16,824 research outputs found

    Plasmonic Optical Tweezers based on Nanostructures: fundamentals, advances and prospects

    Get PDF
    The ability of metallic nanostructures to confine light at the sub-wavelength scale enables new perspectives and opportunities in the field of nanotechnology. Making use of this unique advantage, nano-optical trapping techniques have been developed to tackle new challenges in a wide range of areas from biology to quantum optics. In this work, starting from basic theories, we present a review of research progress in near-field optical manipulation techniques based on metallic nanostructures, with an emphasis on some of the most promising advances in molecular technology, such as the precise control of single-biomolecules. We also provide an overview of possible future research directions of nano-manipulation techniques.Comment: 19 page

    Chemical patterning for the highly specific and programmed assembly of nanostructures

    Get PDF
    We have developed a new chemical patterning technique based on standard lithography-based processes to assemble nanostructures on surfaces with extraordinarily high selectivity. This patterning process is used to create patterns of aminosilane molecular layers surrounded by highly inert poly (ethylene glycol) (PEG) molecules. While the aminosilane regions facilitate nanostructure assembly, the PEG coating prevents adsorption of molecules and nanostructures, thereby priming the semiconductor substrate for the highly localized and programmed assembly of nanostructures. We demonstrate the power and versatility of this manufacturing process by building multilayered structures of gold nanoparticles attached to molecules of DNA onto the aminosilane patterns, with zero nanocrystal adsorption onto the surrounding PEG regions. The highly specific surface chemistry developed here can be used in conjunction with standard microfabrication and emerging nanofabrication technology to seamlessly integrate various nanostructures with semiconductor electronics

    Adsorption studies of DNA origami on silicon dioxide

    Get PDF
    Self-assembled DNA nanostructures promise low-cost ways to create nanoscale shapes. DNA nanostructures can also be used to position particles with nanometer precision. Yet, reliable and low-cost ways of integrating the structures with MEMS technology still have to be developed and innovations are of great interest to the field. We have examined in detail the adherence of DNA origami tiles on silicon oxide surfaces of wafers in dependence on pH-value and magnesium ion concentration. The results of this work will help to pursue new strategies of positioning DNA nanostruc-tures on SiO2. Precise control over the strength of structure-surface adhesion is a prerequisite of relia-ble processes

    DNA-based Self-Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response

    Full text link
    Surface plasmon resonances generated in metallic nanostructures can be utilized to tailor electromagnetic fields. The precise spatial arrangement of such structures can result in surprising optical properties that are not found in any naturally occurring material. Here, the designed activity emerges from collective effects of singular components equipped with limited individual functionality. Top-down fabrication of plasmonic materials with a predesigned optical response in the visible range by conventional lithographic methods has remained challenging due to their limited resolution, the complexity of scaling, and the difficulty to extend these techniques to three-dimensional architectures. Molecular self-assembly provides an alternative route to create such materials which is not bound by the above limitations. We demonstrate how the DNA origami method can be used to produce plasmonic materials with a tailored optical response at visible wavelengths. Harnessing the assembly power of 3D DNA origami, we arranged metal nanoparticles with a spatial accuracy of 2 nm into nanoscale helices. The helical structures assemble in solution in a massively parallel fashion and with near quantitative yields. As a designed optical response, we generated giant circular dichroism and optical rotary dispersion in the visible range that originates from the collective plasmon-plasmon interactions within the nanohelices. We also show that the optical response can be tuned through the visible spectrum by changing the composition of the metal nanoparticles. The observed effects are independent of the direction of the incident light and can be switched by design between left- and right-handed orientation. Our work demonstrates the production of complex bulk materials from precisely designed nanoscopic assemblies and highlights the potential of DNA self-assembly for the fabrication of plasmonic nanostructures.Comment: 5 pages, 4 figure

