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ABSTRACT 
 

Bridge scour is the leading cause of bridge damage nationwide. Successfully 
mitigating bridge scour problems depends on our ability to reliably estimate scour 
potential, design safe and economical foundation elements that account for scour potential, 
identify vulnerabilities related to extreme events, and recognize changes to the 
environmental setting that increase risk at existing bridges.  

This study leverages available information, gathered from several statewide 
resources, and adds watershed metrics to create a comprehensive, georeferenced dataset to 
identify parameters that correlate to bridges damaged in an extreme flood event. 
Understanding the underlying relationships between existing bridge condition, fluvial 
stresses, and geomorphological changes is key to identifying vulnerabilities in both 
existing and future bridge infrastructure. In creating this comprehensive database of bridge 
inspection records and associated damage characterization, features were identified that 
correlate to and discriminate between levels of bridge damage.  

Stream geomorphic assessment features were spatially joined to every bridge, 
marking the first time that geomorphic assessments have been broadly used for estimating 
bridge vulnerability. Stream power assessments and watershed delineations for every 
bridge and stream reach were generated to supplement the comprehensive database. 
Individual features were tested for their significance to discriminate bridge damage, and 
then used to create empirical fragility curves and probabilistic predictions maps to aid in 
future bridge vulnerability detection. Damage to over 300 Vermont bridges from a single 
extreme flood event, the August 28, 2011 Tropical Storm Irene, was used as the basis for 
this study. Damage to historic bridges was also summarized and tabulated. In some areas 
of Vermont, the storm rainfall recurrence interval exceeded 500 years, causing widespread 
flooding and damaging over 300 bridges. With a dataset of over 330 features for more than 
2,000 observations to bridges that were damaged as well as not damaged in the storm, an 
advanced evolutionary algorithm performed multivariate feature selection to overcome the 
shortfalls of traditional logistic regression analysis. The analysis identified distinct 
combinations of variables that correlate to the observed bridge damage under extreme food 
events.  
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Bridge scour is the removal of streambed soil and sediments from the supports of 

bridge foundations caused by water induced-erosion. Scour is the leading cause of bridge 

failure in the United States and elsewhere. In the United States, 20,904 bridges are listed 

as scour critical (Gee, 2008). Recent estimates link hydraulic-caused damage to 52% of 

bridge failures, with the presumed primary cause being scour (Cook et al., 2015). Extreme 

weather events are expected to occur more frequently in certain parts of the world due to 

climate change (Melillo et al., 2014). For example, extreme rainfall events, those ranging 

in the 99th percentile of intensity, are happening more frequently, especially over the past 

three to five decades (e.g., Horton et al., 2014). The associated increase in magnitude and 

occurrence of flood events will likely result in greater instances of scour damage to bridges.  

Current methods for rating and monitoring bridge scour typically rely on visual 

inspection, as well as the calculations performed at the time of bridge design to predict a 

bridge’s vulnerability to scour. Hydraulic and scour calculations are typically conducted 

during the initial design and construction phase, and rarely updated. These initial scour 

calculations are then supplemented regularly with direct measurements and observations 

of scour during biannual inspections. For example, the Vermont Agency of Transportation 

(VAOT) inspection rating system is based on the Federal Highway Administration’s 

National Bridge Inventory coding guide (FHWA, 2015). The National Bridge Inventory 

scour rating is based on the scour depth in relation to the bridge foundation and scour design 

calculations. As the scour depth approaches the bottom of the foundation, the bridge 

becomes at risk of failure and is rated as scour critical. In Vermont, only 815 of the over 
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4,000 hydraulic bridges have a hydraulic and scour report on file, with approximately 25% 

of the 2,249 bridges that are rated scour critical, or have an unknown foundation. The 

percentage of scour critical and unknown foundation bridges would likely increase if the 

uninspected local bridges were included.  

Scour can occur in a variety of ways at a bridge, and at varying rates. Normal flow 

conditions can lead to continuous scour at a bridge, but often occurs slowly such that 

regular inspection can identify remedial measures and countermeasures that can prevent 

major damage. Flood flows have the potential to cause large amounts of scour over short 

amounts of time, faster than countermeasures/repairs can be made, possibly resulting in a 

bridge moving from a stable to failed state without much notice.  

Changes in the stream stability and dynamics can result in a changing scour 

potential at the bridges below the affected reaches. Two scenarios can be hypothesized in 

which this could incorrectly predict scour vulnerability. The first is when design 

information on the bridge’s foundation or hydraulic and scour calculations are not 

available, as is common on older and smaller local bridges. The second is when hydraulic 

conditions and scour calculations used in the initial design were never or are no longer 

valid.  

Though current design measures may be able to produce a bridge that is robust to 

the scour produced by extreme events, thousands of existing bridges across the country are 

not adequately designed or maintained in relation to scour vulnerability under extreme 

flood events, and are at risk of premature end of service life. The hidden nature of 

foundation scour leaves the public unaware as a bridge becomes at risk of failure due to 

foundation undermining from scour.   
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Vermont, with its mountainous terrain, is prone to storm related scour risk, as the 

steeper slopes produce flash flood events, inundating bridges. In Vermont, 309 bridges 

were identified as scour critical in the VTrans bridge database. Infrequent, intense storm 

events, along with the increased frequency of lower magnitude storm events, put Vermont 

bridges at increased risk. In addition, the ability of Vermont bridges to resist scour is not 

well understood, as was evident from the damage caused to Vermont bridges by Tropical 

Storm Irene.   

In August of 2011, Tropical Storm Irene brought 100-200 mm (4-8 inches) of 

precipitation, and floodwaters exceeding 100-yr flows, with select locations reaching the 

500-yr flow. Examples of bridge damage from Irene can be seen in Figure 1.1. This 

research determined that of the 313 damaged structures, 269 bridges were assessed to be 

damaged because of scour or embankment erosion. Of the 91 extensive or complete 

damaged bridges, 59 had been considered non-scour critical, prior to the storm. Thus, 

structures throughout Vermont proved susceptible to scour damage, despite being 

considered non-scour critical per the current standard scour rating system based on the 

Federal Highway Administration’s (FHWA) National Bridge Inventory guidelines 

(FHWA, 1995). This suggests that the current scour rating system is inadequate, at least 

under extreme events. It is envisioned that the existing scour rating system can perhaps be 

improved if additional larger scale geomorphic assessments were incorporated into the 

rating system. Climate data show that Vermont is experiencing more extreme events, and 

that this trend is predicted to continue with more significant floods and major flooding 

(Frumhoff et al., 2007; Stager and Thill, 2010; Betts, 2011) demanding more resilient 

approaches to scour and erosion mitigation for bridges. 
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Successfully mitigating scour-related problems associated with bridges depends on 

our ability to reliably estimate scour potential, design safe and economical foundation 

elements accounting for scour potential, identify vulnerabilities related to extreme events, 

and recognize changes to the environmental setting affecting risk at existing bridges, which 

served as the overarching goals for this study. Damage to Vermont bridges from Tropical 

Storm Irene served as case studies for much of the research included in this thesis. The 

developed methodologies and analyses however are applicable for studying and predicting 

bridge (or infrastructure) damage from extreme flood events in any geographic settings. 

Approach scour  
(Lundlow, VT). 

Approach scour (Orleans, 
Vermont) 

Foundation scour 
(Dummerston, VT) 

Figure 1.1. Examples of scour-related damage to Vermont bridges in Tropical Storm Irene 
(VAOT, 2014) 

 

The main research question addressed in this study is: given the uncertainty of 

existing bridge scour design and all available information, what features best predict 

damage and understanding of bridge vulnerability under extreme events.  

The specific objectives of this research were to: (1) collect and geo-reference all 

available bridge records and stream geomorphic assessment data and information into a 

comprehensive database for identifying features that best represent damage to Vermont 

bridges attributed to Tropical Storm Irene; (2) conduct watershed analysis on all hydraulic 

bridges, including delineating the watershed for every stream reach, and creating stream 
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power data to assess whether watershed stream power improves the prediction of bridge 

scour damage; (3) conduct a multivariate feature selection analysis to determine which 

variable groupings best correlated to bridge damage; and (4) analyze damage and cost of 

repair of historic bridges damaged in the storm.  

 

Chapter 2 presents a concise literature review on bridge scour case studies, methods 

to compute scour depth and scour rating system. Additionally, literature on 

geomorphology, stream stability, watershed analysis, and stream power is also included.  

Chapter 3 presents network-level analysis of Vermont bridges damaged in 2011 

Tropical Storm Irene, with focus on scour-related damage. A comparable analysis of 

damaged and non-damaged bridges identifies significant factors of bridge vulnerability 

under extreme flood events. Descriptions of the damage appear as case studies that include 

pre-storm bridge and stream geomorphology conditions. The georeferenced data include 

rainfall amounts, damage type and extent, estimated repair costs, bridge characteristics, 

bridge ratings, and stream geomorphic assessments from a number of sources: Vermont 

Agency of Transportation Bridge Inventory System, the State Short Structure Inventory 

Lists, Regional Planning Commission’s Vermont Online Bridge and Culvert Inventory 

Tool, the Vermont Department of Emergency Management’s records of town-owned 

bridges, and the Vermont Agency of Natural Resources’ stream RGA (rapid geomorphic 

assessment) data.  

Chapter 4 lays out the methodology used to conduct the watershed delineation and 

assessment, as well as the calculation of stream power. Numerous data sources were 

included in the delineation of watersheds at each Vermont bridge, as well as for each stream 



6 

 

reach segment. A series of automated scripts were created to conduct complete processing 

of all bridges and reaches in Vermont, allowing for broad, spatially referenced display of 

watershed features and power measures.  

Chapter 5 links watershed stream power to the bridge damage from Tropical Storm 

Irene, develops a process to quantify the hazard at bridges both as a case study and for 

future storms, and uses stream power as a hazard metric to produce probabilistic 

predictions of bridge vulnerability. The analysis also offers comparison between damaged 

bridges and bridges that were not damaged in Tropical Storm Irene. For this purpose, 

Specific Stream Power (SSP) and the event-based Irene Specific Stream Power (ISSP) 

were computed for all bridges in the state. 

Chapter 6 uses an advanced computational algorithm to conduct multivariate 

feature selection, to identify combinations of features that best correlate to bridge damage. 

The evolutionary algorithm conducts rapid search of the possible solutions and iteratively 

improves the possible combinations to create sets of feature combinations that improve 

upon common feature selection techniques and identify solutions from a “Big Data” 

perspective. The identified critical combinations of features show correlations between 

existing and new watershed metrics to bridge damage, aiding in the prediction of bridge 

vulnerability.  

Chapter 7 uses the subset of Vermont historic bridges to investigate their response 

to the extreme flooding seen in Tropical Storm Irene. Historic covered bridges are of 

additional importance in Vermont, and represent a cultural and atheistic resource. 

Understanding vulnerabilities to historic bridges, and how to best prevent, or minimize 
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their damage, as well as reduce repair expenses is key to sustainably preserving them into 

the future.  

Chapter 8 concludes this thesis with overall conclusions and recommendations for 

future work.  
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This chapter presents a concise literature review on bridge scour case studies, 

methods to compute scour depth and scour rating system. Additionally, literature on 

geomorphology, stream stability, watershed analysis, and stream power is also included. 

 

On August 28, 2011 Tropical Storm Irene hit the state of Vermont with a severity 

that caused major damage throughout the state and impacted 225 of the state’s 251 towns 

and cities (State of Vermont, 2012). Tropical Storm Irene entered with sustained winds of 

80 km/h and deposited 100-200 mm (4-8 inches) of rain across the state (NWS, 2011). The 

greatest rainfall totals were along the higher elevations of the state’s mountain ranges (State 

of Vermont, 2012). At these higher elevations, intense rain caused flash flooding, and 

progressed to widespread flooding throughout Central and Southern Vermont. The rainfall 

recurrence interval for a twelve-hour storm exceeded 500 years in some areas, with 

widespread rainfall in excess of the 100-year recurrence interval where damage was 

reported. It caused record flows in nine streams. Nine other streams had peak flows among 

the top four on record (USGS, 2011). This was the second worst state-wide flooding event 

on record, after the storm of November 1927, which dropped 150 mm (6 inches) or more 

of rain over a three-day period (State of Vermont, 2012). Both storms were preceded by a 

series of higher than average rainfall events, resulting in saturated ground conditions that 

exacerbated flood conditions. The flooding and high stream flows resulting from Tropical 

Storm Irene reportedly caused damage or failure to 389 Vermont bridges per Thomas, et 

al. (2013). 
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Other recent extreme events have caused damage to numerous bridges in other parts 

of the United States. For example, studies from Hurricane Katrina in 2005 indicate that 

uplifting and hydrodynamic forces on the superstructure caused the majority of the damage 

to short and medium span coastal bridges (Okeil and Cai, 2008). An economic analysis of 

44 bridges damaged from Hurricane Katrina showed a relationship between surge 

elevation, damage level and repair costs (Padgett et al., 2008). Subsequent analysis of 262 

bridges, of which 36 were damaged, identified surge elevation as a key factor in 

determining damage level from Hurricane Katrina, and related it to the estimated likelihood 

of damage through empirical fragility curves (Padgett et al., 2012). Both of these studies 

leveraged the National Bridge Inventory (NBI) as the primary source of bridge data. 

Similar bridge infrastructure vulnerabilities have been witnessed at Escambia Bay, Florida 

during the 2004 Hurricane Ivan (Douglass et al., 2004) and in Hokkaido, Japan during the 

2004 Songda Typhoon (Okada et al., 2006). More recently, severe flooding in September 

2013 caused the collapse of 30 highway bridges, and damage to an additional 20 bridges 

in Colorado (Kim et al., 2014).  

For some time now, scour has been recognized as the primary cause of bridge 

failures in the United States (Kattell and Eriksson, 1998) and in other parts of the world 

providing case studies on bridge damage. For example, Wardhana and Hadipriono (2003) 

analyzed 503 cases of bridge failures in the United States from 1989 to 2000, and found 

that flood and scour caused nearly 50% of all failures. Melville and Coleman (1973) report 

31 case studies of scour damage to bridges in New Zealand, of which 13, 8, 4 and 6 cases 

were primarily attributed to pier failure, erosion of the approach or abutment, general 

degradation, and debris flow or aggradation, respectively. The HEC-18 document 
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(Arneson et al., 2012) mentions numerous examples of scour related bridge damage and 

failure. During the spring floods of 1987, 17 bridges in New York and New England were 

damaged or destroyed by scour. The collapse of the I-90 Bridge over the Schoharie Creek 

near Amsterdam, NY, resulted in the loss of 10 lives and millions of dollars in bridge repair 

and replacement costs (FHWA, 2015). In 1985, floods in Pennsylvania, Virginia, and West 

Virginia destroyed 73 bridges. A 1973 national study (FHWA 1973) of 383 bridge failures 

caused by catastrophic flooding showed that 25 percent involved pier damage and 75 

percent involved abutment damage. A second more extensive study in 1978 indicated local 

scour at bridge piers to be a problem about equal to abutment scour problems (FHWA, 

1978; Arneson et al., 2012). The 1993 flood in the upper Mississippi basin caused damage 

to 2,400 bridge crossings (FHWA, 2015) including 23 bridge failures. The modes of bridge 

failure included 14 from abutment scour, 3 from pier and abutment scour, 2 from pier scour 

only, 2 from lateral bank migration, 1 from debris load, and 1 from unknown cause 

(Arneson et al., 2012). Arneson et al. (2012) also report that the 1994 flooding from storm 

Alberto in Georgia affected over 500 state and locally owned bridges with damage 

attributed to scour.  

The above case history summary of bridge damage, both coastal and inland, 

illustrates the vulnerability of existing bridge infrastructure to extreme flooding events. 

The occurrence of such severe events is expected to increase because of climate change in 

many parts of the world (Melillo et al., 2014). For example, extreme rainfall events, those 

ranging in the 99th percentile of intensity, are happening more frequently, especially over 

the past three to five decades (e.g., Horton et al., 2014). The effects of Tropical Storm Irene 
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on Vermont bridges therefore provide a uniquely large dataset, where a single hurricane-

related extreme flood event caused widespread damage to over 300 bridges in a single state.  

 

The literature suggests that total bridge scour can be divided into various 

components that are considered independent and additive, including general scour and 

local scour. The latter is further subdivided into contraction scour, abutment scour, and pier 

scour (Briaud et al., 2011). Most research has focused on the three components of local 

scour, so this section provides an overview of the local scour evaluation process for 

contraction scour, pier and abutment scour.  

Contraction scour is the erosion of material from the bed and banks across all or 

most of the channel width, resulting from the contraction of flow area imposed by the 

bridge abutments and piers, as depicted in Figure 2.1 (Arneson et al., 2012). As flow 

increases, filling the channel and spilling water onto the flood plains, it often meets an 

obstruction at the bridge. Bridge abutments and embankments used to elevate the bridge 

deck over the river to an appropriate freeboard, creates obstructions to the flow in the 

floodplain (Ettema et al. 2010). Common forms used are wing-wall abutments, vertical-

wall abutments, and spill through abutments commonly embedded in earthen 

embankments. Many smaller span bridges also have abutments placed within the channel, 

causing constriction even in low flows. The blockages caused by abutments in the channel 

or floodplain force the flow through a smaller section, creating higher velocities and shear 

stresses (Arneson et al., 2012). At severely contracted sections, backwater occurs upstream, 

and large-scale turbulences dominate the flow field. Contraction scour has traditionally 

been classified as live-bed or clear-water, which reflects the bed material sediment-
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transport conditions of approaching flows (Arneson et al., 2012). In the case of live-bed 

scour, the common assumption is that scour will cease when the load of sediment 

transported into the contraction is equal to or greater than the load of sediment transported 

from the contraction. Clear-water scour is the case when no upstream bed movement is 

occurring.  

 
Figure 2.1. Short contraction at a bridge (source: Ettema et al. 2010) 

Local pier or abutment scour is the removal of bed material from around flow 

obstructions such as piers, abutments, spurs, and embankments caused by the local flow 

field induced by a pier or abutment, as depicted in Figures 2.2 and 2.3 (Arneson et al., 

2012). Abutments are essentially erodible short contractions. High flow velocities and 

large-scale turbulences around abutments erode the boundary soils (Ettema et al., 2010). 

Scour holes typically develop near the end of the abutments, where the wake vortices are 

the greatest. Geotechnical stability of the embankment is also a key component to abutment 

scour, if the scour causes geotechnical failure, then the abutment can be treated as a pier.   
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Figure 2.2. Example of the flow patterns and vortices which result in abutment scour (source: 

Ettema et al. 2010) 

Local scour at piers has been studied extensively in the laboratory in single soil 

layers; however, there are limited field data. The common inverted-frustum scour hole has 

been seen in single layer sediments. The laboratory studies have been mostly of simple 

piers, but there have been some laboratory studies of complex piers (Richardson and Davis 

2001; Sheppard et al., 2011). Often the studies of complex piers are model studies of actual 

or proposed pier configurations. To understand pier scour, it is necessary to understand the 

flow field at a pier, and how it changes with pier size and form. Notably, it is an unsteady 

three-dimensional flow field, interacting with a turbulence structure. The scour forces on 

the soil are generated by flow contraction around the pier, with a downward flow at the 

pier’s face, and vary with pier width and form, and flow depth (Figure 2.3). For narrow 

piers, (depth/width >1.4) the scour is deepest at the pier face, as downward forces create a 

scour hole, while lateral contraction forces cause an increase in velocity and shear stress 

around the piers’ sides, causing scour (Arneson et al., 2012). As the scour develops to a 

hole fully around the pier, the horseshoe vortices strengthen. Transition piers (depth/width 

>0.2) function much the same as narrow piers, though they result in shallower scour depths 
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(Arneson et al., 2012). The reduction in depth lowers the potential for down flow, and 

increases bed friction in the shallower flow. Wide piers (depth/width < 0.2) have very little 

down-flow, with most of the scour occurring as the flow turns laterally along the face, and 

causes contraction on the sides (Arneson et al., 2012). The deepest scour occurs at the pier 

flanks.  

 
Figure 2.3. Vortices from a pier obstructing flow, resulting in local pier scour at (a) narrow, (b) 

transitional, and (c) wide pier (source: Ettema et al. 2011) 
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Traditional scour equations are generally considered to not reflect the present 

knowledge about scour processes, but rather use the primary dimensions of the foundation 

width and lengths, flow depth, and sediment size to define the structure and geometric scale 

of the flow field, and thereby scour depth. Total scour depths at a bridge cross-section are 

the function of stream hydraulic conditions, sediment transport by flowing water, 

streambed sediment properties, and bridge structure dimensions. The complex interactions 

among those variables also complicate the scour development. A large number of studies 

have been conducted on various bridge scour topics and resulted in several physical and 

numerical models/equations. Scour calculations are often done as the summation of the 

multiple scour types, with ultimate scour being the combination of contraction, and local 

scour, from piers and/or abutments. The state of the art in bridge scour prediction is 

outlined in the FHWA HEC-18, updated most recently in 2012 (Arneson et al., 2012).  

