
Autonomous Mobility in Multilevel Networks

Natalia Chechina

Submitted in fulfilment of the requirements

of the degree of Doctor of Philosophy

at Heriot-Watt University

in the School of Mathematical and Computer Sciences

September 2011

The copyright in this thesis is owned by the author. Any quotation from the thesis or

use of any of the information contained in it must acknowledge this thesis as the source

of the quotation or information.

Abstract

Autonomous Mobile Programs (AMPs) are mobile agents that are aware of their resource

needs and sensitive to the execution environment. AMPs are unusual in that, instead of

using some external load management system, each AMP periodically recalculates net-

work and program parameters and independently moves to a new location if it provides

a better execution environment. Dynamic load management emerges from the behaviour

of collections of AMPs. AMPs have previously been measured using mobile languages

like Java Voyager on local area networks (LANs).

The thesis develops an accurate simulation for AMPs on networks and validates it by

reproducing the behaviour of collections of AMPs on homogeneous and heterogeneous

LANs. The analysis shows that AMPs exhibit thrashing like other distributed load balan-

cers. This thrashing is investigated in collections of AMPs, and two types of redundant

movement (greedy effect) are identified. The thesis explores the extent of greedy ef-

fects by simulating collections of AMPs, and proposes negotiating AMPs (NAMPs) to

ameliorate the problem. The design of AMPs with a competitive negotiation scheme

(cNAMPs) is presented, followed by a performance comparison AMPs and cNAMPs

using simulation.

To estimate the significance of the greedy effects the properties of balanced states are

established, such as independent balance, singleton optimality, and consecutive optimal-

ity. The balanced states are characterised for homogeneous and heterogeneous networks

where AMPs are analysed as the general case. The significance of the cNAMP greedy

effect is established by conducting a worst case analysis of redundant movements, and

the maximum number, and probability of, redundant movements are calculated for ho-

mogeneous and heterogeneous networks. One of three theorems proves that in a hetero-

geneous network of q subnetworks the number of redundant movements does not exceed

q − 1.

i

The thesis proposes and evaluates a multilevel cNAMP architecture that abstracts over

network topologies to effectively distribute cNAMPs in large networks. The thesis in-

vestigates alternatives for implementation of this multilevel architecture and proposes

a fusion-based scheme where information is first available to neighbour nodes. These

neighbour nodes modify the information and pass it to remote locations. The effective-

ness of the scheme is evaluated by simulating networks with up to five levels, varying

the number of locations from 5 to 336, and the number of cNAMPs from 8 to 3360.

The experiments investigate the effects depending on the number of levels, topologies,

number of locations, number of cNAMPs, work of cNAMPs, type of cNAMPs, speed of

locations, and type of rebalancing. The architecture is found to be effective because it

delivers performance close to the hypothetical, e.g. each additional level increases mean

cNAMP completion time by just 2%.

ii

To my Mother and Granny

Nasima Chechina and Antonina Moiseeva.

iii

Acknowledgements

This work would never be possible without help and belief of the people who supported

me on the way to this thesis. First, I would like to thank my supervisors Dr Peter King

and Prof Phil Trinder for their continued guidance and encouragement in every step of

my PhD. It was very important for me to be confident that my supervisors always find

time to discuss the research, give advice, read my writing and do some ‘derussifications’.

I am grateful to my friends in Kyrgyzstan, Russia, UK, Canada, and many other countries

who supported me throughout my PhD and gave me encouragement and strength to

conduct the research. I am much indebted to my spiritual guide Fr Raphael Pavouris

whose love and trust in God supported me from very first days at Heriot-Watt University,

my flatmates Clair and Angus McAdam who turned a house into a home where it was

always a pleasure to come back, and my dear friend Nurgul Kasenova who always finds

time to talk to me whenever I call. I thank my teacher and friend Diana Antonenko

whose enthusiasm and kindness were my source of inspiration.

I also would like to thank Heriot-Watt University for the James Watt Scholarship that

made this research possible, and for the constant assistance from the staff of School of

Mathematical and Computer Sciences (MACS), members of Dependable System Group

(DSG), and Research Development Programs (RDP).

I am infinitely grateful to my dear Mother, Nasima Chechina, and Granny, Antonina

Moiseeva, for their love, help, and belief in me.

iv

Declaration

In accordance with the appropriate regulations I hereby submit my thesis and I declare

that:

1. the thesis embodies the results of my own work and has been composed by myself

2. where appropriate, I have made acknowledgement of the work of others and have

made reference to work carried out in collaboration with other persons

3. the thesis is the correct version of the thesis for submission and is the same version

as any electronic versions submitted

4. my thesis for the award referred to, deposited in the Heriot-Watt University Lib-

rary, should be made available for loan or photocopying and be available via the

Institutional Repository, subject to such conditions as the Librarian may require

5. I understand that as a student of the University I am required to abide by the

Regulations of the University and to conform to its discipline.

v

Contents

1 Introduction 1

1.1 Context . 1

1.2 Thesis Contributions . 2

1.3 Publications . 4

2 Background 5

2.1 Networks . 6

2.1.1 Network Scale . 6

2.1.2 Network Topology . 8

2.2 Mobility . 8

2.3 Autonomic Systems . 10

2.4 Autonomous Mobile Programs . 11

2.4.1 Program Execution Time Prediction 15

2.4.2 Assumptions . 16

2.5 Distributed Load Management . 16

2.5.1 Local and Global Load Management 17

2.5.2 Static and Dynamic Load Management 18

2.5.3 System State Estimation . 19

2.5.4 Decision Making . 22

2.6 Mobile Agent Load Management . 23

2.7 Network Simulation . 25

2.7.1 Properties of Network Simulation 25

2.7.2 Simulation Packages . 26

2.7.3 Simulation Package Selected 27

2.8 Discussion . 29

vi

Contents

3 AMP Simulation Design and Validation 31

3.1 Simulation Design . 32

3.1.1 Weak Mobility . 32

3.1.2 Simulation Network Design 34

3.2 AMP LAN Experimental Set Up . 36

3.3 Homogeneous Network . 38

3.3.1 Optimal Balance . 38

3.3.2 Near-Optimal Balance . 39

3.3.3 Adding Autonomous Mobile Programs 40

3.3.4 Removing Autonomous Mobile Programs 43

3.4 Heterogeneous Network . 45

3.5 Discussion . 48

4 Redundant Movements in Autonomous Mobility 50

4.1 Greedy Effects . 51

4.1.1 AMP Distribution Scenarios 52

4.1.2 Location Thrashing . 52

4.1.3 Location Blindness . 53

4.1.4 Location Thrashing vs. Location Blindness 55

4.2 Adapting Simulation to Investigate the Greedy Effects 56

4.2.1 Transferring AMPs . 57

4.2.2 State Information . 57

4.3 AMP Greedy Effect Experiments . 58

4.3.1 Experiments and Results . 58

4.3.2 Analysing Greedy Effects . 61

4.4 Negotiating AMPs and cNAMPs . 64

vii

Contents

4.4.1 Negotiating AMPs . 66

4.4.2 The Design of cNAMPs . 68

4.4.3 Summary . 75

4.5 Comparative cNAMP and AMP Performance 78

4.5.1 cNAMP Overhead . 80

4.6 Discussion . 81

5 Theoretical Analysis of Balanced States and Redundant Movements 83

5.1 Properties of Balanced Networks . 83

5.1.1 Balanced State Checker . 84

5.1.2 Independent Balance Property 86

5.1.3 Optimal Balance . 89

5.1.4 Near-Optimal Balance . 91

5.1.5 Characterizing Balanced States in a Homogeneous Network . . 92

5.1.6 Characterizing Balanced States in a Heterogeneous Network . . 93

5.2 cNAMP Greedy Effect Analysis . 94

5.2.1 Homogeneous Network . 95

5.2.2 Heterogeneous Network . 101

5.3 Discussion . 105

6 Multilevel Network Design 107

6.1 Topology . 108

6.2 Transfer Delay . 113

6.3 cNAMP Design on Multilevel Networks 117

6.3.1 Design Alternatives . 118

6.3.2 Implemented Design . 120

6.4 Simulation Parameters . 125

viii

Contents

6.5 Discussion . 127

7 Evaluation of Multilevel cNAMP Architecture 129

7.1 Effectiveness . 130

7.1.1 Experiment A1: Number of Levels 130

7.1.2 Experiment A2: Network Topology 133

7.1.3 Experiment A3: Number of Locations 135

7.1.4 Experiment A4: Number of cNAMPs 136

7.1.5 Experiment A5: Work of cNAMPs 137

7.1.6 Experiment A6: Type of cNAMPs 139

7.1.7 Experiment A7: Speed of Locations 141

7.1.8 Experiment A8: Rebalancing 143

7.2 Redundant Movements . 148

7.2.1 Experiment B1: Number of Levels 148

7.2.2 Experiment B2: Number of Locations 152

7.2.3 Experiment B3: Work of cNAMPs 154

7.2.4 Experiment B4: Type of cNAMPs 156

7.3 Discussion . 157

8 Conclusion and Future Work 159

8.1 Summary . 159

8.2 Limitations . 162

8.3 Future Work . 163

Glossary 166

A Distribution of 20 AMPs on 10 Locations 170

ix

Contents

B C++ Code of Balanced State Checker 174

C Calculation of AMP Distribution in Heterogeneous Networks 178

D Theoretical Analysis of Redundant Movements 181

D.1 cNAMP Termination at the Root Location in an Optimally Balanced Ho-

mogeneous Network . 181

D.2 cNAMP Termination in a Near-Optimally Balanced Homogeneous Net-

work . 182

D.3 Proof of Lemma 10 . 187

D.4 Probability of q− 2 Redundant Movements after a cNAMP Termination

from Optimal Balance . 189

D.5 Probability of q− 1 Redundant Movements after a cNAMP Termination

from Near-Optimal Balance . 193

x

List of Figures

2.1 A Classification of Mobility Mechanisms [FPV98] 10

2.2 Classification of Load Management Methods [CK88] 17

3.1 Mobile Behaviour of Java Voyager AMPs with Weak Mobility [Den07] 33

3.2 Interconnections in a Location . 34

3.3 Interconnections in a Location Using NED 35

3.4 Location Interconnection . 35

3.5 Interconnections in a LAN . 36

3.6 7 AMPs Adding 3 More AMPs on 4 Locations 41

3.7 5 AMPs Adding 4 More AMPs on 3 Locations 42

3.8 Removing AMPs . 44

3.9 AMP Distribution in a Heterogeneous Network 46

3.10 AMP Rebalancing: Greedy Effect in Simulated Experiments 48

4.1 Location Thrashing Greedy Effect [DTM06] 53

4.2 Location Blindness Greedy Effect (Section 3.4) 54

4.3 AMP UML Diagram . 59

4.4 AMP Movements (Scenario 1) . 62

4.5 Completion Time of 25 cNAMPs . 73

4.6 Completion Time of 100 cNAMPs . 74

4.7 Completion Time of 500 cNAMPs . 74

4.8 cNAMP Pseudocode . 76

4.9 Load Server Pseudocode . 76

4.10 cNAMP UML Diagram . 77

4.11 Initial Distribution and Rebalancing 79

xi

List of Figures

5.1 Pseudocode of the Balanced State Checker 85

5.2 cNAMP Cost Model Components . 95

6.1 Hierarchical Tree Architecture . 110

6.2 A Specific Hierarchical Tree Architecture (HA1) 111

6.3 A Simulated HA1 Architecture . 112

6.4 Number of Parental Gateways . 118

6.5 Multilevel Network cNAMP Algorithm 122

6.6 Multilevel Network Load Server Algorithm 123

6.7 Multilevel Network Gateway Algorithm 124

7.1 cNAMP Completion Time vs. Number of Levels 132

7.2 cNAMP Completion Time vs. Topology 133

7.3 cNAMP Completion Time vs. Number of Locations 135

7.4 cNAMP Completion Time vs. Number of cNAMPs 137

7.5 cNAMP Completion Time vs. cNAMP Work 138

7.6 cNAMP Completion Time vs. Type of cNAMPs 141

7.7 cNAMP Completion Time vs. Speed of Locations 143

7.8 Initial distribution . 145

7.9 Adding More cNAMPs . 146

7.10 Removing cNAMPs . 148

7.11 Redundant Movements vs. Number of Locations 154

7.12 Redundant Movements vs. Work of cNAMPs (B3) 155

7.13 Redundant Movements vs. Type of cNAMPs (B4) 157

A.1 Distribution of 20 AMPs on 10 Locations 171

A.2 Relative CPU Speeds of 19 AMPs on 10 Locations in Distribution ‘.../2/1...’172

xii

List of Tables

2.1 Parameter Definitions . 13

3.1 Computation Time of Matrix Multiplication Programs [Den07, Table 4.11] 37

3.2 Optimal Balanced Distribution in Real and Simulated Experiments . . . 39

3.3 Near-Optimal Balance . 40

3.4 Balance States of Simulated Experiments 43

3.5 Type of Stages after AMP Removing 47

4.1 AMP Greedy Effect Experiment Summary 60

4.2 Parameters of the cNAMP Simulation 72

4.3 Mean and Median cNAMP Completion Time 75

4.4 Comparative Summary of AMP and cNAMP Greedy Effects 78

4.5 AMP/cNAMP and Request/Response Messages 80

5.1 AMP Distribution in a Pair of Subnetworks for a Given Sum of AMPs . 87

6.1 Number of Levels vs. Distance and Hops 116

6.2 Multilevel AMP Architecture Design Alternatives 119

6.2 Multilevel AMP Architecture Design Alternatives (continued) 120

6.3 Simulation Parameters . 127

7.1 Experiment A1 Topologies . 131

7.2 Changes of Completion Time Depending on the Number of Levels (A1) 132

7.3 Experiment A2 Topologies . 134

7.4 Experiment A3 Topology . 136

7.5 Experiment A4 Topology . 136

7.6 cNAMP Completion Time in Experiment A4 137

xiii

List of Tables

7.7 cNAMP Completion Time in Experiment A5 139

7.8 Relative Difference of Experimental Completion Time from Hypothetical 139

7.9 Number and Types of cNAMPs in Experiment A6 140

7.10 Program Types in Experiment A6 . 140

7.11 Speeds of Locations in Experiment A7 142

7.12 Speed of Locations in Experiment A8 144

7.13 Scenario classes for the Initial Distribution Experiment 144

7.14 Scenario classes for the Adding More cNAMPs Experiment 146

7.15 Scenarios of Removing cNAMPs Experiment 147

7.16 cNAMP Movements during Initial Distribution in Experiment B1 149

7.17 Total and Terminated Numbers of cNAMPs in Experiment B1 150

7.18 cNAMP Movements after cNAMP Termination in Experiment B1 . . . 151

7.19 cNAMP Movements during Initial Distribution in Experiment B2 153

7.20 cNAMP Movements in Experiment B3 156

7.21 cNAMP Movements during Initial Distribution in Experiment B4 156

8.1 Glossary . 166

A.1 States after AMP Termination . 170

A.2 Number of Movement after AMP Termination 172

C.1 List of Distributions . 179

D.1 Probability Distribution of the Maximum Number of Movement 192

D.2 Distribution in the First 10% of Table D.1 192

D.3 Maximum and Minimum Values of q−2 Redundant Movement Probability193

xiv

Chapter 1
Introduction

1.1 Context

Autonomous Mobile Programs (AMPs) are mobile agents that improve execution ef-

ficiency by managing load; AMPs are aware of their resource needs, sensitive to the

execution environment and periodically seek a better location to reduce completion

time [DTM06]. To decide whether to move to another location or not AMPs use a cost

model. Effective load management emerges from the behaviour of collections of AMPs.

It has been observed that distributed collections of AMPs exhibit redundant movements,

like other distributed systems. In general redundant movements are a result of mak-

ing locally optimal but globally suboptimal choices. To reduce the number of redund-

ant movements different techniques are used, such as limiting any particular task to a

maximum number of migrations [GA91], calculating the largest difference between the

estimated execution time and the interprocess communication cost [EAEB97], apply-

ing market mechanisms [GR03]. These techniques aim to reduce the redundant move-

ments where locations have a task scheduler or management agents, whereas the research

1

Chapter 1. Introduction

presented in this thesis aims to reduce redundant movements for AMPs that operate

without a scheduler.

AMP behaviour has previously been measured using mobile languages like Java Voy-

ager [Rec10] on local area networks (LANs) [DTM06]. The current research first invest-

igates AMPs and their modification, so called cNAMPs, on LANs. A cNAMP design

which is scalable for large networks is then proposed. The research presented in this

thesis uses simulation as it provides a relatively fast and cheap way to emulate networks

of different topology and specification.

1.2 Thesis Contributions

The research contributions of this thesis are as follows:

1. Identifying two types of redundant movements in AMP systems, analysing their sig-

nificance using theoretical and experimental techniques, and introducing a concept

of negotiating AMPs [CKT10]. The thesis shows that collections of AMPs exhibit

redundant movements, as observed in other distributed systems, and distinguishes

two types of so called greedy effect. The significance of the AMP greedy effects

is analysed to show that although greedy effects have limited impact on networks

with a small number of AMPs, few locations, or small AMPs, their effects increase

as any of these factors scale. The analysis of the redundant movement types and

the reasons they occur show that redundant movements are mainly caused by loc-

ation thrashing. To reduce the number of redundant movements the negotiating

AMPs are proposed and competitive Negotiating AMPs (cNAMPs) are designed

(Chapter 4).

2. Establishing balanced state properties, and investigating the cNAMP greedy ef-

fect [CKT11]. To analyse the significance of the greedy effect in cNAMPs bal-

anced state properties are investigated including independent balance, singleton

2

Chapter 1. Introduction

optimality, and consecutive optimality. Balanced states are also characterised

for homogeneous and heterogeneous networks. The significance of the cNAMP

greedy effect is established by conducting a worst case analysis of redundant

movements, and the maximum number, and probability of, redundant movements

are calculated for homogeneous and heterogeneous networks. One of three the-

orems shows that in a heterogeneous network of q subnetworks the number of

redundant movements does not exceed q − 1 (Chapter 5).

3. Assembling a set of consistent and rigorous definitions about the behaviour of

collections of AMPs and cNAMPs. These definitions are essential for reasoning

about AMP/cNAMP behaviour. Some of definitions given in earlier papers are

generalised [Den07, CKPT09] (Glossary).

4. The design and implementation of an architecture supporting multilevel networks.

To allow effective cNAMP distribution in large networks a multilevel architecture

that abstracts over network topologies is introduced. The thesis evaluates alternat-

ives and implements a fusion-based scheme in which a node collects information

from the lower level and provides only summary to the nodes of the same and

upper levels (Chapter 6).

5. Evaluating the architecture of multilevel networks. The effectiveness of the fusion-

based multilevel architecture is evaluated by estimating cNAMP completion time

and number of redundant movements. The networks with up to five levels are

simulated. The results show that each additional level increases the mean cNAMP

completion time by 1%–3%. Although cNAMPs may have a large number of

redundant movements in multilevel networks these movements do not affect com-

pletion time dramatically. The mean completion time in a five level network differs

from the hypothetical value by 12% (Chapter 7).

3

Chapter 1. Introduction

1.3 Publications

• Natalia Chechina, Peter King, and Phil Trinder. Redundant Movements in Autonom-

ous Mobility: Experimental and Theoretical Analysis. Journal of Parallel and

Distributed Computing, 71(10):1278–1292, Elsevier, 2011.

• Natalia Chechina, Peter King, and Phil Trinder. Using Negotiation to Reduce

Redundant Autonomous Mobile Program Movements. In IAT ’10, pp. 343–346,

September 2010. Toronto, Canada, IEEE Computer Society.

• Natalia Chechina, Peter King, Rob Pooley, and Phil Trinder. Simulating Autonom-

ous Mobile Programs on Networks. In PGNet’09, pp. 201–206, June 2009. Liver-

pool, UK.

4

Chapter 2
Background

We can hardly imagine the modern world and our every day life without the Internet

and advantages provided by computer networks, such as remote access, virtualization

distant computers, data storage. Given the scale and complexity of the present networks

autonomy is a promising means to automatically configure complex systems and distrib-

ute work among computers. This thesis investigates the effectiveness of Autonomous

Mobile Programs (AMPs) as a mechanism to manage load in LANs (Chapters 3 and 4)

and large multilevel networks (Chapters 6 and 7).

This chapter introduces key ideas for the understanding of AMPs and their behaviour. It

starts with a discussion of computer networks (Section 2.1), and then provides informa-

tion about mobility (Sections 2.2) and autonomy (Section 2.3). Next the chapter covers

AMPs (Section 2.4) and discusses load management classification indicating AMP place

in taxonomies (Section 2.5). The novelty of AMPs and their features are compared with

other mobile agent load managers (Section 2.6), and as the research is conducted by

means of simulation, network simulators are also discussed (Section 2.7). The chapter

concludes with the review of the main findings (Section 2.8).

5

Chapter 2. Background

2.1 Networks

A network is a set of interconnected computers. Networks are classified according to the

number of computers, their interconnections and geographical position. These factors

affect transfer rate and inputs of telecommunication lines. Network scales are discussed

in Section 2.1.1 and topologies are discussed in Section 2.1.2.

2.1.1 Network Scale

The literature identifies different network scales, e.g. [Tan03, Mac98]. Tanenbaum’s

classification [Tan03] of local area networks, wide area networks, and internetworks is

found to be the most relevant to the current research.

Local Area Network. A local area network (LAN) is characterized by a relatively

small geographical range, e.g. an office, a building or a small group of buildings [Nun92].

Computers are usually distributed within a few kilometres and have a relatively high data

rate of 10 Mbps to 10 Gbps. A LAN is commonly used to share data and to exchange

information. An example of a LAN is Ethernet.

Wide Area Network. A wide area network (WAN) covers a larger physical area than a

LAN, such as a country or a continent [LE96]. It unites machines (hosts, locations) with

a communication subnet. The machines are operated by users, while communication

subnets are commonly operated by telephone companies or Internet service providers. A

subnet typically consists of transmission lines to move data between hosts, and switching

elements to link transmission lines together. Switching elements are also called routers.

The speed of data transmission is usually less than within a LAN and typically ranges

from 1.2 Mbps to 156 Mbps.

6

Chapter 2. Background

Internetwork. An internetwork combines a set of LANs and WANs with different

hardware and software [MvS95]. This interconnection is effected by means of gateways.

The gateways are specialised routers that link different networks and perform software

conversion of traffic between different protocols. In contrast to a WAN, an internetwork

is formed by connection of distinct networks. Another feature of an internetwork is that

it has a global scale. These two properties enable computers with different architectures

to communicate with each other at arbitrary distances. An example of an internetwork

is the Internet.

Multilevel Network. By a multilevel network is meant a hierarchical network abstrac-

tion where processing elements are divided into groups. The reason to use a multilevel

network notion is to abstract from both the network scale and the type of processing

elements, i.e. to emphasise that the designed scheme is developed not for a particular

type of machines or networks but rather is a general scheme. Thus, we can think of a

processing element as a core in a multicore computer, or a processor in a multiprocessor

architecture, or a single processor computer (location). Network scale is also not limited

due to the hierarchical architecture, and may vary from a multicore computer and a LAN

to an internetwork.

Multilevel networks are widely used in network managements systems to enable im-

plementation of scalable, robust and secure networks [TF95]. Multilevel networks can

be constructed in a number of ways, e.g. [Zho10] distinguishes two types of network

elements within each level: network management servers that carry connection with

nearest levels, and executing elements, such as laptops and printers; whereas [STD02]

uses a multilevel network as a prototype for a fully connected network of processors to

carry diagnosis algorithms.

In the current research processing elements are divided into groups and form Level 0.

The groups are connected with each other via gateways that form the remaining levels.

In the current research the number of levels depends on the dispersion of interconnection

delays. Detailed discussion of simulated multilevel networks is provided in Chapter 6.

7

Chapter 2. Background

In the current thesis by a location is meant a single processor computer in a singlelevel

network, and a processing unit in a multilevel network, e.g. a single processor com-

puter or a processer in a multiprocessor computer. By a node is meant a location in a

singlelevel network, and a location or a gateway in a multilevel network.

2.1.2 Network Topology

A network topology is a configuration of physical links [OO06]. The most commonly

used topologies are star, ring, tree and mesh. These are also called typical topologies.

The choice of a topology is determined by a range of factors, such as extensibility, reli-

ability, and cost considerations. Small networks usually have one typical topology, and

large networks assemble a set of connected typical topologies. The current thesis aims to

investigate AMP distribution and AMP completion time but not precise paths of move-

ments. Therefore, only fully connected LANs, and fully connected multilevel networks

are considered, i.e. hierarchical topology where all children nodes of the same parental

node are interconnected. This interconnection is an abstraction and only identifies an

existence of a way to transmit data between locations. Detailed discussion of multilevel

topology is presented in Chapter 6.

2.2 Mobility

The term mobility may refer to various concepts depending on the context. In a hardware

technology context mobility implies mobile devices that can be moved, such as a laptop

or a wireless PDA. In a software technology context mobility implies mobile computa-

tion over a network. To distinguish between the types of mobility the following terms are

used: mobile computation for software mobility and mobile computing for hardware mo-

bility [Car99]. In the current research mobility implies a technique that provides active

process migration within a network [FPV98]. Thus, only an area of mobile computa-

8

Chapter 2. Background

tions is discussed in this thesis as its focus is on simulating autonomous mobile program

behaviour.

An ability to move executing processes within a network has the following advant-

ages [MDW99]:

• Load distribution allows processes to move from a heavily loaded node to a less

loaded node to decrease process completion time.

• Fault resilience provides processes an opportunity to migrate away from a partly

broken location and to overcome local errors.

• Data access locality allows programs to reduce data access time by migrating

closer to the data.

Mobile computations mechanisms can be classified using a taxonomy presented in Fig-

ure 2.1 [FPV98]. Depending on the entity that makes movement decisions a mobile

computation approach can be either implicit or explicit [Boi06]. In implicit mobile com-

putation a program decides itself whether to migrate or not using some algorithm. In ex-

plicit mobile computation a programmer controls computation placement in a network.

AMPs are based on the implicit mobile computation approach and make all movement

decisions themselves.

Implicit mobility can be based on mechanisms that support either a data space rearrange-

ment or code and execution state mobility. AMPs require code and execution state man-

agement mechanisms.

A code and execution state management supports two forms of mobility: weak and

strong. Weak mobility only supports code movement. Examples of programming lan-

guages that support weak mobility are mHaskel [BTL05] and Java Voyager [Rec10].

Strong mobility supports code, execution state, and data movement that allows a program

to resume its execution from the place it was stopped on the previous location. Strong

9

Chapter 2. Background

Mobility Mechanisms

¡
¡

¡¡

@
@

@@
Explicit Mobile Computation Implicit Mobile Computation

¡
¡

¡¡

@
@

@@
Code and Execution Space Management Data Space Management

¡
¡

¡¡

@
@

@@
Strong Mobility Weak Mobility

Figure 2.1: A Classification of Mobility Mechanisms [FPV98]

mobility is implemented in such programming languages like MobileML [HY00], JoCaml

[MM10], and JavaGoX [SSY00]. AMPs have previously been investigated using mobile

languages with both weak mobility like Java Voyager and strong mobility like Jocaml.

2.3 Autonomic Systems

The main property of an autonomic system is a capability of self-management. The

self-management aims to administer a system regardless of operating system and con-

figuration details. The four aspects of self-managing systems are as follows [KC03]:

• Self-configuration implies an automatic configuration of autonomic systems. A

system is able to configure and register itself in the execution environment. This

allows other systems to use the knowledge and to modify their own behaviour.

Self-configuration is crucial for large and complex systems that require significant

time and programmer resources to configure.

• Self-optimization is an ability to seek opportunities to enhance system efficiency.

The efficiency is expressed either as a performance or as a cost. A decision can be

made using a cost model, or an algorithm, or knowledge received from previous

experience and learning.

10

Chapter 2. Background

• Self-healing implies a system ability to diagnose itself and expose bugs in software

or hardware. The results can then be used to eliminate defects, e.g. installing the

missing patches, or alerting a human programmer.

• Self-protection is a system ability to defend itself against outward attacks and inner

cascade failures. Self-protection also implies making decisions using the previous

system reports.

AMPs implore a self-optimization aspect, i.e. AMPs continuously analyse the network

capacity to improve efficiency and reduce completion time. Other examples of self-

optimising systems are [MB03, SKL89, MO04]. The decision making steps in auto-

nomic self-optimizing systems are as follows [LWZ05]:

• Monitoring state information.

• Deciding whether to change the current state or not.

• Executing the decision.

2.4 Autonomous Mobile Programs

Autonomous mobile programs (AMPs) have been developed to manage load on large

and dynamic networks [DTM06]. AMPs migrate within a network to raise program

execution efficiency and exploit the network capacity. Most autonomous mobile agent

systems adapt their computations, however AMPs adapt their coordination, i.e. where

the program executes and not what it does.

AMPs are not only a type of autonomous agent but are mobile agents with a cost model.

They are similar in conception to ethological models such as ant algorithms [MO04].

However, the difference is that ant algorithms seek the fastest path and use feedback

from other mobile agents to choose the best path, whereas AMPs seek better resources

11

Chapter 2. Background

and estimate the current network information. AMPs aim to minimize completion time

by seeking the most favourable location without visiting any specific one of them. AMPs

are aware of network parameters and their own resources, and use this information to

migrate in a network. The difference between AMPs and other mobile agent load man-

agement systems is discussed in Section 2.6.

In general any program can be encapsulated in an AMP skeleton. The research presented

in the thesis considers only CPU bounded programs as it is difficult to justify moving

an Input/Output (I/O) bound program away from the data it is operating on. The I/O

bound program is expected to pause for I/O and, thus, lessen the load it imposes on the

location. The most beneficial AMP technique will be from programs that have small

size of disc space but require a lot of computation power to be executed. For example,

a program that is based on recursive computations [pen08] or generic evolutionary al-

gorithms [oxf08]. The AMPs mostly studied in the thesis perform square matrix mul-

tiplication. Experiments with other programs, e.g. coin counting and ray tracing, show

consistent behaviour. Disc space of these three programs does not depend on the remain-

ing work. Thus, in the beginning of execution, an AMP transfers as much code as in the

end of its execution.

The key equations of the AMP cost model defined in [Den07, Section 3.3.2] are repeated

here. Table 2.1 provides a list of the main parameters and their definitions. To estimate

the program completion time, Ttotal, AMPs use the following cost model:

Ttotal = TComp + TComm + TCoord, (2.1)

where TComp is the computation time, TComm is the total communication time, and TCoord

is the total coordination time. The cost model is parametrised on the system architec-

ture that includes location and interconnect speeds, data processing and communication

costs, data size, and number of locations.

To reduce AMP coordination time each location has a load server. The load servers

only collect state information, and we can think of them as blackboards. The load server

initial design and its modification are further discussed in Chapter 4.

12

Chapter 2. Background

d Dimension of square matrix

gran Fragment of work that must be executed between searches for a better location

O Overhead

R AMP relative speed

S Available speed

T1 Execution time of one unit

Tcomm Time for single communication

Tcoord Coordination time in the load server architecture

Tgran Execution time of fragment of work gran

Th Execution time on the current location

Tn Execution time on the new location

Tsend Time to transmit an AMP to the new location

W Work to execute

xloc Number of AMPs on a location

Table 2.1: Parameter Definitions

Available speed, S, is the execution speed of a single AMP on a location, i.e.

S = (CPUspeed) · (1− non AMP load), (2.2)

is used to differentiate the total resources of a location from the resources available for

AMPs. AMP load is the number of AMPs on a location. The current research, like

the previous AMP investigations [Den07], assumes that all resources of a location are

available for AMPs, and the CPU speed coincides with the available speed, except in the

case of the root location where the external load is higher. By the root location is meant

the location where all AMPs start1.

Work to execute, W , is calculated on the basis of the program coding, and is measured

in units. For example, square matrix multiplication is implemented using a triple loop.

Thus, the total work of a matrix multiplication program is W ∝ d3 where d is a di-

mension of a square matrix. Here, a unit consists of three operations: one operation of

multiplication, one operation of addition and one operation of assigning [Den07, p. 56].

Remaining work, Wr is calculated by subtraction of the executed work from the total
1In [DMT10] the root location is also called either initiating location or first location.

13

Chapter 2. Background

work. In the simulation no real matrix multiplication is performed but only an abstrac-

tion where AMP work gradually decreases depending on the executing speed.

An AMP relative speed, R, is the available speed equally divided between the AMPs at

the location, xloc, i.e.2

R =
S

xloc

. (2.3)

An AMP executes a part of work, gran, before it tests the relative speeds of other loc-

ations to see if a move will improve its completion time. gran is measured in units of

work per recalculation, and depends on remaining work, Wr, and the number of recal-

culations, n [Den07, p. 70]:

gran =
Wr

n
,

where number of recalculations, n, is a ratio of overhead, O, of the time for static pro-

gram running on the current location, Th, to the coordination time, Tcoord.

n =
O·Th

Tcoord

.

This allows to control the time an AMP spends on parameter recalculation. Thus, if an

AMP never moves from the root location its overhead is within 0.

In turn Th is remaining work, Wr, divided by relative speed at the current location

Rh [Den07, p. 54]:

Th =
Wr

Rh

=
Wr · xloc

Sh

Thus, from the above three equations gran can be calculated as follows:

gran =
Tcoord · Sh

O · xloc

· (2.4)

The estimation of AMP completion time is discussed in Section 2.4.1. The time paramet-

ers for the simulation are taken from Java Voyager AMP measurements on a LAN [Den07].

2In [Den07] the available speed is called relative speed, and the AMP relative speed is called average

relative speed.

14

Chapter 2. Background

The coordination time, Tcoord, was determined experimentally to be 0.011s for a load

server architecture. The acceptable overhead O is taken to be 5%. After executing for

Tgran an AMP makes a request to the load server of the current location about states of

other locations in the network. If an AMP decides to stay on the current location, then

it continues execution for a further Tgran seconds, otherwise it moves to a new location

taking Tsend seconds.

The main rule on the basis of which AMPs make a decision to move to a new location is

whether execution time on the current location, Th, exceeds execution time on the next

location, Tn, and communication delay, Tcomm:

Th > Tn + Tcomm. (2.5)

If condition (2.5) is satisfied, then an AMP moves. Here, communication time is time to

transfer an AMP, i.e. Tcomm = Tsend.

2.4.1 Program Execution Time Prediction

The AMP cost model is based on knowledge of the remaining execution time of the

program. The current research does not focus on the method or effectiveness of the

prediction mechanism assuming that such a mechanism is implemented in AMPs and

accurate predictions are provided.

The experiments presented in [Den07] use a simple time prediction mechanism. The

time is calculated on the basis of remaining work and location execution speeds. To

calculate the execution time of the whole program an AMP evaluates the execution time

of one unit, T1, and multiplies it by remaining work Wr, i.e. TComp = T1 ·Wr [Den07,

p. 69]. AMPs are not limited to a particular type of execution time predictor. In general

any technique that allows estimation of remaining execution time on different locations

can be used, e.g. approaches based on historical information [YP98], probabilistic mod-

elling [WhS03], case-based reasoning [NNMNA+05].

15

Chapter 2. Background

2.4.2 Assumptions

Like the previous AMP investigations, the current research is based on the following

three assumptions: system reliability, equal sharing of the CPU power, and sufficiency

of resources.

System reliability implies that locations do not fail or disappear from the network. Com-

munication lines are reliable and in case of some disruption data can be transferred using

alternative routes. Possible packet retransmission and rout diversion are taken into ac-

count in calculation of transfer delays. AMPs are also considered to be reliable and do

not fail to execute their work. Another assumption is that AMPs equally share CPU

power, i.e. all AMPs are treated equally and while being on a location AMPs constantly

conduct execution spending no time on input/output. Sufficiency of resources implies

that when an AMP checks a possibility to move to another location it only checks exe-

cution speed on the remote location and the time it would take to transfer to that location

but is not interested in available space of hard disc or available RAM of that location.

These resources are assumed to be sufficient for successful AMP execution.

Some of the assumptions such as location and AMP failure and sufficiency of resources

are planed to be weakened in the future research to investigate their impact on AMP per-

formance (Sections 8.3); whereas programs that require much input/output are currently

considered out of AMP scope and no future investigation in this area are planed. More

discussion on the thesis limitations and future work towards weakening the assumptions

are discussed in Sections 8.2 and 8.3 respectively.

2.5 Distributed Load Management

Being a promising technology to exploit computer resources and accelerate program

completion, load management has occupied research interest for many years [LK87,

SBK06, MI08]. The main difficulties load management approaches face are minimizing

16

Chapter 2. Background

Load Management Methods

¡
¡

¡

@
@

@
Local Global

¡
¡

¡

@
@

@
Static Dynamic

Figure 2.2: Classification of Load Management Methods [CK88]

execution time, minimizing communication delays, and maximizing resource utiliza-

tion [SKH95].

The AMP approach is first classified using the general taxonomy from [CK88] presented

in Figure 2.2. Then a taxonomy of dynamic task scheduling schemes [Rot94] is also used

to provide further classification of dynamic load managers.

2.5.1 Local and Global Load Management

The first distinction is between local and global load managers [CK88]. The difference

is in the number of processors that take part in load management. A local load manager

implements task scheduling for a single processor, i.e. load management is achieved by

scheduling a particular process within a processor [CHLE80]. A global load manager

solves the problem of where a task must be executed, leaving local process scheduling to

the operating system of the processor to which the task was allocated. Such cooperation

of local and global scheduling increases the autonomy of individual processors in global

load management.

