28 research outputs found

    High Frequency Injection Sensorless Control for a Permanent Magnet Synchronous Machine Driven by an FPGA Controlled SiC Inverter

    Get PDF
    As motor drive inverters continue to employ Silicon Carbide (SiC) and Gallium Nitride (GaN) devices for power density improvements, sensorless motor control strategies can be developed with field-programmable gate arrays (FPGA) to take advantage of high inverter switching frequencies. Through the FPGA’s parallel processing capabilities, a high control bandwidth sensorless control algorithm can be employed. Sensorless motor control offers cost reductions through the elimination of mechanical position sensors or more reliable electric drive systems by providing additional position and speed information of the electric motor. Back electromotive force (EMF) estimation or model-based methods used for motor control provide precise sensorless control at high speeds; however, they are unreliable at low speeds. High frequency injection (HFI) sensorless control demonstrates an improvement at low speeds through magnetic saliency tracking. In this work, a sinusoidal and square-wave high frequency injection sensorless control method is utilized to examine the impact an interior permanent magnet synchronous machine’s (IPMSM) fundamental frequency, injection frequency, and switching frequency have on the audible noise spectrum and electrical angle estimation. The audible noise and electrical angle estimation are evaluated at different injection voltages, injection frequencies, switching frequencies, and rotor speeds. Furthermore, a proposed strategy for selecting the proper injection frequency, injection voltage, and switching frequency is given to minimize the electrical angle estimation error

    Power quality improvement utilizing photovoltaic generation connected to a weak grid

    Get PDF
    Microgrid research and development in the past decades have been one of the most popular topics. Similarly, the photovoltaic generation has been surging among renewable generation in the past few years, thanks to the availability, affordability, technology maturity of the PV panels and the PV inverter in the general market. Unfortunately, quite often, the PV installations are connected to weak grids and may have been considered as the culprit of poor power quality affecting other loads in particular sensitive loads connected to the same point of common coupling (PCC). This paper is intended to demystify the renewable generation, and turns the negative perception into positive revelation of the superiority of PV generation to the power quality improvement in a microgrid system. The main objective of this work is to develop a control method for the PV inverter so that the power quality at the PCC will be improved under various disturbances. The method is to control the reactive current based on utilizing the grid current to counteract the negative impact of the disturbances. The proposed control method is verified in PSIM platform. Promising results have been obtaine

    Design and Control of Electrical Motor Drives

    Get PDF
    Dear Colleagues, I am very happy to have this Special Issue of the journal Energies on the topic of Design and Control of Electrical Motor Drives published. Electrical motor drives are widely used in the industry, automation, transportation, and home appliances. Indeed, rolling mills, machine tools, high-speed trains, subway systems, elevators, electric vehicles, air conditioners, all depend on electrical motor drives.However, the production of effective and practical motors and drives requires flexibility in the regulation of current, torque, flux, acceleration, position, and speed. Without proper modeling, drive, and control, these motor drive systems cannot function effectively.To address these issues, we need to focus on the design, modeling, drive, and control of different types of motors, such as induction motors, permanent magnet synchronous motors, brushless DC motors, DC motors, synchronous reluctance motors, switched reluctance motors, flux-switching motors, linear motors, and step motors.Therefore, relevant research topics in this field of study include modeling electrical motor drives, both in transient and in steady-state, and designing control methods based on novel control strategies (e.g., PI controllers, fuzzy logic controllers, neural network controllers, predictive controllers, adaptive controllers, nonlinear controllers, etc.), with particular attention to transient responses, load disturbances, fault tolerance, and multi-motor drive techniques. This Special Issue include original contributions regarding recent developments and ideas in motor design, motor drive, and motor control. The topics include motor design, field-oriented control, torque control, reliability improvement, advanced controllers for motor drive systems, DSP-based sensorless motor drive systems, high-performance motor drive systems, high-efficiency motor drive systems, and practical applications of motor drive systems. I want to sincerely thank authors, reviewers, and staff members for their time and efforts. Prof. Dr. Tian-Hua Liu Guest Edito