Contraction scour is a major component of the ultimate scour depth, caused by flow 

accelerations due to narrowing of the channel cross section, either by natural reductions in 

the main channel width, or by the blockage in the floodplain, returning flow back to the 

channel. The literature describes a number of semi-empirical contraction-scour equations 

that were developed by the use of conservation of flow and sediment in a control volume 

in conjunction with laboratory-derived concepts of sediment transport (Straub 1934; 

Laursen 1963; Melville 1997; Sheppard and Miller 2006). Researchers through laboratory 

studies (Froehlich 1989; Laursen 1980; Liu et al. 1961; Melville 1992; and Mueller and 

Wagner 2005) have found that the transport or lack of transport of sediment in the flow 

approaching an obstruction or contraction is critical in assessing scour at bridges. 
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Floodplain contraction scour is usually treated separately from main channel contraction 

scour in compound channels. In this case, one of the difficulties in applying a contraction 

scour formula is the determination of the discharge distribution between the floodplain and 

the main channel in the bridge section. Both live-bed and clear-water contraction scour can 

occur in the field. The former commonly occurs in the main channel of a sand-bed river, 

while the latter is more likely to be found in a floodplain contraction or a relief bridge 

located on the floodplain. Contraction scour formulas have been developed analytically for 

an idealized long contraction as will be described subsequently. In the case of live-bed 

contraction scour, the limiting condition is the continuity of sediment transport between 

the approach-flow section and the contracted section. For clear-water scour, where no bed 

material is being transported upstream, it is the increase in shear stress at the contraction 

above the critical shear strength of the bed material that controls the scour process, which 

will continue degrading until enough material is removed to reduce contraction and reach 

equilibrium. Live bed contraction scour is estimated based on Laursen (1960) equations 

for long contractions, while clear-water scour is based on Laursen (1963). 

Some of the notable studies conducted with the purpose of predicting abutment 

scour include: Froehlich (1989); Melville (1992); Richardson and Davis (2001); Strum 

(2006); Ettema et al. (2010); and Chang and Davis (1999). Most of these empirical 

equations are based on laboratory results and field data, and they differ from each other 

with respect to the factors considered in constructing the scour model, parameters used in 

the equation, laboratory or site conditions, and so on.  

Pier scour is the other possible component to the local scour calculation. The 

Colorado State University (CSU) equation established by Richardson and Davis (2001) has 
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been the dominant method for prediction of pier scour depth. More recent work by 

Sheppard et al. (2011) through the NCHRP Project 24-32 has established the Sheppard-

Mellville method, and has begun to replace the CSU method for most designs. The newer 

method is believed to better reflect scour processes, while the CSU method is adapted 

empirically to scour data. Despite the recent advances in modeling the underlying scour 

processes at piers, determination of scour depths is made difficult due to factors affecting 

the flow field, complex pier shapes, arrangements and interactions, and difficulties 

identifying foundation materials.  

 The majority of the methods in HEC-18 (Arneson et al., 2012) were developed by 

assuming uniform, non-cohesive sediments that are representative of the most severe scour 

condition, but the erosional resistance of typical soils found at a bridge site is a combination 

of stratified soils with varying degrees of cohesiveness. The hydraulic parameters used in 

HEC-18 models are estimated by a one-dimensional hydraulic model such as Water 

Surface Profile (WSPRO) or Hydraulic Engineering Center’s River Analysis System 

(HEC-RAS) that distributes the flow across the approach and bridge opening by 

conveyance (combination of roughness and flow area). However, the flow distribution at a 

bridge or in its approach is non-uniform because of cross-stream flow caused by channel 

bed conditions, channel bends, irregular valley topography, and obstructions in the 

floodplain. 

The live-bed abutment scour formula developed by Froehlich (1989) and the 

Highways in the River Environment (HIRE) equation (Richardson and Davis 2001) are 

suggested in HEC-18. (Richardson and Davis 2001). Froehlich’s equation is derived from 

regression analysis applied to a list of dimensionless variables using laboratory data. The 
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HIRE equation is based on field scour data for spur dikes in the Mississippi River; the data 

were obtained by the U.S. Army Corps of Engineers.  

Chang and Davis (1998, 1999) presented an abutment scour methodology called 

ABSCOUR, which has been further developed by the Maryland State Highway 

Administration (MSHA 2010). ABSCOUR treats abutment scour as an amplification of 

contraction scour. In addition, the methodology includes an adjustment/safety factor that 

is based on the user’s assessment of risk and whether the floodplain is narrower or wider 

than 800 ft (244 m). The full ABSCOUR 9 computer program/methodology includes 

procedures to refine discharge, velocity distributions and channel setback distances under 

the bridge; evaluate scour in layered soils; consider the effect of pressure scour; evaluate 

the slope stability of the embankment; consider degradation and lateral channel movement 

and other specific concerns. The program is used to integrate contraction, abutment and 

pier scour, and to draw a scour cross-section under the bridge (MSHA 2010). 

Work resulting from NCHRP24-20 (Ettema et al., 2010) established three scour 

conditions to describe the possible scenarios of abutment and contractions scour (Figure 

2.4). This study also related abutment and contraction scour together, treating abutment 

scour as an amplification of contraction scour, and took into account geotechnical 

instability. The three scour conditions are: scour in the main channel leading to 

undercutting of the embankment and abutment resulting in local collapse, scour in the 

floodplain around the abutment occurring as clear-water scour, and failure of the approach 

embankment fully exposing the abutment and resulting in a pier flow field.   
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(a) 

 
(b) 

 
(c) 

Figure 2.4. Abutment scour conditions: (a) A – hydraulic scour of the main bed; 
(b) B – scour of the floodplain; and (c) C – scour of the approach, exposing the 

abutment as a pier (source: Ettema et al., 2010) 

 

The Vermont Agency of Transportation inspection rating system, and that of many 

other states, is based on the Federal Highway Administration’s National Bridge Inventory 

System (NBIS) (FHWA, 2015). Vermont’s bridge inspections occur on a 24-month basis, 

with a shorter inspection window for those bridges in need of more immediate attention. 

As part of the inspection, the scour depth at the bridge is observed. Scour is measured using 

a variety of techniques from rodding to full underwater inspection when needed. Item 113 

of the National Bridge Inventory (NBI) is the Scour Critical Bridge rating, and it details 

the current status of the bridge regarding its vulnerability to scour. The Scour Critical 
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Bridge rating codes can be seen in Table 2.1 below. The system of scour rating relies on a 

combination of inspection observations as well as design calculations. The design aspect 

considers whether the foundation is constructed below the calculated depth of scour for a 

certain recurrence interval flow. In Vermont, the specific calculated scour depth is either 

determined during design and construction, or analyzed later as part of a review of scour 

at bridges. As of 2001, only 825 of the 2,317 hydraulic bridges have a hydraulic and scour 

report on file. Scour can present itself in a variety of ways at a bridge, and can act over 

vastly different temporal ranges. Normal flow condition can lead to continuous scour at a 

bridge, but often occurs slowly enough that observation and maintenance can prevent major 

damage. Flood flows have the potential to cause large amounts of scour in a short amount 

of time, faster than any repairs can be made, possibly resulting in a bridge going from a 

stable to failed condition without notice. As the scour depth approaches the bottom of the 

foundation, the bridge becomes at risk of failure and is rated as scour critical. Bridge ratings 

are categorical from 0-9 with an additional Unknown Foundations (U) category. The scale 

is not ordinal, instead each rating indicates a specific scenario, not a magnitude of risk. 

Scour critical bridges, rated 3 and below, are those found to be unstable through either 

observed scour or have a calculated scour potential greater than the design scour. Bridges 

with unknown foundations (U) could potentially be added to the scour critical lists. Scour 

critical bridges require a plan of action be created, outlining the steps needed to address the 

deficient bridges. 
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Table 2.1. Scour Ratings Used by VTrans (FHWA, 1995) 

Rating Description Notes example 
U No information on the foundation is 

available – Unknown foundation. 
Bridges with U 
are expected to 
be added to 
those 
considered 
scour critical. 

 

0 Bridge is scour critical. Bridge has 
failed and is closed to traffic. 

Bridges with 
ratings 0 
through 3 are 
considered 
scour critical. 

 

1 Bridge is scour critical; field review 
indicates that failure of 
piers/abutments is imminent. Bridge 
is closed to traffic. 

2 Bridge is scour critical; field review 
indicates that extensive scour has 
occurred at bridge foundations. 
Immediate action is required to 
provide scour countermeasures. 

3 Bridge is scour critical; bridge 
foundations determined to be unstable 
for calculating scour conditions. 

4 Bridge foundations determined to be 
stable for calculated scour; field 
review indicates action required to 
protect foundations from additional 
erosion. 

Bridges with 
ratings 4 
through 9 are 
considered non-
scour critical.  

 

5 Bridge foundations determined to be 
stable for calculated scour conditions; 
scour within limits of footing or piles. 

6 Scour calculation/evaluation has not 
been made.  

7 Countermeasures have been installed 
to correct previously existing scour. 
Bridge is no longer scour critical. 

8 Bridge foundations determined to be 
stable for calculated scour conditions; 
calculated scour is above top of 
footing. If bridge was screened or 
studied by experts and found to be 
low risk, it should fall into this 
category.  

9 Bridge foundations (including piles) 
well above flood water elevations. 
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In this work, stream power is evaluated because it was thought to have a strong 

potential to be correlated to the hazard at bridges. Stream power is the rate of energy (i.e., 

power) of flowing water against the bed and banks of a river channel, and functionally 

controls stream dynamics and morphology. Stream power estimates from extreme events 

were shown to correlate positively with the instances of stream widening in the White River 

watershed of Vermont (Buraas et al., 2014). Also, Gartner et al. (2015) showed that in the 

Fourmile Canyon of Colorado, the erosion and deposition correlated with increased power 

gradients and decreased power gradients, respectively. Stream power generally has been 

shown to correlate positively to fluvial incision (Seidl and Dietrich, 1992; Anderson, 1994), 

channel size, mobility and pattern changes (Magilligan, 1992; Rosenbloom and Anderson, 

1994; Lecce, 1997; Knighton, 1999), and as an estimate of flood power (Brooks and 

Lawrence, 1999).  

Specific stream power (SSP) normalizes total stream power, which is the product 

of discharge, slope, and the specific weight of water, and normalizes it by the stream width 

(Bagnold, 1966). SSP allows for the expression of stream power at the unit bed area, rather 

than the cross-sectional area, as is the case in total stream power. Magilligan (1992) and 

Miller (1990) showed that 300 W/m2 provides a minimum SSP threshold to separate 

reaches with and without large-scale geomorphic change.  

Stream power calculations have been conducted on multiple scales to support 

analysis of river systems for various objectives including risk to infrastructure, evaluation 

of channel stability, and assessment of instream habitats. At the finest scale, stream power 

has been used to conduct bridge scour analysis in erodible rock (Costa and O’Connor, 
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1995; FHWA 1999), and relate erodibility indices to local stream power measures. Point-

location estimates have been prominent (e.g., Fonstad, 2003; Lecce, 1997; and Magilligan, 

1992), with studies that sought to identify transitions in stream power along the 

longitudinal profile and better understand sediment storage dynamics within a basin. 

Longer reach-length profiles use continuous distributions of stream power to identify 

stream power functions through a single fluvial system (e.g. Fonstad, 2003; Reinfeld et al., 

2004; and Knighton, 1999). Geographic information systems (GIS), leveraging digital 

elevation models (DEM), has been shown to effective in generating the progression from 

point- and reach-scale estimates of stream power to network or catchment scale modeling 

(Finlayson and Montgomery, 2003; Jain et al., 2006; Barker et al., 2008; and Vocal 

Ferencevic and Ashmore, 2012).   
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This Chapter was published in the Structure and Infrastructure Journal, 2017 

Synopsis: 

The 2011 Tropical Storm Irene deposited 100-200 mm of rain in Vermont with a 

rainfall recurrence interval for a twelve-hour storm exceeding 500 years in some areas. 

This single hurricane-related event damaged over 300 bridges. The wide range of damage 

prompted a network-wide analysis of flood, scour, stream and structural conditions. A first 

step was the assembly of a unique dataset containing information on 326 damaged bridges, 

1,936 undamaged bridges and the surrounding stream conditions. Descriptions of the 

damage appear as case studies that include pre-storm bridge and stream geomorphology 

conditions. The assembled and georeferenced data include rainfall, damage type and 

extent, estimated and actual repair costs, bridge characteristics, bridge ratings, and stream 

geomorphic assessments from a number of sources. The analyses identified significant 

features of bridge vulnerability under extreme floods. The bridge age and rating assessment 

characteristics, such as substructure, channel, and structural adequacy ratings, followed by 

scour, waterway adequacy, and sufficiency ratings, correlated strongly to damage. The 

stream geomorphic features have promise to supplement future bridge rating systems and 

in identifying hydraulic vulnerability of bridges. Empirical fragility curves relating 

probability of meeting or exceeding different bridge damage levels based on channel and 

waterway adequacy ratings are also presented. 
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On August 28, 2011 Tropical Storm Irene hit the state of Vermont with a severity 

that caused major damage throughout the state and impacted 225 of the state’s 251 towns 

and cities (State of Vermont, 2012). Tropical Storm Irene entered with sustained winds of 

80 km/h and deposited 100-200 mm (4-8 inches) of rain across the state (NWS, 2011). The 

greatest rainfall totals were along the higher elevations of the state’s mountain ranges (State 

of Vermont, 2012). At these higher elevations, intense rain caused flash flooding, and 

progressed to widespread flooding throughout Central and Southern Vermont. The rainfall 

recurrence interval for a twelve-hour storm exceeded 500-years in some areas, with 

widespread rainfall in excess of the 100-year recurrence interval where damage was 

reported. It caused record flows in nine streams. Nine other streams had peak flows among 

the top four on record (USGS, 2011). This was the second worst state-wide flooding event 

on record, after the storm of November 1927, which dropped 150 mm (6 inches) or more 

of rain over a three-day period (State of Vermont, 2012). Both storms were preceded by a 

series of higher than average rainfall events, resulting in saturated ground conditions that 

exacerbated flood conditions. The flooding and high stream flows resulting from Tropical 

Storm Irene reportedly caused damage or failure to 389 Vermont bridges per Thomas et al. 

(2013). 

Other recent extreme events have caused damage to numerous bridges in other parts 

of the United States. For example, studies from Hurricane Katrina in 2005 indicate that 

uplifting and hydrodynamic forces on the superstructure caused the majority of the damage 

to short and medium span coastal bridges (Okeil and Cai, 2008). An economic analysis of 

44 bridges damaged from Hurricane Katrina shows a relationship between surge elevation, 
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damage level and repair costs (Padgett et al., 2008). Subsequent analysis of 262 bridges, 

of which 36 were damaged, identifies surge elevation as a key factor in determining 

damage levels from Katrina, and relates it to the estimated likelihood of damage through 

empirical fragility curves (Padgett et al., 2012). Both of these studies leverage the National 

Bridge Inventory (NBI) as the primary source of bridge data. Similar bridge infrastructure 

vulnerabilities have been witnessed at Escambia Bay, Florida during the 2004 Hurricane 

Ivan (Douglass et al., 2004) and in Hokkaido, Japan during the 2004 Songda Typhoon 

(Okada et al., 2006). More recently, severe flooding in September 2013 caused the collapse 

of 30 highway bridges, and damage to an additional 20 bridges in Colorado (Kim et al., 

2014).  

For some time now, scour has been recognized as the primary cause of bridge 

failures in the United States (Kattell and Eriksson, 1998) and in other parts of the world 

providing case studies on bridge damage. For example, Wardhana and Hadipriono (2003) 

analyzed 503 cases of bridge failures in the United States from 1989 to 2000, and found 

that flood and scour caused nearly 50% of all failures. Melville and Coleman (1973) report 

31 case studies of scour damage to bridges in New Zealand, of which 13, 8, 4 and 6 cases 

were primarily attributed to pier failure, erosion of the approach or abutment, general 

degradation, and debris flow or aggradation, respectively. The HEC-18 document 

(Arneson et al., 2012) mentions numerous examples of scour related bridge damage and 

failure. During the spring floods of 1987, 17 bridges in New York and New England were 

damaged or destroyed by scour. The collapse of the I-90 Bridge over the Schoharie Creek 

near Amsterdam, NY, resulted in the loss of 10 lives and millions of dollars in bridge repair 

and replacement costs (FHWA, 2015). In 1985, floods in Pennsylvania, Virginia, and West 
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Virginia destroyed 73 bridges. A 1973 national study (FHWA 1973) of 383 bridge failures 

caused by catastrophic flooding showed that 25 percent involved pier damage and 75 

percent involved abutment damage. A second more extensive study in 1978 indicated local 

scour at bridge piers to be a problem about equal to abutment scour problems (FHWA, 

1978; Arneson et al., 2012). The 1993 flood in the upper Mississippi basin caused damage 

to 2,400 bridge crossings (FHWA, 2015) including 23 bridge failures. The modes of bridge 

failure included 14 from abutment scour, 3 from pier and abutment scour, 2 from pier scour 

only, 2 from lateral bank migration, 1 from debris load, and 1 from an unknown cause 

(Arneson et al., 2012). Arneson et al. (2012) also reported that the 1994 flooding from 

storm Alberto in Georgia affected over 500 state and locally owned bridges with damage 

attributed to scour.  

The above case history summary of bridge damage, both coastal and inland, 

illustrates the vulnerability of existing bridge infrastructure to extreme flooding events. 

The occurrence of such severe events is expected to increase because of climate change in 

many parts of the world will shift precipitation patterns (Melillo et al., 2014). For example, 

extreme rainfall events, those ranging in the 99th percentile of intensity, are happening more 

frequently, especially over the past three to five decades (e.g., Horton et al., 2014). The 

effects of Tropical Storm Irene on Vermont bridges therefore provide a uniquely large 

dataset, where a single hurricane-related extreme flood event caused widespread damage 

to over 300 bridges in a single state. The network-wide analysis on damaged and 

statistically comparable non-damaged bridges on a dataset this large is believed to be not 

available in the literature. This paper presents example case studies including descriptions 

of the damage and corresponding estimated and actual repair/replacement costs, and 
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feature-based analysis of observed damage. A univariate statistical comparison between 

damaged and comparable non-damaged bridges identifies an initial set of significant 

features of bridge vulnerability under extreme events. An ordinal logistic regression further 

tests those features individually against damage level, revealing features that are correlated 

to increasing damage. The most significant features may be used to generate fragility 

curves showing probability for exceeding levels of damage under extreme events for a 

given feature; and examples are presented.   

 Bridge Data 

To study the effects of Tropical Storm Irene on Vermont’s bridge infrastructure, a 

comprehensive database of all available records on bridges prior to the storm was 

compiled. The data collection and assembly identified geo-referenced locations and 

information for all river and stream crossing bridges, including all available inspection data 

and relevant photographic records. This encompassed 4,761 state- and town-owned bridges 

from the Vermont Agency of Transportation (VTrans) Bridge Inventory System (BIS). The 

BIS functions as a record for all bridge inspections conducted in accordance with the 

Federal Highway Administration’s National Bridge Inventory (NBI) coding guide, and 

contains all bridges, both state- and town-owned over 6 m in span length. For the purposes 

of this study, we compiled a comprehensive list of all bridge structures, including 

traditional bridges, stone arches, and open bottom culverts, and applied the general term of 

“bridge” to all. 

Information quantifying Tropical Storm Irene-related damage came from VTrans 

and the Vermont Department of Emergency Management (VDEM). The VTrans provided 

information on the damage to state-owned bridges. The VDEM collected damage to town-
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owned bridges for the purpose of applying for Federal Emergency Management Agency 

(FEMA) repair funding. The damage records were linked to the comprehensive bridge list 

to locate and identify the damaged bridges. In some cases, database errors prevented 

finding a link between the two databases and required further geospatial analysis. This 

cross-referencing identified 153 bridges in the comprehensive bridge list as having been 

damaged during the storm. An additional 173 bridges were identified as damaged via a 

follow-up study of available VTrans online bridge inspection photograph archives, 

including supplemental inspection photos taken during the post-Tropical Storm Irene 

recovery. This process identified a total of 326 bridges as having been damaged, with 

damage ranging from minor streambank erosion to entire bridge collapse. The number of 

damaged bridges identified in the database (326 bridges) differs from that reported by the 

VDEM (Thomas et al. 2012, 389 bridges), and is thought to be due to the misclassification 

of certain culverts as bridges in the higher estimate, as well as rapid and unrecorded post 

storm bridge repair. Bridges with spans shorter than 6 m were removed from the list, as the 

analysis relies on inspection records, which are not available for bridges with spans shorter 

than 6 m. This resulted in 313 damaged bridges available for use in subsequent statistical 

analysis and feature extraction for comparison with the corresponding 1,950 non-damaged 

bridges from the comprehensive list of Vermont bridges.  

 Rainfall Data 

The analysis presented here used climate observations collected during Tropical 

Storm Irene throughout the state of Vermont and surrounding counties in New York, New 

Hampshire and Quebec (Springston et al., 2012). Ordinary Kriging was used to generate a 

spatial interpolation of the rainfall measurements over the entire state of Vermont, and 
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provided the average recurrence interval (ARI), using a 12-hr duration storm to match the 

duration of Tropical Storm Irene (Kiah et al., 2013).  

