756 research outputs found

    Spatial Analysis of the Erosive Hazard of Soils and Natural Risks of Reservoir Siltation

    Get PDF
    The initial state of several watersheds, in West Africa, is characterized by a socio-ecological vulnerability linked to the water erosion risks. Thus, the Oued Beht watershed (430,728 ha), which is located in Morocco, reveals the extent of impact of soil erosion and water quality degradations. Especially, the consequences of soil loss alter its hydrological behavior in terms of efficiency to produce good water quality and include damages to the functional activities (agricultural and forestry) and structural challenges (lands and dams). This study suggests a methodology, reproducible and generalizable, to assess the water erosion risks. The results show that the erosion process is characterized by the combination of several types of erosion including sheet, rill, and gully. Therefore, the soil erosion is active and visible on more than 3/4 of the Oued Beht watershed, and the spatial analysis evaluates the soil loss which generates a decrease in the storage capacity of El Kansra dam (−3.03 million m3/year). The erosion risk management is evaluated by combining susceptibility maps with an analysis of potential consequences. Moreover, the interactive mode obtained from this work is based on a statistical autocorrelation approach concerning risk factors in order to delimit the areas requiring priority planning (hot spots)

    Soil Erosion

    Get PDF
    In the first section of this book on soil erosion, an introduction to the soil erosion problem is presented. In the first part of the second section, rainfall erosivity is estimated on the basis of pluviograph records and cumulative rainfall depths by means of empirical equations and machine learning methods. In the second part of the second section, a physically-based, hydrodynamic, finite element model is described for the computation of surface runoff and channel flows. In the first part of the third section, the soil erosion risk is assessed in two different basins. In the second part of the third section, the soil erosion risk management in a basin is evaluated, and the delimitation of the areas requiring priority planning is achieved

    A Study of Geographic Information System-Based Watershed Processing for Hydrologic Analysis of Ungauged Watersheds

    Get PDF
    The increasing application of geographic information system (GIS) technology in watershed modeling makes is necessary to further evaluate its impacts on runoff characteristics as a basis for improved hydrologic analysis in ungauged watersheds. Experts in the field of water resources and hydrology have recommended the practice of subdivision when modeling a watershed, and the use of observed data from hydrologically similar watershed to calibrate and validate an ungauged watershed’s model. However, previous studies have failed to adequately address the issues of watershed heterogeneity, spatial and temporal variability in physical parameters, GIS data resolution issues, including artifacts in automated extraction of topographic attributes from elevation datasets. This study utilized the US Army Corps of Engineers Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS) to evaluate the effects of watershed subdivision and input data resolution on peak discharge in ungauged watersheds. To better understand the underlying processes in ungauged watershed hydrology, runoff hydrographs were simulated at the outlets of study areas located in different hydrological subregions and subdivided into different subdivision scenarios or levels. Simulation results show that total channel slopes and total flow lengths increased with further subdivision, resulting in high peak discharges. Similarly, runoff hydrographs at the outlets of different resolution models were simulated and analyzed. Simulation results indicate that peak discharge values increased as finer resolution datasets were resampled to coarser resolutions with a slight reduction in the sizes of drainage areas. A better understanding of a watershed’s runoff characteristics is a basis for improved hydrologic analysis of ungauged watersheds

    A multitemporal remote sensing approach to parsimonious streamflow modeling in a southcentral Texas watershed, USA

    No full text
    International audienceSoil moisture condition plays a vital role in a watershed's hydrologic response to a precipitation event and is thus parameterized in most, if not all, rainfall-runoff models. Yet the soil moisture condition antecedent to an event has proven difficult to quantify both spatially and temporally. This study assesses the potential to parameterize a parsimonious streamflow prediction model solely utilizing precipitation records and multi-temporal remotely sensed biophysical variables (i.e.~from Moderate Resolution Imaging Spectroradiometer (MODIS)/Terra satellite). This study is conducted on a 1420 km2 rural watershed in the Guadalupe River basin of southcentral Texas, a basin prone to catastrophic flooding from convective precipitation events. A multiple regression model, accounting for 78% of the variance of observed streamflow for calendar year 2004, was developed based on gauged precipitation, land surface temperature, and enhanced vegetation Index (EVI), on an 8-day interval. These results compared favorably with streamflow estimations utilizing the Natural Resources Conservation Service (NRCS) curve number method and the 5-day antecedent moisture model. This approach has great potential for developing near real-time predictive models for flood forecasting and can be used as a tool for flood management in any region for which similar remotely sensed data are available