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines

    Efficient FPSoC Prototyping of FCS-MPC for Three-Phase Voltage Source Inverters

    Get PDF
    This work describes an efficient implementation in terms of computation time and resource usage in a Field-Programmable System-On-Chip (FPSoC) of a Finite Control Set Model Predictive Control (FCS-MPC) algorithm. As an example, the FCS-MPC implementation is used for the current reference tracking of a two-level three-phase power converter. The proposed solution is an enabler for using both complex control algorithms and digital controllers for high switching frequency semiconductor technologies. An original HW/SW (hardware and software) system architecture for an FPSoC is designed to take advantage of a modern operating system, while removing time uncertainty in real-time software tasks, and exploiting dedicated FPGA fabric for the most complex computations. In addition, two different architectures for the FPGA-implemented functionality are proposed and compared in order to study the area-speed trade-off. Experimental results show the feasibility of the proposed implementation, which achieves a speed hundreds of times faster than the conventional Digital Signal Processor (DSP)-based control platform.Ministerio de Economía y Competitividad TEC2016-78430-RFondo Nacional de Investigación de Qatar NPRP 9-310-2-13

    Applications of Power Electronics:Volume 1

    Get PDF

    Inverter Design for SiC-based Electric Drive Systems with Optimal Redundant States Control of Space Vector Modulation

    Get PDF
    The need for inverters with ever increasing power density and efficiency has recently become the driving factor for research in various fields. Increasing the operating voltage of the whole drive system and utilizing newly developed SiC power switches can contribute towards this goal. Higher operating voltage allows the design of drives with lower current, which leads to lower copper losses in cables and machine, while SiC switches can drastically increase the inverter efficiency. Offshore renewable power generation, such as tidal power, is a typical application where the increase of operating voltage can be highly beneficial. The ongoing electrification of transportation calls also for high power electric powertrains with high power density,where SiC technology has key advantages.In the first part of the thesis, suitable control schemes for inverters in synchronous machine drive systems are derived. A properly designed Maximum Power Point Tracking algorithm for kite-based tidal power systems is presented. The speed and torque of this new tidal power generation system varies periodically and the inverter control needs to be able to handle this variable power profile. Experimental verification of the developed control is conducted on a 35 kVA laboratory emulator of the tidal power generation unit.Electric drives using multilevel inverters are studied afterwards. Multilevel inverters use multiple low-voltage-rated switches and can operate at higher voltage than standard two-level inverters. The Neutral Point Clamped (NPC) converter is a commonly used multilevel inverter topology for medium voltage machine drives. However, the voltage balancing of its dc-side capacitors and the complexity of its control are still issues that have not been effectively solved. A new method for the optimal utilization of the redundant states in Space Vector pulse-width-Modulation (SVM) is proposed in this thesis in order to control its dc-link voltages. Experimental verification on a 4-kV-rated prototype medium-voltage PMSM drive with 5-level NPC converters is conducted in order to validate the effectiveness of the proposed control technique.Low switching and conduction losses are typical characteristics of SiC switches that can be utilized to build inverters with high power density, due to the increased efficiency and smaller form-factor. Due to the above, SiC power modules have been particularly attractive for the automotive industry. The design approach of 2-level automotive inverters has been studied in this project. Moreover, a new design approach for the cooling system of automotive inverters has been developed in this thesis, which fine-tunes the inverter heatsink utilizing standard legislated test routines for electric vehicles. Multiple conjugate-heat-transfer (CHT) computation results showcase the iterative optimization procedure on a test-case 250 kW (450 A) automotive SiC inverter.Finally, the experimental testing of high power machine drives in order to verify the control and the hardware design is an important step of the development process. Thus, the performance of the prototype 450 A SiC 2-level inverter has been been experimentally validated in a power hardware-in-the-loop (P-HIL) set-up that emulates an automotive drive system. Several challenges have been addressed with respect to the accurate modelling of the motor and the control of the circulating power in the system. A new control technique utilizing the redundant states of the SVM has been developed for this set-up to effectively suppress the zero-sequence current to 3.3 % of the line current at rated power