Only global load managing classification and approaches are further examined in this

section as the aim of the current research is to achieve load balancing in a network.

17

Chapter 2. Background

2.5.2 Static and Dynamic Load Management

Global load managers are divided into two types: static and dynamic [CK88]. Whether

a global load manager is static or dynamic depends on the time of task scheduling,

i.e. either before or during program execution. Both methods have a range of applic-

ations but efficiency depends on the data available to the scheduler.

A static load manager assigns tasks to locations before a program starts its execution.

Therefore, all necessary information for a predictive calculation must be known before-

hand, e.g. task execution times, processing resources. The fundamental drawback of

static methods is the unavailability and quality of such information in many cases that

often results in a poor distribution. One of the main aims of a static scheduling is to

reduce program completion time at the cost of communication delays [SKH95]. This

can be achieved by either allocating processes to processors or consolidation small task

into larger groups. An example of static load management system that aims to minimise

mean job response time is presented in [TT85].

A dynamic load manager in contrast takes scheduling decisions during program exe-

cution. The movement decisions are made on the basis of system-state information,

and hence cannot be made before the program starts. The advantage of dynamic load

managing is that program consumptions are not required to be known beforehand. The

process of dynamic load managing in general entails five phases [WT98]:

• Load evaluation - analysing load of processor units to estimate the degree of net-

work imbalance.

• Profitability determination - detecting load imbalance and initiating a balancing

process.

• Calculation of a work transfer vector - calculating necessary transfers to establish

a balance.

18

Chapter 2. Background

• Task selection - preparing selected tasks to transfer.

• Task migration - transferring tasks from one processing element to another.

Other important requirements for a dynamic load managing algorithm are the ability to

employ local communications and to make fast recalculations [RN04]. A local com-

munication exhibits smaller communication delays which allow reduction of program

execution time and improvement of efficiency. Fast calculations to relocate tasks are

required to keep overheads within a reasonable value. This is especially important when

a program does not move during the whole execution but stays on the initial processing

element.

AMPs belong to the class of dynamic load managers as they periodically recalculate

network parameters to reduce completion time. To further classify AMPs a dynamic

load managing taxonomy from [Rot94] is used. The taxonomy is based on [CK88] but

provides a more detailed analysis of different dynamic load managing characteristics.

This taxonomy distinguishes state estimation and decision making functions of a load

manager and classifies them separately. The system state estimation and the decision

making are discussed in Sections 2.5.3 and 2.5.4 respectively.

2.5.3 System State Estimation

The system state estimation analyses where state information is collected, with whom it

is shared, who initiates the exchange and how often it happens [Rot94]. In a formal way

system state estimation, ξ, is denoted as follows:

ξ ∈ {(Centralised, Decentralised, Hybrid)× (Complete, Partial, V ariable)×
×(V oluntary, Involuntary, Composite)× (Periodic, Aperiodic, Combination)}.

The detailed discussion of each parameter is provided below.

19

Chapter 2. Background

Centralized, Decentralized, Hybrid. The first group of parameters defines where

state information is collected.

A centralized scheme implies a central agent that can be a physical processing element

or a globally shared file. The central agent collects system state information and, there-

fore, must be accessed and updated by every processing element of the system. An

advantage of this method is a low estimation overhead [CLHZ97]. Another advantage

is a reduced communication delay which is due to ’all-to-one’ communication scheme.

However, a substantial defect of this method is a poor scalability, i.e. the increase of the

processor number leads to the increase of the computational load and bottleneck on the

central agent. Examples of the centralized information collection are a load-balancing

policy with a centralised job dispatcher LBC [LR92] and a computing and communic-

ation system Andrew that was created as a result of collaboration between IBM and

Carneigie-Mellon University [MSC+86].

In a decentralized scheme a state information collecting element is replicated on every

node of the system, e.g. each location collects and estimates network state information.

A decentralized organization is more scalable and more reliable compared to a cent-

ralized one. An example of decentralized information collection is a Grid computing

system Messor [MMB03].

A hybrid scheme combines centralized and decentralized approaches. Developers com-

promise and derive as many advantages from both approaches as possible. Hybrid

schemes are mainly based on two structures: Globally Decentralised, Locally Cent-

ralised (GDLC) and Globally Centralised, Locally Decentralised (GCLD). In a GDLC

structure all locations are divided into clusters on the basis of various factors. A cent-

ralised organisation is used within a cluster, and a decentralized organisation is used

between the clusters. This structure is usually used in large scale networks. An ex-

ample of GDLC structure is load sharing system Utopia developed at the University of

Toronto [ZZWD93]. In a GCLD structure locations exchange state information with

their neighbours in a decentralized manner but also send their local state information

20

Chapter 2. Background

to the central monitor. An example of GCLD structure is a decentralised job scheduler

based on Bayesian decision theory presented in [Sta85].

In the AMP approach information collection is implemented by load servers on each

location in a decentralised manner. In a multilevel organisation each location collects

information from sibling locations and the gateway (i.e. upper level), a gateway in tern

collects information from its sibling, parental, and daughter nodes also in a decentralised

manner (Chapter 6). Thus, AMP information collection has a decentralised scheme.

Complete, Partial, Variable. The second group of parameters defines with whom loc-

ations share their state information. Depending on a number of nodes that take part in a

state information exchange a system state estimation can be either complete, partial, or

variable. In a complete approach all nodes exchange state information with each other,

whereas in a partial approach a node exchanges its information only with a subgroup

of nodes. A variable approach combines complete and partial approaches. In the AMP

implementation on a LAN a load server exchanges state information with all other load

servers, and in the AMP multilevel implementation a gateway exchanges state informa-

tion with sibling, parental, and child nodes (Chapter 6). Therefore, AMPs use a partial

approach.

Voluntary, Involuntary, Composite. The third group of parameters defines who ini-

tiates the information exchange process. In a voluntary approach a node sends state

information on the basis of its inner conditions, whereas in an involuntary approach the

information is sent as a response to a request from another node. A composite approach

is a combination of voluntary and involuntary approaches.

In the initial AMP implementation load servers exchange state information in an in-

voluntary manner. However, this was modified and a cNAMP approach introduced in

Section 4.4 uses a voluntary scheme.

21

Chapter 2. Background

Periodic, Aperiodic, Combination. The fourth group of parameters defines how often

the information is exchanged. AMPs use a periodic scheme.

2.5.4 Decision Making

The decision making function examines where a movement decision is made, who ini-

tiates it, and what main rule it uses. In a formal way the decision making, δ, denoted

in [Rot94] is as follows:

δ ∈ {(Centralised, Decentralised, Hybrid)× (Sender initiated,

Receiver initiated, Symmetric)× (Simple, Model based)}.

The characteristics of each parameter are discussed below in this section.

Centralised, Decentralised, Hybrid. This group of parameters defines who and where

makes movement decisions. A centralised load management implies scheduling by a

single server, whereas in decentralised load management this function is distributed

among several nodes. A hybrid scheme combines centralised and decentralised schemes.

AMPs belong to the extreme version of the decentralised decision making scheme as

each AMP decides itself where and when to move.

Sender Initiated, Receiver Initiated, Symmetric. A decision making policy which is

also called a transfer policy depends on who initiates a migration. In a sender initiated

approach a task or task maintainer searches for a remote location with better paramet-

ers. In a receiver initiated approach a node searches for work to execute. A symmetric

approach combines both sender and receiver initiated approaches. AMPs use a sender

initiated approach, i.e. each AMP periodically recalculates its parameters to seek for a

better location.

22

Chapter 2. Background

Simple, Model Based. The last group of parameters defines the type of transformation,

i.e. the way the best location for the further execution is chosen. A simple transformation

is performed by the first fit and the best fit approaches. A model based transformation

involves more complicated computations using such approaches as stochastic learning

automata, Bayesian decision theory. To reduce the recalculation cost AMPs use simple

transformation with the best fit approach, i.e. an AMP chooses a location that can provide

the minimum execution time adjusted for communication time.

Thus, AMP state estimation, ξ, and decision making, δ, functions are classified as fol-

lows:

ξ = {(Hybrid)× (Partial)× (Involuntary)× (Periodic)}

δ = {(Decentralised)× (Sender initiated)× (Simple)}

2.6 Mobile Agent Load Management

Researchers have investigated different approaches to manage load effectively in a net-

work using mobile agent techniques. Some important techniques are probabilistic, market-

based, community-based, and biologically inspired approaches.

In a probabilistic approach the movement decisions are made on the basis of a probab-

ility [OGP98, SBK06]. One of the first mobile agent load balancing systems that uses

this approach is FLASH [OGP98] designed for heterogeneous clusters. The balancing is

implemented by means of agents, i.e. node, system, and user agents. User agents make

movement decisions using local and global information provided by node and system

agents respectively.

A well-known market-based approach representative is Dynasty [BPZ96]. The load is

performed by means of brokers that are organized in a hierarchical manner. Each task has

its own funds which are supplied by the root task. To migrate to another location a task

must be able to cover such expenses like rent for utilising computer resources, brokerage

23

Chapter 2. Background

for getting assigned to a target host, fees for migration and transport services. The more

levels of broker hierarchy are involved and the larger the location selection range, the

higher price for task assignment. The request for brokering is initiated by a task and

contains information about amount of money the task is willing to pay, the task compu-

tation costs, and the list of requirements concerning the desired target host. Examples of

other load balancing systems that use a market-based approach are [WHH+92, KKP+04]

An example of a community-based approach is a Community-based Load Balancing sys-

tem (CLB) [MI08] where agents in the system have an analogy with humans. Agents are

placed according to a community they belong in to minimize inter-agent communication

time, i.e. when agents from different servers communicate with each other the servers

exchange information to improve the balance and if possible to place the agents at the

same server. CLB deals with two problems: placing frequently communicating agents as

close as possible to reduce communication time and balancing load between the servers.

Biologically inspired approaches reflect biological processes and animal behaviour on

mobile agents to manage load, e.g. ant colonies in Traveler [WX99], bee honey col-

lecting in MATS [GHCN99], cloning in [CB04]. To discuss biologically inspired ap-

proaches MATS is taken as an example. The MATS agents cooperate as a team where

each agent performs a particular role: Hive, Queen, Scout, or Worker. Hive is the initial

program which interacts with a user. Hive decomposes the initial program into pro-

cesses, Queens. A Queen is a mobile agent that implements a part of the whole program,

and Scouts are mobile agents that collect information. The Scouts are dispatched by the

Hive. The workers perform some part of computation and are dispatched by the Queen.

AMPs belong to the community-based approach. AMPs differ from other mobile agent

systems designed to balance load in that each AMP is both autonomous and self aware,

i.e. it knows key information like remaining execution time and program size. An-

other difference is that the approach does not split a program into subtasks as in [MI08,

KKP+04, CB04]. An AMP is the whole program. Thus, AMPs represent a radical point

in distributed decision making when the agent itself decides where and when to move

24

Chapter 2. Background

rather then the decision being taken by a location server [BPZ96], a load balancing co-

ordinator [SKA06], or a cluster manager [KKP+04].

2.7 Network Simulation

The research presented in the thesis is conducted using simulation. To analyse AMPs

such simulation advantages like on demand access to arbitrary number of locations for

unlimited time where locations may have any required capacity are employed. Other im-

portant simulation advantages are the possibility to repeat experiments using the same

random seeds and the ability to manage simulation pace, i.e. from slow-motion to ex-

press. Thus, to conduct the research one of the key tasks is to find a suitable simulator.

This section examines properties of a desired network simulator (Section 2.7.1), ex-

plores the classes of simulators (Section 2.7.2), and discusses the features of the selected

simulator, i.e. OMNeT++ [Var10] (Section 2.7.3).

2.7.1 Properties of Network Simulation

The main properties the simulator should possess to analyse AMP behaviour on a net-

work are as follows:

Discrete event simulation. The simulator must provide processing of discrete events to

simplify the model and to allow an accurate analysis. Continuous event simulation is not

practical in the current research due to the complexity of the system.

High level network simulation. As the aim of the current research is to analyse AMP be-

haviour in a network, the simulator should be able to simulate processes at an application

level and abstract the lower level details of the network.

Reasonable time of completion. An opportunity to evaluate results on the basis of mul-

tiple runs is one of the most important simulation modelling properties. However, if

25

Chapter 2. Background

each run takes too much time to execute, the process of data collecting becomes time

consuming. Therefore, a capability of reasonable completion time is critical to evaluate

and further improve a simulation model.

Free Software. Since there are no funds to purchase a commercial simulator there are

pragmatic reasons to use freely distributed simulators. This also provides a freedom to

modify the simulator for the problem at hand, if this would be necessary.

2.7.2 Simulation Packages

Classes of Simulation Packages

Simulators are classified as a continuous and discrete event [SS06]. Continuous sim-

ulation is preferable when object behaviour in a system can be described by means of

equations. Discrete simulation assumes passing transaction-flow (programs) by a dis-

crete sequence of steps in the simulation model (network). As program implementation

is very difficult and often impossible to predict a discrete event simulator is more effect-

ive.

In turn, discrete event simulators are classified into areas of application, e.g. business

planning, weather forecasting, molecular modelling, network simulation. Only network

simulators are discussed further in this section.

Network Simulators

A wide range of network simulators allows users to model and analyse projects be-

fore their real implementations, e.g. JiST/SWANS [Bar04], OMNeT++ [Var10], NS2

[AcbraUBP11], OPNET [opn11], Sim++ [CF11], Traffic [Sof11], and NCTUns [nct11].

The most common areas of using network simulators are as follows:

26

Chapter 2. Background

• Simulating routing and multicast protocols is supported by network simulators like

NS2 [AcbraUBP11] which is popular in academia due to its extensibility, open

source and detailed documentation. NS2 is a discrete event network simulator

based on C++ and OTcl [otc11]. It allows simulation of both wired and wireless

networks. Dynamically loadable libraries simplify NS2 extensibility and do not

require modification of the core simulator.

• Modelling complex queuing problems is the main purpose of simulators like Traffic

[Sof11] which was specifically developed for tasks that cannot be solved with

Erlang equations [Dev87]. A user can define object behaviour without using a

scripting language. Results can be exported in a spreadsheet and a word processor

format to conduct a deeper data analysis.

• Analysis of wireless networks is supported by simulators like JiST/SWANS [Bar04].

SWANS is a Scalable Wireless Ad hoc Network Simulator that was built atop of a

simulation engine JiST (Java in Simulation Time). SWANS combines system- and

language-based approaches, and provides such models as reception, noise, signal

propagation, fading, node mobility. Unmodified network applications can also be

run over the simulated network. SWANS supports components for physical, link,

network, transport and application layers.

2.7.3 Simulation Package Selected

Analysis of network simulators shows that OMNeT++ [Var10] most closely satisfies the

requirements presented in Section 2.7.1. The initial release of OMNeT++ is dated 1996

and developers continue its improvement at present. The current research is conducted

using the simulator versions 3 and 4 released in 2005 and 2010 respectively. The simu-

lator is under Academic Public License and is able to work in Dos/OS2/Windows/Unix

environment. This allows programs to be easily transferred from one computer to an-

other and to run models on computers with different operating systems.

27

Chapter 2. Background

OMNeT++ has its own library that is an extension of C++. A simulation model is con-

structed on the basis of modules. These modules have a hierarchical structure where

compound modules are composed of simple modules and other compound modules.

The module functionality is programmed in C++. Modules from different levels can-

not interact directly with each other. A network configuration is specified in a language

called NED, and parameters can be assigned either in corresponding NED files or in an

configuration file omnetpp.ini. A compiler translates NED into C++. The simplest and

the most useful component in the simulator is a message of class cMessage. The library

supports message sending, receiving, scheduling and termination. Messages transfer

from one module to another through gates that also are called ports in other systems.

Thus, a message leaves a module through an output gate and enters through an input

gate. The connection between modules of the same level is implemented by means of

links. Message delays in the links can be set either ones for a particular link in this case

all messages that transfer via this link have the same delay or every time a messages

leaves a node, here the delay is set via channels. Currently, OMNeT++ does not support

parameter arrays in messages but this can be overcome by emulating arrays via strings.

OMNeT++ provides a wide range of graphical event presentation. The graphical part

helps us to visualize and understand topology, connections and process implementation.

Events can cause output both in textual and graphical forms. Variables defined in the

model can also be inspected through a graphical user interface. Another OMNeT++

property is error checking and reporting. An error report contains both cause and loc-

ation of an error. This helps to locate mistakes quicker and saves time for productive

programming. To help in revealing mistakes an experiment repeatability is implemen-

ted. OMNeT++ allows to change a seed from 0 to 232.

The last but not the least important factor is detailed documentation that helps us to

understand basic system concepts. Step by step descriptions of simple examples allow

users to easily learn the main simulator capabilities.

28

Chapter 2. Background

2.8 Discussion

This chapter has explored the key AMP related background information. The chapter has

discussed the reasons of the network type and topology abstraction, and introduced net-

work and AMP simulation features (Section 2.1). It has also covered two core AMP con-

cepts: mobility and autonomy – that allow AMPs to migrate within a network to reduce

completion time. AMPs are based on implicit mobile computation, employ code and

execution space management, and have previously been investigated using both weak

and strong mobility [Den07] (Sections 2.2). From the four aspects of a self-management

AMPs employ a self-optimization aspect (Section 2.3). AMPs are unusual in that, in

place of some external load management system, each AMP periodically recalculates

network and program parameters and may independently move to a better execution

environment. Load management emerges from the behaviour of collections of AMPs

(Section 2.4).

AMPs are global dynamic load balancers [CK88]. AMPs have decentralised state estim-

ation scheme that involuntary and periodically collects partial information, and decent-

ralised, sender initiated, simple decision making policy [Rot94]. AMPs take all move-

ment decisions themselves, independently of other AMPs. An AMP relocates when the

predicted time to complete at the current location is greater than the predicted time at the

best available remote location plus the communication time to reach the remote location.

AMPs have a decentralised state estimation system, and to recalculate parameters they

require partial state information that is sent in a periodic involuntary way [Rot94]. To

collect state information each location has a load server that allows a reduction of AMP

coordination time (Section 2.5).

The chapter has discussed AMP difference from other mobile agent load balancers.

Thus, the way AMPs search for a better location may seem similar to iterative algorithms

[Cyb89, LRRV04]. Indeed, both approaches aim to distribute load among nodes, and the

load is estimated in the number of tasks (or programs) per node. There are two distinc-

tions: firstly, in iterative algorithms locations make the movement decisions, but with

29

Chapter 2. Background

AMPs programs make the decisions themselves. Secondly, while in iterative algorithms

the locations aim with each iteration to approach some mean load, AMPs seek only to

reduce the program completion time (Section 2.6).

The chapter has examined requirements to the simulator and then explored the altern-

atives. For the current research the OMNeT++ network simulator has been chosen

(Section 2.7). The simulation network construction and the simulation result validation

against the real experiment results will be provided in Chapter 3.

30

Chapter 3
AMP Simulation Design and Validation

To analyse AMPs on large networks an accurate simulation is constructed and validated

against experiments with AMPs on real networks. These real experiments were conduc-

ted on LANs in [DTM06] using AMPs with weak mobility (e.g. Java Voyager [Rec10])

and strong mobility (e.g. JoCaml [MM10]). The validation uses simulated AMPs with

parameters appropriate to weak mobility and compares the simulated and measured res-

ults. The chapter only investigates AMP distribution after a system enters a balanced

state to validate the simulation model against results presented in [DTM06]. Detailed

movements of AMPs are discussed in Chapter 4.

This chapter first outlines the implementation features of AMPs that use weak mobility

(Section 3.1) and provides information about experiment set up (Section 3.2). Then it

compares the distributions of simulated and real AMPs over locations in homogeneous

networks (Section 3.3), and heterogeneous networks (Section 3.4). Finally, the chapter

summarises results and briefly defines future research directions (Section 3.5).

31

Chapter 3. AMP Simulation Design and Validation

3.1 Simulation Design

This section covers features of AMPs that use weak mobility (Section 3.1.1), and justifies

the design decisions for the simulated networks that are constructed using the OMNeT++

network simulator (Section 3.1.2).

3.1.1 Weak Mobility

Weak mobility allows only code migration as discussed in Section 2.2. That is after

a migration the execution state is not preserved, and the program restarts its execu-

tion [FPV98]. AMPs with weak mobility in [Den07] are implemented in such a way

that although a program restarts its execution on the new location it places a bookmark

on data which allows it to continue the calculation from the stop point. Figure 3.1 shows

the coordination behaviour of AMPs with weak mobility [Den07]. The description is as

follows:

1. Preparation to move. A program initiated at Loc 1 decides to move to Loc 2.

2. Building a reference. The program sends code to Loc 2 and creates a reference

from the code on Loc 2 to the data on Loc 1.

3. Returning results. The code on Loc 2 completes a part of computations and returns

results to Loc 1.

4. Final state. The code on Loc 2 recalculates parameters, and either migrates to

another location or continues execution on the current location. Thus, the data at

Loc 1 never moves.

For example, to perform matrix multiplication A×B = C an AMP contains of program

code and two matrices B and C whereas matrix A stays on the root location and its

32

Chapter 3. AMP Simulation Design and Validation

Location 1

Code
¶

µ

³

´f

Data

.......

result

Process M

Location 2

-Move to

1:Prepare to Move

Location 1

Data

.......

result

Process M

Location 2

Code
¶

µ

³

´f -¡
¡

¡
¡¡ª¡

¡
¡

¡¡µreference

fetch

2:Build Reference

Location 1

Data

.......

result

Process M

Location 2

Code
¶

µ

³

´f -

¡
¡

¡
¡

¡
¡

¡¡ª
return

3:Return Results

Location 1

Data

.......

result

Process M

Location 2

Code
¶

µ

³

´f

4:Final State

Figure 3.1: Mobile Behaviour of Java Voyager AMPs with Weak Mobility [Den07]

rows are periodically transferred to the location where the AMP is currently executed.

In the simulation delays related to periodic data transfer from the root location to mi-

grated AMPs are taken into account in AMP computation speed. Experiments with Java

Voyager showed that the root location only had 50% of its capacity available to serve

the AMP workload [Den07]. This property is believed to result from the overhead of

allowing the AMPs migrated to other locations to access the data that has remained at

the root location. Therefore, the root location is assigned a speed of 50% of its clock

rate.

33

Chapter 3. AMP Simulation Design and Validation

3.1.2 Simulation Network Design

The section covers features of simulating computers and the network topology.

Location. A single location (computer) in the simulated network is represented by a

Location with the three main parts depicted in Figure 3.2: Generator, Queue and

Switch. The functionality of each part is discussed below.

Switch is the core part of the simulated location, and is connected to Generator

and Queue. Switch keeps state information tables and performs corresponding actions

when messages arrive. For example, when a state message arrives Switch renews state

information about the remote location, picks the next location from its list of locations,

and sends the state message to that location. Generator is only used to generate new

messages, e.g. AMPs and state information. Queue is used to simulate AMP execution

time. Other inner location delays, such as coordination time, are implemented by means

of channels. Figure 3.3 shows a program fragment that implements connections between

parts of Location using the NED language [Var10].

Figure 3.2: Interconnections in a Location

34

Chapter 3. AMP Simulation Design and Validation

// Connection to other Locations

for i=0..sizeof(out)-1 {

switch.out[i] --> out[i] if i!=ownIndex;

switch.in[i] <-- in[i] if i!=ownIndex;

// Connection between Switch and Queue

switch.out[sizeof(out)] --> queue.in[0];

switch.in[sizeof(out)] <-- { delay = timeCoord; } <-- queue.out[0];

// Connection between Switch and Generator

switch.out[ownIndex] --> generator.in;

switch.in[ownIndex] <-- generator.out;

Figure 3.3: Interconnections in a Location Using NED

The parameter sizeof(out) contains the size of the Switch gate vector, i.e. the number

of single gates, through which the connection to Generator, Queue, and other locations

is implemented. In the current simulation it depends on the total number of locations,

numLocations, i.e.

sizeof(out) = numLocations + 1

The parameter timeCoord is the coordination time required to collect information from

the load server and recalculate parameters. The parameter ownIndex is the Location

ID number in the network.

Topology. To investigate AMP behaviour a number of fully connected networks are

simulated. A snapshot of location interconnections in a simulated network of 15 loc-

ations is presented in Figure 3.5. A fragment of code presented in Figure 3.4 imple-

for i=0..numLocations-1, for j=0..numLocations-1 {

location[i].out[j] --> timeComm --> location[j].in[i] if i!=j; }

Figure 3.4: Location Interconnection

35

Chapter 3. AMP Simulation Design and Validation

Figure 3.5: Interconnections in a LAN

ments connections between locations of the simulated network in NED language where

numLocations is the number of locations in the network, timeComm is the commu-

nication time required to move a message (i.e. an AMP or state information) from one

location to another.

3.2 AMP LAN Experimental Set Up

AMPs were measured on a range of languages and LANs in [Den07]. Sections 3.3

and 3.4 reproduce the substantial Java Voyager experiments. AMPs are matrix mul-

tiplication programs. The measurements are conducted using locations of the follow-

ing CPU speeds: 3193 MHz, 2168 MHz, and 1793 MHz. To correlate work, W ,

and location CPU speeds the measurements of matrix multiplication computation time

provided in Table 3.1 are used. The analysis of ratio of work to the computation time

36

Chapter 3. AMP Simulation Design and Validation

from Table 3.1 shows that CPU speed of 3193 MHz corresponds to execution speed of

21385417 units per second. Applying proportion gives the following: 2168 MHz cor-

responds to 14520383 units per second and 1793 MHz correspond to 12008786 units

per second for matrix multiplication programs. Recall that units are used to calculate

program work W and depend on the type of program (Section 2.4).

The real experiments were conducted on the Linux operating system using version 3.3

of Java Voyager. The locations were connected into Ethernet networks with 100Mbps

communication rate. The time to transfer an AMP that executes matrix multiplication

was correlated to matrix dimension, d, i.e.

Tsend = 0.029 + 5.07 · 10−6 · d2. (3.1)

Each experiment was run eleven times. The duration of an experiment depends on the

following three parameters: simulation mode, the number of AMPs, and the number of

locations. The simulation mode indicates the amount of output data during the experi-

ment, i.e. fast mode provides detailed simulation results and express mode only provides

main simulation results, such as the total simulation time and the number of generated

messages. Thus, Experiment 1 from Section 3.4 lasts for 180 simulated seconds which

in real time takes 15 minutes in fast mode, and 2 minutes in express mode. The ex-

press mode was also programmed to output data in a file of such events like an AMP

movement from a location, an AMP arrival to a new location, and AMP termination.

Dimension, d Work, W ∝ d3 (unit) Computation Time, Tcomp (sec) CPU Speed (MHz)

300 27 · 103 1.27

3193

400 64 · 103 3.00

500 125 · 103 6.03

600 216 · 103 10.20

700 343 · 103 16.00

800 512 · 103 23.80

900 729 · 103 33.40

1000 106 46.20

Table 3.1: Computation Time of Matrix Multiplication Programs [Den07, Table 4.11]

37

Chapter 3. AMP Simulation Design and Validation

3.3 Homogeneous Network

A homogeneous network is a set of locations with the same available speed, except for

the root location which may have reduced speed, because of the communication with the

remote processes that have migrated away from the root location.

Four types of experiments are reproduced for homogeneous networks [Den07, Subsec-

tion 5.3.1]: optimal balance (Section 3.3.1), near-optimal balance (Section 3.3.2), adding

AMPs (Section 3.3.3) and removing AMPs (Section 3.3.4). This section gives only a

brief introduction to balanced states, i.e. states where no AMP can gain a greater AMP

relative speed by moving [Den07]. The detailed discussion of the balanced state prop-

erties and features is provided in Sections 5.1 and 5.2. The number of locations in the

experiments ranges from three to five, and between five and thirteen AMPs start at the

root location. The CPU speed of all locations is 3193 MHz.

3.3.1 Optimal Balance

The first type of experiment tests the distribution of AMPs in an optimal balanced state,

i.e. a state where locations with the same available speed have equal number of AMPs.

AMPs start execution on the root location and after some time distribute themselves over

the network. The number of AMPs and the number of locations was chosen to allow

equal numbers of AMPs on all locations except the root. The results of the real [Den07,

Table 5.25] and the simulated experiments are presented in Table 3.2. For each number

of locations in Table 3.2, the first row is the distribution in the real experiments, and the

second row is the distribution in the simulated experiments. The two simulated results

that differ from the real experiments are highlighted in bold.

The results show that the simulation model reflects the real balancing of AMPs in the

network, except for two cases: 9 AMPs on 3 locations, and 13 AMPs on 4 locations.

This mismatch is a result of using 50% of capacity at the root location. When the root

38

Chapter 3. AMP Simulation Design and Validation

5 AMPs 7 AMPs 9 AMPs 10 AMPs 13 AMPs

3 Locations

Real 1/2/2 1/3/3 1/4/4 - -

Simulated 1/2/2 1/3/3 2/3/4 - -

4 Locations

Real - 1/2/2/2 - 1/3/3/3 1/4/4/4

Simulated - 1/2/2/2 - 1/3/3/3 2/4/4/3

5 Locations

Real - - 1/2/2/2/2 - -

Simulated - - 1/2/2/2/2 - -

Table 3.2: Optimal Balanced Distribution in Real and Simulated Experiments

location has two AMPs and a non-root location has four AMPs the relative speeds of

the locations become equal. The AMP does not move because the communication time

would be added to its total execution time, i.e.

Wr · 2
0.5 · S 6> Wr · 4

S
+ Tcomm. (3.2)

If the workload of 48% for the root location is used in the simulation model, then simu-

lated results agree with the real experiment results in Table 3.2, i.e.

Wr · 2
0.48 · S >

Wr · 4
S

+ Tcomm. (3.3)

3.3.2 Near-Optimal Balance

The second type of experiment investigates near-optimal balance, i.e. a state when the

total number of AMPs makes it impossible for equal numbers of AMPs to be at each

location, but the discrepancy between locations should be at most one AMP [Den07].

Table 3.3 shows distribution of six AMPs between three locations and five AMPs between

two locations. For each number of locations in Table 3.3 the first and the second rows

represent distribution in the real [Den07, Figures 5.56, 5.57] and the simulated experi-

ments respectively. The results are identical.

39

Chapter 3. AMP Simulation Design and Validation

5 AMPs 6 AMPs

2 Locations

Real 2/3 -

Simulated 2/3 -

3 Locations

Real - 1/2/3

Simulated - 1/2/3

Table 3.3: Near-Optimal Balance

3.3.3 Adding Autonomous Mobile Programs

Two experiments were conducted to analyse AMP distribution after adding more AMPs

[Den07, p. 114]. The first experiment has four locations and ten AMPs in total. Initially,

seven AMPs start on the root location. When the system enters a balanced state three

more AMPs are added one by one. A time period after adding each AMP is chosen to

allow the system to enter a balanced state before adding the next AMP. Figures 3.6(a)

and 3.6(b) show AMP initial distribution and rebalancing in the real and simulated ex-

periments respectively. States S1, S2, S3 and S4 depict the balanced states the system

enters before (i.e. S1) and after (i.e. S2, S3, S4) adding AMPs. Although the real and

simulated results in Figures 3.6(a) and 3.6(b) may seem a little different in fact they

are identical because locations in the experiments are homogeneous, and the number of

AMPs in the balanced states S1, S2, S3 and S4 for the real experiment corresponds with

the simulated experiments.

The second experiment has three locations and five AMPs that start execution at the root

location (Loc 1), then four more AMPs are added sequentially. Figures 3.7(a) and 3.7(b)

depict AMP movements between locations in real and simulated experiments respect-

ively. Identical balanced states are marked S1, S2 and S3. However, after adding the

third AMP, the movements of simulated AMPs are not the same as of the real AMPs.

The mismatched states are marked S4, S5 and K4, K5. The cause of the mismatch is

again the 50% root location workload, as discussed in Section 3.3.1.

40

Chapter 3. AMP Simulation Design and Validation

(a) Java Voyager Experiment [Den07]

(b) Simulated Experiment

Figure 3.6: 7 AMPs Adding 3 More AMPs on 4 Locations

41

Chapter 3. AMP Simulation Design and Validation

(a) Java Voyager Experiment [Den07]

(b) Simulated Experiment

Figure 3.7: 5 AMPs Adding 4 More AMPs on 3 Locations

42

Chapter 3. AMP Simulation Design and Validation

Balance States Per cent of experiments

S1 (2/4/4) 100%

K1 (2/3/4) 41%

S2 (2/3/3) 23%

K2 (1/3/4) 70%

K3 (1/3/3) 94%

S3 (1/2/3) 100%

S4 (1/2/2) 100%

Table 3.4: Balance States of Simulated Experiments

3.3.4 Removing Autonomous Mobile Programs

The fourth type of experiment examines AMP behaviour after termination of some

AMPs. The experiment analyses distribution of five large and five small AMPs on three

locations [Den07, p. 115]. Large AMPs are programs of matrix multiplication of size

1000× 1000, and small AMPs are programs of matrix multiplication of size 500× 500.

All AMPs start at the root location (Loc 1) and then the AMPs randomly distribute them-

selves over the network.

Figures 3.8(a) and 3.8(b) show AMP distribution in real and simulated experiments re-

spectively. The sign ’-’ is used to indicate AMP termination. States S1, S2, S3 and S4

are balanced. AMPs of all simulated experiments enter states S1, S3 and S4. However,

only 18% of the experiments enter state S2. This is due to communication time and

random distribution of large and small AMPs, i.e. a small AMP may terminate from

any location. Depending on which locations AMPs terminate and on which locations

other AMPs detect the available processing power the states S2 (2/3/3) or K2 (1/3/4)

may result. Both states are balanced. Table 3.4 shows the percentage of experiments the

corresponding states have occurred. States K1, K2 and K3 are also balanced states the

system may enter.

The real experiments exhibit two additional unbalanced states: R0 and R2 on Fig. 3.8(a)

that are not typical for the current simulation model. These states are due to delays in

43

Chapter 3. AMP Simulation Design and Validation

(a) Java Voyager Experiment [Den07]

(b) Simulated Experiment

Figure 3.8: Removing AMPs

44

Chapter 3. AMP Simulation Design and Validation

transmitting state information. Thus, if two or more AMPs discover an opportunity to

move to the same location to reduce completion time simultaneously, they move and

then rebalance again. This is a so called greedy effect that is thoroughly examined in

Chapter 4.

The comparative analysis shows that simulated AMPs enter similar balanced states to

real AMPs in homogeneous networks. The difference in balanced states is caused by the

use of a constant value for the workload at the root location and by the random initial

distribution of large and small AMPs.

3.4 Heterogeneous Network

A heterogeneous network is a set of locations with different available speeds. For het-

erogeneous networks two experiments are reproduced [Den07, Section 5.3.2]:

• Experiment 1: 25 AMPs and 15 locations with CPU speeds 3193 MHz (Loc1 −
Loc5), 2168 MHz (Loc6− Loc10) and 1793 MHz (Loc11− Loc15).

• Experiment 2: 20 AMPs and 10 locations with CPU speeds 3193 MHz (Loc1 −
Loc5), 2168 MHz (Loc6) and 1793 MHz (Loc7− Loc10).

In Experiment 1 13 large and 12 small AMPs start on Loc1. The locations are classified

into slow (Loc1 − Loc5), middle (Loc6 − Loc10) and fast (Loc11 − Loc15) locations

according to the CPU speed. Figures 3.9(a) and 3.9(b) show AMP distributions in real

and simulated experiments respectively. The reason the real experiment enters state B3

and the simulated experiment enters state B4 is due to the type of locations where an

AMP first discovers the opportunity to move. In the real experiment an AMP moves

from a middle speed location, and in the simulated experiment an AMP moves from a

fast speed location. Here, both states that real and simulated systems enter are stable,

i.e. states where no AMP can reduce its completion time by moving. Table 3.5 shows

45

Chapter 3. AMP Simulation Design and Validation

(a) Java Voyager Experiment [Den07]

(b) Simulated Experiment

Figure 3.9: AMP Distribution in a Heterogeneous Network

46

Chapter 3. AMP Simulation Design and Validation

percentage of experiments that enter different stable states after the first and the second

AMP termination. The ‘1/3...’ represents the states with 3 AMPs at one location, the

‘1/2...’ represents the states where no location has 3 AMPs.

As the locations where small AMPs should initially move are not specified, the small

AMPs may terminate from any location, i.e. fast, middle, or slow speed in states R1 and

R2. However, 6% of simulated experiments enter the same states R1 and R2 as the real

experiments.

If, after an AMP removal, a single movement of an AMP does not result in a stable

state, a second movement may occur. It depends on the type of location from which

an AMP discovers a better location first, and can be observed in Figure 3.10. The solid

lines show the optimal AMP movements, and the dotted lines show the movements that

actually occurred. This is another type of the greedy effect (Section 3.3.4).

As an example of this greedy effect, consider the state change from R1 to B2 shown in

Figure 3.10. An AMP terminates at Loc14 leaving it with excess capacity. All middle

speed locations, Loc6–Loc10, have 2 AMPs and the fast locations Loc2–Loc5 all have 2

AMPs except Loc2 which has 3 AMPs. The optimal movement pattern would involve an

AMP moving from a middle speed location or the fast speed location that has 3 AMPs

(Loc2) to Loc14. However, one of the fast locations with 2 AMPs (Loc5) detects the

availability of Loc14 first, and an AMP moves from that location, leaving only 1 AMP.