 Stream Geomorphic Data  

The Vermont Agency of Natural Resources (VTANR) has been quantitatively 

assessing the hydraulic stability and sensitivity of Vermont streams over the past 15+ years. 

The River Management Program developed and utilized a set of peer-reviewed stream 

assessment protocols to collect geomorphic information for over 3,200 km of Vermont 

streams to create the Rapid Geomorphic Assessment (RGA) database (Kline et al., 2007). 

The VTANR RGA protocol is a nationally recognized method to provide a measure of 

stream disequilibrium and stream sensitivity to indicate the likelihood of a stream 

responding via lateral and/or vertical adjustment to natural or human-induced watershed 

disturbances (Somerville and Pruitt, 2004; Besaw et al., 2009). The assessments consider 

each stream on a reach scale, designated as the length of channel considered to be consistent 

in slope, bed material, and distinguishable in some way from the upstream and downstream 

sections. The RGA protocols divide into three phases. Phase I compiles existing 

topographic maps, orthophotos, and local expert knowledge. Phase II comprises field 

survey results, and stream stability metrics preformed at the reach scale. Phase III is an in-

depth assessment on a sub-reach scale, including a detailed field survey and quantitative 

measurements of channel dimension, pattern, profile, and sediments, used when a specific 

concern requires greater detail than the Phase II. This analysis uses only the Phase I and II 

data. In addition to providing an overall RGA (stream reach disequilibrium) score, all 

information collected during the RGA protocols is available in Arc-GIS (ESRI 2011), 

including the geometry of the valley and channel reach, watershed and floodplain 
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characteristics, and classification of streambed materials. Additionally, the analysis of 

damaged bridges included widely available National (and Vermont) hydrography data (i.e., 

stream-reach characteristics and geomorphology data).  

 

The comparison between damaged and non-damaged bridges focuses on two 

subsets of non-damaged bridges that vary in scale. Selection of the non-damaged bridges 

began by geospatially indexing the bridge list in Arc-GIS, and identifying the damaged 

bridges within the state as presented in Figure 3.1a. The two sets of non-damaged bridges 

used in this analysis include (1) reach scale (Reach-ND), the nearest non-damaged bridge 

(n = 274), (Figure 3.1b); and (2) watershed scale (Watershed-ND), non-damaged bridges 

located in subwatersheds that contain the damaged bridges (n = 954), (Figure 3.1c). The 

Arc-GIS analysis identified the non-damaged bridges nearest to the damaged bridges 

(reach scale) as well as the subwatersheds with damaged bridges (watershed scale). The 

reach scale non-damaged bridges were selected using stream flow path distance, rather than 

Euclidean distance to create one-to-one pairings of damaged and non-damaged bridges that 

likely experienced equivalent storm-related streamflow impacts. Instances where two 

damaged bridges share the same nearest non-damaged bridges resulted in fewer non-

damaged bridges being included in the Reach-ND set than the damaged bridges.  

The watershed scale, which used the USGS (United States Geological Survey) 

Watershed Boundary Dataset (WBD) 6th level (12-digit) subwatershed for delineation, 

provides a comparison with non-damaged bridges that are located within similar 

geographic settings, and were generally exposed to similar storm impacts as the damaged 

bridges. The USGS WBD is a hierarchical hydrologic unit dataset based on topographic 
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and hydrologic features across the United States that defines the perimeters of drainage 

areas, including six levels of detailed nested hydrologic unit boundaries (USGS and 

USDA-NRCS, 2013). The motivation for using watershed and reach scales to identify 

comparable non-damaged bridges was to ensure that statistical comparisons were more 

discriminating by providing comparisons of bridges that for a particular scale experienced 

similar storm impacts and came from geographically and topologically similar settings. 

Storm impacts differ with location, and the closer a non-damaged bridge is to a damaged 

bridge, the more likely it is to experience similar storm impacts. The watershed scale was 

created to capture non-damaged bridges in the hardest hit regions in the state. The 

decreased non-damaged data sets also help to reduce the statistical power associated with 

such a high number of data points, as was the case in the statewide data. A flow chart of 

the process of collecting and analyzing the bridge database, and the reduction of the data 

for each dataset being analyzed appears in Figure 3.2. 

 Selection of Variables and Analysis Method 

A Kruskal–Wallis one-way analysis of variance (ANOVA) by ranks was used to 

compare the damaged and non-damaged bridge data at two scales (i.e., reach and 

watershed), using the programming environment MATLAB 2012. This non-parametric 

equivalent of the traditional one-way ANOVA test can accommodate the observed non-

Gaussian distributions of some feature residuals that limit the application of a traditional 

ANOVA (Kruskal and Wallis, 1952; Siegel, 1956). Additionally, the presence of ordinal 

data types necessitated the use of a non-parametric test. Significant variables from the 

ANOVA were then tested for correlation to damage state with a multivariate logistic 

regression.  
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Table 3.1 summarizes the bridge and stream variable analysis of variance, and lists 

the resulting means and p-values. Testing was conducted between damaged bridges and 

each of the non-damaged bridges individually. A small p-value (e.g., less than or equal to 

some user-defined threshold of say, p < 0.05), indicates that it is unlikely (i.e., less than a 

5% chance) that the differences observed (i.e., means being tested) are due to random 

chance. Thus, we could reject the null hypothesis that damaged and non-damaged bridges 

have similar means. Statistical analysis was conducted on all variables available in the 

existing databases; however, only those with either intrinsic or statistical significance 

receive further discussion in the paper. The means for all individual features across all 

bridges in the state are included as well to assess if the damaged bridges represented typical 

bridges in the state. The variables in Table 1 separate into three categories: bridge 

characteristics, bridge rating assessments, and stream geomorphology assessments with the 

database source identified as VTrans-BIS or VANR-RGA in Table 1. 

The variables selected for testing to represent the bridge characteristics from the 

VTrans IS include: approach road width, maximum span, span, deck width, vertical 

clearance, year built, and average daily traffic. The VTrans BIS additionally includes 

Bridge Ratings Assessments for the deck, superstructure, substructure, channel, scour, 

waterway adequacy, structural, and state sufficiency ratings. The deck, superstructure and 

substructure ratings are similar in their method of determining the current condition of the 

various bridge components, which is scored from 0-9 and U (unknown). 
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Figure 3.1. Tropical Storm Irene impact on Vermont bridges – (a) Estimated rainfall totals and 
locations of damaged bridges, (b) Estimated annual recurrence interval, locations of damaged and 

reach-scale non-damaged bridges, (c) Estimated annual recurrence interval, and locations of 
damaged and watershed-scale non-damaged bridges 
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Figure 3.2. Bridge database process chart (the data identified in the boxes without background 
highlight were not used in the statistical analysis, n denotes sample size) 
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Table 3.1. Variables considered in statistical Kruskal-Wallis analysis 

(significance indicated in bold, n denotes sample size) 

Variable (unit) 

Mean 
Statistical Significance 

(p-value) 

Damaged 
Bridges 
(n=313) 

Non-Damaged Bridges Non-Damaged Bridges 
Reach 

(n=274) 
Watershed 

(n=954) 
Statewide 
(n=1,936) 

Reach 
(n=274) 

Watershed 
(n=954) 

Bridge Characteristics (VTrans-BIS) 

Approach Width (m) 7.5 7.6 7.6 7.8 0.502 0.341 
Max Span (m) 17.7 18.4 17.0 17.6 0.876 0.052 

Structure Length (m) 23.9 23.8 22.7 24.7 0.496 0.004 
Deck Width (m) 78.2 78.7 80.1 81.8 0.415 0.104 

Vertical Clearance (m) 34.3 39.8 37.7 38.9 0.018 0.423 
Year Built 1948.7 1955.9 1957.2 1957.1 0.010 <0.001 

Average Daily Traffic 1392.9 1470.2 1467.1 1791.5 0.828 0.755 
Bridge Rating Assessments (VTrans-BIS) 

Deck Rating 6.7 7.1 7.0 7.0 0.004 0.017 
Superstructure Rating 6.6 7.1 7.0 7.0 <0.001 0.001 
Substructure Rating 6.4 6.9 6.8 6.8 <0.001 <0.001 

Channel Rating 6.4 6.9 6.9 7.0 <0.001 <0.001 
Waterway Adequacy Rating 6.2 6.6 6.8 6.8 0.002 <0.001 

Scour Rating 6.3 6.9 7.1 7.1 0.006 <0.001 
Structural Adequacy Rating 39.3 45.3 45.8 45.9 <0.001 <0.001 

State Sufficiency Rating 66.0 73.4 75.2 75.5 0.004 <0.001 
Stream Geomorphic Assessments (VTANR-RGA) 

Stream Order 3.95 3.92 3.86 4.02 0.715 0.215 
Channel Slope (%) 4.1 3.8 4.1 3.6 0.257 0.228 

Sinuosity 1.11 1.12 1.16 1.17 0.103 <0.001 
Straightening (%) 43.6 36.4 33.0 31.8 0.025 <0.001 
Max Depth (m) 1.16 1.17 1.20 1.29 0.619 0.867 
Mean Depth (m) 0.80 0.81 0.85 0.93 0.643 0.304 

Flood Prone Width (m) 70.7 89.1 102.0 116.3 0.231 0.078 
Abandoned Floodplain 

Height (m) 1.9 1.8 1.8 1.9 0.275 0.165 
Width to Depth Ratio 26.5 31.7 24.2 22.3 0.116 0.005 

Confinement Ratio 9.4 9.5 10.5 11.0 0.717 0.137 
Entrenchment Ratio 3.7 4.1 6.2 7.1 0.701 0.007 

Incision Ratio 1.71 1.65 1.58 1.54 0.479 0.038 
RGA Degradation Score 9.0 8.8 9.9 10.5 0.901 0.065 
RGA Aggradation Score 11.0 10.8 11.0 11.6 0.730 0.882 

RGA Widening Score 11.2 10.9 11.6 11.8 0.618 0.197 
RGA Planform Score 11.0 11.2 11.1 11.5 0.952 0.940 

RGA Rating 0.53 0.52 0.55 0.57 0.788 0.257 
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The channel, waterway adequacy and scour ratings use descriptive cases of damage 

to assign values that are roughly ordinal, though the lack of a scale for damage would 

suggest the data is more likely to be considered nominal. The channel rating assesses the 

condition of the embankments and channel near the bridge for erosive damage, and rates 

the condition of any installed countermeasures. The scour rating evaluates the risk of bridge 

failure from scour, based on the observed scour compared to the design scour depths. The 

waterway adequacy rating combines the likelihood of the bridge being overtopped by a 

flow event with a weighting that depends on the road’s level of significance, such that high 

traffic volume highways would be required to withstand greater storm flows than low 

volume rural roads. The state sufficiency rating determines the bridge fitness (i.e., 

sufficiency to remain in service) based on the service it performs using factors derived from 

over 20 NBI data fields. As a factor in the sufficiency rating, the structural adequacy rating 

combines the minima of the superstructure and substructure ratings with the reduction in 

load capacity to determine one component score included in the sufficiency rating.  

Variables used to characterize the stream geomorphic assessment include: channel 

length, bankfull channel width, flood-prone width, maximum depth, mean depth, 

floodplain height, stream order, sinuosity, straightening percent, confinement ratio, span to 

channel ratio, width to depth ratio, entrenchment ratio, incision ratio, channel slope, 

watershed area, specific stream power, RGA degradation score, RGA aggradation score, 

RGA widening score, RGA planform score, and an overall RGA rating. Details on these 

parameters may be found in the RGA protocols of Kline et al. (2007). The stream 

geomorphology parameters apply to an entire stream reach. Therefore, when damaged and 

non-damaged bridges lie within the same stream reach, they would be assigned the same 
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stream geomorphic assessment values. The analysis uses width, length, depth and 

floodplain height parameters to determine whether there was a significant difference in 

stream size for bridges that were damaged. The ratios for sinuosity, confinement, span to 

channel, width to depth, entrenchment and incision, as well as percentage of the stream 

reach that was straightened help characterize the geomorphological condition of the stream 

reach; while the four RGA component scores (i.e., degradation, aggradation, widening and 

planform) are weighted and combined by experts to assess an overall RGA rating to assess 

stream reach disequilibrium (i.e., geomorphic stability).  

A large number of possible variables from both the BIS and RGA were not included 

in this parametric analysis, as they are represented by categorical fields and ordinal data 

with sparse intervals. The most relevant of these variables include the bridge type, 

foundation type, stream type, bed material, and other fields that may aid in the future 

evaluation of bridge scour vulnerability. 

The variables determined to be statistically significant on the reach scale were 

additionally tested using a multivariate logistic regression, using the damage level as the 

dependent variable, to determine which variables contributed to the observed level of 

damage. An empirical fragility curve was then developed for one of the resulting 

characteristics as a first step toward risk-based analysis of the bridges.  

 

 Damage Classification and Cost Analysis 

Bridge damage from Tropical Storm Irene was categorized based on photographic 

documentation and descriptions in available reports. Bridges damaged included 55% steel 

beam, 34% concrete slab or beam, and 11% historical steel or wood truss superstructures. 
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Single span bridges made up the vast majority (82%) of bridges damaged, with 12% double 

span, and the few remaining included 3 and 4 span structures. In cases where photographs 

were absent, available descriptions were used for damage categorization.  

Bridge damage was grouped into four categories: scour, channel flanking, 

superstructure damage, and debris blockage, with the most prominent type of observed 

damage determining the category. The majority (55.6%) of bridge damage resulted from 

scour (e.g., Figure 3.3a). Channel flanking (e.g., Figure 3.3b), the erosion of the approach 

embankment behind the bridge abutments and specifically not within the channel, was 

responsible for 29.7% of the damaged bridges. Debris blockage (e.g., Figure 3.3c) was 

documented at 8.3% of the bridges, at which no other hydraulic damage was observed. 

Debris accumulation was commonly observed along with the other three types of bridge 

damage. Superstructure damage (Figure 3.3d) included damage to the deck, guardrails, and 

siding, and accounted for 6.4% of the reported damage. The majority (n = 198) of the 313 

damaged bridges were town-owned.  

Bridge damage was further categorized into four levels: slight, moderate, extensive 

and complete. This damage ranking system was based on that proposed in HAZUS 

(Scawthorn, 2006), and later amended by Padgett et al. (2008). The ranking system 

descriptions were expanded to include the damage types observed in Tropical Storm Irene, 

particularly damage from flooded river flow. Slight damage includes: channel erosion not 

affecting the bridge foundation, superstructure and guardrail damage, and debris 

accumulation without scour present (Figures 3.4a and b). Moderate damage (Figure 3.4c 

and d) includes: scour affecting the foundation, but not to a critical state, bank and approach 

erosion, superstructure damage but not to a critical state, and heavy aggradation. Extensive 
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damage (Figure 3.4e and f) includes: critical scour, with some settlement to a single 

foundation, but not collapse, full flanking of both approaches, and damage to the 

superstructure making it structurally unsafe. Complete damage includes cases where the 

bridge was washed away, collapsed or has significant foundation damage requiring 

replacement (Figure 3.4g and f). Characterization of the level and type of damage was 

performed independent of any knowledge of the repair costs. Of the damaged bridges, 30% 

were categorized as having slight damage, 39% as moderate damage, 14.5% as extensive 

damage, and 16.5% as complete damage.  

 

Figure 3.3. Damage Type (VTrans, 2014) - (a) Scour damage, Dummerston VT30-B9: scour 
beneath the concrete spread footing, (b) Channel flanking damage, Jamaica VT30-B40: flanking 

behind the abutment, (c) Debris damage, Wallingford VT140-B10: debris buildup on a pier, 
reducing the flow area, (d) Superstructure damage, Montgomery C2001-B5: damage to the 

sideboards of a covered bridge 
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Bridges, with their assigned damage level and estimated cost (when available) for 

repairing the bridge back to its pre-storm condition, are shown in millions of U.S. dollars 

and U.S. dollars per deck area in Figures 3.5a and b, respectively. The horizontal line and 

asterisk within each box plot represents the median and mean, respectively; the edges of 

the box are the 25th and 75th percentiles, and the whiskers extend to the most extreme data 

points not considered outliers. Outliers are plotted individually. The estimated cost of 

repair correlates well with damage levels, and when normalized by deck area, shows an 

increasing trend with average repair cost. When repair costs per deck area are categorized 

by damage type, the scour damage has significantly greater cost (Figure 3.5c). When a 

bridge showed only flanking damage, the associated estimated costs of repair were 

substantially smaller than those associated with scour damage. The average estimated cost 

of repair for scour, flanking, and superstructure damage were about $260,000, $108,000, 

and $18,000 per bridge, or $318, $120, and $30 per square meter of deck area, respectively. 

The completed construction costs for a select number of state-owned bridges rebuilt or 

remediated following Tropical Storm Irene (n = 12, all with extensive and complete 

damage) are plotted in Figure 3.5d. In general, the actual repair costs (per deck area) for 

state-owned bridges appear to be of similar range to the costs of repairs for town-owned 

bridges estimated for FEMA funding. 
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Figure 3.4. Damage Level (VTrans, 2014) – (a) and (b) Slight Damage, Northfield VT12-B61: 

conditions before and after the storm, (c) and (d) Moderate Damage, Bridgewater C3005-B37: 
conditions before and after the storm, (e) and (f) Extensive Damage, Halifax C2001-B17: 

conditions before and after the storm, (g) and (h) Complete Damage, Rochester VT73-B19: 
conditions before and after the storm 



43 

 

 Rainfall 

Figure 3.6 compares the distribution of rainfall and ARI (panels a and b, 

respectively, for the damaged bridges (n=313) and non-damaged bridges at two different 

scales – the reach scale (n=274) and watershed scale (n=954). The non-damaged bridges 

at the reach scale experienced similar storm impacts to the damaged bridges, and were not 

statistically different (p = 0.117, for both rainfall and ARI). The non-damaged bridges at 

the watershed scale however experienced a statistically lower storm impacts (p < 0.001, 

for both rainfall and ARI). The watershed scale captured a larger area with greater number 

of bridges likely bringing the watershed scale mean closer to the global (statewide scale) 

mean. 

  
(a) 

  
(b) 

 
(c) 

 
(d) 

 
Figure 3.5. Repair cost and cost per deck area for various levels and type of damage: (a) Estimated 

cost of repair versus damage level, (b) Estimated cost of repair per deck area versus damage level, (c) 
Estimated cost of repair per deck area versus damage type, (d) Actual cost of repair per deck area of 

state-owned bridges (n denotes sample size) 
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 Bridge Characteristics 

An analysis of the bridges at the reach scale was performed to help identify features 

important in predicting bridge damage. The p-values in Table 3.1 indicate the probability 

that the null hypothesis is correct (with significance against the null set at p<0.05) for a 

given feature, and show that the span and structure length of damaged bridges to be greater 

when compared to the non-damaged bridges on the watershed scale. The vertical clearance, 

the distance from the bottom bridge member to the streambed, is significantly lower for 

the damaged bridges than the non-damaged reach scale (Figure 3.7a), where storm impacts 

are thought to be the most similar.  

  
(a) 

  
(b) 

 
Figure 3.6. Analysis of the rainfall data – (a) rainfall (mm), (b) ARI (yr) (n denotes sample size, m 

is the mean, and p is the significance value) 

Bridge geometry variables are important in that they determine the size and 

orientation of the bridge to the stream. Scour calculations often include bridge geometry in 
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which the span, width, and clearance play direct roles. The span and clearance of the bridge 

determine the opening area, where a smaller opening would result in contraction. The width 

of the bridge indicates the length of contraction, or the length of contact with the stream, 

where longer widths lead to increased velocities in contraction. A hypothesis is that smaller 

and lower bridges are more likely to be damaged due to the high and intense flows, and are 

more prone to debris blockage. The data supports this with respect to vertical clearance, 

but shows that damaged bridges were longer (in span) than the corresponding non-damaged 

bridges from the same reach. Bridge geometry could play a more important role if 

combined and compared to stream size. Channel width is needed to determine if the span 

is undersized, but that data is not available in the NBI. Likewise, knowing the vertical 

under-clearance for the bridge would be more useful if it included the depth of flow, to 

determine freeboard. The current measurement only provides the distance from the low 

chord to the stream bottom.  

A comparison of bridge age shows damaged bridges to be older than non-damaged 

bridges at both scales (Figure 3.7b). The year built, in which new bridges are generally 

viewed as more robustly designed, meets the expectation that older bridges were more 

vulnerable to damage. The significance of age in discriminating between damaged and 

non-damaged bridges may be due in part to the effort put into managing historic bridges. 

In particular, many covered bridges were more closely inspected and monitored after 

Tropical Storm Irene. Bridge age may only reflect regional bridge design and construction 

practices. Hazard return periods may vary from one region to another, yet bridge age may 

be a good, holistic parameter because it comprises inherent features (e.g., design standards, 
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storms, construction practices, history of success, major maintenance, etc.) that are not 

available in existing databases.  