    Industrial and Technological Applications of Power Electronics Systems

    Get PDF
    The Special Issue "Industrial and Technological Applications of Power Electronics Systems" focuses on: - new strategies of control for electric machines, including sensorless control and fault diagnosis; - existing and emerging industrial applications of GaN and SiC-based converters; - modern methods for electromagnetic compatibility. The book covers topics such as control systems, fault diagnosis, converters, inverters, and electromagnetic interference in power electronics systems. The Special Issue includes 19 scientific papers by industry experts and worldwide professors in the area of electrical engineering

    Field weakening and sensorless control solutions for synchronous machines applied to electric vehicles.

    Get PDF
    184 p.La polución es uno de los mayores problemas en los países industrializados. Por ello, la electrificación del transporte por carretera está en pleno auge, favoreciendo la investigación y el desarrollo industrial. El desarrollo de sistemas de propulsión eficientes, fiables, compactos y económicos juega un papel fundamental para la introducción del vehículo eléctrico en el mercado.Las máquinas síncronas de imanes permanentes son, a día de hoy la tecnología más empleada en vehículos eléctricos e híbridos por sus características. Sin embargo, al depender del uso de tierras raras, se están investigando alternativas a este tipo de máquina, tales como las máquinas de reluctancia síncrona asistidas por imanes. Para este tipo de máquinas síncronas es necesario desarrollar estrategias de control eficientes y robustas. Las desviaciones de parámetros son comunes en estas máquinas debido a la saturación magnética y a otra serie de factores, tales como tolerancias de fabricación, dependencias en función de la temperatura de operación o envejecimiento. Las técnicas de control convencionales, especialmente las estrategias de debilitamiento de campo dependen, en general, del conocimiento previo de dichos parámetros. Si no son lo suficientemente robustos, pueden producir problemas de control en las regiones de debilitamiento de campo y debilitamiento de campo profundo. En este sentido, esta tesis presenta dos nuevas estrategias de control de debilitamiento de campo híbridas basadas en LUTs y reguladores VCT.Por otro lado, otro requisito indispensable para la industria de la automoción es la detección de faltas y la tolerancia a fallos. En este sentido, se presenta una nueva estrategia de control sensorless basada en una estructura PLL/HFI híbrida que permite al vehículo continuar operando de forma pseudo-óptima ante roturas en el sensor de posición y velocidad de la máquina eléctrica. En esta tesis, ambas propuestas se validan experimentalmente en un sistema de propulsión real para vehículo eléctrico que cuenta con una máquina de reluctancia síncrona asistidas por imanes de 51 kW

    Advance control of a synchronous reluctance motor drive

    Get PDF
    This thesis investigates two predictive control algorithms designed to enhance the performance of a synchronous reluctance motor drive. In particular, a finite-control set solution approach has been followed. In particular, this thesis proposes the inclusion of integral terms into the cost function to ensure zero steady-state errors thus compensating for any model inaccuracy. In addition, a control effort term is also considered in the online optimization definition to achieve a quasi-continuous time digital controller given the high achievable ratio between the sampling frequency and the average switching frequency. After a comprehensive simulation study showing the advantages of the proposed approach over the conventional predictive controller solution over a wide range of operating conditions, several experimental test results are reported. The effectiveness of the proposed control approach, including a detailed analysis of the effect of the load and speed variations, is thus fully verified providing useful guidelines for the design of a direct model predictive controller of synchronous reluctance motor drives. In addition, this thesis investigates an innovative duty cycle calculation method for a continuous-control set model predictive control. The formulation of the duty cycles, as well as the introduction of integral terms, enable good reference tracking performance with zero steady-state error at fixed switching frequency over the whole current operating range. Low current ripple with smooth and fast dynamics are achievable, making the proposed control algorithm suitable as a valid alternative in synchronous reluctance motor drives over the established control methods. Simulations and experimental results show the effectiveness and the advantages of the proposed control algorithm over the benchmark
    corecore