The second movement occurs when the fast location with only 1 AMP is detected by

either a middle speed location or Loc2 that has 3 AMPs.

In Experiment 2 10 small and 10 large AMPs start on the root location (Loc1). The

results are similar to the results of Experiment 2 (Appendix A).

Type of distribution After 1st rem. After 2nd rem.

1/3... 88% of exp 41% of exp

1/2... 12% of exp 59% of exp

Table 3.5: Type of Stages after AMP Removing

47

Chapter 3. AMP Simulation Design and Validation

Figure 3.10: AMP Rebalancing: Greedy Effect in Simulated Experiments

The above analysis of AMP behaviour in heterogeneous networks shows that simulated

AMPs reflect real AMP distribution. The minor differences are result of random initial

allocation of large and small AMPs and random location from which AMPs detect the

location with extra capacity first.

3.5 Discussion

To examine AMP behaviour in homogeneous and heterogeneous networks the simulated

networks have been constructed and a set of experiments that compare the simulation

with Java Voyager AMPs on a LAN have been implemented. The comparative analysis

of real and simulated experiments for optimal and near-optimal balancing, adding and

removing AMPs in homogeneous networks shows the following:

Optimal balance. All distributions in simulated experiments are matched with the dis-

tributions in the real experiments except two cases. The reason of the mismatch is that

48

Chapter 3. AMP Simulation Design and Validation

the communication workload in the simulated experiments is 50%, whereas in the real

experiments the workload varies between 48% and 51%.

Near-optimal balance. Real and simulated experiments enter identical states.

Adding AMPs. Simulated and real experiments enter the same states. The cause of the

only difference is the same as in the optimal balanced experiments.

Removing AMPs. All simulated experiments enter three of four balanced states of the

real experiments, i.e. S1, S3, S4. In 18% of the simulated experiments AMPs enter all

states of the real experiments. 23% of simulated experiments have state S2, and 70%

have state K2 that is also a balanced state.

In Experiment 1 and Experiment 2 on heterogeneous networks the results are as follows:

• In the 41% and 58% of simulated experiments states B1, B2 and B3 coincide with

the same states of the real experiment in Experiments 1 and 2 respectively. Here,

other states that simulated experiments enter are also stable states.

• In 6% of simulated experiments in Experiment 1 AMPs terminate from the same

locations as in the real experiment.

• The greedy effects that are observed in the real experiments, are also observed in

the simulated experiments.

Other than a small number of explainable deviations the current simulation is an excel-

lent model of AMPs on LANs. This gives confidence to use the model as the basis for

further greedy effect investigation. Chapter 4 will analyse and estimate the greedy ef-

fects, propose some improvements to reduce redundant movements, and again estimate

the greedy effects in the collection of modified AMPs.

49

Chapter 4
Redundant Movements in Autonomous

Mobility

The previous chapter showed that collections of Autonomous Mobile Programs exhibit

thrashing, or greedy effects, like other distributed load balancing systems, e.g. [NXG85,

GR03, SBK06]. These greedy effects are a phenomenon that results in redundant AMP

movements during the balancing of loads between locations, and are a result of locally

optimal choices made by each AMP. The greedy effect is estimated by using simulation

in the current chapter and then theoretically in Chapter 5. This is the first substantial

investigation of thrashing behaviour for collections of distributed agents, and the results

of using an agent-based technique, namely negotiation, to ameliorate them.

The investigation starts with identifying two forms of greedy effects in collections of

AMPs (Section 4.1). Then adaption of the AMP cost model and simulation to facilitate

an investigation of the greedy effects are provided (Section 4.2). The AMP greedy ef-

fects are examined on initial distribution, rebalancing, and AMP completion time (Sec-

tion 4.3). Analysis of the types of movements shows that the majority of redundant

movements occur because an AMP is unaware of the intentions and movements of other

AMPs. So, the chapter discusses ways to reduce the greedy effects and proposes the

50

Chapter 4. Redundant Movements in Autonomous Mobility

concept of negotiating AMPs (NAMPs) that communicate their intentions with a view

to reducing redundant moves. While a number of negotiation schemes are possible,

AMPs with a competitive scheme (cNAMPs) have been designed and simulated (Sec-

tion 4.4). cNAMPs announce their intentions to move and compete with each other for

the opportunity to transfer to the new location.

An analysis of simulated cNAMP results shows that even this simple negotiation signi-

ficantly decreases both the number of redundant movements and the time to rebalance.

For example, cNAMPs make no redundant movements during initial distribution, and

initial balancing is at least three times faster than for AMPs (Section 4.5). The chapter

concludes by summarising results (Section 4.6).

4.1 Greedy Effects

An optimal rebalancing is a sequence of AMP movements that is the minimum number

of AMP movements needed to enter a stable state.

The AMP greedy effects are the result of a non-optimal AMP rebalancing which differs

from the optimal rebalancing in having additional redundant movements, and is a result

of the AMP making a locally optimal choice, i.e. AMPs do not possess sufficient and ac-

curate state information to make the optimal movement decision. There are two types of

the AMP greedy effects: location thrashing and location blindness. Both location thrash-

ing and blindness are observed in real and simulated AMP experiments (Chapter 3).

Greedy effects also occur in other dynamic load balancing systems; other terms are

processor thrashing [Kuo85], task thrashing [GA91], task dumping [NXG85, RM90],

transmitting dilemma [LM82], El Farol problem [SBK06].

51

Chapter 4. Redundant Movements in Autonomous Mobility

4.1.1 AMP Distribution Scenarios

To illustrate the greedy effects the following AMP scenarios are introduced. The scen-

arios specify the number of AMPs and locations, and types of locations:

Scenario 1: 25 AMPs on 15 locations with CPU speeds 3193 MHz (Loc1−Loc5), 2168

MHz (Loc6− Loc10) and 1793 MHz (Loc11− Loc15).

Scenario 2: 20 AMPs on 10 locations with CPU speeds 3193 MHz (Loc1−Loc5), 2168

MHz (Loc6) and 1793 MHz (Loc7− Loc10).

Scenario 3: 10 AMPs on 3 locations with CPU speeds 3193 MHz.

The scenarios are chosen from those discussed in Sections 3.3 and 3.4. For all scenarios

Loc1 is the root location. Here, large and small AMPs of matrix multiplication are again

employed as in Section 3.3.4.

4.1.2 Location Thrashing

Location thrashing is the greedy effect resulting from an AMP’s lack of information

about other AMPs intending to move to the same location. That is, two or more AMPs

decide to move on the basis of the same information about the target location that causes

further AMP retransmission.

Location thrashing is illustrated in Figure 4.1(a) which shows AMP movements in the

experiments with the real system [DMT10], based on scenario 3 (Section 4.1.1). In

Figure 4.1(a) each icon denotes an AMP. The locations are specified on the vertical axis

and the horizontal divisions represent time intervals. The time intervals are of different

lengths, showing states that the system enters as it attempts to reach a stable state.

After the termination of two AMPs from Loc1 in state S1, state U1 is entered and two

AMPs from Loc2 and one AMP from Loc3 discover a better opportunity for execution

52

Chapter 4. Redundant Movements in Autonomous Mobility

(a) Redundant Rebalancing (b) Optimal Rebalancing

Figure 4.1: Location Thrashing Greedy Effect [DTM06]

on Loc1 simultaneously. These three AMPs move to Loc1 (state U2), and then one AMP

moves back to Loc2 to enter a stable state (state S2). In this case, an optimal rebalancing

from the state U1 to the state S2 can be reached by one AMP movement to Loc1 from

each of Loc2 and Loc3 as Figure 4.1(b) shows. Note that location thrashing incurs two

performance penalties, namely the cost of additional communication and the cost of

slower execution. By additional communication cost only additional AMP movements

during a rebalancing are meant and not communication time they may take.

4.1.3 Location Blindness

Location blindness is the greedy effect resulting from an AMP’s lack of information

about the remaining execution time of other AMPs. The problem is not with poor

runtime predictions, but rather an inability to obtain accurate AMP runtime predictions

at distributed locations, i.e. the more accurate information that is required, the more ex-

53

Chapter 4. Redundant Movements in Autonomous Mobility

(a) Redundant Rebalancing

(b) Optimal Rebalancing

Figure 4.2: Location Blindness Greedy Effect (Section 3.4)

54

Chapter 4. Redundant Movements in Autonomous Mobility

pensive it becomes to collect and process the information in a distributed system [CK87].

Figure 4.2(a) shows an example of location blindness in a simulated AMP experiment

using scenario 1 (Section 4.1.1). Numbers identify the number of AMPs on a location.

After an AMP terminates on Loc14 in state S1 and the system enters state U1, an AMP

from Loc5 discovers the opportunity for faster execution first and moves (state U2).

Then an AMP from Loc7 discovers the opportunity for faster execution on Loc5 and

also moves (state S2). Figure 4.2(b) shows optimal AMP rebalancing. In contrast to

the location thrashing, location blindness only causes redundant communication and

causes no additional computation cost. Each AMP will have improved its environment

by moving.

Of the two types of greedy effect location thrashing is more harmful, because it causes

an increase in AMP completion time, and hence decreases AMP efficiency. To estimate

the number of redundant movements and time to balance the greedy effects are simulated

and analysed further in this chapter.

4.1.4 Location Thrashing vs. Location Blindness

To better understand the difference between location thrashing and location blindness an

analogy between a network and a building is drawn. Here, a room represents a location, a

person represents an AMP, a blackboard in a room represents a load server, and corridors

represent communication lines between locations.

Blackboards keep information about other rooms and people in their own room inde-

pendently from each other. A blackboard keeps the most recent information about avail-

able speed and the number of people in other rooms, and the number of people in its own

room. Each blackboard has a messenger. The duties of the messenger are as follows:

to go to another room, take information from the blackboard about the room available

speed and the total number of people in that room, return to the home room, rewrite

55

Chapter 4. Redundant Movements in Autonomous Mobility

information about the visited room on the blackboard, and go to the next room. The

process of collecting state information by a messenger is an infinite loop.

A person in a room executes a granule of work, checks information on the blackboard,

recalculates their parameters, and on the basis of recalculations decides whether to move

to another room or to stay in the current one. If the person decides to go to another

room, they reduce the number of people written on the blackboard by one, and move to

the target room not telling anyone about the destination.

Location thrashing occurs when the same vacant place is spotted by a number of people

at the same time, and all of them move to the target room without informing anyone

about the destination. Thus, when all people arrive at the same room, some of them

should move again, i.e. rebalance.

Location blindness occurs in the following situation. Assume that a building has four

rooms: A,B,C, and D where rooms are listed in order of comfort, i.e. room A is the

most comfortable and room D is the least comfortable. A person from room A resigns

(leaves the building) leaving a vacant place in room A. Then before people from other

rooms spot the place person P1 from room B discovers the vacant place in room A and

moves there. Then person P2 from room C discovers a vacant place in room B and

also moves (here, a place in room A is already taken). After that person P3 discovers a

vacant place in room C and also moves. Thus, although all people who moved improve

their execution environment, the rebalancing is globally non-optimal because the same

number of people in the rooms would be if person P3 move from room D to room A. In

this case there would be much less movements in the corridors.

4.2 Adapting Simulation to Investigate the Greedy Effects

The experiments in Chapter 3 show that the simulation closely models real AMP distri-

butions on LANs, and hence can be used as an effective tool to analyse AMP behaviour.

56

Chapter 4. Redundant Movements in Autonomous Mobility

This section provides minor modifications to the previous model. The modifications are

essential to investigate the greedy effects. The changes include bounds on AMP transfer

time (Section 4.2.1) and delays on the state information transfer (Section 4.2.2).

4.2.1 Transferring AMPs

A load server decreases its number of AMPs as soon as an AMP makes a decision to

move to a new location. In turn, the new location increases its number of AMPs after the

full AMP has arrived [Den07].

In the simulation model AMP transfer time is exponentially distributed with the mean

given by Tsend. However, due to limited data transfer capabilities AMP transfer time

cannot be less than a certain value. Therefore, the lower bound for an AMP transfer of

0.6Tsend is introduced. Thus, if the exponential distribution in the simulation provides a

value below the lower bound, it returns the value 0.6Tsend. The lower bound is taken in

accordance with the measurements presented in [Den07].

4.2.2 State Information

The collection of state information from the other locations in the network is done by a

load server that sends requests to locations in a round robin sequence [Den07]. The time

taken to send a request to a remote Java process and receive a response, Treq, has been

measured using Java Voyager, and is equal to 0.25s [Den07, p. 80]. Thus, in a network

of N locations a load server completely renews state information about other N − 1

locations every Trenew seconds:

Trenew = Treq(N − 1). (4.1)

As Treq is the time to send a request and receive the response, then the time to send a

request one way, Tres, is

Tres =
Treq

2
, (4.2)

57

Chapter 4. Redundant Movements in Autonomous Mobility

i.e. Tres = 0.125 second. In the simulation experiments exponential distribution is used

with the mean given by Tres. The values are restricted by lower and upper bounds. The

lower bound is 0.7Tres, and the upper bound is 1.3Tres. So, if the exponential distribution

provides a value below the lower bound, it returns the value 0.7Tres, and if the value is

above the upper bound, it returns the value 1.3Tres. As before the lower and upper

bounds are taken in accordance with measurements presented in [Den07].

The state information collection algorithm is as follows. A load server sends a request to

a location from the list. The request arrives to the target location in Tres seconds. Then

the target location reports its number of AMPs and the response goes back to the initial

location, again taking Tres seconds. The load server of the initial location renews the

state information and sends a request to the next location from the list.

A Unified Modelling Language (UML) diagram involving locations, load servers, AMPs,

and auxiliary messages is presented in Figure 4.3.

4.3 AMP Greedy Effect Experiments

This section investigates the frequency and significance of greedy effects in the three

scenarios from Section 4.1.1 on homogeneous and heterogeneous networks (Section 4.3.1).

Then the redundant movements are classified and the primary cause is identified (Sec-

tion 4.3.2). Each experiment is repeated eleven times. As the experiments with the real

system did not investigate the greedy effects, systematic comparisons with the real ex-

periments cannot be made. However, the results are consistent where they have been

compared.

4.3.1 Experiments and Results

Experiment 1 (E1): Initial distribution. This experiment investigates the greedy effects

as large AMPs distribute over the network from a single location. Column Initial dis-

58

Chapter 4. Redundant Movements in Autonomous Mobility

Figure 4.3: AMP UML Diagram

59

Chapter 4. Redundant Movements in Autonomous Mobility

tribution in Table 4.1 shows the mean number of redundant movements and the mean

time the system requires to enter a stable state. Clearly the optimal number of AMP

movements to reach a stable state would occur if each AMP moved a maximum of once,

directly to the location it would occupy in the stable state. The column shows that as the

number of locations and AMPs increases the mean number of movements per AMP also

increases.

Experiment 2 (E2): Rebalancing after an AMP termination. The experiment measures

the number of movements and time required for a system to rebalance after an AMP ter-

mination. In this experiment only large AMPs are used, and not large and small as in the

real and previous simulation experiments (Chapter 3). This is done because an insuffi-

cient difference in amount of work between large and small AMPs creates restrictions on

large AMP movements after termination of small AMPs, and does not allow to estimate

the degree of redundant movements. By the time small AMPs terminate the remaining

execution time of large AMPs becomes compatible with the communication time. This

results in large AMPs entering stable states that are not balanced, but in which no move-

ments occur because of the communication cost. Hence AMPs make fewer movements

to rebalance.

Initially the AMPs are distributed among locations of a network so that the system is in

E1: Initial distribution E2: Rebalancing after E3: Large AMP

an AMP termination completion time, sec

Config. Mean No. of Mean time, Mean No. of Mean time, Mean Standard

redun. moves sec redun. moves sec deviation

Scenario 1
64 60.4 6 22.5 173.8 7.66

25 AMPs, 15 Locs

Scenario 2
43 50.5 11 28.2 182.1 11.5

20 AMPs, 10 Locs

Scenario 3
13 26.8 6 14.1 232.6 9.91

10 AMPs, 3 Locs

Table 4.1: AMP Greedy Effect Experiment Summary

60

Chapter 4. Redundant Movements in Autonomous Mobility

a stable state. After that an AMP from a location is removed (however, each location

has information about the balanced state), and start the experiment. Time to rebalance is

the interval from the time of AMP termination till the time at which the system enters a

balanced state again. Column Rebalancing after an AMP termination in Table 4.1 shows

the mean number of redundant movements and rebalancing time.

Experiment 3 (E3): Large AMP completion time. This experiment estimates large AMP

completion time and measures its variability. The total number of AMPs corresponds to

the relevant scenario. All AMPs, two of which are small and the rest are large, start on

Loc 1. The results are presented in column Large AMP completion time in Table 4.1.

The simulation experiment results in Table 4.1 show that an increase of the number of

AMPs and/or locations causes an increase in the number of redundant movements per

AMP.

4.3.2 Analysing Greedy Effects

To identify opportunities to reduce AMP redundant movements AMP behaviour is ana-

lysed during initial distribution and after an AMP termination. Figure 4.4(a) shows

the initial AMP distribution between locations as the system rebalances from initial

(unstable) state U1 to balanced state S. As all AMPs move from Loc1 in state U1 to

Loc2 − Loc5 in state U2, the movements are not indicated with lines. There are 88

movements in total, but there would only be 24 if each AMP moved directly to the loca-

tion it reaches in state S, i.e. the system makes 64 redundant movements. Figure 4.4(b)

shows 12 AMP movements which the system makes to enter a new stable state S2 after

an AMP termination on Loc12 in state S1.

In Figure 4.4(a) consider AMP22 as it moves during the transitions from state U9 to state

S. The AMP moves from Loc1 in state U9 to Loc9 in state U10 which has already two

AMPs, and then it moves to Loc6 in state S. However, Loc6 has only one AMP in state

U9 and the same available speed as Loc9; AMP22 would complete execution sooner if

61

Chapter 4. Redundant Movements in Autonomous Mobility

(a) Initial Distribution

(b) Rebalancing after AMP Termination

Figure 4.4: AMP Movements (Scenario 1)

62

Chapter 4. Redundant Movements in Autonomous Mobility

it selected Loc6 as target. This happens because in the simulation an AMP is associated

with a location as soon as it makes a decision to move and not after its actual arrival,

i.e. although AMP12 decided to move to Loc9 at time 7 Loc1 has no information about

decisions of AMP12 at time 8. Thus, at time 8 Loc1 only has information that there are

three locations, i.e. Loc6, Loc8 and Loc9 which have the same available speed and one

AMP each. So, AMP22 chooses a location to move (i.e. Loc9) at random.

The analysis of AMP movements allows them to be classified into the following main

types of redundant movements:

• Two or more AMPs move from one location to another, and then move again to

rebalance. This type of movement can be observed in Figure 4.4(a) in states U1–

U2. At time 0 the load server of Loc1 has information that all locations are vacant.

As a load server announces that it has an additional AMP only after a full AMP ar-

rival, the load server of Loc1 during the whole time of AMP distribution between

Loc2− Loc5 (fastest locations) provides information to AMPs that all fastest loc-

ations are vacant, and AMPs choose among them at random.

• Two or more AMPs move from a location, and then some AMPs move back to the

location. In Figure 4.4(a) in state U6 three AMPs move from Loc10 to Loc12 and

Loc15. Then in state U9 an AMP from Loc12 moves back to Loc9. Here, the

AMPs are not specified, i.e. which AMPs move from Loc10 to Loc12 and which

AMP moves from Loc12 to Loc10, because the concern is about the efficiency of

the movements.

• Two or more AMPs move from different locations to one location, and then move

again to rebalance. In Figure 4.4(b) after an AMP termination from Loc12 six

AMPs from different locations discover a better opportunity for execution simul-

taneously. They all move to Loc12, and then rebalance.

Therefore, the conclusion is that redundant AMP movements are mainly caused by AMP

ignorance of the intentions and actions of other AMPs in the network and hence a lack

63

Chapter 4. Redundant Movements in Autonomous Mobility

of information to make an efficient decision, i.e. location thrashing.

4.4 Negotiating AMPs and cNAMPs

The section proposes to use an agent-based approach, namely negotiation, to reduce the

greedy effects exhibited by AMPs. The main reason for poor AMP movement decisions

is a lack of communication between AMPs via the load servers. Possible methods of

negotiation between AMPs and/or load servers are discussed in Section 4.4.1. The sec-

tion introduces a simple negotiation scheme in which AMPs announce their movement

intentions and compete for opportunity to transfer. AMPs using this scheme are called

cNAMPs. The modifications to AMP algorithm to provide this behaviour are discussed

in Section 4.4.2.

As it is discussed in Section 4.1 the greedy effect is not unique for AMPs and is observed

in other distributed systems. An important issue here is that the effect appears not only in

systems with a scheduler but also in such highly decentralised systems like AMPs. And

thus greedy effects are inevitable due to the non-zero nature of communication delays.

However, a number of techniques were developed to eliminate redundant movements

some of which are presented below.

Schlegel et al. [SBK06] minimize redundant movements by using historical communic-

ation information to reduce redundant movements termed the El Farol problem. The

original El Farol problem setting is as follows: a hundred people repetitively and inde-

pendently decide whether to go to the El Farol bar on the specific day of the week or

not. The participants do not communicate with each other, and would decide to go to

the bar if they expect there less than 60 people. The choice is only based on the num-

ber of customers during the previous weeks and is independent of the person previous

visits. The approach to reduce the number of redundant movements differs from the

one presented in Section 4.4.2 in that the agents make network load prediction to decide

where to execute.

64

Chapter 4. Redundant Movements in Autonomous Mobility

Anthony [Ant05] reduces the system state-flapping which is the system constant change

between two adaptation states [HMH07] by introducing a delayed-bid mechanism. The

principle of the delayed-bid mechanism is in introducing a random delay in a response

to a request. Thus, the mechanism spreads the responses in time reducing the number

of simultaneous responses in large systems and introduces determinism as it is unknown

when a particular node is going to send a response. The current research does not aim

to stop flapping because due to the AMP cost model AMPs do not suffer from constant

flap between a few states but rather gradually approach the target state. Thus, the target

of the current research is to minimise the number of steps and hence time that the system

makes to enter a stable state.

Hosseini et al. [HLMV87] reduce thrashing employing damping mechanism. The mech-

anism introduces a damping factor, D. The nodes that intend to exchange load compare

their loads first. The exchange occurs only if the difference between the loads exceeds

the damping factor.

Rao et al. [RLS+03] reduces thrashing by implementing an ID based load balancing

algorithm that targets structured peer-to-peer (P2P) networks with distributed hash table

(DHT) abstraction [RFH+01]. The load balancing is achieved by transferring virtual

servers from heavy loaded nodes to light loaded nodes. The algorithm is implemented

in three schemes: one-to-one, one-to-many, and many-to-many – where the schemes

differ from each other in the number of heavy and light nodes that take part in load

balancing procedure. Thus, in the one-to-one scheme a light node randomly generates an

ID number, performs a lookup for that ID, and if the node is heavy then the heavy node

may transfer some load to the light node. The one-to-many scheme involves a heavy

node and a number of light nodes where the virtual servers from the heavy node may be

transferred. The many-to-many scheme is implemented in two options: centralised and

decentralised. The centralised scheme is implemented via a global pool where all extra

load is first transferred to making all nodes light, and then from the global pool the load

is redistributed between nodes. The decentralised scheme is implemented similar to the

centralised scheme with only difference that the role of pool is implemented by one of

65

Chapter 4. Redundant Movements in Autonomous Mobility

the nodes for a small group of heavy and light nodes. The algorithm has a number of

differences from AMPs: first, it targets only P2P DHT abstracted networks; second, each

node has a scheduler that decides when and which virtual server should be transferred

to another node, whereas in an AMP implementation each AMP decides itself when and

where to move.

4.4.1 Negotiating AMPs

The analysis of the greedy effects in the simulated AMP experiments in Section 4.3

shows that the majority of redundant movements occur because an AMP makes a de-

cision on the basis of currently available information and is unaware of impending move-

ments of other AMPs.

In order to reduce the greedy effects AMPs must negotiate with each other, i.e. com-

municate more information. The most common interpretation of negotiation is “inter-

action among agents based on communication for the purpose of coming to an agree-

ment” [Wei99]. There can be different types of negotiation, such as malicious and hon-

est. A malicious strategy would be for a load server to misrepresent the load so that other

AMPs were deterred from moving to a location. An honest strategy requires AMPs and

load servers to share information to reduce wasted movements and is more effective for

load balancing. An honest negotiation in an AMP implementation can be designed in a

number of ways, some of which are as follows:

• Competitive. AMPs compete with each other to move to the target location. Apart

from reducing the number of redundant movements this strategy allows us to pre-

serve one of the main AMP advantages, i.e. making an effective movement de-

cision on the basis of small amount of information and simple calculations.

• Queuing. Each AMP has a sequence number in a queue. An AMP moves to the

new location only if an earlier AMP in the queue decided not to move. The queue

66

Chapter 4. Redundant Movements in Autonomous Mobility

ordering can be global or associated with a location. The method might allow us

to minimise AMP activity as AMPs would not take any actions towards reducing

their completion time until their turn in the queue has come. The drawback of the

method is in the complexity of keeping queue track due to the constant generation

and termination of AMPs.

• Probabilistic. AMPs and/or load servers collect information about AMPs and loc-

ations of a network and also responses to the movement requests. Thus, an AMP

makes a decision to move on the basis of calculating the probability of simul-

taneous AMP movements from other locations. Collected historical information

can also be used to identify malicious AMPs and locations. The disadvantage of

the method is that it significantly complicates AMP decision making process and

enlarges the amount of information that is kept about other AMPs.

• Relationship. A network is logically divided into groups, and locations first share

information within their group. A location can be a member of more than one

group, thus information is spread like a rumour. The approach eliminates the

number of AMPs that able to simultaneously react on the opportunity to reduce

their completion time. However, the method might be more suitable for large

networks rather than small networks like LANs which are considered in the current

chapter.

• Cooperative. AMPs communicate state information with each other, e.g. remain-

ing work. Comparing remaining work of AMPs that intend to move to the target

location AMPs then cooperatively decide which AMP should move to benefit the

most from the transfer. Using information about remaining work of AMPs might

allow the system to better utilise computer resources, for example, an AMP might

move to the target location before an AMP on the target location actually termin-

ates. Thus, the AMP exploits the target location resources immediately after idle

resources become available. The drawback of the approach is that the more in-

formation it is necessary to collect, the more ’expensive’ it becomes to collect and

67

Chapter 4. Redundant Movements in Autonomous Mobility

maintain this information, and hence the more complicated the decision making

mechanism becomes.

• Altruistic. An AMP recalculates not only its own parameters but also parameters

of the fellow AMPs. An AMP moves only if it profits the most from the movement

in comparison with other AMPs, otherwise the AMP gives in the movement op-

portunity for benefit of other AMPs who are in a greater need. The method might

allow us to significantly reduce the number of redundant movements. However,

the drawback is that the method increases recalculation time and requires AMPs

to collect and maintain large amount of information about each other.

• Musing. After spotting an opportunity to move to another location an AMP would

wait for some random interval and then recalculate its parameters again. If the

location is still available then the AMP moves, otherwise it continues execution

on the current location allowing another AMP to reduce its completion time by

moving to the target location. Like approach in [Ant05] this method also intro-

duces delay between receiving information and reacting on it. The method might

be most effective in implementing AMPs in sensor networks.

• Tit-for-tat. Load servers would collect information about untruthful AMPs and

locations. This information would then be used by AMPs to decide which type of

strategy is better to use towards a particular AMP and whether it is worth to move

to a particular location. This strategy might be useful in the future research when

investigation of AMP behaviour in presence of malicious nodes will be conducted.

4.4.2 The Design of cNAMPs

cNAMPs are negotiating AMPs with an honest competitive scheme which announce their

intentions to move and compete with each other for an opportunity to transfer to the new

location. In the context of cNAMPs the negotiation is a simple coordination among com-

petitive and self-interested agents [Wei99]. cNAMPs do not negotiate directly with each

68

Chapter 4. Redundant Movements in Autonomous Mobility

other, but only by means of a load server. The reason to choose an honest competitive

strategy is due to the fact that it allows us to preserve the main AMP features, such as a

truly decentralised algorithm where each AMP decides itself when and where to move,

and a ’cheap’ decision making mechanism with minimum time and resources required

to make an efficient movement decision.

cNAMPs are designed only to reduce location thrashing. Eradication of location thrash-

ing eliminates redundant movements during initial distribution and significantly reduces

the number of redundant movements during rebalancing (Table 4.4 in Section 4.5). In

addition, reduction of location blindness requires that cNAMPs and load servers possess

even more information about locations and cNAMPs of the network. Section 5.2 shows

that both the probability of redundant movements and their number are very small.

The section discusses transferring information about cNAMP impending to move, pro-

poses negotiation properties to prevent simultaneous information discovery, and dis-

cusses different schemes of information recalculation.

As before state information for cNAMPs is collected by load servers. To compare prin-

ciples of state information collecting in AMPs and cNAMPs recall the algorithm of

collecting state information implemented in AMPs: a load server sends a request to the

target location, then the load server on the target location provides its state information,

the request returns to the initial location, load server of the initial location renews state

information about the target location, then picks another location from the list of loca-

tion and repeats the procedure (Section 4.2.2). Thus if a network consists of N locations

then at any time at most N state messages move in the network, i.e. linear dependency.

In cNAMP implementation this linear dependency is preserved but the mechanism of

providing information is changed from involuntary type to voluntary type (Section2.5.3).

The algorithm is as follows: a load server picks a location from the list of locations and

sends its state information to this target location, after receiving the state information,

the load server of the target location renews state information about the initial location

and deletes the message. In turn the initial node awaits for min(Treq), picks another

69

Chapter 4. Redundant Movements in Autonomous Mobility

location, and repeats the procedure. Thus, the approach eradicates response messages

and at every moment N state messages move in the network. Fraction of location re-

sources allocated to collect information is very small, and even if a LAN consists of 1000

locations only 1000 state messages simultaneously move in the network.

Information about Impending cNAMPs

In contrast to AMPs each cNAMP load server maintains two values for the load:

• the actual load that is the number of executing cNAMPs and is used for local

cNAMP calculations.

• the committed load that represents the actual load of a location together with the

cNAMPs that have received confirmation to transfer to the location, and is used by

remote load servers.

The rationale is as follows. In the AMP implementation the load server increases the

number of AMPs only after an AMP has completely arrived and is ready to execute.

This means that during the transfer of an AMP other locations will receive information

that will shortly be outdated and they may send other AMPs. Locations receive outdated

information about the availability of the target location during the time to transfer the

first AMP plus the time to renew state information by load servers of all locations, i.e.

Tsend + Trenew. In the cNAMP implementation locations receive outdated information

during the time required to transfer information about a new cNAMP arrival plus the

time to renew state information at the load servers of all locations, i.e. Tres + Trenew.

Thus, the time for which erroneous load information persists is reduced by Tsend − Tres

seconds.

70

Chapter 4. Redundant Movements in Autonomous Mobility

Simultaneous Information Discovery

When an AMP decides to move from the initial location to another location it moves

immediately without any request or confirmation from the target location. Thus, simul-

taneous information discovery causes the simultaneous AMP movements from different

locations in both the simulated and the real experiments.

To solve the problem of simultaneous information discovery cNAMPs send a request.

Simultaneously with sending the request the initial location load server locks information

about the target location, so that other cNAMPs from the same location do not also send

requests to the target location. The information about the target location is locked until

a response is received. The cNAMP which sent the request continues execution on the

initial location while waiting for the response. The request contains information about

the cNAMP’s remaining work and remaining execution time on the initial location.

After the request has arrived at the target location, the request recalculates the cNAMP

remaining execution time as if the cNAMP was transferred. Then it adds the cNAMP

transfer time, and compares the result with the cNAMP remaining execution time on the

initial location. If the execution time on the initial location is larger than the remaining

execution time on the target location and the communication delay, then the cNAMP in-

forms the target location that the new cNAMP will be transferred, and the target location

increases the number of cNAMPs reported by its load server.

After that the response returns to the initial location. If the cNAMP receives:

• a negative response, the cNAMP continues execution on the initial location.

• a positive response, the load server on the initial location decreases the number of

cNAMPs, and the cNAMP moves to the target location.

In both cases, after receiving a response, the local load server renews its information

about the target location to prevent other cNAMPs from the current location sending

requests to the target location on the basis of out-of-date information.

71

Chapter 4. Redundant Movements in Autonomous Mobility

Configuration Treq Tres Trenew (sec)

(sec) (sec)

15 locations 3.5

10 locations 0.25 0.125 2.25

3 locations 0.75

Table 4.2: Parameters of the cNAMP Simulation

To calculate the condition for a cNAMP movement (2.5) communication time, Tcomm,

needs to take into account the time a cNAMP awaits a response from the target location.

So, Tcomm for cNAMPs includes not only the time to transfer a cNAMP, Tsend, but also

the time to receive confirmation to move, Treq:

Tcomm = Tsend + Treq. (4.3)

The design does not take into account such possibilities as cNAMP termination on the

initial location or starting a new cNAMP on the target location which may happen while

waiting for a response, Treq ≈ 0.25 second. As time required to recalculate parameters,

Tcoord, is estimated to be equal to 0.011 sec (Section 2.4), and is much smaller than

Treq; therefore, Tcoord is included in Treq in the simulation. cNAMPs do not recalculate

parameters depending on a very low probability of those events during Treq. Table 4.2

gives the values of Treq, Trenew, and Tres for the networks of 15, 10 and 3 locations which

are used in scenarios 1, 2 and 3 (Section 4.1.1). The values are calculated on the basis

of Java Voyager matrix multiplication data discussed in Section 2.4, and equations (4.1)

and (4.2).

Schemes of cNAMP Recalculation

After a cNAMP sends a request to the target location the load server on the initial location

does not provide information about the target location to the remaining cNAMPs on the

initial location. This is done to prevent a simultaneous requests being sent to the target

location by cNAMPs from the same location. Hence, while a cNAMP awaits a response

72

Chapter 4. Redundant Movements in Autonomous Mobility

the remaining cNAMPs on the initial location have information only about a subset of the

network locations. A cNAMP parameter recalculation can be implemented on the basis

of different schemes. Here, only three schemes are analysed, i.e. a cNAMP recalculates

parameters only when information about:

• all locations is available.

• at least half locations of the network is available.

• at least one another location is available.

To choose the most effective scheme simulation experiments using the network configur-

ation presented in scenario 1 are conducted, and the distribution of 25, 100 and 500 large

cNAMPs is analysed. Figures 4.5, 4.6 and 4.7 show the numbers of terminated cNAMPs

in the corresponding intervals in the experiments with 25, 100 and 500 cNAMPs respect-

ively.

Figure 4.5: Completion Time of 25 cNAMPs

73

Chapter 4. Redundant Movements in Autonomous Mobility

Figure 4.6: Completion Time of 100 cNAMPs

Figure 4.7: Completion Time of 500 cNAMPs

Table 4.3 shows the mean and the median termination time for 25, 100, and 500 cNAMP.

For a small number of cNAMPs the recalculation scheme has insignificant impact on

the mean and the median values. For a large number of cNAMPs the scheme with

74

Chapter 4. Redundant Movements in Autonomous Mobility

Number of cNAMP Termination Time (sec)

cNAMPs and Information about Information about Information about

average values all locations at least half at least one

is available locations is available location is available

25 cNAMPs

mean 114 113 113

median 118 117 116

100 cNAMPs

mean 419 444 444

median 455 440 440

500 cNAMPs

mean 1804 2073 2144

median 1842 2182 2219

Table 4.3: Mean and Median cNAMP Completion Time

available information about all locations shows the best performance. Therefore, the

scheme where cNAMPs can recalculate parameters only when no cNAMP from the same

location awaits a response is chosen.

4.4.3 Summary

Negotiating AMPs with competitive scheme (cNAMPs) are proposed to reduce the num-

ber of redundant movements caused by location thrashing. In short, the algorithm of

cNAMPs is as follows. Before moving a cNAMP sends a request to the target location.

The request confirms the movement if remaining execution time on the target location

and time to transfer the cNAMP is less than remaining execution time on the initial loc-

ation. While awaiting the response the cNAMP continues execution. The remaining

cNAMPs from the same location do not recalculate their parameters until the cNAMP

has received the response. If the movement decision is confirmed the cNAMP moves,

otherwise it resumes execution on the current location. Each location has two values

of the number of cNAMPs on the current location: actual load and committed load.

cNAMPs negotiate via load servers. Pseudocode for a cNAMP and a load server

75

Chapter 4. Redundant Movements in Autonomous Mobility

while work remains to execute

{

if outstanding request & positive response

{

inform local load server about movement

move to target location

}

else if no cNAMP awaits a response on the current location

{ for n from 1 to total number of locations

find minimum of T_n + T_comm

if T_h > minimum

{ send request to L_n

inform local load server about request sent

}

}

continue execution

}

Figure 4.8: cNAMP Pseudocode

forever do

case local cNAMP sent a request to location Loc_i:

lock information about Loc_i

case local cNAMP received response from Loc_i:

{

renew and unlock information about Loc_i

if positive response

reduce actual and committed loads

}

case arrival notification from remote cNAMP:

increase committed load

case cNAMP arrived:

increase actual load

Figure 4.9: Load Server Pseudocode

76

Chapter 4. Redundant Movements in Autonomous Mobility

Figure 4.10: cNAMP UML Diagram

77

Chapter 4. Redundant Movements in Autonomous Mobility

is presented in Figures 4.8 and 4.9 respectively. A UML diagram involving locations,

load servers, cNAMPs, and auxiliary messages is presented in Figure 4.10.