  

(a) 

  

(b) 

Figure 3.7. Analysis of bridge characteristic variables – (a) vertical clearance (m), (b) year built (n 
denotes sample size, m is the mean, and p is the significance value) 

 Bridge Ratings 

The NBI bridge ratings for damaged bridges were significantly lower than those for 

both reach and watershed scale non-damaged bridges. The lower ratings prior to the storm 

show that several damaged bridges may have had preexisting issues, whether from 

structural deterioration, or prior hydrologic issues.  
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The scour ratings for bridges damaged in Tropical Storm Irene are compared to 

non-damaged bridges at the reach and watershed scales, both of which are significantly 

different and higher than the scour ratings of the damaged bridges as seen in Figure 3.8a. 

Surprisingly, the majority of damaged bridges (over 50%) had non-critical scour ratings 

prior to Tropical Storm Irene. Included in the bridge database, 42 damaged and 229 non-

damaged bridges were listed as unknown foundation in the scour rating field. However, 

bridges rated as scour critical (rating of 3 or below) do have a larger proportion of bridges 

with damage compared to non-damaged bridges at the reach and watershed scales, 

indicating that a low scour rating may show vulnerability to scour, but a high rating does 

not necessarily show immunity, particularly during extreme flood events. 

The substructure rating (Figure 3.8b), which rates the structural components of the 

bridge on an ordinal scale, shows worse ratings for damaged bridges. The channel rating 

(Figure 3.8c), which accounts for the condition of the embankments and channel 

protection, indicates that damaged bridges likely had prior occurrences of erosion. The 

waterway adequacy (Figure 3.8d) rates the likelihood of overtopping of the bridges. The 

data show that damaged bridges had an increased vulnerability to overtopping. The 

structural adequacy rating (Figure 3.9a), which takes a load rating reduction factor of the 

superstructure or substructure, and the state sufficiency rating (Figure 3.9b), which uses as 

formulated combination of 21 other available parameters in the BIS, shows the greatest 

difference between damaged and non-damaged bridges particularly at each end of the 

rating spectrum.  
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(a) 

  
(b) 

  
(c) 

  
(d) 

 
Figure 3.8. Analysis of bridge ratings – (a) scour rating, (b) substructure rating, (c) channel rating, 

(d) waterway adequacy rating (n denotes sample size, m is the mean, and p is the significance 
value) 
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(a) 

  

(b) 

Figure 3.9. Analysis of bridge ratings – (a) structural adequacy rating, (b) state sufficiency rating 
(n denotes sample size, m is the mean, and p is the significance value) 

 Stream Characteristics 

Stream geomorphic assessment information adds information and expert 

knowledge about the stream geomorphology that was previously missing from the bridge 

inventory. The geomorphic data, however, only applies at a stream-reach scale, which 

given the nearest-neighbor selection of non-damaged bridges at the reach scale, often 

results in the same stream parameters being applied to the pair of nearest neighbors. This 

lowers the statistical power of the data and the likelihood that the reach-scale non-damaged 

bridges will differ statistically from the damaged bridges without a larger sample size. 
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Geomorphic assessments have not been completed across all streams in the state, and so 

the data was applied only where available. Additionally, a number of geomorphic 

assessment variables help assess the stream for departure from a reference stream type. 

Individual reach assessments must take the dominant stream type into account when 

determining the current condition.  

The sinuosity of the stream is significantly lower for damaged bridges than non-

damaged bridges at the watershed scale (Figure 3.10a). Additionally, the percentage of 

straightening was significantly higher for damaged bridges than for both non-damaged 

bridges at both scales (Figure 3.10b). A stream with low sinuosity and high percentage 

straightening has fewer degrees of freedom for lateral adjustment, and would result in an 

increased velocity in a flood event. The width to depth ratio of damaged bridges was 

significantly lower than non-damaged bridges at the reach and watershed scales (Figure 

3.11a). Lower width to depth ratios for a given stream type are indicative of incision and 

an associated increase in shear stress and stream power. The entrenchment and incision 

ratios are significantly different for damaged bridges when compared to the watershed 

scale non-damaged bridges (Figures 3.11b and c). Lower entrenchment ratios represents a 

disconnection from the floodplain and increased channelization during flood events. 

Higher incision ratios indicate bed degradation, as incised streams hold greater flood flows 

before accessing the floodplain.  
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(a) 

 

(b) 

Figure 3.10. Analysis of variables related to stream characteristics - (a) sinuosity, (b) straightening 
percentage (n denotes sample size, m is the mean, and p is the significance value) 
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(a) 

  

(b) 

  

(c) 

Figure 3.11. Analysis of variables related to stream characteristics ratios - (a) width to depth, (b) 
entrenchment ratio, (c) incision ratio (n denotes sample size, m is the mean, and p is the 

significance value) 
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 Logistic Regression and Empirical Fragility Estimate 

Ordinal logistic regression helped to identify features that discriminate between 

damage levels at the reach scale. The analysis was conducted on the variables that were 

identified to be significant in the univariate analysis and were of interest in relating bridge 

and stream interactions - channel rating and waterway adequacy. The results are consistent 

with the expectation that a bridge with a lower channel and waterway adequacy rating 

would be more susceptible to damage, as indicated by their history of channel stability, and 

flow passage.  

Empirical fragility curves were created based on the channel rating and waterway 

adequacy rating on the watershed scale bridges. For each of these, the ratings are presented 

as the deduction from the maximum rating of 9. Channel and waterway adequacy ratings 

were selected because they assess the current bridge and stream interactions. While it 

would have been advantageous to use the scour rating for this purpose, the values used in 

the scour rating are not ordinal in nature, but rather are a ranked nominal system, without 

clear distinctions on the scale. Fragility curves have been applied to empirical bridge 

damage (Padgett et al., 2012), as well as comprehensively summarized in applications of 

water resource infrastructure (Schultz et al., 2010). Each damage level is expressed as an 

individual curve showing the probability of being damaged at or above that level. To create 

the fragility curves, bridges were separated by damage level, and distributed as a histogram 

according to the value of each feature. Each distribution is then fit with a lognormal curve. 

The cumulative distribution function (CDF) of the lognormal fit to each damage level set 

is estimated at regular intervals to produce the conditional probability curve. The 

conditional probability is then used to determine the exceedance probability curves, by 
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combining the probability of greater damage into each of the lower damage levels. The 

finalized fragility curves express the conditional probability of meeting or exceeding the 

given damage level, as a function of channel rating (Figure 3.12a) and waterway adequacy 

rating (Figure 3.12b) for the watershed bridges displayed in Figure 3.1c. The probability 

of damage is scaled depending on the ratio of damaged to non-damaged bridges in a given 

study area, with the maximum probability equivalent to the ratio of damage to non-

damaged bridges being assessed. Probabilistic models of this sort can be the basis of a risk 

assessment of bridges under extreme flood events in the future. Stake holders would be 

able to determine the probability of damage exceeding a certain level for each bridge in 

their inventory under an extreme event similar to Tropical Storm Irene, to assist in 

determining the overall risk present in the network. In observing the pair of fragility curves, 

it appears the probability of damages plateaus beyond a rating of 6 (displayed as 9 - 6 = 3), 

and that this could be a worthy point of differentiation for at risk bridges in the future. 

Bridges with poor ratings (potentially below 6) for both channel and waterway adequacy 

rating would be good candidates for a hydraulic review, to evaluate their vulnerability in 

flood events. 
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(a) 

 

(b) 

Figure 3.12. Fragility curve for bridge damage given the (a) channel rating, and (b) waterway 
adequacy rating. The best possible rating in these two categories is 9; therefore, the ratings are 

subtracted from 9 to reflect that the probability of damage increases with lower channel or 
waterway adequacy ratings 



56 

 

 

The effects of Tropical Storm Irene on Vermont bridges provide a unique, large 

dataset, where a single extreme hurricane-related flood event caused widespread damage 

to more than 300 bridges across a single state. A total of 326 Vermont bridges were 

identified as damaged during Tropical Storm Irene, with damage ranging from minor 

streambank erosion to entire bridge collapse. Of these, 313 bridges with spans greater than 

6 m had inspection records available and were considered further. The characteristics of 

damaged bridges (n = 313) were compared statistically to those of non-damaged bridges at 

the reach scale (n = 274) and the watershed scale (n = 954).  

The collection and georeferencing of hundreds of damaged and non-damaged 

bridges during a single extreme hurricane-related storm event, in combination with their 

inspection records and associated stream geomorphic assessments create a unique and 

significantly useful dataset. To the best of our knowledge such a database is not available 

in the literature. This database is made available in a spreadsheet format and can be 

downloaded from: http://go.uvm.edu/vtbridges-irene-data. 

The damaged bridges included 55% steel beam, 34% concrete slab or beam, and 

the remaining 11% historical steel or wood truss superstructures. Single span bridges made 

up the vast majority, 82%, of bridges damaged, with 12% double span, and the few 

remaining including 3 and 4 span structures. 

About 55.6% of the damaged bridges had scour damage, 29.7% had channel 

flanking, 8.3% had debris damage, and the remaining 6.3% had superstructure damage. 

When a bridge showed only flanking damage, the associated estimated costs of repair were 

substantially smaller than those associated with scour damage. The average estimated cost 
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of repair for scour, flanking, and superstructure damage were about $260,000, $108,000, 

and $18,000 per bridge, or $318, $120, and $30 per square meter of deck area, respectively. 

 The bridge rating assessment characteristics were all strongly correlated to 

damage. Channel rating and waterway adequacy rating had strong discriminating power 

between bridge damage levels.  

The analysis indicated that stream geomorphic data have the potential to be used to 

supplement and enhance the bridge rating systems, and may aid in identifying hydraulic 

vulnerability. Ratios such as entrenchment, incision, width to depth and straightening show 

significance at the watershed scale, and indicate that relative measures of a stream’s 

geomorphic condition (disequilibrium) are more important than specific measurements. 

Vermont was one of the first states to develop and implement a three-phase geomorphic 

assessment of streams, nationally recognized as one of the best overall protocols for 

assessing stream stability (Somerville and Pruitt, 2004). To the best of our knowledge, this 

is the first study that links hydrologic stream networks with performance of bridges. As 

geomorphic data becomes more widely available, the framework presented here could be 

applied elsewhere. 

The analysis identified individual features of the bridge and stream that correlate 

with underlying damage vulnerability, through comparisons at the stream reach and 

watershed scales, and outlines a framework to leverage these features to aid in the 

prediction of bridge vulnerability. Logistic regression identified correlations in the key 

features and levels of bridge damage, as classified through inspection reports and visual 

observation by the authors. Empirical fragility curves were created to depict the exceedance 
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probability for a given damage level against the channel and waterway adequacy rating, 

creating insights that can aid in evaluating bridges vulnerability to extreme events.  
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This chapter includes details on the computation of various additional parameters 

that were added to the comprehensive bridge dataset. Several statewide data sources were 

used to create a hydrologic watershed delineation model of each stream reach. A stream 

reach is a segment of the stream considered geomorphically consistent, and thus can be 

assigned a single metric (Kline et al., 2007). VTANR has been analyzing stream reaches 

in Vermont for the numerous features included in their rapid geomorphic assessments, and 

this same reach break convention was used in the watershed analysis. Each delineated 

watershed was then used in a number of applications to both characterize the watershed 

properties, and compute inputs for the stream power assessment. Four key features were 

sought through the watershed analysis:  

1) Tropical Storm Irene (August 2011) rainfall, 

2) land use characterization, 

3) soil hydrologic grouping, and 

4) stream power assessment. 

 The Tropical Storm Irene rainfall data were included in the comprehensive 

database, and utilized in the work presented in Chapters 3, 5 and 6. The land cover 

characterization and soil hydrologic grouping information are a part of the feature selection 

analysis presented in Chapter 6. The stream power assessment was used in the statistical 

and feature selection analysis presented in Chapters 5 and 6, respectively. Beyond the 

features sampled, the watershed analysis can be used to extract values of any data source 

available with statewide raster coverage.  
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The analysis included watershed delineation for a total of 15,123 stream reaches. 

Stream reaches were those delineated by VTANR in the RGA process, and supplemented 

in a few instances with stream order 3 segments from the National Hydrography Dataset. 

This combined group signifies every stream in Vermont used in the watershed analysis. A 

watershed delineation defines the boundary ridges of the catchment area to determine the 

contributing area of drainage to the target point. Any rainfall runoff within a watershed will 

eventually flow to the outlet point, as illustrated in Figure 4.1. In order to delineate the 

watershed for each stream reach, an automated ArcGIS script was created. A statewide 10 

m hydrologically-corrected digital elevation model (HydroDEM) of Vermont was used as 

the base elevation raster, and separated into the main HUC8 basins to create manageable 

processing groups (VCGI, 2006). The HydroDEM was again tested for sinks and peaks, 

and removed through the fill process of Arc-GIS, to ensure a hydrologically continuous 

elevation model. For each of the major basins, flow direction and flow accumulation layers 

were created, as illustrated in Figure 4.2.  

 

Figure 4.1. Watershed Delineation 
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Figure 4.2. Flow Direction 

These raster layers are integral parts of the watershed delineation process, and detail 

the movement of water from each cell of the grid, creating a quantified flow path and 

directing the drainage. The down gradient end of each stream reach was used as the outlet 

pour point for the watershed analysis. For each stream reach, the complete upstream 

catchment was desired, so an iterative delineation scheme was created to overcome the 

limitations of the built-in watershed function, which does not allow for overlapping areas, 

and created adjacent partial watersheds. Each reach within the targeted basin had its 

watershed delineated, the total drainage area calculated, and saved as a polygon, to be used 

in further analysis. The collected watersheds were then used to sample various data layers 

by tabulating the area within each watershed for its percentage of each variable.  
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Tropical Storm Irene of August 2011 hit the state of Vermont with severe rainfall 

and storm winds. Rainfall observations between 100-200 mm of precipitation caused 

flooding in 225 of 251 towns across the state. Prior to Tropical Storm Irene, only the 

devastating November 1927 flooding had such widespread damage, and the 2011 flood 

event remains the greatest natural disaster on record in Vermont (NWS, 2011; State of 

Vermont, 2012). Due to the path of the storm, the highest rainfall totals were located over 

the Green Mountains running through the center of the state, with estimates of rainfall 

recurrence intervals exceeding the 500-year storm in some areas, and 100 years through 

most of the affected areas. The rainfall resulted in extensive flash flooding, setting peak 

flow records in nine gauged streams, and reaching the top four for peak flows in nine others 

(USGS, 2011). Following the storm, the President declared a major disaster, FEMA-4022-

DR for the State of Vermont.  

The rainfall data used here included climate observations collected during Tropical 

Storm Irene throughout the state of Vermont and surrounding counties in New York, New 

Hampshire and Quebec (Springston et al., 2012). These observations were gathered from 

rain observation stations, and thus could be represented as point data. Using these rainfall 

observations, ordinary kriging was used to generate a spatial interpolation of the rainfall 

measurements in Arc-GIS. In addition to the rainfall interpolation map, the average 

recurrence interval (ARI) was mapped (Figure 3a and b), using a 12-hr duration storm to 

match the duration of Tropical Storm Irene (Kiah et al., 2013). Using the watershed 

delineated for each reach, the average rainfall and ARI for each watershed could be 

tabulated. In addition to the Tropical Storm Irene rainfall predictions, the average annual 
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expected precipitation was tabulated for each watershed, a parameter needed to determine 

the regression-based flow approximation (PRISM). Examples of the rainfall extraction can 

be seen in Figure 4.4a and b.  

 

(a) 

 

 

(b) 

Figure 4.3. (a) Rainfall (in) with observation stations, (b) ARI (yr) interpolations  

 

Land cover is an important metric in determining watershed characterization and 

understanding the relationship between rainfall and streamflow. Developed land cover 

types generally contribute more stormwater runoff directly to surface water bodies, 

increasing flooding, while natural land cover and wetlands generally work to buffer 

flooding. Runoff reduction is a useful stormwater management technique to help reduce 

localized flooding. The National Land Cover Database (NLCD) provided land cover 
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classifications in 30 m spatial resolution, with 16 different land cover types that were 

simplified for five major types for this analysis (Homer et al., 2011). The categories used 

were (1) Developed, (2) Agriculture, (3) Water/Wetland, (4) Forest, and (5) Other. The 

land cover types were sampled using the delineated watersheds, providing the percentage 

of total area for each land cover type within the catchment area. An example watershed 

sampled for land cover type can be seen in Figure 4.4c. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4.4. Watershed Sampling: (a) Irene Rainfall, (b) Annual Precipitation, (c) Land Cover, (d) 

Hydrologic Soil Group 
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The hydrologic soil group (HSG) is a valuable variable in determining the runoff 

potential, and was established by the US Soil Conservation Service (USCS, 2009). The 

HSG is determined by the water transmitting soil layer with the lowest saturated hydraulic 

conductivity, and is categorized into four distinct groups. Group A included soil with low 

runoff potential, those soils with less than 10% clay and mostly comprised of sands and 

gravel, with a saturated hydraulic conductivity of greater than 40 micrometers per second 

(40 x 10-6 m/s). Group B soils have moderately low runoff potential, between 10- 20% 

clay, with the remainder comprised of sand and loam, and saturated hydraulic conductivity 

between 10-40 micrometers per second (10-40 x 10-6 m/s). Group C soils have moderately 

high runoff potential, between 20-40% clay, less than 50% sand, and have a saturated 

hydraulic conductivity of between 1-10 micrometers per second (1-10 x 10-6 m/s). Group 

D soils have high runoff potential, over 40% clay, less than 50% sand, and a saturated 

hydraulic conductivity of less than 1 micrometer per second (< 1 x 10-6 m/s), or if the water 

table is within 60 cm of the surface. Dual hydraulic soil groups are used when the soils are 

present in the full saturated condition, because of the presence of a high water table (within 

60 cm), providing the soil classification of the soil if it were adequately drained. For this 

analysis, dual soil groups were considered group D, as Tropical Storm Irene came under 

nearly saturated antecedent soil conditions. The HSG was sampled to find the percentages 

of each soil type for every stream reach watershed, with an example shown in Figure 4.4d. 

Soil coverage and land cover types with high runoff potential will contribute greater 

volumes of stormwater directly to rivers and streams, as less precipitation is infiltrated. 

Higher runoff potential leads to higher streamflow, increased occurrences of flash flooding, 
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shorter times to peak flow, and higher stream power than if the delineated area contains 

soils with lower runoff potential.  

 

This work used stream power as a measure of the hazard. Stream power is the rate 

of energy (i.e., power) of flowing water against the bed and banks of a river channel, and 

functionally controls stream dynamics and morphology. Stream power is calculated as the 

product of flow, slope and specific weight of water, traditionally represented as watts per 

meter. The bankfull flow, typically a 2-year recurrence interval, is used for stream power 

calculations. Since stream power is a measure of stress against the bed and bank, the 

bankfull flow is seen to be the highest energy dissipation. This is because high flows will 

spill into the floodplain, thus reducing the total stress in channel.  

The calculation of stream power used in this analysis occurs on a broad scale, using 

widely available data, rather than individual measured observations, to produce 

comprehensive estimates of stream power. A GIS script was developed to generate the 

stream power data, which automated the calculation of stream power at any desired point. 

Total stream power (Ω), also referred to as cross-sectional stream power (Fonstad, 2003) 

is defined as:  

Ω = γ·Q·s, (1) 

where γ is the specific weight of water, Q is the discharge, and s is the energy slope. SSP 

(ω) normalizes the total stream power by the width of the stream to estimate unit-bed-area 

stream power as: 

ω = γ·Q·s/b,       (2) 



67 

 

where b is the channel width. The script enables the calculation of stream power for any 

target point (e.g., bridge or endpoint of a stream reach) using commonly available GIS 

layers. The process follows those in the literature (Jain et al., 2006; Vocal Ferencevic and 

Ashmore, 2012; Biron et al., 2013), creating a script that leverages existing GIS tools to 

process the commonly available data into a stream power estimate. Channel width 

estimates using regression equations (Jaquith and Kline, 2001) were uniformly applied to 

calculate SSP for all streams.  

The discharge values required for stream power were calculated using regional 

regression equations for flood discharge at various annual exceedance probability 

thresholds (Olson, 2014). The discharge used was the bankfull flow (estimated as the 2-

year recurrence interval). The regression equations required the drainage area, the basin 

wetland percentage and the annual rainfall average. The wetland percentages and rainfall 

were found as part of the watershed assessment of land cover (National Land Cover 

Database, Homer et al., 2011) and rainfall tabulation (Daly et al., 2012). The U.S. 

Geological Survey (USGS) program StreamStats performs a similar function, though often 

having trouble with larger computations through its web interface, and thus would be 

incapable of running the required number of calculations, prompting the creation of a 

custom script.  

With the discharge at each target reach estimated, the slope in this study was 

determined based on reach breaks established in the RGA. The RGA considers each stream 

on a reach scale, designated as the length of channel that is considered consistent in slope, 

valley confinement, sinuosity, and dominant bed material, and distinguishable in some way 

from the upstream and downstream sections. Streamlines were extracted from the National 
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Hydrography dataset (USGS, 2013), and the slope was determined by taking the inlet and 

outlet elevations of the selected reach, and dividing by the shape length (thalweg) to 

determine the channel slope of the target bridge. With the discharge and slope calculated 

at each target reach, the total stream power and SSP can be calculated according to 

equations 1 and 2, respectively. An example of the stream power computation for several 

reaches in a subwatershed can be seen in Figure 4.5, including (a) the watershed 

delineation, (b) slope determination, (c) stream power, and (d) specific stream power.   

