evaluated by simulating networks with up to five levels, varying the number of locations from 5 to 336, and the number of cNAMPs from 8 to 3360. The experiments investigate the effects depending on the number of levels, topologies, number of locations, number of cNAMPs, work of cNAMPs, type of cNAMPs, speed of locations, and type of rebalancing. The architecture is found to be effective because it delivers performance close to the hypothetical, e.g. each additional level increases mean cNAMP completion time by just 2%

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    GUARDIANS final report

    Get PDF
    Emergencies in industrial warehouses are a major concern for firefghters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist fire fighters in searching a large warehouse. In this report we discuss the technology developed for a swarm of robots searching and assisting fire fighters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also one of the means to locate the robots and humans. Thus the robot swarm is able to locate itself and provide guidance information to the humans. Together with the re ghters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    Reliable distribution of computational load in robot teams

    Get PDF
    © 2021, The Author(s). Modern multi-robot systems often need to solve computationally intensive tasks but operate with limited compute resources and in the presence of failures. Cooperating to share computational tasks between robots at the edge reduces execution time. We introduce and evaluate a new computation load management technology for teams of robots: Reliable Autonomous Mobile Programs (RAMPs). RAMPs use information about the computational resources available in the team and a cost model to decide where to execute. RAMPs are implemented in ROS on a collection of Raspberry Pi-based robots. The performance of RAMPs is evaluated using route planning, a typical computationally-intensive robotics application. A systematic study of RAMPs demonstrates a high likelihood of optimal or near-optimal distribution and hence efficient resource utilisation. RAMPs successfully complete in the presence of simultaneous, or successive, robot failures and network failures, while preserving near-optimal distribution

    The New Era of Digital Transformation and COVID-19 Effect on The Employment in Mobile Operators in Egypt

    Get PDF
    A fear from Technological Advances mainly automation and artificial intelligence (AI) has been raised since the beginning of the 21st century, that machines will eliminate human beings performing certain tasks. Several models were developed to measure the effect of the Automation & AI on the employment and was applied on several countries. The first model was developed by Carl Benedikt Frey and Michael A. Osborne was called An Occupation-Based Approach, 2013. In which they define several tasks and call it “Engineering-Bottlenecks”. Katharina Dengler, Britta Matthes and Wiebke Paulus, 2014 made The Occupational Tasks model in which they use the assignment of activities explained by Alexandra Spitz-Oener and categorize the non-automatable tasks as: analytical non-routine tasks, interactive non-routine tasks. The last model was A-Task Based Approach by Melanie Arntz, Terry Gregory, 2016 in which they argue that FO Model Ignore that, the occupations consist of many tasks, part of them can be automated and another part cannot be. These models were applied on the level of the countries but not on corporate levels.The purpose of this paper is to combine the above three models and applying them on the Mobile operators in Egypt to determine the effect of Automation and AI on the Employment there, taking into consideration the incremental risk from COVID-19 which influenced the humanity.The conclusion of this research is that 41% of the staff working in the Technology field on the mobile operators, their jobs are subject to automation and COVID-19 will make an incremental Risk of 8%, due to creation of efficiency on performing the un-automatable tasks from home through digital platforms

    Advances in Robot Navigation

    Get PDF
    Robot navigation includes different interrelated activities such as perception - obtaining and interpreting sensory information; exploration - the strategy that guides the robot to select the next direction to go; mapping - the construction of a spatial representation by using the sensory information perceived; localization - the strategy to estimate the robot position within the spatial map; path planning - the strategy to find a path towards a goal location being optimal or not; and path execution, where motor actions are determined and adapted to environmental changes. This book integrates results from the research work of authors all over the world, addressing the abovementioned activities and analyzing the critical implications of dealing with dynamic environments. Different solutions providing adaptive navigation are taken from nature inspiration, and diverse applications are described in the context of an important field of study: social robotics
    corecore