4.5 Comparative cNAMP and AMP Performance

The greedy effects exhibited by AMPs and cNAMPs are compared in Table 4.4 using the

experiment design presented in Section 4.3.1. For each scenario the first and the second

rows show results of AMP and cNAMP experiments respectively.

The results show that even simple negotiation in cNAMPs significantly reduces the num-

ber of movements and time to rebalance. cNAMPs do not make redundant movements

Rebalancing after Large AMP/cNAMP

Initial distribution an AMP/cNAMP completion

Configuration termination time, sec

and type of Mean Mean

experiment Time, number of Time, number of Mean Standard

sec redundant sec redundant deviation

movements movements

Scenario 1

AMPs 60.4 64 22.5 6 173.8 7.66

cNAMPs 14.7 - 5.9 - 104.8 12.9

Reduction 4.11 times 64 moves 3.81 times 6 moves 1.65 times

Scenario 2

AMPs 50.5 43 28.2 11 182.1 11.5

cNAMPs 12.4 - 7.8 1 113.6 9.43

Reduction 4.07 times 43 moves 3.62 times 10 moves 1.6 times

Scenario 3

AMPs 26.8 13 14.1 6 232.6 9.91

cNAMPs 8.5 - 5.6 - 142.2 4.97

Reduction 3.15 times 13 moves 2.52 times 6 moves 1.64 times

Table 4.4: Comparative Summary of AMP and cNAMP Greedy Effects

78

Chapter 4. Redundant Movements in Autonomous Mobility

(a) Scenario 1

(b) Scenario 2

Figure 4.11: Initial Distribution and Rebalancing

79

Chapter 4. Redundant Movements in Autonomous Mobility

during initial distribution, and all scenarios show at least three times faster initial balan-

cing in comparison with AMPs, e.g. dropping from 60.4s to 14.7s in scenario 1.

During rebalancing after an AMP/cNAMP termination, cNAMPs make far fewer re-

dundant movements. The vast majority of experiments in scenarios 1 and 3 show that

cNAMPs do not make redundant movements to rebalance, and the cNAMP rebalancing

takes less than half of the time of AMP rebalancing, e.g. to rebalance 19 AMPs take

28.2s, and 19 cNAMPs take 7.8s in scenario 2.

cNAMPs require less completion time than AMPs. In the analysed worst case, mean

cNAMP completion is 0.63 of AMP completion time, e.g. mean completion time of 10

AMPs is 232s, whereas mean completion time of 10 cNAMPs is 142s in scenario 3.

Figures 4.11(a) and 4.11(b) show initial cNAMP distribution and system rebalancing

after a cNAMP termination. Arrows show cNAMP movements, and as before the cNAMP

movements from state U1 to state S1 are not shown. Figure 4.11(a) should be compared

with Figures 4.4(a) and 4.4(b) in Section 4.3. The results show that cNAMPs only dis-

play location blindness (Section 4.1) that does not increase cNAMP completion time.

4.5.1 cNAMP Overhead

Table 4.5 presents the overhead of cNAMPs compared with AMPs. Although cNAMPs

send more messages (columns 2 and 6), most of them are small request/response mes-

AMPs cNAMPs

Conf. No. Size, No. Req/ No. Moves Total Req/Resp cNAMP Total

Moves Mb Resp cNAMPs No. Msg Size, Mb Size, Mb Size, Mb

Sc. 1 106 954 78 35 113 36 315 351

Sc. 2 77 693 66 28 94 30 252 282

Sc. 3 28 252 26 11 37 12 99 111

Table 4.5: AMP/cNAMP and Request/Response Messages

80

Chapter 4. Redundant Movements in Autonomous Mobility

sages. Therefore, total communicated data for AMPs is larger than for cNAMPs (columns

3 and 9). As a consequence cNAMPs execute faster than AMPs (column 6 in Table 4.4).

4.6 Discussion

In this chapter two types of greedy effects in AMP systems have been identified: loc-

ation thrashing causes additional movements and increase in AMP completion time;

location blindness causes only additional movements, as all transferred AMPs improve

their execution environment. Both greedy effects appear in the load balancing literature

(Section 4.1).

The chapter has simulated the greedy effects in AMP implementations (Section 4.2), and

shown that each AMP makes on average two redundant movements during execution for

the scenarios considered. Although greedy effects have limited impact on networks with

a small number of AMPs, few locations, or small AMPs, their effects increase as any of

these factors scale. The analysis of the redundant movement types and the reasons they

occur have shown that redundant movements are mainly caused by location thrashing

(Section 4.3).

To reduce location thrashing the concept of negotiating AMPs has been introduced, and

AMPs that negotiate with a competitive scheme (cNAMPs) have been described and

implemented. Negotiation only implies a coordination among competitive and self-

interested agents. The key differences between cNAMPs and AMPs are as follows:

before the movement a cNAMP sends a request to the target location; and each loca-

tion has two values for the number of cNAMPs, one that is used by local cNAMPs, and

another that is published to other locations (Section 4.4).

cNAMP simulation results show that cNAMPs exhibit only the location blindness. cNAMPs

do not make redundant movements during initial distribution, and all scenarios show at

least three times faster initial balancing in comparison with AMPs, e.g. dropping from

81

Chapter 4. Redundant Movements in Autonomous Mobility

60.4s to 16.5s in scenario 1. During rebalancing after an AMP/cNAMP termination,

cNAMPs make far fewer redundant movements, and the cNAMP rebalancing takes less

than half of the time of AMP rebalancing, e.g. to rebalance 19 AMPs take 28.2s, and

19 cNAMPs take 7.8s in scenario 2. cNAMPs require less completion time than AMPs.

In the analysed worst case, mean cNAMP completion is 0.63 of AMP completion time,

e.g. mean completion times of 10 AMPs and 10 cNAMPs in scenario 3 are 232s and

142s respectively (Section 4.5).

Chapter 5 investigates balanced states of both AMPs and cNAMPs, and provides the-

oretical analysis of the maximum number of redundant movements in collections of

cNAMPs and its probability.

82

Chapter 5
Theoretical Analysis of Balanced States

and Redundant Movements

To estimate the degree of redundant movements in modified AMPs (cNAMPs) discussed

in Sections 4.4 and 4.5 this chapter establishes the properties of collections of AMPs in

balanced states (Section 5.1) using a set of consistent and rigorous definitions about

AMP and cNAMP behaviour (Glossary). Applying the properties of balanced states the

chapter then investigates upper bounds on the number of redundant movements and their

probabilities after a cNAMP termination in homogeneous and heterogeneous networks

(Section 5.2).

5.1 Properties of Balanced Networks

The properties of balanced states are established to analyse the significance of greedy ef-

fects. The properties and definitions developed in this section are essential for the proofs

in Section 5.2, and are summarised in the Glossary. Note that the properties of bal-

anced states apply to all AMPs, not only cNAMPs. The balanced states are investigated

83

Chapter 5. Theoretical Analysis of Balanced States and Redundant Movements

using a balanced state checker, i.e. a special program to explore the state space the sys-

tem enters. The balanced state checker uses identical logic to the simulated and to real

AMPs. Hence, it is not surprising that the predicted balanced states exactly reproduce

simulated results for all scenarios considered. A homogeneous network is analysed as a

special case of a heterogeneous network where the root location is taken as a singleton

subnetwork, i.e. a subnetwork with one location. A subnetwork is used to define a set of

locations with identical available speeds.

There is a similarity between AMP’s balanced states and Nash equilibria [FT91]. Par-

ticipants in both Nash equilibrium and AMPs aim to get as much profit as possible.

However, in game theory participants have a choice to play cooperatively or not, whereas

AMPs/cNAMPs have no such choice. Though cNAMPs communicate more information

than AMPs, cNAMPs are still selfish, and they never care about others’ profit but only

about decreasing their own execution time. Another difference is that AMPs/cNAMPs

do not predict or estimate other AMP/cNAMP behaviour, i.e. as soon as an AMP/cNAMP

finds a location where it can reduce its execution time it moves.

The empirical balanced state checker that is used to investigate balanced states is dis-

cussed in Section 5.1.1. The independent balance property is presented in Section 5.1.2,

and discussion of optimal and near-optimal balanced states follows in Sections 5.1.3 and

5.1.4 respectively. Finally, balanced states for homogeneous networks are characterised

in Section 5.1.5 and for heterogeneous networks are characterised in Section 5.1.6.

5.1.1 Balanced State Checker

The properties of balanced states were investigated using a program to explore the states

entered as AMPs are added to the system one by one. The program assumes that com-

munication time is negligibly small relative to computation time, i.e. Tcomm ¿ Tcomp.

The sequence of stable states that are entered are all balanced.

The algorithm of the balanced state checker is as follows. To allocate a new AMP when a

84

Chapter 5. Theoretical Analysis of Balanced States and Redundant Movements

/ all subnetworks are singleton

/ q is the total number of subnetworks

/ S_i is the available speed in subnetwork i

/ x_i is the number of AMPs in subnetwork i, initially all x_i = 0

/ R_i is the AMP relative speed in subnetwork i

/ numAMPs is the total number of AMPs, e.g. 3000

/ list_Rmax is a list of subnetworks where R_i == R_max

/ num_Rmax number of subnetworks that have R_i == R_max

j = 1;

while j <= numAMPs

{ for i from 1 to q by 1

Increase x_i by one; Calculate R_i = S_i / x_i

Find R_max;

num_Rmax = 0; list_Rmax = empty

for i from 1 to q by 1

if R_i < R_max then Decrease x_i by one

else remember i in list_Rmax; num_Rmax++

if num_Rmax > 1

{ if numAMPs >= j + num_Rmax - 1 then num_floatAMPs = num_Rmax

else num_floatAMPs = numAMPs - j + 1

for i from 1 to num_floatAMPs - 1 by 1

{ num_distr = q! / (i! * (num_Rmax - i)!)

Print num_distr distributions of (j + i - 1) AMPs }

if num_floatAMPs == q

then print distribution of (j + num_Rmax - 1) AMPs

j = j + num_Rmax }

else

{ Print distribution of j AMPs

j++ }

Figure 5.1: Pseudocode of the Balanced State Checker

85

Chapter 5. Theoretical Analysis of Balanced States and Redundant Movements

distribution of x AMPs is given (0 6 x 6 ∞) one AMP is added to each location. Then

AMP relative speeds are calculated, and one AMP is removed from each location except

those with the highest AMP relative speed. The resulting distribution is the distribution

x + 1 AMPs where this one AMP can be on one of the locations with the highest AMP

relative speed. The rationale of the method is based on the main rule governing AMP

movements (2.5), i.e. an AMP moves if execution time on the current location exceeds

execution time on the next location and communication delay. As communication time is

relatively small, when a new AMP is put on any location, the AMP only checks whether

its relative speed on the next location is higher than on the current location. If a few

locations have the same highest AMP relative speed then distribution of x + 1 AMPs

may result in a number of balanced state and this floating AMP can be situated on any

of the locations with the highest relative speed. The number of distributions is defined

by the combination of the number of floating AMPs, NfloatAMPs, on the number of

locations that have the same highest AMP relative speed, NRmax, i.e.
(

NRmax

NfloatAMPs

)
=

NRmax!

NfloatAMPs!(NRmax −NfloatAMPs)!
. (5.1)

Pseudocode of the balanced state checker is presented in Figure 5.1 where xi is the

number of AMPs in subnetwork i when j AMPs are distributed on q subnetworks.

The program was run on a large number of networks and the balanced states were noted.

The networks had up to 3000 AMPs split into between 2 and 20 subnetworks. All obser-

vations are made on the basis of heterogeneous networks. The program code is provided

in Appendix B.

5.1.2 Independent Balance Property

The analysis of balanced states shows the following property.

Property 1 (independent balance). For a balanced state, the relationship between the

number of AMPs xi and xj on locations in any two subnetworks i and j is independent

86

Chapter 5. Theoretical Analysis of Balanced States and Redundant Movements

(a) Scenario A

Available Number

speed of of

locations AMPs

S1 8

S2 3

(b) Scenario B

Available Number

speed of of

locations AMPs

S1 8

S2 3
...

...

Si xi

(c) Scenario C

Available Number

speed of of

locations AMPs

8

S1

...

8

3

S2

...

3
...

...

Si xi

Table 5.1: AMP Distribution in a Pair of Subnetworks for a Given Sum of AMPs

of the number of locations in those subnetworks and independent of the presence or

absence of other subnetworks, subject only to the sum x = xi + xj being constant. The

only exception to this rule is the case when distribution of x′ = xi +xj +1 AMPs results

in all x′ AMPs having the same relative speed. In this case the partition may have two

variants.

The independent balance property holds in all scenarios investigated and can be observed

in the following experiments:

Experiment 1.

• Distribute 11 AMPs over a heterogeneous network of two singleton subnetworks.

Without loss of generality, make the following assumptions: the distribution places

8 AMPs on the location of subnetwork 1 and 3 AMPs on the location of subnet-

work 2 as Table 5.0(a) shows, and distribution of 12 AMPs would not result in

AMPs having the same relative speed.

• Add further singleton subnetworks to the system and also add enough AMPs to

the new system so that balanced state is achieved and there are 11 AMPs distrib-

87

Chapter 5. Theoretical Analysis of Balanced States and Redundant Movements

uted between singleton subnetworks 1 and 2. The distribution between singleton

subnetworks 1 and 2 will always be 8 AMPs in subnetwork 1 and 3 AMPs in sub-

network 2 (Table 5.0(b)). It will never be distributed 7 AMPs in subnetwork 1 and

4 AMPs in subnetwork 2, or 9 AMPs in subnetwork 1 and 2 AMPs in subnetwork

2.

• Adding any number of locations to a subnetwork will not change the distribution

between a pair of locations from subnetworks 1 and 2 so long as the system is in a

balanced state and the sum of the number of AMPs on the pair of locations from

subnetworks 1 and 2 is 11 (Table 5.0(c)).

Experiment 2. Assume that distribution of 12 AMPs between subnetworks 1 and 2

would result in all AMPs having the same relative speed, and the distribution would be 8

AMPs in subnetwork 1 and 4 AMPs in subnetwork 2. Then distribution of 11 AMPs has

two alternatives: 8 AMPs in subnetwork 1 and 3 AMPs in subnetwork 2, and 7 AMPs

in subnetwork 1 and 4 AMPs in subnetwork 2. The distribution of 11 AMPs may result

only in these two partitions independently of presence or absence of other locations and

subnetworks.

Let there be two subnetworks, with the available speeds S1 and S2, and let each location

of subnetworks 1 and 2 have x1 and x2 AMPs in a balanced state respectively. Then the

following inequalities hold in any balanced state:

S1

x1

> S2

x2 + 1

S2

x2

> S1

x1 + 1
.

(5.2)

There are two types of balanced states: optimal and near-optimal balanced states. The

properties of balanced states and generalisation of some definitions given in [Den07] are

presented in Sections 5.1.3 and 5.1.4.

88

Chapter 5. Theoretical Analysis of Balanced States and Redundant Movements

5.1.3 Optimal Balance

As discussed in Section 3.3.1 in an optimal balanced state locations with the same avail-

able speed have equal numbers of AMPs. Thus, the total number of AMPs x in an

optimally balanced network with q subnetworks is:

x =

q∑
i=1

xiNi,

where there are Ni locations in subnetwork i and each location has xi AMPs.

Property 2 (singleton optimality). All balanced states which a network of singleton

subnetworks enters are optimally balanced.

The singleton optimal property is a direct corollary of the optimal balanced state defini-

tion. Furthermore, from optimal balanced state definition and independent balance prop-

erty the following optimal balance properties result:

1. finding optimal balance states of arbitrary heterogeneous networks only requires

the finding of the optimal balance states for networks with the same number of

singleton subnetworks:

k =

q∑
i=1

xi, k ∈ [1; +∞). (5.3)

2. any optimally balanced network is a composition of optimally balanced pairs of

subnetworks.

Solving inequations (5.2) for a heterogeneous network of two subnetworks with avail-

able speeds S1 and S2, and k = x1 + x2, each location has the following number of

AMPs:

xi ≈ Si(k + 1)

S1 + S2

− 1

2
, i = 1, 2. (5.4)

Here, by ≈ rounding to the nearest value is meant. If the fraction part of xi is exactly

.5, then either xi is rounded up and xj is rounded down, or xi is rounded down and xj

89

Chapter 5. Theoretical Analysis of Balanced States and Redundant Movements

is rounded up. To indicate the rounding to the nearest value in the thesis double square

brackets, [[]] are used. These brackets also imply that both adjacent integer values should

be considered if the fractional part of the contents is exactly .5.

This analysis of balanced and optimal balanced states enables testing of an assumption

made in [Den07], i.e. it is said that AMPs tend to have equal AMP relative speed in

optimal balance. However, the observations show the following results:

Lemma 3. An AMP relative speed on a faster location tends to be slightly lower than

the mean AMP relative speed; and an AMP relative speed on a slower location tends to

be slightly higher than the mean AMP relative speed.

Proof. This can be observed from the following analysis. First, it is important to recall

that although a system is equilibrium in an optimal balanced state, AMP relative speeds

on locations from different subnetworks need not be the same, because the number of

AMPs on a location is integer.

According to assumption in [Den07], i.e. S1

x1
≈ S2

x2
, and the optimal balance property a

location of subnetwork 1 must have
[[

S1k
S1+S2

]]
AMPs. Hence, AMP relative speed on the

basis of (2.3) must be

R
′
1 =

S1[[
S1k

S1+S2

]] . (5.5)

However, the number of AMPs on a location is given by (5.4), and an AMP relative

speed on a location of subnetwork 1 is

R1 =
S1[[

S1k
S1+S2

+ S1−S2

2(S1+S2)

]] . (5.6)

As S1 > S2 > 0 and S1−S2

S1+S2
< 1, then 0 < S1−S2

2(S1+S2)
< 0.5. Thus, S1−S2

2(S1+S2)
increases the

number of AMPs assumed in [Den07] by zero or one during the rounding. Therefore, an

AMP relative speed on a location of subnetwork 1 either coincides with the AMP relative

speed assumed in [Den07] or is slightly slower. The same analysis sequence applied to

90

Chapter 5. Theoretical Analysis of Balanced States and Redundant Movements

AMP relative speed in subnetwork 2 shows that it is either coincides with [Den07] or it

is slightly faster.

The difference between AMP relative speeds on locations from different subnetworks is

less when the difference in the available speeds of locations is small; and it decreases as

the total number of AMPs increases.

5.1.4 Near-Optimal Balance

For any optimal balanced state, the optimal number of AMPs for a subnetwork is the

number of AMPs on each location in the subnetwork. The nearest upper (lower) op-

timal balanced state is the optimal balanced state which the system enters by adding

(removing) the minimum number of AMPs.

A near-optimal balanced network is defined to be the network where some networks

have near-optimal number of AMPs. The locations of these underloaded subnetworks

have either the optimal number of AMPs or one less than the optimal number. The

underloaded subnetworks are determined by being the subnetworks with the slowest

AMP relative speed in the nearest upper optimal balanced state.

Property 4 (consecutive optimality). If a system with a total of x AMPs is optimally

balanced, and the subnetwork with the highest AMP relative speed is a singleton, then

the system with a total of x + 1 AMPs is also optimally balanced.

The consecutive optimal property is derived from the near-optimal balance definition as

a corollary.

The independent balance property (Section 5.1.2) allows us to conclude that a system

has no balanced states other than optimal and near-optimal balanced states. That is,

only subnetworks that have the slowest AMP relative speed in the nearest upper optimal

91

Chapter 5. Theoretical Analysis of Balanced States and Redundant Movements

balanced state can be in a near-optimal balanced state. If other networks were simul-

taneously in a near-optimal balance state, then there would be an immediate transfer of

AMPs from the slower to the faster subnetwork (in terms of AMP relative speed).

As the near-optimally balanced subnetworks are determined for each optimally balanced

state, a subnetwork which may change its number of AMPs after adding/removing an

AMP is identified as follows:

• when an AMP is added to an optimally balanced network, the number of AMPs

in the subnetwork which would have the highest AMP relative speed if one AMP

is added to each location increases by one.

• when an AMP is removed from an optimally balanced network, the number of

AMPs in the subnetwork with the slowest AMP relative speed decreases by one.

Frequently, this calculation will give a unique successor state. However, if several sub-

networks have the same AMP relative speed and it is the highest AMP relative speed and

AMP is being added, the AMP can be added to any one of those subnetworks. Similarly

if an AMP is being removed and several subnetworks have the same AMP relative speed

and it is the lowest, then the AMP may be removed from any one of those subnetworks.

5.1.5 Characterizing Balanced States in a Homogeneous Network

Let a homogeneous network have N locations and the available speed of non-root loca-

tions be S. As only a part of the root location capacity is available for an AMP execution,

let the load factor, 0 < f < 1, define available resources for AMPs on the root location,

i.e. available speed of the root location is f · S.

In an optimal balanced state on the basis of (5.4) the system has the following numbers

of AMPs on the root, xrt, and non-root, xnrt, locations:

xrt =

[[
2fk + f − 1

2(f + 1)

]]
, (5.7)

92

Chapter 5. Theoretical Analysis of Balanced States and Redundant Movements

xnrt =

[[
2k − f + 1

2(f + 1)

]]
. (5.8)

In a near-optimal balanced state the root location has
[[

2fk+f−1
2(f+1)

]]
AMPs and non-root

locations have either
[[

2k−f+1
2(f+1)

]]
or

[[
2k−3f−1
2(f+1)

]]
AMPs. For further distinguishing non-

root locations with a different number of AMPs, those which have an optimal number

of AMPs, i.e.
[[

2k−f+1
2(f+1)

]]
, are called heavy locations, and those which have one or two

AMPs less than a heavy location, i.e.
[[

2k−3f−1
2(f+1)

]]
and

[[
2k−5f−3
2(f+1)

]]
, are called light and

very light locations respectively.

5.1.6 Characterizing Balanced States in a Heterogeneous Network

Let ki,j be the sum of AMPs in singleton subnetworks i and j, i.e.

ki,j = xi + xj, i, j = 1, 2..., q, i < j. (5.9)

To calculate the AMP distribution in optimally balanced heterogeneous networks the

following algorithm is used.

1. We calculate ki,j for all i and j denoted in (5.9) using the following equation:

ki,j =

[[
(2k + q)(Si + Sj)

2
∑q

m=1 Sm

− 1

]]
. (5.10)

2. Then for each ki,j we find xi and xj using (5.4), i.e.

xi =

[[
Si(ki,j + 1)

Si + Sj

− 1

2

]]
,

xj =

[[
Sj(ki,j + 1)

Si + Sj

− 1

2

]]
.

(5.11)

3. Using results from (5.11) we make a list of all possible distributions, and delete

distributions where k 6= ∑q
m=1 xm.

93

Chapter 5. Theoretical Analysis of Balanced States and Redundant Movements

4. In the remaining distributions we check inequality (5.2). The inequality is strictly

larger for all pairs i and j, i.e.

Si

xi

>
Sj

xj + 1
, i, j = 1, 2, ...q. (5.12)

The only exception is for pairs where xi and xj result in .5. In this case (5.2) is as

follows:

Si

dxie =
Sj

bxjc+ 1
,

Sj

dxje =
Si

bxic+ 1
.

(5.13)

The distributions in which condition (5.13) holds are the only distributions of k

AMPs on the network of q singleton subnetworks. An example of the calculation

is provided in Appendix C.

To estimate the correctness of the above algorithm’s distributions of a number of AMPs

for different configurations have been calculated using the algorithm and the empirical

balanced state checker discussed in Section 5.1.1. First, the AMP distributions xi and

xsim
i have been calculated for up to 50 subnetworks, ranging k from 1 to 10000. The

ratio between available speeds of fastest and slowest locations ranges from 1.1 to 14000.

The results show that distributions xi and xsim
i are identical. Therefore, the presented al-

gorithm is a good way of calculating AMP distribution in optimally balanced heterogen-

eous networks. According to discussion in Section 5.1.4, numbers of AMPs on locations

in a near-optimal balanced state coincides with the numbers in the nearest upper optimal

balanced state, except the subnetworks with the slowest AMP relative speed. Locations

of these subnetworks have number of AMPs given in the algorithm or one AMP less.

5.2 cNAMP Greedy Effect Analysis

This section examines the cost of cNAMP location blindness by predicting the maximum

number of redundant movements in homogeneous networks (Section 5.2.1) and hetero-

94

Chapter 5. Theoretical Analysis of Balanced States and Redundant Movements

Cost Model Components:

Th =
Wr

Rh

(5.14)

Tn =
Wr

Rn

(5.15)

f - the load factor on the root location

Rh - the current location relative speed

Rn - the new location relative speed

Th - execution time on the current location

Tn - execution time on the new location

Wr - the work remaining

x - the total number of cNAMPs

xnrt - the number of cNAMPs on a non-root location

xrt - the number of cNAMPs on the root location

Figure 5.2: cNAMP Cost Model Components

geneous networks (Section 5.2.2). To estimate the number of redundant movements the

conditions under which cNAMPs transfer are analyzed. Figure 5.2 shows the cNAMP

cost model. A network with AMPs, and hence with cNAMPs, enters one of two types of

balanced state: optimal and near-optimal balance. The analysis presents the maximum

number of movements and its probability after a cNAMP termination in homogeneous

and heterogeneous networks which are in optimally and near-optimally balanced states.

5.2.1 Homogeneous Network

cNAMP Termination in an Optimally Balanced Network. From (5.7) and (5.8), in

an optimal balanced state the root location has
[[

2fk+f−1
2(f+1)

]]
cNAMPs and every non-root

location has
[[

2k−f+1
2(f+1)

]]
cNAMPs.

Theorem 5. There is no greedy effect when a cNAMP terminates in an optimally bal-

95

Chapter 5. Theoretical Analysis of Balanced States and Redundant Movements

anced homogeneous network.

Proof. The proof proceeds by case analysis on the location where termination occurs,

and where the first movement is initiated.

1) Termination at a Non-root Location. Assume that a cNAMP terminates at a non-

root location. After the cNAMP termination, the system has
[[

2fk+f−1
2(f+1)

]]
cNAMPs on

the root location,
[[

2k−3f−1
2(f+1)

]]
cNAMPs on the non-root location where termination oc-

curred (the light location), and
[[

2k−f+1
2(f+1)

]]
cNAMPs on the remaining non-root locations

(i.e. heavy locations). Hence, the system is in the near-optimal balanced state. Possible

movements which may occur from the root and heavy locations to the light location are

analysed below.

1. cNAMP movement from the root location. The main rule on the basis of which

cNAMPs make the decision about a movement is presented in (2.5), i.e. Th >

Tn + Tcomm. According to the rule, to make the decision the cNAMP needs to

know its execution time on the current location, Th, and its execution time on the

new location after the cNAMP arrival, Tn.

First, on the basis of (5.14) and (2.3) the cNAMP execution time on the root loca-

tion before a cNAMP movement is calculated:

Th =
Wr

f · S ·
[[

2fk + f − 1

2(f + 1)

]]
. (5.16)

The light location becomes a heavy location after a cNAMP arrival, and has
[[

2k−f+1
2(f+1)

]]

cNAMPs. According to (5.15) and (2.3) execution time is

Tn =
Wr

S
·
[[

2k − f + 1

2(f + 1)

]]
. (5.17)

Substituting (5.16) and (5.17) in (2.5) gives

Wr

f · S ·
[[

2fk + f − 1

2(f + 1)

]]
>

Wr

S
·
[[

2k − f + 1

2(f + 1)

]]
+ Tcomm. (5.18)

96

Chapter 5. Theoretical Analysis of Balanced States and Redundant Movements

If condition (5.18) holds then the cNAMP moves from the root to the light loca-

tion. The system enters another optimal balanced state and cannot have any more

movements.

2. cNAMP movement from a heavy location. Another movement is from a heavy to

the light location. cNAMP execution time on a heavy location is

Th =
Wr

S
·
[[

2k − f + 1

2(f + 1)

]]
. (5.19)

After a cNAMP movement to the light location, the light location becomes heavy

and execution time there is given by (5.17). Substituting (5.19) and (5.17) in (2.5)

gives the following cNAMP movement condition:

Wr

S
·
[[

2k − f + 1

2(f + 1)

]]
>

Wr

S
·
[[

2k − f + 1

2(f + 1)

]]
+ Tcomm

or

Tcomm < 0. (5.20)

In fact, (5.20) shows that the number of cNAMPs on locations with the same avail-

able speed must differ by at least two before cNAMPs will move between them.

This condition is called the minimum difference criterion.

2) cNAMP Termination at the Root Location. Assume that a cNAMP terminates at

the root location in an optimal balanced state. Then the root location has
[[

2fk−f−3
2(f+1)

]]

cNAMPs, and non-root locations have
[[

2k−f+1
2(f+1)

]]
cNAMPs.

Applying the same principle to analyse as before shows that after a cNAMP termina-

tion from the root location in an optimally balanced homogeneous network, only one

movement may occur for rebalancing (Appendix D.1).

The above analysis leads to the conclusion that after a cNAMP termination in an optim-

ally balanced homogeneous network, there can be only one cNAMP movement between

locations to rebalance and, hence, there is no greedy effect.

97

Chapter 5. Theoretical Analysis of Balanced States and Redundant Movements

cNAMP Termination in a Near-Optimally Balanced Network. In near-optimal bal-

ance a system has
[[

2fk+f−1
2(f+1)

]]
cNAMPs on the root location, and either

[[
2k−3f−1
2(f+1)

]]
or[[

2k−f+1
2(f+1)

]]
cNAMPs on non-root locations (Section 5.1.5).

Theorem 6. The greedy effect causes at most one redundant movement, when a cNAMP

terminates in a near-optimally balanced homogeneous network.

Proof of Theorem 6 follows directly from Lemma 7.

Lemma 7. A redundant movement occurs only in two cases: of a cNAMP termination in

near-optimal balance on the root location which is discovered first by a cNAMP from a

light location, and of a cNAMP termination in near-optimal balance on a light location

which is discovered first by a cNAMP from the root location.

Recall that a light location has one cNAMP less than the optimal number (Glossary). The

proof of Lemma 7 again proceeds by case analysis considering the location where ter-

mination occurs, and the location where the first movement is initiated (Appendix D.2).

Probability of the Greedy Effect after a cNAMP termination. In a homogeneous

network the greedy effect occurs only in two cases after a cNAMP termination from a

near-optimal balanced state:

• a cNAMP terminates at the root location, and then a cNAMP from a light location

discovers the opportunity to move first, i.e. the following condition must hold:

Wr

S
·
[[

2k − 3f − 1

2(f + 1)

]]
>

Wr

f · S ·
[[

2fk + f − 1

2(f + 1)

]]
+ Tcomm.

• a cNAMP terminates at a light location, and then a cNAMP from the root location

discovers the opportunity to move first, i.e. the following condition must hold:

Wr

f · S ·
[[

2fk + f − 1

2(f + 1)

]]
>

Wr

S
·
[[

2k − 3f − 1

2(f + 1)

]]
+ Tcomm.

98

Chapter 5. Theoretical Analysis of Balanced States and Redundant Movements

Thus, the greedy effect probability, P , in a near-optimally balanced homogeneous net-

work is the sum of probabilities of these two events:

P = P1 + P2. (5.21)

The probability P1 that a cNAMP terminates from the root location, and then a cNAMP

from a light location discovers the opportunity to move first is a product of the probab-

ility of a cNAMP termination from the root location, PtermR, and the probability of the

discovery of the better opportunity for execution first by a cNAMP from a light location,

Pl:

P1 = PtermR·Pl. (5.22)

To calculate the probability of a cNAMP termination at the root location, assume that

the cNAMP execution time on locations follows an exponential distribution. The mean

cNAMP execution time on the root, heavy and light locations is given by:

Tloc =
W · xloc

Sloc

=
W

Rloc

. (5.23)

Hence, the rate of cNAMP terminations at the root, heavy and light locations is:

νloc =
Rloc

W
.

Assume, that there are Nl light locations and Nh heavy locations in the system. Then the

probability that a cNAMP terminates at the root location is:

PtermR =
νroot

νroot + Nh · νh + Nl · νl

or

PtermR =
Rroot

Rroot + NhRh + NlRl

. (5.24)

cNAMPs from non-root locations have an equal probability of discovering a better op-

portunity for execution first. The total number of cNAMPs on non-root locations, xnonroot,

is

xnonroot = Nhxh + Nlxl.

99

Chapter 5. Theoretical Analysis of Balanced States and Redundant Movements

The probability that a cNAMP from a light location is the first to discover a better op-

portunity for execution is the ratio of the total number of cNAMPs on light locations to

the total number of cNAMPs on non-root locations:

Pl =
Nlxl

Nlxl + Nhxh

. (5.25)

Thus, substituting (5.24) and (5.25) in (5.22), gives the following probability, P1, of

cNAMP termination on the root location and further discovery of the opportunity to

move by a cNAMP from a light location first:

P1 =
Rroot

Rroot + NhRh + NlRl

· Nlxl

Nlxl + Nhxh

. (5.26)

Applying the same principle results in the following probability, P2, of cNAMP termin-

ation on a light location and further discovery of the opportunity to move by a cNAMP

from the root location first:

P2 =
NlRl

Rroot + NhRh + NlRl

· xroot

xroot + Nhxh

. (5.27)

Substituting (5.26) and (5.27) in (5.21) gives the following probability of the greedy ef-

fect after a cNAMP termination from a near-optimally balanced homogeneous network:

P =
Nl

Rroot + NhRh + NlRl

·
(

Rrootxl

Nlxl + Nhxh

+
Rlxroot

xroot + Nhxh

)
. (5.28)

The range of values that P can take is calculated for homogeneous networks of locations

(3193 MHz) by changing the total number of locations from 3 to 50, the number of

light locations from 1 to N − 2, the load factor, 0.05 6 f 6 0.95, and the number of

cNAMPs, k, from 1 to 200. The calculation considers only cases when Nh·Nl 6= 0,

because a system must have both heavy and light locations in order the greedy effect can

occur. The root and light locations must have at least one cNAMP.

In total the probability is calculated for 3,100,872 states. In the experiments the para-

meters were placed in loops where they were gradually changing in accordance to their

100

Chapter 5. Theoretical Analysis of Balanced States and Redundant Movements

range. The analysis shows that the number of cNAMPs, k, has no significant effect on

the probability. The total number of locations, N , the number of light locations, Nl,

and the load factor of the root location, f , have a direct impact on the probability. The

maximum probability in the conducted calculations is 32%. It occurs in a homogeneous

network of 50 locations where 47 locations are light, load factor of the root location

f = 0.95 and k = 195 cNAMPs, i.e. the total number of cNAMPs is 4948. The mean

probability is 4%.

Summary. The analysis of cNAMP movements on homogeneous networks have demon-

strated dependence between the number of cNAMPs and locations in optimal and near-

optimal balanced states. It shows the following results of cNAMP behaviour after a

cNAMP termination in an optimal balanced network:

• there is no greedy effect (Theorem 5).

• cNAMPs do not move, when a system is in a near-optimal balanced state (min-

imum difference criterion).

When a cNAMP terminates in a near-optimal balanced network the greedy effect only

occurs in two case and causes only one redundant movement (Theorem 6). The mean

probability of this movement in the conducted experiments is 4%.

5.2.2 Heterogeneous Network

The analysis is made for a heterogeneous network of q subnetworks one of which is the

singleton subnetwork corresponding to the root location.

Theorem 8. The number of redundant movements in a heterogeneous network after a

cNAMP termination does not exceed q − 1.

Theorem 8 follows from analysis of cNAMP movements after cNAMP termination from

optimally in near-optimally balanced networks.

101

Chapter 5. Theoretical Analysis of Balanced States and Redundant Movements

cNAMP Termination in Optimally Balanced Networks.

Lemma 9. A system makes at most q − 2 redundant movements after a cNAMP termin-

ation from an optimally balanced heterogeneous network.

Proof. The proof proceeds by case analysis on the location where termination occurs,

and where the first movement is initiated. To analyse possible movements after a cNAMP

termination from optimal balance, the subnetworks are numbered in the ascending order

of cNAMP relative speeds, i.e.

R1 > R2 > ... > Rq.

According to the minimum difference criterion, a movement after a cNAMP termination

from optimal balance in a heterogeneous network can be only from a location of another

subnetwork. Assume that a cNAMP terminates from a location of subnetwork i where

1 < i < q. The analysis is conducted by investigation of possible movements from

locations of subnetworks i− 1 and i + 1, i.e. Ri−1 > Ri > Ri+1.

cNAMP movement from a location of subnetwork i− 1. cNAMP execution time on

a location of subnetwork i− 1 before the movement is

Th =
Wr

Ri−1

, (5.29)

and cNAMP execution time after the movement becomes

Tn =
Wr

Ri

. (5.30)

Substituting (5.29) and (5.30) in (2.5) gives the following condition of a cNAMP move-

ment:
Wr

Ri−1

>
Wr

Ri

+ Tcomm

or

Wr(
1

Ri−1

− 1

Ri

) > Tcomm. (5.31)

102

Chapter 5. Theoretical Analysis of Balanced States and Redundant Movements

To satisfy condition (5.31) at least
1

Ri−1

− 1

Ri

must be positive. However, according to

initial condition Ri−1 > Ri, hence
1

Ri−1

− 1

Ri

< 0. Thus, after a cNAMP termination

from optimal balance a cNAMP never moves from a location which in optimal balance

has higher cNAMP relative speed to a location which in optimal balance has lower

cNAMP relative speed.

cNAMP movement from a location of subnetwork i+1. cNAMP execution time on

a location of subnetwork i + 1 before the movement is

Th =
Wr

Ri+1

, (5.32)

and cNAMP execution time on a location of subnetwork i after the movement becomes

(5.30).