In addition to the conventional stream power, which is uniformly based on a 2-year 

recurrence interval discharge, an event based stream power was calculated using spatially 

dependent recurrence intervals based on Tropical Storm Irene rainfall totals, called Irene 

Stream Power (ISP), and Irene Specific Stream Power (ISSP). ISP and ISSP use the 

average rainfall ARI of the catchment area to select a scaled flow estimate, in lieu of 

measured stream flow estimates. The event-based ISSP provides a stream power measure 

scaled to the storm intensity, estimating the power present in Tropical Storm Irene. The 

scaled up versions of stream power is thought to represent a total power of water that would 

pass through the typically contracted bridge openings. During a flood, any floodplain flow 

is funneled back to the channel in order for flow conveyance to proceed downstream. In 

these cases, the scaled stream power measure captures the full potential force.  

Together, SSP can be used as a measure for identifying the potential high power 

locations, while the event based ISSP extends upon this analysis, creating a framework of 

application in identifying high power in an actual storm event.    



69 

 

 

The intersection between stream reaches is believed to be a major factor in 

determining geomorphic change. As each reach is considered a consistent slope, the reach 

breaks that separate segments are points of change or gradients in slope, and therefore 

power. To capture this potential change in power, the upstream and downstream changes 

in slope and stream power were tabulated for each reach, and added to the database of 

features. When a reach inflow point begins at the junction of two stream outflows (a 

junction of two reaches becoming one), the higher power reach was selected as the 

upstream value. A high power reach followed by a lower power reach will create an 

imbalance in energy, and likely result streambed and streambank instability.  

  



70 

 

 
Figure 4.5. Stream Power determination 
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This Chapter was published in the ASCE Journal of Bridge Engineering, 2017  

Synopsis: 

On August 28, 2011 Tropical Storm Irene hit the state of Vermont with a severity 

that deposited 100-200 mm (4-8 inches) of rain across the state and resulted in damage or 

failure of over 300 bridges. The analysis of available datasets helped identify a set of 313 

bridges (greater than 6 m in span) damaged in a single state from a single extreme flood 

event that caused a twelve-hour rainfall recurrence interval that exceeded 500 years in some 

areas, and 100 years throughout most of the affected areas. Based on available damage 

reports and photographs, the observed bridge damage was grouped into four levels of 

severity. This paper links watershed stream power to the observed bridge damage, develops 

a process to quantify the hazard at bridges both as a case study and for future storms, and 

uses stream power as a hazard metric to produce probabilistic predictions of bridge 

vulnerability. The analysis also offers comparisons between damaged bridges and bridges 

that were not damaged in Tropical Storm Irene. Specific Stream Power (SSP) and the event-

based Irene Specific Stream Power (ISSP) were computed and found to be both statistically 

significant at discriminating between damaged and non-damaged bridges, as well as 

between damage levels. The application of empirical fragility curve analysis for SSP and 

ISSP produces a probability of damage generated from the results collected from Tropical 

Storm Irene. Spatially mapping the bridge damage probability from an extreme event like 

Tropical Storm Irene enables the hazard to be effectively displayed over a broad range of 
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scales (e.g., stream reaches, select watershed and statewide). This, in turn, helps identify 

problematic reaches, for which bridge placement would be at increased vulnerability. The 

methodology presented here can be applied to other geographic settings and storm events 

of interest, and to the best of the authors’ knowledge, this is the first investigation 

comparing site-specific stream power to observed bridge damage at a system level.  

 

Tropical Storm Irene of August 2011 hit the state of Vermont with a severity that 

caused major damage throughout the state altering the perception of extreme events and 

their impacts on Vermont’s infrastructure. Dropping between 100-200 mm of rain, and 

causing flooding in 225 of 251 towns across the state, it follows only the devastating 

November 1927 flooding as the second greatest natural disaster on record in Vermont 

(NWS, 2011; State of Vermont, 2012). The highest rainfall totals were located over the 

Green Mountains running through the center of the state, with estimates of rainfall 

recurrence intervals exceeding the 500-year storm in some areas, and 100 years through 

most of the affected areas. The rainfall resulted in extensive flash flooding, setting peak 

flow records in nine gauged streams, and reaching the top four for peak flows in nine others 

(USGS, 2011). The flooding and high flows across many of Vermont’s rivers and streams 

caused reports of damage to 389 bridges and hundreds of kilometers of roadway (Thomas 

et al. 2013). Figure 5.1a displays the location of damaged and non-damaged bridges in the 

state. 
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Other recent extreme events have caused damage to numerous bridges in other parts 

of the United States and other countries. For example, uplifting and hydrodynamic forces 

on the superstructure was responsible for the majority of damage to short and medium span 

bridges from Hurricane Katrina in 2005 (Okeil and Cai, 2008). An economic analysis of 

44 bridges damaged during Hurricane Katrina performed by Padgett et al. (2008) shows a 

relationship between surge elevation, damage levels, and repair costs. Their subsequent 

analysis of 262 bridges, of which 36 were damaged, identified surge elevation as a key 

factor in determining damage levels from Katrina and relates it to the estimated likelihood 

 

(a) 

 

(b) 

Figure 5.1. Locations of damaged and non-damaged bridges in Tropical Storm Irene (a) state-wide 
superimposed on rainfall data, and (b) in watersheds where bridge damage was observed 

superimposed over recurrence interval estimates 
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of damage through empirical fragility curves (Padgett et al., 2012). Both of these studies 

used the National Bridge Inventory (NBI) as the primary source of bridge data. Similar 

bridge infrastructure vulnerabilities have been witnessed at Escambia Bay, Florida in 2004 

during Hurricane Ivan (Douglass et al., 2004) and in Hokkaido, Japan during the 2004 

Songda Typhoon (Okada et al., 2006). Typhoon-induced extreme precipitation caused 

severe flooding in August 2009 damaging over 130 bridges in Southern Taiwan (Wang et 

al., 2014). A series of floods in 2010 and 2011 including a flood associated with category 

5 cyclone Yasi caused damage to 89 bridges and culverts in Queensland, Australia, and 

damaged 47 bridges in Lockyer Valley Region of Queensland in a 2013 flood (Lebbe et 

al., 2014). More recently, severe flooding in September 2013 caused the collapse of 30 

highway bridges, and damage to an additional 20 bridges in Colorado (Kim et al., 2014). 

The above case history summary of bridge damage, both coastal and inland, 

illustrates the vulnerability of existing bridge infrastructure to extreme events. The 

occurrence of such severe events is expected to increase because of climate change altering 

precipitation intensities in many parts of the world (Melillo et al., 2014). For example, 

extreme rainfall events, those ranging in the 99th percentile of intensity, are happening more 

frequently, especially over the past three to five decades (e.g., Horton et al., 2014). The 

effects of Tropical Storm Irene on Vermont bridges therefore provide a uniquely large 

dataset, where a single hurricane-related extreme flood event caused widespread damage 

to over 300 bridges in a single state. 

In this paper, stream power is evaluated as a measure of the hazard. Stream power 

is the rate of energy (i.e., power) of flowing water against the bed and banks of a river 

channel, and functionally controls stream dynamics and morphology. Stream power 
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estimates from extreme events were shown to correlate positively with the instances of 

stream widening in the White River watershed of Vermont (Buraas et al., 2014). Also, 

Gartner et al. (2015) showed that in the Fourmile Canyon of Colorado, the erosion and 

deposition correlates with increased power gradients and decreased power gradients, 

respectively. Stream power generally has been shown to correlate positively to fluvial 

incision (Seidl and Dietrich, 1992; Anderson, 1994), channel size, mobility and pattern 

changes (Magilligan, 1992; Rosenbloom and Anderson, 1994; Lecce, 1997; Knighton, 

1999), and as an estimate of flood power (Brooks and Lawrence, 1999). Specific stream 

power (SSP) normalizes total stream power, which is the product of discharge, slope, and 

the specific weight of water, and normalizes it by the stream width (Bagnold, 1966). SSP 

allows for the expression of stream power at the unit bed area, rather than the cross-

sectional area as is the case in total stream power. Magilligan (1992) and Miller (1990) 

showed that 300 W/m2 provides a minimum SSP threshold to separate reaches with and 

without large-scale geomorphic change. Stream power calculations have been conducted 

on multiple scales to support analysis of river systems for various objectives including risk 

to infrastructure, evaluation of channel stability, and assessment of instream habitats. At 

the finest scale, stream power has been used to conduct bridge scour analysis in erodible 

rock (Costa and O’Connor, 1995; FHWA 1999), and relates erodibility indices to local 

stream power measures. Point-location estimates have been prominent (e.g., Fonstad, 

2003; Lecce, 1997; and Magilligan, 1992), with studies that sought to identify transitions 

in stream power along the longitudinal profile and better understand sediment storage 

dynamics within a basin. Longer reach-length profiles use continuous distributions of 

stream power to identify stream power functions through a single fluvial system (e.g. 
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Fonstad, 2003; Reinfeld et al., 2004; and Knighton, 1999). Geographic information 

systems (GIS), leveraging digital elevation models (DEM), allowed the progression from 

point- and reach-scale estimates of stream power to network or catchment scale modeling 

(Finlayson and Montgomery, 2003; Jain et al., 2006; Barker et al., 2008; and Vocal 

Ferencevic and Ashmore, 2012).  

This paper seeks to link watershed stream power to bridge damage from Tropical 

Storm Irene, create a process to quantify the hazard at bridges both as a case study and for 

future storms, and use the hazard metric to produce probabilistic predictions of bridge 

vulnerability. The analysis also offers comparison between damaged bridges and bridges 

that were not damaged in Tropical Storm Irene. To the best of our knowledge, this is the 

first investigation comparing site-specific stream power to observed bridge damage at a 

network level.  

 

 Data Collection 

To study the effects of Tropical Storm Irene on Vermont’s bridge infrastructure, a 

comprehensive database of all available bridge records prior to Tropical Storm Irene was 

compiled. The collection and assembly of data identified geo-referenced information for 

all river and stream crossing bridges in the state, including all available inspection data and 

relevant photographic records. This process encompassed 4,761 state- and town-owned 

bridges from the Vermont Agency of Transportation (VTrans) Bridge Inventory System 

(BIS). 

Bridge damage information from Tropical Storm Irene was sparsely recorded, and 

not available in a singular registry. In order to study the effects of the statewide flooding 
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and storm damage, a comprehensive index of bridges with associated damage was needed. 

Bridge damage information from the Vermont Agency of Transportation (VTrans) and the 

Vermont Department of Emergency Management (VDEM) was spatially joined to the 

VTrans Bridge Inventory System (BIS). Errors in spatial reference limiting the 

combination of data was corrected by matching identifying features within the databases. 

The BIS is a statewide database of bridge inspection records in accordance with the 

National Bridge Inventory (NBI) coding guide, containing all bridges, both state and town 

owned, with spans over 6 m. The VTrans damage records included State owned bridges 

damaged in Tropical Storm Irene, while the VDEM list contained town owned bridges and 

culverts being submitted to Federal Emergency Management Agency (FEMA) for repair 

funding. These lists were combined to generate a list of 153 damaged bridges. An 

additional 173 damaged bridges were identified through review of the VTrans online 

bridge inspection photograph archives, mainly drawing from post-storm inspection 

photographs conducted throughout the state. This process identified a total of 326 damaged 

bridges, which differs from 389 damaged bridges reported by the VDEM (Thomas et al. 

2012). The discrepancy is thought to result from the classification of certain culverts as 

bridges in the higher estimate, as well as rapid and unrecorded post storm bridge repair. 

Bridges with spans shorter than 6 m were removed from our list of 326 damaged bridges, 

as they are not present in the BIS. The resulting 313 damaged bridges are included in the 

subsequent system-wide analysis, and all references to damaged bridges in the sequel refers 

to the 313. Figure 5.1a displays the location of damaged and non-damaged bridges in the 

state.  



78 

 

The stream power computations (Section 4.6) leverage a database of stream metrics 

developed from Rapid Geomorphic Assessments (RGA) under protocols published by the 

Vermont Agency of Natural Resources (VTANR). The River Management Program of 

VTANR has been quantitatively assessing the hydraulic stability and sensitivity of over 

3,200 km of Vermont streams for the past 15 years, which feeds into the RGA database 

(Kline et al., 2007; Kline and Cahoon, 2010). The VTANR RGA protocols are nationally 

recognized and provide a measure of stream disequilibrium and stream sensitivity to 

indicate the likelihood of a stream responding via lateral and/or vertical adjustment to 

natural and/or human watershed disturbances (Somerville and Pruitt, 2004; Besaw et al., 

2009). The assessments are conducted on a reach scale, designated as the length of channel 

considered to be consistent in slope, valley confinement, sinuosity, dominant bed material, 

and distinguishable from the upstream and downstream river sections in terms of average 

values of these channel metrics. The RGA protocols are categorized into three phases: In 

Phase I, stream reaches, and the subwatersheds draining to them, are delineated in ArcGIS 

with reference to existing topographic, photographic, and geologic information. Phase I 

also compiles soil and land cover characteristics, and local historical knowledge of channel 

and watershed modifications; Phase II comprises field survey results, and stream stability 

metrics performed at the reach scale; and Phase III is an in-depth assessment on a sub-

reach scale, including a detailed field survey and quantitative measurements of channel 

dimension, pattern, profile, and sediments, used when a specific concern is identified, 

needing greater detail than the Phase II. In addition to providing an overall RGA (stream 

reach disequilibrium) score, all information collected during the RGA protocols is 

available in Arc-GIS, including geometry of the valley and channel reach, watershed and 
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floodplain characteristics, and classification of streambed materials. The stream power 

analysis of this study used the stream reach delineations for Vermont waters developed in 

RGA Phase I. All of the abovementioned data are georeferenced and available as a single 

file at:   http://www.uvm.edu/~mdewoolk/?Page=ResearchData.html.  

 Bridge Damage Classification 

Damage to the 313 bridges affected in Tropical Storm Irene was categorized based 

on photographic documentation and descriptions in available reports. In cases where 

photographs were absent, available descriptions were used for categorizing damage into 

four levels: slight, moderate, extensive and complete. This damage ranking system was 

based on that proposed in HAZUS (Scawthorn, 2006), and later amended by Padgett et al. 

(2008). The ranking system descriptions were expanded to include the damage types 

observed in Tropical Storm Irene, particularly damage from flooded river flows as follows: 

 Slight damage includes channel erosion not affecting the bridge foundation, 

superstructure and guardrail damage, and debris accumulation without scour present. 

Example bridges with slight damage is shown before and after the storm in Figures 

4.2a and b, respectfully.  

 Moderate damage includes scour affecting the foundation but not to a critical state, 

bank and approach erosion, superstructure damage but not to a critical state, and heavy 

channel aggradation. Example bridges with moderate damage is shown in Figures 4.2c 

and d.  

 Extensive damage includes critical scour, with some settlement to a single foundation, 

but not collapse, full flanking of both approaches, and damage to the superstructure 

making it structurally unsafe. Example bridges with extensive damage is shown in 

Figures 4.2e and f. 
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 Complete damage includes cases where the bridge was washed away, collapsed or has 

significant foundation damage requiring replacement. Example bridges with complete 

damage is shown in Figures 4.2g and h.  

Characterization of the damage level was performed independent of any knowledge 

of the repair costs. Of the 313 damaged bridges, 30% were categorized as having slight 

damage, 39% as moderate damage, 14.5% as extensive damage, and 16.5% as complete 

damage. Estimated repair costs were only known for 16, 35, 14 and 34 bridges with slight, 

moderate, extensive and complete damage, respectively. The mean estimated repair costs 

for these bridges were about $46, 35, 194, and 570 per square meter of deck area. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 5.2. Bridge damage Level (VTrans, 2014) before (left panel) and after (right panels) the 
storm - (a) and (b) Slight Damage, Wallingford VT140-B10, (c) and (d) Moderate Damage, 

Bridgewater C3005-B37, (e) and (f) Extensive Damage, Cavendish C3045-B35, (g) and (h) Major 
Damage, Rochester VT73-B19. 
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 Stream Power Computation 

The calculation of stream power used in this analysis occurs on a broad scale, using 

widely available data, rather than individual measured observations, to produce 

comprehensive estimates of stream power. A GIS script was developed to generate the 

stream power data, which automated the calculation of stream power at any desired point. 

Total stream power (Ω), also referred to as cross-sectional stream power (Fonstad, 2003) 

is defined as:  

Ω = γ·Q·s,      (4.1) 

where γ is the specific weight of water, Q is the discharge, and s is the energy slope. SSP 

(ω) normalizes the total stream power by the width of the stream to estimate unit-bed-area 

stream power as: 

ω = γ·Q·s/b,      (4.2) 

where b is the channel width. The script enables the calculation of stream power for any 

target point (e.g., bridge or endpoint of a stream reach) using commonly available GIS 

layers. The process follows those in the literature (Jain et al., 2006; Vocal Ferencevic and 

Ashmore, 2012; Biron et al., 2013), creating a script that leverages existing GIS tools to 

process the commonly available data into a stream power estimate. Channel width 

estimates using regression equations (Jaquith and Kline, 2001) were uniformly applied to 

calculate SSP for all streams.   

The discharge values required for stream power were calculated using regional 

regression equations for flood discharge at various annual exceedance probability 

thresholds (Olson, 2014). The discharge used was the bankfull flow (estimated as the 2-

year recurrence interval). The regression equations required the drainage area, the basin 
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wetland percentage and the annual rainfall average. The upstream catchment area for each 

individual target point was determined using both flow accumulation and direction 

calculations from a 1/3 arc second hydrologically-corrected DEMs of Vermont (VCGI, 

2006). The wetland percentages (Homer et al., 2011) and annual rainfall totals (Daly et al., 

2012) were averaged using the target point’s upstream catchment area. An example 

illustrating the catchment area for individual bridges is provided in Figure 5.3a.  

With the discharge at each target point estimated, the slope in this study was 

determined based on reach breaks established in the Phase I RGA database. The RGA 

considers each stream on a reach scale, designated as the length of channel that is 

considered consistent in slope, valley confinement, sinuosity, and dominant bed material, 

and distinguishable in some way from the upstream and downstream sections. The target 

slope for each bridge was selected as the slope associated with the underlying stream reach. 

Streamlines were extracted from the National Hydrography dataset (USGS, 2013), and the 

slope was determined by taking the inlet and outlet elevations of the selected reach, and 

dividing by the shape length (thalweg) to determine the channel slope of the target bridge. 

Figure 5.3b shows the determination of the slope using the reach delineations, for the same 

subwatershed shown in Figure 5.3a. 

With the discharge and slope calculated at each target bridge and associated reach, 

the total stream power and SSP can be calculated according to equations 5.1 and 5.2, 

respectively. Total stream power and SSP for the same subwatershed are presented in 

Figure 5.3c and d.  

 In addition to the conventional SSP, which is uniformly based on a 2 yr recurrence 

interval discharge, an event based stream power was calculated using spatially dependent 
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recurrence intervals based on Tropical Storm Irene rainfall totals, called Irene Specific 

Stream Power (ISSP). Precipitation observed during Tropical Storm Irene throughout the 

state of Vermont and surrounding counties in New York and New Hampshire were used to 

estimate rainfall over the entire state (Springston et al., 2012). These spatial estimates were 

used to calculate the average recurrence interval (ARI), using a 12-hr duration storm to 

match the duration of Tropical Storm Irene (Kiah et al., 2013). Figure 5.1b shows the 

rainfall annual recurrence interval with spatially referenced damaged and non-damaged 

bridges on the affected sub-watersheds. Following SSP in the use of regression equations 

to estimate discharge, ISSP is a scaled version of SSP. ISSP uses the average rainfall ARI 

of the catchment area to select a scaled flow estimate, in lieu of measured stream flow 

estimates. The event-based ISSP provides a stream power measure scaled to the storm 

intensity, estimating the power present in Tropical Storm Irene. Together, SSP can be used 

as a measure for identifying the potential high power locations, while the event based ISSP 

extends upon this analysis, creating a framework of application in identifying high power 

in an actual storm event.    

 

 Damage Distribution 

A Kruskal-Wallis one-way analysis of variance was used to compare the 

effectiveness of using stream power as a discriminatory feature for damaged bridges. This 

non-parametric equivalent of the traditional one-way ANOVA test can accommodate the 

observed non-Gaussian distributions of some feature residuals that limit the application of 

a traditional ANOVA (Kruskal and Wallis, 1952; Siegel, 1956). The set of non-damaged 

bridges was selected from bridges that were geographically within the subwatersheds with 
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damaged bridges, as seen in Figure 5.1b, creating a dataset of 313 damaged and 951 non-

damaged bridges. This geographically-based selection ensures bridges are drawn from 

spatially-related regions, in which Tropical Storm Irene had notable impacts. A small p-

value (p < 0.05) indicates significance of the associated feature between the two observed 

groups used for this analysis. Both SSP (Figure 5.4) and ISSP (Figure 5.5) were significant 

(p < 0.001) when testing between damaged and non-damaged bridges. Each set of figures 

displays the distribution of the damaged and non-damaged bridges, as well a box plot 

illustrating the differences between the two. The horizontal line within each box plot 

represents the median, the edges of the box are the 25th and 75th percentiles, and the 

whiskers extend to the most extreme data points not considered outliers, set at beyond 2.7 

standard deviations. Outliers are plotted individually, and the asterisks indicate the mean. 