    Nanostructured luminescently labeled nucleic acids

    Get PDF
    Important and emerging trends at the interface of luminescence, nucleic acids and nanotechnology are: (i) the conventional luminescence labeling of nucleic acid nanostructures (e.g. DNA tetrahedron); (ii) the labeling of bulk nucleic acids (e.g. single‐stranded DNA, double‐stranded DNA) with nanostructured luminescent labels (e.g. copper nanoclusters); and (iii) the labeling of nucleic acid nanostructures (e.g. origami DNA) with nanostructured luminescent labels (e.g. silver nanoclusters). This review surveys recent advances in these three different approaches to the generation of nanostructured luminescently labeled nucleic acids, and includes both direct and indirect labeling methods

    Design of DNA origami

    Get PDF
    The generation of arbitrary patterns and shapes at very small scales is at the heart of our effort to miniaturize circuits and is fundamental to the development of nanotechnology. Here I review a recently developed method for folding long single strands of DNA into arbitrary two-dimensional shapes using a raster fill technique - 'scaffolded DNA origami'. Shapes up to 100 nanometers in diameter can be approximated with a resolution of 6 nanometers and decorated with patterns of roughly 200 binary pixels at the same resolution. Experimentally verified by the creation of a dozen shapes and patterns, the method is easy, high yield, and lends itself well to automated design and manufacture. So far, CAD tools for scaffolded DNA origami are simple, require hand-design of the folding path, and are restricted to two dimensional designs. If the method gains wide acceptance, better CAD tools will be required

    Streamer evolution arrest governed amplified AC breakdown strength of graphene and CNT colloids

    Full text link
    The present article experimentally explores the concept of large improving the AC dielectric breakdown strength of insulating mineral oils by the addition of trace amounts of graphene or CNTs to form stable dispersions. The nano-oils infused with these nanostructures of high electronic conductance indicate superior AC dielectric behaviour in terms of augmented breakdown strength compared to the base oils. Experimental observations of two grades of synthesized graphene and CNT nano-oils show that the nanomaterials not only improve the average breakdown voltage but also significantly improve the reliability and survival probabilities of the oils under AC high voltage stressing. Improvement of the tune of ~ 70-80 % in the AC breakdown voltage of the oils has been obtained via the present concept. The present study examines the reliability of such nano-colloids with the help of two parameter Weibull distribution and the oils show greatly augmented electric field bearing capacity at both standard survival probability values of 5 % and 63.3 %. The fundamental mechanism responsible for such observed outcomes is reasoned to be delayed streamer development and reduced streamer growth rates due to effective electron scavenging by the nanostructures from the ionized liquid insulator. A mathematical model based on the principles of electron scavenging is proposed to quantify the amount of electrons scavenged by the nanostructures. The same is then employed to predict the enhanced AC breakdown voltage and the experimental values are found to match well with the model predictions. The present study can have strong implications in efficient, reliable and safer operation of real life AC power systems

    Structure-based model for light-harvesting properties of nucleic acid nanostructures

    Get PDF
    Programmed self-assembly of DNA enables the rational design of megadalton-scale macromolecular assemblies with sub-nanometer scale precision. These assemblies can be programmed to serve as structural scaffolds for secondary chromophore molecules with light-harvesting properties. Like in natural systems, the local and global spatial organization of these synthetic scaffolded chromophore systems plays a crucial role in their emergent excitonic and optical properties. Previously, we introduced a computational model to predict the large-scale 3D solution structure and flexibility of nucleic acid nanostructures programmed using the principle of scaffolded DNA origami. Here, we use Förster resonance energy transfer theory to simulate the temporal dynamics of dye excitation and energy transfer accounting both for overall DNA nanostructure architecture as well as atomic-level DNA and dye chemical structure and composition. Results are used to calculate emergent optical properties including effective absorption cross-section, absorption and emission spectra and total power transferred to a biomimetic reaction center in an existing seven-helix double stranded DNA-based antenna. This structure-based computational framework enables the efficient in silico evaluation of nucleic acid nanostructures for diverse light-harvesting and photonic applications.United States. Office of Naval Research (ONR N000141210621)United States. Army Research Office (ARO MURI W911NF1210420
    corecore