Thus, condition of the cNAMP movement (2.5) on the basis of (5.32) and (5.30) is

Wr

Ri+1

>
Wr

Ri

+ Tcomm. (5.33)

Hence, the maximum number of cNAMP movements occurs when the following condi-

tions hold:

1. a cNAMP terminates from a location with the highest cNAMP relative speed, i.e.

R1;

2. then cNAMPs from locations of subnetworks i (where 1 < i 6 q) discover bet-

ter opportunities for execution on locations of subnetworks i + 1 first, i.e. in the

descending order of cNAMP relative speeds;

Therefore, after a cNAMP termination in an optimally balanced heterogeneous network

of q subnetworks there can be at most q − 2 redundant movements.

103

Chapter 5. Theoretical Analysis of Balanced States and Redundant Movements

cNAMP Termination in Near-Optimally Balanced Networks.

Lemma 10. A system makes at most q−1 redundant movements after a cNAMP termin-

ation from a near-optimally balanced heterogeneous network.

The proofs of Lemma 10 again proceed by case analysis on the location where termina-

tion occurs, and the location where the first movement is initiated (Appendix D.3).

Probability of the Greedy Effect after a cNAMP Termination. The calculations

presented in Appendix D.4 show that the median probability of q − 2 redundant move-

ments after a cNAMP termination from optimally balanced heterogeneous network does

not exceed 1%.

As it is difficult to estimate mean and maximum values of the probability for a near-

optimally balanced subnetwork, the results of conducted experiments show that the prob-

ability is less than 30%, and it rapidly decreases as the number of subnetworks increases

(Appendix D.5).

Summary. The analysis of cNAMP movements after a cNAMP termination from op-

timally balanced heterogeneous networks shows that:

• cNAMPs never move from locations which in optimal balance have higher cNAMP

relative speed to locations which in optimal balance have lower cNAMP relative

speed.

• a system makes at most q − 2 redundant movements to rebalance (Lemma 9).

• the probability median value of maximum number of redundant movements does

not exceed 1%.

Results of analysis after a cNAMP termination from near-optimally balanced hetero-

geneous networks are as follows:

104

Chapter 5. Theoretical Analysis of Balanced States and Redundant Movements

• a system makes at most q − 1 redundant movement to rebalances (Theorem 8).

• in the experiments the probability of the maximum number of movements does

not exceed 30% and rapidly decreases as the number of subnetworks increase.

5.3 Discussion

The chapter has established the properties of balanced states to further analyse the sig-

nificance of the greedy effect. Here, AMPs have been analysed as the general case. The

chapter has described three properties of balanced states including independent balance,

singleton optimality, consecutive optimality, and characterised optimal and near-optimal

balanced states for homogeneous and heterogeneous networks (Section 5.1).

The load flattening observed in the balanced states may seem to contradict the discussion

in Section 2.8 where it is stated that AMPs do not aim to even load but only to reduce

their execution time. It is important to note that this flattening is not an aim but a possible

result of the AMP attempts to reduce their completion time. In case AMPs enter a stable

state which is not balanced the flattening does not occur but AMPs still reduce their

completion time. Whereas in the systems where the goal is to even out the load the

distribution is always attempted to be even but this does not necessarily results in a

reduction of task or program completion time.

The significance of the greedy effect has been established by predicting the worst case

(maximum number) of redundant movements after a cNAMP termination from a net-

work of q subnetworks. The results show that a difference in the number of cNAMPs

needs to be at least two before a movement will occur between locations of a same sub-

network. A system with q subnetworks makes at most q−2 redundant movements after a

cNAMP termination from optimally balanced network with median probability less than

1% (Lemma 9). The number of movements after a cNAMP termination in a network of

q subnetworks does not exceed q − 1 (Section 5.2).

105

Chapter 5. Theoretical Analysis of Balanced States and Redundant Movements

Chapters 4 and 5 provide the first substantial investigation of threshing, or greedy effects,

in distributed collections of autonomous mobile agents. Chapter 6 adapts the cNAMP

cost model and investigates alternatives of cNAMP design in multilevel networks.

106

Chapter 6
Multilevel Network Design

Although AMPs were initially proposed as a load management tool for large and dy-

namic networks, so far they have been investigated only on Local Area Networks (LANs).

This chapter investigates cNAMP design options in large networks and proposes a cNAMP

design for large multilevel networks. For instance, many LANs connected into a Campus

Area Network (CAN), in turn many CANs connected into a Metropolitan Area Network

(MAN). Thus, locations, LANs, CANs, MANs form network levels. A simulation al-

lows us to emulate large networks with an arbitrary number of levels. It also allows us to

abstract from both network topology and computer configuration, e.g. single processor

computers or multiprocessor computers.

The chapter starts with investigation of alternative network topologies (Section 6.1) and

calculation of transfer delays (Section 6.2). Then alternative multilevel network archi-

tectures are considered and the chosen design justified. The design decisions aim to

support an arbitrary number of network levels (Section 6.3). The chapter concludes with

the justification of simulation parameters (Section 6.4) and summary (Section 6.5).

107

Chapter 6. Multilevel Network Design

6.1 Topology

The first key design decision is how to model the network’s topology. This section

investigates possible schemes for simulating large networks. A number of simulation

approaches can be used depending on the properties and parameters that the simulated

network aims to investigate. Some of the approaches are as follows:

1. Pure random strategy is based on a probability p that two nodes are connec-

ted [ZCB96]. This strategy is typically used to study networking problems where

the structure of the internetwork is not crucial.

2. Hierarchical tree structure [KK80]. Network nodes are clustered following hier-

archical tree structure. Nodes are gathered in subnetworks which in turn are con-

nected to each other by means of gateways. The gateways (or routers) are nodes

that are connected to two or more networks; they may also be used to execute

programs and tasks and to collect state information [MP95].

3. The Waxman algorithm creates a network on the basis of a fully connected graph,

and then decides whether a link should exist using a probability function [Wax91].

The probability depends on the number of parameters, such as a distance between

two nodes, the maximum distance between nodes, the total expected number of

edges, ratio of long and short links. One of the drawback of Waxman algorithm is

that it does not guarantee a connected network. Some of the algorithm alternative

implementations are suboptimal resilient trees [DL93] and group Takahashi and

Matsuyama algorithm [LW00].

4. Explicitly hierarchical modelling approach [CDZ97]. A network is constructed on

the basis of a three level hierarchy: transit domains, stub domains, and LANs. The

approach uses two sets of parameters to control properties of a generated network.

The first set controls relative sizes of hierarchy levels, and the second set controls

connectivity. The variants of the approach include Transit-Stub model [ZCB96]

and Tiers [Doa96].

108

Chapter 6. Multilevel Network Design

5. Power-law strategy is based on three power-laws of Internet topology discussed

in [FFF99]. The authors use an analogy with communication networks where

power-laws are used to describe traffic. The power-low strategy is used in such

topologies generators as a random graph model [ACL00] and an incremental to-

pology generator [BT02].

The current research implements a multilevel hierarchical network with a tree structure

(Figure 6.1). This approach is chosen because the research aims to investigate cNAMP

properties and distribution, and not a particular network or step-by-step data transfer

between nodes. Following the discussion in Section 2.1.2 the children of a parent node

are interconnected and division into levels is logical, i.e. a link between two nodes only

indicates the possibility to move data from one node to another. To allow scalability

and to be consistent with the research presented in the previous chapters, the locations

form Level 0. Therefore, the number of a level is determined by children nodes taking

into account sibling nodes (i.e. using the longest path from locations up to the root).

Figure 6.2 shows an example of a three-level network, and Figure 6.3 shows its simulated

prototype. A simulated network can have directly connected nodes which in the real

network are connected via other nodes. These possible intermediate nodes are taken into

account in calculation of a transfer delay (Section 6.2). Thus, a real network can be

either a balanced tree or an unbalanced tree whereas its simulated prototype is always a

balanced tree.

A choice between a fully and partially connected representation of networks is always

a trade-off between simulating a general case or a particular network. Both networks

in some way will carry properties that are more typical for one type of network than

another. A fully connected network representation is avoided when a research invest-

igate one of the following topics: workload of communication lines, complex network

topologies with multiple network links between any two resources [Cas01], routing al-

gorithms [PDR94], and topology sensitive algorithms e.g. information exchange occurs

only between directly connected devices [NLJU02]. However, as this thesis does not

109

Chapter 6. Multilevel Network Design

Fi
gu

re
6.

1:
H

ie
ra

rc
hi

ca
lT

re
e

A
rc

hi
te

ct
ur

e

110

Chapter 6. Multilevel Network Design

Fi
gu

re
6.

2:
A

Sp
ec

ifi
c

H
ie

ra
rc

hi
ca

lT
re

e
A

rc
hi

te
ct

ur
e

(H
A

1)

111

Chapter 6. Multilevel Network Design

Fi
gu

re
6.

3:
A

Si
m

ul
at

ed
H

A
1

A
rc

hi
te

ct
ur

e

112

Chapter 6. Multilevel Network Design

aim to investigate properties of a particular network, and none of the above research

topics is in the scope of the current research a fully connected network representation is

considered to be the most suitable choice.

In general a multilevel hierarchical architecture allows the simulation of an arbitrary

number of levels. The analysis presented in Chapter 7 examines networks with up to

five level. The zero level is formed by sets of locations, and the other levels are formed

by gateways. The gateway functions in the real systems can be implemented by one of

the locations. To analyse gateway features the functions of gateways and locations are

separated. Thus, the total transfer delay, Ttr, from one location to another is calculated

as follows:

Ttr =

NPG−1∑
i=0

(2Ttr,i)− Ttr,NPG−1 (6.1)

where NPG is the number of the level of the nearest common parental gateway for both

the initial and the target locations. Calculation of transfer delay depending on level i,

Ttr,i, is discussed in Section 6.2.

6.2 Transfer Delay

A transfer delay can be simulated in a number of ways, depending on the parameters

that are considered to have the most significant impact. For example, [AD96] discusses

traffic simulation on a packet level, [TMR97] analyses traffic characteristics in terms

of packet sizes, flow duration, [PV03] investigates relationship between round-trip-time

and the geographical distance, [ZCBD04] examines delays across autonomous system

links using empirical evaluation, [PZMH07] analyses the impact of network topologies

and routing changes on delay-related metrics.

For the current research the widely cited work presented in [BMH+02, HM01] is found

to be the most suitable. The main advantages of the chosen algorithm for the current re-

search are as follows: a relative simplicity of the calculation, a small number of required

113

Chapter 6. Multilevel Network Design

parameters that can be relatively easy be obtained for the simulation, and possibility to

calculate a transfer delay of an arbitrary size program. The delay calculation is based on

two parts: deterministic [BMH+02] and stochastic [HM01]. The calculations were made

on the basis of measurements conducted in 1998–2001 by RIPE Network Coordination

Centre [GGK+01, rip11]. To simplify the presentation the calculations provided below

combine both deterministic and stochastic parts.

The following notions are used to support the discussion. A hop is a pausing in each node

until sufficient resources are available for the further data transfer [oxf08]. A distance is

a physical distance between two nodes (i.e. locations, gateways) [HM01]. A router is a

node that only forwards messages from one network to another, and a gateway is a node

that in addition to acting as a router also collects state information. The measurements

presented further in this section are taken from [BMH+02, HM01] if otherwise is not

stated.

The time to transfer a cNAMP to a target location, Ttr,i, is calculated as the sum of one

packet transfer delay, Dp, the transmission delay to push all packets into the wire, DT ,

the delay between dispatching the last and the first bits of two sequential packets, Tgap,

and the increase in Tgap after a packet propagation over a number of hops, Tsk. Thus,

cNAMP transfer time, Ttr,i, is

Ttr,i = Dp + DT + Tgap + Tsk. (6.2)

The measurements and calculations in [BMH+02] are made for 100 byte packets. However,

measurements in [FML+03] show that 1500 byte packets are one of the most common

default data transmission units. Therefore, to calculate a deterministic delay of a 1500

byte packet, Dp, the deterministic delay of 100 byte packet from [BMH+02] is multi-

plied by 15, i.e.

Dp = 15(Dl + Dtt + Dew). (6.3)

The meaning and the values of the variables in (6.3) are as follows:

114

Chapter 6. Multilevel Network Design

• Dl is the total processing- and transmission delay in the intermediate routers that

depends on the number of hops, h, and per-router latency, i.e. Dl = 224h · 10−6

sec.

• Dtt is the processing delay and transmission delay at the end-points. The pro-

cessing delay is the time required to process a packet at a node and prepare it

for transmission. The transmission delay is the time required to transmit a whole

packet from the first to the last bit over a communication link. The end-point is a

destination node. The value of Dtt was determined from direct link measurements

in [BMH+02] and is equal to 155 · 10−6 sec.

• Dew is the propagation delay, i.e. the time required to transmit a bit through a

communication link. It is directly proportional to a distance in kilometres, L, that

data pass to get to the destination, i.e. Dew = 5L · 10−6 sec. The measurements

and discussion in [BMH+02] show that although distance has much smaller effect

on delay than number of hops it still should be taken into account.

Therefore, (6.3) can be written as follows:

Dp = (224h + 5L + 155) · 15 · 10−6. (6.4)

The analysis of the distance, L, and the number of routers, h, in [BMH+02, Table 4] does

not show explicit dependence between the parameters. Therefore, to calculate Dp the

distance ranges are correlated with the hop ranges in Table 6.1. Column Total Distance

between Locations shows the total possible distance between locations when there are

gateways of the corresponding level between the two.

The time required to push all packets into the wire, DT , is defined as follows [BMH+02]:

DT =
X ·Np

Rtr

(6.5)

where X is a size of a packet (i.e. 1500 bytes), Rtr is a transmission rate, Np is the

number of packets in a program of size Z bytes, i.e.

Np =
Z

X
. (6.6)

115

Chapter 6. Multilevel Network Design

Level Distance between Number of Routers Total Distance

nodes, L (km) h between locations (km)

0 1 1 1

1 1 – 15 1 – 2 3 – 17

2 10 – 65 1 – 2 14 – 96

3 55 – 200 1 – 2 79 - 362

4 160 – 440 1 – 2 294 - 1002

Table 6.1: Number of Levels vs. Distance and Hops

Substituting (6.6) in (6.5) gives the following:

DT =
Z

Rtr

. (6.7)

In the experiments presented in Chapter 7 two types of transmission rate are used: 12.5

MBps is assigned to the links of Level 0, and 4MBps is assigned to the links of Level 1−
Level 4. These values agree with the measurements presented in [CK06].

The total delay between dispatching the last and the first bits of two sequential packets,

Tgap, is calculated by multiplying the delay between dispatching the last and the first bits

of two sequential packets, Tgap,1, by the number of packets, Np, i.e.

Tgap = Tgap,1 ·Np. (6.8)

Substituting (6.6) in (6.8) gives:

Tgap =
Tgap,1 · Z

X
. (6.9)

The measurements and discussions presented in a number of sources, such as [NSS+04,

SBK04], lead to the conclusion that the following approximation can be used: Tgap,1 ≈
Rtr · 10−13 sec.

Stochastic delay is the sum of queuing delays on the intermediate and end nodes [LGY09].

To calculate stochastic delay, Tsk, for the complete program the stochastic delay of one

116

Chapter 6. Multilevel Network Design

packet presented in [HM01] is multiplied by the number of packets Np, i.e.

Tsk = Np · (
h∑

j=1

Drp; j + DT) (6.10)

that can be written as

Tsk =
Z · (∑h

j=1 Drp; j + DT)

X
(6.11)

where the meaning and the values of Drp;j and DT are as follows:

• Drp;j is a router processing delay approximated by Gaussian density with the mean

given by 530 · 10−6 sec and standard deviation given by 78 · 10−6 sec;

• DT is approximated by exponential distribution with mean given by 139 ·10−6 sec.

Substituting (6.4), (6.7), (6.9) and (6.11) in (6.2) gives the following program transfer

delay:

Ttr,i = (224h + 5L + 155) · 15 · 10−6 + Z

(
1

Rtr

+
Rtr

X · 1013
+

∑h
j=1 Drp; j + DT

X

)
.

(6.12)

Before the simulation starts, each node defines the distance and the number of hops to

all neighbour nodes using uniform distribution. Nodes of one level treat a gateway to the

upper level as another node of the same level.

6.3 cNAMP Design on Multilevel Networks

The section considers possible cNAMP designs on multilevel networks. First, the al-

ternative implementations of multilevel networks, gateways, load servers, cNAMPs, and

auxiliary messages are presented in Section 6.3.1. The provided alternatives are based

on cNAMPs discussed in Chapter 4. Then the functioning of each device according to

the chosen design is discussed in Section 6.3.2.

117

Chapter 6. Multilevel Network Design

6.3.1 Design Alternatives

The design issues and alternatives of cNAMP implementation on multilevel networks

are presented in Table 6.2. To clarify the design alternatives the questions are divided

into the following three groups:

• Multilevel Network group investigates design decisions concerning a multilevel

network architecture in general. Thus, to the nearest upper level nodes can have

either a single parental gateway like in Totem multilevel communication sys-

tem [MMSA+96] or multiple parental gateways like in Fremont multilevel sys-

tem [WCS93]. The examples of single and multiple parental gateways are presen-

ted in Figure 6.4. Another design decision is a choice between weak and strong

mobility. The type of mobility for one-level networks was discussed in Section 2.2,

and is considered again for multilevel networks in Section 6.4.

• Gateway and Location group analyses alternatives concerning gateways and loc-

ations, i.e. gateway functions, types of information and rules the nodes follow to

provide and collect this information. Recall that Level 0 is formed by the loca-

tions, whereas Level 1 and above are formed by gateways.

• cNAMP and Request/Response Message group examines alternatives of cNAMP

and auxiliary message functioning. Auxiliary messages include state informa-

(a) Single Parental Gateway (b) Multiple Parental Gateways

Figure 6.4: Number of Parental Gateways

118

Chapter 6. Multilevel Network Design

No. Parameters Alternative 1 Alternative 2 Alternative 3

Multilevel Network

1 Number of parental

gateways

One Multiple

2 Type of mobility Strong Weak

Gateways and Locations

2 Gateway functions Collecting informa-

tion

Executing cNAMPs

and collecting in-

formation

3 Type of information

a location provides to

the gateway

Available speed, com-

mitted load, latency of

a state message

Expected relative

speed, latency of a

state message

Total relative speed,

total load, latency of

a state message

4 Type of information

a gateway provides to

other gateways

Maximum available

speed, committed

load, latency of a

state message

Maximum expected

relative speed, latency

of a state message

Total relative speed,

total load, latency of

a state message

5 A location collects in-

formation about

all sibling locations

and the parental gate-

way

all sibling locations

and all parental loca-

tions up to the root

all sibling locations,

all gateways of

Level 1, and the

parental gateway of

Level 2

6 A gateway collects in-

formation about

child nodes of the

nearest lower level,

sibling gateways of

the same level, and

the parental gateway

child nodes of the

nearest lower level,

sibling gateways of

the same level, and all

parental gateways up

to the root

7 A gateway provides

information about

one node multiple nodes

8 A gateway chooses

information to pass on

the basis of

maximum expected

relative speed

maximum relative

speed

minimum number of

cNAMPs

Table 6.2: Multilevel AMP Architecture Design Alternatives

119

Chapter 6. Multilevel Network Design

No. Parameters Alternative 1 Alternative 2 Alternative 3

cNAMPs and Request/Response Messages

9 A cNAMP checks

possibility to move to

a LAN

every time the

cNAMP recalculates

parameters

only if there is no

opportunity to reduce

completion time loc-

ally

according to a timer,

i.e. only after a cer-

tain period

10 If a cNAMP awaits

a response from an-

other LAN then other

cNAMPs from the

same location

may consider move-

ments to other loca-

tions

may NOT consider

movements to other

locations

may recalculate para-

meters if the num-

ber of requests is less

than a certain value

11 A request moves

between levels

In any direction According to some

rule

12 A request makes any number of move-

ments

a limited number of

movements

a limited number of

interlevel movements

13 A request actions

after refusal

The response goes

back to the initial

location

The request goes one

level back and tries

again

Table 6.2: Multilevel AMP Architecture Design Alternatives (continued)

tion and request/response messages. The cNAMP design alternatives cover the

conditions of when cNAMPs are allowed to recalculate parameters to search an

opportunity to move to another location. Request/response design alternatives in-

clude restrictions on maximum number of request movements, allowance of re-

quest movements between levels, and response actions after making a negative

decision.

6.3.2 Implemented Design

The chosen cNAMP design on multilevel networks corresponds to alternative 1 in Table 6.2.

The scheme is a so called fusion scheme due to the procedure the nodes use to collect and

pass information [Hal92, Kle93], i.e. the nodes collect information from one group of

120

Chapter 6. Multilevel Network Design

neighbour nodes, summarise and modify this information, and pass it to another group

of nodes. To simplify the model the nodes in the simulated networks may have only

one parental network. cNAMPs on multilevel networks are designed for strong mobility

because in weak mobility the procedure of constant data transfer from the root location

to the migrated cNAMPs is time consuming.

The components of cNAMP implementation on multilevel networks discussed in this

section are as follows: cNAMPs, load servers, gateways, auxiliary messages. The choice

of alternatives from Table 6.2 is largely influenced by cNAMP design on one-level net-

works to allow easy network scalability over unlimited number of levels. Therefore,

the components have either the same or extended functions in comparison to one-level

networks. The minor differences are due to the presence of gateways, and are discussed

below. In general, the particular options were chosen due to the following three consid-

erations: a) scalability, i.e. independently of the level gateways have the same functions

which are very similar to a location load server, b) elimination of the greedy effect by

taking into account investigation conducted in Chapter 4, and c) simplicity of the initial

implementation to estimate system performance.

cNAMPs and Load Servers. The implementation of load servers and cNAMPs in

multilevel networks is almost the same as in one-level networks with only minor ad-

ditions. Pseudocode for cNAMPs and load servers is presented in Figures 6.5 and 6.6

respectively. Figure 6.5 should be compared with Figure 4.8, and Figure 6.6 should be

compared with Figure 4.9. In multilevel networks cNAMPs can recalculate parameters

using data from the gateway at any time. This is done to allow cNAMPs to distribute

more quickly between remote locations. A load server does not lock gateway informa-

tion when a cNAMP from the same location sends a request to the gateway. However,

to prevent excessive requests the load server increases the committed load at the gate-

way. In terms of providing information a location treats the gateway as another sibling

location and provides the gateway the same information as it provides to other locations,

i.e. available speed, committed load, and time to transfer a state message.

121

Chapter 6. Multilevel Network Design

Gateways. The gateway structure and functions are very similar to load servers. In

general a gateway can combine functions of collecting information and executing cNAMPs.

In the chosen alternative a gateway only collects information. In the future the gateway

functionality can be extended by allowing gateways to execute cNAMPs. Gateways col-

lect information using two lists of nodes:

• Same level list, contains information about sibling gateways and the parental gate-

way.

while work remains to execute

{

if outstanding request & positive response

{

inform local load server about movement

move to target location or gateway

}

else if no outstanding request

{

find T_remote of T_gateway + T_comm_gateway

if no cNAMP awaits a local response on the current location

for n from 1 to total number of locations

find minimum of T_n + T_comm

if T_h > minimum | T_h > T_remote

{

if minimum > T_remote

send request to Gateway

else

send request to Location_n

inform local load server about request sent

}

}

continue execution

}

Figure 6.5: Multilevel Network cNAMP Algorithm

122

Chapter 6. Multilevel Network Design

forever do

case local cNAMP sent a request:

if to local Location_i

lock information about Location_i

else

increase Gateway committed load

case local cNAMP received response:

{

renew information

if from Location_i

unlock information about Location_i

if positive response

reduce actual and committed loads

}

case arrival notification from remote cNAMP:

increase committed load

case cNAMP arrived:

increase actual load

Figure 6.6: Multilevel Network Load Server Algorithm

• Lower level list contains information about nodes at the lower level.

The process of collecting and distributing information is as follows: a gateway collects

information from nodes of one list, chooses a node with the highest relative speed, and

passes the node information to the nodes of the other list. The information contains

location available speed, committed load, and state message latency. The only fragment

of state information that requires modification after arriving at another node is the state

message latency. The latency accumulates the transfer delay, and is used to calculate

cNAMP transfer delay. A gateway provides information about one location that has the

maximum expected relative speed. Gateway pseudocode is presented in Figure 6.7.

Auxiliary Messages. cNAMPs are supported by two types of auxiliary messages: re-

quest/response and state information. In the designed version all auxiliary messages

123

Chapter 6. Multilevel Network Design

forever do

case request arrived:

renew information about visited and target nodes

case cNAMP arrived:

renew information about visited node

Figure 6.7: Multilevel Network Gateway Algorithm

also transfer state information from node to node. This is done to faster renew state

information and to better utilise transferring messages.

Request/response messages in multilevel networks have the same functions as in one-

level networks, i.e. representing a cNAMP while the cNAMP continues execution on its

location. As gateways provide only summary of state information, requests move from

node to node recalculating state information each time until the request either denies

or confirms the cNAMP transfer. The transfer can be denied at any node, whereas ac-

ceptance can be made only at a location. In the current implementation a request is not

restricted in either the movement directions or the number of movements.

A request contains information about the remaining work of the cNAMP and the relative

speed of the initial location. On the way to a better location a cNAMP accumulates the

return request transfer delay, and the one-way cNAMP transfer delay. On the way back

to the initial location the response message carries the transferring decision and state

information that is renewed at every node. After arrival at the initial location the response

message informs the load server about the cNAMP transferring decision, provides state

information of the last visited node, and terminates.

State messages are generated on each node using two lists: the same level list and the

lower level list. For the lower level list, the information is accumulated from the nodes

of the same level list, and for the same level list the information is accumulated from the

nodes of the lower level list. The information to the nodes of these two lists is sent inde-

pendently from each other at an interval. The interval between state message generation

is chosen to be equal to the mean time required to transfer state information to a node

124

Chapter 6. Multilevel Network Design

from the list. The state information contains maximum available speed, committed load,

and state message latency of a location that has the maximum expected relative speed in

the second list. After arrival to the target location a state message increases information

about state message latency by the time of the message transferring, then it provides

state information, and terminates.

6.4 Simulation Parameters

The section presents simulation parameters and their justifications. The simulation does

not aim to validate or reproduce any particular real network. However, the parameters

used in the simulation are selected to reflect real networks. For example, interconnected

LANs may form a Campus Area Network (CAN), interconnected CANs within Scotland

may form a Scotland Area Network (SAN).

Previously simulated AMPs and cNAMPs were implemented using measurements made

for AMPs with weak mobility. However, weak mobility does not preserve execution

states, and programs must restart execution after a movement, whereas strong mobility

allows program execution to continue on a remote location from the point of interruption

(Section 2.2). Although many programs can be implemented using weak mobility, strong

mobility covers a larger spectrum of programs. Therefore, the simulation in Chapter 7 is

conducted for strong mobility.

From the discussion in Section 3.1 the main measurements in [Den07] were made for

weak mobility using Java Voyager. One of the Java Voyager features is that the language

does not extend Java. This feature was taken into account in choosing JavaGoX [SSY00]

among mobile languages that support strong mobility.

For the current simulation the change from weak to strong mobility is mainly associated

with executing speed and size of transferring data. As Java Voyager does not save exe-

cution state it is assumed that Java Voyager has the same execution speed and program

125

Chapter 6. Multilevel Network Design

size as Java. Following [IKKW02] JavaGoX has approximately an 100% increase of

bytecode and approximately 50% execution time overhead in comparison with Java due

to necessity to save execution state.

Recall that in the current simulation execution speed is calculated in units per second.

The functionality of a unit depends on the type of program. For example, one unit in

matrix multiplication programs consists of three operations, i.e. one operation of mul-

tiplication, one operation of addition and one operation of assigning (Section 2.4.1).

Using measurements presented in [Den07] for weak and strong mobility and discussion

in [IKKW02] it is assumed that the considered programs spend more time on saving

current state using strong mobility than on data transfer using weak mobility. Therefore,

to convert execution speed from weak to strong mobility the weak mobility execution

speed is decreased by 33%.

As [Den07] does not provide direct dependence between program size, Z, and program

dimension, d, the calculations presented below are used. Size of program Z in matrix

multiplication AMPs, for example, includes matrix multiplication program code and

two matrices B and C where A × B = C. Thus, rows of matrix A are periodically

transferred from the initial location whereas matrix B and resulting matrix C always

move with the program code. The calculations are made for each program separately,

i.e. matrix multiplication, coin counting, and ray tracing. Here, only the calculation of

the matrix multiplication parameters are presented. Parameters for coin counting and ray

tracing programs are calculated using the same mechanism.

The calculation is made on the assumption that doubling the data size doubles the trans-

fer time on a LAN. Thus, equating (6.12) and double (3.1) gives

(224h + 5L + 155) · 15 · 10−6 + Z

(
1

R
+

R

X · 1013
+

∑h
j=1 Drp; j + DT

X

)
=

= 2 · (0.029 + 5.07 · 10−6 · d2). (6.13)

Substituting values from Section 6.2 for a LAN and taking h = 1, L = 1 gives the

126

Chapter 6. Multilevel Network Design

W , Speed

Type of Programs Tcom on LAN, sec units Z, bytes SW , SCPU ,

units per sec MHz

Coin Counting 0.074 d 129529 363

3193Ray Tracing 0.035 + 3.97 · 10−5 · d2 d2 55501 + 75.35d2 53.5

Matrix Multiplication 0.029 + 5.07 · 10−6 · d2 d3 99158 + 19.24d2 14243401

Table 6.3: Simulation Parameters

following dependence between program size, Z, and matrix dimension, d:

Z = 99158 + 19.24d2. (6.14)

The summary of simulation parameters for programs of coin counting, ray tracing, and

matrix multiplication are presented in Table 6.3. For each type of program the table

provides the following information using data from [Den07]: formulas on calculation

communication time on LANs, the total program work, and correlation of execution and

CPU speeds. Coin counting and ray tracing program sizes in bytes depending on dimen-

sion, d, are calculated using the same approach as for matrix multiplication program in

(6.14).

As strong mobility eliminates the necessity to constantly send data from the root location

to the transferred cNAMPs, all locations are treated equally, i.e. load factor of the root

location f = 1.

6.5 Discussion

The chapter has examined network topologies and identified the reasons to use abstract

multilevel networks to investigate cNAMP behaviour on large networks. The main

reason multilevel networks are used to analyse cNAMPs on large networks is that this

abstracts from both network topology and architecture. Thus, although child nodes of

the same parental node are fully connected, this does not necessarily mean that a real

127

Chapter 6. Multilevel Network Design

connection between the nodes exists. The connection only indicates the possibility of

transferring data from one node to another; probable intermediate nodes and distance

variability are taken into account in transfer delay (Sections 6.1 and 6.2).

The chapter provides design alternatives for cNAMPs on multilevel networks that con-

sider such parameters as number of parental gateways, type of mobility, gateway func-

tionality, type of node exchange information, conditions of movements to remote loc-

ations, and request movements. The discussions of cNAMP components together with

pseudocode and justification of simulated parameters are provided for the implemented

design (Section 6.3–6.4).

The effectiveness and redundant movements of the proposed design depending on dif-

ferent parameters are investigated in Chapter 7.

128

Chapter 7
Evaluation of Multilevel cNAMP

Architecture

The chapter evaluates the cNAMP fusion scheme on multilevel networks presented in

Chapter 6. The experiments analyse up to five level networks varying the number of

locations from 5 to 336, and the number of cNAMPs from 8 to 3360. The majority of

experiments is conducted on three-level networks of locations with the same available

speed (3193 MHz). The experiments use matrix multiplication programs of size 5000×
5000 that start on one location and then distribute themselves across the network. These

parameters are used unless others are stated. To have a link between different types of

experiments a number of them include the following scenario: a symmetric three-level

network has 5 nodes of Level 0, four nodes of Level 1, and three nodes of Level 2

where each node of Level 0 has 3193 MHz available speed and 240 cNAMPs in total.

To simplify the indication of the scenario it is marked with (∗) To simplify the notation

a set of locations that have the same parental node of Level i is called the Level i

group. cNAMP effectiveness is investigated in Section 7.1 and redundant movements

are analysed in Section 7.2.

129

Chapter 7. Evaluation of Multilevel cNAMP Architecture

7.1 Effectiveness

The effectiveness of the proposed cNAMP scheme is investigated by conducting eight

experiments where minimum, mean, and maximum completion time is analysed. Some

experiments compare simulated completion time with the hypothetical completion time,

Thyp, which assumes fair round-robin scheduling [DKS89] without taking into account

communication and coordination costs. The hypothetical time is calculated as a ratio of

the total cNAMP work to the total speed of locations:

Thyp =

∑NcNAMP

i=1 Wi∑NLoc

j=1 Sj

.

Here, NcNAMP is the total number of cNAMPs, NLoc is the total number of locations, Wi

is the total work of cNAMP i, Sj is available speed of location j. All cNAMPs simul-

taneously start on one location, distribute themselves in the network with zero commu-

nication delay, and therefore terminate also simultaneously. This allows us to compare

the performance of the implemented cNAMP against an ’ideal’ execution.

The experiments analyse cNAMP completion time depending on the number of levels

(Section 7.1.1), the type of network topology (Section 7.1.2), the number of locations

(Section 7.1.3), the number of cNAMPs (Section 7.1.4), the work of cNAMPs (Sec-

tion 7.1.5), the type of cNAMPs (Section 7.1.6), the speed of locations (Section 7.1.7),

and the type of rebalancing, i.e. initial distribution, rebalancing after adding and termin-

ation cNAMPs (Section 7.1.8).

7.1.1 Experiment A1: Number of Levels

This experiment investigates the effectiveness of cNAMP balancing depending on the

number of network levels. The number of levels ranges from one to five. The total

number of locations is chosen so that each location has four cNAMPs in an optimal

balanced state. The experiment scenarios are presented in Table 7.1. The topologies are

130

Chapter 7. Evaluation of Multilevel cNAMP Architecture

Scenario No. of Number of nodes on Total number of

No. Levels Level 4 Level 3 Level 2 Level 1 Level 0 Locations cNAMPs

1.1 1 - - - - 5 5 20

1.2 2 - - - 4 5 20 80

1.3 (∗) 3 - - 3 4 5 60 240

1.4 4 - 2 3 4 5 120 480

1.5 5 3 2 3 4 5 360 1440

Table 7.1: Experiment A1 Topologies

homogeneous in having the same order (number of nodes) at every level. The order of

each level is different to avoid unexpected patterns emerging. The impact of topologies

is discussed in Section 7.1.2.

The results in Figure 7.1 show that minimum, mean and maximum completion time for

all scenarios is close to the hypothetical value. The reason the mean and the maximum

values increase with more levels is because the cNAMPs have to move larger distances

(Table 6.1 in Section 6.2), whereas the hypothetical values are calculated without consid-

ering any communication costs. Although a cNAMP can decrease its completion time

by moving either a short or a long distance, the advantage gained by moving a large

distance is smaller. Therefore, the larger distance a cNAMP transfers to the larger dif-

ference between experimental and hypothetical times. Table 7.2 shows the changes of

minimum, mean, and maximum completion time as the number of levels increases. The

table shows that the mean value increases by 1%–3% with every additional level, and

the maximum completion time increases by 2%–5%.

The decrease in the minimum value as the number of levels increases is due to a differ-

ence in the recalculation method at Level 0. cNAMPs are always allowed to recalculate

their parameters using information from the gateway but data from the local locations

can only be used when no cNAMP on the same location awaits a response from the local

locations. Thus, if there is a cNAMP which never moves from its initial location this

cNAMP has no communication costs and has more time for its own execution which

allows it to terminate earlier than the rest of cNAMPs.

131

Chapter 7. Evaluation of Multilevel cNAMP Architecture

Type of Level change

Time 1 → 2 2 → 3 3 → 4 4 → 5

Maximum 3% 4% 2% 5%

Mean 2% 1% 2% 3%

Minimum -0.5% -2% -2% 1%

Table 7.2: Changes of Completion Time Depending on the Number of Levels (A1)

Additional experiments can be conducted in the future to investigate in details the de-

pendence and the factors that impact on increase of completion time with the increase

of the number of levels. For example, to clarify whether the difference increases with

the scale of number of levels. However, as the mean completion time increases by just

a few percent with each new level we conclude that the multilevel architecture scales

effectively.