High values of both SSP and ISSP are correlated with bridge damage, and are a useful 

parameter to evaluate vulnerability of bridge damage.  
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Figure 5.3. Stream power calculation: (a) catchment delineation, (b) slope calculation, (c) stream 
power, (d) specific stream power 

Having determined that both SSP and ISSP are significantly correlated to bridge 

damage, SSP and ISSP were tested to classify between damage levels using a multivariate 

logistic regression. Both SSP and ISSP again were significant (p < 0.001), this time for 

distinguishing between the four damage levels used, slight, moderate, extensive and 

complete. High values for SSP and ISSP were related to increased levels of damage in the 

bridges affected by Tropical Storm Irene. Since both features were found to be significant 
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at discriminating between damaged and non-damaged bridges, and between bridge damage 

levels, both may be good metrics for further probabilistic analysis.  

 

  

(a) 

  

(b) 

 

(c) 

Figure 5.4. Histogram distributions of SSP for (a) Damaged and (b) Non-Damaged bridges, and (c) 
Kruskal-Wallis (non-parametric) One-way Analysis of Variance on SSP 
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(a) 

  

(b) 

 

(c) 

Figure 5.5. Histogram distributions of ISSP for (a) Damaged and (b) Non-Damaged bridges, and 
(c) Kruskal-Wallis (non-parametric) One-way Analysis of Variance on ISSP. 
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summarized in applications of water resource infrastructure (Schultz et al., 2010). Fragility 
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fragility curves, bridges were separated by damage level, and plotted as a histogram 

according to the value of the selected feature. Each set of damaged bridges is then fit with 

a lognormal distribution. The cumulative distribution function (CDF) of the lognormal fit 

to each damage level set is sampled at regular intervals to produce the conditional 

probability curve. The curves are then used to determine the exceedance probability curves, 

by combining the probability of greater damage into each of the lower damage states. The 

finalized fragility curves show the conditional probability of meeting or exceeding the 

given damage state, as a function of SSP and ISSP (Figure 5.6a and b) for the watershed 

bridges displayed in Figure 5.1b. The probability of damage is scaled depending on the 

ratio of damaged to non-damaged bridges in a given study area, with the maximum 

probability equivalent to the ratio of damage to non-damaged bridges being assessed. The 

SSP fragility curve provides a tool for determining the current hazard present at a bridge 

and comparing them between bridges, as a uniform flow recurrence interval was used. The 

ISSP curves can be used to determine the true bridge vulnerability from Tropical Storm 

Irene and is useful in identifying bridges with similar exposure to allow for between-bridge 

comparisons of structural elements or other environmental factors that may have 

contributed to damage. The process outlined to create SSP and ISSP can serve as a 

framework for predicting probability of bridge damage using any user-specified storm 

event.  
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(a) (b) 

Figure 5.6. Fragility curves of the conditional exceedance probability generated from (a) SSP and 
(b) ISSP for each of four bridge damage classifications 

 Probability Mapping 

To extend the usefulness of the SSP and ISSP fragility curve analysis, the resulting 

conditional exceedance probabilities may be mapped to an area, and displayed on a stream-

reach network. Using the GIS script created to generate SSP and ISSP measures at bridges 

and applying it to all 15,261 stream reaches used in this study, a statewide map of SSP and 

ISSP was created. The stream power measures are used to generate conditional 

probabilities of damage by interpolation from the SSP and ISSP fragility curves, and scaled 

to represent the number of damaged to non-damages bridges in the targeted area. The 

statewide probability map of ISSP (Figure 5.7), shows the overall probability of damage 

from Tropical Storm Irene, and shows the effects of geographic watershed differences and 

identifies locations of stream power differences throughout the state on a consistent 

measure. The maximum probability of damage in Figure 5.7 is 9.5% corresponding to 215 

damaged bridges as having moderate (or greater) damage out of a total of 2,249 bridges. A 
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closer look at Figure 5.7 facilitates comparison of the probabilities of bridge damage 

between individual watersheds.  

 
Figure 5.7. Probability map for the state of Vermont generated from ISSP. 
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For analysis focused in a single watershed, the probability of damage can be scaled 

to the total number of bridges in the selected watershed. For example, the probability maps 

(Figure 5.8a, 8b, 8c, and 8d) show the Winooski River and White River watershed, with 

each stream reach showing the maximum probability of damage in the Winooski watershed 

of 7.5 % corresponding to 23 damaged and 306 total bridges, and in the White River 

watershed of the 29% corresponding to 53 damaged and 180 total bridges. Because the 

exceedance probabilities in Figure 5.8 are calculated on the watershed scale, color 

references from one watershed to another are not consistent, and should not be compared. 

Rather, the exceedance probability can be compared in various stream reaches and sub-

watersheds to others within the containing watershed, to observe differences in the spatial 

hazard evident from Tropical Storm Irene. The SSP probability maps (Figure 5.8a and c) 

help show the uniform vulnerability based on stream power differences, with areas of high 

probability indicating vulnerability to the bridge infrastructure in those locations. The ISSP 

maps (Figure 5.8b and d) illustrate the prevailing hazard from Tropical Storm Irene in those 

locations to bridges and likely other transportation infrastructure, showing the increased 

effects of high rainfall on bridge damage. We observe that some areas, which appear to 

have high damage probability (upper right corner of Figure 5.8c), lack any recorded bridge 

damage, suggesting that additional bridge and hydrogeologic characteristics not considered 

in this analysis (e.g., surficial geology) may be necessary to differentiate vulnerability; this 

will be the focus of continued work. The expected trend of higher exceedance probability 

of damage (thus, higher stream power measures) in the steeper headwaters and tributaries, 

are reduced in the flatter and broader valley floor streams, as flow progresses downstream. 
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Though the two pairs of maps are very similar, there are particular differences in which 

individual reaches are rated differently.  

 

This paper assimilated data and categorized the observed damage to 313 Vermont bridges 

from Tropical Storm Irene into four levels of severity, showed a linkage between bridge 

damage and stream power, and quantified and displayed the hazard statewide at the bridges 

and stream reaches used in this study. The application of empirical fragility curve analysis 

for stream power produced a probability of damage generated from the results collected 

from Tropical Storm Irene. With the implementation of probability mapping, the hazard to 

bridges from an extreme event like Tropical Storm Irene could be effectively displayed 

(a) (b) 

(c) (d) 

Figure 5.8. Probability Map for the White River Watershed generated from (a) and (c) SSP and 
(b) and (d) ISSP 
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over a broad section of stream reaches, both at select watershed and statewide scales. The 

following specific conclusions are drawn from this work: 

1) A GIS script was created and implemented to generate stream power measures 

statewide for the studied bridges and stream reaches in Vermont, including the use 

of a scaled stream power value to correspond to the magnitude of the storm impact.  

2) Specific Stream Power, and the event-based, Irene Specific Stream Power were 

found to be both statistically significant at discriminating between damaged and 

non-damaged bridges, as well as between bridge damage levels from Tropical 

Storm Irene.  

3) The resulting spatial probability maps allowed for visual display of vulnerable 

reaches, for which bridge placement would be at increased hazard. Further 

application of event-based SSP probability maps could be generated using rainfall 

ARI in future climate simulations to produce the probability of bridge damage for 

a hypothetical climate scenario.  

The approach presented here could be implemented in other geographic regions. 

The method of estimating SSP and ISSP, and the calculation and expression of bridge 

hazard through fragility curves and probability maps could be useful in creating a screening 

tool for damage prediction. The methodology, and automated scripts used allow for rapid 

implementation in future applications, thus not limiting this work to Vermont. The Tropical 

Storm Irene database used here for the 313 damaged bridges experienced rainfall 

recurrence intervals ranging between 10 and 500 years, indicating that this methodology 

could be evaluated for a wide range of design flows for any watershed beyond the borders 

of Vermont. 



95 

 

As far as we know, this is the first investigation comparing site-specific stream 

power to observed bridge damage at a system level, and represents a fundamental 

breakthrough in the prediction of flood related bridge damage.  

Future studies expanding upon this work could apply the probability maps to create 

a risk based inventory screening tool, to aid in decision making relating to transportation 

infrastructure planning. The complex interactions between the inherent bridge and site 

vulnerability cannot solely be explained through stream power, or any single variable. 

Future research seeks to leverage the full database of features to identify which underlying 

characteristics in addition to the stream power play the most significant role in bridge 

damage vulnerability. Identifying these features requires the development of new feature 

selection techniques (i.e., genetic algorithms, learning system classifiers), which until 

recently were not widely available. The total cause of bridge damage also very likely 

includes a combined occurrence of high stresses, hydrogeologic instability, and vulnerable 

bridge infrastructure.  
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Extreme flood events cause damage to bridges throughout the world. For example, 

in the United States, studies from Hurricane Katrina in 2005 indicate that uplifting and 

hydrodynamic forces on the superstructure caused the majority of the damage to short and 

medium span coastal bridges (Okeil and Cai, 2008). Subsequent analysis of 262 bridges, 

of which 36 were damaged, identified surge elevation as a key factor in determining 

damage level from Hurricane Katrina (Padgett et al., 2012). Similar bridge infrastructure 

vulnerabilities have been witnessed at Escambia Bay, Florida during the 2004 Hurricane 

Ivan (Douglass et al., 2004) and in Hokkaido, Japan during the 2004 Songda Typhoon 

(Okada et al., 2006). More recently, severe flooding in September 2013 caused the collapse 

of 30 highway bridges, and damage to an additional 20 bridges in Colorado (Kim et al., 

2014).   

Scour has been recognized as the primary cause of bridge failures in the United 

States (Kattell and Eriksson, 1998) and in other parts of the world. For example, Wardhana 

and Hadipriono (2003) analyzed 503 cases of bridge failures in the United States from 1989 

to 2000, and found that flood and scour caused nearly 50% of all failures. Melville and 

Coleman (1973) report 31 case studies of scour damage to bridges in New Zealand. The 

HEC-18 document (Arneson et al., 2012) mentions numerous examples of scour related 

bridge damage and failure. During the spring floods of 1987, 17 bridges in New York and 

New England were damaged or destroyed by scour. The collapse of the I-90 Bridge over 

the Schoharie Creek near Amsterdam, NY, resulted in the loss of 10 lives and millions of 

dollars in bridge repair and replacement costs (FHWA, 2015). In 1985, floods in 
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Pennsylvania, Virginia, and West Virginia destroyed 73 bridges. A 1973 national study 

(FHWA, 1973) of 383 bridge failures caused by catastrophic flooding showed that 25 

percent involved pier damage and 75 percent involved abutment damage, and subsequent 

analysis indicated local scour at bridge piers to be a problem about equal to abutment scour 

problems (FHWA, 1978; Arneson et al., 2012). The 1993 flood in the upper Mississippi 

basin caused damage to 2,400 bridge crossings (FHWA, 2015) including 23 bridge failures. 

Arneson et al. (2012) also report that the 1994 flooding from storm Alberto in Georgia 

affected over 500 state and locally owned bridges with damage attributed to scour.  

Extreme flood events cause substantial geomorphic change to the stream networks. 

Stream migration, degradation, aggradation, and widening are all natural processes as 

streams seek equilibrium; however, human encroachment and development in floodways 

have altered the natural stream course resulting in major conflict at the intersection of 

floodway infrastructure and geomorphic change. Bridges in particular are vulnerable to 

damage, as they are a fixed node at the intersection of streams and human infrastructure, 

and susceptible to damage by any change in meander migration, channel width, depth, bank 

erosion or embankment failure. This was evident in the state of Vermont, which 

experienced a significant extreme flood event in August of 2011, as Tropical Storm Irene 

brought heavy rainfall and widespread flooding to the state. Flooding impacted 225 of the 

state’s 251 towns, with rainfall totals of 100-200 mm (4-8 inches). Heavy rainfall at higher 

elevations caused flash flooding, and progressed to widespread flooding through Southern 

and Central Vermont. Rainfall recurrence intervals exceeded 500 years in some towns, and 

was in excess of 100 years in many areas. The storm damaged transportation infrastructure, 

as well as housing and businesses severely over wide swaths of the state. Anderson et al. 
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(2017a) identified 313 Vermont bridges (greater than 6m span) that were damaged in 

Tropical Storm Irene. The location of all long structure (greater than 6m) hydraulic bridges 

and their damage state (313 damaged bridges and 1936 bridges that did not have damage) 

are shown in Figure 6.1. Anderson et al. (2017a) assembled a comprehensive dataset of 

available bridge inspection and stream geomorphic assessments of Vermont hydraulic 

bridges that were damaged as well as not damaged.  

Figure 6.1. Damaged and Non-damaged Vermont bridges in the 2011 Tropical Storm Irene, over 
Irene Rainfall intensity 
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The study presented here adds new meaningful variables related to stream energy 

and watershed properties that were computed for all hydraulic bridges in Vermont and then 

leverages this enhanced dataset to identify structural, geomorphic, geologic and land-use 

features to aid in damage prediction. Multivariate feature selection was conducted on this 

comprehensive dataset, allowing for an impartial and exhaustive search of possible feature 

combinations, to generate models of available data that best predict damage. The feature 

combinations bring together variables from various sources, that until now have not been 

utilized in bridge assessments.  

 

The prior work of the analysis of the impacts of Tropical Storm Irene on Vermont 

bridges documented the number of damaged bridges, as well as the type and severity of the 

damage and repair costs (Anderson et al., 2017a), and therefore provides an extensive case 

study for the research presented here. In total, 313 bridges were identified and classified 

by damage type categorized as scour, channel flanking, superstructure damage, and debris 

blockage. Bridge damage was further categorized into four levels: slight, moderate, 

extensive and complete, with damage descriptions provided in Table 6.1 and examples 

shown in Figure 6.2. This damage ranking system was based on that proposed in HAZUS 

(Scawthorn, 2006), and later amended by Padgett et al. (2008). The ranking system 

descriptions were expanded to include the damage types observed in Tropical Storm Irene, 

particularly damage from flooded river flow, including scour, flanking, debris, and 

superstructure damage.  
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Table 6.1. Description of damage categories used in analysis (Anderson et al., 2017a). 

Damage 
Category Description 

Slight Channel erosion that does not affect the bridge foundation, 
superstructure and guardrail damage and debris accumulation without 
scour present. 

Moderate Scour that affects the foundation, but not to a crucial state, bank and 
approach erosion, heavy aggradation and damage to the 
superstructure, but not to a crucial state. 

Extensive Crucial scour, with some settlement to a single foundation, but not to 
the point of collapse, full flanking of both approaches, and 
superstructure damage that makes it structurally unsafe. 

Complete Bridge washed away, collapsed, or has significant foundation damage 
that requires replacement. 

 

  

(a) Slight Superstructure Damage (b) Moderate Debris Damage 

  

(c) Extensive Channel Flanking Damage (d) Complete Scour Damage 

Figure 6.2. Bridge Damage Level and Type from Tropical Storm Irene 
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 Data Collection and Initial Statistical Analysis 

In Anderson et al (2017a), a comprehensive dataset of bridge inspection and stream 

geomorphic assessments was created. In particular, the following disparate sources of data 

were assembled and georeferenced into GIS (Geographic Information Systems): 

(1) All records of long structure bridges (greater than 6 m in span), and the preceding 

years (2010) inspection from the Vermont Agency of Transportation (VAOT) Bridge 

Inventory System (BIS). The Vermont State bridge inspections follow the NBIS (Na-

tional Bridge Inventory System) criteria (FHWA, 2015).  

(2) Estimates of post-storm damage level, damage type, and repair costs were obtained 

from documentation via the VAOT and the Vermont Department of Emergency Man-

agement (VDEM), and supplemented through examination of the available inspection 

photos for all bridges affected.  

(3) Tropical Storm Irene rainfall data were collected for Vermont, neighboring state New 

York and New Hampshire, and the Province of Quebec. Rainfall and recurrence inter-

val were spatially interpolated with ordinary kriging, to provide estimates over the 

entire state, and allow for the determination of average rainfall and recurrence interval 

in each watershed. 

(4) The Vermont Agency of Natural Resources rapid geomorphic assessment (RGA) 

work provided a host of stream characteristics and measurements for reaches through-

out the state. The RGA protocols are nationally recognized for providing a measure of 

stream disequilibrium and stream sensitivity indicating the likelihood of a stream re-

sponding via lateral and/or vertical adjustment to natural or human-induced watershed 
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disturbances (Somerville and Pruitt, 2004; Besaw et al., 2009). The RGA data charac-

terize stream reaches, defined as river segments deemed consistent in slope, bed ma-

terial and condition (Kline et al., 2007). Joining the RGA data to the bridge dataset 

linked the underlying stream metrics directly to the bridges located on the analyzed 

stream reaches, providing stream survey measurements and geomorphic characteriza-

tions to the dataset.  

An analysis of variance was conducted on this dataset to differentiate between 

damaged and non-damaged bridges on three scales, statewide, on only the bridges within 

subwatersheds that contained a damaged bridge, and on a pairwise selection containing the 

nearest non-damaged bridge. Results showed a number of bridge inspection parameters 

and ratings to be significant, including channel rating and waterway adequacy. Stream 

geomorphic parameters, such as entrenchment, incision, straightening and width to depth 

ratio were also statistically significant in relation to bridge damage.   

 Motivation 

Bridges are critical connections in transportation network, and uniquely vulnerable 

in flood events, and therefore of high value in emergency response. Prioritizing 

infrastructure investment and emergency response during major events like Tropical Storm 

Irene require a broad quantitation of the vulnerability of our bridge population. A number 

of factors affect bridges under extreme flood events including bridge characteristics, stream 

characteristics, geographical features, environmental factors and land-use. We computed 

and included meaningful variables to characterize stream energy and watershed properties, 

and appended to the bridge dataset compiled by Anderson et al. (2017a). The above-

mentioned dataset contains 330 such features. Finding combinations of features that may 
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collectively indicate why particular bridges were damaged is a severely difficult task for 

routine statistical techniques. Commonly, variables used in multiple regression analysis are 

often selected using forward selection, backward elimination, or stepwise selection. With 

330 possible variables, ranging in data type (i.e., nominal, ordinal and continuous) and with 

varying degrees of independence, and lack thereof, variable selection using traditional 

methodologies is not feasible. For example, a four-effect model, using nominal logistic 

regression, would result in 5x108 possible feature combinations. To avoid the 

computational challenges often associated with these large data sets, input data variables 

are often eliminated using expert judgement (i.e., domain experts pre-process the data and 

include only those variables deemed important). However, this greatly limits the power of 

large, comprehensive datasets.   

Because numerous bridge inspection and geomorphic assessment characteristics 

are significant when discriminating between damaged and non-damaged bridges, here we 

use a novel feature selection method to identify the combination of available characteristics 

(i.e., features) at play in complex bridge and stream interactions. The feature selection 

method is an evolutionary algorithm, recently developed for the purpose of feature 

selection (Hanley et al., 2017, in review) in big data, and eliminate the bias associated with 

a priori expert selection processes. The result is the identification of features (i.e., 

combinations of bridge, stream and watershed characteristics described above) significant 

in the determination of bridge damage. Here, bridge damage levels classified as moderate 

and above were included in the positive (i.e., damaged) outcome group, while bridges 

identified as non-damaged or having only slight damage were used as the alternate negative 

(non-damaged) outcome group. This helps bias the features selection toward significant 
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damage, and better correlates with major erosive scour damage, excluding minor 

superstructure and incidental damage from flooding. 

The method employed here is a nonparametric, multivariate approach to identifying 

the combined presence of bridge vulnerabilities, hydrogeological stressors, and increased 

flows from a localized flooding event (i.e., Tropical Storm Irene) to better understand why 

damage occurs. Our focus is to identify the set of multivariate features (i.e., characteristics 

within the bridge and stream interaction) most pertinent to bridge vulnerability. 

 

An ArcGIS script was created to use a 10 m hydrologically corrected digital 

elevation model to iteratively delineate watersheds to the downstream end of each stream 

reach. Any rainfall runoff within a watershed will eventually flow to the outlet location. In 

total, 15,123 stream reaches were delineated to calculate their watershed area (i.e., the 

contributing area draining to some target location). Through the watershed analysis, the 

following data were generated: watershed land use characterization, watershed soil 

hydrologic grouping, and a reach segmented stream power assessment.  

Land use is an important metric in determining watershed characterization and 

understanding the relationship between rainfall and streamflow. Developed land cover 

contribute more stormwater runoff directly to surface water bodies, increasing flooding, 

while natural land cover and wetlands work to buffer flooding. The National Land Cover 

Database provided land use classifications, and was simplified from 16 types down to five 

major groups for this study: developed, agriculture, open water/wetland, forest, and other.  