    Improving Detection And Prediction Of Bridge Scour Damage And Vulnerability Under Extreme Flood Events Using Geomorphic And Watershed Data

    Get PDF
    Bridge scour is the leading cause of bridge damage nationwide. Successfully mitigating bridge scour problems depends on our ability to reliably estimate scour potential, design safe and economical foundation elements that account for scour potential, identify vulnerabilities related to extreme events, and recognize changes to the environmental setting that increase risk at existing bridges. This study leverages available information, gathered from several statewide resources, and adds watershed metrics to create a comprehensive, georeferenced dataset to identify parameters that correlate to bridges damaged in an extreme flood event. Understanding the underlying relationships between existing bridge condition, fluvial stresses, and geomorphological changes is key to identifying vulnerabilities in both existing and future bridge infrastructure. In creating this comprehensive database of bridge inspection records and associated damage characterization, features were identified that correlate to and discriminate between levels of bridge damage. Stream geomorphic assessment features were spatially joined to every bridge, marking the first time that geomorphic assessments have been broadly used for estimating bridge vulnerability. Stream power assessments and watershed delineations for every bridge and stream reach were generated to supplement the comprehensive database. Individual features were tested for their significance to discriminate bridge damage, and then used to create empirical fragility curves and probabilistic predictions maps to aid in future bridge vulnerability detection. Damage to over 300 Vermont bridges from a single extreme flood event, the August 28, 2011 Tropical Storm Irene, was used as the basis for this study. Damage to historic bridges was also summarized and tabulated. In some areas of Vermont, the storm rainfall recurrence interval exceeded 500 years, causing widespread flooding and damaging over 300 bridges. With a dataset of over 330 features for more than 2,000 observations to bridges that were damaged as well as not damaged in the storm, an advanced evolutionary algorithm performed multivariate feature selection to overcome the shortfalls of traditional logistic regression analysis. The analysis identified distinct combinations of variables that correlate to the observed bridge damage under extreme food events

    Flood Early Warning and Risk Modelling

    Get PDF
    Extreme hydrological phenomena are one of the most common causes of human life loss and material damage as a result of the manifestation of natural hazards around human communities. Climatic changes have directly impacted the temporal distribution of previously known flood events, inducing significantly increased frequency rates as well as manifestation intensities. Understanding the occurrence and manifestation behavior of flood risk as well as identifying the most common time intervals during which there is a greater probability of flood occurrence should be a subject of social priority, given the potential casualties and damage involved. However, considering the numerous flood analysis models that have been currently developed, this phenomenon has not yet been fully comprehended due to the numerous technical challenges that have arisen. These challenges can range from lack of measured field data to difficulties in integrating spatial layers of different scales as well as other potential digital restrictions.The aim of the current book is to promote publications that address flood analysis and apply some of the most novel inundation prediction models, as well as various hydrological risk simulations related to floods, that will enhance the current state of knowledge in the field as well as lead toward a better understanding of flood risk modeling. Furthermore, in the current book, the temporal aspect of flood propagation, including alert times, warning systems, flood time distribution cartographic material, and the numerous parameters involved in flood risk modeling, are discussed

    Wadi Flash Floods

    Get PDF
    This open access book brings together research studies, developments, and application-related flash flood topics on wadi systems in arid regions. The major merit of this comprehensive book is its focus on research and technical papers as well as case study applications in different regions worldwide that cover many topics and answer several scientific questions. The book chapters comprehensively and significantly highlight different scientific research disciplines related to wadi flash floods, including climatology, hydrological models, new monitoring techniques, remote sensing techniques, field investigations, international collaboration projects, risk assessment and mitigation, sedimentation and sediment transport, and groundwater quality and quantity assessment and management. In this book, the contributing authors (engineers, researchers, and professionals) introduce their recent scientific findings to develop suitable, applicable, and innovative tools for forecasting, mitigation, and water management as well as society development under seven main research themes as follows: Part 1. Wadi Flash Flood Challenges and Strategies Part 2. Hydrometeorology and Climate Changes Part 3. Rainfall–Runoff Modeling and Approaches Part 4. Disaster Risk Reduction and Mitigation Part 5. Reservoir Sedimentation and Sediment Yield Part 6. Groundwater Management Part 7. Application and Case Studies The book includes selected high-quality papers from five series of the International Symposium on Flash Floods in Wadi Systems (ISFF) that were held in 2015, 2016, 2017, 2018, and 2020 in Japan, Egypt, Oman, Morocco, and Japan, respectively. These collections of chapters could provide valuable guidance and scientific content not only for academics, researchers, and students but also for decision-makers in the MENA region and worldwide
    • …
    corecore