Figure 7.1: cNAMP Completion Time vs. Number of Levels

132

Chapter 7. Evaluation of Multilevel cNAMP Architecture

7.1.2 Experiment A2: Network Topology

This experiment analyses cNAMP effectiveness depending on the network topology,

i.e. distribution and grouping of nodes. The experiment is conducted on three-level

networks where the number of nodes of Level 2 ranges from two to five, the number of

nodes of Level 1 ranges from two to eight, and the number of nodes of Level 0 ranges

from two to sixteen. The total number of locations in each experiment is 60. The total

number of cNAMPs is 240. The cNAMPs are programs of matrix multiplication of size

3000. Scenarios are presented in Table 7.3. Topology 2.2 is homogeneous (i.e. it has

the same order at every level) and the remaining topologies are heterogeneous. The

table shows the number of nodes for each level and the total number of locations. To

optimally present data in the table the number of nodes in each Level 1 group of nodes

presented in a row in column Level 0.

The results from Figure 7.2 lead to the conclusion that the type of topology has no signi-

ficant impact on cNAMP completion time as long as the number of levels and the number

Figure 7.2: cNAMP Completion Time vs. Topology

133

Chapter 7. Evaluation of Multilevel cNAMP Architecture

No. of Number of nodes on Total No. of

Scenario Level 2 Level 1 Level 0 Locations

2.1 2 8 8 – 3 – 5 – 5 – 2 – 4 – 7 – 6 40

4 3–2–9–6 20

2.2 (∗) 3 4 5 – 5 – 5 – 5 20

4 5 – 5 – 5 – 5 20

4 5 – 5 – 5 – 5 20

2.3 3 2 5 – 4 9

6 7 – 9 – 2 – 5 – 3 – 2 28

3 6 – 9 – 8 23

2.4 4 4 7 – 16 – 2 – 5 30

2 7 – 2 9

3 2 – 3 – 4 9

3 4 – 5 – 3 12

2.5 4 3 4 – 7 – 3 14

3 9 – 5 – 3 17

2 3 – 6 9

2 3 – 7 10

2.6 5 3 4 – 4 – 5 13

2 3 – 7 10

4 6 – 8 – 9 – 3 26

2 4 – 3 7

2 2 – 2 4

Table 7.3: Experiment A2 Topologies

of locations are constant, e.g. mean completion time varies by less than 2% across all

topologies. The reason the cNAMP completion time is almost the same for different

topologies is mainly due to the particular design of cNAMPs on multilevel networks

(Section 6.3.2), i.e. cNAMPs that move within their Level 1 group tend to make more

redundant movements than cNAMPs that move to remote locations. Analysis in Sec-

tion 7.2.1 shows that a cNAMP that moves to a location of another Level 3 group tends

to arrive directly to the location on which it will stay when the system enters a balanced

state. Whereas, a cNAMP that moves within Level 1 group tends to make a number of

134

Chapter 7. Evaluation of Multilevel cNAMP Architecture

redundant movements before the system enters a balanced state. Thus, cNAMPs that

move to remote locations spend approximately the same time as cNAMPs that relocate

locally.

7.1.3 Experiment A3: Number of Locations

This experiment analyses cNAMP effectiveness depending on the total number of loca-

tions. The number of locations ranges from 8 to 336. The experiment is conducted on

three-level networks. The total number of cNAMPs is chosen to allow each location to

have four cNAMPs in optimal balanced state. The experiment scenarios are presented in

Table 7.4.

Results in Figure 7.3 show that minimum, mean and maximum values of cNAMP com-

pletion time are very close to the hypothetical value, i.e. within 3%, 9%, and 13% re-

spectively. This leads to the conclusion that completion time shows no significant de-

pendence on the number of locations.

Figure 7.3: cNAMP Completion Time vs. Number of Locations

135

Chapter 7. Evaluation of Multilevel cNAMP Architecture

No. of Total No. Total No. Number of Nodes

Scenario of Locs. of cNAMPs Level 2 Level 1 Level 0

3.1 8 32 2 2 2

3.2 (∗) 60 240 3 4 5

3.3 135 540 5 3 9

3.4 264 1056 3 8 11

3.5 336 1344 4 12 7

Table 7.4: Experiment A3 Topology

7.1.4 Experiment A4: Number of cNAMPs

This experiment estimates cNAMP effectiveness depending on the total number of cNAMPs.

The completion time of collection of 31, 60, 61, 200, 240, 420, 460, and 600 cNAMPs is

analysed. The experiment is conducted on a three-level network. The number of nodes

in the network is presented in Table 7.5.

Results in Figure 7.4 show that minimum, mean, and maximum values are very close

to the hypothetical value. The measurements are presented in Table 7.6. The horizontal

part between 31 and 60 cNAMPs corresponds to the integer design of cNAMPs, i.e. a

cNAMP cannot be executed by more than one node. The near vertical growth in max-

imum completion time between 60 and 61 cNAMPs is also due to the integer design of

cNAMPs, as in the experiment with 61 cNAMPs all locations have one cNAMP except

one location that has two cNAMPs. These two cNAMPs have half of execution speed of

other locations and therefore the maximum completion time increases.

From this we conclude that cNAMP completion time directly relates to the number of

Scenario
Number of nodes on Total No. of

Level 2 Level 1 Level 0 Locations

4.1 (∗)
3 4 5 – 5 – 5 – 5 20

4 5 – 5 – 5 – 5 20

4 5 – 5 – 5 – 5 20

Table 7.5: Experiment A4 Topology

136

Chapter 7. Evaluation of Multilevel cNAMP Architecture

Figure 7.4: cNAMP Completion Time vs. Number of cNAMPs

cNAMPs when the number of cNAMPs exceeds the number of locations.

7.1.5 Experiment A5: Work of cNAMPs

This experiment analyses cNAMP effectiveness depending on the work that cNAMPs

need to execute. The experiment is conducted using 240 cNAMPs. The completion

time of cNAMPs using matrices of the following dimensions are analysed: 1000, 2000,

3000, 5000, 8000, 12000, and 16000. Recall that total work, W , for matrix multiplic-

ation programs is W ∝ d3 where d is dimension of a square matrix (Section 2.4). The

Completion time Number of cNAMPs

(sec) 31 60 61 200 240 420 460 600

Minimum 9130 9131 9206 27669 35446 62972 63720 90010

Mean 10547 11196 11304 30814 37774 65256 69847 92623

Maximum 12195 12733 15487 34595 39412 67033 73325 94353

Table 7.6: cNAMP Completion Time in Experiment A4

137

Chapter 7. Evaluation of Multilevel cNAMP Architecture

(a) Full Results

(b) Scaled Results

Figure 7.5: cNAMP Completion Time vs. cNAMP Work

138

Chapter 7. Evaluation of Multilevel cNAMP Architecture

Completion Total cNAMP Work

time, sec 109 8 · 109 27 · 109 64 · 109 125 · 109 512 · 109 1728 · 109 4096 · 109

Minimum 256 2206 7589 18179 35446 147898 503117 1200208

Mean 358 2570 8415 19678 37774 154003 515823 1219223

Maximum 429 2851 9009 20592 39412 158406 524674 1239061

Hypothetical 294 2354 7944 18830 36488 150660 508478 1205280

Table 7.7: cNAMP Completion Time in Experiment A5

experiments are conducted on a three-level network using topology from Table 7.5.

Figure 7.5 and experimental data in Table 7.7 show that minimum, mean, and maximum

values are very close to the hypothetical value. The absolute difference between hypo-

thetical and experimental values increases with the increase of the work. However, the

relative difference presented in Table 7.8 decreases, e.g. discrepancy between hypothet-

ical and measured values is within 10% when the total work exceeds 125·109 units. From

the results we conclude that cNAMP completion time is directly related to the cNAMP

work.

7.1.6 Experiment A6: Type of cNAMPs

This experiment analyses cNAMP effectiveness depending on the type of programs. The

analysis is conducted on a three-level network using such programs as coin counting,

ray tracing, and matrix multiplication. The main reason of choosing these programs is

Completion Total cNAMP Work

time, sec 109 8 · 109 27 · 109 64 · 109 125 · 109 512 · 109 1728 · 109 4096 · 109

Minimum -13% -6% -4% -3% -3% -2% -1% -0.5%

Mean 21% 9% 6% 5% 4% 2% 1% 1%

Maximum 50% 21% 13% 9% 8% 5% 3% 3%

Table 7.8: Relative Difference of Experimental Completion Time from Hypothetical

139

Chapter 7. Evaluation of Multilevel cNAMP Architecture

No. of Number of cNAMPs Total No.

Scenario Coin Counting Ray Tracing Matrix Multiplication of cNAMPs

6.1 240 - -

240

6.2 - 240 -

6.3 (∗) - - 240

6.4 120 120 -

6.5 120 - 120

6.6 - 120 120

6.7 80 80 80

Table 7.9: Number and Types of cNAMPs in Experiment A6

to have diversity in communication time (Table 6.3). The network is configured on the

basis of Table 7.5. The experiment analyses 240 cNAMPs. The type of programs in

each scenario is presented in Table 7.9. The work for each type of program was chosen

to allow approximately the same maximum cNAMP completion time in experiments 6.1-

6.3. The rationale is to investigate discrepancy between minimum, mean, and maximum

values of completion time for different types of cNAMPs.

The results in Figure 7.6 show that the smaller the cNAMP communication time the

less the completion time discrepancy between maximum, mean, and minimum values,

e.g. discrepancy between minimum and mean values are 0.2%, 4%, and 10% in scenarios

6.1, 6.2, and 6.3 respectively. At the same time the larger the variety of communication

time the larger the difference between the minimum and the mean completion time. This

is due to the hidden capacity phenomenon, i.e. while cNAMPs with long communication

time transfer to the target location the cNAMPs which are already present on the location

use idle resources. This phenomenon also reduces the mean completion time.

Type of Program Size, d Work, W Mean communication latency within a LAN, sec

Coin Counting 3 · 106 d 0.15

Ray Tracing 103 d2 79

Matrix Multiplication 3200 d3 104

Table 7.10: Program Types in Experiment A6

140

Chapter 7. Evaluation of Multilevel cNAMP Architecture

Figure 7.6: cNAMP Completion Time vs. Type of cNAMPs

The results lead to the conclusion that the discrepancy between maximum, mean, and

minimum values of completion time is directly proportional to the values and variety of

communication time.

7.1.7 Experiment A7: Speed of Locations

This experiment analyses cNAMP efficiency depending on speeds of locations. The ex-

periments employ locations of three different available speeds: 3193 MHz, 2168MHz,

and 1793 MHz. The analysis is conducted on three level networks where scenarios 2.2

and 2.3 from Table 7.3 are used to configure networks for scenarios 7.1–7.3 and 7.4–

7.6 respectively. Thus, scenarios 7.1–7.3 have homogeneous topology, and scenarios

7.4–7.6 have heterogeneous topology. The total number of cNAMPs is chosen to al-

low cNAMPs to enter optimal balance after initial distribution. Following Section 5.1.6

the total number of cNAMPs is chosen to allow cNAMPs to enter the following optim-

ally balanced states: four cNAMPs on locations with available speed 3193 MHz, three

141

Chapter 7. Evaluation of Multilevel cNAMP Architecture

No. of Speed of Locations1 Total No. of Locations

Scenario Fast Middle Slow

7.1 a5 – a5 – a5 –a5 20 20 20

b5 – b5 – b5 – b5

c5 – c5 – c5 – c5

7.2 a5 – b5 – b5 –c5 15 30 15

a5 – b5 – b5 – c5

a5 – b5 – b5 – c5

7.3 aabbc – aabbc – aabbc –aabbc 24 24 12

aabbc – aabbc – aabbc – aabbc

aabbc – aabbc – aabbc – aabbc

7.4 a5 – a4 9 28 23

b7 – b9 – b2 – b5 – b3 – b2

c6 – c9 – c8

7.5 a5 – b4 23 25 12

a7 – b9 – c2 – a5 – b3 – c2

a6 – b9 – c8

7.6 abcab – abca 23 21 16

abcabca – abcabcabc – ab – abcab – abc – ab

abcabc – abcabcabc – abcabcab

1 a – 3193 MHz, b – 2168 MHz, c – 1793 MHz.

Table 7.11: Speeds of Locations in Experiment A7

cNAMPs on locations with 2168 MHz, and one cNAMP on locations with 1793 MHz.

Thus, after initial distribution cNAMPs have 785 MHz, 723 MHz, and 897 MHz relative

speeds respectively. The cNAMPs are programs of matrix multiplication of size 3000.

The total number of locations is sixty.

The comparative analysis of cNAMP experimental and hypothetical completion time

in Figure 7.7 shows that cNAMPs effectively distribute themselves independently of

location speeds and location settings. The mean completion times differ by at most

3%. Thus, we conclude that mixture of speeds of locations has no sufficient impact on

effectiveness of cNAMP distribution.

142

Chapter 7. Evaluation of Multilevel cNAMP Architecture

Figure 7.7: cNAMP Completion Time vs. Speed of Locations

7.1.8 Experiment A8: Rebalancing

This experiment analyses cNAMP efficiency depending on the type of rebalancing: ini-

tial distribution, rebalancing after adding more cNAMPs and rebalancing after cNAMPs

terminate. The experiment is again conducted on a three-level network. Scenario classes

8.x.1 and 8.x.2 use topology presented in scenario 2.2 from Table 7.3 (homogeneous

topology), scenario classes 8.x.3 and 8.x.4 use topology presented in scenario 2.3 from

Table 7.3 (heterogeneous topology). The second digit in the number of scenario class

defines the type of experiment, i.e. 1 is initial distribution, 2 is rebalancing after adding

cNAMPs, and 3 is rebalancing after termination cNAMPs. The total number of locations

is 60. The total number of cNAMPs is 240 which are programs of matrix multiplica-

tion of size 3000. Speeds of locations in scenario classes 8.x.1–8.x.4 are presented in

Table 7.12.

143

Chapter 7. Evaluation of Multilevel cNAMP Architecture

Scenario Speed of Locations1 Total No. of Locations

class No. Fast Middle Slow

8.x.1 a5 – a5 – a5 –a5 60 - -

a5 – a5 – a5 – a5

a5 – a5 – a5 – a5

8.x.2 aabbc – aabbc – aabbc –aabbc 24 24 12

aabbc – aabbc – aabbc – aabbc

aabbc – aabbc – aabbc – aabbc

8.x.3 a5 – a4 60 - -

a7 – a9 – a2 – a5 – a3 – a2

a6 – a9 – a8

8.x.4 abcab – abca 23 21 16

abcabca – abcabcabc – ab – abcab – abc – ab

abcabc – abcabcabc – abcabcab

1 a – 3193 MHz, b – 2168 MHz, c – 1793 MHz.

Table 7.12: Speed of Locations in Experiment A8

Initial Distribution. The effectiveness of initial distribution is analysed on optimal

and near-optimal balancing. The total number of cNAMPs in each scenario class is

presented in Table 7.13. The results in Figures 7.8(a) and 7.8(b) show that minimum,

mean, and maximum values of completion time are very close to the hypothetical value,

e.g. the mean value exceed hypothetical value by at most 12%.

We conclude that cNAMPs perform equally efficiently with both optimal and near-optimal

number of cNAMPs. Initial distribution shows no significant dependence on either the

type of topology or speeds of locations.

Type of Balancing Optimal Balance Near-Optimal Balance

Scenario class 8.1.1 (∗) 8.1.2 8.1.3 8.1.4 8.2.1 8.2.2 8.2.3 8.2.4

Number of cNAMPs 240 192 240 187 200 176 200 172

Table 7.13: Scenario classes for the Initial Distribution Experiment

144

Chapter 7. Evaluation of Multilevel cNAMP Architecture

(a) Optimal Balance

(b) Near-Optimal Balance

Figure 7.8: Initial distribution

145

Chapter 7. Evaluation of Multilevel cNAMP Architecture

Scenario class 8.3.1 8.3.2 8.3.3 8.3.4

Number of cNAMPs 240 + 33 192 + 25 240 + 33 187 + 25

Table 7.14: Scenario classes for the Adding More cNAMPs Experiment

Adding More cNAMPs. This experiment analyses cNAMP effectiveness after adding

more cNAMPs to a system that is in optimal or near-optimal balance. The experiment

scenario classes are presented in Table 7.14. In the Number of cNAMPs row the first

number indicates the optimal number of initially distributed cNAMPs, and the second

number indicates the number of cNAMPs that additionally start on the root location.

The results in Figure 7.9 show that the mean value is very close to the hypothetical

value, e.g. the mean value differs from the hypothetical value by at most 2%. The effect

is due to the hidden capacity phenomenon that emerges from non-zero communication.

When cNAMPs are being transferred to new location they are not executing anywhere.

The total processing power is being shared amongst the cNAMPs that are not being

transferred, so they receive more processing power and will terminate earlier. The effect

Figure 7.9: Adding More cNAMPs

146

Chapter 7. Evaluation of Multilevel cNAMP Architecture

is more pronounced early in distribution of cNAMPs. Thus, the mean value can even

be smaller than the hypothetical value. The effect can only be observed when locations

are not idle. The phenomenon impact on cNAMP completion time is also discussed

in Section 7.1.6. The results lead to the conclusion that additional cNAMPs effectively

distribute themselves across the networks.

Removing cNAMPs. This experiment examines cNAMP effectiveness after termina-

tion of some cNAMPs from optimal and near-optimal balance. The scenario classes are

presented in Table 7.15. For each scenario class the table shows optimal and termin-

ated number of cNAMPs, and cNAMP distribution at the beginning of the experiment,

i.e. after termination.

The results are presented in Figure 7.10. As in the previous experiments simulated

cNAMP completion time is very close to the hypothetical values, e.g. the difference

between mean and hypothetical values of cNAMP completion time is within 2%. This

leads to conclusion that cNAMPs perform effective rebalancing after termination of some

cNAMPs.

Scenario Number of cNAMPs cNAMP Distribution at Initial Time

8.4.1 240− 20 0.0.0.0.0− 4.4.4.4.4− 4.4.4.4.4− 4.4.4.4.4

4.4.4.4.4− 4.4.4.4.4− 4.4.4.4.4− 4.4.4.4.4

4.4.4.4.4− 4.4.4.4.4− 4.4.4.4.4− 4.4.4.4.4

8.4.2 192− 16 0.0.0.0.0− 4.4.3.3.2− 4.4.3.3.2− 4.4.3.3.2

4.4.3.3.2− 4.4.3.3.2− 4.4.3.3.2− 4.4.3.3.2

4.4.3.3.2− 4.4.3.3.2− 4.4.3.3.2− 4.4.3.3.2

8.4.3 240− 20 0.0.0.0.0− 4.4.4.4

4.4.4.4.4.4.4− 4.4.4.4.4.4.4.4.4− 4.4− 4.4.4.4.4− 4.4.4− 4.4

4.4.4.4.4.4− 4.4.4.4.4.4.4.4.4− 4.4.4.4.4.4.4.4

8.4.4 187− 16 0.0.0.0.0− 4.3.2.4

4.3.2.4.3.2.4− 4.3.2.4.3.2.4.3.2− 4.3− 4.3.2.4.3− 4.3.2− 4.3

4.3.2.4.3.2− 4.3.2.4.3.2.4.3.2− 4.3.2.4.3.2.4.3

Table 7.15: Scenarios of Removing cNAMPs Experiment

147

Chapter 7. Evaluation of Multilevel cNAMP Architecture

Figure 7.10: Removing cNAMPs

7.2 Redundant Movements

This section analyses the number and the type of redundant movements, and the impact

of redundant movements on cNAMP completion time. The majority of experiments

are conducted on the basis of the same scenarios as the experiments in Section 7.1.

Therefore, the experiments only provide brief scenario descriptions and references to

the corresponding scenarios. The investigation of redundant movements considers the

number of levels and the type of rebalancing (Section 7.2.1), the number of locations and

the number of cNAMPs (Section 7.2.2), the size of cNAMPs (Section 7.2.3), the type of

cNAMPs (Section 7.2.4).

7.2.1 Experiment B1: Number of Levels

This experiment analyses the number of redundant movements depending on the num-

ber of levels. The experiment is conducted for up to five-level networks. The number of

148

Chapter 7. Evaluation of Multilevel cNAMP Architecture

No. of Type of Total No. Redundant Moves Number of Moves

Levels Moves of Moves Total Outside Lev0 Lev1 Lev2 Lev3 Lev4

Scenario class 9.1.1

2 Optimal 76 - - 16 60

Simulated 92 16 (17%) - 32 60

3 Optimal 236 - - 16 60 160

Simulated 340 104 (31%) - 69 111 160

4 Optimal 476 - - 16 60 160 240

Simulated 755 279 (37%) - 147 208 160 240

5 Optimal 1276 - - 16 60 160 240 960

Simulated 2496 1220 (49%) - 356 607 333 240 960

Scenario class 9.1.2

2 Optimal 64 - - 64 0

Simulated 65 1 (2%) 13 (20%) 52 13

3 Optimal 192 - - 192 0 0

Simulated 196 4 (2%) 46 (23%) 150 31 15

4 Optimal 384 - - 384 0 0 0

Simulated 541 157 (29%) 361 (68%) 180 321 30 10

5 Optimal 1152 - - 1152 0 0 0 0

Simulated 1590 438 (28%) 1081 (68%) 509 906 121 35 19

Table 7.16: cNAMP Movements during Initial Distribution in Experiment B1

cNAMPs is chosen to allow each location to have four cNAMPs in optimal balance. The

topology is discussed in Section 7.1.1, and scenario classes are presented in Table 7.1.

The experiment examines redundant movements in two types of rebalancing: initial dis-

tribution and rebalancing after cNAMP termination.

Initial distribution experiment analyses redundant movements between cNAMPs start

the execution and the system enters a balanced state. Here, two initial scenario classes

are considered:

• Scenario class 9.1.1: all cNAMPs start on one location.

149

Chapter 7. Evaluation of Multilevel cNAMP Architecture

• Scenario class 9.1.2: cNAMPs start on one of locations in each Level 1 group.

Table 7.16 shows the total number of movements, the number of redundant movements,

and the number of movements within the levels. The optimal number of movements and

the number of movements that actually occurred in the experiments are presented for

each level.

Results of scenario class 9.1.1 show that redundant rebalancing occurs on the lower

levels where communication cost is cheaper. In scenario class 9.1.2 the optimal rebal-

ancing is concentrated within Level 0. However, the implemented fusion scheme is

designed to allow quick distribution across the network (Section 6.3.2). Therefore, a

part of cNAMPs move outside of Level 0. Column Outside Redundant Moves shows

the number of movements outside of Level 0. The column also shows the ratio of the

outside movements to the total number of movements. The positive feature here is that

the vast majority of the exchange movements occurs on the lower levels.

Rebalancing after termination experiment analyses redundant movements in the in-

terval between cNAMP termination and the system entering a balanced state. The fol-

lowing two scenario classes are considered:

• Scenario class 9.2.1: all cNAMPs terminate from one location of each group

Level 1.

• Scenario class 9.2.2: all cNAMPs terminate from all locations of Level 1 group

in each group of Level 2.

Scenario Number of Levels

class 2 3 4 5

9.2.1 80− 16 240− 48 480− 96 1440− 288

9.2.2 80− 20 240− 60 480− 120 1440− 360

Table 7.17: Total and Terminated Numbers of cNAMPs in Experiment B1

150

Chapter 7. Evaluation of Multilevel cNAMP Architecture

No. of Type of Total No. Redundant Moves Number of Moves

Levels Movements of Moves Total Outside Lev0 Lev1 Lev2 Lev3 Lev3

Scenario class 9.2.1

2 Optimal 12 - - 12 0

Simulated 13 1 (8%) - 13 0

3 Optimal 36 - - 36 0 0

Simulated 36 0 (0%) - 36 0 0

4 Optimal 72 - - 72 0 0 0

Simulated 73 1 (1%) - 73 0 0 0

5 Optimal 216 - - 216 0 0 0 0

Simulated 221 5 (2%) - 221 0 0 0 0

Scenario class 9.2.2

2 Optimal 15 - - 0 15

Simulated 19 4 (21%) 3 (16%) 3 16

3 Optimal 45 - - 0 45 0

Simulated 52 7 (14%) 8 (15%) 2 44 6

4 Optimal 90 - - 0 90 0 0

Simulated 107 17 (16%) 21 (20%) 8 86 11 2

5 Optimal 270 - - 0 270 0 0 0

Simulated 327 57 (17%) 77 (24%) 13 250 37 18 9

Table 7.18: cNAMP Movements after cNAMP Termination in Experiment B1

The total number of cNAMPs and the number of terminated cNAMPs in each experiment

are presented in Table 7.17.

The results of the experiments are presented in Table 7.18. In scenario classes 9.2.1 and

9.2.2 the optimal rebalancing in concentrated between nodes of Level 0 and Level 1

respectively. In scenario classes 9.2.1 the redundant number of movements exceeds the

optimal number of movements by up to 8%. The results of scenario class 9.2.2 show that

cNAMPs make up to 21% of redundant movements, whereas the number of movements

outside Level 1 does not exceed 24%.

We conclude that although cNAMPs may have a large number of redundant movements,

e.g. 49% and 21% of redundant movements in scenario classes 9.1.1 and 9.2.2 respect-

151

Chapter 7. Evaluation of Multilevel cNAMP Architecture

ively, these movements do not effect completion time dramatically (Section 7.1.1).

7.2.2 Experiment B2: Number of Locations

This experiment analyses the number of redundant movements depending on the number

of locations. The scenarios are conducted on three-level networks with the topologies

specified in Table 7.4. Each scenario has three variants. The number of cNAMPs for

each variant is chosen in such a way that each scenario would analyse redundant move-

ments for a different number of cNAMPs, i.e. each location would have either one, four,

or ten cNAMPs in optimal balanced states. The redundant movements during initial

distribution are measured.

The experiment results are presented in Table 7.19. The table shows optimal and re-

dundant number of movements and the number of movements on each level for different

numbers of cNAMPs and locations. As for the previous experiments the redundant re-

balancing occurs mainly on lower levels, i.e. Level 0 and Level 1, which have cheaper

communication cost than the upper level, i.e. Level 2. The percentage of redundant

movements is calculated as a ratio of the number of redundant movements to the total

number of movements.

Figure 7.11 shows the number of redundant movements depending on the number of

locations for different numbers of cNAMPs. The number of redundant movements has

some dependence on the number of locations in small networks that becomes less signi-

ficant in networks of more than 135 locations. Recall, the current section only investig-

ates redundant movements and not their impact on cNAMP completion time. Table 7.19

shows cNAMP movement overhead whereas completion time overhead is discussed in

Section 7.1.3. Analysis of Table 7.19 and Figure 7.11 shows that although overhead

of cNAMP movements is can be high, e.g. 40% in the experiment with 540 cNAMPs

on 135 locations (Table 7.19), mean cNAMP completion time overhead for the same

experiment is only 8% (Figure 7.11). This allows us to conclude that the number of

152

Chapter 7. Evaluation of Multilevel cNAMP Architecture

N
o.

Ty
pe

N
um

be
ro

fM
ov

em
en

ts

of
of

To
ta

l
R

ed
un

.
L

.
0

L
.
1

L
.
2

To
ta

l
R

ed
un

.
L

.
0

L
.
1

L
.
2

To
ta

l
R

ed
un

.
L

.
0

L
.
1

L
.
2

L
oc

s
M

ov
es

O
ne

cN
A

M
P

pe
rL

oc
at

io
n

Fo
ur

cN
A

M
Ps

pe
rL

oc
at

io
n

Te
n

cN
A

M
P

pe
rL

oc
at

io
n

8
O

pt
.

7
-

1
2

4
28

-
4

8
16

70
-

10
20

40

Si
m

ul
.

10
3

(3
%

)
4

2
4

34
6

(1
8%

)
9

9
16

81
11

(1
4%

)
20

21
40

60
O

pt
.

59
-

4
15

40
23

6
-

16
60

16
0

59
0

-
40

15
0

40
0

Si
m

ul
.

92
33

(3
6%

)
24

28
40

34
0

10
4

(3
1%

)
69

11
1

16
0

84
9

25
9

(3
1%

)
18

4
26

5
40

0

13
5

O
pt

.
13

4
-

8
18

10
8

53
6

-
32

72
43

2
13

40
-

80
18

0
10

80

Si
m

ul
.

22
4

90
(4

0%
)

83
33

10
8

89
1

35
5

(4
0%

)
27

8
18

1
43

2
22

01
86

1
(3

9%
)

60
7

51
4

10
80

19
2

O
pt

.
19

1
-

5
18

16
8

76
4

-
20

72
67

2
19

10
-

50
18

0
16

80

Si
m

ul
.

31
3

12
2

(3
9%

)
66

79
16

8
12

23
45

9
(3

8%
)

21
9

33
2

67
2

31
19

12
09

(3
9%

)
50

9
93

0
16

80

26
4

O
pt

.
26

3
-

10
77

17
6

10
52

-
40

30
8

70
4

26
30

-
10

0
77

0
17

60

Si
m

ul
.

43
0

16
7

(3
9%

)
10

6
14

8
17

6
16

86
63

4
(3

8%
)

40
9

57
3

70
4

41
42

15
12

(3
7%

)
90

4
14

78
17

60

33
6

O
pt

.
33

5
-

6
77

25
2

13
40

-
24

30
8

10
08

33
50

-
60

77
0

25
20

Si
m

ul
.

56
7

23
2

(4
1%

)
10

0
21

5
25

2
21

82
84

2
(3

9%
)

39
6

77
8

10
08

53
20

19
70

(3
7%

)
93

0
18

70
25

20

Ta
bl

e
7.

19
:c

N
A

M
P

M
ov

em
en

ts
du

ri
ng

In
iti

al
D

is
tr

ib
ut

io
n

in
E

xp
er

im
en

tB
2

153

Chapter 7. Evaluation of Multilevel cNAMP Architecture

Figure 7.11: Redundant Movements vs. Number of Locations

redundant movements depends on the number of cNAMPs that simultaneously start on

one location and the size of networks. This dependency is observed in small networks

of up to 135 locations. In the larger networks the number of redundant movements does

not indicate significant dependency on the parameters.

7.2.3 Experiment B3: Work of cNAMPs

This experiment analyses redundant movements depending on the size of cNAMPs. The

topology is discussed in Section 7.1.5. The experiment is conducted using square mat-

rix multiplication programs of dimensions: 1000, 2000, 3000, 5000, 8000, 12000, and

16000.

The results presented in Figure 7.12 show that as soon as cNAMPs have enough work

to enter an optimal balanced state and the remaining execution time becomes much lar-

ger than communication time the ratio of redundant movements to the total number of

movements stays the same and does not depend on the size of cNAMPs. The experiment

154

Chapter 7. Evaluation of Multilevel cNAMP Architecture

(a) Full Results

(b) Scaled Results

Figure 7.12: Redundant Movements vs. Work of cNAMPs (B3)

155

Chapter 7. Evaluation of Multilevel cNAMP Architecture

State Type of Number of Movements

Movements Total Redundant Level 0 Level 1 Level 2

10 cNAMP per Location

Stable Optimal 236 - 16 60 160

Simulated 326 90 (28%) 77 104 145

Optimally Optimal 236 - 16 60 160

Balanced Simulated 340 104 (31%) 69 111 160

Table 7.20: cNAMP Movements in Experiment B3

results are as expected, because independently of program size cNAMPs go through the

same steps of gradual rebalancing.

7.2.4 Experiment B4: Type of cNAMPs

This experiment analyses redundant movements depending on the type of cNAMPs,

i.e. programs of coin counting, ray tracing, matrix multiplication and mixture of the

three. The redundant movements of 240 cNAMPs are examined on a three-level network

during initial distribution. The topology is the same as discussed in Section 7.1.6.

The results presented in Table 7.21 and Figure 7.13 show that type of programs has no

significant affect on redundant movements. Experiments with coin counting show 5%

larger number of redundant movements in comparison with the rest of the experiments.

This is due to the small communication time of coin counting programs that allows

Type of Type of Number of Movements

Movements cNAMPs Total Redundant Level 0 Level 1 Level 2

Optimal - 236 - 16 60 160

Simulated Coin Counting 367 131 (36%) 77 130 160

Ray Tracing 341 105 (31%) 70 111 160

Matrix Multiplication 341 105 (31%) 70 111 160

Mixture 341 105 (31%) 73 108 160

Table 7.21: cNAMP Movements during Initial Distribution in Experiment B4

156

Chapter 7. Evaluation of Multilevel cNAMP Architecture

Figure 7.13: Redundant Movements vs. Type of cNAMPs (B4)

cheaper cNAMP relocation (Section 7.1.6).

7.3 Discussion

The analysis of cNAMP fusion scheme on multilevel networks has been conducted on

the basis of twelve experiments where eight experiments examine cNAMP effectiveness

(Section 7.1), and four experiments examine redundant movements (Section 7.2). The

effectiveness and redundant movements are estimated depending on network parameters

(i.e. number of levels, topologies, number of locations, speed of locations), cNAMP

parameters (i.e. number of cNAMPs, work of cNAMPs, type of cNAMPs) and type of

rebalancing (i.e. initial distribution, rebalancing after adding cNAMPs and termination

cNAMPs). The results validate the multilevel architecture by showing that cNAMPs

distribute themselves across the networks, have small variance of completion time, and

the results are very close to the hypothetical values.

The type of topology, the number of locations, the speed of locations, and the type of

157

Chapter 7. Evaluation of Multilevel cNAMP Architecture

rebalancing show no significant effect on cNAMP completion time (Experiments A2,

A3, A7, A8). In contrast the number of levels, the number of cNAMPs, and the amount

of work has a direct effect on cNAMP completion time (Experiments A1, A4, A5). Thus,

the experiment on number of levels where up to five levels had been examined shows

that each additional level increases the mean cNAMP completion time by 1%–3%, and

the mean completion time in a five level network differs from the hypothetical value by

12%. In the experiments on work of cNAMPs with the increase of work the relative

difference between experimental and hypothetical completion time decreases.

The experiment with different types of cNAMPs shows that completion time discrep-

ancy depends on relative difference between cNAMP communication time and cNAMP

completion time. The larger the difference the less the discrepancy. The results also

show that cNAMPs with different communication time use computer resources more ef-

fectively as they utilise hidden resources, i.e. resources that are booked but are not used

during cNAMP transferring (Experiment A6).

The analysis of redundant movements shows that cNAMPs gradually distribute them-

selves from the closest to the remote locations. Such parameters as the work of cNAMPs

and the type of cNAMPs demonstrate no significant effect on the number of redundant

movements (Experiments B3, B4). The type of distribution and the number of levels

have the largest effect on number of redundant movements (Experiment B1). The num-

ber of locations and the number of cNAMPs have direct impact up to the certain point

(Experiment B2). The implementation of different design alternatives from Section 6.3.1

may help to more effectively balance the speed of cNAMP distribution between nearest

and remote locations. However, even in the current design the redundant movements

show no significant impact on cNAMP completion time.

158

Chapter 8
Conclusion and Future Work

8.1 Summary

Chapter 2 surveys the key concepts addressed in the thesis, i.e. load management,

mobility, autonomous systems, AMPs, network scale, topology, and simulators. The

chapter also situates AMPs among other load balancers using taxonomies, and describes

how collections of AMPs differ from other load management systems.

Chapter 3 analyses AMPs on homogeneous and heterogeneous LANs, and validates

simulation against the real experiment results conducted on Java Voyager in [Den07].

In total fourteen experiments are conducted: twelve for homogeneous networks and two

for heterogeneous networks. On homogeneous networks the experiments are as follows:

seven experiments for optimal balance, two experiments for near-optimal balance, two

experiments for adding AMPs, and one experiment for removing AMPs. The results

show that simulated and real AMPs enter the same balanced states except for a few minor

and explainable deviations. For example, the mismatch in optimal balance and adding

AMP experiments is due to the using the communication workload in the simulation

experiments equal to 50%, whereas in the real experiments the workload varies between

159

Chapter 8. Conclusion and Future Work

48% and 51%. In removing AMP experiments 18% of the simulated experiments enter

all of the states entered in the real experiments; the other states AMPs enter are also

stable (Section 3.3). The conclusion from the analysis is that the simulation is a suitable

tool for investigation networks of AMPs.

Chapter 4 identifies two types of redundant movements or greedy effects: location

thrashing causes additional movements and increase in AMP completion time; location

blindness causes only additional movements, as all transferred AMPs improve their exe-

cution environment. The simulation model discussed in Chapter 3 is adapted to simulate

the greedy effects. The results show that in the three experiments considered the mean

number of redundant movements per AMP is two (Table 4.1). The number of redundant

movements is proportional to the number of AMPs, number of locations, and the work

of AMPs. These redundant movements are mainly caused by location thrashing.

To eradicate location thrashing negotiating AMPs with competitive scheme (cNAMPs)

are described and implemented. The two key differences of cNAMPs from AMPs are

that a cNAMP sends a representative to confirm the movement, and each location has

two values of its load: actual load is used by local cNAMPs and committed load is

published to other locations (Section 4.4.2). The analysis of cNAMP simulation results

shows that cNAMPs exhibit only location blindness. cNAMPs do not make redund-

ant movements during initial distribution, and all three scenarios show at least three

times faster initial balancing in comparison with AMPs. During rebalancing after an

AMP/cNAMP termination, cNAMPs make far fewer redundant movements, and the

cNAMP rebalancing takes less than half of the time of AMP rebalancing. In consequence

cNAMPs require less completion time than AMPs (Table 4.4).