The hydrologic soil group (HSG), established by the US Soil Conservation Service 

(USCS, 2009), is valuable in the determination of runoff potential. The HSG is determined 
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by the water transmitting soil layer with the lowest saturated hydraulic conductivity, and 

is categorized into four distinct groups. The HSG was sampled to find the percentage of 

each soil type for every stream-reach delineated watershed. Soil coverage with high runoff 

potential will contribute greater volumes of stormwater directly to rivers and streams, 

increasing occurrences of flash flooding by shortening the time to peak flow.  

Stream power is the rate of energy (i.e., power) of the flowing water against the bed 

and banks of the river channel. Stream power functionally controls stream dynamics and 

morphology. Stream power estimates during extreme events show correlations to stream 

widening in Vermont (Buraas et al., 2014), and erosion and deposition in Colorado 

(Gartner et al., 2015). The calculation of stream power used in this analysis occurs on a 

broad scale, using widely available data, rather than individual measured observations, to 

produce comprehensive estimates of stream power. A GIS script was developed to generate 

the stream power data, which automated the calculation of stream power at any desired 

point, in this case at the locations of all hydraulic bridges in Vermont. Total stream power 

(Ω), also referred to as cross-sectional stream power (Fonstad, 2003) is defined as:  

Ω = γ·Q·s,  (1) 

where γ is the specific weight of water, Q is the discharge, and s is the energy slope. SSP 

(ω) normalizes the total stream power by the width of the stream to estimate unit-bed-area 

stream power as: 

ω = γ·Q·s/b,  (2) 

where b is the channel width. The discharge values required for stream power were 

calculated using regional regression equations for flood discharge at various annual 

exceedance probability thresholds (Olson, 2014; Olson, 2002). With the discharge at each 
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target reach estimated, the energy slope was determined based on reach breaks established 

in the RGA. Stream power, specific stream power, as well as scaled versions to represent 

the estimated Tropical Storm Irene intensities were calculated as detailed in Anderson et 

al. (2017b). These scaled versions, Irene Stream Power and Irene Specific Stream Power, 

represent the full power of the water that would be forced through a bridge opening. Stream 

power is typically modeled on the 2-year flow, as a higher flood flows would access the 

floodplain, and so the power within the channel is what is related to geomorphic change. 

Bridge intersection however often block the floodplain, forcing all flow to return to the 

channel, creating an intensified effect.  

 

In total, 330 features are available for every bridge in the dataset including: bridge 

inspection from the BIS, stream geomorphic data from the RGA, rainfall and recurrence 

interval, classification of the damage level and type, watershed analysis and stream power 

metrics. A data-driven multivariate feature selection Evolution Algorithm (EA) was 

performed using a newly developed evolutionary algorithm of Hanley et al., (2017, in 

review), to identify key features from among the 330 assembled features that correlate to 

the damage to Vermont bridges resulting from Tropical Storm Irene.  

 Conjunctive Clause Evolutionary Algorithm Complex Interaction Identifica-
tion  

The EA is specifically designed for feature selection, (i.e., identifying multivariate 

interactions) associated with some desired outcome, k, of interest (e.g., level of bridge 

damage) associated within a very large, complex dataset (Hanley et al., 2017; in review). 

The method searches across all multivariate combinations, where each variable, or feature, 
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may have a different data type (i.e., nominal, ordinal, continuous), each having a range of 

values. The only assumption inherent in the EA methodology is that ordinal and continuous 

features must be monotonic or unimodal. The algorithm is capable of evolving both the set 

of important features and the range of values using what are known as conjunctive clauses 

( ) of the form: 

    ∈ ∧ ∈ …         (1) 

where F represents a feature (i.e., bridge or stream characteristic) whose value lies in the 

range ai; the symbol ∧ indicates a conjunction (i.e., features are linked by the logical AND). 

The  is interpreted as “If the  is true for a given input feature vector (set of features), 

then the class outcome will be predicted as being associated with some user-defined 

outcome, k (e.g., level of bridge damage) compared to what one might expect given the 

global distribution of k.” The conjunctive clauses may be evaluated based on accuracy, 

coverage, and order. Accuracy, analogous to the positive predictive value (PPV), is the 

ratio of true positives predictions to all positives predictions (actual damage detected to all 

predicted damaged). Coverage, also called probability of detection (POD), is the ratio of 

true positive predictions to actual positive values (actual damage detected to total 

damaged). Order is defined as the total number of features in a given model ( ). 

The algorithm processes in two phases, each using an age-layered population 

structure (Hornby, 2006), and assesses fitness using a hypergeometric probability mass 

function (Kendall, 1952) that accounts for the size of the dataset, the amount of missing 

data, and the distribution of outcome categories. The first phase evolves an archive of 

conjunctive clauses (CCs) consisting of feature combinations that have a high probability 
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of a statistically significant association with a given outcome. The second phase evolves 

disjunctions of these archived CCs to create an archive of probabilistically significant 

clauses in disjunctive normal form (DNF). The DNF outcomes are combinations of CCs, 

which in turn are combinations of features.  

The features identified as being important for discriminating bridge damage 

comprise all features archived in a 2nd-order or higher conjunctive clause during at least 

one of the five repetitions. Main-effect features were only selected if that feature was 

archived during all five repetitions.  

 Multiple Logistic Regression 

Following the EA feature selection analysis, the resulting feature combinations 

were tested with multiple logistic regression, conducted in JMP 12. The dependent variable 

was bridge damage at moderate or greater level, with the feature combinations identified 

by the EA as the independent variables. Logistic regression models were created to include 

the same variables found by the EA in its features combinations. This enables direct 

comparison of the EA to multiple logistic regression. Each logistic regression model was 

then used to create probabilistic estimates for prediction.   

 

 EA and Logistic Regression 

The EA processed the bridge dataset to identify feature combinations that best 

correlate with observed bridge damage from Tropical Storm Irene. Damage levels 

classified as moderate, extensive, and complete were used as the positive state (damaged), 

while the two levels labeled non-damaged and slight damage comprise the negative state 
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(non-damaged). The EA features combinations are reported with their accuracy (PPV) and 

coverage (POD), two commonly used metrics for describing their quality. Coverage is the 

percentage of damaged bridges correctly identified, or the percent of true positives. 

Accuracy is the ratio of true positive results to total positive predictions (true positive and 

false positive). Feature combinations were identified (evolved) by the algorithm as good 

solutions based on fitness, as outlined in section 6.4.1. Figure 6.3 shows the accuracy and 

coverage of feature combinations identified using the EA for the bridge dataset, with each 

feature combination represented as a point on the figure. Of the 256 features combinations 

stored by the EA, 29 input variables are selected. Each variable within a feature 

combination is optimized for a range of values.  

Figure 6.3 shows that selected features combinations vary by order and span a wide 

range of accuracies and coverages. The best solutions fall along what is known as a Pareto 

front, meaning they are of optimal fitness, and a move along the front does not improve the 

resulting fitness. An ideal feature combination has a balance to include both accuracy and 

coverage, predicting bridge damage correctly for a large set of the bridge population.  

Four feature combinations are selected as examples (circled points in Figure 6.3) 

for examination here. Within Table 6.2, are the variables and ranges for each of the 

identified target points. A few of the features lie on the Pareto front, while others are not 

individually optimal solutions. The first order point, FC 5 has accuracy and coverage of 

42.8 and 8.8, respectively. This feature includes waterway adequacy, which is a rating 

associated with the bridge’s design capacity for overtopping, and shows that low ratings 

are related to damage. The second order feature combination, FC 31 has accuracy and 

coverage 44.6 and 15.3, respectively, and relates high Irene Stream Power and the low 
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bridge inspection channel rating to damage. The third order feature combination, FC 70 

has accuracy and coverage of 29.7 and 52.6, respectively, and correlates higher elevation, 

and high percent of hydrologic soils B and C. The final feature combination, FC 254 is 

fourth order with accuracy 34.1 and coverage 34. This combination includes high rainfall, 

low hydrologic soil type D, lower than average open water land cover (less wetland and 

water bodies), and median to low confinement ratio (ratio of valley with to channel width). 

Each feature combination generated from the EA was also tested in logistic regression, and 

their results can be seen in the confusion matrices in Table 6.2 below. In the confusion 

matrix, the upper right hand corner is the number of True Positive, upper left is False 

Negative, lower left is False Positive, while lower right is True Negative. 

Table 6.2. Feature Combination Confusion Matrices, EA and Logistic Regression 

FC 5 EA Logistic 

Regression 

Ord 1 Predicted Predicted 

Actual True False True False 

True 19 196 17 197 

False 26 2008 17 1996 
 

 

FC 31 EA 

 

Logistic 

 Regression 

Ord 2 Predicted Predicted 

Actual True False True False 

True 33 182 6 208 

False 41 1993 9 1983 

(a) (b) 
 

FC 70 EA Logistic 

Regression 

Ord 3 Predicted Predicted 

Actual True False True False 

True 96 119 0 214 

False 209 1825 0 1946 

 

FC 254 EA Logistic 

Regression 

Ord 4 Predicted Predicted 

Actual True False True False 

True 73 142 4 137 

False 141 1893 8 1214 

(c) (d) 
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Figure 6.3. Accuracy and Coverage for Feature Combination 

Feature combinations identified by the EA returned a significantly higher number 

of true positives than the logistic regression, but also return a much higher number of false 

positives. Overall, logistic regression models running the same feature combinations 

identified by the EA produced fewer true and false positive results, indicating conservative 

statistical predictions, which may limit its applicability to the bridge damage problem. 

Logistic regression assumes that observations are independent, which is not necessarily 

true in this problem given spatial correlations between locations. This independence issue 

is more difficult when variable selection is often done through either forward or backward 

substitution, or expert examination. With so many possible variables, and numerous 
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unknown interactions between variables, judgement of independence of each variable, or 

observation is difficult.   

Several variables identified by the EA feature combinations show the value of using 

a computational method capable of accommodating the additional data included in the 

bridge damage dataset. For example, Irene Stream Power is identified as important 

indicator of bridge damage, showing the value of the stream power metric toward bridge 

vulnerability. Channel Rating and Waterway Adequacy Rating are two bridge inspection 

variables identified as correlating to damage, with low ratings being associated with 

damage prediction. High rainfall is included, which is as expected, but still important to 

note. Hydrologic Soil Types are showing up as key variables, with higher percentages of 

B and C, and lower percentages of D relating to bridge damage. Open water land use type 

represents the amount of available wetland or waterbodies that could act as storage to 

mediate the flooding. Lower percentages of open water land cover would mean a reduced 

storage, and increased flooding.  

The predictions of damage from the EA and from the logistic regression deviate 

further apart as higher order models are used, as logistic regression produces similar results 

for the first order model, but fails to identify a meaningful number as damaged bridges in 

the higher order combinations. The inclusion of multiple model effects in logistic 

regression produces exceedingly conservative results, failing to meet the required threshold 

to trigger a positive prediction.  

 Disjunctive Normal Form Analysis 

The feature combinations identified by the EA show significant correlation to 

bridge damage, using only a small number of variables (select bridge, stream, and 
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watershed metrics). The algorithm is novel also simultaneously evolving the range of 

values associated with each of the selected variables, providing a threshold used to 

discriminate between damage states. Damaged bridges can be correlated to a number of 

different variables, and combinations of variables, as shown through the feature selection 

algorithm depending on the level of accuracy and coverage that the user deems most 

meaningful to the problem at hand. To add to the predictive capacity of the EA algorithm 

another layer of analysis was added, which would create sets of feature combinations that 

increase coverage while maximizing accuracy.   

By creating sets of feature combinations, the Disjunctive Normal Form (DNF) 

algorithm is able to join independent sets of bridges from numerous feature combinations, 

to improve the coverage of the predictive model. Individual feature combinations that 

identify independent sets of bridges can be joined to improve performance. The DNF 

search produces results with better coverage than the individual feature combinations, 

while maintaining equivalent accuracy, as seen in Figure 6.4 indicated with a star. The 

selected set, DNF 3313 is fourth order, has accuracy and coverage of 27.6 and 68.4, 

respectively. The selected DNF is composed of the individual feature combinations 

highlighted in Figure 6.3 and Table 6.2. Predicting damaged bridges based on DNF 3313 

returned 148 true positives (70% of damage), 339 false positives (17% of non-damage), 67 

false negatives, and 1,695 true negatives, and an odds ratio of 11. Odds ratio is the 

proportion of the true outcomes, divided by the false outcomes, and is a measure of 

association between exposure and outcome. The odds ratio represents the odds that damage 

will occur given the model conditions (parameters within the ranges of the variables within 

the feature combinations), compared to the odds of damage without them (data outside the 
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selected feature combinations). DNF 3313 shows that bridges with parameters within the 

feature combination ranges are 11 times more likely to be damaged than those outside the 

group.  

  

Figure 6.4.  Accuracy and Coverage for DNF and FC 

Using a group of feature combinations the DNF was able to produce a result with 

higher coverage with similar accuracy, allowing for the prediction of a greater number of 

damaged bridges. Nearly 70% of the bridges damaged at a level classified as Moderate, 

Extensive and Complete were successfully identified using 10 combined variables, within 

four feature combinations. Three variables, the Channel Rating, Waterway Adequacy 

Rating and Irene Stream Power were shown to be useful individually in determining bridge 
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damage (Anderson et al., 2017a; Anderson et al., 2017b) and have additionally been shown 

here to be important through multivariate feature selection. Irene Stream Power is the 

scaled version of stream power, meant to represent the true flood stress passing through a 

confined bridge, and is shown to be an important metric in damage. Channel Rating is the 

assessed condition of the channel and bridge riprap present during the biennial bridge 

inspection. Waterway Adequacy is the rating of the bridge’s ability to convey its design 

storm, or the hydraulic overtopping flow associated with the bridge’s service level. 

Highway bridges are designed to convey larger recurrence interval flood events without 

overtopping, whereas rural town bridges are often designed for lower flow events. The 

percentages of hydrologic soil types within each bridge’s watershed drainage area, 

identified by including the expansive set of watershed variables found through the 

watershed analysis, have proven important in correlating to bridge damage. High 

percentages of hydrologic soil type B and C (each above the average) correlate with 

increased damage. Soil C is associated with increased runoffs, and could precipitate 

flooding. Additionally, a different feature combination included lower prevalence of Soil 

D, which is normally associated with higher runoff. The opposing soil types between 

feature combinations could indicate that there are differing and distinct relationships 

between certain locations with higher and lower runoff potential, with both leading to 

bridge damage. When the land cover type “water” is in low proportion it is shown to be 

more significantly related to bridge damage, as is higher elevations. Higher elevations are 

the source of stream headwaters, have generally higher slopes, and are more prone to flash 

flooding. As a result of the EA algorithm, including the selection of DNF sets, we can 

identify bridges with high Irene Stream Power and rainfall, poor Channel and Waterway 
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Adequacy ratings, higher elevation, little open water, and higher percent soil type B and C 

to be at greater risk for flooding damage.  

 Geographic Prediction 

The prediction of the bridge damage can be visualized geographically to highlight 

spatial relationships. Using the feature combinations associated with DNF 3313, Figure 6.5 

displays the prediction of damaged bridges throughout the state of Vermont superimposed 

on major watersheds. The map depicts distinct geographical areas in which the bridges are 

predominantly predicted as damaged. The majority of the damaged bridges classified 

correctly were located in the central region of the state, following areas of high rainfall. 

The majority of the damaged bridges in the Winooski watershed were misclassified as non-

damaged, while other watersheds, such as the Otter, the Connecticut-Waitsfield to White 

River, and Connecticut-White River to Bellows Falls had the damaged bridges predicted 

correctly. The White river watershed, which had a significant amount of damage, had a 

mix of both correct and missed damage predictions, with the missed predictions being 

grouped in tributary watersheds. The Mad river subwatershed received a high amount of 

rainfall, and experienced intense flooding, but the bridge damage was not correlated to the 

variables found in the DNF 3313. The differences between bridge identification in 

neighboring watershed is an interesting one, and suggests there are additional variables that 

discriminate damage between different watersheds and geographic areas. The results 

suggest the analysis is identifying differences on a watershed scale, while being applied at 

the statewide level. The EA could potentially be used to identify a different DNF solution 

that may be useful in damage detection in those misidentified areas.     
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Figure 6.5. Spatial relationship of DNF 3313 results 

 

An available dataset (Anderson et al., 2017a) that incorporated a unique set of both 

bridge and stream characteristics, as well as documented observations of varying levels of 
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bridge damage from a single extreme storm event was employed. Additional analysis 

including watershed delineation, stream power calculation, slope determination, land cover 

and hydrologic soil type characterization, and rainfall interpolation were conducted on 

15,123 individual stream reaches and added to the dataset. The updated dataset is available 

at: http://go.uvm.edu/vtbridges-irene-data  

Features significantly correlated to and capable of discriminating damage to 

hydraulic bridges were identified, and combined to increase their predictive power. The 

feature selection was focused on more significantly damaged bridges, to allow for better 

correlations with major erosive scour damage, and excluding minor superstructure and 

incidental flooding damage. As a result, the predicted damage can be used to assess the 

critical needs of the transportation networks, and identifying vulnerable links during 

extreme flood events. Many of the collected features found to aid in the prediction were 

previously unavailable, and had not been applied to predict bridge damage. 

The EA algorithm is capable of producing bridge damage predictions through 

multivariate feature selection. The EA is capable of testing a vast number of possible 

combinations, something that is infeasible with logistic regression, and outperforms the 

artificially seeded traditional logistic regression (when fed the same information).   

Logistic regression is overly conservative, failing to classify affirmative results, and 

requires independence between samples, which is uncontrollable given the spatial 

correlations between bridges. The EA algorithm creates a prediction set that includes a 

significant number of true positive solutions, using the relatively small set of variables 

including: rainfall, Irene Stream Power, Waterway Adequacy Rating, Channel Rating, 

elevation, percentage hydrologic soil type, open water land cover, and confinement ratio . 
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The method allowed for the inclusion of new variables, previously unused in bridge 

analysis, to be applied over the full population of bridges in the state. The method is capable 

of handling a large amount of potential data and producing a result that improves upon the 

prediction of damage, compared to traditional regression analysis. Each feature 

combination seeks to explain bridge damage by finding correlation with a small number of 

features, to avoid over fitting. 

The addition of the DNF search generates an enhanced set of feature combinations 

that improves coverage while maintaining accuracy. By leveraging this extensive dataset 

to classify for bridge damage, we have created a prediction of statewide bridge 

vulnerability under extreme flood event. The map of predicted bridge damage shows good 

correlation to bridges actually damaged during Tropical Storm Irene, and could aid in the 

identification of additional (currently undamaged) bridges at risk.  

Several of the variables identified as significantly correlated with bridge damage 

have promise in developing risk maps of bridge damage. Irene Stream Power, scaled to a 

proportional flow associated with storm intensity, was often included in optimal feature 

combinations. Watershed hydrologic soil types were newly identified variables, and show 

the importance of understanding the geographically specific watershed conditions and their 

influence on extreme flow events. Channel Rating and Waterway Adequacy Rating, 

variables from the bridge inspection manual proved important, showing that prior signs of 

damage to the channel and the overtopping risk are likely a sign of upcoming vulnerability.   

When viewed from a geographic perspective, the prediction of damage from the 

selected DNF appears to segment different watersheds. The difference between adjacent 

watersheds reveals the spatial relationship behind some of the parameters, and displays 
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how those differences affect the outcome, bridge damage. Other DNF solutions are likely 

to be better at identifying damaged bridges in those missed watersheds, and suggests the 

method may have applicability on a smaller scale.  

The analysis conducted here collated a unique set of data (bridge assessment data, 

stream geomorphic, stream power, and watershed characteristics), and showed correlation 

between this constructed set of variables to bridge damage from Tropical Storm Irene. The 

knowledge gathered as a result of this study has applications beyond Vermont. Many of 

the variables newly added to the analysis can be created or monitored using commonly 

available data. The methodology, for creating watershed assessment parameters, as well as 

using the available EA for feature selection can be applied to any bridge dataset and may 

add value in assessments beyond the study of bridge damage. Bridge inspection records 

are commonly used in other states, and can be supplemented with additional information 

following the methodology used here. The EA opens up the opportunity to perform feature 

selection on large datasets, allowing for sets of multivariate features to be identified that 

are significantly correlated with levels of bridge damage while circumventing the 

computational challenges associated using traditional statistical analysis. With the 

increasing availability of sensor technology, and the emphasis on multidisciplinary 

approaches, the movement toward incorporating more and varying data sources continues 

to increase, making traditional methods even more limited. 
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The EA uses a customized version of an Age-Layered Population Structure (ALPS) 

(Hornby, 2006). In the first generation (and every ten generations thereafter), a novel 

population of clauses, each with age 1, is introduced into the first age layer. During each 

generation, clauses in each layer are selected to reproduce with variation introduced either 

through crossover (with probability Px = 0.5) or through mutation. If selected for crossover, 

a second parent is selected from the same or preceding (if one exists) age layer, using 

tournament selection with replacement (tournament size of 3). The EA was run for 3,000 

generations using all 336 features (L) and repeated five times. Details of the parameters 

used in this study are provided in Tables A and B.  