Chapter 5 provides the first substantial investigation of redundant movements in dis-

tributed collections of autonomous mobile agents. The chapter establishes balanced state

properties to estimate the cNAMP greedy effect. AMPs are investigated as a general

case because modifications of cNAMPs do not affect balanced states, and both AMPs

160

Chapter 8. Conclusion and Future Work

and cNAMPs enter the same balanced states. The chapter defines the following three

properties: independent balance, singleton optimality, consecutive optimality. Optimal

and near-optimal balanced states for homogeneous and heterogeneous networks are also

characterised (Section 5.1). A set of consistent and rigorous definitions are assembled

into the Glossary and are essential for reasoning about AMP/cNAMP behaviour.

The significance of greedy effects is established by predicting the worst case (maximum

number) of redundant movements after a cNAMP termination from a network of q sub-

networks. The results show that a difference in the number of cNAMPs needs to be

at least two before a movement will occur between locations of a same subnetwork

(minimum difference criterion). The analysis is summarised in three theorems and three

lemmas. For example, a system with q subnetworks makes at most q − 2 redundant

movements after a cNAMP termination from an optimally balanced network (Lemma 9

on page 102). The calculation of probability shows that the median probability of these

q − 2 redundant movements to occur is less than 1% (Appendix D.4).

Chapter 6 develops a fusion-based architecture to extend cNAMPs beyond LANs to

multilevel networks like WANs. It starts by discussion of means and approaches to sim-

ulate large networks, and justifies the reasons to use multilevel network approach. The

proposed multilevel network abstracts from both network topology and location archi-

tecture. The chapter provides design alternatives for cNAMPs on multilevel networks

considering such parameters as number of parental gateways, type of mobility, gateway

functionality, type of node exchange information, conditions of movements to remote

locations, and conditions of request movements. The discussions of cNAMP compon-

ents together with pseudocode and justification of simulated parameters are provided for

the implemented fusion scheme.

Chapter 7 evaluates the multilevel fusion-based architecture by showing that cNAMPs

distribute themselves across the networks, have small variance of completion time, and

the results are very close to the hypothetical values. The analysis is conducted on the

161

Chapter 8. Conclusion and Future Work

basis of twelve experiments where eight experiments examine cNAMP effectiveness

(Section 7.1), and four experiments examine redundant movements (Section 7.2). The

effectiveness and redundant movements are estimated depending on such parameters

as network parameters (i.e. number of levels, topologies, number of locations, speed

of locations), cNAMP parameters (i.e. number of cNAMPs, work of cNAMPs, type

of cNAMPs) and type of rebalancing (i.e. initial distribution, rebalancing after adding

cNAMPs and termination cNAMPs).

The topology, the number of locations, the speed of locations, and the type of rebalancing

show no significant effect on cNAMP completion time. In contrast the number of levels,

the number of cNAMPs, and the amount of work has a direct effect on cNAMP com-

pletion time. The experiment with different types of cNAMPs shows that cNAMPs with

different communication time use computer resources more effectively as they utilise re-

sources that are booked but are not used during cNAMP transferring (Section 7.1). The

analysis of redundant movements shows that cNAMPs gradually distribute themselves

from the closest to the remote locations. Such parameters as the work of cNAMPs and

the type of cNAMPs demonstrate no significant effect on the number of redundant move-

ments. The type of distribution and the number of levels have the largest impact on the

number of redundant movements (Section 7.2). Overall, the redundant movements show

no significant impact on cNAMP completion time.

8.2 Limitations

The limitations of the research presented in this thesis are outlined below. The limitations

apply to both AMPs and cNAMPs.

• System reliability. The design of AMPs assumes that locations do not disappear

from the network. Location software and hardware, and AMPs themselves are

also supposed to work correctly. Thus, in case of one of the above component

162

Chapter 8. Conclusion and Future Work

failure the AMPs associated with the location require to be restarted. The current

research did not aim to investigate all conditions of AMP successful execution,

and hence the system reliability was taken for granted. One possible solution to

this issue might be adoption of either replication or check pointing schemes in

AMPs [PBKY02], e.g. a periodic sending of a back-up copy to either the root

location or a trusted gateway.

• Equal sharing of the CPU power. Currently, it is assumed that AMP input/output

time is negligibly small and the majority of the AMP execution time is destined

for computation. Thus, to calculate relative speed the location available speed is

equally divided between the AMPs, i.e. round robin job scheduling [DKS89]. To

apply different partition of CPU power such uniprocessor scheduling approaches

like task aware scheduling and priority scheduling can be considered [SSDNB95,

Pin08]

• Sufficiency of resources. The AMP cost model takes into account only available

speed and communication time but does not take into account other resources such

as available RAM, and space on a hard disc. Thus, in case of insufficient resources

either the AMP execution speed will be lower than the declared or the AMP will

be prevented from transfer to the target location. The solution might be in multi-

objective optimisation where AMPs choose the best location not only on the basis

of time but taking into account other parameters such as available RAM, space on

a hard disc, cost of transferring and execution.

8.3 Future Work

Possible future development of the work might include the following directions:

• Design AMPs for Clouds. The Cloud is a rapidly expanding technology that

provides computational and storage services on a pay-as-you-go basis. The invest-

163

Chapter 8. Conclusion and Future Work

igation and developing a self-organising and distributing system for cloud comput-

ing on the basis of AMPs and brokers is a promising technology. An AMP-broker

based cloud might execute programs either faster for the given money or cheaper

during the given period in comparison with currently exploited static schemes.

In these static schemes a program after being submitted to a cloud has no op-

portunity to move to another cloud (provider) automatically without user inter-

ference. AMPs might move between clouds choosing the best cloud in terms of

time-cost trade-off within the given limits of either time or funds using multi-

objective optimisation. The AMPs target Infrastructure-as-a-Service (IaaS) based

Clouds, such as Amazon EC2 [ama11], Eucalyptus based clouds [NWG+09] like

StACC [sta11].

Initially, the AMP movements might be defined by two parameters: time and

cost [Gar11], i.e. {
Th > Tn + Tcomm,

Ch > Cn + Ccomm.

Here, Ch is the execution cost on the current node, Cn is the execution cost on

the new node, and Ccomm is the transfer cost. Before the execution starts the user

might define either the maximum price that is allowed to be spent on the AMP

execution or the maximum time during which the AMP must be executed. Later

the number of parameters that are taken into account might be expanded.

• Implementation cNAMPs on WANs. Another prospective research direction is val-

idating cNAMP design by constructing cNAMPs from Section 6.3.2 using mobile

languages like JavaGoX [SSY00] and Java Voyager [Rec10]. The implementation

can be done either independently (e.g. for different types of programs) or in a col-

laboration with another research (e.g. focus on a particular type of programs, for

example, programs that use genetic algorithms). By a collaboration is meant that

collaborators will work on specific goals of the encapsulated programs, and AMP

developers will aim to accelerate the program completion time by moving them

within a network. In both cases the goal of AMP developers will be to quickly and

effectively encapsulate the programs and find the most suitable prediction mech-

164

Chapter 8. Conclusion and Future Work

anism. Here, not only minimising completion time can be targeted but also other

parameters, such as reliability, security, location configuration, and program pri-

ority.

• Negotiating AMP alternatives. Negotiating AMPs (NAMPs) can be implemented

in a number of ways. The examples of the alternative designs are discussed in

Section 4.4.1. The current thesis considers negotiation as a simple coordination

among competitive and self-interested agents [Wei99]. Other forms of more com-

plicated negotiation between AMPs and/or load servers are also of interest. One

of the possible direction is investigation of NAMPs using game theory.

• Multilevel cNAMP alternatives. Section 6.3.1 discusses design alternatives of

cNAMPs on multilevel networks. The proposed fusion scheme shows that com-

pletion time is very close to the hypothetical value (Section 7.1) in spite of a large

number of redundant movements in selected experiments (Section 7.2). The in-

vestigation of alternative schemes may lead to reduction of redundant movements

and overall cNAMP completion time. The further investigation may also lead to

defining cNAMP properties on multilevel networks. The current research analyses

cNAMPs on up to five level networks and up to 336 locations. The increase of the

scale will also help to examine trends and regularities.

165

Glossary

Table 8.1 assembles the main notions defined in the paper. In column Source 1 denotes

a definition from [Den07], 2 a generalisation of a definition from [Den07], and 3 a more

precise definition than in [Den07]. To clarify the difference and similarity of the concepts

column Related Concept provides lists of related concepts. Column Section gives the

numbers of the sections where the notions are introduced in the paper.

Table 8.1: Glossary

Term & Definition Sou- Related Sec-

rce Concept tion

The actual load is the number of executing cNAMPs committed 4.4.2

on a location. It is used for local cNAMP calculations. load

An AMP relative speed1, R, is an available speed, S, 3 available 2.4

equally divided between the AMPs at a location, xloc, speed

i.e. R =
S

xloc
.

Autonomous mobile programs (AMPs) are mobile 1 cNAMP, 1.1

agents that improve execution efficiency by managing load server

load; AMPs are aware of their resource needs,

sensitive to the execution environment and periodically

seek a better location to reduce execution time.

The available speed2of a location is the execution 3 AMP relative 2.4

speed of a single AMP on that location, i.e. speed

S = (CPUspeed) · (1− non AMP load).

In a balanced state no AMP can gain a greater AMP 1 near-opt. balance, 3.3

relative speed by moving. optimal balance,

stable state

1 Termed average relative speed in [Den07].
2 Termed relative speed in [Den07].

166

Chapter 8. Conclusion and Future Work

cNAMPs are negotiating AMPs with an honest AMP, 4.4.2

competitive scheme which announce their intentions load server

to move and compete with each other for an

opportunity to transfer to the new location.

The committed load represents the actual load of a actual load 4.4.2

location together with the cNAMPs that have

received confirmation to transfer to the location.

It is used by remote load servers.

A communication cost is the number of AMP greedy effects, 4.1.2

movements during a rebalancing. opt. rebalancing

Consecutive optimal property. If a system with a optimal balance, 5.1.4

total of x AMPs is optimally balanced, and the singleton

subnetwork with the highest AMP relative speed is subnetwork

a singleton, then the system with a total of x + 1

AMPs is also optimally balanced.

Greedy effects are the result of a non-optimal AMP location blindness, 4.1

rebalancing which differs from the optimal location thrashing,

rebalancing in having additional redundant optimal

movements, and is a result of the AMP making a rebalancing

locally optimal choice.

A heavy location is a location with the optimal light location, 5.1.5

number of AMPs. optimal number

of AMPs,

root location

A heterogeneous network is a set of locations with 2 homogeneous 3.4

different available speeds. network,

subnetwork

A homogeneous network is a set of locations with 2 heterogeneous 3.3

the same available speed, except for the root location network,

which may have reduced speed, because of the subnetwork

communication with the remote processes that have

migrated away from the root location.

167

Chapter 8. Conclusion and Future Work

Independent balance property. For a balanced state, balanced state, 5.1.2

the relationship between the number of AMPs xi subnetwork

and xj on locations in any two subnetworks i and j

is independent of the number of locations in those

subnetworks and independent of the presence or

absence of other subnetworks, subject only to the

sum x = xi + xj being constant. The only

exception to this rule is the case when distribution of

x′ = xi + xj + 1 AMPs results in all x′ AMPs having

the same relative speed. In this case the partition

may have two variants.

A light location is a location which has one AMP less heavy location, 5.1.5

than the optimal number of AMPs in a heavy location. very light location

A load server on a location collects network state 1 AMP, 2.4

information to reduce AMP coordination time. cNAMP

Location blindness is the greedy effect resulting from greedy effects, 4.1.3

an AMP’s lack of information about the remaining location thrashing,

execution time of other AMPs. opt. rebalancing

Location thrashing is the greedy effect resulting from greedy effects, 4.1.2

an AMP’s lack of information about other AMPs location blindness,

intending to move to the same location. opt. rebalancing

Minimum difference criterion. The number of AMPs balanced state, 5.2.1

on locations with the same available speed must differ stable state

by at least two before AMPs will move between them.

A near-optimal balanced network is defined be the 3 balanced state, 5.1.4

network where some networks have near-optimal nearest upper

number of AMPs. The locations of these underloaded (lower) optimal

subnetworks have either the optimal number of AMPs balanced state,

or one less than the optimal number. The underloaded optimal balance,

subnetworks are determined by being the subnetworks subnetwork

with the slowest AMP relative speed in the nearest

upper optimal balanced state.

168

Chapter 8. Conclusion and Future Work

Nearest upper (lower) optimal balanced state is the near-opt. balance, 5.1.4

optimal balanced state which the system enters by optimal balance

adding (removing) the minimum number of AMPs.

In optimal balance locations with the same available 2 balanced state, 3.3.1

speed have equal numbers of AMPs. near-opt. balance

For any optimal balanced state, the optimal number heavy location, 5.1.4

of AMPs for a subnetwork is the number of AMPs optimal balance,

on each location in the subnetwork. subnetwork

An optimal rebalancing is a sequence of AMP greedy effects 4.1

movements that is the minimum number of AMP

movements needed to enter a stable state.

The root location3is the location where all AMPs heavy location, 2.4

start. light location

Singleton optimal property. All balanced states which balanced state, 5.1.3

a network of singleton subnetworks enters are optimal balance,

optimally balanced. singleton subnetwork

A singleton subnetwork is a subnetwork with one subnetwork 5.1

location.

In a stable state no AMP can reduce its execution time balanced state 3.4

by moving.

A subnetwork is a set of locations with identical heterogen. network, 5.1

available speeds. homogen. network,

A very light location is a location which has two AMPs heavy location, 5.1.5

less than the corresponding heavy location. light location

3 It is either called initiating location or first location in [Den07]

169

Chapter A
Distribution of 20 AMPs on 10 Locations

The experiment examines the distribution of 20 AMPs on 10 locations. The locations

have the following CPU speeds: 3193 MHz (Loc1 − Loc5), 2168 MHz (Loc6), 1793

MHz (Loc7− Loc10). Again the locations are divided into slow (Loc1−Loc5), middle

(Loc6) and fast (Loc7−Loc10) speed locations depending on their available speeds. 10

large and 10 small AMPs start on Loc1. Figures A.1(a) and A.1(b) show AMP distribu-

tion in the real and simulated experiments respectively.

The types of AMP distribution after termination of the first and the second AMPs are

presented in Table A.1. The first column shows the maximum number of AMPs on

middle and slow speed locations. Here, the first digit is the number of AMPs on a middle

speed location and the second digit is the maximum number of AMPs on a slow speed

location. An example of the real experiment presented in Figure A.1 enters distribu-

Type of Distribution After the 1st AMP Termination After the the 2st AMP Termination

.../2/2... 18% 11%

.../2/1... 82% 58%

.../1/2... - 6%

.../1/1... - 25%

Table A.1: States after AMP Termination

170

Appendix A. Distribution of 20 AMPs on 10 Locations

(a) Real

(b) Simulated

Figure A.1: Distribution of 20 AMPs on 10 Locations

171

Appendix A. Distribution of 20 AMPs on 10 Locations

No. of movements After the 1st AMP Termination After the 2nd AMP Termination

0 - 29%

1 17% 71%

2 83% -

Table A.2: Number of Movement after AMP Termination

tion ‘.../2/1...’. This distribution is also the most common in the simulated experiments,

i.e. 82% and 58% of simulated experiments have this distribution after the first and the

second AMP termination respectively. Distribution ‘.../1/1...’ after termination of the

second AMP is also balanced and depends on the type of location from which an AMP

discovers a better opportunity to move first. Uncommon distributions ‘.../2/2...’ and

‘.../1/2...’ are the result of comparatively small computations performed by AMPs and

high CPU speeds of locations, i.e. after AMP termination the remaining execution time

of remaining AMPs on the slower locations is less than the movement and execution on

Figure A.2: Relative CPU Speeds of 19 AMPs on 10 Locations in Distribution ‘.../2/1...’

172

Appendix A. Distribution of 20 AMPs on 10 Locations

a faster location; therefore, AMPs choose not to move.

Figure A.2 shows AMP relative speeds in balanced distribution ‘.../2/1...’ with 19 AMPs.

From the figure we conclude that AMP relative speeds are assigned uniformly in all bal-

anced states. Table A.2 shows the number of AMP movements in the simulated exper-

iments after AMP termination. The reason the additional movements occur is the same

as discussed in Section 3.4. The results of 20 AMP distribution on 10 locations agree

with the result of 25 AMP distribution on 15 locations.

173

Chapter B
C++ Code of Balanced State Checker

#include<iostream>

using namespace std;

int fl(int x);

int main ()

{

int i, j, k, m;

int q, numAMPs, num_Rmax, num_distr, rep, num_floatAMPs;

int d[1000], x[1000], list_Rmax[1000];

double R_max, S[1000], R[1000];

//Defining the values

q = 5; // q is the number of subnetworks

S[1] = 5; S[2] = 7; S[3] = 10; S[4] = 12; S[5] = 15; // Available speed

// x[i] is the number of AMPs in subnetwork i

// R[i] is an expected AMP relative speed

met1: cout << "Number of AMPs: ";

cin >> numAMPs;

// Zeroing the number of AMPs in all subnetworks

174

Appendix B. C++ Code of Balanced State Checker

for (i = 1; i <= q; i++)

x[i] = 0;

// Calculation of the balanced states

j = 1;

while (j <= numAMPs)

{

// Calculation of the maximum AMP relative speed

R_max = 0;

for (i = 1; i <= q; i++)

{

x[i]++;

R[i] = S[i] / x[i];

if (R[i] > R_max)

R_max = R[i];

}

// Defining the subnetworks with the maximum AMP relative speed

num_Rmax = 0;

for (i = 1; i <= q; i++)

{

if (R[i] < R_max)

x[i]--;

else

{

list_Rmax[num_Rmax] = i;

num_Rmax++;

}

}

if (num_Rmax > 1)

{

// Defining the maximum number of floating AMPs

if (numAMPs >= j + num_Rmax - 1)

num_floatAMPs = num_Rmax;

else

175

Appendix B. C++ Code of Balanced State Checker

num_floatAMPs = numAMPs - j + 1;

for (m = 1; m <= num_floatAMPs; m++)

{

// Calculation of the number of distributions

num_distr = fl(num_Rmax) / (fl(m) * fl(num_Rmax - m));

if (num_distr > 1)

{

// Marking the subnetworks with the highest relative speed

for (i = 1; i <= q; i++)

{

d[i] = 0;

for (k = 0; k < num_Rmax; k++)

if (i == list_Rmax[k])

d[i] = 1;

}

// Printing the distribution

cout << j + m - 1 << " AMPs have " << num_distr;

cout << " distributions, i.e. combination of " << m;

cout << " AMPs between " << num_Rmax << " subnetworks "<< endl;

cout << " ";

for (i = 1; i <= q; i++)

if (d[i] == 0)

cout << "(" << x[i] << ") ";

else

cout << "(" << x[i] - 1 << " or " << x[i] << ") ";

cout << "\n\n";

}

else

{

// Printing the distribution

cout << j + num_Rmax - 1 << " AMPs: ";

for (i = 1; i <= q; i++)

cout << "(" << x[i] << ") ";

cout << "\n\n";

176

Appendix B. C++ Code of Balanced State Checker

}

}

j = j + num_Rmax;

}

else

{

// Printing the distribution

cout << j << " AMPs: ";

for (i = 1; i <= q; i++)

cout << "(" << x[i] << ") ";

cout << "\n\n";

j++;

}

}

cout << "\n\nRepeat? (1 - Yes) ";

cin >> rep;

cout << "\n";

if (rep == 1)

goto met1;

return 0;

}

// Calculation of x!

int fl (int x)

{

int i, y;

y = 1;

if (x > 1)

for (i = 1; i <= x; i++)

y *= i;

return y;

}

177

Chapter C
Calculation of AMP Distribution in

Heterogeneous Networks

The chapter provides an example of calculation of 16 AMP distribution (k = 16) in

heterogeneous networks using algorithm provided in Section 5.1.6. Let a system have

q = 5 singleton subnetworks with the following available speeds:

S1 = 5, S2 = 7, S3 = 10, S4 = 12, S5 = 15. (C.1)

The calculations are as follows:

1. Substituting k = 16, q = 5 and available speeds from (C.1) in (5.10), i.e.

ki,j =

[[
(2k + q)(Si + Sj)

2
∑q

m=1 Sm

− 1

]]
,

we find ki,j for all i, j = [1, 5] where i 6= j:

ki,j =

[[
37(Si + Sj)

98
− 1

]]
. (C.2)

k1,2 = [[3.53]] = 4, k1,3 = [[4.66]] = 5, k1,4 = [[5.41]] = 5, k1,5 = [[6.55]] = 7,

k2,3 = [[5.41]] = 5, k2,4 = [[6.17]] = 6, k3,5 = [[7.3]] = 7,

k3,4 = [[7.3]] = 7, k3,5 = [[8.43]] = 8, k4,5 = [[9.19]] = 9.

178

Appendix C. Calculation of AMP Distribution in Heterogeneous Networks

2. Then for each ki,j we find xi and xj using (5.4), i.e.

xi =

[[
Si(ki,j + 1)

Si + Sj

− 1

2

]]
,

xj =

[[
Sj(ki,j + 1)

Si + Sj

− 1

2

]]
.

k1,2 : x1 = [[1.58]] = 2 x2 = [[2.41]] = 2

k1,3 : x1 = [[1.5]] = 1 or 2 x3 = [[3.5]] = 3 or 4

k1,4 : x1 = [[1.26]] = 1 x4 = [[3.73]] = 4

k1,5 : x1 = [[1.5]] = 1 or 2 x5 = [[5.5]] = 5 or 6

k2,3 : x2 = [[1.97]] = 2 x3 = [[3.02]] = 3

k2,4 : x2 = [[2.07]] = 2 x4 = [[3.92]] = 4

k2,5 : x2 = [[2.04]] = 2 x5 = [[4.95]] = 5

k3,4 : x3 = [[3.13]] = 3 x4 = [[3.86]] = 4

k3,5 : x3 = [[3.1]] = 3 x5 = [[4.9]] = 5

k4,5 : x4 = [[3.94]] = 4 x5 = [[5.05]] = 5

3. From the above calculations

x1 = 1 or 2, x2 = 2, x3 = 3 or 4, x4 = 4, x5 = 5 or 6.

Possible distributions are presented in Table C.1. Up and down arrows indicate the

rounding of .5 to the upper and lower values respectively. According to the total

Distr. 1 Distr. 2 Distr. 3 Distr. 4 Distr. 5 Distr. 6 Distr. 7 Distr. 8

x1 1 ↓ 1 ↓ 1 ↓ 1 ↓ 2 ↑ 2 ↑ 2 ↑ 2 ↑
x2 2 2 2 2 2 2 2 2

x3 3 ↓ 3 ↓ 4 ↑ 4 ↑ 3 ↓ 3 ↓ 4 ↑ 4 ↑
x4 4 4 4 4 4 4 4 4

x5 5 ↓ 6 ↑ 5 ↓ 6 ↑ 5 ↓ 6 ↑ 5 ↓ 6 ↑
Total x 15 16 16 17 16 17 17 18

× √ √ × √ × × ×

Table C.1: List of Distributions

179

Appendix C. Calculation of AMP Distribution in Heterogeneous Networks

number of AMPs x in each distribution 16 AMPs may only result in distributions

2, 3, and 5:

x1 = 1 ↓ x2 = 2 x3 = 3 ↓ x4 = 4 x5 = 6 ↑
x1 = 1 ↓ x2 = 2 x3 = 4 ↑ x4 = 4 x5 = 5 ↓
x1 = 2 ↑ x2 = 2 x3 = 3 ↓ x4 = 4 x5 = 5 ↓

(C.3)

4. For the three distributions we check inequality (5.2) that is strictly larger for all

pairs i and j, i.e.
Si

xi

>
Sj

xj + 1
, (C.4)

except for the pairs where xi ↑ and xj ↓. In this case (5.2) is as follows:

Si

xi

=
Sj

xj + 1
. (C.5)

The analysis shows that all distributions from (C.3) satisfy either condition (C.4)

or (C.5). Therefore, optimally balanced distribution of 16 AMPs may only result

in one of the three distributions presented in (C.3).

180

Chapter D
Theoretical Analysis of Redundant

Movements

D.1 cNAMP Termination at the Root Location in an Optim-

ally Balanced Homogeneous Network

Assume that a cNAMP terminates at the root location in an optimal balanced state.

Then the root location has
[[

2fk−f−3
2(f+1)

]]
cNAMPs, and non-root locations have

[[
2k−f+1
2(f+1)

]]

cNAMPs.

According to (5.14) and (2.3), before a cNAMP movement to the root location from a

non-root location, the cNAMP execution time on the non-root location is

Th =
Wr

S
·
[[

2k − f + 1

2(f + 1)

]]
. (D.1)

After the cNAMP movement the root location has
[[

2fk+f−1
2(f+1)

]]
cNAMPs and execution

time on it becomes

Tn =
Wr

f · S ·
[[

2fk + f − 1

2(f + 1)

]]
. (D.2)

181

Appendix D. Theoretical Analysis of Redundant Movements

Thus, substituting (D.1) and (D.2) in (2.5), we get the following cNAMP movement

condition:

Wr

S
·
[[

2k − f + 1

2(f + 1)

]]
>

Wr

f · S ·
[[

2fk + f − 1

2(f + 1)

]]
+ Tcomm. (D.3)

If condition (D.3) holds, then the root location has
[[

2fk+f−1
2(f+1)

]]
cNAMPs, one non-root

location has
[[

2k−3f−1
2(f+1)

]]
cNAMPs, and the rest of the non-root locations have

[[
2k−f+1
2(f+1)

]]

cNAMPs. The system enters a near-optimal balanced state and cannot have any more

movements.

So, after a cNAMP termination at the root location in an optimally balanced homogen-

eous network, only one movement may occur for rebalancing and, hence, there is no

greedy effect.

D.2 cNAMP Termination in a Near-Optimally Balanced Ho-

mogeneous Network

In near-optimal balance a system has
[[

2fk+f−1
2(f+1)

]]
cNAMPs on the root location, and

either
[[

2k−3f−1
2(f+1)

]]
or

[[
2k−f+1
2(f+1)

]]
cNAMPs on non-root locations (Section 5.1.5).

Theorem 6. The greedy effect causes at most one redundant movement, when a cNAMP

terminates in a near-optimally balanced homogeneous network.

Proof of Theorem 6 follows directly from Lemma 7.

Lemma 7. A redundant movement occurs only in two cases: of a cNAMP termination in

near-optimal balance on the root location which is discovered first by a cNAMP from a

light location, and of a cNAMP termination in near-optimal balance on a light location

which is discovered first by a cNAMP from the root location.

Proof. The proof of Lemma 7 again proceeds by case analysis on the location where

termination occurs, and where the first movement is initiated.

182

Appendix D. Theoretical Analysis of Redundant Movements

Termination at the Root Location. After the cNAMP termination the root location

has
[[

2fk−f−3
2(f+1)

]]
cNAMPs. The movement to the root location may occur either from a

light location that has
[[

2k−3f−1
2(f+1)

]]
cNAMPs or from a heavy location that has

[[
2k−f+1
2(f+1)

]]

cNAMPs.

1. cNAMP movement from a light location. From (5.14) and (2.3), before the cNAMP

movement to the root location the cNAMP execution time on the light location is

Th =
Wr

S
·
[[

2k − 3f − 1

2(f + 1)

]]
. (D.4)

After the cNAMP movement the root location has
[[

2fk+f−1
2(f+1)

]]
cNAMPs and exe-

cution time there becomes

Tn =
Wr

f · S ·
[[

2fk + f − 1

2(f + 1)

]]
. (D.5)

Thus, substituting (D.4) and (D.5) in (2.5) the cNAMP movement condition is:

Wr

S
·
[[

2k − 3f − 1

2(f + 1)

]]
>

Wr

f · S ·
[[

2fk + f − 1

2(f + 1)

]]
+ Tcomm. (D.6)

If the system satisfies condition (D.6), then after the cNAMP movement from the

light to the root location, the system has
[[

2fk+f−1
2(f+1)

]]
cNAMPs on the root loca-

tion,
[[

2k−5f−3
2(f+1)

]]
cNAMPs on one non-root location,

[[
2k−3f−1
2(f+1)

]]
and

[[
2k−f+1
2(f+1)

]]

cNAMPs on the remaining non-root locations. According to the minimum dif-

ference criterion, there cannot be movements between either light and very light

locations or heavy and light locations. As condition (D.6) is satisfied, a cNAMP

will not transfer between the root and the very light locations.

However, a cNAMP might move from a heavy location that has
[[

2k−f+1
2(f+1)

]]
cNAMPs

to the very light location that has
[[

2k−5f−3
2(f+1)

]]
cNAMPs. Before the cNAMP move-

ment execution time on a heavy location is as follows:

Th =
Wr

S
·
[[

2k − f + 1

2(f + 1)

]]
. (D.7)

183

Appendix D. Theoretical Analysis of Redundant Movements

After the cNAMP movement the very light location becomes a light location with[[
2k−3f−1
2(f+1)

]]
cNAMPs and execution time on it becomes

Tn =
Wr

S
·
[[

2k − 3f − 1

2(f + 1)

]]
. (D.8)

Substituting (D.7) and (D.8) in (2.5), we get the following condition:

Wr

S
·
[[

2k − f + 1

2(f + 1)

]]
>

Wr

S
·
[[

2k − 3f − 1

2(f + 1)

]]
+ Tcomm. (D.9)

If the system satisfies condition (D.9), then the root location has
[[

2fk+f−1
2(f+1)

]]

cNAMPs, and the remaining locations have either
[[

2k−3f−1
2(f+1)

]]
or

[[
2k−f+1
2(f+1)

]]
cNAMPs,

i.e. the system is in a balanced state. This means that there can be at most one

redundant movement, when a cNAMP terminates at the root location in a near-

optimal balanced state. The movement occurs when a cNAMP from a light loca-

tion discovers the opportunity to move first.

2. cNAMP movement from a heavy location. Before the cNAMP movement the heavy

location has
[[

2k−f+1
2(f+1)

]]
cNAMPs, and its execution time is given by (D.7). After

the movement the root location has
[[

f(2k+1)−1
2(f+1)

]]
cNAMPs, and its execution time

becomes (D.5). Substituting (D.7) and (D.5) in (2.5) we get the following cNAMP

movement condition:

Wr

S
·
[[

2k − f + 1

2(f + 1)

]]
>

Wr

f · S ·
[[

2fk + f − 1

2(f + 1)

]]
+ Tcomm. (D.10)

If condition (D.10) holds, then the root location has
[[

2fk+f−1
2(f+1)

]]
cNAMPs, and

non-root locations have either
[[

2k−3f−1
2(f+1)

]]
or

[[
2k−f+1
2(f+1)

]]
cNAMPs. The system

enters a near-optimal balanced state and cannot have any other movements. There-

fore, there is no greedy effect in a near-optimal balanced state, when a cNAMP

terminates at the root location, and a cNAMP from a heavy location discovers a

better opportunity for execution first.

184

Appendix D. Theoretical Analysis of Redundant Movements

The above analysis leads to the conclusion that after a cNAMP termination at the root

location, the system may rebalance to improve execution parameters. In case of rebal-

ancing, the system might make one movement. The second movement may occur only

if condition (D.6) holds in a near-optimal balanced state and a cNAMP from a light loc-

ation discovers a better execution opportunity first. However, besides the movement for

rebalancing, there cannot be more than one redundant movement.

Termination at a Light Location. After the cNAMP termination, the root location

has
[[

2fk+f−1
2(f+1)

]]
cNAMPs, one non-root location has

[[
2k−5f−3
2(f+1)

]]
cNAMPs (i.e. very

light location), and the remaining non-root locations have either
[[

2k−3f−1
2(f+1)

]]
cNAMPs

(i.e. light locations) or
[[

2k−f+1
2(f+1)

]]
cNAMPs (i.e. heavy locations). According to the

minimum difference criterion there cannot be any movements between light and very

light locations.

Thus, a cNAMP movement to the very light location might occur from the root location

or a heavy location.

1. cNAMP movement from the root location. Before the movement the root location

has
[[

2fk+f−1
2(f+1)

]]
cNAMPs, and cNAMP execution time on the root location is

Th =
Wr

f · S ·
[[

2fk + f − 1

2(f + 1)

]]
. (D.11)

After the movement the very light location becomes a light location. The execution

time on a light location is given by (D.8). Substituting (D.11) and (D.8) in (2.5),

we get the following condition of the cNAMP movement from the root to the very

light location:

Wr

f · S ·
[[

2fk + f − 1

2(f + 1)

]]
>

Wr

S
·
[[

2k − 3f − 1

2(f + 1)

]]
+ Tcomm. (D.12)

If condition (D.12) holds then the system has
[[

2fk−f−3
2(f+1)

]]
cNAMPs on the root

location,
[[

2k−f+1
2(f+1)

]]
cNAMPs on heavy locations, and

[[
2k−3f−1
2(f+1)

]]
on light loc-

ations. Because of condition (D.12) there can not be movements from a light

185

Appendix D. Theoretical Analysis of Redundant Movements

location to the root location. However, a cNAMP might move from a heavy loc-

ation to the root location. Before the movement the cNAMP execution time on a

heavy location is given by (D.7), and after the movement the cNAMP execution

time on the root location is given by (D.5). Substituting (D.7) and (D.5) in (2.5)

gives the following cNAMP movement condition:

Wr

S
·
[[

2k − f + 1

2(f + 1)

]]
>

Wr

f · S ·
[[

2fk + f − 1

2(f + 1)

]]
+ Tcomm. (D.13)

If condition (D.13) holds the system enters a balanced state where the root location

has
[[

2fk+f−1
2(f+1)

]]
cNAMPs and non-root locations have either

[[
2k−f+1
2(f+1)

]]
cNAMPs

or
[[

2k−3f−1
2(f+1)

]]
cNAMPs. Therefore, there can be at most one redundant move-

ment, when a cNAMP terminates at a light location in a near-optimal balanced

state, and a cNAMP from the root location discovers the opportunity to move first.

2. cNAMP movement from a heavy location. Before the movement a heavy loca-

tion has
[[

2k−f+1
2(f+1)

]]
cNAMPs and execution time on it is given by (D.7). After

the cNAMP movement, the very light location becomes a light location, execu-

tion time on a light location is given by (D.8). Substituting (D.7) and (D.8) in

(2.5), gives condition (D.9). If condition (D.9) holds, then after the movement the

system has
[[

2fk+f−1
2(f+1)

]]
cNAMPs on the root location, and either

[[
2k−3f−1
2(f+1)

]]
or[[

2k−f+1
2(f+1)

]]
cNAMPs on non-root locations, i.e. the system enters a balanced state.

Thus, when a cNAMP terminates at a light location, and then a cNAMP from a

heavy location discovers the opportunity to move first the system might make only

one movement to rebalance.

The analysis shows that after a cNAMP termination at a light location, the system might

rebalance to improve execution parameters. In case of rebalancing, the system makes one

movement. The second movement might occur only if condition (D.12) holds in a near-

optimal balanced state and a cNAMP from the root location discovers a better execution

opportunity first. However, besides the movement for rebalancing, there cannot be more

than one redundant movement.

186

Appendix D. Theoretical Analysis of Redundant Movements

cNAMP Termination at a Heavy Location. After the cNAMP termination at a heavy

location, the system has
[[

2fk+f−1
2(f+1)

]]
cNAMPs on the root location, and either

[[
2k−3f−1
2(f+1)

]]

or
[[

2k−f+1
2(f+1)

]]
cNAMPs on non-root locations. The system enter a balanced state, and

there is no greedy effect in this case.

D.3 Proof of Lemma 10

Lemma 10. A system makes at most q− 1 redundant movements after a cNAMP termin-

ation from a near-optimally balanced heterogeneous network.

Proof. The proof of Lemma 10 again proceed by case analysis on the location where

termination occurs, and the location where the first movement is initiated. From Sec-

tion 5.1.4 in a near-optimal balanced state all subnetworks except for a few are optimally

balanced. Thus, a cNAMP can terminate from an optimally or a near-optimally balanced

subnetwork.

cNAMP terminates in an optimally balanced subnetwork. Let a heterogeneous net-

work have q − q′ optimally balanced subnetworks numbered in the descending order of

their cNAMP relative speeds starting from 1, and 1 6 q′ < q near-optimally balanced

subnetworks (subnetworks q, q − 1, ...). As heavy locations of near-optimally balanced

subnetworks always have the slowest cNAMP relative speed in near-optimal balance, we

can write the following:
S1

x1

>
S2

x2

> ... > Sq

xq

where Si is the available speed and xi is an optimal number of cNAMPs on a location

of subnetwork i. Following the proof of Lemma 9 the maximum number of redundant

movements occurs when a cNAMP terminates from an optimally balanced subnetwork

with the highest cNAMP relative speed, (i.e. cNAMP relative speed should also be larger

than cNAMP relative speeds on light locations of near-optimally balanced subnetworks)

187

Appendix D. Theoretical Analysis of Redundant Movements

and cNAMPs discover a better opportunity for execution in the descending order of

cNAMP relative speeds. If these two conditions hold then there can be at most q − 1

redundant movements.

cNAMP termination from a near-optimally balanced subnetwork. A cNAMP can

terminate from a heavy or a light location. If a cNAMP terminates from a heavy location,

the system stays either in near-optimal balance or enters another optimal balance, and

there cannot be any more movements. In case of a cNAMP termination from a light

location a movement is possible from:

• a heavy location of a near-optimally balanced subnetwork. Then the system either

stays in near-optimal balance or enters another optimal balance, and there are no

redundant movements.

• a location of an optimally balanced subnetwork. Here, applying analysis made for

a cNAMP termination from an optimally balanced subnetwork, we find that the

maximum number of redundant movements is equal to q − 1. This happens when

a cNAMP terminates from a light location that has the highest cNAMP relative

speed and then other cNAMPs discover better opportunity for execution in the

descending order of cNAMP relative speeds.

• a light location of another near-optimally balanced subnetwork. The maximum

number of redundant movements in this case is again q − 1. For these q − 1

redundant movements to occur the following conditions must be satisfied:

– a network should have at list two near-optimally balanced subnetworks, i.e.

Sq

xq

=
Sq−1

xq−1

= ...

– a cNAMP should terminate from a light location that has the maximum

cNAMP relative speed.

188

Appendix D. Theoretical Analysis of Redundant Movements

– other cNAMPs should discover opportunity to move in a descending order of

their relative speeds.

D.4 Probability of q−2 Redundant Movements after a cNAMP

Termination from Optimal Balance

The probability, P , of q − 2 redundant movements after cNAMP termination from an

optimally balanced heterogeneous network of q subnetworks is a product of the probab-

ilities that:

1. a cNAMP terminates from a location with the highest cNAMP relative speed,

PtermRh;

2. cNAMPs discover better opportunities for execution in the descending order of

cNAMP relative speeds, Pdes, i.e.

P = PtermRh · Pdes. (D.14)

The calculation presented below is similar to the calculation of the probability for homo-

geneous networks discussed in Section 5.2.1 (page 98). From (5.23) the rate of cNAMP

termination, νi, at a location of subnetwork i is

νi =
Si

W · xi

=
Ri

W
. (D.15)

Assume that each location of subnetwork i has xi cNAMPs in the optimally balanced

state, the total number of locations in subnetwork i is Ni, and R1 > R2 > ... > Rq. Then

the probability of cNAMP termination at a location with the highest cNAMP relative

speed is

PtermRh =
ν1N1∑q
i=1 νiNi

189

Appendix D. Theoretical Analysis of Redundant Movements

that can be written as

PtermRh =
R1N1∑q
i=1 RiNi

. (D.16)

The probability of a cNAMP information discovery from locations in a descending order

of cNAMP relative speeds is

Pdes =
x2N2∑q
i=2 xiNi

· x3N3∑q
i=3 xiNi

· ... · xq−1Nq−1∑q
i=q−1 xiNi

or

Pdes =

q−1∏
j=2

xjNj∑q
i=j xiNi

. (D.17)

Substituting (D.16) and (D.17) in (D.14) we get the following probability of q − 2 re-

dundant movements after a cNAMP termination in an optimally balanced heterogeneous

network:

P =
R1N1∑q
i=1 RiNi

·
q−1∏
j=2

xjNj∑q
i=j(xiNi)

. (D.18)

Equation (D.18) shows that the probability of the maximum number of movements de-

pends on the following parameters: available speeds of locations, and the number of

cNAMPs, locations and subnetworks. The calculation does not take into account cases

when locations of a subnetwork have no cNAMPs. The calculations of probability (D.18)

are made on the basis of the following scenario:

• Scenario 4: There are six subnetworks, Subnet1 − Subnet6, locations of which

have 1793 MHz, 2168 MHz, 3193 MHz, 3608 MHz, 4377 MHz and 4512 MHz

available speeds respectively. Subnet1 is singleton, the sizes of other subnetworks

can vary.

In the first experiment k is taken equal to 50, subnetworks Subnet2−Subnet6 have seven

location each. The experiment varies the number of subnetworks from 3 to 6. In all cases

the probability does not exceed 5%; and the decrease of probability with the increase of

190

Appendix D. Theoretical Analysis of Redundant Movements

the number of subnetworks is observed. Thus, for further experiments the minimum

number of subnetworks, q = 3, is used to investigate the maximum probability.

In the second experiment subnetworks Subnet2 and Subnet3 have seven locations each,

and the number of cNAMPs, k, varies from 1 to 500. The results show that the number

of cNAMPs has no significant effect on the value of the probability.

Evidently, the probability increases when the subnetwork with the highest cNAMP re-

lative speed has the largest number of locations. As locations that have the highest

cNAMP relative speed in a particular optimal balanced state are not known in advance,

the numbers of locations in subnetworks Subnet2 and Subnet3 are varied from 2 to 100

simultaneously. The experiment is conducted for k = 100 cNAMPs. The observations

show that the increase in the number of locations results in the increase of the probabil-

ity. The highest value of the probability is 12% in a network where each subnetwork has

100 locations.

The fourth experiment examines the probability depending on the difference between

available speeds of locations. The experiment is conducted using the following para-

meters: Subnetwork2 and Subnetwork3 have 100 locations each, k = 100 cNAMPs,

and the available speed of Subnetwork3 varies from 34 MHz to 3460 MHz. The result

analysis shows that the difference between location available speeds has no significant

effect on the probability.

Therefore, the probability increases as the number of subnetworks decreases, and also

increases as the number of locations in subnetworks increases. The number of cNAMPs

and the difference between available speeds show no significant impact. To estimate the

probability an experiment with the following parameters is conducted: a network has six

subnetworks where Subnetwork1 has one location, Subnetwork2−Subnetwork6 have

100 locations each. The number of cNAMPs, k, varies from 290 to 310. The available

speeds of all subnetworks are presented in scenario 4, except the available speed of

Subnetwork3 that varies from 34 MHz to 3460 MHz with 1 MHz step. The distribution

of probability (D.18) is presented in Tables D.1 and D.2.

191

Appendix D. Theoretical Analysis of Redundant Movements

Probability, %
Number of Subnetworks

3 4 5 6

0 < P < 10 32116 41750 45759 45759

10 6 P < 20 113 3892 0 0

20 6 P < 30 4255 96 0 0

30 6 P < 40 5962 21 0 0

40 6 P < 50 2989 0 0 0

50 6 P < 60 324 0 0 0

Table D.1: Probability Distribution of the Maximum Number of Movement

The first column in Tables D.1 and D.2 indicates the ranges of the probability values. The

remaining columns show the number of cases with a particular probability in networks of

three to six subnetworks. Table D.1 gives the number of cases with 10% step probability.

The majority of the cases have probability less than 10%. Table D.2 shows that in these

10% in a heterogeneous network of three subnetworks 70% cases have probability less

than 1%. The probability of 28% of cases varies between 20% and 50%. The maximum

values of the probability occur when cNAMPs on the root location have the slowest

cNAMP relative speed.

Table D.3 gives the maximum and the minimum values of the probability when a network

has up to six subnetworks. Experiments show that for a network of three subnetworks

the maximum value of the probability of q − 2 redundant movement is 55%, and for a

network of six subnetworks the probability does not exceed 5%. The above leads to the

conclusion that the median probability of q − 2 redundant movements after a cNAMP

termination from optimally balanced heterogeneous network does not exceed 1%.

Probability, %
Number of Subnetworks

3 4 5 6

0 < P < 1 31796 33922 37269 45437

1 6 P < 5 208 697 8217 322

5 6 P < 10 112 7131 273 0

Table D.2: Distribution in the First 10% of Table D.1

192

Appendix D. Theoretical Analysis of Redundant Movements

Probability Number of Subnetworks

3 4 5 6

Pmax 55% 37% 7% 4.9%

Pmin 4 · 10−7% 3.5 · 10−9% 4.3 · 10−11% 5.2 · 10−14%

Table D.3: Maximum and Minimum Values of q − 2 Redundant Movement Probability

D.5 Probability of q−1 Redundant Movements after a cNAMP

Termination from Near-Optimal Balance

After cNAMP termination from near-optimally balanced heterogeneous network of q

subnetworks the remaining cNAMPs might make at most q− 1 redundant movements to

rebalance (Lemma 10). The probability of these q − 1 redundant movements is the sum

of probabilities of three independent events, i.e.

P = P1 + P2 + P3. (D.19)

The conditions for each event and their probabilities are as follows:

1. Probability P1 is the product of the probabilities that:

• a cNAMP terminates from an optimally balanced subnetwork that has the

highest cNAMP relative speed, PtermRh;

• cNAMPs discover a better opportunity for execution in the descending order

of their relative speeds, Pdes1.

P1 = PtermRh · Pdes. (D.20)

2. Probability P2 is the product of the following probabilities:

• a cNAMP terminates at a light location of a near-optimally balanced subnet-

work that has the highest cNAMP relative speed, PtermRl;

193

Appendix D. Theoretical Analysis of Redundant Movements

• cNAMPs discover a better opportunity for execution in the descending order

of their relative speeds, Pdes2.

P2 = PtermRl · Pdes2. (D.21)

3. Probability P3 is the product of the probabilities that:

• the system has at least two near-optimally balanced subnetworks, Pnear2;

• a cNAMP terminates at a light location of a near-optimally balanced subnet-

work that has the highest cNAMP relative speed, PtermRl2;

• cNAMPs discover a better opportunity for execution in the descending order

of their relative speeds, Pdes3.

P3 = Pnear2 · PtermRl2 · Pdes3. (D.22)

Because the number of cNAMPs is an integer and the near-optimally balanced subnet-

works depend on the number of cNAMPs, it is difficult to estimate mean and maximum

values of probability (D.19). However, experiments on the basis of scenario 4 show that

the probability is less than 30%, and it rapidly decreases as the number of subnetworks

increases.

194

Bibliography

[AcbraUBP11] USC/ISI A collaboration between researchers at UC Berkeley, LBL

and Xerox PARC. The ns-2 Manual. http://www.isi.edu/nsnam/ns/ns-

documentation.html, 2011.

[ACL00] William Aiello, Fan Chung, and Linyuan Lu. A random graph model for

massive graphs. In STOC ’00: Proceedings of the Thirty-Second Annual

ACM Symposium on Theory of Computing, pages 171–180, New York,

NY, USA, 2000. ACM.

[AD96] Jong Suk Ahn and Peter B. Danzig. Packet network simulation: Spee-

dup and accuracy versus timing granularity. IEEE/ACM Trans. Netw.,

4(5):743–757, 1996.

[ama11] Amazon elastic compute cloud (Amazon EC2), 2011.

http://www.aws.amazon.com/ec2.

[Ant05] R.J. Anthony. Engineering emergence for cluster configuration. Journal

of Systemics, Cybernetics and Informatics, 3:17–26, 2005.

[Bar04] Rimon Barr. SWANS - Scalable Wireless Ad hoc Net-

work Simulator. User Guide. Cornell Research Foundation,

http://www.jist.ece.cornell.edu, 2004.

[BMH+02] C. J. Bovy, H. T. Metrodimedjo, G. Hooghiemstra, H. Uijterwaal, and

P. Van Mieghem. Analysis of end-to-end delay measurements in Inter-

net. In PAM ’02: Proceedings of the Passive and Active Measurement

Workshop, 2002.

[Boi06] André Rauber Du Bois. Mobile Computation in Purely Functional Lan-

guage. PhD thesis, School of Mathematical and Computer Sciences,

Heriot-Watt University, Edinburgh, UK, 2006.

195

Bibliography

[BPZ96] Martin Backschat, Alexander Pfaffinger, and Christoph Zenger.

Economic-based dynamic load distribution in large workstation net-

works. In Euro-Par ’96: Proceedings of the Second International Euro-

Par Conference on Parallel Processing, volume 2, pages 631–634, Lon-

don, UK, 1996. Springer-Verlag.

[BT02] Tian Bu and Don Towsley. On distinguishing between Internet power

law topology generators. In INFOCOM ’02: Proceedings of the Twenty-

First Annual Joint Conference of the IEEE Computer and Communica-

tion Societies, volume 2, pages 638–647. IEEE Computer Society, 2002.

[BTL05] A. Rauber Du Bois, P. Trinder, and H.-W. Loidl. mHaskell: Mobile

computation in a purely functional language. Journal of Universal Com-

puter Science, 11(7):1234–1254, 2005.

[Car99] Luca Cardelli. Mobility and security. In Proceedings of the NATO Ad-

vanced Study Institute of on Foundation of Secure Computation, pages

3–37, Marktoberdorf, Germany, August 1999. IOS Press.

[Cas01] H. Casanova. Simgrid: a toolkit for the simulation of application

scheduling. In Proceedings of the First IEEE/ACM International Sym-

posium on Cluster Computing and the Grid, pages 430–437, 2001.

[CB04] Arjav J. Chakravarti and Gerald Baumgartner. Self-organizing schedul-

ing on the organic Grid. Int. Journal of High Performance Computing

Applications, 20:115–130, 2004.

[CDZ97] Kenneth L. Calvert, Matthew B. Doar, and Ellen W. Zegura. Modelling

Internet topology. IEEE Communications Magazine, 35:160–163, 1997.

[CF11] Robert M. Cubert and Paul Fishwick. Sim++. Version 1.0.

http://www.cise.ufl.edu/ fishwick/simpack/simpack.html, 2011.

[CHLE80] W. W. Chu, L. J. Holloway, Min-Tsung Lan, and K. Efe. Task allocation

in distributed data processing. Computer, 13(11):57–69, 1980.

196

Bibliography

[CK87] T. L. Casavant and J. G. Kuhl. Analysis of three dynamic distributed

load-balancing strategies with varying global information requirements.

In DCS ’87: Proceedings of the 7th International Conference on Dis-

tributed Computing Systems, pages 185–192, New York, USA, 1987.

IEEE Press.

[CK88] T. L. Casavant and J. G. Kuhl. A taxonomy of scheduling in general-

purpose distributed computing systems. IEEE Trans. Softw. Eng.,

14(2):141–154, 1988.

[CK06] Mark Crovella and Balachander Krishnamurthy. Internet Measurement:

Infrastructure, Traffic and Applications. John Wiley & Sons, Inc., New

York, NY, USA, 2006.

[CKPT09] Natalia Chechina, Peter King, Rob Pooley, and Phil Trinder. Simulating

autonomous mobile programs on networks. In PGNet ’09: Proceedings

of the 10th Annual Conference on the Convergence of Telecommunic-

ations, Networking and Broadcasting, pages 201–206, Liverpool, UK,

2009. Liverpool John Moores University.

[CKT10] Natalia Chechina, Peter King, and Phil Trinder. Using negotiation to

reduce redundant autonomous mobile program movements. In IAT ’10:

Proceedings of the IEEE/WIC/ACM International Conference on Intel-

ligent Agent Technology, pages 343–346, Toronto, Canada, 2010. IEEE

Computer Society.

[CKT11] Natalia Chechina, Peter King, and Phil Trinder. Redundant movements

in autonomous mobility: Experimental and theoretical analysis. Journal

of Parallel and Distributed Computing, 71(10):1278–1292, 2011.

[CLHZ97] Wentong Cai, Bu-Sung Lee, Alfred Heng, and Li Zhu. A simulation

study of dynamic load balancing for network-based parallel processing.

In ISPAN ’97: Proceedings of the 1997 International Symposium on

197

Bibliography

Parallel Architectures and Networks, pages 383–389, Washington, DC,

USA, 1997. IEEE Computer Society.

[Cyb89] G. Cybenko. Dynamic load balancing for distributed memory multipro-

cessors. J. Parallel Distrib. Comput., 7(2):279–301, 1989.

[Den07] X. Y. Deng. Cost Driven Autonomous Mobility. PhD thesis, School

of Mathematical and Computer Sciences, Heriot-Watt University, Edin-

burgh, UK, 2007.

[Dev87] Jay L. Devore. Probability and Statistics for Engineering and the Sci-

ences. Brooks/Cole Publishing Company, California, USA, second edi-

tion, 1987.

[DKS89] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a

fair queueing algorithm. SIGCOMM Comput. Commun. Rev., 19:1–12,

1989.

[DL93] Matthew Doar and Ian Leslie. How bad is naive multicast routing. In

INFOCOM ’93: Proceedings of the Twelfth Annual Joint Conference of

the IEEE Computer Societies, volume 1, pages 82–89, San Francisco,

CA, USA, 1993. IEEE Computer Society.

[DMT10] X. Y. Deng, G. J. Michaelson, and P. W. Trinder. Cost-driven autonom-

ous mobility. Computer Languages Systems and Structures, 36(1):34–

59, 2010.

[Doa96] Matthew B. Doar. A better model for generating test networks. In

GLOBECOM ’96: Proceedings of the Global Communication Confer-

ence, pages 86–93. IEEE Computer Society, 1996.

[DTM06] X. Y. Deng, P. W. Trinder, and G. J. Michaelson. Autonomous mobile

programs. In IAT ’06: Proceedings of the IEEE/WIC/ACM International

Conference on Intelligent Agent Technology, pages 177–186, Washing-

ton, DC, USA, 2006. IEEE Computer Society.

198

Bibliography

[EAEB97] Aly E. El-Abd and Mohamed I. El-Bendary. A neural network approach

for dynamic load balancing in homogeneous distributed systems. In

HICSS ’97: Proceedings of the 30th Hawaii International Conference

on System Sciences, volume 1, pages 628–629, Washington, DC, USA,

1997. IEEE Computer Society.

[FFF99] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On

power-law relationships of the Internet topology. In SIGCOMM ’99:

Proceedings of the Conference on Applications, Technologies, Archi-

tectures, and Protocols for Computer Communication, pages 251–262,

New York, NY, USA, 1999. ACM.

[FML+03] Chuck Fraleigh, Sue Moon, Bryan Lyles, Chase Cotton, Mujahid Khan,

Deb Moll, Rob Rockell, Ted Seely, and Christophe Diot. Packet-level

traffic measurements from the sprint IP backbone. IEEE Netw., 17(6):6–

16, 2003.

[FPV98] Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. Understand-

ing code mobility. IEEE Trans. Softw. Eng., 24(5):342–361, 1998.

[FT91] Drew Fudenberg and Jean Tirole. Game Theory. The MIT Press, USA,

1991.

[GA91] Arif Ghafoor and Ishfaq Ahmad. An efficient model of dynamic task

scheduling for distributed systems. In COMPSAC ’90: Proceedings of

the Fourteenth Annual International Computer Software and Applica-

tions Conference, pages 442–447. IEEE Computer Society Press, 1991.

[Gar11] Ryan Gardiner. Autonomous Cloud Brokering. Final year disserta-

tion, School of Mathematical and Computer Sciences, Heriot-Watt Uni-

versity, Edinburgh, UK, 2011.

[GGK+01] Fotis Georgatos, Florian Gruber, Daniel Karrenberg, Mark Santcroos,

Ana Susanj, Henk Uijterwaal, and Ren Wilhelm. Providing active meas-

199

Bibliography

urements as a regular service for ISPs. In Proceedings of Passive &

Active Measurement (PAM), 2001.

[GHCN99] R. Ghanea-Hercock, J. C. Collis, and D. T. Ndumu. Co-operating mo-

bile agents for distributed parallel processing. In AGENTS ’99: Pro-

ceedings of the Third Annual Conference on Autonomous Agents, pages

398–399, New York, NY, USA, 1999. ACM.

[GR03] Christos Georgousopoulos and Omer F. Rana. Combining state and

model-based approaches for mobile agent load balancing. In SAC ’03:

Proceedings of the 2003 ACM Symposium on Applied Computing, pages

878–885, New York, NY, USA, 2003. ACM.

[Hal92] David Lee Hall. Mathematical Techniques in Multisensor Data Fusion.

Artech House, Inc., Norwood, MA, USA, 1992.

[HLMV87] S. H. Hosseini, B. E. Litow, M. I. Malkawi, and K. Vairavan. Distributed

algorithms for load balancing in very large homogeneous systems. In

Proceedings of the 1987 Fall Joint Computer Conference on Exploring

Technology, ACM ’87, pages 397–404, Los Alamitos, CA, USA, 1987.

IEEE Computer Society Press.

[HM01] G. Hooghiemstra and P. Van Mieghem. Delay distributions on fixed

Internet paths. Technical Report 20011031, Delft University of Techno-

logy, Delft, Netherlands, 2001.

[HMH07] Markus C. Huebscher, Julie A. McCann, and Asher Hoskins. Context

as autonomic intelligence in a ubiquitous computing environment. In-

ternational Journal of Internet Protocol Technology, 2:30–39, 2007.

[HY00] Masatomo Hashimoto and Akinori Yonezawa. MobileML: A program-

ming language for mobile computation. In Coordination Languages

and Models, volume 1906 of Lecture Notes in Computer Science, pages

557–593. Springer Berlin / Heidelberg, 2000.

200

Bibliography

[IKKW02] Torsten Illmann, Tilman Krueger, Frank Kargl, and Michael Weber.

Transparent migration of mobile agents using the Java platform debug-

ger architecture. In MA ’01: Proceedings of the 5th International Con-

ference on Mobile Agents, pages 198–212, London, UK, 2002. Springer-

Verlag.

[KC03] Jeffrey O. Kephart and David M. Chess. The vision of autonomic com-

puting. Computer, 36(1):41–50, 2003.

[KK80] L. Kleinrock and F. Kamoun. Optimal clustering structures for hierarch-

ical topological network design of large computer networks. Networks,

10:221–248, 1980.

[KKP+04] Laxmikant V. Kale, Sameer Kumar, Mani Potnuru, Jayant DeSouza,

and Sindhura Bandhakavi. Faucets: Efficient resource allocation on

the computational Grid. In ICPP ’04: Proceedings of the 2004 Interna-

tional Conference on Parallel Processing, pages 396–405, Washington,

DC, USA, 2004. IEEE Computer Society.

[Kle93] Lawrence A. Klein. Sensor and Data Fusion Concepts and Applic-

ations. Society of Photo-Optical Instrumentation Engineers (SPIE),

Bellingham, WA, USA, 1993.

[Kuo85] H. Kuolin. Allocation of Processors and Files for Load Balancing in

Distributed Systems. PhD thesis, University of California at Berkeley,

USA, 1985.

[LE96] Robert Lloyd-Evance. Wide Area Network Performance and Optimiza-

tion. Addison Wesley Longman, UK, 1996.

[LGY09] Wei-Zhou Lu, Wei-Xuan Gu, and Shun-Zheng Yu. One-way queuing

delay measurement and its application on detecting DDoS attack. J.

Netw. Comput. Appl., 32(2):367–376, 2009.

201

Bibliography

[LK87] Frank C. H. Lin and Robert M. Keller. The gradient model load balan-

cing method. IEEE Trans. Softw. Eng., 13(1):32–38, 1987.

[LM82] Miron Livny and Myron Melman. Load balancing in homogeneous

broadcast distributed systems. SIGMETRICS Perform. Eval. Rev.,

11:47–55, 1982.

[LR92] Hwa-Chun Lin and C. S. Raghavendra. A dynamic load balancing

policy with a central job dispatcher (LBC). IEEE Trans. Softw. Eng.,

18(2):148–158, 1992.

[LRRV04] Arnaud Legrand, Hélène Renard, Yves Robert, and Frédéric Vivien.

Mapping and load-balancing iterative computations. IEEE Trans. Par-

allel Distrib. Syst., 15(6):546–558, 2004.

[LW00] C. P. Low and N. Wang. An efficient algorithm for group multic-

ast routing with bandwidth reservation. Computer Communications,

23(18):1740–1746, 2000.

[LWZ05] Marin Litoiu, Murray Woodside, and Tao Zheng. Hierarchical model-

based autonomic control of software systems. In DEAS ’05: Proceed-

ings of the 2005 Workshop on Design and Evolution of Autonomic Ap-

plication Software, pages 1–7, New York, NY, USA, 2005. ACM.

[Mac98] Lewis Mackenzie. Communications and Networks. McGraw-Hill, Eng-

land, 1998.

[MB03] Daniel A. Menascé and Mohamed N. Bennani. On the use of perform-

ance models to design self-managing computer systems. In Proceedings

of the 2003 Computer Measurement Group Conference, pages 7–12,

Dallas, TX, USA, 2003.

[MDW99] Dejan Milojic̆ić, Frederick Douglis, and Richard Wheeler. Mobility:

Processes, Computers and Agents. ACM Press/Addison-Wesley Pub-

lishing Co., New York, NY, USA, 1999.

202

Bibliography

[MI08] Naoki Miyata and Toru Ishida. Community-based load balancing for

massively multi-agent systems. Massively Multi-Agent Technology,

pages 28–42, 2008.

[MM10] Louis Mandel and Luc Maranget. The JoCaml Language: Documenta-

tion and User’s Manual. http://jocaml.inria.fr/manual/index.html, 2010.

[MMB03] Alberto Montresor, Hein Meling, and Özalp Babaoǧlu. Messor: Load-

balancing through a swarm of autonomous agents. In AP2PC’03: Pro-

ceedings of the 1st International Conference on Agents and Peer-to-Peer

Computing, pages 125–137, Berlin, Heidelberg, 2003. Springer-Verlag.

[MMSA+96] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and

C. A. Lingley-Papadopoulos. Totem: a fault-tolerant multicast group

communication system. Commun. ACM, 39(4):54–63, 1996.

[MO04] Paulo Eduardo Merloti and June Of. Optimization algorithm inspired

by biological ants and swarm behaviour. Technical report, San Diego

State University, 2004.

[MP95] V. C. Marney-Petix. Bridges, Routers, Gateways. Numidia Press, 1995.

[MSC+86] James H. Morris, Mahadev Satyanarayanan, Michael H. Conner,

John H. Howard, David S. Rosenthal, and F. Donelson Smith. An-

drew: A distributed personal computer environment. Commun. ACM,

29(3):184–201, 1986.

[MvS95] Henk Sips Maarten van Steen. Computer and Network Organization.

Prentice Hall, UK, 1995.

[nct11] SimReal technology, 2011. http://nsl10.csie.nctu.edu.tw.

[NLJU02] D. Nicholson, C.M. Lloyd, S.J. Julier, and J.K. Uhlmann. Scalable sis-

tributed data fusion. In Proceedings of the Fifth International Confer-

ence on Information Fusion, volume 1, pages 630–635, 2002.

203

Bibliography

[NNMNA+05] Lilian Norohan Nassif, Jose Marcos Nogueira, Mohamed Ahmed,

Ahmed Karmouch, Roger Impey, and Flavio Vinicius de Andrade. Job

completion prediction in Grid using distributed case-based reasoning. In

WETICE ’05: Proceedings of the 14th IEEE International Workshop on

Enabling Technologies, pages 249–254, Washington, DC, USA, 2005.

IEEE Computer Society.

[NSS+04] Makoto Nakamura, Junsuke Sembon, Yutake Sugawara, Tsuyoshi Itoh,

Mary Inaba, and Kei Hiraki. End-node transmission rate control kind

to intermediate routers - towards 10gbps era. In PFLDnet ’04: Pro-

ceedings of the Second International Workshop on Protocols for Fast

Long-Distance Networks, 2004.

[Nun92] Greg Nunemacher. LAN Primer. M&T Publishing, USA, second edi-

tion, 1992.

[NWG+09] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli,

Sunil Soman, Lamia Youseff, and Dmitrii Zagorodnov. The Eucalyptus

open-source Cloud-computing system. In CCGRID ’09: Proceedings of

the 2009 9th IEEE/ACM International Symposium on Cluster Comput-

ing and the Grid, pages 124–131, Washington, DC, USA, 2009. IEEE

Computer Society.

[NXG85] Lionel M. Ni, Chong-Wei Xu, and Thomas B. Gendreau. A distrib-

uted drafting algorithm for load balancing. IEEE Trans. Softw. Eng.,

11(10):1153–1161, 1985.

[OGP98] Wolfgang Obelöer, Claus Grewe, and Holger Pals. Load management

with mobile agents. In EUROMICRO ’98: Proceedings of the 24th Con-

ference on EUROMICRO, pages 1005–1012, Washington, DC, USA,

1998. IEEE Computer Society.

204

Bibliography

[OO06] Natalia Olifer and Victor Olifer. Computer Networks: Principles, Tech-

nologies and Protocols for Network Design. Wiley, 2006.

[opn11] OPNET modeler. network simulation, 2011.

http://www.opnet.com/solutions/network rd/modeler.html.

[otc11] OTcl, 2011. http://www.otcl-tclcl.sourceforge.net/otcl.

[oxf08] Dictionary of Computing. Oxford University Press, 6 edition, 2008.

[PBKY02] Taesoon Park, Ilsoo Byun, Hyunjoo Kim, and H.Y. Yeom. The perform-

ance of checkpointing and replication schemes for fault tolerant mobile

agent systems. In RDS’02: Proceedings of the 21st IEEE Symposium on

Reliable Distributed Systems, pages 256–261, Washington, DC, USA,

2002. IEEE Computer Society.

[PDR94] D.K. Panda and V.A. Dixit-Radiya. Message-ordering for wormhole-

routed multiport systems with link contention and routing adaptivity. In

Proceedings of the Scalable High-Performance Computing Conference,

pages 191–198, 1994.

[pen08] Penguin Dictionary of Mathematics. Penguin Books, 4 edition, 2008.

[Pin08] Michael L. Pinedo. Scheduling: Theory, Algorithms, and Systems.

Springer Publishing Company, Incorporated, 3 edition, 2008.

[PV03] R. Percacci and A. Vespignani. Scale-free behaviour of the Internet

global performance. The European Physical Journal B, 32(4):411–414,

2003.

[PZMH07] Himabindu Pucha, Ying Zhang, Z. Morley Mao, and Y. Charlie Hu.

Understanding network delay changes caused by routing events. SIG-

METRICS Perform. Eval. Rev., 35(1):73–84, 2007.

[Rec10] Recursion Software, Inc., http://www.recursionsw.com/Products/voyag-

er.html. Voyager Technical Documentation, 2010.

205

Bibliography

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott

Shenker. A scalable content-addressable network. SIGCOMM Comput.

Commun. Rev., 31:161–172, 2001.

[rip11] The RIPE Network Coordination Centre, 2011. http://www.ripe.net/.

[RLS+03] Ananth Rao, Karthik Lakshminarayanan, Sonesh Surana, Richard Karp,

and Ion Stoica. Load balancing in structured P2P systems. In

M. Kaashoek and Ion Stoica, editors, Peer-to-Peer Systems II, volume

2735 of Lecture Notes in Computer Science, pages 68–79. Springer Ber-

lin / Heidelberg, 2003.

[RM90] Andrew Ross and Bruce McMillin. Experimental comparison of bid-

ding and drafting load sharing protocols. In Proceedings of the Fifth

Distributed Memory Computing Conference, volume 2, pages 968–974.

IEEE Computer Society Press, 1990.

[RN04] Tiberiu Rotaru and Hans-Heinrich Nägeli. Dynamic load balancing

by diffusion in heterogeneous systems. J. Parallel Distrib. Comput.,

64(4):481–497, 2004.

[Rot94] H. G. Rotithor. Taxonomy of dynamic task scheduling schemes in dis-

tributed computing systems. IEE Proceedings Computers & Digital

Techniques, 141(1):1–10, 1994.

[SBK04] Jaroslaw Sliwinski, Andrzej Beben, and Piotr Krawiec. EmPath: Tool to

emulate packet transfer characteristics in IP network. Traffic Monitoring

and Analysis, 6003/2010:46–58, 2004.

[SBK06] Tino Schlegel, Peter Braun, and Ryszard Kowalczyk. Towards autonom-

ous mobile agents with emergent migration behaviour. In AAMAS ’06:

Proceedings of the Fifth International Joint Conference on Autonomous

Agents and Multiagent Systems, pages 585–592, New York, NY, USA,

2006. ACM.

206

Bibliography

[SKA06] Jan Stender, Silvan Kaiser, and Sahin Albayrak. Mobility-based runtime

load balancing in multi-agent systems. In SEKE ’06: Proceedings of the

18th International Conference on Software Engineering and Knowledge

Engineering, Reedwood City, CA, USA, 2006.

[SKH95] Behrooz A. Shirazi, Krishna M. Kavi, and Ali R. Hurson. Scheduling

and Load Balancing in Parallel and Distributed Systems. IEEE Com-

puter Society Press, Los Alamitos, CA, USA, 1995.

[SKL89] Kang G. Shin, C. M. Krishna, and Yann-Hang Lee. Optimal dynamic

control of resources in a distributed system. IEEE Trans. Softw. Eng.,

15(10):1188–1198, 1989.

[Sof11] Erlang Software. Erlang: Traffic and queuing software, 2011.

http://members.iinet.net.au/ clark.

[SS06] Angela B. Shiflet and George W. Shiflet. Introduction to Computational

Science. Modelling and Simulation for the Sciences. Princeton Uni-

versity Press, New Jersey, USA, 2006.

[SSDNB95] J.A. Stankovic, M. Spuri, M. Di Natale, and G.C. Buttazzo. Implica-

tions of classical scheduling results for real-time systems. Computer,

28(6):16–25, 1995.

[SSY00] Tahakiro Sakamoto, Tatsurou Sekiguchi, and Akinori Yonezawa. Byte-

code transformation for portable thread migration in Java. In ASA/MA

’00: Proceedings of the Second International Symposium on Agent

Systems and Applications, pages 16–28, London, UK, 2000. Springer-

Verlag.

[Sta85] J. A. Stankovic. An application of Bayesian decision theory to decent-

ralized control of job scheduling. IEEE Trans. Comput., 34(2):117–130,

February 1985.

207

Bibliography

[sta11] StACC - collaborative research in cloud computing, 2011.

http://www.cs.st-andrews.ac.uk/stacc.

[STD02] Ming-Shan Su, K. Thulasiraman, and A. Das. A scalable on-line multi-

level distributed network fault detection/monitoring system based on the

SNMP protocol. In GLOBECOM ’02: Proceedings of the Global Tele-

communications Conference, volume 2, pages 1960–1964. IEEE Com-

puter Society, 2002.

[Tan03] Andrew S. Tanenbaum. Computer Networks. Pearson Education Inc.,

New Jersey, USA, fourth edition, 2003.

[TF95] M. Takano and K. Fujita. Multilevel network management by means

of system identification. In Proceedings of the Fourteenth Annual

Joint Conference of the IEEE Computer and Communication Societies,

volume 2, pages 538–545, Washington, DC, USA, 1995. IEEE Com-

puter Society.

[TMR97] K. Thompson, G. J. Miller, and Wilder R. Wide-area Internet traffic

patterns and characteristics. Network, IEEE, 11(6):10–23, 1997.

[TT85] Asser N. Tantawi and Don Towsley. Optimal static load balancing in

distributed computer systems. J. ACM, 32:445–465, April 1985.

[Var10] Andras Varga. OMNeT++. User Manual. OMNeT++ version 4.0.

http://www.omnetpp.org/doc/omnetpp40/manual/usman.html, 2010.

[Wax91] Bernard M. Waxman. Routing of multipoint connections. Broadband

Switching: Architectures, Protocols, Design, and Analysis, pages 347–

352, 1991.

[WCS93] David C. M. Wood, Sean S. Coleman, and Michael F. Schwartz. Fre-

mont: A system for discovering network characteristics and problems.

In USENIX ’93: Proceedings of the USENIX Winter Conference, pages

335–348, 1993.

208

Bibliography

[Wei99] Gerhard Weiss, editor. Multiagent Systems. A Modern Approach to Dis-

tributed Artificial Intelligence. The MIT Press, Massachusetts, USA,

1999.

[WHH+92] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and W. S.

Stornetta. Spawn: a distributed computational economy. IEEE Trans-

actions on Software Engineering, 18(2):103–117, 1992.

[WhS03] Ming Wu and Xian he Sun. A general self-adaptive task scheduling

system for non-dedicated heterogeneous computing. In CLUSTER ’03:

Proceedings of IEEE International Conference on Cluster Computing,

pages 354–361. IEEE Computer Society, 2003.

[WT98] Jerrell Watts and Stephen Taylor. A practical approach to dynamic load

balancing. IEEE Trans. Parallel Distrib. Syst., 9(3):235–248, March

1998.

[WX99] Brian Wims and Cheng-Zhong Xu. TRAVELER: A mobile agent based

infrastructure for wide area parallel computing. In ASAMA ’99: Pro-

ceedings of the First International Symposium on Agent Systems and

Applications, and the Third International Symposium on Mobile Agents,

pages 258–259, Washington, DC, USA, 1999. IEEE Computer Society.

[YP98] Tse-Yu Yeh and Yale N. Patt. Alternative implementations of two-level

adaptive branch prediction. In ISCA ’98: 25 Years of the International

Simposia on Computer Architecture (selected papers), pages 451–461,

New York, NY, USA, 1998. ACM.

[ZCB96] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How to model an

internetwork. In INFOCOM ’96: Proceedings of the Fifteenth Annual

Joint Conference of the IEEE Computer Societies. Networking the Next

Generation, volume 2, pages 594–602. IEEE Computer Society, 1996.

209

Bibliography

[ZCBD04] A. Zietoun, Chen-Nee Chuah, S. Bhattacharyya, and C. Diot. An AS-

level study of Internet path delay characteristics. In GLOBECOM ’04:

Proceedings of the Global Telecommunications Conference, volume 3,

pages 1480–1484. IEEE Computer Society, 2004.

[Zho10] Shangqin Zhong. Secure multilevel management of large-scale network.

In GMC ’10: Proceedings of the Global Mobile Congress, pages 1–7.

IEEE Computer Society, 2010.

[ZZWD93] Songnian Zhou, Xiaohu Zheng, Jingwen Wang, and Pierre Delisle. Uto-

pia: A load sharing facility for large, heterogeneous distributed com-

puter systems. Softw. Pract. Exper., 23(12):1305–1336, 1993.

210