Feature sensitivity measures the contribution of each feature to the fitness of the 

conjunctive clause. In this work, the initial minimum feature sensitivity threshold is set to 

one, which translates to each feature improving the fitness of the conjunctive clause by at 

least one order of magnitude. Conjunctive clauses are archived (retained) only when they 

possess a fitness less than or equal to the hypergeometric PMF threshold and a minimum 

feature sensitivity greater than or equal to the minimum feature sensitivity threshold. For 

each order of archived conjunctive clauses, the minimum feature sensitivity was 

heuristically increased as the number of archived clauses increased. 
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Table A - Parameter settings for the EA. 

Parameter Meaning Value 
Param.ALna Number of non-archived age layers 10 
Param.ArchOff Maximum number of archived clauses that will undergo 

either mutation or crossover 
200 

Param.GENn Generations until new population is added 10 
Param.MaxNumFeat Maximum number of features in new conjunctive clause 20 
Param.NonArchLMax Maximum non-archived conjunctive clauses per age layer 20 
Param.NumNewPop Number of conjunctive clauses created in new population 20 
Param.Pm Probability that locus will be selected for mutation 1/L 
Param.Pwc Probability of wild card 0.25 
Param.Px Probability of crossover 0.50 
Param.PXvals1 Probability that crossover will be at the feature value level 0.50 
Param.PXvals2 Probability that a feature common to both conjunctive 

clauses will be crossed at the value level 
0.75 

Param.TotGens Total generations 3,000 
Param.TournSize Tournament size 3 
Param.WCloci Probability that a wild card locus will be mutated 0.05 

 

Table B - Initial settings for the EA archive thresholds. (N is number of CC) 

Threshold Parameters Value 
Conjunctive Clause Order Layers 1-8 
Hypergeometric PMF Threshold 1/N 
Minimum Feature Sensitivity Threshold 1 
Minimum Archived CCs per Order Layer 1,000 
Maximum Archived CCs per Order Layer 1,100 
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Vermont’s historic bridges are an important cultural, economic, and aesthetic 

resource. The three common historic bridge types in Vermont are timber truss bridges 

(mostly covered), steel truss, and masonry arch (Figure 7.1). These bridges are noticeable 

for the sizeable superstructure, from the network of green steel trusses, to the cedar siding 

of a covered bridge. These landmarks often serve as key links in transportation 

infrastructure as well as attract tourists, providing 19th century rural aesthetic. Bridges are 

deemed historic based on guidelines set by the National Historic Registry, with the intent 

to protect and preserve their cultural significance and value. The earliest bridges in 

Vermont consisted of unframed log beams resting upon timber cribbing. Advances in 

design led to simple trusses, most notably the king and queen post styles. With greater 

investment in design and the scale of the bridges, siding began to be used to protect the 

truss members from weathering, extending their lifespan (McCullough, 2015). 

Advancements in truss design lead to the implementation of the arch-truss, allowing for an 

increase in the clear span of the bridge.  

 It is believed that at least 700 covered bridges were constructed in Vermont 

(Conwill, 2004) beginning in the 1820’s. Major flood events, like the 1927 flood, wiped 

out an estimated 300 timber bridges throughout the state (Thomas et al., 2013). Tropical 

Storm Irene in 2011 caused the loss of a number of historic bridges. Repair and remediation 

of these critical resources must be done with care and thought to maintain their historical 

significance, but at the same time, adapted to the increasing risk of extreme events. Historic 
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bridges are more vulnerable than a conventional bridge to the risk of high flows, as 

overtopping will create uplifting forces that can remove the bridge from its supports, and 

also increase the risk of debris strikes. In an effort to determine the vulnerability of historic 

bridges, the relationship to damage type and cost were assessed using the available 

information gathered following Tropical Storm Irene.  

 

 
(a) 

 

 
(b) 

 

        
(c) 

 
Figure 7.1. Classic historic bridge types: (a) Kidder Hill Covered Bridge in Grafton, (b) York Hill 

Steel Pony Truss Bridge in Lincoln, (c) Battell Bridge in Middlebury 



125 

 

 

A major shift occurred as a result of the flooding in 1927, 1936 and 1938, in which 

bridge designers and owners began to understand that large stone piers and abutments 

became impediments to water flow, and that in addition to carrying roads across rivers, 

bridges also passed streams under roads, and must be designed to allow for greater flows 

(VSHB, 1937). The remaining population of covered bridges were seen as a threat, acting 

as dams under high flows, and were vulnerable to debris/ice strikes (McCullough, 2015). 

Bridge design became more standardized, following national trends, which sought to 

improve construction efficiency, cost, and maintenance. As a result, the adaptation of steel 

truss bridges became widespread for larger spans, forever changing the Vermont landscape. 

Small span bridges were beginning to be replaced with inexpensive concrete slabs on steel 

beams, with plans available in 2ft increments to expedite the process.  

 

After intensive review of the available damage records and examination of post-

storm inspection photos, 26 out of the total 164 historic bridges were determined to be 

damaged. Bridges are categorized for damage as scour, channel flanking, superstructure, 

and debris, as well as for the magnitude of damage as slight, moderate, extensive, and 

complete. Slight damage includes channel erosion not affecting the bridge foundation, 

superstructure and guardrail damage, and debris accumulation without scour present. 

Moderate damage includes scour affecting the foundation but not to a critical state, bank 

and approach erosion, superstructure damage but not to a critical state, and heavy channel 

aggradation. Extensive damage includes critical scour, with some settlement to a single 

foundation, but not collapse, full flanking of both approaches, and damage to the 
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superstructure making it structurally unsafe. Complete damage includes cases where the 

bridge was washed away, collapsed or has significant foundation damage requiring 

replacement. Examples of damage to historic bridges can be seen in Figure 7.2. 

Often times, there are multiple damage types occurring at the same bridge. Streams 

throughout Vermont were filled with lots of debris as a result of the widespread flooding. 

In the events multiple damage types were prevalent, the bridge was categorized as the 

greatest damage type. Often times, scour would be the most damaging, followed by 

flanking, superstructure, and debris. As a result, very few bridges were categorized as 

debris damage, even though most bridges were affected by some amount of debris 

accumulation. The collective list of the damaged bridges, bridge type, damage level, 

damage type, and cost of repair can be seen in Table 7.1. Figure 7.3 shows the distribution 

of bridge type by material, including the count and percentages, for all historic bridges, as 

well as those damaged. There is an increase number of damaged covered bridges, when 

compared to the distribution of the total population.  

Parameters from the bridge inspection database were tested for discrimination 

between damaged (n = 26) and non-damaged historic bridges. Of the variables tested, only 

Waterway Adequacy Rating and Channel Rating were significantly different, showing that 

lower ratings for those two parameters related to damage. Figure 7.4 shows the distribution 

of the parameters tested across the entire historic bridge population. Year built shows a 

spike after 1920, and corresponds to the bridges built following the 1927 flood, which 

destroyed hundreds of bridges. Aside from the group of low rating, the average and 

medians are high ratings for each parameter. 
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(a) Example of slight debris damage – before and after, Montgomery C2001 B5 

  
(b) Example of moderate flanking damage – before and after, Warren FAS188 B6 

  
(c) Example of extensive scour damage – before and after, Woodstock C2002 B45 

  
(d) Example of complete damage – before and after, Moretown C3024 B41 

 

Figure 7.2. Damage to Vermont’s historic bridges 
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Figure 7.3. Historic bridge type, between population and damaged group 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 7.4. Distributions of historic bridge features 

 

 

Historic bridges throughout Vermont are culturally important, and are in need of 

remediation to ensure their continued survival. Major storm events like the flood of 1927 

and Tropical Storm Irene in 2011 have major impacts on the historic covered and truss 
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bridges in Vermont. Repairs and remediation on historic structures is constrained by the 

types of replacements and designs to ensure the historical significance is preserved, and is 

often more expensive as a result.  

Of Vermont’s 164 historic bridges, 26 were damaged in Tropical Storm Irene. The 

majority of damage was either scour or superstructure damage. Damage occurred more 

frequently to timber covered bridges, than the steel truss bridges, likely as a result of 

overtopping debris collisions. Costs range widely based on the level of damage 

experienced, with the highest reported cost of 2.68 million U.S. dollars for full replacement 

of the Lower Bartonville Rd Covered Bridge. 
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Bridges are critical connections in our transportation system, and their vulnerability 

to bridge scour, and other hydraulic damage is difficult to predict making their design 

resilient a difficult task. The likelihood of bridge damage in the event of a flood event can 

be thought of as a weakness in the system. The streamflow intensity of the flood event 

occurs independently of the bridge, and acts as a stressor on the system. The intersection 

of the bridge infrastructure weaknesses and stream stressors is a complex interaction, 

resulting in varying levels of damage, and from the uniformed prospective look random. 

Hypotheses regarding damage seen at individual bridges can be made, but when resources 

are limited and recovery must start immediately following an event, the observations will 

not aid in treatment of the system as a whole. The modeling of a transportation system of 

scale requires a measurement of the hazard presented to its most vulnerable connections. 

Without some measure of risk, allocation of resources for prevention, rehabilitation, and 

emergency management is uncertain. 

The research presented here used over 300 damaged Vermont bridges during the 

2011 Tropical Storm Irene as the case study. Individual bridge, stream geomorphic and 

watershed variables tested show benefit in performing vulnerability screening for bridge 

damage. The dataset created increases the knowledge available on bridge scour, and allows 

for the identification of the underlying complex relationships between bridges, streams and 

the landscape.  

 

The following work was first accomplished in support of the analysis presented in this 

thesis: 
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(1) A comprehensive dataset of bridge inspection and stream geomorphic assessments 

was created. The following disparate sources of available data were first assembled 

and georeferenced into GIS (Geographic Information Systems):  

(i) All records of long structure bridges (greater than 6 m in span), and the pre-

ceding years (2010) inspection from the Vermont Agency of Transportation 

(VAOT) Bridge Inventory System (BIS); 

(ii) Estimates of post-storm damage level, damage type, and repair costs obtained 

from documentation via the VAOT and the Vermont Department of Emer-

gency Management (VDEM), and supplemented through our own examination 

of the available inspection photos for all bridges affected;  

(iii) Tropical Storm Irene rainfall data collected for Vermont, neighboring states 

New York and New Hampshire, and the Province of Quebec; the rainfall and 

recurrence interval were spatially interpolated with ordinary kriging; and 

(iv) The Vermont Agency of Natural Resources (VTANR) rapid geomorphic as-

sessment (RGA) data consisting of a host of stream characteristics and meas-

urements for reaches throughout the state.  

(2) The above database was further augmented with additional following variables that 

were computed as part of this work: 

(v) A GIS script was developed to generate stream power measures statewide at 

each of the 15,123 stream reaches (as specified in the VTANR RGA data) and 

at each of the 2,249 hydraulic bridge locations in Vermont. The Stream Power, 

Specific Stream Power, and the event-based, Irene Specific Stream Power 

were computed at each of the locations. 
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(vi) Additional GIS scripts were developed to compute watershed delineation, 

slope determination, watershed land use characterization, and hydrologic soil 

type characterization on 15,123 individual stream reaches and at each of the 

2,249 hydraulic bridge locations in Vermont. 

(3)  Characterization of the level and type of damage of over 300 bridges was performed 

independent of any knowledge of the repair costs. The damage type was classified into 

four categories: scour, channel flanking, superstructure, and debris. The damage state 

was classified into four categories as well: slight, moderate, extensive, and complete. 

(4)  Initial statistical analysis included a Kruskal-Wallis one-way analysis of variance 

(ANOVA) using variables from the above-mentioned data items (i) through (iv) and 

comparison was made between the bridges that were damaged versus those that did 

not experience damage. Identified significant variables from the ANOVA were then 

tested for correlation to damage state with a multivariate logistic regression. 

(5)  A more focused statistical analysis comparing bridges that were damaged versus 

those that did not experience damage was conducted using stream power metrics – 

stream power, specific stream power and Irene specific stream power. 

(6)  To leverage the assembled database using data (i) through (vi), and capture the full 

scope of the assembled resources, feature selection on multiple variables was con-

ducted using a newly developed Conjunctive Clause Evolutionary Algorithm (EA) by 

Hanley et al., (2017, in review). 

(7)  The data on Vermont’s historic bridges damaged in the storm were extracted from the 

above database and analyzed to examine the damage type and extent and cost of repair 

of these bridges. 



135 

 

 

The following conclusions are drawn from our analyses:  

 Of the 313 damaged bridges, 55% were steel beam, 34% were concrete slab or beam, 

and the remaining 11% were historical steel or wood truss superstructures. Single span 

bridges made up the vast majority, 82%, of bridges damaged, with 12% double span, 

and the few remaining including 3 and 4 span structures.  

 About 55.6% of the damaged bridges had scour damage, 29.7% had channel flanking, 

8.3% had debris damage, and the remaining 6.3% had superstructure damage. Scour 

damage resulted in the highest estimated cost to repair, followed by channel flanking, 

and then superstructure damage.  

 Damage due to flanking had an estimated average repair cost of $70,000 per bridge, 

and that the average cost of flanking-induced repair was $55 per square meter of deck 

area. In comparison, scour damage was estimated to cost $290,000 on average to re-

pair per bridge with an average repair cost of $401 per square meter of deck area. The 

estimated cost of repair for superstructure damage was about $24 per square meter of 

deck area.  

 Of the damaged bridges, 30% were categorized as having slight damage, 39% as mod-

erate damage, 14.5% as extensive damage, and 16.5% as complete damage. Damage 

level correlated well with the estimated cost of repair and the cost of repair per deck 

area.  

 The bridge rating assessment characteristics were all strongly correlated to damage. 

Channel rating and waterway adequacy rating had strong discriminating power be-

tween bridge damage levels.  
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 The analysis indicated that stream geomorphic data have the potential in supplement-

ing and enhancing the bridge rating systems, and may aid in identifying hydraulic 

vulnerability. Ratios such as entrenchment, incision, width to depth and straightening 

showed significance at the watershed scale, and indicated that relative measures of a 

stream’s geomorphic condition (disequilibrium) are more important than specific 

measurements.  

 Specific Stream Power, and the event-based, Irene Specific Stream Power were both 

statistically significant at discriminating between damaged and non-damaged bridges, 

as well as between bridge damage levels. The resulting spatial probability maps al-

lowed for visual display of vulnerable reaches, for which bridge placement would be 

at increased hazard.  

 With 330 possible variables in the assembled database, ranging in data type (i.e., nom-

inal, ordinal and continuous) and with varying degrees of independence, and lack 

thereof, variable selection using traditional methodologies is not feasible. For exam-

ple, a four-effect model, using nominal logistic regression, would result in 5x108 pos-

sible feature combinations. To avoid the computational challenges often associated 

with these large data sets, input data variables are often eliminated using expert judge-

ment (i.e., domain experts pre-process the data and include only those variables 

deemed important). However, this greatly limits the power of large, comprehensive 

datasets. The Conjunctive Clause Evolution Algorithm employed in this work was 

found to be capable of producing bridge damage predictions through multivariate fea-

ture selection. The EA was able to test the vast number of possible combinations, 

something that is infeasible with logistic regression, and outperformed the artificially 
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seeded traditional logistic regression (when fed the same information identified 

through EA analysis).   

 The EA algorithm created a prediction set that included a significant number of true 

positive solutions, using the relatively small set of variables including: rainfall, Irene 

Stream Power, Waterway Adequacy Rating, Channel Rating, elevation, percentage 

hydrologic soil type, open water land cover, and confinement ratio. The features com-

binations found by the EA were capable of correctly predicting 70% of damaged 

bridges, with an odds ratio indicating that damage is 11 times more likely to occur in 

the predicted set than the remaining bridges.  

 The resulting damage prediction can be represented graphically to allow for observa-

tions of spatial patterns. Analysis can be done on varying scales, to determine local 

variations from the statewide results, and to provide a focused prediction that would 

be more applicable to stakeholders.  

 Historic bridges are at risk of damage from extreme flood events, and particularly 

susceptible to overtopping flow with debris impact. Timber covered bridges were af-

fected the most by the flooding, and are in need of remediation to remain an enduring 

cultural resource.  

 

This research made the following contributions to the state-of-the-art: 

 The collection and georeferencing of hundreds of damaged and non-damaged 

hydraulic bridges during a single extreme hurricane-related storm event, in 

combination with their inspection records, associated stream geomorphic assessments, 
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stream power, watershed delineations, land use and hydrologic soil group 

characteristics, and damage evaluation create a unique and significantly useful data 

set. To the best of our knowledge, such a database is not available in the literature. 

This data set is made available in a spreadsheet format and can be downloaded from: 

http://go.uvm.edu/vtbridges-irene-data. 

 To the best of our knowledge, this is the first study that links hydrologic stream 

networks with performance of bridges. As geomorphic data become more widely 

available, the framework presented here could be applied elsewhere.  

 This is the first investigation comparing site-specific stream power to observed bridge 

damage at a network level and represents a fundamental breakthrough in the 

evaluation of flood-related bridge damage. 

 The analysis identified individual features of the bridge and stream that correlate with 

underlying damage vulnerability, through comparisons at the stream reach and 

watershed scales, and outlines a framework to leverage these features to aid in the 

prediction of bridge vulnerability. Empirical fragility curves were created to depict the 

exceedance probability for a given damage level against the channel and waterway 

adequacy ratings, creating insights that can aid in evaluating bridges’ vulnerability to 

extreme events.  

 The Evolutional Algorithm of Hanley et al. (2017, in review) was shown as an 

effective big data analysis tool for feature selection. The EA is capable of testing a 

vast number of possible combinations, something that is infeasible with logistic 

regression, and outperforms the artificially seeded traditional logistic regression 

(when fed the same information). Logistic regression is overly conservative, failing to 
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classify affirmative results, and requires independence between samples, which is 

uncontrollable given the spatial correlations between bridges. 

 

The research used Vermont bridges damaged in the Tropical Storm Irene as the 

case study. Yet, the approaches presented here could be implemented in other geographic 

regions. The method of estimating SSP and ISSP, and the calculation and expression of 

bridge hazard through fragility curves and probability maps could be useful in creating a 

screening tool for damage prediction. The methodology, and automated scripts used allow 

for rapid implementation in future applications, thus not limiting this work to Vermont.  

The Tropical Storm Irene database used here for the 313 damaged bridges 

experienced rainfall recurrence intervals ranging between 10 and 500 years, indicating that 

this methodology could be evaluated for a wide range of design flows for any watershed 

beyond the borders of Vermont.  

Further application of event-based SSP (specific stream power) probability maps 

could be generated using rainfall ARI (average recurrence interval) in future climate 

simulations to produce the probability of bridge damage for a hypothetical climate 

scenario. 

The knowledge gathered as a result of this study has applications beyond Vermont. 

Many of the variables newly added to the analysis can be created or monitored using 

commonly available data. The methodology, for creating watershed assessment 

parameters, as well as the using the available EA for feature selection can be applied to any 

bridge dataset and may add value in assessments beyond the study of bridge damage. 

Bridge inspection records are commonly used in other states, and can be supplemented 
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with additional information following the methodology used here. The EA opens up the 

opportunity to perform feature selection on large datasets, allowing for sets of multivariate 

features to be identified that are significantly correlated with levels of bridge damage while 

circumventing the computational challenges associated using traditional statistical 

analysis.  

 

The resulting damage prediction based on Evolutionary Algorithm included in this 

thesis can be represented graphically to allow for observations of spatial patterns. Analysis 

can be done on varying scales, to determine local variations from the statewide results, and 

to provide a focused prediction that would be more applicable to stakeholders. A future 

study could apply the methodology presented on a smaller scale to determine if a localized 

approach would provide new information on the determination of bridge vulnerability. A 

tighter focus may remove features that correlate with geographic differences, and present 

features previously excluded.  

Many of the parameters created through the watershed analysis were found to be 

useful in the bridge damage prediction. The documentation of the watershed delineation 

for each stream reach in Vermont is a useful resource for future work, and provides a useful 

tool in evaluating watershed properties upstream of study areas.    

Stream geomorphic assessment variables, particularly the ratios relating to the 

confinement, entrenchment and incision are valuable metrics for stream stability, and thus 

potentially critical to preventing bridge scour. A modified version of the geomorphic 

assessment could be designed to gather these measurements for bridge projects, including 
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the upstream, bridge section, and downstream reach. A reasonable solution could be to 

conduct these as part of an updated bridge inspection. 

Watershed stream power, as well as specific stream power, are shown to be useful 

in bridge damage prediction. A review of both stream power metrics could be included in 

future bridge design, as well as when assessing existing bridges. By representing the hazard 

in relation to the stream network, it allows for a statewide prediction of damage that can be 

useful for a number of planning purposes beyond bridges.   

Historic bridges are in need of remediation to survive future flooding events. 

Because their superstructures are susceptible to damage from overtopping flows, they can 

be upgraded for improved hydraulic conveyance. When available they could be raised to 

provide additional freeboard. In instances where they cannot be risen, approach spans or 

relief culverts may be considered, to remove some floodplain impediments, and improve 

floodplain conveyance.  
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